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สารประกอบคารบอนไนเตรตมีเทไดไอด C2N2(CH2) ถูกสังเคราะหเปนครั้งแรกในป
2011 สารนี้มีพันธะเดียวระหวาง C-N เหมือนกับสารคารบอนไนเตรต C3N4 ซึ่งเปนสารที่
มีความแข็งยิ่งยวด (super hard material) สารประกอบ C2N2(CH2) ถูกพบวามีชองวาง
แถบพลังงานกวางประมาณ 6 eV จึงถูกจัดเปนสารกึ่งตัวนำที่มีแถบชองวางพลังงานกวาง
(wide-band gap semiconductor) ซึ่งสามารถนำไปประยุกตใชไดมากมาย แตอยางไร
ก็ตามยังไมมีการศึกษาเกี่ยวกับสมบัติของสารนี้มากนัก โดยเฉพาะอยางยิ่งสมบัติของสาร
นี้ภายใตความดันสูง งานวิทยานิพนธชิ้นนี้จึงมุงเนนศึกษาสมบัติทางอิเล็กตรอนและสมบัติ
เชิงกลของสาร C2N2(CH2) ภายใตความดันระหวาง 0-50 GPa โดยใชทฤษฎีฟงกชันนัลของ
ความหนาแนน (density functional theory) วิทยานิพนธนี้ไดใชฟงกชัลนัล sX-LDA ซึ่ง
เปนฟงกชันนัลของพลังงานการแลกเปลี่ยนและสหสัมพันธ (exchange-correlation func-
tional) แบบไมเฉพาะที่ (non-local) ที่เปนเครื่องมือที่มีความแมนยำเปนอยางมากในการ
ศึกษาวัสดุที่มีแถบชองวางพลังงานกวาง จากการศึกษาโดยใชฟงกชันนัล sX-LDA พบวา
สาร C2N2(CH2) มีชองวางแถบพลังงานกวาง 6.07 eV และมีคาลดเมื่อความดันมีคาเพิ่มขึ้น
เรายังพบความสัมพันธระหวางการเปลี่ยนแปลงของมุม N1-C1-N2 กับแถบชองวางพลังงาน
จากการคำนวณพบวาคามอดูลัสเชิงปริมาตร (bulk modulus) มีคา 254 GPa ซึ่งสอดคลอง
กับผลการทดลอง เราพบวาการหดตัวของพันธะ C-N ในสาร C2N2(CH2) ภายใตความดันมี
ความใกลเคียงกับพันธะชนิดเดียวกันนี้ใน C3N4 แตการหดตัวของพันธะ C-C ในสารนี้มีคาสูง
กวาในเพชร ซึ่งสงผลใหสาร C2N2(CH2) มีคามอดูลัสเชิงปริมาตรนอยกวาเพชร เราไดทำการ
ตรวจสอบเสถียรภาพของโครงสราง Cmc21 และพบวามันมีเสถียรภาพทั้งในเชิงพลวัต (dy-
namical) และเชิงกล (mechanical) ภายใตความดัน รามานสเปกตรัม (Raman spec-
trum) ของสาร C2N2(CH2) ถูกแสดงและเปรียบกับระบบอื่นเปนครั้งแรกในงานวิทยานิพนธ
ชิ้นนี้
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The carbon nitride methanediide, C2N2(CH2), has been newly discovered

in 2011. This compound contains the C-N single bond, the same as in a super

hard material carbon nitride, C3N4. The band gap of C2N2(CH2) is around 6 eV.

Thus, it is classified as a wide-band gap semiconductor which has many applica-

tions. However, the knowledge of C2N2(CH2) is limited; especially, its properties

under high pressure. In this thesis, we investigate the mechanical and electronic

properties of C2N2(CH2) under high pressure, in the range of 0-50 GPa, using

density functional theory (DFT). The non-local exchange-correlation functional

calculation, sX-LDA, which is the most accurate tool to simulate wide-band gap

materials, is performed. Our result shows that the C2N2(CH2) band gap is 6.07

eV, using the sX-LDA, and it decreases as pressure increases. Moreover, we find

the relation between the N1-C1-N2 angle change and the band gap. The bulk mod-

ulus of C2N2(CH2) is 254 GPa from our calculation which is in good agreement

with the experimental data. The bond contractions of C-N and C-C single bonds

are explored. We find that the C-N bond contraction in C2N2(CH2) is the same as

those in C3N4. However, the C-C bond contraction in C2N2(CH2) is larger than

those in diamond. This leads to the lower bulk modulus compared with that of di-

amond. The Cmc21 structure stability of C2N2(CH2) is examined and found that

it has dynamical and mechanical stabilities. The Raman spectrum of C2N2(CH2)

is predicted for the first time in this work, and compared with references from

other systems.
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Chapter I

INTRODUCTION

The carbon nitride methanediide, C2N2(CH2), was synthesized successfully

in 2011 [1]. A few years later many researchers studied the mechanical and elec-

tronic properties of this compound [2, 3, 4, 5, 6]. They showed that C2N2(CH2)

consisted of the C-N single bond which had compressibility comparable with those

of super hard material carbon nitride, C3N4. In addition, Sougawa [2] claimed

that the C-C single bond in this compound also had compressibility compara-

ble with the C-C bond in diamond. This made the mechanical properties of the

C2N2(CH2) compound attractive. For the electronic property, its band gap was

over 6 eV predicted using first principle method so it was classified as a wide-band

gap semiconductor. The wide-band gap semiconductor has a band gap wider than

a material in general use [7], i.e. the band gap of Si. It possesses many interesting

optical and electrical properties. For the optical property, a semiconductor with a

band gap between 1.9-3.1 eV and more than 3.1 eV emits photon in the range of

visible light and UV [8, 9], respectively. A UV emitting semiconductor has many

applications, such as solar UV measurement, missile plume detection, bactericidal

and vitamin-synthesizing [9, 10]. The electronic property is more advantageous

than that of Si, for example, the maximum junction temperature limit for most Si

devices is 150 ◦C but the wide band gap device can be operated at higher temper-

atures. An explicit example is SiC which has a band gap between 2.00-7.00 eV. A

SiC device can be operated at 350 ◦C up to 500 ◦C [11].

In 1989, Liu and Cohen proposed an empirical model to calculate the bulk

modulus of covalent solids [12]. This model showed that the bulk modulus was a

function of iconicity parameter (λ) and bond length (d)

B =
19.71− 2.20λ

d3.5
(1.1)

It can describe the bulk modulus of diamond and zine-blende solids precisely.

Then Liu and Cohen proposed the β-C3N4 structure (as shown in FIG.1.1a) based

on Eq.(1.1) and the β-Si3N4 structure. They found that the bulk modulus of
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this material is 427 ± 15 GPa which was compareable to that of diamond (442

GPa) [13]. They explained in more detail that the bond length of C-N in the

β-C3N4 is shorter than C-C in diamond, resulting in lower compressibility. After

the structure of β-C3N4 was proposed, many researches about this material, both

theoretical and experimental work, were employed. From theoretical researches,

the other phases of C3N4 were predicted, such as α-C3N4 [14, 15], g-C3N4[10],

pseudocubic-C3N4 [15, 16], cubic- C3N4 [15, 17] etc.. The highest bulk modulus

of C3N4 is 496 GPa [15] in the cubic-C3N4 phase which is higher than that of

diamond. They also predicted the phase transition of this material under pressure

[18]. The results showed that the cubic-C3N4 can arise at high pressure. However,

this material has not been successfully synthesized yet because the N2 molecule

also has strong stability so it is hard to form the C-N single bond.

In 2011, Sougawa and his team tried to synthesize C3N4 using C3N4HxOy

nanoparticles as a substance [1]. They expected that the chemical reaction of

C3N4HxOy → C3N4 + HxOy might occur under extreme condition. If this chemi-

cal reaction occurs, superhard C3N4 will be discovered. In that experiment, they

used the laser heating diamond anvil cell (LHDAC) to control temperature and

pressure. A new crystalline phase was detected at the pressure of 40 GPa and the

temperature of 1200-2000 K. The researchers used many methods to analyze this

crystal, i.e., X-ray diffraction (XRD), transmission electron microscopy (TEM),

selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy

(EDS), Rietveld analysis and first-principle calculation. They reported that the

chemical formula of this compound is C2N2(CH2) and the structure is orthorhom-

bic with the space group Cmc21 as shown in FIG.1.2 . In addition, they found that

this compound, like C3N4, contains the C-N single bond. The compressibility of

the single bonds, i.e. C-N and C-C, and the bulk modulus of this compound were

reported [2, 3]. They examined the compressibility of the single bonds by calculat-

ing single bond length at 30 GPa relative to those at 0 GPa. Then they compared

with those of β-C3N4 and diamond. They concluded that the compressibility of the

single bonds in this material is comparable with those of β-C3N4 and diamond.

However, the bulk modulus of the C2N2(CH2) is 258 ± 3.4 GPa by fitting the

experimental data of the volume under pressure with the Birch-Murnaghan equa-

tion of state (EOS). This value was about 40% less than that of diamond. They

explained that the low bulk modulus in this compound was due to the rotation

of tetrahedral C1N3Cb which does not exist in diamond. The electronic structure

was calculated using the density function theory (DFT) with a non-local exchange

correlation, sX-LDA [4]. The results showed that this compound has band gap
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(a)

(b) (c)

Figure 1.1: (a) The β-C3N4 structure. (b) The C-N single bond in β-C3N4 and

(c) the C-C single bond in diamond. Carbon in grey and Nitrogen in blue.
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Figure 1.2: Structure of C2N2(CH2) with Cmc21 space group.

Figure 1.3: The partial density of state of C2N2(CH2) was calculated by Qun [15]
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around 6 eV so it is classified as a wide-band gap semiconductor.

Its Youngs modulus and shear modulus were predicted by Qun Wei [5]. He

found that the highest Youngs modulus is 686 GPa and the lowest is 376 GPa

when the tensile axis is in the [001] and [120] directions, respectively. The shear

modulus of the C2N2(CH2) is the largest on the (001) plane with [010] stress

direction and on (010) plane with the [001] shear stress direction. The electronic

structure was analyzed by examining the partial wave density of states (PDOS)

projected onto different atoms, i.e., C, N and H (some typical results are shown

in FIG.1.3). This showed that the valence band maximum (VBM) was mainly

originated from C-p and N-p orbitals, and the conduction band minimum (CBM)

was mainly superimposed of the C-p orbitals.

Yingchun Ding [6] examined the hardness of the C2N2(CH2) using two

semiempirical hardness models, i.e., Gao’s model [19] and Simuneks’s model [20].

The Vickers hardness [18] should be more than 40 GPa for a super hard compound

but is 30.53 GPa and 38.49 GPa, respectively for this compound so it was not a

super hard compound. Moreover, the hardness of the C-C bond in the C2N2(CH2)

was calculated and found that it is only 20.28 GPa which is very low compared

with the hardness of the C-N single bond (∼35 GPa) in that work. It could imply

that the compressibility of the C-C bond in the C2N2(CH2) is higher than that of

diamond. This result contrasts with the Sougwa’s work which claimed that it has

compressibility comparable with that of diamond.

According to our review, the knowledge about the properties of the C2N2(CH2)

under pressure needs more investigation; especially, the contraction of the C-C

bond, the structure stability and the band structure. Therefore, we will focus on

these issues. In this thesis, the C2N2(CH2) compound is simulated using Cam-

bridge serial total energy package (CASTEP) code based on the DFT with three

different exchange-correlation functional, i.e., LDA, GGA and sX-LDA. The me-

chanical and electronic properties of this compound under high pressure, from 0

to 50 GPa, are studied. For the mechanical property, we compare the lattice pa-

rameters and volume under pressure from our calculation with the experimental

and previous theoretical work [1, 5]. The bulk modulus is calculated using the

third-order Birch-Murnaghan equation of states. The contraction of the single

bonds, i.e. C-N and C-C, are examined in the same way as Sougawa’s work [2].

The effect of pressure on the interatomic angle is studied. The Raman spectrum

is calculated and compared with the experimental data for the first time in this

work. For the electronic property, the change of band gap and the density of states
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under pressure are studied. The direct-indirect band gap crossing over effect is

tested. The effect of interatomic angle on the band gap is analyzed.

The organization of the thesis is as follows: In Chapter 2 we describe the

theory is used in this work. Chapter 3 contains the results for structure property,

phonon and raman spectrum under high pressure. We present, in Chapter 4,

electronic property, i.e., band structure, density of state and relation between

interatomic angle and band gap. Finally, Chapter 5 gives the conclusions.



Chapter II

THEORETICAL BACKGROUND

The comprehension of electrons behavior plays an important role to predict

property of the condensed matter. The electrons behavior is studied by solving

the Schrödinger’s equation. However it is hardly to find the exact solution of it

due to a number of electron and Coulomb interaction. There are two approaches

to overcome this problem. First approach is solving the Schrödinger’s equation

directly using approximation method, i.e., Hartree approximation, Hartree-Fock

approximation and perturbation theory. The second method, which is used in our

work, is the density functional theory (DFT).

In 1964, Hohenberg and Kohn proposed that a total energy of the condensed

matter can be written in terms of functional of electron’s density. This leads to

DFT which is a power approach to study a property of a solid. In this chapter,

a traditional method, i.e., Hartree and Hartree-Fock approximation, used to solve

the many body problems is introduced. Next the Kohn-Sham equation, which is

the core equation of the DFT, and the method to solve it is explained. Finally,

we show a method to calculate a property, i.e., bulk modulus, phonon dispersion,

Raman spectrum and band structure, from the DFT.

2.1 Many body problems

Quantum mechanics is an important tool to study property of solid because it

explains a behavior of a small unit such as electrons and nuclei which are the cause

of macroscopic properties of condensed matter. If we can find exact solution of

Schrödinger’s equation of the solid system,

ĤΨ = EΨ, (2.1)

we will know all their features. Here E is the energy of the system, Ψ is the

wavefunction and Ĥ is the Hamiltonian operator of the system which can be
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written as

Ĥ = T̂e + V̂e-e + V̂n-e + T̂n + V̂n-n. (2.2)

T̂e represents the operator for the kinetic energy of the electrons, the second term,

V̂e-e represents the operator for the Coulomb potential between the electron and

the electron, the third term, V̂n-e represents the operator for the Coulomb potential

between the electron and the nucleus, the next term, T̂n represents the operator

for the kinetic energy of the nuclei and the last term, V̂n-n, represents the operator

for Coulomb potential between the nucleus and the nucleus.

The solid system consists of millions of electrons and nuclei so Eq.(2.1) is

too complicated to find an exact solution. In 1927, M. Born and J. R. Oppen-

heimer proposed that the solution of Eq.(2.1) can be separated into two parts; the

electron and the nucleus wavefunctions, under adiabatic condition. To calculate

the electron part, the third and the fourth term in Eq.(2.2) are solved separately.

This approximation is called Born-Opppenheimer approximation. If we choose to

focus on the electron, the Hamiltonian can be reduced to

Ĥ = T̂e + V̂e-e + V̂n-e. (2.3)

The exact solution for the Hamiltonian in Eq.(2.3) is still unknown even when

Born-Opppenheimer approximation is used to reduce the nucleus part from the

problem. There are two methods to find a solution of Eq.(2.3). The first method,

the Schrödinger’s equation is solved directly by solving an eigenvalue problem.

Hartree proposed that if the wavefunction of the n-body system can be written

as the superposition of a one-body wavefunction, the problem will reduced to the

one-body problem (n-equations), called Hartree approximation,

ΨH = ϕ (r1)ϕ (r2) ...ϕ (rn) . (2.4)

He found that the ground state energy calculated by using Eq.(2.4) is always an

overestimation to the true ground state energy.

To overcome this problem, we include some electron properties directly into

the wavefunction. Electron is a fermion, it must satisfy Pauli’s exclusion princi-

ple, and for identical particles, electron can permute. The wavefunction which is

a solution to equation Eq.(2.3) must be antisymmetric to accord with the prop-

erty of electron; this approximation is called Hartree-Fock approximation. The

antisymmetric wavefunction can be satisfied using Slater determinant

ΨHF =
1√
N !

det[ϕ1ϕ2...ϕN ]. (2.5)
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The ground state energy calculated by this approximation is lower than Hartree

approximation but is still higher than the exact ground state energy. The differ-

ence in the ground state energy calculated by Hartree-Fock approximation and

Hartree approximation is called the exchange energy, while the difference between

Hartree-Fock energy and the exact ground energy is called the correlation energy.

The accuracy of the total energy calculation can be improved if the perturbation

theory is applied. However, this method requires a lot of computing resources.

Figure 2.1: The ground state energy calculated by Hartree approximation and

Hartree-Fock approximation.

2.2 Density functional theory

This theory proposed by Hohenberg and Kohn states that the total energy, Eq.(2.3),

of the solid system can be represented in terms of functionals of electron density,

E[n] = T [n] + Ve-e[n] + Vn-e = FHK[n] + Vn-e[n]. (2.6)

n ≡ n(r) is the electronic density and FHK[n] is a Hohenberg-Kohn functional.

To simplify Eq.(2.6), the exact electron kinetic energy, T , is replaced by the elec-

tron kinetic energy of a non-interacting system, Ts. The Coulomb potential, Ve-e,

between electron and electron is replaced by the classical Coulomb potential or

Hartree pontential, VH. The Coulomb potential between nucleus and electron is re-

defined as external potential, Vext, and the correction term due to electron-electron

interaction is included in exchange-correlation energy, Exc,

E[n] = Ts[n] + VH[n] + Vext + Exc[n]. (2.7)
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The detail of the exchange-correlation energy will be discussed later. Hohenberg

and Kohn proved two important theorems which are

1. There is only one exact ground density, n0(r), that corresponds to an external

potential, Vext[n].

2. The total energy can be represented in terms of the functionals of the electron

density. The energy functional gives minimum value if and only if the density

is the exact ground state density.

E0 =
∑
n

E[n] = E[n0] < E[n] (2.8)

These two theorems imply that if the variational principle is applied to the

energy functional, the variation will be zero when the energy is lowest; in other

words, the density is the ground state density. This leads to Kohn-Sham equation

which is the most important equation in the density functional theory,

δE[n0]

δn(r)
= 0. (2.9)

2.3 Kohn-Sham equation

According to Eq.(2.7), the kinetic energy in term of the electron density was first

proposed by Thomas-Fermi which was based on the uniform electron gas,

TTF[n] =
3

10

(
3π2
) ∫

n5/3dr. (2.10)

However, this formula is not used in this calculation because its performance

is really inaccurate. The electron’s kinetic energy used in our calculation was

proposed by Kohn and Sham in 1965,

Ts[n] =
N∑
i=1

∫
ϕ∗i (r)

(
− ~2

2m
∇2

)
ϕi(r)dr, (2.11)

where the ϕi are the orbitals of the non-interacting system and the electron density

can be defined by

n(r) =
N∑
i=1

∣∣ϕi(r)2
∣∣ =

N∑
i=1

ϕ∗iϕi. (2.12)
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The second term of Eq.(2.7) is the classical Coulomb potential or Hartree’s po-

tential. The constant
1

4πε0

is omitted. Eq.(2.7) can be expressed explicitly as

VH[n] =

∫ ∫
ϕi(r)ϕi(r)∗

1

|r− r′|
ϕj(r

′)ϕj(r
′)∗drdr′

VH[n] =

∫
ϕi(r)ϕi(r)∗

∫
ϕj(r

′)ϕj(r
′)∗

|r− r′|
dr′dr. (2.13)

From electrostatics, the scalar potential, Φ(r), is generated by
∫ n(r′)
|r−r′|dr

′ so

VH[n] =
1

2

∫
ϕi(r)ϕi(r)∗Φ(r) =

1

2

∫
n(r)Φ(r)dr. (2.14)

The factor
1

2
is included to take care of double-counting. The third of Eq.(2.7) is

the external potential which can be written as

Vext[n] =

∫
vext(r)n(r)dr. (2.15)

The last term of Eq.(2.7) is the exchange-correlation term. As we have explained

before, it is a correction term to our approximation. In more detail, it is the

difference between the exact many-body energy and the non-interacting kinetic

energy and the Hartree’s energy,

Exc[n] = (T − Ts) + (Vee − VH). (2.16)

There is no explicit form for Exc. Thus there are only proposed models which we

will talk about later. The simplest form of this term can be written as

Exc =

∫
vxcn(r)dr. (2.17)

From Eq.(2.9) and Eq.(2.12), the electron density is defined from a complex func-

tion but the value is always real. To find the extremum value in this case, not

only must the condition in Eq.(B.3) be satisfied but also the constraint that the

number of electrons must be conserved,
∑

i

∫
ϕiϕ

∗
i dr = N . The Euler’s equation

with Lagrange multiplier εi can be represented by

δ

δn
[E(n)] =

δ

δϕ∗i
[E{ϕi}] = 0,

δ

δϕ∗i
[Ts + VH + Vext + Exc −

∑
i

εi

(∫
ϕiϕ

∗
i dr−N

)
] = 0. (2.18)

The derivatives of kinetic energy, external potential, exchange-correlation energy

and the constraint, the first, the third, the fourth and the last term of Eq.(2.18),
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respectively are written as

δ

δϕ∗i
Ts = − ~2

2m
∇2ϕi,

δ

δϕ∗i
Vext = vext(r)ϕi,

δ

δϕ∗i
Exc = vxcϕi,

−εiϕi = −
∑
i

εi
δ

δϕ∗i

(∫
ϕiϕ

∗
i dr−N

)
. (2.19)

The derivative of the Hartree potential is more complicated than the other terms

because both density and scalar potential depend on ϕ∗i . The changing of density is

calculated in the same way as the other terms but the changing of scalar potential

is more complicated. To consider the changing of a scalar potential, we recalled

that Poissons equation is ∇2Φ(r) = −n(r), where the factor 4π is omitted, and it

is implied that ∇2δΦ(r) = −δn(r),∫
(δΦ)ndr =

∫
(δΦ)

(
−∇2Φ

)
dr.

If we integrate by parts this equation twice, we have,∫
(δΦ)

(
−∇2Φ

)
dr = −(δΦ)∇ · Φ + Φ∇ · (δΦ)−

∫
Φ∇2(δΦ)dr,

=

∫
Φδndr. (2.20)

The first and second term in this equation vanish because the change of scalar

potential at the boundary must be zero. Then the derivative of the functional VH

is

δ

δϕ∗i
VH =

1

2

[
Φ(r)

δ

δϕ∗i
n(r) + n(r)

δ

δϕ∗i
Φ(r)

]
,

= Φ(r)
δ

δϕ∗i
n(r),

= Φ(r)ϕi. (2.21)

By replacing Eq.(2.19) and Eq.(2.21) in Eq.(2.18). We get the final result,

− ~2

2m
∇2ϕi + Φ(r)ϕi + vext(r)ϕi + vxcϕi − εiϕi = 0,[

− ~2

2m
∇2 + veff

]
ϕi = εiϕi. (2.22)

This is the Kohn-Sham equation and the veff is the effective potential which is

defined by

veff = Φ(r) + vext + vxc.
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2.4 Exchange-correlation energy

As we explained before, The Hohenberg-Kohn theorem stated that the total energy

of the solid system can be represented in terms of functionals of the electron’s

density, E = E[n]. However, the exact energy functional is not known and, may

be, it does not have an explicit form. This means that the exact mapping from n

to E cannot be written as a formula with E on the left-hand side and n on the

right. In the Kohn-Sham method, the exchange-correlation is only one unknown

term and must be modeled. Indeed, this term is very important for the precision

of the Kohn-Sham method. The exchange-correlation energy can be separated

into two terms, the exchange energy and the correlation energy,

Exc[n] = Ex[n] + Ec[n]. (2.23)

Hartree-Fock approximation shows that the exchange energy arises from the fact

that the electron wavefunction must be an antisymmetric wavefunction. Actually

the explicit form of the exchange energy is,

Eexact
x [n] = −

∫ ∫
ϕj(r)ϕ∗j(r

′)
1

|r− r′|
ϕ∗i (r)ϕ∗i (r

′)drdr′, (2.24)

but this exact form is not used in the DFT calculation because it is non-local, i.e.

r′ dependent. There are many form of the exchange-correlation energy that has

been proposed but the functionals widely used in physics calculations are the local

density approximation (LDA), the generalized gradient approximation (GGA) and

the screened-exchange local density method (sX-LDA).

The local density approximation or LDA is the simplest exchange-correlation

energy. This method supposes that the exchange-correlation energy takes the

forms of that of the uniform electron gas system. In the uniform electron gas or

homogeneous electron gas system, the exact exchange energy can be defined by

Ex[n(r)] =

∫
n
(
Cxn

1/3
)
dr, (2.25)

where the Cx is a constant. The exact correlation energy does not exist, even in a

very simple system, although approximations in the high-density and low-density

limits can be ascertained. Thus it assumes the form

Ec [n(r)] = −B
∫
n(1 + α1rs)

ln

1 +
1

B
(
β1r

1/2
s + β2rs + β3r

3/2
s + β4r2

s

)
 dr, (2.26)
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which arises from interpolations between those two limits. Where the rs, defined

from 4
3
πr3

s = 1
n
, is the radius of a sphere whose volume is the effective volume of an

electron. The variables B, α1 and βi, in Eq.(2.26) are fitting constants. Normally,

they are fit to known properties, i.e., atomic spectra, etc. As in Eq.(2.25) and

Eq.(2.26), the exchange and the correlation functionals depend on the electron

density at the observing position and the exchange-correlation energy in uniform

electron gas can be written as an integral of the exchange-correlation potential,

vxc, as

ELDA
xc [n] = Euniform

xc [n] =

∫
vuniform

xc (n)ndr (2.27)

The LDA is reasonably accurate for the prediction of bond lengths and lattice

constants, but has some significant errors, for example in atomic energy, molecular

energy and band gap. The problem of the LDA calculation is due to the fact that

the electron density in a real system is far from that of the uniform electron gas. To

improve the LDA, the generalized gradient approximation, GGA, is developed by

added the gradient of the electrons density; in order to, contain some information

of the environmental detail around an observing position. This, to some extent,

can cover the non-local behavior of the electrons.

The generalized gradient approximation or GGA explicitly includes the gra-

dient of electron density into the exchange-correlation energy,

EGGA
xc [n] =

∫
vxc (n, |∇n|)ndr. (2.28)

We chose the model that is proposed by Perdew-Burke-Ernzerfof (PBE). The

GGA-PBE is good in the prediction of atomic and molecular energy but the band

gap problem still remains, the same as LDA. The band gap calculated by LDA and

GGA always underestimates the experimental data, especially, in a wide-band gap

semiconductor and an insulator. There are two reasons for this problem. First, the

ground state density calculated by using Kohn-Sham equation can predict only

the ground state property. The electron at the ground state occupies upto the

Fermi level so the states that are higher than Fermi level might not have physical

meaning. Second, the exchange-correlation energy is a non-local potential in the

real system but, in the LDA and GGA approximation, this term becomes local

and semi-local, respectively. The generalized Kohn-Sham (GKS) schemes and

screened, nonlocal exchange are proposed to overcome this problem.

The generalized Kohn-Sham method is a more precision of the density func-

tional theory. This method proposes [21] that the ground state energy can be

calculated by

E0[n] = min
n

{
F S[n] +RS[n] + Vext

}
, (2.29)
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where

RS[n] = FHK[n]− F S[n]. (2.30)

The F S[n] functional is the energy functional that can be chosen. This is the main

difference between the Kohn-Sham and generalized Kohn-Sham methods. This

method reduces to Kohn-Sham method if we chose the F S[n] functional to be the

kinetic energy. The functional RS[n] can be written as

RS[n] = {T [n] + Ve-e[n]} − T [n],

= VH + Ex + Ec.

In this case, Eq.(2.29) reduces to

E0[n] = min
n
{T [n] + VH[n] + Vext[n] + Exc[n]}

The solution of this equation is the Kohn-Sham equation. In the sX-LDA method,

the F S[n] consists of the kinetic energy, Hartree energy and the Thomas-Fermi

screening exchange energy which is the simplest version of Eq.(2.24);

EsX
x [{ϕ}] = −

∫ ∫
ϕj(r1)ϕ∗j(r2)

1

|r1 − r2|
ϕ∗i (r1)ϕ∗i (r2)e−kTF|r1−r2|dr1dr2, (2.31)

where kTF is the Thomas-Fermi screening constant. The F S in this case can be

expressed as

F S[n] = T [n] + VH[n] + EsX
x [{ϕ}] ,

thus the R[n] is the difference between the true exchange-correlation energy and

the screened-exchange energy. In sX-LDA method, the widely acceptable LDA

exchange-correlation energy is chosen to replace the true exchange-correlation en-

ergy,

RS[n] = EsX-LDA
xc [n] = ELDA

xc [n]− EsX,LDA
x [n].

The EsX,LDA
x [n] is the local density approximation of EsX

x [{ϕ}] [22, 23]. The sX-

LDA equation, generalized Kohn-Sham equation, is

εiϕi(r) =− ~2

2m
∇2ϕi(r1) + Φ(r1)ϕi(r1) + vext(r1)ϕi(r1)

+

∫
vsX

x (r1, r2)ϕi(r2)dr2 + vsX-LDA
xc (r1)ϕ((r1)) (2.32)

Where vsX
x and vsX-LDA

xc are the derivatives of EsX
x [{ϕ}] and EsX-LDA

xc respectively.

The sX-LDA method is more accurate than LDA and GGA[21]; however, this

method requires numerous computing resources compared to the others.
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2.5 Kohn-Sham orbital representation

The Kohn-Sham orbital can be expressed as a linear combination of basis functions

as

ϕi =
L∑
µ=1

cµiφµ. (2.33)

For L → ∞, it would give the exact expression for ϕi for given basis functions

φµ. However, if suitable basis functions were chosen, a few number of basis func-

tions are required in calculations. There are three methods to expand basis func-

tions, i.e. orthogonal plane wave (OPW) [24], linear combination of atomic orbital

(LCAO) [25] and augmented plane wave (APW) [26]. Each method has different

advantages and disadvantages. The CASTEP code [27], which we used in this

work, chose the OPW method. One of the favourable properties of the plane

wave basis is that it is a complete and orthogonal set, but the most advantage,

of this basis is its periodicity which satisfies the Bloch theorem. In this basis, the

Kohn-Sham orbital can be written as

ϕi(r) =
∑
q

ci,qe
iq·r, (2.34)

where q is a wave vector. This method has a problem when it is used to calculate

core electrons. The plane wave basis is good for describing the nearly free electron

but core electrons have strong interactions with the nucleus, resulting in localized

states around the nucleus. Therefore, the core electrons’ behavior is far from

that of the nearly free electrons. In order to describe the core electrons, a large

number of the plane waves are required. In addition to the core electrons, the

wavefunctions of the valence electrons also distribute themselves in the core region,

which is the area between nucleus and core radius (rc). Fortunately, it is found

that only the valence electrons play an important role in the prediction of the

chemical property and the crystal structure so the core effect can be neglected

(only after some careful treatment [28, 29]). In 1959, Phillips and Kleinman [30]

proposed that the valence wavefunctions φv
i can be divided into two parts,

φv
i = φps

i +
∑
n

aniφ
c
ni, (2.35)

the first term φps
i is called pseudo-wavefunctions which is a smooth part of the

valence wavefunctions and the second term is the oscillating part in the core region

of the valence wavefunctions, while φc
i is the core wavefunctions. If the valence

wavefunction is operated by the Hamiltonian operator, we have

Ĥφv
i = εvφv

i , (2.36)
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Figure 2.2: pseudo wavefunction and pseudo potential

and replace the valence wavefunction by Eq.(2.35) to obtain[
− ~2

2m
∇2 + veff

]
φps
i +

∑
n

ani (ε
c
n − εv)φc

ni = εvφps
i ,

Ĥpsφ
ps
i =

[
− ~2

2m
∇2 + v′eff

]
φps
i ,

= εvφps
i , (2.37)

when ani and vps are defined by,

ani = −
∫
φps∗
i φc

nidr,

v′eff = veff +
∑
n

ani (ε
c
n − εv)

φc
ni

φps
i

(2.38)

= Φ(r) + vext(r) + vxc +
∑
n

ani (ε
c
n − εv)

φc
ni

φps
i

,

v′eff = Φ(r) + vps + vxc.

This means that the pseudo wavefunction can be used instead of the true valence

wavefunctions but the potential of the system must also be modified. In more

detail, the second term in Eq.(2.38) is always positive so it is a repulsive potential.

Thus, the psudopotential, vps, is weaker than the original potential and cannot

represent the original potential in the core region, as shown in a FIG.2.2.

In conclusion, the OPW is a good method to represent the Kohn-Sham

orbital but the problem is that it requires a large basis set. However, Phillips and
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Kleinman showed that the number of the basis set can be reduced, if the external

potential, which is Coulomb potential between nucleus and electron, is modified.

2.6 Pseudopotential

The pseudopotential is a modified potential derived from the true Coulomb po-

tential between nucleus and electron, for using with the OPW method. A good

pseudopotential must be transferable [31]. It means that if we have a pseudopo-

tential in a reference atomic system, this potential can be applied to any system,

i.e., solids, molecules, insulators and metals. The pseudopotential can be called

the “norm-conserving pseudo-potential” [32], if it satisfies the following conditions:

1. The pseudo wavefunction is smooth.

2. The pseudo wavefunction and all electron wavefunctions, φae, are the same

beyond rc,

φps
i (r) = φae

i (r) for r > rc, where ae stands for “all electrons”.

3. The integrals from 0 to rc of the psuedo and all electron charge densities are

equal, ∫
r<rc

|φps
l (r)|2 r2dr =

∫
r<rc

|φae
l (r)|2 r2dr.

4. The pseudo and all electron eigenvalues are equal,

εps
l = εae

l .

In order to generate pseudopotential [33], the Kohn-Sham equation in the reference

system must be solved with all electrons (core and valence electrons). The ground

state of the atomic system has a spherical symmetry so the Kohn-Sham equation

can only have the radial part which is easy to be solved as[
− ~2

2m

d2

dr2
+

(
~2

2m

l(l + 1)

r2
+ veff(r)− εl

)]
φl(r) = 0, (2.39)

where l is a angular momentum. Note that the exchange correlation energy can

be used to calculate in Eq.(2.39) so it is clear that the exchange correlation energy

affects the pseudopotential even within the same atom. The all electron energy

levels, εae
i , and wavefunctions, φae

l , can be obtained after solving Eq.(2.39). The

core radius is chosen in order to separate the oscillating and smooth parts of all

electron wavefunctions. The pseudo wavefunctions with the norm-conservation

conditions can be generated and then the potential can be constructed.
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2.7 The characteristic equation

In order to solve Eq.(2.22), we substituted the plane wave in Eq.(2.34) for the

Kohn-Sham orbital,[
− ~2

2m
∇2 + veff

]∑
q

ci,q|q〉 = εi
∑
q

ci,q|q〉, (2.40)

when we defined |q〉 = eiq·r. Then we operate on Eq.(2.40) with the conjugate of

the basis, 〈q′| , ∑
q

〈q′|
[
− ~2

2m
∇2 + veff

]
|q〉ci,q = εi

∑
q

δq,q′ci,q. (2.41)

Consider the first term on the left hand side in Eq.(2.41), it is the kinetic operator

which operates on the plane wave basis so this kinetic energy is the non-interacting,

free electron, kinetic energy, or explicitly written as

〈q′|
[
− ~2

2m
∇2

]
|q〉 =

~2

2m
|q|2δq,q′ci,q. (2.42)

The second term is the effective potential. The Bloch theorem states that the

potential in a crystal system is periodic so the effective potential can be expressed

as a sum of Fourier components,

veff(r) =
∑
m

veff(Gm)eiGm·r.

Thus,

〈q′|veff|q〉 =
∑
m

veff(Gm)δq′−q,Gm , (2.43)

this term is non-zero only if q and q′ differ by some reciprocal lattice vector Gm.

If we define q = k + Gm and q′ = k + Gm′ , when k is the vector pointing only

within the first Brillouin zone, then the Konh-Sham equation can be written as a

matrix equation as ∑
m

Hm′,m(k)ci,m(k) = εi(k)ci,m′(k), (2.44)

where,

Hm′,m(k) = 〈k + Gm′|
[
− ~2

2m
∇2 + veff

]
|k + Gm〉.

This is the characteristic equation of the Kohn-Sham equation with the OPW

method. This equation is solved in each sampling k-point that is carefully chosen
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Figure 2.3: The scheme of self consistent field (SCF) method to solve the Kohn-

Sham equation.

and the dimensions of this matrix depend on the index which relates to the number

of the basis set. FIG.2.3 shows an algorithm for solving self-consistent Kohn-Sham

equation, (2.44). First, the initial density is generated by randomly assigning the

coefficients of the plane wave basis. Second, the kinetic energy, Eq.(2.42), and the

effective potential, Eq.(2.43), are calculated. Next, the Eq.(2.44) can be solved to

obtain the Kohn-Sham orbital, and the total energy is calculated by

Etot =
occ∑
i

εi − VH[n] + Exc[n]−
∫
δExc[n]

δn
n(r)dr. (2.45)

If the total energy converges, the calculation stops. If not, the new density must

be generated by mixing the current and previous densities and the calculation

must be repeated until the total energy converges.

2.8 Energy cut-off and k-point

In the numerical calculation of the Kohn-Sham equation with the OPW method,

there are two parameters, energy cut-off and number of k-point, which are very

important. First parameter, the energy cut-off related to the number of the plane
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wave basis set is set from the highest kinetic energy of the plane wave basis

− ~2

2m
∇2φi =

~2

2m
(k + G)2φi. (2.46)

The energy cut-off is defined by,

Ecut ≤
~2

2m
(k + G)2. (2.47)

As we mentioned before, infinite number of terms of the plane wave basis are

required to represent the Kohn-Sham orbital completely, i.e., set Ecut =∞. How-

ever, due to the limited resources of calculation we must find an optimum value

of Ecut. The second parameter, the number of k-point is the parameter that is

related to the number of sampling points in the k-space which is used in the cal-

culation. In the calculation, the Kohn-Sham equation is solved in k-space. The

potential, in the crystal system, is periodic so the first Brillouin zone is a good

representative of the system. The sampling of the k-points in first Brillouin zone

can be chosen by using the Monkhorst-Pack method [34]. They proposed that the

sampling k-points are distributed homogeneously in the Brillouin zone, with rows

or columns of k-points running parallel to the reciprocal lattice vectors that span

the Brillouin zone,

k = x1b̂1 + x2b̂2 + x3b̂3,

when bi are the reciprocal lattice vectors. The higher number of the sampling

k-points gives more accurate calculation but it also requires more resources. Thus

the two parameters much be tested to find suitable values for the system before

other properties are calculated. Normally, we choose the values that give the

convergent of the ground state energy within an acceptable tolerance, e.g., 1 meV.

2.9 Geometry optimization

In our calculation, the temperature effect is ignored, T = 0K, Then the enthalpy

must be minimized with respect to all structure parameters, if pressure p is applied,

then

H = E + pV, (2.48)

when E is the total energy and V is volume of the system. The enthalpy can be

a function of strain tensor ε and atomics positions Ri [35],

H = H(ε, R1, . . . , RN),
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Figure 2.4: The scheme of geometry optimization.

so, in unit cell with N atoms, the enthalpy has 9 + 3N dimensions. The negative

of the first derivative of the enthalpy is called the force vector,

F = − ∂H
∂X

∣∣∣∣
p

, (2.49)

where X is a column vector. The first nine components is strain which is defined

as

X3(i−1)+j = εij ; i, j = 1, 2, 3, (2.50)

and the follows are atomic positions in the unit cell,

Xk = Rk ; k = 1, 2, . . . , N. (2.51)

At the minimum Xmin, the gradient of the enthalpy is zero. This implies that the

force vector is zero. In order to search for Xmin we used the quasi-Newton method

where X in (k + 1)th step is updated according to:

Xk+1 = Xk + λ∆Xk, (2.52)

∆Xk = HkFk
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where Hk is the inverse of the Hessian matrix Ak , Hk = A−1
k and λ is the step

length. In the calculation, the initial H0 is unknown so it must be from a guess,

usually H0 = I, and then updated using the algorithm that was proposed by

Broyden-Fletcher-Goldfarb-Shanno (BFGS scheme [36, 37]). The diagram of the

Kohn-Sham calculation with geometry optimization method is shown in FIG.2.4.

2.10 Bulk modulus

The bulk modulus (B0) is calculated using the third-order Birch-Murnaghan isother-

mal equation of state (EOS) [38]. In 1944, Murnaghan [39] assumed that the bulk

modulus is a linear function of pressure, B = B0 +B′0P , where B0 and B′0 are the

bulk modulus and its derivative at 0 GPa. Then he proposed the Murnaghan’s

EOS based on the principle of conservation of mass and Hooke’s law,

P (V ) =
B

B′0

((
V

V0

)−B′
0

− 1

)
, (2.53)

where V0 is the volume at 0 GPa. Later, Birch developed Eq.(2.53) to use in a

hydrostatic compression case [38] which is of the form

P (V ) =
3B0

2

[(
V0

V

) 7
3

−
(
V0

V

) 5
3

]{
1 +

3

4
(B′0 − 4)

[(
V0

V

) 2
3

− 1

]}
, (2.54)

and

E(V ) = E0 +
9V0B0

16


[(

V0

V

) 2
3

− 1

]3

B′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

]3
 ,

(2.55)

where E0 is the total energy at 0 GPa. The Eq.(2.54) and Eq.(2.55) are called

the third-order Birch-Murnghan isothermal EOS. From the solution of the Kohn-

Sham equation with the geometry optimization, we can obtain the set of the

ground state energy and the corresponding volume. Therefore, we can use the

Eq.(2.54) to calculate the bulk modulus by fitting to our data.

2.11 Structure stability

The structure stability can be examined by considering phonon frequencies. If

nuclei are perturbed slightly, they can oscillate around their equilibrium positions.
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In this case, the harmonic approximation is used to describe the total energy of

the system:

Etot({u}) = E
(0)
tot +

∑
k

∑
j

1

2
Ak,jukuj,

Ak,j =
∂2Etot

∂uk∂uj
; (2.56)

where uk is a small deviation of the nuclei from equilibrium, k = 1, . . . , 3N . Note

that the first derivative of the E with respect to uk is zero at equilibrium point. A

is Hessian matrix or force constant matrix [40]. The Fourier transform of Hessian

matrix is related to the dynamical matrix D according to

Ãk,j =
√
MkMjDk,j, (2.57)

where Mi is a mass of nuclei. Then phonon frequencies can be found by solving

the eigenvalue problem,

Dk,jXki = Mkω
2
iXki, (2.58)

where Xki is the element of the ith eigenvector and ωi is the phonon frequency of

the ith mode. Recall the simple harmonic equation of motion.

d2x

dt2
+ ω2x = 0 (2.59)

Eq.(2.59) show that if the phonon frequency is an imaginary value, the nuclei

do not oscillate around the equilibrium position. It implies that the structure

is unstable because the nuclei will move away from its equilibrium position. In

addition, a displacement composition uki in the direction of the ith eigenvector

can then be written as

ukj = XkiQi, (2.60)

where Qi is referred to a normal-mode coordinate. The phonon frequency at

each k-point along the high symmetry point was plot for constructing the phonon

dispersion.

2.12 Raman spectroscopy

Raman technique developed by Raman and Kirishnam [41] is a vibrational spec-

troscopy for assessing molecular motions and fingerprinting atomic or bonding

species. This can be used to analyse the composition, structural and phase tran-

sition [42] of materials. The foundation of this technique is inelastic scattering.
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In the experiment, a laser with monochromatic light in the visible, near infrared

or ultraviolet region [43] is used to excite molecules and the scattering laser is

detected. The energy of the scattering laser can change due to change in ro-

tational or vibrational states of molecules. If the energy of the scattering laser

is lower (higher) than the incidence, it is called Stoke (anti-Stoke) Raman scat-

tering. Considering one molecular system, when it is perturbed by an external

electric field, E = E0 cos(2πω0t), the induced dipole moment, µ, can be expressed

as

µ = αE, (2.61)

where α is the polarizability. The small vibration of the nuclei due to this pertur-

bation also modifies the polarizability. Thus, α can be approximated by the first

two terms in a Taylor series expansion as

α = αq=0 +
∂α

∂q q=0

q. (2.62)

The variable q is a vibrational motion with eigenfrequency ωi which is written as

q = q0 cos(2πωit). (2.63)

Substituting Eq.(2.62) and Eq.(2.63) into Eq.(2.61), we have

µ = αq=0E0 cos(2πω0t)+
1

2

∂α

∂q q=0

q0E0[cos(2π(ω0−ωi)t)+cos(2π(ω0+ωi)t)]. (2.64)

The first term in Eq.(2.64) corresponds to Rayleigh scattering, which is an elastic

scattering. The second and third term are Stokes and anti-Stokes scatterings,

respectively. As seen in Eq.(2.64), the coefficient
∂α

∂q
plays an important role for

the calculation of Raman spectrum.

In order to examine the Raman spectrum in solid, the first-order differential

Raman cross section [44] is calculated to identify the Raman spectra. It is written

as

dσi
dΩ

=
(2πωs)

4

c4

∣∣∣∣ês ∂α̂∂Qi

êL

∣∣∣∣ h(nbi + 1)

8π2ωi
, nbi =

[
exp

(
hωi
kT

)
− 1

]−1

. (2.65)

In Eq.(2.65), ωs is the frequency of the scattered light, ês and êL are the unit

vectors of electric-field directions (polarizations) for the scattered and the incident

lights, α̂ is the polarizability tensor, and nbi the Bose-Einstein statistical factor.

The Eq.(2.65) is zero if
∂α̂

∂Qi

is zero. This means that Raman cannot detect the

vibration in Qth
i mode. This term can be expressed as

∂α̂

∂Qi

=
3N∑
i=1

∂α̂

∂Rk

Xki ,
∂ ˆαmn
∂Rk

=
∂3E

∂Gm∂Gn∂Rk

, (2.66)
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where m,n = x, y, z, and Rk is the atomic coordinates (Cartesian) and Gm is a

component of the external electric field.

2.13 Band structure

From the Kohn-Sham solution, we obtained the eigenvalue, εi, which is refered to

as Kohn-Sham orbital energy. The band structure was generated by plotting this

energy eigenvalue versus the sampling k-point along the high symmetry points.

However, it is well-known that LDA and GGA underestimate the band gap by a

factor of 2 [21]. The band gap, in the Kohn-Sham method, is calculated by

Eg = εN+1,N+1 − εN,N, (2.67)

where εN,M is the M th Kohn-Sham orbital energy of the N-particles Kohn-Sham

system [45]. Actually, the band gap can be calculated using only solution from

the N-particle system, N+1-particle system is not necessary, as shown in FIG.2.5.

The Eq.(2.67) is written as

Eg = (εN,N+1 − εN,N) + ∆xc ,∆xc = εN+1,N+1 − εN,N+1. (2.68)

∆xc in Eq.(2.68), is called the derivative discontinuity. It is zero (∆xc = 0) in the

LDA and GGA calculation [46] so their band gaps have large discrepancy with the

experiments. The sX-LDA can improve this problem [21] as it gives reasonable

and non-zero ∆xc. This is because the parameter kTF in Eq.(2.31) already contains

some information of the excited states. The sX-LDA gives accurate band gaps in

Si, C and their compounds.

Figure 2.5: The foundation of the band gap calculation.



Chapter III

MECHANICAL PROPERTIES

The carbon nitride methanediide compound, C2N2(CH2), was successfully

synthesized under high pressure and high temperature for the first time by Sougawa

[1]. After that there have been many research works about the properties of this

compound, i.e., bulk modulus, the contraction of the C-N single bond, elastic

property, structural stability and band gap [2, 3, 5, 6]. However, the knowledge of

its properties under high pressure is still incomplete. In addition, there is a dis-

agreement on the strength of the C-C single bond in the C2N2(CH2) compound.

Sougawa who synthesized this compound [2] claimed that its compressibility is

comparable to diamond but recent work [6] shows that the C-C bond has higher

compressibility than diamond. In this work, Cambridge serial total energy pack-

age (CASTEP), which is based on the density functional theory, is employed. It

is well-known that the accuracy of DFT depends on choices of suitable exchange-

correlation functionals. In this work, we use three different functionals, local

density approximation (LDA), generalized gradient approximation (GGA) and

screened-exchange local density method (sX-LDA). In this chapter, the results

of C2N2(CH2) mechanical properties, i.e. lattice parameters, bulk modulus, the

contraction of the C-N and C-C single bonds and the structural stability of this

compound under high pressure are presented.

3.1 Computational detail

First of all, before CASTEP is used to examine the property of C2N2(CH2). We

must test the cut-off energy and the number of k-point to find optimum values.

The single-point energy calculation method is used in this test. To find the con-

vergence of the k-point, we fix the cut-off energy at 770 eV [4] and calculate the

ground state energy by varying the number of k-point. The results are shown

in FIG.3.1. To test the cut-off energy, we repeat the computation by fixing the

k-point to 4×4×4 . The cut-off energy converges at 3,600 eV which as in FIG.3.2.
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However, we found that the band gap calculation time is 15 times more than that

for the cut-off energy at 770 eV as shown in FIG.3.3. The difference in the band

gap value is only 0.001 eV. Thus we chose the cut-off energy at 770 eV, which is

the same as that of another work [4].

Figure 3.1: The convergence test of the k-point

Figure 3.2: The convergence test of the cut-off energy



29

(a)

(b)

Figure 3.3: (a) The band gap versus the cut-off energy and (b) the time used for

the calculation.

The condition for the convergence of the SCF calculation is set to the total

energy change of less than 5 × 10−7 eV/atom. The convergence condition for

calculating the geometry optimization is set to the total energy change of less than

5× 10−6eV/atom, the atomic maximum force change of less than 0.01 eV/Å, the

atomic maximum stress change of less than 0.02 GPa, and the atomic maximum

displacement change of less than 5 × 10−4Å. For the LDA functional, we choose

the functional proposed by Ceperley, Alder, Perdew and Zunger (CA-PZ) [47, 48].

For the GGA functional, we choose the functional proposed by Perdew, Burke and

Ernzerhof (PBE) [49].
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3.2 Lattice parameters and volume under pres-

sure

The structure of the C2N2(CH2) compound is orthorhombic with the space group

Cmc21 as shown in FIG.1.2. The experiment reported that the lattice parameters

a, b and c are 7.625 Å, 4.490 Åand 4.047 Å, respectively [1]. The C atom in this

compound can be separated into two types, C1 and Cb. They are located at the

center of a tetrahedral due to their sp3 hybridization. The tetrahedral has four

corners. For C1 tetrahedral, three corners are occupied by three N atoms (one

atom per corner), and the other is occupied by a Cb atom. For Cb tetrahedral,

two corners are occupied by two H atoms, and the other two are occupied by

two C1atoms (one atom per corner). The tetrahedral of C1 and Cb are shown in

FIG.3.4.

Figure 3.4: Structure of C2N2(CH2) with Cmc21 space group.

The lattice parameter is calculated to compare with the experiment and

theory results [5] which are shown in Table 3.1. The results show that the sX-

LDA calculation is more accurate than the LDA and GGA in terms of lattice

parameter. The lattice parameters a, b and c are 7.980 Å, 4.561 Å and 4.067 Å

with errors of 4.7%, 1.6% and 0.5% respectively in the sX-LDA calculation. The

volume under pressure is calculated to compare with the experiment as shown in

FIG.3.5a. These results show that three functionals, LDA, GGA and sX-LDA,

have similar trends to experiment result and the sX-LDA has better agreement in

this calculation.
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Table 3.1: The lattice parameters and the bulk moduli at 0 GPa, compared with

theoretical [5] and experimental [1, 3] works.

Exp[1, 3] LDA GGA sX-LDA LDA[5] GGA[5]

a 7.625 8.029 8.148 7.980 8.0168 8.1259

b 4.490 4.584 4.660 4.561 4.5662 4.6381

c 4.047 4.090 4.141 4.067 4.0667 4.1178

bulk modulus 258 ± 3.4 254 ± 0.1 229 ± 0.8 301 ± 4.1 263 239

(a)

(b)

Figure 3.5: (a) V-P relation between 0 GPa and 50 GPa, compared with the

experimental data [3]. (b) The volume under pressure related to volume at 0 GPa

of each functional.
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3.3 Bulk modulus

In order to calculate the bulk modulus, the energy is plotted as a function of vol-

ume, as shown in FIG.3.6. This graph is fitted to the third-order Birch-Murnaghan

equation of states, Eq.(2.55). The results with standard error are also shown in

Table 3.1. In addition, a residual which is a difference between the observed value

and the predicted value are plotted in FIG.3.7. It shows that our data is good

agreement with the Birch-Murnaghan equation of states. The LDA calculation

shows that the bulk modulus of C2N2(CH2) is 254 GPa with an error of less than

2.8 %, the lowest compared with the experimental result [2]. This value is only 45

% of that of diamond.

Figure 3.6: E-V relation between 0 GPa and 50 GPa. The solid lines are the

fitting from Birch-Murnaghan equation of states.

Then we compared the volume change under pressure of C2N2(CH2) com-

pound with those of β-C3N4 and diamond. The β-C3N4 volume decreases similarly

to that of diamond which implies that it has the compressibility comparable with

that of diamond but the volume reduction of C2N2(CH2) under pressure is faster

than those of β-C3N4 and diamond as shown in FIG.3.8 . This result is reasonable

compared with the bulk modulus of C2N2(CH2) from our calculation.
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Figure 3.7: E-V relation between 0 GPa and 50 GPa. The solid lines are the

fitting from Birch-Murnaghan equation of states.

Figure 3.8: Reduction of volume under pressure of C2N2(CH2), β-C3N4 and dia-

mond.
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3.4 The contraction of the single bond

In 1989, Liu and Cohen proposed a structure of β-C3N4 and found that it has bulk

modulus of 427± 15 GPa [12] which is close to that of diamond. They studied in

more detail that the C-N single bond in β-C3N4 is shorter than the C-C bond in

diamond, resulting in larger bulk modulus. It is very interesting to compare the

compressibility of the C-N single bond in the C2N2(CH2) with those in β-C3N4.

To examine the contraction of the C-N single bond, the varied pressure is applied

and the unit cell is relaxed. Changes in the interatomic distances between C and

N of the relaxed structure relative to those at 0 GPa are calculated. These values

are compared with those of β-C3N4.

(a)

(b)

Figure 3.9: The contraction ration l/l0 of (a) the average C-N bond length in

C2N2(CH2) compared with that of β-C3N4 (b) the C-C bond length in C2N2(CH2)

compared with that of diamond.
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The reduction of the interatomic distances between C and N in C2N2(CH2) is

the same as in β-C3N4, as shown in FIG 3.9a . This means that the compressibility

of the C-N single bond in C2N2(CH2) is comparable with the super hard material

β-C3N4, but the bulk modulus in this compound is very small compared with

that of diamond. Thus this implies that the other bonds, i.e. C-C and C-H, have

higher compressibility. Then the compressibility of the C-C single bond in the

C2N2(CH2) was examined in the same way as the C-N bond. These results were

compared with that of diamond which is shown in the FIG.3.9b. The results show

clearly that there is a significant difference between the C2N2(CH2) and diamond.

The interatomic distance of the C-C bond in the C2N2(CH2) changes more than

in diamond so it has higher compressibility than diamond. This result is in good

agreement with the low value of the hardness of the C-C bond [6].

3.5 Angle

When the pressure is applied, not only the interatomic distances change but so

does the angle. We found that all angles in diamond do not change even if pressure

is increased to 30 GPa. The angles in β-C3N4 change very little, the highest value

is 0.4 % relative to the ambient structure when pressure is increased to 30 GPa.

In the C2N2(CH2) compound, the angles significantly change; especially, the C1-

Cb-C1 angle changes approximately 3.5% from the normal structure, as shown in

FIG.3.10. This also supports our claim of low bulk modulus in this compound.

Figure 3.10: The percentage of C1-Cb-C1 angle change under pressure



36

(a)

(b)

Figure 3.11: (a) the angle difference of N1-C1-N2 and (b) the angle difference of

N2-C1-Cb at various pressures. The angles of 0 GPa are set as a reference.

In this calculation, we found discrepancies of the results. The LDA and the

sX-LDA calculations predict similar angle change in N1-C1-N2, N1-C1-N3, N3-C1-

N1, N1-C1-Cb, N2-C1-Cb and N3-C1-Cb angles. However, the GGA calculation

has different results in the N1-C1-N2 and the N2-C1-Cb angles which are shown

in FIG.3.11. The LDA and the sX-LDA calculations predict that when pressure

increases the N1-C1-N2 increases and N2-C1-Cb decreases. In the GGA calculation,

it has a different trend prior to 5 GPa. In more detail, the N1-C1-N2 decreases and

N2-C1-Cb increases. This distinction can be related with the electronic property

which will be discussed in the next chapter.
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3.6 Structure stability

The other interesting property of the C2N2(CH2) under high pressure is the phase

stability. Usually when pressure increases the structure of the material often leads

to the change of its property. This compound is newly discovered and complex

so we have not found other candidate structures under high pressure. Thus, we

studied the stability of the Cmc21 structure under high pressure by observing its

phonon dispersion. In this part, we used LDA and GGA calculations only. The

phonon dispersion of the relaxation structure between 0 to 50 GPa is calculated.

The results are shown in FIG.3.12 and FIG.3.13. The number of branches in the

phonon dispersion is three times of the number of atoms in the unit cell. Thus,

there are 42 branches corresponding to the 14 atoms, in 2 units of C2H2(CH2),

in our calculation. As shown in FIG.3.12 (3.13), there are only 3 branches that

originate from gamma (G) point. These are the acoustic phonon modes and the

others are optical phonon modes. The alphabets in the FIG.3.12 (3.13) denote

the high symmetry points in the brillouin zone. The Cmc21 is classified as the

base-centered orthorhombic and the high symmetry points are shown in Table.3.2.

Table 3.2: The symmetry points of the base-centered orthorhombic.

Lable coordinates

Γ 0 0 0

Y -1
2

1
2

0

Z 0 0 1
2

T 1
2

1
2

1
2

S 0 1
2

0

R 0 1
2

1
2

We did not find a negative phonon frequency, which indicates the evidence

of the dynamical instability, but we find the disagreement between LDA and GGA

calculations at around 20 GPa which is shown in FIG.3.14. The LDA calculation

shows that the phonon frequency increases when pressure increases. However,

the GGA calculation shows that the phonon frequency decreases to the lowest

value at 20 GPa. The phonon of the Y-point decreases by 30 % compared with

the frequency at ambient conditions. We select the Y-point phonon and plot its

frequency versus pressure, as shown in FIG.3.15. This may be a signal of the

structure instability so we check the mechanical stability of this structure using
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(a)

(b)

Figure 3.12: Phonon dispersion at (a) 0 GPa and (b) 50 GPa from the LDA.
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(a)

(b)

Figure 3.13: Phonon dispersion at (a) 0 GPa and (b) 50 GPa from the GGA .
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Figure 3.14: The Y-G-S branch at 0 and 20 GPa from the LDA and the GGA

Figure 3.15: Frequency differences of the Y-point phonons under pressure. The

frequency at 0 GPa is set as a reference. The results come from LDA and GGA

calculations.
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Born stability criteria [50]. In the orthorhombic system, it is mechanically stable

if the elastic constants satisfy these conditions:

1. C11+C22+C33+2(C12+C13+C23) > 0,

2. C11+C22−2C12 > 0,

3. C11+C33−2C13 > 0,

4. C22+C33−2C23 > 0,

where Cij are the elastic constants. The structure of the C2N2(CH2) at 20 GPa

from the GGA calculation satisfies all these conditions. This confirms that the

Cmc21 structure is stable at least upto 50 GPa.

3.7 Raman spectrum

The Raman spectroscopy is a method that uses the inelastic scattering of the

photon, in the visible, near infrared or near ultraviolet range, to identify the

structure of the material. In more detail, this technique can specify the vibrational

and rotational modes in the system by observing the frequency shift of the incident

photon. We calculate the Raman spectrum to compare with some available data

[51, 52, 53]. In this part, LDA and GGA calculations were performed. The results

of the relaxation structure at 0 GPa is shown in FIG.3.16. The star marks in the

FIG.3.16 are the references from the experimental data [51, 52, 53]. We compared

the peak of the Raman spectrum from our calculation and the experiment data

which is shown in Table.3.3.
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(a)

(b)

Figure 3.16: Raman spectrum of the relax structure at 0 GPa using (a) LDA and

(b) GGA calculations.
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In more detail, we chose the Raman spectrum from propane, CH3CH2CH3,

as a reference because its C atoms form the sp3 hybridization and has CH2 function

as a link between two C atoms. It is similar to C2N2(CH2). However, it is well-

known that the chemical environment affects the Raman spectrum so it might be

slightly difference even if it is detected from the same type of bond as shown in

FIG.3.17.The first peak of the Raman spectrum from our calculation corresponds

to the deformation mode of C-C-C in the reference molecule. The peaks at 880

cm−1 from the LDA and 832 cm−1 from the GGA match with the C-C symmetrical

stretching mode. The C-C antisymmetrical stretching mode is matched with the

peak at 1012 cm−1 and 1013 cm−1 from the LDA and the GGA respectively. The

twisting and wagging modes of C-H2 appear at 1250 cm−1 and 1375 cm−1 from the

LDA, and 1269 cm−1 and 1405 cm−1 from the GGA, respectively. Unfortunately,

some special peaks cannot be specified using spectrum from CH3CH2CH3. Also,

we found that the peak at the wavenumber in the range of 2900-3100 cm−1 could

correspond to the vibration of C-H2 bond. Thus, we resort to other molecules

that has CH2 function, e.g. CH2Br, CH2Cl, CH2Br CH2Br and CH2Cl CH2Cl

as references. Then we find that the peaks at 3050 cm−1 and 3110 cm−1 match

the C-H2 symmetrical stretching mode. The peaks at 3050 cm−1 and 3110 cm−1

match the C-H2 antisymmetrical stretching mode. It was reported that the CN

molecules has a peak at 1500-1600 cm−1 [52] which is in good agreement with the

peaks at 1552 cm−1 and 1560 cm−1 from LDA and GGA respectively. Finally, we

could not specify the peak in the range of 500-700 cm−1.

Figure 3.17: The Raman spectrum of propane [54] at 298 K versus C2N2(CH2) of

LDA at 0 K.
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We, therefore, chose and project some of normal modes from the LDA cal-

culation. FIG.3.18-3.19 show the normal modes of the phonon at 833 cm−1 and

1048 cm−1. There two mode have the C-C vibration. The normal mode of phonon

at 1167 cm−1 show that two H atoms vibrate perpendicular to a plane, defined by

C and two H atoms, with opposite vibrational directions as shown in FIG.3.20.

This corresponds to the C-H2 twisting mode. Next, FIG.3.21 illustrate the normal

mode of phonon at 1311 cm−1. This shows that two H atoms vibrate perpendicu-

lar to a plane the same as twisting mode but they vibrate in the same vibrational

directions. This corresponds to the C-H2 wagging mode. The normal modes of

the phonon at 3052 cm−1 and 3147 cm−1 show the C-H2 bond vibration in the di-

rection that changes the bond length as shown in FIG.3.22-3.23. They correspond

with the stretching mode vibration. In more detail, the mode at 3050 (3147) cm−1

is (anti)symmetrical stretching mode due to the two H atoms vibrate in the same

(opposite) direction. Finally, we project a normal mode of phonon at 670 cm−1 as

shown in FIG.3.24. This mode shows the vibration of the C and N atoms. Thus,

we conclude that the peak in the range of 500-700 cm−1 is the result from the C-N

single bond vibration.

Figure 3.18: The normal mode at 833 cm−1 is the C-C symmetrical stretching

mode.
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Figure 3.19: The normal mode at 1048 cm−1 is the C-C antisymmetrical stretching

mode.

Figure 3.20: The normal mode at 1167 cm−1 shows the vibration of two H atom

which corresponds to C-H2 twisting mode.
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Figure 3.21: The normal mode at 1311 cm−1 shows the vibration of two H atom

which corresponds to C-H2 wagging mode.

Figure 3.22: The normal mode at 3052 cm−1 is a vibration that changes the length

of a bond. This matches with the C-H2 symmetrical streching mode.
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Figure 3.23: The normal mode at 3147 cm−1 is the C-H2 antisymmetrical streching

mode.

Figure 3.24: The vibration of the C-N single bond corresponds to the normal mode

at 670 cm−1.
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Calculating Raman spectrum, would require a large amount of resources so

we choose the phonon frequency at the G-point and plot it against pressure to

predict the trend under high pressure. The results are shown in FIG.3.25. The

results from the LDA calculation show that the phonon frequency increases when

pressure increases but the GGA calculation predicts that the phonon frequency

decreases at 10 GPa. Then we calculate the Raman spectrum of this compound at

5 and 10 GPa using GGA calculation and compare with those at 0 GPa as shown

in FIG.3.26. We do not find the decrease of the Raman spectrum at 10 GPa.

(a)

(b)

Figure 3.25: The phonon frequency at G-point using (a) LDA and (b) GGA

calculations.
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Figure 3.26: The Raman spectrum from the GGA calculation at 0, 5, 10 GPa.



Chapter IV

ELECTRONIC PROPERTIES

As we mentioned before, a wide-band gap semiconductor is very interesting

because it has many applications. The previous works [4, 5] showed clearly that

C2N2(CH2) has a wide-band gap. Wei’s work [5] explained the origin of the valence

band maximum (VBM) and the conduction band minimum (CBM). However, the

nature of the C2N2(CH2) band gap under high pressure has not been described

yet. In this part, the mechanism of band gap changing is explained. In order

to explain it, the origin of the VBM and CBM is carefully examined. Then the

band gap under pressure is described. Furthermore, the direct-indirect band gap

crossing over effect is tested using the sX-LDA calculation since it is known to be

the most accurate tool to study the band structure.

4.1 The mechanism of band gap reduction

The valence electrons in C2N2(CH2) consist of 2s2, 2p2 states from C, 2s2, 2p3

states from N, and 1s1 state from H. Thus, the electronic state around the edge of

valence and conduction states, corresponding to VBM and CBM, respectively, re-

sults from mixing of these states. To explain the VBM and the CBM of C2N2(CH2),

the partial density of states (PDOS) is examined, as shown in FIG.4.1. We find

that the valence band is dominated by the p states of N, C1 and Cb and the con-

duction band consists of all states, except the s state of Cb. This could be implied

that the pressure affects the VBM and CBM differently. In order to extract the

effect of the pressure on the VBM and CBM, we calculate the density of states

(DOS) of the C2N2(CH2) and observe its behavior under high pressure. The DOS

of this compound at 0, 25 and 50 GPa are shown in FIG.4.2. We found that the

positions of the VBM and the CBM increase as pressure increases. We, there-

fore, plot the VBM and CBM energy as a function of pressure which is shown in

FIG.4.3 and calculate the rates ap =
dE

dp
[55], also known as pressure coefficient.

We found that the incremental rate of the VBM is greater than that of the CBM,
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Figure 4.1: The partial density of states (PDOS) of C2N2(CH2).

Figure 4.2: The density of states at 0, 25 and 50 using the LDA calculation.
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Figure 4.3: The VBM and the CBM under pressure from LDA calculation.

Table 4.1: The incremental rate of the VBM and the CBM.

LDA (meV/GPa) GGA (meV/GPa)

aVBM
p 50.2 49.8

aCBM
p 36.6 42.3

as seen in Table. 4.1. This leads to the reduction of the band gap. On the other

hand, the band gap could increase, if the incremental rate of the CBM is higher

than VBM.

4.2 Band structure

The band gap of C2N2(CH2) is calculated using three functionals, LDA, GGA and

sX-LDA and compared with theoretical works [4, 5]. The band gap of C2N2(CH2)

at 0 GPa and other pressure points are reported in Table 4.2. The results show that

the band gaps of the relaxed structure at 0 GPa are 4.15, 4.26 and 6.04 according

to LDA, GGA and sX-LDA calculations, respectively. The band structure of this

compound at 0 GPa using the sX-LDA is shown in FIG.4.4. Under high pressure,

the band gap of C2N2(CH2) decreases as pressure increases. We find paradoxical
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Figure 4.4: Band gap of the C2N2(CH2) compound at 0 GPa from the sX-LDA

results between GGA calculation and the others in pressure range of 0-5 GPa.

The LDA and sX-LDA band gaps decrease when pressure increases while the

GGA calculation shows that the band gap increases to the highest value at 5

GPa, and after that it starts to decrease. The band gap under pressure relative

to that of at 0 GPa is shown in FIG.4.5.

As we showed in Chapter 3, GGA calculation gave different results of the

N1-C1-N2 and N2-C1-Cb angle changes in this range of pressure too. The reason

is that the angles N1-C1-N2 and N2-C1-Cb, and the band gap under pressure are

Table 4.2: The C2N2(CH2) band gap under pressure, compared with the results

from the previous works [4, 5].

P(GPa)
C2N2(CH2)

LDA GGA sX-LDA GGA [5] sX-LDA[4]

0 4.15 4.26 6.07 4.24 ∼6

10 4.07 4.28 6.04 - -

20 3.97 4.20 5.96 - -

30 3.85 4.10 5.87 - -

40 3.72 4.00 5.76 - -

50 3.60 3.89 5.66 - -
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Figure 4.5: The band gap difference denoted by ∆band gap at various pressures.

The band gap at 0 GPa is set as a reference.

related. In more detail, N1-C1-N2 and N2-C1-Cb share the N2 atom. Thus, to

study the effect of these angles on the band gap, we modify the N1-C1-N2 and

N2-C1-Cb angles by moving the N2 atom and use LDA calculation to compute the

band gap. We need to study the atomic movement only, thus, we keep the pressure

fixed at 0 GPa. The relation between band gap changes and the N2-C1-Cb angle

change, while fixing the N1-C1-N2 angle, is shown in Table 4.3. The results show

that the N2-C1-Cb angle change has little effect on the band gap.

Table 4.3: Relation between the N2-C1-Cb angles and the band gap from the LDA.

N2-C1-Cb band gap ∆N2-C1-Cb ∆band gap

LDA

114.772 4.147 0 0

114.807 4.147 0.035 0

114.842 4.146 0.07 -0.001

114.877 4.145 0.105 -0.002

114.912 4.144 0.14 -0.004

Then we modify the N1-C1-N2 and the N2-C1-Cb angles at the same time.

We move the N2 atom in such a way that the N1-C1-N2 angle increases and the

N2-C1-Cb angle decreases (the same trend as the GGA angle changes between 0-5

GPa). The results, as shown in Table.4.4, show that the LDA band gap increases.

This leads to the conclusion that the discrepancy between the LDA and the GGA
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band gaps between 0-5 GPa due different behavior of the N1-C1-N2 and N2-C1-Cb

angles.

Table 4.4: Relation between the N1-C1-N2 and the N2-C1-Cb angles and the band

gap from the LDA.

N1-C1-N2 N2-C1-Cb band gap ∆N1-C1-N2 ∆N2-C1-Cb ∆band gap

LDA

109.429 114.772 4.147 0 0 0

109.401 114.810 4.152 -0.028 0.038 0.005

109.374 114.847 4.155 -0.055 0.075 0.008

109.347 114.885 4.158 -0.082 0.113 0.011

109.919 114.922 4.162 -0.110 0.150 0.015

Next, we change the N1-C1-N2 angle, while the N2-C1-Cb angle was fixed, by

moving the N2 atom. Table 4.5 shows the relation between the N1-C1-N2 angle and

the band gap. The results show that the band gap changes significantly according

to the N1-C1-N2 angle change. Then we explore in more detail why the N1-C1-N2

angle has a significant effect but the N2-C1-Cb angle has little effect on the band

gap. Consider the N1-C1-N2 angle change by moving the N2 atom. When this angle

decreases, the N2 atom moves closer to the N1 atoms, as shown in FIG.4.6a. This

makes the overlapping integral increases, resulting in the band gap increase. On

the opposite side, we find that if the N1-C1-N2 increases, the band gap decreases.

Consider the N2-C1-Cb angle change by moving the N2 atom. The N2 atom moves

toward a free space which reduces the interaction with other atoms, regardless of

whether this angle increases or decreases. The N2 atom movement according to

the increase of the the N2-C1-Cb angle is shown in FIG.4.6b.

From our knowledge, LDA calculation overestimates the binding energy [56]

while GGA calculation underestimates it [57]. This means that in GGA calcula-

tion the bonding in C2N2(CH2) is softer than in LDA calculation. Thus, when

Table 4.5: Relation between the N1-C1-N2 angles and the band gap from the LDA.

N1-C1-N2 band gap ∆N1-C1-N2 ∆bandgap

LDA

109.429 4.147 0 0

109.395 4.151 -0.034 0.004

109.361 4.155 -0.068 0.018

109.328 4.158 -0.101 0.011

109.284 4.161 -0.145 0.014
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(a)

(b)

Figure 4.6: The N2 movement, from equilibrium position (0.293603, 0.635494,

0.856859), according to (a) the N1-C1-N2 angle decrease, to (0.293699, 0.634598,

0.857529), and (b) the N2-C1-Cb increase, to (0.293064, 0.635503, 0.856249).
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pressure increases, the N2 atom in the GGA calculation can move close to N1 atom

more easily than in the LDA calculation. This is a possible explanation for the

discrepancy between the LDA and the GGA calculation.

4.3 The direct-to-indirect crossover

We find that the C2N2(CH2) compound is a direct band gap semiconductor at

ambient condition. However, some materials [58] transform from a direct to an

indirect semiconductor, which is called the direct-to-indirect band gap crossover,

under high pressure. Also we monitor this phenomenon in the C2N2(CH2) com-

pound. In this part, we use the sX-LDA calculation. It is clear that the band

gap crossover occurs if the VBM and CBM exist at a point other than at the

gamma point (G-point). We, therefore, examine the VBM and the CBM of the

C2N2(CH2) compound under high pressure. The changes in the valence and the

conduction states at the high symmetry points, i.e. Z, T, Y, S and R points,

under high pressure relative to those at the G-point are calculated. The results

are shown in FIG.4.7. These results show that the changes of the valence and the

conduction states, decrease and increase, respectively, if the energy eigenvalues are

higher than those at the G-point. It can be concluded that the Cmc21 structure

of C2N2(CH2) is a direct semiconductor under high pressure.



59

(a)

(b)

Figure 4.7: The difference of the (a) VBM and (b) CBM at high symmetry point

under pressure relative to those at gamma point.



Chapter V

CONCLUSIONS

We investigated the mechanical and electronic properties under high pres-

sure of carbon nitride methanediide, C2N2(CH2), using first principle method. In

this thesis, three different exchange-correlation functionals, i.e. LDA, GGA and

sX-LDA, are preformed. The sX-LDA is most accurate to calculate the lattice

parameters giving, a = 7.980Å, b = 4.561Å and c = 4.067Å. Under pressure, the

C-N single bond of C2N2(CH2) has similar contraction to that of β-C3N4. How-

ever, the C-C single bond has higher compressibility than that of diamond which

is in good agreement with Ding’s work [6]. Besides, the C1-Cb-C1 angle changes

significantly. Thus, C2N2(CH2) has larger compressibility than that of diamond,

i.e. the bulk modulus of C2N2(CH2) was only 45 % of that of diamond. The

Cmc21 structure of this material was examined using the phonon dispersion and

Born stability criteria. The results showed that it has dynamical and mechanical

stability in pressure range of 0-50 GPa. The Raman spectrum of C2N2(CH2) is

described for the first time by our calculation. We detect 9 peak from the Raman

calculation, i.e., 402 (393), 671 (648), 880 (832), 1012 (1013), 1250 (1269), 1375

(1405), 1552 (1560), 3050 (3110) and 3145 (3203) cm−1 using LDA (GGA).The

Raman shift at 671 (648) cm−1 and 1552 (1560) cm−1 could be due to the C-N

single bond. Further, the Raman spectrum’s results under pressure support that

the Cmc21 structure has stability under pressure.

For the electronic property, the band gap of C2N2(CH2) is 6.071 eV from

the sX-LDA calculation. Clearly the band gap decreases as pressure increases.

To understand the reducing mechanism of the band gap, we examined the PDOS

of this material under pressure. From our analysis, the VBM is dominated by

the p states of N, C1 and Cb but the CBM is composed of all states, except

the s state of Cb. Under pressure, the results show that the incremental rate

of the VBM is higher than that of the CBM, resulting in decreasing band gap.

Moreover, we found the linkage between the interatomic angle N1-C1-N2 and the

band gap. The changing of this angle strongly affects the CBM and the CBM
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increases as the N1-C1-N2 decreases. Thus, the band gap increases. The direct-

indirect band gap crossing over effect was tested and found that it did not occur

in this material. In this thesis, we found many discrepancies, i.e., angle changes,

phonon dispersion, Raman spectrum and band gap, between the GGA results and

the LDA results. In our opinion, the main reason is because the LDA calculation

overestimates the binding energy while the GGA calculation underestimates it

so that they predict different ground states of the atomic positions leading to

differences in other results. Further experimental works will be a tool to judge our

prediction. Furthermore in the GGA results, we found the phonon softening which

is a precursor to the structural instability around 20 GPa. To our knowledge, no

phonon and Raman spectrum measurements have been performed experimentally.

Therefore, our study suggested that these experiment should be carried out at low

temperature and other structures of C2N2(CH2) could be detected.
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Appendix A

VARIATIONAL PRINCIPLE

The variational principle is a tool to find a variable and a function that yields

the extremum value of a function and a functional, respectively. To understand

the principle, we study how to apply this method in a function. Suppose x0 is a

value that yields extremum value of function y(x). If x0 is varied with slightly,

the difference between the values of the function at x0 and x0 + ε will be zero,

lim
ε→0

y(x0 + ε)− y(x0)

ε
=
∂y

∂x

∣∣∣∣
x=x0

= 0. (A.1)

The variational principle can be applied to functional in the same way as function

but the functional is a method to map function y(x) to scalar F [y(x)], Unlike

function which maps variable x to scalar y(x), defined by

F [y(x)] =

x2∫
x1

f (y(x), y′(x), x) dx. (A.2)

First, suppose y0(x) is a function that yields extremum value of functional which

is perturbed by an arbitrary function η(x), differentiable function and has small

magnitude and satisfies boundary conditions,

η(x1) = η(x2) = 0. (A.3)

The difference between functionals must be zero similar to Eq.(A.1),

lim
ε→0

F [y0 + εη]− F [y0]

ε
=

d

dε
F [y0 + εη]|ε=0

=

∫
δF

δy
η dx

= 0, (A.4)

when
δF

δy
is derivative of functional F compared with function y at point x. From

Eq.(A.2), F [y0 + εη] is explained by,

F [y0 + εη] =

∫
f (y0 + εη, y′0 + εη′, x) dx,

=

∫
f (y0, y

′
0, x) + ε

∂f

∂y
η + ε

∂f

∂y′
η′ +O

(
ε2
)
dx. (A.5)
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If Eq.(A.4) is substituted by Eq.(A.2) and Eq.(A.5), it follows that

lim
ε→0

∫
f (y0, y

′
0, x) + ε∂f

∂y
η + ε ∂f

∂y′
η′ +O (ε2)− f (y0, y

′
0, x) dx

ε

= lim
ε→0

∫
ε∂f
∂y
η + ε ∂f

∂y′
η′ +O (ε2) dx

ε
=

∫
∂f

∂y
η +

∂f

∂y′
dx,

=

∫ (
∂f

∂y
− ∂

∂x

(
∂f

∂y′

))
η +

∂

∂x

(
∂f

∂y′
η

)
dx.

The second term vanishes because of the boundary conditions of η, Eq.(A.3), when

the integration operator is operated,∫ (
∂f

∂y
− ∂

∂x

(
∂f

∂y′

))
η dx = 0. (A.6)

The function η is an arbitrary function which is not necessary zero so Eq.(A.6)

will be satisfied if and only if

∂f

∂y
− ∂

∂x

(
∂f

∂y′

)
= 0. (A.7)

This equation is called Euler-Lagrange equation, Euler’s equation or Lagrange’s

equation, which is the condition to find the function that yields extremum value of

a functional. Eq.(A.7), is proved in a special case that the functional depends on

one function and this function depend on one variable, (F = F [y(x)]). In a more

general case, if the functional depends on many functions but the function depends

on only one variable,(F = F [y1, y2, ..., yn]), Euler’s equation can be written as

∂f

∂yi
− ∂

∂x

(
∂f

∂y′i

)
= 0. (A.8)

If the functional has the constraint,
(
G[y(x)] =

∫
g(y(x)) = C

)
or in general form

(H[y(x)] = G[y(x)]− C = 0), in order to find the extremum value, it will be sat-

isfied by
∂f

∂yi
− ∂

∂x

(
∂f

∂y′i

)
− λi

∂g

∂yi
= 0. (A.9)

The variable λ is a dummy variable called a Lagrange multiplier. In density func-

tional theory, the total energy of the system depends on density, not on derivative

of density so the second term in Eq.(A.9) vanishes. The Euler’s equation in this

case is written as
∂f

∂yi
− λi

∂g

∂yi
= 0. (A.10)
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Appendix B

DERIVATIVE OF A REAL VALUE

FUNCTION WITH COMPLEX

PARAMETERS

The derivation of function of complex variable (f = f(z)) is more com-

plicated than the function of real variable because it consists of two variables,

real part z and imaginary part z∗; therefore, the condition from Eq.(A.1) is not

enough in this case. The condition to find the extremum value in this case has

two approaches.

The first approach, the variable z is represented in form z = x + iy when

x and y are real variables. Now, the function depends on the variable x and y,

f(z) = f(x, y). The extremum value of this function occurs when

∂f

∂x

∣∣∣∣
z=z0

=
∂f

∂y

∣∣∣∣
z=z0

= 0. (B.1)

Where z0 is a point that the function’s value is extremum. This method is complex

because z must be replaced before the condition, Eq.(B.1), can be used.

The second approach which is equivalent to first approach but it is in form

of complex variable,
∂f

∂z
=

∂f

∂z∗
= 0. (B.2)

If the function f is real, the derivative of this function will be real too,(
∂f

∂x
=

(
∂f

∂x

)∗
,
∂f

∂y
=

(
∂f

∂y

)∗)
. There two conditions can be reduced to a single

condition,
∂f

∂z∗
= 0. (B.3)
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Appendix C

CASTEP

CASTEP Cambridge serial total energy package (CASTEP), based on DFT

with plane wave basis is a software that is widely used to study a property of

materials. It is one of the modules in Materials Studio program which has a graphic

user interface (GUI). There have two steps for using CASTEP. The first step

is created the material which requests structural information, i.e., space group,

lattice parameter and atomic position. The second one is choose the option to

calculate.

In order to create a material, the first step, open Materials Studio program

from the desktop and then create a new 3D Atomistic Document. Call the Build

Crystal bar by click the Build button and go to the Crystals and then chose

the Bulid Crystals as shown in FIG.C.1. The first tap, Space Group tap, allows

Figure C.1: Define the space group and lattice parameters.
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Figure C.2: Set the atomic positions.

us to select a space group which has 230 distinct types using Hermann-Mangain

notation. The second tap, Lattice Parameters tap, is used to set lattice param-

eters, i.e. a, b and c, and angle, i.e., α, β and γ. Next, call Add Atoms bar which

can be chosen in the Bulid button as shown in FIG.C.2. The first tap, Atoms

tap, is used to define type of atom and its position.

To select option to calculate in the CASTEP, call the CASTEP program by

click Modules button and go to CASTEP and then chose Calculation as shown

in FIG.C.3. The first tap, Setup is used to choose the method and exchange-

correlation functional in the calculation. The CASTEP has many method for,

using to calculate, i.e., Energy, Geometry Optimization, Dynamics, Elastic con-

stants, TS search and Properties. In this thesis, we only use Energy, Geometry

optimization and Properties methods. The first one, Energy, is the calculation

that only solves the Kohn-Sham equation without changing atomic position. The

Geometry optimization is similar to the first one but it moves atom in order to

search for the lowest energy position. The last method, Properties, is the calcula-

tion that uses the result from the Kohn-Sham equation to calculate the targeted

property that we are interested. However, Energy or Geometry optimization must

be used to solve Kohn-Sham equation before this method is operated. The method

to calculate is chose by press the Task button. Press the Functional button to

select the exchange-correlation functional, e.g., LDA, GGA-PBE, sX-LDA.

The Next tab, Electronic tab, allows us to set the parameter, i.e., energy
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Figure C.3: Chose the method to calculate and functional.

cut off, k-point and pseudo-potential. For k-points, there are two methods to

set this parameter. The first method is setting by fix number of point in each

direction. The second method is specifying the length between the k-point grips.

The following tab, Properties tab, is used for choosing the targeted properties to

calculate. This program can calculate many properties, i.e., band structure, core

level spectroscopy, density of state, electron density difference, electron localization

function, NMR, optical properties, orbitals, phonons, population analysis, stress,

polarizability, IR and Raman spectra. The last one, Job Control tab, allows us

to select a server for the CASTEP and number of node to perform.
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