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The main function of kidneys is to retain the normal blood composition and

volume through blood filtration: the first step of which occurs at the glomerular

capillary wall that consists of three layers: the endothelium cell layer, the glomerular

basement membrane (GBM) and the epithelial foot processes with their

interconnecting slit diaphragm. Our research focuses on the transport of myoglobin,

a biomarker for muscle damage and one of the causes of acute renal failure.

A hydrodynamic model is introduced to describe hindered transport of electrically-

neutral macromolecules through the epithelial slit and a glomerular basement

membrane (GBM). The slit diaphragm is modeled as a row of parallel cylindrical

fibers and the GBM is treated as an isotropic fibrous medium. Numerically calculated

sieving coefficient of myoglobin, a product of the sieving coefficient of the

slit diaphragm and that of the GBM, is found to be in good agreement with sieving

coefficient obtained from counting radioactivity of radiolabeled myoglobins in blood

and urine, if, in the calculation, GBM fiber radii are assumed to be 0.5 nm (with the

presence of type IV collagen in the GBM neglected). With the gap between adjacent

fibers in the epithelial slit diaphragm (L) assumed to be about 10 nm, the absence of

the slit diaphragm increases the sieving coefficient by only 6-7%.  It seems that the

GBM contributes significantly to the restriction of myoglobin in glomerular filtration,

although it might still be too early to say that the contribution of slit diaphragm is

negligible, given that the values of L = 10 nm is the upper limit. Further investigation

is needed to fully understand the contribution of each layer.
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CHAPTER I 

INTRODUCTION 
 

 The main function of human kidney is to filter blood, remove excess proteins 

and metabolic waste while retaining the normal blood composition and blood volume. 

The first step of blood filtration occurs at the glomerular capillary walls within             

a nephron shown in Fig. 1.1. Inside the nephron, the glomerulus, a network of blood 

capillary,  is surrounded by Bowman's capsule containing urine. Excess fluid, proteins 

and metabolic wastes are transported from the blood stream through the glomerular 

capillary wall into primary urine in Bowman's capsule. The glomerular capillary wall 

is normally very permeable to water, allowing non-restricted passage of small and 

middle-sized molecules, while restricting passage of macromolecules such as serum 

albumin [1]. It is desired to relate nanostructure of each layer of glomerular capillary 

wall as well as basic properties of macromolecules such as size, charge, and shape, to 

measurable quantities such as rate of water transport and sieving coefficient (a ratio 

between upstream and downstream concentration) of macromolecules. 

 

 
Figure 1.1 Schematic view of a kidney, a glomerulus and a glomerular capillary  

wall. [2]  
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1.1 Overview of Glomerular Filtration  

 

As shown in Figs. 1.2 and 1.3, the glomerular capillary wall is one of the most 

complex biological membrane, consisting of multiple cellular layers: an endothelial 

cell layer (the inner most layer), a glomerular basement membrane (GBM) and an 

epithelial cells layer (the outer most layer next to Bowman's capsule). The filtration 

pathway is demonstrated by the arrows. Fluid and macromolecules enter the 

glomerular capillary wall through the endothelial fenestrae.  After that, they are 

transported across the GBM into the primary urine in Bowman's capsule through the 

slit diaphragm connected to the epithelial podocytes.  

 

 

  
Figure 1.2  Structure of glomerular capillary wall with different cellular layers:            

a fenestrated endothelium cell layer, a glomerular basement membrane (GBM), and 

the epithelial foot processes [3]. Figure is not drawn to scale. Arrows indicate the 

transport direction of the macromolecules from within the capillary lumen to 

Bowman's capsule. 

(60 nm) 
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Figure 1.3 Electron micrograph of glomerular capillary wall with the capillary lumen 

above and the urinary space below. Scale bar = 100 nm [1] 

 

The inner most layer, the glomerular endothelial cell layer, is the cellular layer 

lining the capillary lumen in contact with blood stream.  Approximately 20-50% of 

the endothelial surface area are covered with large round or oval-like shaped 

fenestrates. The electron micrograph scanning reported that the diameter of the 

fenestrae are about 60 nm [1], much larger than plasma proteins such as albumins 

with radii about 3.6 nm or myoglobins with radii about 2 nm.  Although the fenestrae 

are too large to contribute to the size-selectivity of the glomerular barrier, it does 

contribute to the charge-selectivity of the glomerular capillary wall due to the fact that 

the endothelial cell  surface has negatively charge proteoglycans.  

 The middle layer, glomerular basement membrane (GBM), is a hydrogel 

believed to be 90-93% water by volume [4] and composed of a fibrous network 

consisting of typeIV collagen and proteoglycan as well as other protein fibers such as 

A 
B 
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laminin and nidogen/entactin [1]. In the past, researchers assumed that the glomerular 

basement membrane, the thickest layer (with a thickness of approximately 240-370 

nm), was the most selective layer. but in vitro ultrafiltration through isolated GBM 

suggested that, although the GBM may contribute to restriction of solute transport, 

other cellular layers is likely to also play a crucial role in maintaining glomerular 

selectivity [5,6].  Mutations in the collagen chains  within the GBM create a severe 

pathological conditions: the most well-known being Alport’s syndrome. 

 The outer most layer, the epithelial cell layer, is believed to be a major barrier 

restricting the passage of macromolecules [7, 8]. This cellular layer lines the outside 

of the glomerular barrier, facing the Bowman's capsule containing primary urine.  The 

cells have long extending cytoplasmic foot processes, separated by a filtration slit that 

is about 25-60 nm [1] and covered by a diaphragm, as shown in Fig. 1.4.  An electron 

microscopic study showed that the slit diaphragm has a unique structure consisting of 

planar arrangement of fibers resulting in space allowing a passage of molecules with 

dimensions previously postulated to be 4x14 nm [9]. However, several experiments 

have shown that even proteins with radii as large as 3.6 nm can still pass through the 

glomerular capillary wall.  Recent electron micrograph gave an estimate of the width 

of spaces between fibers of glomerular slit diaphragm to be 4-20 nm.  

   We are particularly interested in transport of myoglobins through glomerular 

barrier. Myoglobin is considered to be the oxygen tank of the tissue muscle, being the 

primary oxygen-carrying pigment, and is a sensitive bio-marker for muscle injury. 

Myoglobinuria, a symptom of having excessive amount of myoglobin in urine, is 

often associated with rhabdomyolysis or muscle destruction.  Damaged muscle 

releases myoglobin which is then filtered by the kidney but is toxic to the renal 

tubular epithelium, capable of causing an acute renal failure. We are, therefore, 

interested in relating quantities that can be measured experimentally such as sieving 

coefficient of myoglobin (discussed below) to cellular structures of the glomerular 

capillary wall. Stokes-Einstein radii of myoglobins are about 2 nm, and they are 

globular proteins which means that their shapes are relatively spherical. To make the 

procedure simpler, the scope of this research is restricted to electrically-neutral 

myoglobins such as nMyoglobin. 
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Table 1.1 Parameter values for transport of macromolecules  through slit diaphragm. 

Parameter Values 

Slit diaphragm width  25 - 60 nm 

Distance from  GBM to slit diaphragm ( Slit-GBML ) 30 - 70 nm 

Fibers radii (R) 2-10 nm 

The width of spaces between fibers  4 - 20 nm 

An average velocity in the epithelial slit. 3 x 10-5 m/s 

A pressure drop in the epithelial slit. 3.8 x 102 Pa 

Myoglobins radii ( sr ) 2 nm 

 

 

1.2 Overall Sieving Coefficient 

 

 The objective of this thesis is to relate quantities that can be measured 

experimentally to nanostructures of the glomerular capillary wall. One of such 

quantities is a solute sieving coefficient: a ratio between upstream solute 

concentration in the capillary lumen (CP) and downstream solute concentration in 

Bowman's capsule (CB): 

 

     
P

B

C
C

     (1.1) 

 

The overall sieving coefficient ( ) of the glomerular capillary wall is the product of  

sieving coefficient of the three cellular layers:  

 

     SDbmen   .     (1.2) 

 

where , bm  and   are the sieving coefficients of the fenestrated endothelium, 

the basement membrane and the epithelium (slit diaphragm) respectively. However, 

because we focus on electrically-neutral molecules and because a fenestrated opening 
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in the endothelial cell layer is large   (~30 nm in radius) compared with the radius of 

myoglobin (rs ~ 2 nm), 1en  resulting in the overall sieving coefficient of the 

glomerular barrier being simply the product between sieving coefficients of the GBM 

and the epithelial slit diaphragm as shown below: 

 

          SDbm  .      (1.3)  

 

The solute sieving coefficient for the epithelial slit is defined as following: 

 

                (1.4) 

where C0 is the average solute concentration of the upstream flow at the GBM-

epithelium interface and CB is the average solute concentration in Bowman’s space. 

bm  is the sieving coefficient for the GBM defined as following: 

 

     
P

bm C
C0      (1.5) 

 

1.3. Overview of Mathematical Model Development 

 

 Shown in Fig. 1.4 is the idealized structural unit of the glomerular capillary 

wall, where the width of the structural unit (W) is 360 nm and the thickness of GBM 

(H) is about 200-400 nm.  The distance between the epithelial podocytes is 25-60 nm.  

As evident from Eq. (1.3), in order to calculate  the overall glomerular sieving 

coefficient, sieving coefficients of solutes across the GBM and through the epithelial 

slit must be first determined. A mathematical model is developed to explain transport 

of macromolecules through both layers.  A slit diaphragm is modeled as a row of 

parallel cylindrical fibers as suggested by Hora et al.[11] as well as by Drumond and 

Deen [12].   GBM is modeled as an isotropic hydrogel with randomly oriented 

cylindrical fibers.  A comparison between our calculated overall sieving coefficient 

and data from experiment employing the tissue-uptake technique [13] will be made. 
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The purpose of this work is to determine how each layer, namely the GBM and the 

epithelial slit, contributes to the overall sieving coefficient of electrically-neutral and 

spherical macromolecules with sizes comparable to myoglobin. In other words, we 

would like to investigate which glomerular layer is likely to contribute most to the 

restriction of myoglobin. 

 
Figure 1.4  depicts the idealized structural unit of the glomerular capillary wall. W is 

the width of the unit (360 nm), while H is the thickness of the glomerular basement 

membrane (on the order of 200-400 nm). 

W 



CHAPTER II 

HINDERED DIFFUSION THROUGH A SLIT DIAPHRAGM 

  

As mention in chapter 1, the epithelial cell layer, is the outer most layer of the 

glomerular barrier in contact with the primary urine. The epithelial cells have long 

extending cytoplasmic foot processes, separated by a filtration slit that is about        

25-60 nm [1] and covered by a diaphragm, as shown in Fig. 2.1A.  Fig. 2.1B  is  a top-

view electron microscopic study showing that the slit diaphragm has a unique 

structure consisting of planar arrangement of fibers resulting in space allowing a 

passage of molecules : recent electron micrograph gives an estimate of the width of 

spaces between fibers of glomerular slit diaphragm to be 4-20 nm. Clinical 

investigation demonstrated that mutation of the nephrin gene causes a change in slit 

diaphragm structure leading to congenital nephrotic syndrome of the Finnish type of 

which one of the symptoms is a massive leakage of proteins into urine (proteinuria). 

 

Figure 2.1  Electron microscopic showing both side-view (2.1A) and top-view (2.1B) 

images of the epithelial slit diaphragm. Scale bar: 40 nm (A) and 10 nm (B)  [10].  

 

 Fig. 2.2A is the idealized schematic drawing of a slit diaphragm connecting 

two epithelial podocytes. To describe transport of water and molecules through the 
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glomerular slit diaphragm, Rodewald and Karnovsky proposed a "zipper" 

configuration, shown in Fig. 2.2B, with a central filament connecting foot processes 

by alternating cross-bridges on either side. Hora et al.[ [11] and Drumond and Deen 

[12] proposed an alternative "ladder" structure, with a row of fibers connecting the 

foot processes and spanning the entire slit, shown in Fig. 2.2C. In this thesis, the 

glomerular slit diaphragm is modeled as a "ladder" structure, based on the 

observations of Hora et al.[11].   

 

 

Figure 2.2   A: Representations of the epithelial slit diaphragm (SD). B: zipper 

configuration. C: ladder configuration [13]. 

 

 The macromolecule is assumed to be a rigid electrically-neutral sphere passing 

through a row of infinitely-long parallel cylindrical fibers, as shown in Fig. 2.3.  Up 

until now, there have been theoretical studies on enhanced drag and hindered 

diffusion due to a presence of a plane wall [14,15], as well as hindered diffusion in 

cylindrical and slit pores [16, 17]. Investigations on hindered diffusion in fibrous 

membranes [18,19] and hydrogel [20] have also been done. However, a study on 

hindered diffusion of a particle moving through a row of parallel fibers remained 

largely absent, except for a theoretical calculation performed by Drumond and Deen 

[12], where the hydrodynamic resistance was approximated using the enhanced drag 

of a sphere moving between parallel plates [21].  

 This chapter focuses on hindered diffusion of a rigid and uncharged spherical 

solute moving through a row of parallel fibers. First, the solute flux in an unbounded 

x 

y 

z 

y z 

z 
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fluid will be introduced. Then, the force coefficient tensors as well as the diffusive 

hindrance factor tensor in the solute flux will be defined. The solute is assumed to be 

moving slowly such that the Reynolds number is small. The numerical results for 

force coefficients obtained from simulations employing finite element method as well 

as lubrication theory, and the diffusive hindrance factors will be presented. 

 

 

Figure 2.3 Schematic for transport of spherical macromolecules through a row of 

infinitely long cylinders. R = fiber radius. rs = sphere radius. L = distance between 

surface of two adjacent fibers.   

 

2.1  Solute Flux in an Unbounded Fluid 

  For a particle several times larger than liquid molecules, its motion in liquid 

solvent can be classified as a Brownian motion.  The constitutive equation for a dilute 

solute flux is derived from balancing the chemical potential gradient per molecule 

(effective body force) and the hydrodynamic drag, neglecting random fluctuation in 

solute velocity.  If the solute is spherical, this equation can be written as following: 

UsB rCTk 6ln       (2.1) 
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where  Bk  is Boltzmann’s constant,  T  is temperature, C  is concentration of solute, 

 is a fluid viscousity, sr  is a radius of solute and U is solute velocity. The solute 

flux, N , relative to a fixed coordinates, defined as 

                                                             CUN   (2.2) 

Combining Eqs. (2.1) and (2.2), the solute flux becomes 

                                                            CD  N  (2.3) 

D  is the solute diffusivity  given by the Stokes-Einstein equation: 

         
                                                 s

B

r
TkD

6


 (2.4)
 

As shown in Eq.(2.4) , the solute diffusivity is the ratio between the thermal 

fluctuation energy and the hydrodynamic drag coefficient. 

 

2.2  Diffusive Flux through a Slit Diaphragm 

 In this thesis, the slit diaphragm is modeled as a row of parallel infinitely-long 

cylindrical fibers. Macromolecule is assumed to be a rigid sphere particle with radius 

sr moving with velocity U  through a row of cylinders. The distance between the 

surface of cylinders is L and the cylinder radius is R as show in Fig. 2.3. 

 There are also some additional assumptions. The solution is assumed to be 

dilute enough such that there is no solute-solute interaction. Sphere radius is much 

more larger than that of the solvent. Therefore, the solvent is thought as a continuum 

medium.  The hydrodynamic interaction between the solute and the fibers increases 

the hydrodynamic drag on the solute shown as the parameters f  in the following 

equation: 

                                               0Uf  srCkT 6ln               (2.5) 
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where  f  is a second order force coefficient tensors. The tensor  f   contains force 

coefficients for a sphere moving in a stationary fluid defined as 
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f
            (2.6) 

where the component ijf  is the enhance drag in the i-direction scaled with the Stokes 

coefficient  ( sr6 ), for a solute moving in the j-direction.  f  is position-dependent, 

meaning that the values of the force coefficients depend on the particle position 

relative to the row of fibers. In absence of the row of fibers, f equals the identity 

matrix. Combining Eqs.(2.2) and (2.5), the solute flux becomes 

          CD  d-N                        (2.7) 

 The diffusive hindrance factor,d , is also a second order tensor related to the 

force coefficient tensor  f  by the following equation: 

     -1f     d                               (2.8) 

In order to determine the hindrance transport coefficient tensors, d , the force 

coefficient tensors, f must be first calculated. 

 

2.3  Coupling between Translational and Rotational Motion 

In the previous calculation of Drumond and Deen [12], the force on the 

particle due to its rotation was neglected, and the enhanced hydrodynamic drag was 

simply the force on a non-rotating sphere. In our studies, we attempted to verify 

whether the effect of the coupling between translational and rotational motions are, in 

fact, negligible.  
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 Taking an advantage of the linearity of the Stokes equation, the force on              

a particle translating at the velocity U and rotating angular velocity ω can be written 

as 

           ωfUfF RT  266 ss rr                       (2.9) 

where Tf  and Rf are second-order tensors containing the force coefficients due to 

translational and rotational motions respectively. Containing in the tensor Tf  is the 

translational force coefficient, ijTf ,  ,is a scaled force in the i-direction on a             

non-rotating sphere moving in a j-direction. Likewise, the rotational force coefficient, 

ijRf ,  ,is a scaled force in the i-direction acting on a non-translating particle rotating 

with angular velocity in the j-direction. Analogously, the torque exerting on the 

particle translating at the velocity U  and rotating at angular velocityω is simply 

           ωTUTτ RT  32 88 ss rr                                  (2.10) 

where TT  and RT  are second-order tensors containing the torque coefficients due to 

translational and rotational motions respectively. The translational torque coefficient, 

ijTT , , is a scaled torque in the i-direction on a non-rotating sphere moving in a                 

j-direction. Likewise, the rotational torque coefficient, ijRT , , is a scaled torque in the         

i-direction on a non-translating particle rotating with angular velocity in the               

j-direction.  All of the force and torque coefficients are independent of U  and ω . 

Because the particle is spherical, there is no preferred particle orientation. Due 

to the fact that the constitutive equation is derived assuming an average over many 

identical particles, it is assumed that ijf   is therefore the enhanced drag on a moving 

particle that experienced zero torque.  It is apparent from Eqs. (2.9) and (2.10) that the 

enhanced drag acting on a non-rotating sphere is different from that acting on a sphere 

experiencing zero torque. If the effect of rotation is neglected or in other words, the 

sphere is assumed not to be rotating, the force coefficient tensor, f, is simply the 

translational force coefficient tensor, Tf . However, if the “zero torque condition” is 

assumed, then from Eq. (2.10), the relationship between the translational and angular 
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velocities becomes                      

       UTTω T
-1
R sr                               (2.11) 

and, as a result, the force coefficient tensor, f , is simply 

      T
-1
RRT TTfff                      (2.12) 

 The effect of the coupling between translational and rotational motions will be 

further discussed in Section 2.5. 

 

2.4  Calculation of Force Coefficients 

 In order to obtain the force coefficients discussed above, the velocity field and 

pressure is first calculated. The velocity and length scales are such that the Reynolds 

number is small enough to make the Navier-Stokes equation become simply the 

Stokes equation.     The velocity and pressure fields are calculated by solving the 

Stokes and continuity equation written below : 

            V2 P                                  (2.13) 

                             0 V                                  (2.14) 

where P  is the pressure and V  is fluid velocity field. Regarding the boundary 

conditions, the fluid velocity becomes zero far upstream and downstream as x , 

and it also has to satisfy the no-slip boundary conditions at the particle and cylinder 

surfaces. In the simulations attempting to find the translational force and torque 

coefficients, the particle is assumed to be moving at a unit translational velocity and 

not rotating.  To obtain the rotational force and torque coefficients, the particle is 

assumed to be rotating at a unit angular velocity, and its translational motion is absent. 

 Eqs. (2.13) and (2.14) are solved by using the commercial finite element 

package, COMSOL Multiphysics (COMSOL, Stockholm, Sweden), operating on a 

64-bits work station. Including an infinite number of cylinders in the simulations is 

impossible due to the number of grids and the computer memory it requires. Instead, 
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finite numbers of cylinders are added each time until including more fibers changed 

the hydrodynamic force on the particle by less than 1%.   

The preliminary test is performed to verify the accuracy of the simulation.      

A hydrodynamic drag on a sphere moving inside an infinitely long cylinder is 

computed as a function of particle sizes, and our numerical results are graphically 

indistinguishable from the reported analytical result [17]. Example of velocity profile 

caused by a sphere moving near a row of cylinders is shown in Fig. 2.4. The 

computed force, as well as the diffusive hindrance factor tensors will be reported in 

Section 2.5. 

       For the sphere is located with the distance from the fiber surface less than 20% 

of the fiber radii, the hydrodynamic drag calculation using COMSOL Multiphysics is 

proved to be incorrect due to an inability to generate small enough meshes.  The force 

coefficient tensor, f, in that region is then obtained from previous results calculated by 

using the lubrication approximation, assuming that the hydrodynamic drag 

experienced by the sphere is mostly due to the shear stress within the tiny gap 

between the sphere and the cylindrical fiber.  Goldman, Cox and Brenner calculated 

the hydrodynamics force experience by a sphere moving parallel and perpendicular to 

a solid plane wall [14,22]. Falade and Brenner [23] produced expressions for the  

force and torque experienced by the sphere moving near an infinitely-long cylinder 

including effect from the surface curvature of the cylinder. 
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Figure 2.4  Example of velocity profile calculated from solving Stokes’ equation 

using COMSOL Multiphysics. Sphere locate at z/R =0.8, x/R = -1 with rs/R = 0.2 for 

L = 2R.   

 

 In Fig. 2.4, the scale bar on the right show values of the fluid velocity around a 

moving sphere far from the sphere is at rest while the fluid velocity at the sphere 

surface equals 1 due to the no-slip boundary condition. A hydrodynamic drag on the 

sphere is calculated by integrating the pressure and viscous stress over the sphere 

surface.   

 

2.5  Results and Discussion 

 Fig. 2.5 and Fig. 2.6 demonstrate the relationship between force coefficients 

and z/R, defined in Fig. 2.3. Note that having a sphere located at z = 0 means that it is 

located with equal distances from two adjacent fibers. The position x = 0 is defined in 

Fig 2.4. T,xxf is a scaled force in the  x-direction on a non-rotating sphere moving in a 

x-direction and T,zzf  is a scaled force in the z-direction on a non-rotating sphere 

moving in a z-direction, respectively. Results obtained from finite element method 
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(solid lines) are compared to those obtained by employing lubrication technique by 

Falade and Brenner (dashed lines). The transition points between the numerical results 

and lubrication expression were chosen to be the points where the difference between 

results obtained by the two techniques is less than 1%.  

  

Figure 2.5   Translation force coefficients, T,xxf as a function of z/R at x = -1 (right 

below a row of fibers). The results were plotted for rs/R = 0.1, 0.2 and 0.3. L = 2R. 

Solid lines represent results obtained using finite element method. Dashed lines 

represent the force coefficients obtained from the lubrication expression.      
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Figure 2.6   Translation force coefficients, T,zzf as a function of z/R at x = -1 (right 

below a row of fibers). The results were plotted for 3 relative size of the sphere;      

rs/R = 0.1, 0.2 and 0.3. L = 2R. Solid lines represent the numerical force coefficients. 

Dashed lines represent the force coefficients from lubrication expression.      

 

As shown in the Fig. 2.5 and Fig. 2.6, an increase in z means a decrease in the 

distance between the sphere and the fibers.  As a result, the sphere-fiber 

hydrodynamic interaction is enhanced and both T,xxf  and T,zzf increase as a function  

of z. An increase in sphere sizes also result in an increase in T,xxf  and T,zzf  
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Figure 2.7   Translation force coefficients, T,zzf as a function of x/R at z = 0.4. The 

results were plotted for 3 relative size of the sphere; rs/R equals to 0.1, 0.2 and 0.3.     

L = 2R. 

 

  As shown in Fig. 2.7, T,zzf  is plotted as a function of x/R, a distance between 

the sphere and the row of fibers. The sphere located at x = 0 would mean that the 

sphere is located in the closest gap between two adjacent fibers (right in the row of 

fibers). The enhanced drag acting on the sphere monotonically increases when sphere 

approaching a row of fibers (or, in other words, as x approaches zero).  Once again, 

the larger the sphere is, the larger the hydrodynamic force it experiences. 
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Figure 2.8   Translation force coefficients, T,xxf as a function of x/R at z = 0.4. The 

results were plotted for 3 relative size of the sphere; rs/R equals to 0.1, 0.2 and 0.3.     

L = 2R. 

 

 Fig. 2.8 presents T,xxf  as a function of x/R for three particle sizes.  Unlike the 

monotonic increase of T,zzf , T,xxf  shows an maximum value at |x| = R, before 

exhibiting a decrease. This maximum point in the profile of T,zzf  was not seen in the 

previous work by Drumond and Deen [12], where the force coefficients were 

approximated using the enhanced drag on a sphere between parallel plates. At this 

point we stipulate that this effect might be caused by the hydrodynamic solute-

cylinder interaction. A particle position being at    x = 0 would mean that the sphere is 

located between the cylinders, and therefore might be shielded from the 

hydrodynamic interaction with the cylinders which next to  the two closest cylinders. 

Further study is required to understand this phenomenon. 
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Figure 2.9 xxd , yyd  and zzd as a function of z/R. L=2R, Rrs = 0.2, x = 0. 

 

Fig. 2.9 examines the effect of the coupling between translational and 

rotational motion on the force coefficient tensors and the diffusive hindrance factor 

tensor. The diagonal components of the diffusive hindrance factor tensor is plotted as 

a function of z/R.  The diffusive hindrance factor tensor obtained from Eq. 2.11 (zero 

torque) and that obtained from simply setting f  equals Tf (non-rotating sphere) are 

shown to be indistinguishable graphically.  In fact, neglecting the effect of rotation 

causes less than 1% changes in force coefficients.  Also shown in Fig. 2.9 is the 

decrease in dxx, dyy and dzz as a function of z.  This is to be expected given that T,xxf , 

T,yyf and T,zzf increases as function of z.  
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Figure 2.10  dxx, dyy and dzz as a function of z/R for L=2R, rs/R = 0.2 x = 0. Solid lines 

represent results obtained using finite element method. Dashed lines represent the 

force coefficients obtained from the lubrication expression.      

 

 Shown in Fig. 2.10 is an anisotropic nature of the diffusivity with the              

z-direction being the most restrictive direction at this value of x. The diagonal 

component of the diffusive hindrance factor tensor, d, is presented as a function of 

z/R.  As show in Fig. 2.10, the diffusivity decreases until it reaches zero where the gap 

between sphere and cylinder and vanish at the point where the sphere touches the 

cylinder (z = R+rs). 
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Figure 2.11 dxx and dzz as a function of z/R, L=2R, rs/R = 0.1 and 0.2 x = -1. Dashed 

lines represent the force coefficients obtained from the lubrication expression.      

 

 In Fig. 2.11, dxx were plotted together with dzz as a function of z/R for sphere 

moving right below a row of cylinders (x = -1). Unlike the trend shown in Fig. 2.8, 

there is a cross over at z/R = 1.  For z/R < 1, dzz is larger than dxx. However, if          

z/R > 1, dxx is larger than dzz regardless of particle sizes. This is due to the fact that, 

near a cylindrical fiber, a sphere moving towards a fiber will experience more drag 

than a sphere moving parallel to the fiber.  It confirms that the particle diffusivity is 

anisotropic even for small particles with radii being only 10% and 20% of the distance 

between two adjacent cylindrical fibers.  
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Figure 2.12  dzz as a function of x/R, L=2R with rs/R = 0.1 0.2 and 0.3, z = 0.4. 

 

 In Fig. 2.12, dzz is plotted as a function of x/R, the scaled distance from the 

row of cylinders.  In keeping with the trend shown in Fig. 2.5, dzz increases 

monotonically as x increases. Far from the cylinders, the diagonal components of the 

diffusive hindrance factor tensor approaches unity, verifying that the diffusivity 

approaches D . Fig. 2.12 also demonstrates that diffusion of larger solutes experience 

is more restricted than that of smaller solutes. 

     Because of the maximum value of T,xxf as a function of x/R shown in Fig. 2.8, 

when dxx is plotted as a function of x/R, there is a minimum value as shown in         

Fig. 2.13.  Unlike the monotonic decrease of dzz as a function of x, dxx shows a 

minimum value at x = R before exhibiting an increase once again. As mentioned 

above, this minimum point in the profile of dxx was not seen in the previous work by 

Drumond and Deen (1995) [12], where the force coefficients were approximated 

using the enhanced drag on a sphere between parallel plates.  As mention before, we 
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think that the minimum point in dxx might be due to the interaction between the sphere 

and other cylinders apart from the two closet cylinders, but further study is still 

required. 

 

   

Figure 2.13  dxx as a function of x/R, L = 2R with rs/R = 0.1 0.2 and 0.3, z = 0.4.  

 

 Next, we investigate the effect of the sizes of the gap between cylinders on 

hindered diffusion, expanding the numerical calculation to include particles with sizes 

comparable to the sizes of the cylinders and the gaps between them.  In Fig. 2.14,    

dxx, dyy and dzz are plotted as a function of particle sizes for two different gap widths, 

L=2R and 3R, respectively. Not surprisingly, dxx, dyy and dzz increases as the gap width 

increases. dxx, dyy and dzz decreases as the particle sizes increases, and, as always, the 

z-direction is the most restrictive direction for diffusion. 
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Figure 2.14.  dxx, dyy and dzz as a function of rs/R.  Results are plotted for L = 2R and 

3R. Sphere is  located (x, z) = (0, 0). 

  



CHAPTER III 

HINDERED CONVECTION IN THE EPITHELIAL CELL LAYER  

AND CONVECTION-DIFFUSION EQUATION 

 

 In addition to diffusing through a slit diaphragm, the macromolecules are also 

convected towards the Bowman's capsule due to the pressure difference across the 

glomerular capillary wall. Typical value for the total filtration rate per mice 

glomerulus is 40 nL/min and the total glomerular filtration area is approximately 

0.002 cm2 [24]. It is generally believed that the fractional area of the epithelial slit 

openings (area not covered by the podocytes) is 0.11.  Assuming that the fluid flux 

can only flow through the epithelial slit and not the podocytes, one estimates an 

average velocity in the epithelial slits to be 3x10-5 m/s. 

 This chapter is devoted to hindered convection through a slit diaphragm. There 

have been theoretical studies on hindered convection of a sphere in a coquette flow 

due to a presence of a plane wall [14], as well as hindered diffusion in cylindrical and 

slit pores [16], [17]. However, a study on hindered convection of a sphere passing 

through a row of parallel cylinders remained absent.  The first section of this chapter 

will focus on the modification of the solute flux equation due to the non-zero 

upstream fluid velocity.  A new force coefficient tensor due to a flow past a sphere, 

and a convective hindrance factor tensor will be introduced.  Numerically calculated 

results will be presented and discussed. Finally, the convection-diffusion equation 

describing the transport of solute across the epithelial cell layer will be stated, and 

solved in order to obtain solute concentration and, ultermately, the sieving coefficient 

for the slit diaphragm.  
 

 

3.1  Total Solute Flux through a Slit Diaphragm 

 As shown below, Fig. 3.1 is similar to Fig. 2.3 everywhere except for the non-

zero ultrafiltration fluid velocity, V . All assumptions employed during the 

calculation of the force coefficient f and the diffusive hindrance factor are also 



28 

 

assumed here. The particle is moving at a velocity U  through a row of parallel fiber, 

and once again, similar to an approach used in Chapter 2 with solute velocity 

fluctuation neglected, the effective body force (the gradient in chemical potential) is 

balanced by a hydrodynamic force as shown below.  

 

 

Figure 3.1 Schematic drawing for transport of spherical macromolecules through a 

row of infinitely long cylinders. V  is the fluid velocity and U is the solute velocity. 

                                       

     0)(6ln  Vg - UfsrCkT                         (3.1) 

The difference between the equation above and Eq.(2.5) is the additional term 

in the hydrodynamic drag due to a flow past a sphere. g  is a second-order tensor 

containing force coefficients for a stationary sphere immersed in a fluid that is 

moving with non-zero velocity: 
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where the component  ijg  is the enhance hydrodynamic drag in the i-direction acting 

on a stationary sphere divided by jsVr6  with jV being the component in the            

j-direction of the local unperturbed fluid velocity ( V ) . Like f , values of components 

V 
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of g  depend on both particle size (rs) and position (x and z). Combining Eqs.(2.2) and 

(3.1), the solute flux becomes 

     CCD Vgfd-    N -1 ...                             (3.3) 

 The diffusive hindrance factor tensors, d , is defined in Eq.(2.8).  The convective 

hindrance factor tensor,  gf -1  , also a second order tensor, can be thought of as a 

parameter that identifies how much a convective flux is changed due to a 

hydrodynamic particle-fiber interaction. In absence of the row of fibers,   gf -1   is 

simply an identity matrix.  Since f  is already calculated and discussed extensively in 

Chapter 2, what remains to be determined is g  which can be calculated from a 

hydrodynamic drag exerted on a stationary sphere by a passing flow. 

 

3.2  Calculation of Force Coefficient  ijg  

 In order to obtain ijg , the velocity field and pressure is first calculated. 

Similarly to the methodology outlined in Chapter 2, the velocity and pressure field is 
calculated by solving the Stokes and continuity equation: 

  

     V2 P                       (3.4) 

                             0 V                       (3.5) 

 

Regarding the boundary conditions, the fluid velocity became a unit velocity 

in the z-direction far upstream and downstream as x .  The fluid velocity 

profile  vanishes at the particle and cylinder surfaces in order to satisfy the no-slip 

boundary condition. The hydrodynamic drag on the particle is obtained by integrating 

pressure and viscous stress all over the sphere surface.  

 Eqs. (3.4) and (3.5) are solved by using the commercial finite element, 

COMSOL Multiphysics (COMSOL, Stockholm, Sweden) operating on a 64-bits work 

station. Similar to f , the effect of the coupling between translational and rotational 

motion on g  is insignificant. The force coefficients calculated by having the angular 

velocity of the particle equals zero (non-rotating sphere) is graphically 
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indistinguishable to that of a sphere experiencing zero torque. The calculation is done 

by having the sphere not rotating.  

 

3.3  Calculated Force Coefficient and Discussion 

 In order to demonstrate the effect of the sphere-cylinder hydrodynamic 

interaction, the numerical results will be presented as xxxVg  and zzzVg , which can be 

thought of as the hydrodynamic force acted on a stationary solute by a passing flow in 

the x and z-direction divided by the coefficient 6 sr : this is shown in Eq. (3.1). If 

the row of cylindrical fibers is absent, g  will simply be the identity matrix. The force 

on the sphere will simply be Vsr6  and the convective flux will simply be the 

product of the solute concentration and the fluid velocity. However, because of the 

sphere-cylinder hydrodynamic interaction, the convective flux differs from the 

product of the fluid velocity and the solute concentration. 
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Figure 3.2  xxxVg , the hydrodynamic force acted on a stationary sphere by a passing 

flow in the x-direction divided by the drag coefficient (6 sr ) as a function of  x/R for  

z = 0.4. The results were plotted for rs/R = 0.1, 0.2, 0.3 and L = 2R.  

 

In Fig. 3.2, xxxVg  is plotted as a function of x/R, a distance between the sphere 

and the row of fibers. The sphere located at x = 0 would mean that the sphere is 

located in the closest gap between two adjacent fibers (right in the row of fibers). The 

hydrodynamic force on a stationary sphere in the x-direction monotonically increases 

when the sphere approaches a row of fibers (or, in other words, as x approaches zero) 

and decreases until it reaches 1 as the distance between the sphere and the row of fiber 

increases. Increasing the solute size seems to enhance the force in this direction. 

xxxVg for rs/R = 0.3 is larger than that of rs/R = 0.1 and 0.2.  
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Figure 3.3  zzzVg  the hydrodynamic force acted on a stationary sphere by a passing 

flow in the z-direction divided by the drag coefficient (6 sr ) as a function of x/R for          

z = 0.4. The results were plotted for rs/R = 0.1, 0.2, 0.3 and L = 2R.  

 

  zzzVg   is shown in Fig 3.3 as a function of x/R. Unlike the trend of  zzzVg  

shown in Fig. 3.2, the hydrodynamic force imposed on a stationary sphere by a 

passing flow in the z-direction first increases as a function of x until it reaches a 

maximum point at x/R = 1, then decreases and dies out as the distance between the 

sphere and the row of cylinders increases. This is due to the fact that, far from the row 

of cylinders, the fluid velocity in the z-direction equals zero.  Also unlike xxxVg , an 

increase in solute size decrease the hydrodynamic force on the sphere in the                

z-direction: zzzVg  for rs/R = 0.3 is lower than that of rs/R = 0.1 and 0.2.  
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Figure 3.4 xxxVg and zzzVg , the hydrodynamic force on a stationary sphere in the         

x and z-direction divided by the drag coefficient (6 sr )  as a function of z/R. The 

solid line are the convective flux in the x-direction and the dashed line are the 

convective flux in the z-direction The results were plotted for three value of x/R  for   

L = 2R. 

 

 In Fig. 3.4,  xxxVg and zzzVg  are plotted as a function of  z/R for three values of 

x/R (three different values of distance between the sphere and the row of cylinders). 

Note that having a sphere located at z = 0 means that it is located with equal distances 

from two adjacent fibers (shown below in Fig. 3.6). xxxVg , the hydrodynamic force on 

a stationary sphere in the x-direction, decreases as z/R increases: this is to be expected 

since the fluid velocity in the x-direction is maximum at z = 0 (farthest distance from 

the cylinders at a given value of x) and vanishes at the cylinder surfaces due to the     

jijVg

z/R 



34 

 

no-slip boundary condition. On the other hand, zzzVg , the hydrodynamic force on a 

stationary sphere in the z-direction, first increases until it reaches a maximum point at 

z/R = 1 and then decreases: a trend also shared with fluid velocity in the z-direction.  

It can be seen that the magnitude of xxxVg is always larger than the magnitude of 

zzzVg  because the fluid velocity in the x-direction is larger than the fluid velocity in 

the z-direction.  

  

 

Figure 3.5  xxg and zzg  as a function of  rs/R.  Results are plotted for L = 2R. Sphere 

locate at x = -2 and z = 1. 

 

 Next, we investigate the effect of hydrodynamic interaction from the  flow on 

sphere with various particle sizes, expanding the numerical calculation to include 

particles with sizes comparable to the sizes of the cylinders.  In Fig. 3.5, xxg and zzg

ijg
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are plotted as a function of particle sizes. The enhanced hydrodynamic drag in the             

x-direction, xxg , increases as the particle sizes increase. On the other hand, the 

enhanced hydrodynamic drag in the z-direction, zzg , decreases as  a function of solute 

sizes. Having the stationary sphere immersed in the flow and blocking the flow forces 

the fluid to move more along the x-direction, and hence the increase of xxg and the 

decrease of zzg as a function of particle sizes. 

After the calculation of the hindered transport parameters, f , d  and g , is 

completed, we proceed to calculate the solute concentration across the slit diaphragm.  

 

3.4  Convection-Diffusion Equation 

 Fig. 3.6 is a schematic drawing of a region where, in order to determine a 

solute concentration across a slit diaphragm, the solute conservation equation, stated 

below, must be solved. 

     N




t
C                      (3.6) 

Pseudo-steady state is assumed since the time scale of the change in blood pressure is 

much larger than the time scale of solute diffusion and convection across the slit 

diaphragm. Substituting the flux expression from Eq. (3.3) and rewriting Eq. (3.6) in a 

semi-dimensionless form, we have  

                           0)~~..(~
 Vgdd CPeC           (3.7) 

where  R~  with R  being the radii of cylindrical fibers. VV/V 
~ where V  is the 

undisturbed fluid speed far from the row of fiber. Pe  is the Peclet number: a ratio 

between convection and diffusion time scale of fluid transport defined as  

                                                             
D

VRPe               (3.8) 
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If Pe >>1, convection dominates the transport process. On the other hand,           

if Pe <<1, diffusion will be relatively more important. Typically reported values for 

R is about 2-10 nm, with the solute diffusivity (at 37ºC) being about 10-11-10-10 m2/s, 

Pe  is approximately  10-5-0.1 which means that diffusion is a more dominant 

process.  

  

Figure 3.6 Division of the computational domain. The domain was one-half of the 

space between two adjacent cylinders. The GBM-epithelial slit interface is assumed to 

be at Slit-GBMLx  . R and rs are the cylinder radius and sphere radius, respectively. 

Lubication theory is employed in the shaded area.  

 

The hindrance factor tensors, d  and g , are defined in Eqs.(2.8) and (3.2), 

respectively.  As shown in Fig. 3.6, the region, where Eq.(3.7)  is to be solved, is 
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divided into 2 regions. In Region I, the force coefficients are computed using 

COMSOL Multiphysics.  In Region II, the hindrance factor tensors are calculated 

from hydrodynamic drag obtained by Falade and Brenner [23].   

 In order to determine the solute concentration, Eq. (3.7) is solved with the 

following boundary conditions: 

 

   0NN x      at  Slit-GBMLx           (3.9a) 

   
V
N

CC B
0  at  x          (3.9b) 

   0zN   at  1
2

,0 
Lzz         (3.9c) 

   0rN      at   srRzxr  2
1

22 )(    (3.9d) 

Eq.(3.9a) states that the upstream solute flux at a distance Slit-GBMLx   from 

the center of the cylinders is constant, which is the flux flowing from the GBM into 

the epithelial slit )( 0N . As shown in Eq. (3.9b), far downstream from the row of 

fibers, the concentration reaches a constant which is a solute concentration in 

Bowman's capsule ( BC ).   Eq.(3.9c) expresses symmetry at 0z and 1
2


Lz due 

to the fact that  the slit diaphragm is assumed to be a row of infinite number of 

parallel cylinders. Stated in Eq.(3..9d) is the boundary condition stemmed from the 

sphere-cylinder steric interaction; the distance between the center of the sphere and 

the cylinder cannot be less than the sphere radius ( sr ). The solute flux normal to the 

cylinders must vanish at the distance sr  from the cylinder surfaces because of the no-

penetration condition: the solutes cannot penetrate into the cylindrical fibers. 

In order to solve Eq. (3.7) along with boundary conditions stated in                 

Eqs.(3.9a)-(3.9d),  the dimensionless fluid velocity or V~ must be specified at every 
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location. To that purpose, the Stokes and continuity equation (Eqs.(2.13) and (2.14)) 

are solved by using COMSOL Multiphysics with the following boundary conditions: 

   0,  zx VVV    Slit-GBMLx    and  x   (3.10a) 

     0zV  at    1
2

,0 
Lzz         (3.10b) 

   0V     at    srRzxr  2
1

22 )(  (3.10c) 

The fluid velocity became a constant velocity in the x-direction far upstream 

and downstream as x  as stated in Eq.(3.10a). Eq.(3.10b) expresses symmetry 

at 0z and 1
2


Lz   Eq.(3.10c) is simply the no-slip boundary condition at the 

particle and cylinder surfaces. 

 After obtaining the fluid velocity, Eq. (3.7), with boundary conditions shown 

in Eqs. (3.9a)-(3.9d) are solved by using the commercial finite element, COMSOL 

Multiphysics (COMSOL, Stockholm, Sweden) operating on a 64-bits work station.  
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3.5 Sieving Coefficient of the Slit Diaphragm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Procedure of calculation of sieving coefficient for the slit diaphragm. 

 Fig. 3.7 demonstrates the calculation procedure of the solute concentration and 

the sieving coefficient through the slit diaphragm.  First, Stokes' equation and the 

continuity equation are solved in order to obtain the force coefficient tensors: f  and 

g . Then f  and g  are converted to the hindrance factor tensors : d  and gd  . In order 

to determine the solute concentration, the convection diffusion equation is solved.  

Finally, the sieving coefficient of slit diaphragm is calculated as a ratio between solute 

concentration down-stream in Bowman' space (CB)  and solute concentration            

up-stream from  GBM-epithelial interface (C0). 

Stokes Equation 
 

Continuity Equation 
 

f  and g  

d  and gd   

0)~~..(~
 Vgdd CPeC  

Concentration Profiles : C 

Sieving Coefficient 

0C
CB

SD   
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 Figure 3.8 Sieving coefficient of slit diaphragm, SD  as a function of Peclet number. 

Our results (solid lines) are compared with previous work by Drumond and Deen 

(dashed lines) [12]. Slit-GBML = 6R, 15R and 30R,  Rrs = 0.2  and  L = 2R. 

 

 Fig. 3.8 shows the effect of Pe on SD . Recall that Pe  is a ratio between 

convection and diffusion time scale of fluid transport which defined in Eq.(3.8). For  

0Pe , there is diffusional equilibration across the slit diaphragm.  The upstream 

and downstream concentration are equal and 1SD . As Pe increase, SD  at first 

decreases and then eventually returns to unity. An increase in Pe creates 2 factors. 

First, it creates a concentration drop near the row of cylinder; the larger the Peclet 

number is, the larger the concentration drop becomes. This effect enhances the sieving 

coefficient. Second, it causes the concentration polarization upstream from the 
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cylinders; the solute are accumulated at x<0. This is shown as a peak in Fig.3.9; the 

maximum concentration increases with increasing Pe . This causes a decline in SD . 

 The minimum values of SD  is based on Slit-GBML  (the distance between GBM 

and slit diaphragm). As Slit-GBML  increases, the minimum value of SD  becomes closer 

to unity. In Fig. 3.8,  our results show the same trend as that of Drumond and Deen 

[12], although our value of  SD  is slightly lower. When the curvature effect are take 

into account, SD   seem to be lower: an effect we think might be even more 

significant for larger macromolecules.  In the next chapter, the calculation of solute 

concentration across the GBM and the overall glomerular sieving coefficient will be 

described. 

 

Figure 3.9  
0C

CB  as a function of x/R. Results are plot for three values of Pe  : Pe =0.1 

(blue line), Pe = 0.01 (green line) and Pe = 0.001 (red line) with  Slit-GBML =30. 



CHAPTER IV 

     OVERALL GLOMERULAR SIEVING COEFFICIENT 

 

 As mentioned in Chapter 1, we want to relate the overall glomerular sieving 

coefficient of electrically-neutral solutes to nanostructures of the GBM and the 

epithelial slit.  As shown in Eq.(1.3), the overall sieving coefficient (θ)  of such 

molecules is simply the product of solute sieving coefficient for the GBM (   ) and 

the slit diaphragm (   ). Details of  calculation of sieving coefficient for the slit 

diaphragm are given in Chapter 3. This chapter will therefore begin with the 

mathematical model developed to explain transport of macromolecules through GBM, 

followed by an overview of existing experimental results of sieving coefficient of 

neutral or slightly cationic myoglobin as well as that of ficoll, a spherical               

highly-crosslinked poly-saccharide. A comparison between our calculated overall 

sieving coefficient and data from experiment employing the tissue-uptake technique 

will be made.  

 

4.1  Transport of Solutes across Glomerular Basement Membrane (GBM) 

4.1.1   Isolated GBM 

 GBM is generally considered to be a hydrogel consisting of approximately 

90% water and 10-11% fibers. The fibers are collagen type IV (fiber 

radii= 5.3fr nm), proteoglycan with a protein core and glycoaminoglycan (GAG) 

chain ( 5.0fr nm) as well as other fibers such as laminin etc. This section aims to 

create a mathematical model capable of explaining the transport of spherical solutes 

through GBM.   
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Figure 4.1  Two-dimensional approximation of ultrafiltration of macromolecule 

through an isolated GBM. CP = the upstream macromolecule concentration in the 

blood stream. C0 = the solute concentration at the GBM-epithelium interface. 

Upstream pressure is larger than downstream pressure, creating a flow in the              

x-direction.  

 An isolated GBM is modeled as an isotropic medium as depicted in Fig. 4.1.  

Solute concentration can be obtained by solving a convection and diffusion equation: 

        x
CVK

x
CDK

t
C

cd













 2

2

               (4.1) 

where C is the macromolecule concentration and V´ is the fluid velocity. D is the 

macromolecule diffusivity in an unbounded fluid.  Note that, because the hydrogel is 

assumed to be isotropic, the convection-diffusion equation has become                      

one-dimensional.  Because of the hydrodynamic and steric interaction between the 

macromolecule and the fibers in the hydrogel, the sphere diffusivity inside the GBM 

will be less than D : a fact characterized by the diffusive hindrance factor ( dK ).                 

In addition, its convective flux is also altered, and that is represented by the 

convective hindrance factor ( cK ). As shown in Fig. 4.1, the macromolecule 

concentration has to satisfy the following boundary conditions: 

             pCxC  )0(     (4.2a) 

             0)( CHxC      (4.2b) 

x 

z H 

CP 

C0 

CGBM (x=0) = ΦCP 

C GBM (x=H) = ΦC0 
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where the equilibrium partition coefficient ( ) is the ratio between the solute 

concentration right inside and right outside the hydrogel.   is a fiber volume fraction 

and sr  is the Stokes-Einstein radius of the molecule. Assuming that dK and cK are 

constant, steady state solution of Eq. (4.1) results in the sieving coefficient of 

macromolecules through GBM being 

   θbm

 )exp())exp(1(
0

ePKeP
K

C
C

cSD

c

p 





  (4.3) 

where the Peclet number (Pe´) is the ratio between the time scale of diffusion and the 

time scale of convection across the GBM defined as follows. 

    





DK
HVK

eP
d

c   .   (4.4) 

H is the thickness of the GBM.  From Eq.(4.4), one can see that the sieving coefficient 

for GBM also depends on the sieving coefficient for the slit diaphragm. Once the 

values of, θbm,  , dK and cK are known, the sieving coefficient (θbm) can be readily 

calculated. 

 1. Transport parameter calculation 

  (1) The equilibrium partition coefficient ( ), defined as the ratio 

between the solute concentration right inside the hydrogel and the solute 

concentration right outside the hydrogel, is calculated using the Ogston's equation: 

    
2

exp 1 s

f

r
r


  
         

   (4.5) 

  (2) Diffusive hindrance factor ( dK ) can be thought of as the ratio 

between the solute diffusivity inside the GBM and that of a solute in an unbounded 

fluid.  As mentioned before, GBM is a hydrogel consisting mainly of two different-

sized fibers, but a calculation of hydrodynamic drag or diffusive hindrance factor of a 

sphere moving in a fibrous media with two different-sized randomly-oriented fibers 
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has not been done.  There exist, however, two different approaches that can be used to 

calculate dK  as follows: 

   a)  Brinkman's medium approach, often employed for 

calculation of hindered transport parameter in porous medium with unknown 

nanostructure and known hydraulic permeability.  The fluid velocity and pressure 

inside the medium is described by Brinkman's equation: 

     0VV 



 2P       (4.6) 

where κ is the Darcy's permeability. Brinkman's equation is essentially the extension 

of Darcy's equation where the fluid velocity is described as linearly proportional to 

the pressure difference and inversely proportional to the viscosity (µ): 

         P


V        (4.7) 

The effect of the nanostructure of the medium on fluid transport is described by κ, the 

Darcy's permeability. The second term on the right in Brinkman's equation (Eq. (4.6)) 

is simply the added viscous dissipation term.  The experimentally measured value for 

κ from an isolated GBM is 2-3 nm2.  The hydrodynamic drag on a sphere moving in a 

Brinkman's medium is calculated by Anderson and Solomentev [20] and the diffusive 

hindrance factor is given in the following equation: 
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   b) the assumption that GBM is a hydrogel with randomly-

oriented cylindrical fibers of uniform sizes.  The expression for  dK  for spherical 

solute moving in a liquid-filled fibrous media consisting of fibers of uniform sizes 

was developed by Claque and Phillips(1996)  as shown below.  

     
baedK 

     (4.9) 
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where 

  
 

2
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   (4.10b) 

 

  (3) Convective hindrance factor ( cK ) is a parameter that determined 

how the convective flux is changed due to the presence of the fibers.  There has not 

been a analytical or numerical of calculation of cK  of a sphere moving in fibrous 

media.  Phillips et al. [18] suggested a calculation of cK using the following equation: 

     



1

1
cK     (4.11) 

where   is fiber volume fraction. 

 

 2. GBM fiber radii 

 It is clear from the above equations that, in order to calculate the transport 

parameters of the GBM, the fiber radii must be determined.  As mentioned before, the 

fibers within GBM are mainly type IV collagens with diameter of 7 nm  ( fr = 3.5 nm) 

and GAG chains with diameter of 1 nm ( fr = 0.5 nm).  The overall volume fraction of 

the fibers is believed to be 10-11 % but the exact volume fractions of each type of 

fibers are not known.  Amsden [30] has developed an expression for Darcy's 

permeability of a hydrogel consisting of randomly-oriented cylindrical fibers as 

follows:  

    17.1231.0   fr .              (4.12) 
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The value reported for κ of the GBM is 2.7 nm2, and if the volume fraction is 

assumed to be 0.1, then the fiber diameter is roughly 1.6 nm ( fr is approximately     

0.81 nm).   

 

 3. Sieving coefficient for an isolated GBM 

Table 4.1 Parameter values for transport of macromolecules  across GBM. 

Parameter Values 

The width of GBM ( BMW ) 360 nm 

The thickness of GBM ( L ) 200 - 400 nm 

The volume fraction of solid in GBM ( ) 0.111 

The fractional area of GBM covered by the slits opening ( s ) 0.11 

The fractional area of GBM covered by the fenestrae  opening ( f ) 0.2 

 

 Shown in Fig. 4.2 is bm calculated as a function of solute sizes [24], and 

compared to sieving coefficient obtained from an ultrafiltration through an isolated rat 

GBM performed by Bolton et al. [25].  As shown in Fig. 4.3, the numerical 

procedures are performed with three values of fiber radii : fr = 0.5 nm (blue lines) 

which is the fiber radii of the GAG chain,   fr = 0.81 nm (red lines) obtained from the 

experimentally measured Darcy's permeability, and fr = 3.5 nm (green lines) which is 

the fiber radii of type IV collagen.  
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Figure 4.2  Sieving coefficient through GBM ( bm ) as a function of Stokes-Einstien 

radius of the macromolecule ( sr ) [24].  Also shown are the experimental results of 

ficoll filtrated through an isolated GBM [25]. 

 

 As shown in Fig. 4.2, having the fiber radii being 3.5 nm greatly overestimates 

the sieving coefficient. Mathematical models with fiber radii equal to 0.5 nm and    

0.81 nm yield sieving coefficient that is closer to the experimental data of ficoll.   
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Figure 4.3 Percentage of discrepancy between numerically calculated sieving 

coefficient for the GBM and the experimental data [25] with rs = 2 nm (myoglobin) 

and 3.6 nm (BSA). 

 

Fig 4.3 presents the percentage of the discrepancy between the numerical 

calculation and the experimental data [24] at two particular solute radii: 2 nm (radii of 

myoglobin) and 3.6 nm (radii of bovine serum albumin (BSA), another bio-marker).        

At lower values of rs, the value of fiber radii that yields the closest value to the 

experimental data is 0.5 nm, while at higher values of rs, having fiber radii being    

0.81 nm gives a lower percentage of discrepancy.   
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4.1.2   Cellular Blockage  

  As shown in Fig. 1.4, parts of the GBM surfaces are covered by 

cellular layers, and that alters the flow as well as the solute flux.  It is typically 

believed that the fractional area of endothelial fenestrae ( f : GBM surface area not 

covered by endothelial cells) is about 0.2, and the fractional area of the epithelial slit 

( s : GBM surface area not covered by podocytes) is approximately 0.11. With the 

structural unit shown in Fig. 4.1 as a framework along with a comparison between 

experimental data on the transport of Ficoll in isolated GBM and intact glomerular 

capillaries, Edwards et al. (1997) developed a model for the filtration of uncharged 

macromolecules in vivo [29]. The concentration field within the GBM was computed 

by solving Eq. (4.5) with appropriate boundary conditions that include the cellular 

blockage of the solute fluxes at either ends.  It was found that the in-vivo sieving 

coefficient of the GBM could be found by replacing Pe´ in Eq. (4.7) with Pe* defined 

below. 

     
D

B
fs W

HA
eP

Pe











11*     (4.13)  

where A = 0.7366, B = 11.9864 and D = 1.2967. With the physiological parameters 

mentioned in this section as well as in the introduction of this chapter, Pe* is roughly 

2Pe´. In other words, having the cellular blockage increases the Peclet number in 

GBM by two folds, which may partially be explained by the increase in path length of 

macromolecules in GBM due to the diverging-converging flow.  

 

4.2  Overview of Existing Experimental Data 

 As mentioned in Chapter 1, we are particularly interested in the transport of 

myoglobin, a bio-marker of muscle damage and one of the causes of acute renal 

failure.  There has been several experiments done in order to determine the glomerular 

sieving coefficient of myoglobin. A technique usually employed is the tissue uptake 

of radiolabled tracers administered in vivo.  Radioactivity is counted in plasma, urine 

and the removed kidneys, allowing for a calculation of sieving coefficient [1]. For 
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nMyoglobin, an electrically-neutral myoglobin with radius of 1.96 nm, the reported 

value of its sieving coefficient in rats is 0.77 [26]. In the case of cMyoglobin,              

a slightly cationic myoglobin with radius of 17.5 nm, its reported sieving coefficient 

is slightly lower at 0.74 [27].  The sieving coefficient of ficoll, highly-crosslinked 

electrically-neutral spherical polysaccharide molecules with radius being 2 nm (close 

to radii of myoglobins), obtained by the tissue-uptake technique, is 0.7-0.8 [28].  

 

4.3  Calculation of Glomerular Sieving Coefficient of Myoglobin 
 

 To establish an approximate range for R (fiber radius of the slit diaphragm), 

we used reported sizes based on the electron micrographs of glomerular slit 

diaphragm of rats, [1, 10, 12] and made a rough estimates of R to be 2-10 nm. The 

space between fibers are assumed to be of the same range.  As mentioned in Chapter 

3, the averaged fluid velocity through the slit diaphragm is 3x105 m/s. With rs of 

myoglobin being 2 nm, its diffusivity in an unbounded fluid is approximately 10-10 

m2/s. The calculation of the solute concentration (and hence the sieving coefficient) 

across the slit diaphragm is outlined in Chapter 3.  

 In the GBM, the averaged fluid velocity within the hydrogel is assumed to be 

4x10-6 m/s (a value typically used as an estimate for fluid velocity in GBM of rat; it is 

almost 10 times smaller than the averaged value in the slit diaphragm in keeping with 

fractional area of glomerular slit is 0.11). The diffusive hindrance factor (Kd) is 

calculated using Eq. (4.13). For the convective hindrance factor (Kc), we used the 

value reported for cK of ficoll in an isolated GBM [25] which is approximately 0.24. 

The volume fraction of the fibers is 0.1.  
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Figure 4.4 Numerically calculated glomerular sieving coefficient of myoglobin as a 

function of GBM fiber radii employed in the calculation. Results are plotted for H = 

200 nm (circles) and 400 nm (squares).  R = 10 nm and so is the half-width of the gap 

between the two adjacent fibers in the slit diaphragm. 

 

 Fig. 4.4 is the numerically calculated sieving coefficient through GBM of 

myoglobin as a function of GBM fiber diameter employed in the calculation.  Based 

on results in Section 4.1, we decide to focus on the value of fiber diameter in the 

range of 1-2 nm. ( fr = 0.5 - 1 nm.) Results are plotted for two values of GBM 

thickness: H = 200 and 400 nm. The solid lines are result calculated with an inclusion 

of GBM cellular blockage and the dashed line are results calculated without an 

inclusion of GBM cellular blockage by simply using Eq.(4.3). As can be expected, 

inclusion of the cellular blockage of the GBM surface in the calculation reduces the 

sieving coefficient of myoglobin.  The reported values of sieving coefficient of 

electrically neutral myoglobin and ficoll of the same sizes fall in the range of          



53 

0.7-0.8 nm.  It can be seen from Fig. 4.4 that the value of GBM fiber diameter that 

give the result in this range is 1 nm ( fr = 0.5 nm), which is the diameter of the GAG 

chain of the proteoglycan, similarly to the comparison between the analytical solution 

and the sieving coefficient through an isolated GBM of solutes with rs = 2 nm shown 

in Fig 4.2 and 4.4  Even though the volume fraction of the fine and coarse fibers, 

namely GAG chains and type IV collagens, are not known, Deen et al. [4]  suggested 

from the reported values of the Darcy permeability of the GBM that the ratio between 

the volume fractions of the two types of fiber should be 1:1. With the fiber radii of 

GAG chains being 7 times smaller than those of the collagens and assuming that both 

fibers are cylindrical, equal volume fraction would means that the number of GAG 

chains presented in the GBM is 49 times that of the collagens.  Myoglobins, being 

relatively small macromolecules, have much more chance at encountering and having 

a hydrodynamic interaction with the GAG chains than the collagens. 
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Figure 4.5 Numerically calculated glomerular sieving coefficient of myoglobin as a 

function of GBM fiber radii employed in the calculation. Presented above are the 

overall sieving coefficient with the slit diaphragm (solide lines) and without the slit 

diaphragm (dashed lines).  Results are plotted for H = 200 nm (circles) and 400 nm 

(squares).  R = 10 nm and so is the half-width of the gap between the two adjacent 

fibers in the slit diaphragm.  

   

  As shown in Fig. 4.5, the contribution on the overall sieving coefficient of 

spherical solute with rs= 2 nm was determined. The numerically calculated glomerular 

sieving coefficient of myoglobin is presented as a function of GBM fiber diameter 

employed in the calculation.  Results are plotted for two values of GBM thickness: H 

= 200 and 400 nm. The solid lines are the overall sieving coefficient calculated from a 
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product of sieving coefficients for the GBM and the epithelial slit  diaphragm. The 

dashed line, on the other hand, are results calculated by setting the overall sieving 

coefficient equal to that of the GBM only and completely neglecting the sieving 

coefficient of solutes through the slit diaphragm. Neglecting the presence of the slit 

diaphragm reduces the overall glomerular sieving coefficient by 6-7%.  

 

  

 



CHAPTER V 

  Summary and Conclusion 
 

 

 This research focuses on developing a mathematical model describing 

contributions of the glomerular basement membrane (GBM) and the slit diaphragm 

regarding size-selectivity of electrically-neutral molecules across the glomerular 

capillary wall, emphazing on the transport of myoglobins. The overall sieving 

coefficient ( ) of the glomerular capillary wall for myoglobin  is  approximated as 

the product of the sieving coefficient across GBM and through the slit diaphragm. For 

the slit diaphragm, force coefficient tensor as well as the hindrance factor tensor are 

calculated and employed in solving the convection diffusion equation. Likewise, for 

GBM, the convection diffusion equation are solved after determine the appropriate 

transport hindrance factors and other transport parameters are determined. The overall 

sieving coefficient of myoglobin is then compared with experimental.  

 The epithelial slit is modeled as  a row of infinitely-long cylindrical fibers.  

Force coefficients are calculated from the hydrodynamic drag on a moving sphere in 

quiescent fluid, and that on a stationary sphere immersed in a passing flow, using 

COMSOL Multiphysics and, in the region where mesh generation proves to be a 

problem, results from lubrication theory of Falade and Brenner [23]. The fact that 

results of Falade and Brenner [23] are employed in the calculation implies that the 

spherical solute must be small compared to the gap between adjacent fibers                  

( )3.0 Lrs  .  For that range of molecular sizes, the effect of the coupling between 

translational and rotational motions on the force coefficients  proves to be negligible. 

Diffusive and convective hindrance factor tensors are then determined, and the 

steady-state convection-diffusion equation are solved in order to obtain the solute 

concentration, and the solute sieving coefficient for the slit diaphragm. A plot of 

sieving coefficient for the slit diaphragm as a function of the Peclet number has a 

minimum: a result of concentration drop in the vicinity of the row of fibers caused by 

convection being balanced by a solute polarization upstream from the row of 

cylinders.  
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 GBM, a second layer, is believed to be a hydrogel consisting of approximately 

90% water and 10-11% fibers: mainly type IV collagen ( 5.3fr nm) and 

proteoglycan with a protein core and glycoaminoglycan (GAG) chain ( 5.0fr nm).  

A steady-state convection-diffusion equation is solved in order to determine the 

sieving coefficient for the GBM. Numerical calculations done with fiber radii 

assumed to be in the range of  0.5 - 1 nm  yields sieving coefficient that is close to 

sieving coefficient of ficolls obtained from ultrafiltration through an isolated GBM 

with discrepancy between the numerical and experimental results being less than 

15%.  Sieving coefficient calculation done with diffusive hindrance factor (Kd) 

obtained from assuming that the GBM is a fibrous media with cylindrical fibers of 

uniform size gives results that are slightly closer to experimental data than the 

calculation done with Kd  determined from assuming that the GBM is a Brinkman 

medium.  Inclusion of the cellular blockage of the GBM surface in the calculation 

reduces the sieving coefficient of myoglobin by 8 - 11%.  

 The overall sieving coefficient of myoglobin is then determined from the 

product of its sieving coefficient through the slit diaphragm and that for the GBM. 

Calculation done assuming that the fiber radii are about 0.5 nm yields overall sieving 

coefficient that are close to sieving coefficient of myoglobin and ficolls obtained from 

the tissue-uptake techniques.  With the gap between adjacent fibers in the epithelial 

slit diaphragm (L) assumed to be about 10 nm and so is the slit fiber radii (R), the 

absence of the slit diaphragm increases the sieving coefficient by only 6-7%.  It seems 

that the GBM contributes significantly to sieving of myoglobin through the 

glomerular barrier, although it might still be too early to say that the contribution of 

slit diaphragm to transport of myoglobin is negligible, given that the values of L = 10 

nm is the upper limit (a necessary condition given that sr has to be smaller than 0.3L 

as discussed above). For smaller values of L, the sieving coefficient of myoglobin 

through slit diaphragm might be further reduced but it is likely not to be much smaller 

given that the Peclet number (Pe) falls into the range of 0.001-0.01.  The slit 

diaphragm is likely to contribute significantly to the restriction of larger proteins such 

as albumin.        
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Lubrication Theory 

 The force coefficients are position-dependent. If the row of cylinders is not 

presented, f and g  would equal an identity tensor. Both f and g  are computed 

numerically overall the interested domain. But when the gap widths between sphere and 

cylinder is sufficiently small or the gap width tends to zero, the numerical results seem 

not to be correct.  One way to solve this issue is using the lubrication theory to find the 

force coefficients in the asymptotic limit region.  

A-1 Sphere Moving Near a Circular Cylindrical Wall 

 

 Falade and Brenner [23]introduce the expression for force and torque in 

asymptotic limit by including effect from surface curvature. 

 
Figure A-1 Definition sketch [23]   

 Falade and Brenner [23] describing motion of a sphere near arbitrary curve 

wall by the position-dependent translational, rotational and coupling resistance dyadics 

0,1Kt, 0,1Kr and 0,1Kc respectively.  All these dyadics involve with scalar resistance 

functions a, b, c, d, e, A, B, C, D, E, F, G and H which presented in tabular form as a 

function of d/a.  
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 The zero-order resistance dyadics can be written as,  

 

      biiaiiIK t
33330 )(                    (a5) 

      diiciiIK r
33330 )(                  (a6) 

      eiK c
30 .              (a7) 

 

where 332211 iiiiiiI   and 123213312132231321 iiiiiiiiiiiiiiiiii   and the five 

scalar resistance coefficient a, b, c, d and e is a function of a/d. 

 When including the curvature effect yields the first-order resistance dyadics 

which can be written as, 

)()( 332211233221111 CiiBiiAiiCiiBiiAiiK t       (a8) 

)()( 332211233221111 FiiDiiEiiFiiEiiDiiK r      (a9)         

)()( 12212122111 GiiHiiHiiGiiK C                (a10)  

where 1  and 2  are the curvature parameters. For a circular cylindrical geometry when 

sphere is located outside of the cylinder 1 =-1 and 2 =0. The eight scalar resistance 

coefficients  A, B, C, D, E, F, G and H are also depend on a/d. 

Eq. (a5) to Eq. (a10) can be represented in matrix form with the non-

dimensional force and torque; 
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in which 
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),( 2
11  OAaK t  ),( 2

22  OBaK t   )( 2 OCbK t
aa   (a12) 

),( 2
11  ODcK r   ),( 2

22  OEcK r   )( 2 OFdK r
aa    (a13) 

),( 2
12  OGeK C  )( 2

21  OHeK r       (a14) 

and  β = a/R0 (where a = sphere radius, R0 = cylinder radius)      

  General from of lubrication expression follow by Falade and Brenner [23]  

     22 sincos Luxx fff      (a15) 

     22 cossin Luzz fff      (a16) 

               sincossincos Luzxxz ffff    (a17) 

where   
1

sin



d

x
  , 

1

)1
2

(
cos






d

zL

  and d is a distance between sphere center and 

cylinder surface. 
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In our coordinate we use fll = Kt
11  and  fL = Kt

33  followed Falade and Brenner 

[23] notation. 

Table A-1 Force coefficient  for a spherical particle moving near a circular 

cylindrical wall.  

a d fll fL 

0.1 1 0.99632 1.09807 

0.1 0.5 1.06262 1.25685 

0.1 0.3 1.16333 1.51621 

0.1 0.2 1.31821 2.03294 

0.1 0.18 1.38001 2.28632 

0.1 0.16 1.46748 2.70257 

0.1 0.15 1.52811 3.00799 

0.1 0.14 1.59235 3.51917 

0.1 0.12 1.84182 5.90761 

0.1 0.11 2.09367 10.58295 

0.1 0.1075 2.20186 13.78692 

0.1 0.105 2.35981 19.90862 

0.1 0.1025 2.64948 38.32768 

0.1 0.1005 3.32435 183.9621 

 

 

 

 



66 
 

BIOGRAPHY 

 

 Mr. Piya Phalakhoj was born on August 25, 1982 in Yala, Thailand. He 

received the bachelor's degree from the Department of Physics, Faculty of Science, 

Thaksin University in 2005. He received the graduate diploma in Teaching from 

Department of Curriculum and Teaching, Faculty of Education, Thaksin University in 

2006. He was admitted to the master's degree Program of Physics, Faculty of Science, 

Chulalongkorn University and completed the program in 2012. Now, he is a science 

teacher at  Khanom Pitaya School, Nakhon Si Thammarat.  

Proceeding Publication: 

2011 P. Phalakhoj and P. Dechadilok. Hindered diffusion of spherical 

particles through a single row of parallel fibers. The 23rd National 

Graduate Research Conference. Nakorn Ratchasima, Thailand 

(December 23-24, 2011).  


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Overview of Glomerular Filtration
	1.2 Overall Sieving Coefficient
	1.3 Overview of Mathematical Model Development

	Chapter II Hindered Diffusion Through A Slit Diaphragm
	2.1 Solute Flux in An Unbounded Fluid
	2.2 Diffusive Flux Through A Slit Diaphragm
	2.3 Coupling Between Translational and Rotational Motion
	2.4 Calculation of Force Coefficients
	2.5 Results and Discussion

	Chapter III Hindered Convection in the Epithelial Cell Layer and Convection-Diffusion Equation
	3.1 Total Solute Flux Through A Slit Diaphragm
	3.2 Calculation of Force Coefficient Gij
	3.3 Calculated Force Coefficient and Discussion
	3.4 Convection-Diffusion Equation
	3.5 Sieving Coefficient of Slit Diaphragm

	Chapter IV Overall Glomerular Sieving Coefficient
	4.1 Transport of Solutes Across Glomerular Basement Membrane (GBM)
	4.2 Overview of Existing Experimental Data
	4.3 Calculation of Glomerular Sieving Coefficient of Myoglobin

	Chapter V Summary and Conclusion
	References
	Appendix
	Vita



