การพัฒนาเส้นใยพีแอลเอ/พีอีโออิเล็กโตรสปันแบบสององค์ประกอบชนิดข้างเคียงข้าง

นายสุทธิพันธุ์ ภวสุปรีย์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต

สาขาวิชาวิทยาศาสตร์นาโนและเทคโนโลยี (สหสาขาวิชา)

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) ปีการศึกษา 2555 เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the active interaction of t

are the thesis authors' files submitted through the Graduate School.

DEVELOPMENT OF SIDE-BY-SIDE PLA/PEO

BICOMPONENT ELECTROSPUN FIBER

Mr. Suttipan Pavasupree

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Nanoscience and Technology

(Interdisciplinary Program)

Graduate School

Chulalongkorn University

Academic Year 2012

Copyright of Chulalongkorn University

Thesis Title	DEVELOPMENT OF SIDE-BY-SIDE PLA/PEO
	BICOMPONENT ELECTROSPUN FIBER
Ву	Mr. Suttipan Pavasupree
Field of Study	Nanoscience and Technology
Thesis Advisor	Ratthapol Rangkupan, Ph.D.
Thesis Co-advisor	Associate Professor Kawee Srikulkit, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Graduate School

(Associate Professor Amorn Petsom, Ph.D.)

THESIS COMMITTEE

.....Chairman (Associate Professor Vudhichai Parasuk, Ph.D.)Thesis Advisor (Ratthapol Rangkupan, Ph.D.)Thesis Co-advisor (Associate Professor Kawee Srikulkit, Ph.D.)Examiner (Assistant Professor Sukkaneste Tungasamita, Ph.D.)Examiner (Professor Suwabun Chirachanchai, Ph.D.)External Examiner (Nuttaporn Pimpha, Ph.D.) สุทธิพันธุ์ ภวสุปรีย์ : การพัฒนาเส้นใยพีแอลเอ/พีอีโออิเล็กโตรสปันแบบสอง องค์ประกอบชนิดข้างเกียงข้าง. (DEVELOPMENT OF SIDE-BY-SIDE PLA/PEO BICOMPONENT ELECTROSPUN FIBER) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: อ.ดร.รัฐพล รังกุพันธุ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : รศ. ดร.กาวี ศรีกูลกิจ, 180 หน้า.

การวิจัยนี้ได้แบ่งออกเป็น3ส่วน ส่วนแรกคือการศึกษาปัจจัยในการขึ้นรูปที่มีผลต่อ ้ลักษณะเส้นใยโพลิแลคติกเอซิคโคยกระบวนการปั่นเส้นใยแบบไฟฟ้าสถิต ผลการทคลอง พบว่าการถดความเข้มข้นของสารถะถายทำให้ขนาดเส้นใยถดถง เมื่อเพิ่มอัตราส่วนของได เม็ทธิลฟอร์มาร์ไมด์ในสารละลายส่งผลให้ขนาดเส้นใยเล็กลงและเกิคเส้นใยที่มีบีท การเพิ่ม ้ความต่างศักดิ์ทางไฟฟ้าส่งผลกระทบ2อย่างคือเพิ่มและลดขนาดเส้นใย อัตราการไหลของโพ ้ถิเมอร์และระยะห่างระหว่างหัวเข็มกับฉากรับเส้นใยมีผลเพียงเล็กน้อยต่อขนาดของเส้นใย ้ส่วนที่2 คือการศึกษาปัจจัยในการขึ้นรูปเส้นใยอิเล็กโตรสปันแบบสององค์ประกอบแบบ ้ข้างเคียงข้าง ด้วยกระบวนการปั่นเส้นใยแบบไฟฟ้าสถิตแบบหัวเข็มร่วมกัน โดยใช้โพลิแล ้คติกเอซิคกับโพลิเอทิลีนออกไซค์เป็นโพลิเมอร์ต้นแบบในการศึกษา จากผลการทคลอง พบว่าพื้นผิวของเส้นใยสามารถควบคุมค้วยระบบตัวทำละลายของโพลิแลคติกเอซิค ซึ่ง ้ประกอบด้วยผิวรูพรุนกับผิวเรียบ ขนาดเส้นใยเพิ่มขึ้นเมื่อเพิ่มความเข้มข้นของโพลิเอทิลีน ้ออกไซด์ ซึ่งส่วนประกอบของเส้นใย ลักษณะเส้นใย และขนาดเส้นใยสามารถควบคุมได้ด้วย ้อัตราราส่วนการใหลของโพลิแลคติกเอซิคกับโพลิเอทิลีนออกไซค์ ในขณะที่ความต่างศักย์ ทางไฟฟ้ามีผลเพียงเล็กน้อยต่องนาดเส้นใย สุดท้ายนี้เมื่อละลายเนื้ององโพลิเอทิลีนออกไซด์ ้ออก จะได้โครงสร้างเส้นใยรูปตัวซี ส่วนที่3 ได้ทำการศึกษาความเป็นไปได้ในการใช้งานด้าน การกรองของโพลิแลคติกเอซิคโครงสร้างรูปตัวซี โคยใช้โพลิแลคติกเอซิคโครงสร้างรูปตัวซี ้ไปปรับปรุงประสิทธิภาพการกรองของแผ่นกรองทั่วไปที่ใช้ทำหน้ากาก ผลการทคลองแสคง ้ถึงโพลิแลคติกเอซิคโครงสร้างรูปตัวซีมีการกักเก็บอนุภาคการกรองที่สูงกว่าและยังมี ประสิทธิภาพ การกรองสูงกว่าแผ่นกรองทั่วไป23เปอร์เซ็นต์

สาขาวิชา <u>วิทยาศาสตร์นาโนและเทคโนโลยี</u>ลายมือชื่อนิสิต ปีการศึกษา <u>2555</u>ลามาร์หลัก ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

KEYWORDS:

SUTTIPAN PAVASUPREE: DEVELOPMENT OF SIDE-BY-SIDE PLA/PEO BICOMPONENT ELECTROSPUN FIBER. ADVISOR : RATTHAPOL RANGKUPAN, Ph.D., CO-ADIVISOR : ASSOC.PROF. KAWEE SRIKULKIT , Ph.D., 180 pp.

This research can be divided into 3 main parts. The first part, the investigation of processing parameters effect on morphology and formation of poly(lactic acid) (PLA) fiber in electrospinning process. We found the fiber size decreased with decreasing concentration. High DMF ratio solvent also tended to yield smaller fibers and smoother surface. Increasing applied voltage showed both effect of increased and decreased on fiber size. The flow rate and gap distance had a small effect on fiber size. In the second part, the apparatus for electrospinning of bicomponent fiber with side by side geometry was developed. Effect of key processing parameters on fiber formation of bicomponent electrospinning were studied in detail, using PLA and poly(ethylene oxide) (PEO) as polymer model system. The surface of fiber can control by PLA solvent system which consist of porous surface and smooth surface. The fiber size increased with increasing PEO concentration. The compositions and fiber formation can control by flow rate ratio, while an applied voltage showed minor impact on the fiber size. Finally, After PEO phase removal, the C-shape ultrafine fiber was generated. In the final part, we demonstrated potential use of C-shape PLA electrospun fiber derived from PLA-PEO bicomponent fiber in filtration application. The C shape PLA fabric was used to improve filtration efficiency of a conventional filter media used in ordinary personal mask. The result showed that the Cshape modified filter media had higher filtration particulate loadings, while also improved filtration efficiency of the media by 23% compared to the conventional one.

Field of Study: Nanoscience and Technology	Student's Signature
Assistantia Veran 2012	A druiganta Signatura
Academic Year: 2012	Advisor's Signature
	Co-advisor's Signature

ACKNOWLEDGEMENTS

I would especially like to thank my advisor, Dr. Ratthapol Rangupan, Mettallurgy and Materials Science Research Institute, Chulalongkorn University. Associate Professor Dr. Kawee Srikulkit, Department of Materials Science, Faculty of Science, Chulalongkorn University, and Mr. Kowit Suwannahong, Faculty of Public Health, Western University, Kanjanaburi, my advisor team, for their valuable guidance, advice, encouragement throughtout this research work and also gave a logical way of scientific thinking for development me.

I would like to thank my committee; Associate Professor Dr. Vudhichai Parasuk, Assistant Professor Dr. Sukkanate Tungkasamit, Professor Dr. Suwabun Chirachanchai and Dr. Nuttaporn Pimpha for their advice, motivating comments, participation as dissertation committees and assistance for my study.

I would like to thank the Doctor of Philosophy Program in Nanoscience and Technology, Graduate School, Chulalongkorn University for graduate courses and financial supporting throughout my Ph. D study. I would like to thank the Metallurgy and Materials Science Research Institute, Chulalongkorn University for research facilities. This thesis was been supported by the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (Project AM1041A), Chulalongkorn University Centenary Academic Development Project (Under the Center of Innovative Nanotechnology, Chulalongkorn University), the 90th Anniversary of Chulalongkorn University fund (Ratchadaphiseksomphot Endowment Fund), and National Science and Technology Development Agency.

Finally, I would like to thank my family for their love, great encouragement and worthy moral support throughout my whole life's study.

CONTENTS

ABSTRACT (Thai)iv
ABSTRACT (English)v
ACKNOWLEDGEMENTSvi
CONTENTS
LIST OF TABLES
LIST OF FIGURES
CHAPTER I INTRODUCTION
1.1 Introduction1
1.2 Objectives
1.3 Scope
CHAPTER II THEORY AND LITERATURE REVIEW
2.1 Electrospinning proces
2.1.1 Introduction to electrospinning process
2.1.2 Electrospinning parameters
2.1.2.1 Materials parameters7
2.1.2.1.1 Solution viscosity
2.1.2.1.1 Solution viscosity.72.1.2.1.2 Solution conductivity.7
2.1.2.1.1 Solution viscosity
2.1.2.1.1 Solution viscosity

2.1.2.1.6 Volatility	8
2.1.2.2 Processing parameters	8
2.1.2.2.1 Applied voltage	8
2.1.2.2.2 Solution flow rate	8
2.1.2.2.3 Gap distance	8
2.1.2.3 Environmental parameters	9
2.1.3 Application of electrospun fibers	9
2.2 Co-electrospinning process	10
2.2.1 Introduction to co-electrospinning process	10
2.2.2 Co-electrospinning parameters	13
2.2.3 Application of bicomponent electrospun fiber	14
2.3 Filtration application	15
2.4 Materials	17
2.4.1 Poly(lactic acid) (PLA)	17
2.4.2 Poly(ethylene oxide) (PEO)	17
2.4.3 Nylon6	18

CHAPTER III MATERIALS AND METHODS	19
3.1 Preparation of PLA electrospun fiber by electrospinning	19
3.1.1 Materials	19
3.1.1.1 Polymers	19
3.1.1.2 Solvents	19
3.1.2 Solutions preparation	19

3.1.3 Experimental setup19
3.1.4 Characterization21
3.1.4.1 Solution properties
3.1.4.1.1 Viscosity
3.1.4.1.2 Conductivity
3.1.4.2 Fiber characterization
3.1.4.2.1 Scanning electron microscope (SEM)
3.2 Preparation of PLA-PEO bicomponent electrospun fiber by co-electrospinning23
3.2.1 Materials23
3.2.1.1 Polymers
3.2.1.2 Solvents23
3.2.2 Solutions preparation
3.2.3 Experimental setup24
3.2.4 Characterization25
3.2.4.1 Solution properties
3.2.4.1.1 Viscosity
3.2.4.1.2 Conductivity
3.2.4.2 Fiber characterization
3.2.4.2.1 Scanning electron microscope (SEM)25
3.2.4.2.2 Fourier transform infrared spectroscopy (FTIR)26
3.2.4.2.3 Thermal gravimetric analysis (TGA)
3.2.4.2.4 Contact angle measurement

3.3 Air filtration testing	28
3.3.1 Materials	28
3.3.1.1 Polymers	28
3.3.1.2 Solvents	29
3.3.2 Solution preparation	
3.3.3 Experimental setup	29
3.3.4 Preparation the filter media	29
3.3.5 Characterization	30
3.3.5.1 Characterization of filter media	30
3.2.5.1.1 Scanning electron microscope (SEM)	30
3.3.5.2 Air filter efficiency testing	31

CHAPTER IV RESULTS AND DISCUSSION	33
4.1 Preparation of PLA electrospun fiber by electrospinning	33
4.1.1 Solution Properties	33
4.1.1.1 Viscosity	
4.1.1.2 Conductivity	34
4.1.2 Effect of electrospinning parameters on fiber formation	35
4.1.2.1 Effect of solvent system	36
4.1.2.2 Effect of solution concentration	
4.1.2.3 Effect of solution flow rate	40
4.1.2.4 Effect of applied voltage	42
4.1.2.5 Effect of gap distance	45

xi

	paration of PLA-PEO bicomponent fiber by co-electrospinning	47
	4.2.1 Solution Properties	47
	4.2.1.1 Viscosity	47
	4.2.1.2 Conductivity	48
	4.2.2 Effect of co-electrospinning parameters on fiber formation	49
	4.2.2.1 Effect of PLA solvent system	49
	4.2.2.2 Effect of PEO concentration	54
	4.2.2.3 Effect of solution flow rate ratio	56
	4.2.2.4 Effect of applied voltage	59
	4.2.3 PLA-PEO bicomponent fiber structure and composition	61
	4.2.3.1 PLA-PEO bicomponent fiber structure	61
	4.2.3.2 Fourier transform infrared spectroscopy (FTIR)	63
	4.2.3.3 Thermal gravimetric analysis (TGA)	64
	4.2.3.3 Thermal gravimetric analysis (TGA)4.2.4 Contact angle	64 68
4.3 Air 1	4.2.3.3 Thermal gravimetric analysis (TGA) 4.2.4 Contact angle filtration testing	64 68 72
4.3 Air 1	 4.2.3.3 Thermal gravimetric analysis (TGA) 4.2.4 Contact angle filtration testing 4.3.1 Characterization of filter media 	64 68 72 72
4.3 Air 1	 4.2.3.3 Thermal gravimetric analysis (TGA)	64 68 72 72 72
4.3 Air 1	 4.2.3.3 Thermal gravimetric analysis (TGA) 4.2.4 Contact angle filtration testing 4.3.1 Characterization of filter media 4.3.2 Filtration efficiency of modified filter media 	64 68 72 72 72
4.3 Air f	 4.2.3.3 Thermal gravimetric analysis (TGA)	64 72 72 73 73
4.3 Air 1 CHAPT 5.1 PLA	 4.2.3.3 Thermal gravimetric analysis (TGA) 4.2.4 Contact angle filtration testing 4.3.1 Characterization of filter media 4.3.2 Filtration efficiency of modified filter media 	64 72 72 73 73
 4.3 Air f CHAPT 5.1 PLA 5.2 PLA 	 4.2.3.3 Thermal gravimetric analysis (TGA)	64 72 72 73 77 77 77
 4.3 Air 1 CHAPT 5.1 PLA 5.2 PLA 5.3 Mod 	 4.2.3.3 Thermal gravimetric analysis (TGA)	64 72 72 73 73 77 77 78 78
 4.3 Air 1 CHAPT 5.1 PLA 5.2 PLA 5.3 Mod 5.4 Futu 	4.2.3.3 Thermal gravimetric analysis (TGA) 4.2.4 Contact angle filtration testing 4.3.1 Characterization of filter media 4.3.2 Filtration efficiency of modified filter media FIER V CONCLUSION A electrospun fiber by electrospinning PEO bicomponent fiber by co-electrospinning dification of filter with nylon6 and C-shape PLA fiber ure Aspects	64 72 72 73 73 77 77 78 78 78 79

REFERENCES	80
APPENDICES	90
APPENDIX A	91
APPENDIX B	135
APPENDIX C	146
APPENDIX D	167
VITAE	181

LIST OF TABLES

Tab	le Page
4.1	Effect of solvent system and solution concentration on fiber size and morphology of
	PLA electrospun fiber
4.2	Effect of solution flow rate on fiber size and morphology of PLA electrospun fiber
	with various solvent systems40
4.3	Effect of applied voltage on PLA electrospun fiber with various solvent system and
	solution flow rate at 0.5 ml/hr. and 1.0 ml/hr43
4.4	Effect of gap distance on fiber size and morphology of PLA electrospun fiber with
	various solvent systems45
4.5	Effect of PLA solvent system with various concentrations, on fiber size and morphology
	of PLA-PEO bicomponent electrospun fiber
4.6	Effect of PEO solution concentration, solution flow rate ratio and applied voltage on fibers
	size and morphology of PLA-PEO bicomponent electrospun fiber with porous surface system52
4.7	Effect of PEO solution concentration, solution flow rate ratio and applied voltage on fibers size
	and morphology of PLA-PEO bicomponent electrospun fiber with smooth surface system53
4.8	TGA characterization of PLA-PEO bicomponent with various PLA-PEO flow rate
	ratios65
4.9	TGA characterization of PLA, PEO and PLA-PEO bicomponent with smooth surface
	system and porous surface system (before and after PEO phase removal)67
4.10) The characterization of filter media
4.11	SEM image of spunbond, nylon6 electrospun fiber and C-shape PLA fiber after
	subjecting to filtration efficiency testing at 4 liters of air

LIST OF FIGURES

Figur	re Page
2.1	Schematic diagram of typical set up of elctrospinning process
2.2	Schematic of electrospinning process
2.3	SEM image showed nanofiber on microfiber9
2.4	Applications of electrospun non-woven web10
2.5	Schematic diagram of typical set up of bicomponent electrospinning11
2.6	Schematic of spinneret design (a) side-by-side spinneret, (b) co-axial spinneret11
2.7	Schematic of co-electrospinning process (side-by-side electrospinning)12
2.8	Schematic of co-electrospinning process (co-axial electrospinning)12
2.9	FESEM image of PVDF membrane: (a) before separation, (b) after 10 μ m
	(c) after 5 μ m, and (d) after 1 μ m separation15
2.10	The particle deposition mechanism on fiber16
2.11	The structure of poly(lactic acid)17
2.12	The structure of poly(ethylene oxide)17
2.13	The structure of nylon618
3.1	Experimental set up of electrospinning
3.2	Rotational Viscometer21
3.3	Conductivity meters instrument
3.4	Scanning electron microscope (SEM)23
3.5	Experimental set up of co-electrospinning25
3.6	Fourier Transform Infrared Spectroscopy (FTIR)26
3.7	Thermal gravimetric (TGA)

3.8	Schematic diagram of the contact angle and interfacial tensions of the three phases27
3.9	Contact angle instrument
3.10	Schematic diagram of the structure filter media used in this study
3.11	Experimental set up for the air filtration efficiency testing
4.1	Effect of PLA solution concentration and solvent system on the viscosity
4.2	Effect of PLA solution concentration and solvent system on the conductivity
4.3	Effect of PLA solution concentration and solvent system on the fiber size.
	[voltage =15kv, distance=15cm, flow rate=0.5ml/h.]
4.4	SEM image of PLA electrospun fiber obtained from (a) 8%w/v in CHCl ₃ :DMF 100:00,
	(b) 8%w/v in CHCl ₃ :DMF/75:25, (c) 12%w/v in CHCl ₃ :DMF/50:50, (d) 14%w/v in
	CHCl ₃ :DMF/25:75, (e) 18%w/v in CHCl ₃ :DMF/00:100 [v=15kv, d=15cm, F=0.5ml/h]37
4.5	SEM image of PLA electrospun fiber obtained from various concentration (a) 8% w/v
	(b) 10%w/v (c) 12%w/v, (d) 14%w/v (e) 16%w/v, (f) 18 %w/v, (g) 20%w/v in
	(CHCl ₃ :DMF/00/100) [v=15kv, d=15cm, F=0.5ml/h.]
4.6	Effect of solution flow rate on fibers size of PLA electrospun fiber.[v=15kv, d=15cm]41
4.7	SEM image of PLA electrospun fiber obtained from PLA 8%w/v
	$(CHCl_3:DMF/75:25)$ with various solution flow rate (a) 0.25ml/hr, (b) 0.5ml/hr,
	(c) 0.75ml/hr and (d) 1.0ml/hr. [v=15kv, d=15cm]41
4.8	SEM images of PLA electrospun fiber obtained from PLA18%w/v
	(CHCl ₃ :DMF/00:100) with various solution flow rate (a) 0.25ml/hr, (b) 0.5ml/hr,
	(c) 0.75ml/hr and (d) 1.0ml/hr. [v=15kv, d=15cm]42
4.9	Effect of applied voltage on fiber size of PLA electrospun fiber with various
	solution flow rate at 0.5ml/hr and 1.0 ml.hr.[d=15cm]43

Figur	Figure Page	
4.10	SEM images of PLA electrospun fiber obtained from PLA 8%w/v (CHCl ₃ :DMF/75:25)	
	with various applied voltage (a)10kv (b)15kv (c)20kv (d)25kv.	
	[d=15cm, F=1.0ml/hr.]	
4.11	SEM images of PLA electrospun fiber obtained from PLA 18%w/v	
	(CHCl ₃ :DMF/00:100) with various applied voltage (a)10kv (b)15kv (c)20kv	
	(d)25kv. [d=15cm, F=1.0ml/hr.]44	
4.12	Effect of gap distance on fiber size of PLA electrospun fiber.	
	[v=15kV, F=1.0ml/hr.]	
4.13	SEM images of PLA electrospun fiber obtained from PLA 8%w/v	
	(CHCl ₃ :DMF/75:25) with various gap distance (a)10cm (b)15cm (c)20cm (d)25cm.	
	[v=15kV, F=1.0ml/hr.]46	
4.14	SEM images of PLA electrospun fiber obtained from PLA 18%w/v	
	(CHCl ₃ :DMF/00:100) with various gap distance (a)10cm (b)15cm (c)20cm	
	(d)25cm. [v=15kV, F=1.0ml/hr.]47	
4.15	Effect of PEO solution concentration on viscosity, and effect of solvent system on	
	viscosity of PLA solution	
4.16	Effect of PEO concentration on conductivity, and conductivity of PLA solution with	
	various solvent system	
4.17	Effect of PLA solvent system on fiber size of PLA-PEO bicomponent electrospun fiber50	
4.18	SEM images of PLA-PEO bicomponent electrospun fiber obtained from various PLA	
	solvent system (a) PLA 8%CHCl ₃ (75): DMF(25), (b)PLA 12%CHCl ₃ (50): DMF(50),	
	(c) 16%CHCl ₃ (25): DMF(75) and (d) 19%CHCl ₃ (00): DMF(100)51	

Figure Page		
4.19	Effect of PEO solution concentration on fiber size of PLA-PEO bicomponent fiber with	
	PLA8%w/v (CHCl ₃ :DMF/75:25) and PLA19%w/v (CHCl ₃ :DMF/00:100)54	
4.20	SEM images of PLA-PEO bicomponent fibers with porous surface system obtained from	
	different PEO concentration in CHCl ₃ (a) 1%w/v (b) 3%w/v (c) 5%w/v55	
4.21	SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained from	
	different PEO concentration in CHCl ₃ (a) 1%w/v (b) 3%w/v (c) 5%w/v55	
4.22	Effect of PLA-PEO solution flow rate ratio on fiber size of PLA-PEO bicomponent fiber	
	with porous surface system [PLA8%w/v (CHCl ₃ :DMF/75:25)] and smooth surface	
	system [PLA19%w/v (CHCl ₃ :DMF/00:100)]56	
4.23	SEM images of PLA-PEO bicomponent fibers with porous surface system obtained from	
	different PLA:PEO flow rate ratio (a)1.0:0.0 ml/h, (b) 0.9:0.1 ml/hr, (c) 0.75:0.25 ml/hr,	
	(d) 0.5:0.5 ml/h(e) 0.25:0.75 ml/hr, (f) 0.9:0.1 ml/hr and (g)0:1.0 ml/hr.	
	[v=15kV, d=20cm]	
4.24	SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained	
	from different PLA-PEO flow rate ratio (a)1.0:0.0 ml/hr, (b) 0.9:0.1 ml/hr,	
	(c) 0.75:0.25 ml/hr, (d) 0.5:0.5 ml/hr, (e) 0.25:0.75 ml/hr, (f) 0.9:0.1 ml/hr and	
	(g) 0.0:1.0 ml/hr. [v=15kV, d=20cm]	
4.25	Effect of applied voltage on fiber size of PLA-PEO bicomponent fiber with various	
	PLA solvent system of PLA 8%w/v (CHCl ₃ :DMF/75:25) and PLA 19%w/v	
	(CHCl ₃ :DMF/00:100)	
4.26	SEM images of PLA-PEO bicomponent fibers with porous surface system obtained	

Figure Page		
4.27 SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained		
from different applied voltage (a) 10kV, (b) 15kV, (c) 20kV and (d) 25 kV60		
4.28 SEM images of PLA-PEO bicomponent fibers with porous surface prepared at		
PLA 8%w/v (CHCl ₃ :DMF/75:25) and PEO 3% w/v (CHCl ₃) (a) before and		
(b,c) after PEO phase removal		
4.29 SEM images of PLA-PEO bicomponent fibers with smooth surface prepared at		
PLA19%w/v (DMF) and PEO 3% w/v (CHCl ₃) (a) before and (b,c) after PEO phase		
Removal62		
4.30 FTIR spectrum of PLA-PEO bicomponent fibers obtained from different PLA:PEO		
flow rate ratio (a) 1.0:0.0ml/hr, (b) 0.9:0.1ml/hr, (c) 0.75:0.25ml/hr, (d) 0.5:0.5ml/hr,		
(e) 0.25:0.75ml.hr, (f) 0.1:0.9ml/hr and (g) 0.0:1.0ml/hr, respectively63		
4.31 FTIR spectrum of PLA, PEO and PLA-PEO bicomponent fibers before and after		
PEO phase removal		
4.32 TGA curve of PLA-PEO bicomponent with various PLA-PEO flow rate ratios65		
4.33 TGA curve of PLA, PEO and PLA-PEO bicomponent with smooth surface system		
and porous surface system (before and after PEO phase removal)67		
4.34 The water drop contact angle measured on PLA-PEO bicomponent electrospun fibers		
with various PLA-PEO portions		
4.35 The glycerol drop contact angle measured on PLA-PEO bicomponent electrospun fibers		
with various PLA-PEO portions		
4.36 Images of water dropped on PLA-PEO bicomponent electrospun fiber with various PLA		
and PEO portions		

Figure Page		
4.37	Images of glycerol dropped on PLA-PEO bicomponent electrospun fiber with various	
	PLA and PEO portions71	
4.38	SEM images showed morphology of (a) Spunbond (Magnification 100x),	
	(b)Meltblown (Magnification 100x), (c) Nylon 6 nanofibers (Magnification 10,000x)	
	and (d) PLA-PEO Bicomponent fiber (Magnification 1,000x), respectively72	
4.39	Effect of air volume of side stream smoke on filtration efficiency with various	
	modified filter media74	
4.40	SEM image of back side of nylon6 nanofibers media after subjecting to filtration	
	efficiency testing at 4 liters of air75	
5.1	The cross-section of national fiber	

xix

CHAPTER I

INTRODUCTION

1.1 Introduction

Electrospinning process is a simple and versatile method suitable for fabrication continuous polymer fibers with diameter in the range of nanometer to micrometers. Typical electrospun fiber mat consists of ultrafine to nanometer scale fiber with smaller pores size, higher specific surface area and higher porosity than a conventional fabric. It can be used for various applications such as filtration, tissue engineering, scaffolds and sensor etc.

Until recently, most electrospun fibers were prepared from a solution of homopolymer or polymer blend without clear distinction between each phase These monocomponent and blended electrospun fibers are extremely useful for many applications, such as PLA-PEO hybrid scaffolds for drug delivery application that were electrospun from polymer blend by Honarbakhsh, S., and Pourrdeyhimi [1]. Given such benefit from ordinary electrospun fiber, fibers made of two or more components with different property could offer even more advantages. Recent development in this field led to a new processing technique which can produce electrospun fibers composed of two or more that components co-existed throughout the length of the fiber. These so called bicomponent/multicomponent electrospun fibers offer researchers opportunities to enhance fiber property, produce novel fibrous structure and improve the functionality of nanofiber.

Newly developed nanofiber structure from bicomponent electrospinning process include size-by-size [2], core-shell [3,4] and hollow fiber [5] geometry. Utilization potential of the bicomponent electrospun fiber is very promising especially for applications [6] such as

filtrations, tissue engineering [7], scaffolds [8], encapsulation [9], and drug delivery [10], since it can be use

- To protect and minimize degradation of unstable inner component from harsh or degrading environment.
- To allow control over delivery kinetic of drugs in multiple stages release or to be incorporated with incompatible drugs by using 2 different matrix.
- To tailor mechanical property [11], surface functionality or degradation behavior of nanostructure such as those used in tissue engineering application.
- To use advantage properties of each materials which high efficiency
- To use as a template to create other novel geometry structure.
- To create non-electrospinnable materials

Research for bicomponent electrospinning process had been focused mostly with coreshell structure from both application and processing stand point. Research for bicompoment electrospinning process with side-by-side geometry, on the other hand, had been carried out in much lesser number. Most of them were emphasized on application development aspect as presented in the following context. Lacks of sufficient understanding on how each processing parameter in side-by-side bicomponent electrospinning affects fiber formation, fiber property and overall processability leaves room for our exploration of the domain. We expected that our finding would contribute to a better understanding of how to control, manipulate and prepare bicomponent electrospun fibers with tailored geometry and functionality that suitable specifically for each application in the future.

In the later part of this study, we had demonstrated potential use of nylon 6 electrospun nanofibers and PLA/PEO side by side electrospun fibers as a filtration efficiency enhancer for typical filter media used in personal mask. The health hazardous is depending on particles size, concentration, shape and composition of air pollutant. The particle in the air composes of from large size to smaller size. Indoor air pollutant can be prevent by using the human respiratory system, it have a standard guideline, accommodate larger than 0.3 μ m of the particles size. The cigarette smoke is problem in indoor air quality (IQA). The aerosol particulate matter of smoke have a researches which have particle size from 0.01 to 1 μ m. [12,13] Then the small particle can pass through the human respiratory system. The advantage of electrospun fiber for filtration application arise from have a small fiber size, small pore size and high surface area. These properties were support for filtration. Then the electrospun fibers expect increasing the filtration efficiency properties.

1.2 Objectives

- 1. To investigate effect of processing parameters, i.e. solvent system, solution concentration, solution flow rate, applied voltage and gap distance on morphology and characteristics of poly(lactic acid) (PLA) electrospun fiber.
- 2. To develop an apparatus for bicomponents electrospinning with side by side geometry.
- 3. To prepare and characterize PLA/poly(ethylene oxide) (PEO) bicomponents electrospun fiber with side by side geometry.
- To investigate effect of processing parameters, i.e. PLA solvent system, PEO concentration, solution flow rate ratio and applied voltage on the formation and morphology of obtained bicomponents fibers.
- To demonstrated potential use and of nylon 6 electrospun nanofibers and PLA/PEO side by side electrospun fibers as a filtration efficiency enhancer for typical filter media used in personal mask.

1.3 Scope

In this research, we will investigate the effects of processing parameter, i.e. solvent system, solution concentration/viscosity/conductivity/flow rate, applied voltage and spinneret design on morphology and formation of fiber obtained from single and side-by-side electrospinning. The emphasis of bicomponents fiber preparation will be put on the side-by-side electrospinning process. PLA and PEO are selected as polymer pair model for the study because of their good spinnability, relatively uniform fiber formation, different hydrophilicity and potential use in biomedical application. In addition the modification of filter with Nylon6 nanofibers and C-shape PLA fiber were investigated for air filtration application.

CHAPTER II

THEORY AND LITERATURE REVIEW

2.1 Electrospinning process

2.1.1 Introduction to electrospinning process

Typical electrospinning process set up consists of a polymer solution reservoir connected to a fine spinneret, a stationary or rotating fiber collector and a high voltage power supply with its high voltage line connect to the spinneret, and its counter electrode connect to the collector. Flow rate of the solution is usually controlled by syringe or metering pump to improve fiber size uniformity. Figure2.1 shows schematic diagram of a typical set up of elctrospinning process.

Figure 2.1 Schematic diagram of typical set up of elctrospinning process.

In the process initial step, polymer solution forms a droplet at the tip of the spinneret. Under applied electric field, the droplet is deformed into a conical shape, or so called Taylor's cone, by electrostatic repulsion force from induced surface charges. When the charge repulsion overcomes surface tension of polymer solution, a charged jet initiates from the apex of the Taylor's cone. As the emitted jet travels from the spinneret to the collector, it elongate many times via electrically driven bending stability making the jet thinner and thinner. At the same time, solvent evaporation stiffen the jet making it more and more difficult to stretch until the jet fully solidifies and forms the fiber. Figure 2.1 shows schematic of electrospinning process.

Figure 2.2 Schematic of electrospinning process.

2.1.2 Electrospinning parameters

Processing parameter in the process that influence morphology and spinning behavior of the include 3 main parameters. The first is materials parameter such as molecular weight of polymer, solvent type, concentration, viscosity, surface tension and conductivity of polymer solution. The second is processing parameters such as applied voltage, distance between spinneret and collector, solution flow rate of polymer and collector speed. The third is environment parameters such as room temperature and humidity.[14-21] Among these parameters, solution viscosity and applied voltage are the most critical parameters that govern fiber formation.

2.1.2.1 Materials parameters

2.1.2.1.1 Solution viscosity

The solution viscosity is important parameter influencing on the morphology and fiber formation. The difference of solution viscosity can be eletrospun is different such as morphology (bead on the fiber and fiber without bead) and fiber size (small to large). The bead formation on the fiber decreased with increasing solution viscosity. The fibers size increased with increasing solution viscosity.

2.1.2.1.2 Solution conductivity

Solution conductivity means a measure of solution property to conduct an electric current. In the electrospinning process, the polymer solution requires the transfer of charge on the solution surface then the solution conductivity is essential for electrospinning technique. The solution conductivity is effect of elongation in polymer solution jet which influence on morphology and fibers formation. Higher conductivity is easier the transfer of charge on the surface. The polymer solution of zero conductivity cannot produce electrospun fibers. The fiber size decreased with increased solution conductivity.

2.1.2.1.3 Solution concentration

The polymer solution need to adequate chain entanglement to produce continuous uniform fibers. The polymer solution concentration is influence on morphology and fibers formation. Increasing polymer solution concentration is results in higher polymer chain entanglement in the solution which tend to increasing fibers size. Low polymer solution concentration result in bead formation on the fibers.

2.1.2.1.4 Molecular weight

Molecular weight has effect on the solution properties such as viscosity, surface tension and conductivity. Increasing molecular weight also tend to increased chain entanglement.

2.1.2.1.5 Surface tension

Surface tension is opposite force of charge repulsion force or coulomb repulsion force. The polymer jet will occur, when the charge repulsion force overcome surface tension.

2.1.2.1.6 Volatility

Volatility is the evaporation of solvent from the polymer jet that the fibers will from the fibers on collector. During the process of electrospinning, the solvent will evaporation from the fibers on collector. If not, the wet fibers will generate on the collector.

2.1.2.2 Processing parameters

2.1.2.2.1 Applied voltage

The applied voltage (V), (kV) induces the charge on the surface polymer jet. The polymer solution will eject from the tip to collector when charge repulsion overcome surface tension. The applied voltage is importance parameter on morphology and fibers formation. The applied voltage increased tends to increasing charge repulsion.

2.1.2.2.2 Solution flow rate

The polymer solution flow rate is pumped into the spinneret to continuous of Taylor's cone. The feed rate is importance parameter on morphology and fibers formation. Ideally, the feed rate must balance between input and output from the spinneret, there can produce uniform fiber. At lower and higher feed rate influence Taylor's cone and polymer jet that effect on fiber formation.

2.1.2.2.3 Gap distance

The gap distance (d) is the distance between the tip of spinneret and the surface of collector. It defines time for evaporation of the solvent on the polymer jet and influence on strength of electric field.

2.1.2.3 Environmental parameters

The majority research of electrospinning carried out in the air but it can control environment which spinning in the chamber. The environmental parameters have a many things such as room temperature, humidity, gaseous environmental etc. these are influence on morphology and fiber formation. Example high room temperature tends to high evaporation rate. However environmental parameters are difficult set up in laboratory experiments.

2.1.3 Application of electrospun fibers

The electrospinning can produce a nonwoven and widely fiber from micrometer to nanometer range scale. The electospun fiber has small fibers, small pore size and high surface area, that showed in figure2.3. These unique characteristics are support for advanced application. The potential of electrospun fiber can be used in application area: Filtrations, Wound healing, control release, sensor and tissue engineering scaffolds etc [22-27].

Figure 2.3 SEM image showed nanofiber on microfiber [27].

Figure 2.4 Applications of electrospun non-woven web.

2.2 Co-electrospinning process

2.2.1 Introduction to co-electrospinning process

Bicomponent electrospinning have emerged for preparing ultrafine fibers. Conceptually, the principle of the process is similar to that of the regular electrospinning process, to be called single electrospinng process hereafter, but using different spinneret design with two polymer solutions. For example, the spinneret used in co-axial electrospinning setup contains inner capillary inside outer capillary. Polymer A and B, which must be an appropriate polymer/solvent pairs, are fed through inner and outer core, respectively. Under a right solution and processing condition, one can prepare a bicomponent electrospun fiber with a core-shell geometry where polymer A, a core, surrounded by polymer B, a shell. Employing the same strategy with different spinneret geometry, one can also produce side-by-side fiber. Figure 2.5 shows schematic diagram of typical set up of bi-component electrospinning. Figure 2.6 shows a simplified cross section drawing of side-by-side and co-axial spinneret.

Figure 2.5 Schematic diagram of typical set up of bi-component electrospinning.

Figure 2.6 Schematic of spinneret design (a) side-by-side spinneret, (b) co-axial spinneret.

The process of side-by-side electrospinning is similar the process of electrospinning. Figure 2.7 shows the co-electrospinning process of side-by-side. The polymer droplet form 2 polymer that polymerA and PolymerB (half-half). When the charge repulsion overcome surface tension polymer jet is generate. Finally, the side-by-side electrospun fibers are collected by collector.

Figure 2.7 Schematic of co-electrospinning process (side-by-side electrospinning).

The process of co-axial electrospinning is similar the process of electrospinning and side-by-side electrospinning. Figure 2.8 shows the co-electrospinning process of co-axial electrospinning. In the process of co-axial electrospinning, the droplet is form core solution and shell solution, the shell solution deformed by charge repulsion and shearing of the core solution via "viscous dragging" This causes the core liquid to deform into the conical shape and cause to co-axial jet. Finally, The core-shell electrospun fibers are drop on collector.

Figure 2.8 Schematic of co-electrospinning process (co-axial electrospinning).

2.2.2 Co-electrospinning parameters

The process of co-electrospinning is similar the electrospinning. The quality of bicomponent electrospun fiber can control by condition [28]. The review of effect of parameter on bicomponent fiber is given below.

S.Yan et al. reported a successful preparation of poly(L-lactide-co-3-caprolactone) [PLLACL] coaxial electrospun nanofibers for the application in nerve tissue engineering. They found the diameter fiber increased with increasing of polymer concentration [29].

Y. Z. Zhang et al. investigated co-axial electrospinning of (fluorescein isothiocyanateconjugated bovine serum albumin)-encapsulated poly(E-caprolactone) nanofibers for sustained release application, and found that increasing flow rate of the core led to larger fiber diameter [30].

Y. Zhang et al. investigated polycaprolactone (PCL)-r-gelatin core-shell electrospun nanofibers. They found the diameter fiber increased with increasing polymer concentration [31].

H. Fong et al. investigated beaded nanofibers formed during electrospinning. They found the diameter decreased with increasing charge density, but the diameter increased with decreasing surface tension [32].

Zhao, P. et al. prepared PCL-gelatin (core-shell) electrospun fiber. They found the fiber size increased with increasing flow rate [33].

Gupta, P. and Wilkes produced PVC and PVDF with morphology of side-by-side bicomponent electrospun fiber. The results didn't show the clearly structure and fiber formation [2].

Even though several studies on bicomponent electrospinning process of various polymer systems had been reported, fundamental understanding of the process is still lacking. A

better understanding of how each parameter plays role in the bicomponent fiber formation would lead to a better process control, and an ability to manipulate and fabricate fiber of desired structure and property.

2.2.3 Application of bicomponent electrospun fiber

The bicomponent electrospun fiber have a many different morphologies, such as fibers, bead on the fibers, side-by-side, core-shell, and hollow fibers etc. we can control the morphology and fiber formation by control the condition of the process. While the side-by-side, core-shell and hollow fiber can produced by co-electrospinning (side-by-side and co-axial electrospinning). Bicomponent electrospun fiber can be use more function and advance applications.

He, C. L. et. al. prepared the poly(L-lactic acid)(PLLA) and tetracycline hydrochloride (TCH) with core-shell structure by coaxial-electrospinning for potential controlled drug delivery applications.[34]

Li, D. et al. prepared the poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene (MEH-PPV) and poly(3-hexylthiopene) (PHT) which cannot produced by electrospinning due to limited solubility. This bicomponent fiber showed conductivity properties for use in electronic and semiconductor applications.[35]

Liu, Z. et al. fabricated the TiO_2/SnO_2 with side-by-side electrospun nanofiber by coelectrospinning technique which TiO_2 and SnO_2 are exposed to the surface. This morphology showed high efficiency photocatalytic.[36]

Xu, F. et. al. fabricated the TiO_2/SnO_2 with side-by-side electrospun nanofiber by dualopposite-spinneret electrospinning technique which can using in photocatalytic applications.[37] Chen, S. et al. created the polymeric nanospring structure by off-centered, co-axial and side-by-side electrospinning. Since the different of the shrinking thermoelastic and the rigidity stiff component, the nanospring was generated. The results showed higher elongation, a higher toughness and a higher modulus properties.[38]

Srivastava, Y. et. al. created novel conducting and nonconducting with side-by-side morphology have been electrospun using a microfluidic device source.[39]

2.3 Filtration application

Filtration is defined as a separation of solid particles from a fluid, which they are a part of by passage the fluid through a membrane or filter that retains the solids on or within itself (shows in figure2.9). The membrane is called a filter medium, and the equipment assembly that holds the medium and provides space for the accumulated solids is called a filter. The objective of filtration is to expel or remove solid particles may be to purify the fluid by clarification or to recover clean, fluid-free particles, or both. The fluid may be a gas or a liquid.

Figure 2.9 FESEM image of PVDF membrane: (a) before separation,

(b) after 10 μ m (c) after 5 μ m, and (d) after 1 μ m separation. [40]

In general, the efficiency filtration has been many parameters which including aerosol particle size, filtration velocity (based on flow rate and available surface area) and several filter parameters including the pore size, fiber diameter, thickness and porosity. The mechanisms of filtration have 4 types

Inertial impaction, This mechanism occurs when the particle is large and deviates from the air stream around the fiber and collides with the fiber.

Interception, This mechanism occurs when a small and particle moves with the air stream through the fibers, the particle attached to the fibers, leaves the air stream and attaches itself to the fibers by Van der Waals force.

Diffusion, This mechanism occurs when very small particle. Air molecules influence to these small particles move through the fibers. The small particles collide with the air molecules and move without Brownian movement. When the particles contact with the fibers and stay attached.

Electrostatic attraction, This mechanism occurs when made of dielectric materials that have a significant microscopic bipolar charge on the fibers. Charged particles are attracted to oppositely charged fibers by the Coulombic force. Neutral particles are collected by the polarization force induced by local electric fields within the filter.

Figure 2.10 The particle deposition mechanism on fiber [41].

2.4 Materials

2.4.1 Poly(lactic acid) (PLA)

PLA is a thermoplastic aliphatic polyester, biodegradable, non-toxic derived from renewable resources such as corn starch, tapioca roots, chips or starch or sugarcane. It can be widely processed by extrusion, injection molding, film & sheet casting, and spinning and electrospinning, providing access to a wide range of materials which have a good mechanical strength, high Young's modulus and good processing to produce product. It has a glass transition temperature (Tg) around 55 to 59°C and a melting point (Tm) around 150-160 °C.

Figure 2.11 The structure of poly(lactic acid).

2.4.2 Poly(ethylene oxide) (PEO)

PEO has been widely used in electrospinning technique. It is biocompatible, non-ionic linear homopolymer of ethylene oxide and using a many solvent (easy to prepare polymer solution), which can be used in many biomedical applications such as matrix system for controlled release, drug delivery and tissue engineering. The properties of PEO has melt temperature(T_m) around 65 °C, glass transition temperature (Tg) around -73 °C.

Figure 2.12 The structure of poly(ethylene oxide)
2.4.3 Nylon6

Nylon 6 is a widely used and commercial engineering plastic and synthetic fiber. It can be widely processed by extrusion, injection molding, film & sheet casting, and spinning and electrospinning. Nylon6 is semi-crystalline polymers, the amide group -(-CO-NH-)- provides hydrogen bonding between polyamide chains, giving properties high strength at high temperatures, toughness at low temperatures, stiffness, wear and abrasion resistance, low friction coefficient, good chemical resistance, glass transition temperature(Tg)= 47° C and melting temperature(Tm)= 220° C.

Figure 2.13 The structure of nylon 6.

CHAPTER III

MATERIALS AND METHODS

3.1 Preparation of PLA electrospun fiber by electrospinning.

In this part, I investigated the effect of processing parameters on morphology and characteristics of polylactic acid (PLA) electrospun fiber.

3.1.1 Materials

3.1.1.1 Polymers

Poly(lactic acid) (PLA) (grade 2002D) from Naturework (USA), was purchased through local vendor in Thailand.

3.1.1.2 Solvents

Chloroform (CHCl₃) (analytical reagent A.R.) from Lab-Scan (Thailand) and N,N-Dimethylformamide (DMF) (purity≥99.8%,) from Carlo Erba (Italy).

3.1.2 Solution preparation

PLA was dissolved in 100/0, 75/25, 50/50, 25/75, 00/100 w/v mixture of $CHCl_3/DMF$ with stir 12hr at 40°C. PLA concentration will be varied from 3-20 %w/v, (depend on solvent systems)

3.1.3 Experimental setup

Effect of solvent system and concentration were studied by PLA was dissolved in 100/0, 75/25, 50/50, 25/75, 00/100 w/v mixture of CHCl₃/DMF. PLA solution concentration was varied from 3-20 %w/v, (depend on solvent systems). Applied voltage, gap distance and solution flow rate were fixed at 15kv, 15cm and 0.5 ml/hr.

For experiment setup of effect of solution flow rate, applied voltage, and gap distance were studied by PLA was dissolved in 100/0, 75/25, 50/50, 25/75, 00/100 w/v mixture of $CHCl_3/DMF$ with concentration of 8, 8, 12, 14 and 18% w/v. respectively. Following the condition is below.

Effect of solution flow rate, applied voltage and gap distance were fixed at 15kV and 15cm. The solution flow rate was varied from 0.25-1.0 ml/hr.

Effect of applied voltage, gap distance was fixed at 15cm. the applied voltage was varied from 10-25 kV with investigated solution flow rate at 0.5 and 1.0 ml/hr.

Effect of gap distance, applied voltage and solution flow rate were fixed at 15kV and 0.5 ml/hr, The gap distance was varied from 5-20 cm.

All experiment setup, The polymer solution was put in a 5 ml syringe, which connected to the 21 gauge needle and control flow rate by syringe pump, New Era Pump Systems, Inc. model NE-300. The positive lead of a High voltage supplied (SL300) was purchased from Spellman by applying the voltage of 15 kV. Aluminum foil was covered on stationary collector with collecting the fiber of 15 minutes.

Figure 3.1 Experimental set up of electrospinning.

3.1.4 Characterization

3.1.4.1 Solution properties

3.1.4.1.1 Viscosity

A viscometer is an instrument for measure the viscosity of a fluid. Viscosity is the measure of the internal friction of a fluid (or polymer solution). The friction is shear force which shearing occurs when the fluid is moved or distributed [42]. The viscosity of PLA solution was measured at $29\pm2^{\circ}$ C using a viscometer, Brookfield model LVDV-II as showed in figure 3.2.

Figure 3.2 Rotational viscometer.

3.1.4.1.2 Conductivity

Electrolytic conductivity is a measure of the ability of a solution to conduct or transfer a current which must be carried by ions. The conductivity measurement evaluates from all ions present in the solutions contribute to the current flowing through the sensor [43]. The conductivity of PLA solution was measured by using a viscometer, EUTECH instruments model CON 501 as showed in figure 3.3. The measurement was carried out at $29\pm2^{\circ}$ C.

Figure 3.3 Conductivity meters instrument.

3.1.4.2 Fiber characterization

3.1.4.2.1 Scanning Electron Microscope (SEM)

A scanning electron microscope (SEM) is an imaging technique to produce high resolution images of a surface sample by scanning it with a focused electrons beam on the surface sample (a type of electron microscope). The electrons interact with electrons in the sample, producing various signals that can be detected and show the surface sample image. Specimens should be conduct electricity (if not need to coat the sample with gold or carbon) and dry. In the process, the specimens were observed in vacuum environment.

The morphology of PLA electrospun fiber was observed by scanning electron microscope (SEM), Philips series XL 30 CP, as showed in figure 3.4, which the sample was coated by gold. The average diameter for each sample was calculated from at least 50 individual fibers in SEM images.

Figure 3.4 Scanning electron microscope (SEM).

3.2 Preparation of PLA-PEO bicomponent electrospun fiber by co-electrospinning

In this part, I developed apparatus for side by side electrospinning and investigated effect of processing parameters on the formation and morphology of PLA-PEO bicomponent electrospun fiber.

3.2.1 Materials

3.2.1.1 Polymers

Poly(lactic acid) (PLA) (grade 2002D) from Naturework (USA), was purchased through local vendor in Thailand. Polyethylene oxide (Mw 400,000) from Sigma-Aldrich (USA).

3.2.1.2 Solvents

Chloroform (CHCl₃) (analytical reagent A.R.) from Lab-Scan (Thailand) and N,N-Dimethylformamide (DMF) (purity≥99.8%,) from Carlo Erba (Italy) were used as received.

3.2.2 Solutions preparation

PLA was dissolved in 75/25, 50/50, 25/75, 00/100 w/v mixture of $CHCl_3/DMF$ with the concentration 8, 12,16 and 19%w/v, respectively, which stir 12hr at 40°C. PEO was dissolved in $CHCl_3$ with the concentration 1, 3 and 5 %w/v.

3.2.3 Experimental setup

Figure3.2 showed schematic diagram of a co-electrospinning apparatus used in this study. Appropriated amount of polymer solution A (PLA have use 2 system that PLA 8%w/v in (CHCl₃:DMF/75:25) and PLA 19% w/v in DMF) and polymer solution B (1, 3 and 5% w/v of PEO in CHCl₃) were loaded in disposable syringe. Both solutions were delivered through an in-house made spinneret with a simplified side-by-side configuration, depicted cross-section view in figure 3.5 Combined solutions flow rate, controlled by 2 separate syringe pumps (New Era Pump Systems, model NE-300) was kept constant at 1.0 ml/hr, while the solution flow rate ratio between solution A and B was varied from 1.0:0.0 to 0.0:1.0 ml/hr. Electrical potential difference of 10-25 kV was established between the spinneret and a stationary fiber collector plate using a high voltage power supplied (Spellman, model SL300P) with positive polarity. The spinneret-collector distance was kept constant 20 cm for all experiment.

Figure 3.5 Experimental set up of co-electrospinning.

3.2.4 Characterization

3.2.4.1 Solution properties

3.2.4.1.1 Viscosity

The viscosity of PLA solution was measured at 29±2°C using a viscometer, Brookfield model LVDV-II.

3.2.4.1.2 Conductivity

The conductivity of PLA solution was measured by using a viscometer, EUTECH instruments model CON 501. The measurement was carried out at $29\pm2^{\circ}$ C.

3.2.4.2 Fiber characterization

3.2.4.2.1 Scanning Electron Microscope (SEM)

The morphology of PLA electrospun fiber was observed by scanning electron microscope (SEM), Philips series XL 30 CP which the sample was coated by gold. The average diameter for each sample was calculated at least 50 individual fibers from SEM images.

3.2.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR)

FTIR is an infrared spectroscopy which is technique for characterization in organic chemistry. IR radiation is passed through a sample that some of the infrared radiation absorbed by the sample and IR transmitted by passed through the sample. The FTIR can use the unique collection of absorption and transmission bands to confirm the identity of pure and specific impurities compound. The composition of bicomponent electrospun fibers were studied by fourier transform infrared spectroscopy (FTIR), Perkin-Elmer IR-ATR as showed in figure 3.6.

Figure 3.6 Fourier Transform Infrared Spectroscopy (FTIR).

3.2.4.2.3 Thermal gravimetric analysis (TGA)

TGA is a technique of thermal analysis which determine thermal stability of the materials. Conceptual fundamental of TGA is the determination of a mass change of the materials associated with an increase in temperature (with constant heating rate) or as a function of time (with constant temperature). The mass change could be a result of thermal decomposition of the materials or a loss of volatile phase in the material. In case that the materials of interest composed of more than one phase, and each phase has different thermal

stability such as different thermal degradation temperature. The composition and weight fraction of bicomponent electrospun fibers was studied by Thermal gravimetric analysis (TGA).

Figure 3.7 Thermal gravimetric (TGA)

3.2.4.2.4 Contact angle measurement

The contact angle is measure the angle through the liquid, concerning the interaction of a liquid/vapor interface converge a solid surface. Figure 3.8 shows contact angle measurement.

The contact angle was calculated by using the following equation [44].

$$\cos\theta = \frac{\gamma_s - \gamma_{sl}}{\gamma_l} \qquad 3.1$$

- $\gamma s = Surface energy of the solid$
- $\gamma l =$ Surface tension of the liquid

 γ sl = The interfacial tension between the solid and the liquid

In the experimental, the water and glycerol droplet contact angle on PLA-PEO bicomponent media was measure by a simplify contact angle machine that show in figure 3.9.

Figure 3.9 Contact angle instrument.

3.3 Air filtration testing

3.3.1 Materials

3.3.1.1 Polymers

Nylon6, Mw=22,000 was purchased through local vendor in Thailand. Formic acid 99% from Carlo Erba (Italy).

Spunbond media form polypropylene (PP) and melt blown media form polypropylene (PP) are the commercial grade. Smooth surface of PLA-PEO bicomponent electrospun fiber was dissolved in distilled water for 24 hr. to remove PEO phase.

3.3.1.2 Solvents

Formic acid 99% from Carlo Erba (Italy).

3.3.2 Solution preparation

Nylon6 was dissolved in formic acid with the concentration of 20 w/v, and stir 4 hour at room temperature.

3.3.3 Experimental setup

The polymer solution of nylon6 20%w/v was prepared in formic acid. It was contained in syringe which attached by a needle 24 Gauge. Electrical potential 25 kV was established between the spinneret and a stationary fiber collector plate using a high voltage power supplied (Spellman, model SL300P) with positive polarity. The spinneret-collector distance was kept constant 10 cm. The flow rate was controlled by syringe pumps (New Era Pump Systems, model NE-300) was kept constant at 0.2 ml/hr.

3.3.4 Preparation the filter media

The air filter media were composed of modified 4 layers which had diameter of 37 mm into a stack filter. The spunbond and melt blown membrane are commercial media which produce to filter media. The spunbond(S) is used for support media so it was used in layer 1 and 4. The melt blown (M) media is used for removal the total particulate matter so it was used in layer 2. The layer 3 of air filter media was studied by the modification of the layer by varies the type of filters (no media, meltblown, nylon 6 electrospun nanofiber (NF) and C-shape PLA fiber) as shown in figure 3.3. The C-shape PLA fiber and nylon6 nanofiber filter with various basis weight from 0.02, 0.07 and 0.10 g/m² were studied for layer3. In addition, 20 layers spunbond stack, with diameter of 37 mm was prepared for measuring total weight of total particulate matter as a control sample.

Figure 3.10 Schematic diagram of the structure filter media used in this study.

We are prepare 6 sample conclude of

1. S/M/S	= Spunbond / Meltblown / Spunbond
2. S/M/NF(T1)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.02 g/m^2)/ Spunbond
3. S/M/NF(T2)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.07 g/m ²)/ Spunbond
4. S/M/NF(T3)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.10 g/m^2)/ Spunbond
5. S/M/C-shape PLA	fiber/S = Spunbond / Meltblown / C-shape PLA fiber / Spunbond
6. S/M/M/S	= Spunbond / Meltblown / Meltblown / Spunbond

3.3.5 Characterization

3.3.5.1 Characterization of filter media

3.3.5.1.1 Scanning Electron Microscope (SEM)

The morphology, fibers size and pore size of spunbond, melt blown, nylon6 electrospun nanofiber and PLA-PEO bicomponent electrospun fiber were observed by scanning electron microscope (SEM), Philips series XL 30 CP. Average fibers size for each sample was calculated from at least 100 individual fibers from SEM images. The pore size for each sample calculated from at least 100 pore, 3 value of each pore. The thickness of media measure by micrometer with attach to microscopy.

3.3.5.2 Air filtration efficiency testing

The filtration efficiency was use a simple set up which have main idea from R.B. Griffith studied with some modify machine [45]. The side stream smoke was represented particulate matter for testing. It was passing through filter holder which contain filter test. The flow rate of air fixed at 0.5 l/min by air pump with control by rotameter and varies collection time from 1, 2, 4 to 6 liters which tested 3 time/sample. Figure 3.11 showed experimental setup of a simplify filtration testing used in this study.

In this research, the filtration efficiency was determined by the total particulate matter collection method which compared the weight of filter media before and after exposure to testing particle. The testing method was adapted from ref. [46]. The weight of total particle matter was calculated by using the following equation

$$W_{c} = W_{a} - W_{b} \qquad 3.2$$

 W_{c} = The weight of total particulate matter.

 W_{h} = The weight of air filter media before testing.

 $W_a =$ The weight of air filter media after testing.

The filtration efficiency percentage was calculated by using the following equation.

% Filtration efficiency =
$$\frac{W_C}{W_T} \times 100$$
 3.3

 W_{T} = The total weight particulate matter in each air volume testing.

Figure 3.11 Experimental set up for the air filtration efficiency testing.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Preparation of PLA electrospun fiber by electrospinning

4.1.1 Solution Properties

4.1.1.1 Viscosity

PLA were dissolved in mixing solvent of chloroform (CHCl₃) and N,N-dimethylformamide (DMF) with chloroform:DMF volumetric mixing ratio at 100:0, 75:25, 50:50, 25:75 and 0:100. These solutions were prepared with various concentrations ranging from 8 to 20 %w/v and measured viscosity that showed in figure 4.1. The results showed polymer solution viscosity increased with increasing polymer solution concentration. Because the concentration increased also tend to increasing polymer chain entanglement or more intermolecular interactions then hardly move polymer chain so viscosity increased. Addition, higher DMF ratio also tends to lower viscosity.

Figure 4.1 Effect of PLA solution concentration and solvent system on the viscosity.

4.1.1.2 Conductivity

The conductivity is an indication of the ability to conduct a charge on the surface of polymer solution in the polymer jet. It is contribute factor to fiber formation in the electrospinning process. The higher conductivity of solution show result in higher a charge on the surface. Figure 4.2 showed the conductivity increased with increasing DMF ratio in solution because DMF have a higher conductivity than chloroform. The low concentration, the conductivity was increased by concentration. When the concentration is over critical point, the conductivity decreased or has no effect on conductivity

Figure 4.2 Effect of PLA solution concentration and solvent system on the conductivity.

4.1.2 Effect of electrospinning parameters on fiber formation

electrospuir noel.											
C	CHCl ₃ : DMF 100:00		CHCl ₃ : DMF 100:00 CHCl ₃ :DMF 75:25		CHCl ₃ :DMF 50:5	CHCl ₃ :DMF 50:50		CHCl ₃ :DMF 25:75		CHCl ₃ :DMF 0:100	
C	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М	
6	0.60±0.50	Bead	0.48±0.18	Bead							
8	0.71±0.54	Fiber	0.87±0.21	Fiber	0.43±0.13	Bead	0.15±0.04	Bead	0.09±0.02	Bead	
10	0.69±0.54	Fiber	1.30±0.42	Fiber	0.48±0.13	Bead	0.20±0.05	Bead	0.11±0.02	Bead	
12	0.72±0.51	Fiber	1.64±0.71	Fiber	0.56±0.19	Fiber	0.21±0.04	Bead	0.15±0.02	Bead	
14	0.75±0.74	Fiber	1.49±0.35	Fiber	0.79±0.13	Fiber	0.41±0.05	Fiber	0.24±0.04	Bead	
16					0.94±0.19	Fiber	0.49±0.07	Fiber	0.30±0.05	Bead	
18									0.40±0.06	Fiber	
20									0.52±0.10	Fiber	

Table 4.1 Effect of solvent system and solution concentration on fiber size and morphology of PLA electrospun fiber.

C = concentration of PLA solution (%w/v), M = Morphology

Figure 4.3 Effect of PLA solution concentration and solvent system on the fiber size.

[voltage =15kv, distance=15cm, flow rate=0.5ml/h.].

4.1.2.1 Effect of solvent system

PLA solutions prepared in mixing solvent of chloroform (CHCl₃) and N,Ndimethylformamide (DMF) that show in table 4.1. PLA electrospun fibers obtained fiber without bead with the concentration of 8, 8, 12, 14 and 18%w/v in mixture solvent system of (CHCl₃:DMF/ 100:00, 75:25, 50:50, 25:75 and 00:100), respectively. These fibers were formed fiber size with 0.71±0.54, 0.87±0.21, 0.56±0.19, 0.40±0.05 and 0.40±0.06 µm that showed in figure4.3. The results showed higher DMF ratio required higher concentration to form fiber without bead. Figure 4.4 showed the morphology of PLA electrospun fiber obtained with various PLA solvent systems. In chloroform system got various fiber sizes because chloroform is bad spin ability and low conductivity. Higher DMF ratio also tend to decreased fiber size and smaller fiber size distribution [47]. These showed DMF improve spin ability of solution properties, similarly the results of [48, 49]. In addition, high DMF ratio in the solution also tended to yield fiber with smoother surface. Because chloroform has low boiling point and DMF has higher boiling point. The chloroform system got porous surface due to the moisture in the air form the droplet due to convection current on the surface of the polymer jet. As the fiber dries, the water droplets leave an effect on the fiber surface, pore structure was generate.

[50, 51]

Figure 4.4 SEM images of PLA electrospun fiber obtained from (a) 8%w/v in CHCl₃:DMF 100:00,
(b) 8%w/v in CHCl₃:DMF/75:25, (c) 12%w/v in CHCl₃:DMF/50:50, (d) 14%w/v in CHCl₃:DMF/25:75, (e) 18%w/v in CHCl₃:DMF/00:100 [v=15kv, d=15cm, F=0.5ml/h]

4.1.2.2 Effect of solution concentration

The PLA solution concentration was vary from 6-20 w/v%, (depend on solvent systems). Table 4.1 showed results, the fiber size increased with increasing solution concentration due to increasing solution concentration also tend to increased viscosity, while the conductivity decreased or constant, that are impede the electrospinning force. Our finding was in agreement with previous reports of [52-55]. The morphology was also affected PLA solution concentration as it changed from bead-on-string fiber at low solution concentration to smooth fiber at high concentration. [56] The cause of beads can be removed using high concentration of solution because fibers without bead required enough chain entanglement to form stable polymer jet. Figures4.5 showed the morphology of PLA dissolved in (CHCl₃:DMF / 00:100) with various concentrations from 8-20%w/v.

Figure 4.5 SEM images of PLA electrospun fiber obtained from various concentration (a) 8%w/v (b) 10%w/v (c) 12%w/v, (d) 14%w/v (e) 16%w/v, (f) 18 %w/v, (g) 20%w/v in (CHCl₃:DMF/00/100)

[v=15kv, d=15cm, F=0.5ml/h.]

4.1.2.3 Effect of solution flow rate

In this studied, PLA electrospun fiber was studied with various solution flow rate in range of 0.25-1.0ml/hr. Table4.2 and figure 4.6 showed increasing solution flow rate had a small effect on the fiber size but it effect to increased bead formation on the fiber . Because higher solution flow rate lead to yield higher mass flow or the droplet increased that effect to decreased charge density on surface polymer solution or charge repulsion decreased. Higher solution flow rate form bigger polymer droplet which charge density not enough for stable polymer jet then beads was generating on the fibers. [57-58] Figure 4.7 and 4.8 showed the morphology of fiber PLA electrospun fiber obtained from with various solution flow rate.

Table4.2 Effect of solution flow rate on fiber size and morphology of PLA electrospun fiber with various solvent systems.

Flow rate	CHCl ₃ (75) : DMF(25)		CHCl ₃ (50) : DMF(50)		CHCl ₃ (25) : DMF(75)		CHCl ₃ (00) : DMF(100)	
(ml/hr)	Fiber size (μm)	М	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М
0.25	0.59±0.16	Fiber	0.41±0.14	Fiber	0.37±0.05	Fiber	0.37±0.06	Fiber
0.5	0.87±0.21	Fiber	0.56±0.19	Fiber	0.41±0.05	Fiber	0.40±0.06	Fiber
0.75	0.61±0.18	Bead	0.57±0.19	Fiber	0.42 ± 0.085	Fiber	0.41±0.08	Bead
1	0.65±0.18	Bead	0.54±0.19	bead	0.39±0.07	bead	0.40±0.07	Bead

M= Morphology of electrospun fiber

Figure 4.6 Effect of solution flow rate on fibers size of PLA electrospun fiber.[v=15kv, d=15cm]

Figure 4.7 SEM images of PLA electrospun fiber obtained from PLA 8%w/v (CHCl₃:DMF/75:25) with various solution flow rate (a) 0.25ml/hr, (b) 0.5ml/hr,

(c) 0.75ml/hr and (d)) 1.0ml/hr. [v=15kv, d=15cm]

Figure 4.8 SEM images of PLA electrospun fiber obtained from PLA 18%w/v (CHCl₃:DMF/00:100) with various solution flow rate (a) 0.25ml/hr, (b) 0.5ml/hr,(c) 0.75ml/hr and (d) 1.0ml/hr. [v=15kv, d=15cm]

4.1.2.4 Effect of applied voltage

In this studied, I investigated applied voltage with various from 10 to 25 kV, which vary the solution flow rate at 0.5 and 1.0 ml/hr, that showed in table4.3 and figure4.9. At flow rate 0.5 ml/hr. the applied voltage had a small effect on fiber size and morphology, while PLA in DMF showed slight bead formation which it is may be in case of low charge repulsion force. Then we change the flow rate from 0.5 to 1.0 ml/hr. The results showed clearly on fiber size and morphology. Increasing applied voltage also tend to both effect with decreased and increased fiber size. Increasing applied voltage also tend to increased charge density that increased charge repulsion so the fiber size decreased. On the other hand, Increasing applied voltage also tended to bead formation due to charge repulsion is not enough to stable polymer jet, that shows in figure4.10 and 4.11 [62].

Flow rate	Applied voltage	CHCl ₃ (75) : DMF(25)		CHCl ₃ (50) : DMF(50)		CHCl ₃ (25) : DMF(75)		CHCl ₃ (00) : DMF(100)	
(ml/hr)	(kV)	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (µm)	М
0.5	10	0.95±0.55	Fiber	0.46±0.11	Fiber	$0.40{\pm}0.07$	Fiber	0.38±0.06	Bead
0.5	15	0.87±0.21	Fiber	0.56±0.19	Fiber	0.41±0.05	Fiber	0.40±0.06	Fiber
0.5	20	0.96±0.30	Fiber	0.60±0.13	Fiber	0.45±0.10	Fiber	0.40±0.09	Fiber
0.5	25	0.96±0.32	Fiber	0.55±0.14	Fiber	0.52±0.10	Fiber	0.41±0.07	Fiber
1	10	0.37±0.08	Bead	0.51±0.15	Bead	0.51±0.09	Bead	0.48±0.09	Bead
1	15	0.65±0.18	Bead	0.54±0.19	Fiber	0.39±0.07	Bead	0.40 ± 0.07	Bead
1	20	0.77±0.27	Fiber	0.59±0.13	Fiber	0.45±0.08	Fiber	0.39±0.10	Bead
1	25	0.92±0.21	Fiber	0.72±0.14	Fiber	0.47±0.09	Fiber	0.37±0.08	Bead

Table 4.3 Effect of applied voltage on PLA electrospun fiber with various solvent system and solution flow rate at 0.5 ml/hr. and 1.0 ml/hr.

M = Morphology of electrospun fibers

Figure 4.10 SEM images of PLA electrospun fiber obtained from PLA 8%w/v (CHCl₃:DMF/75:25)

with various applied voltage (a)10kv (b)15kv (c)20kv (d)25kv.[d=15cm, F=1.0ml/hr.]

Figure 4.11 SEM images of PLA electrospun fiber obtained from PLA 18%w/v (CHCl₃:DMF/00:100)

with various applied voltage (a)10kv (b)15kv (c)20kv (d)25kv.[d=15cm, F=1.0ml/hr.]

4.1.2.5 Effect of gap distance

Table 4.4 and figure4.12 showed increasing the gap distance had a small effect on fibers size. But gap distance influence on morphology of fiber that increasing the gap distance form bead on the fiber. Figure 4.13 and 4.14 showed SEM image morphology of fiber. The gap distance is influence on elongation time and electric field strength. Increasing gap distance also tends to increased elongation time and decreased electric field strength. Then low electric field strength, bead was generated on fiber[63].

Table 4.4 Effect of gap distance on fiber size and morphology of PLA electrospun fiber with various solvent systems.

Gap distance	CHCl ₃ (75) :	DMF(25)	CHCl ₃ (50) : DMF(50)		CHCl ₃ (25) : I	OMF(75)	CHCl ₃ (00) : DMF(100)	
(cm)	Fiber size (µm)	М	Fiber size (µm)	М	Fiber size (μm)	М	Fiber size (µm)	М
10	0.51±0.15	Slightly Bead	0.67±0.21	Fiber	0.45±0.12	Slightly Bead	0.44±0.09	Slightly Bead
15	0.65±0.18	Slightly Bead	0.54±0.19	Fiber	0.39±0.07	Bead	0.40±0.07	Slightly Bead
20	0.43±0.11	Bead	0.59±0.19	Fiber	0.45±0.10	Bead	0.39±0.09	Bead
25	0.46±0.12	Bead	0.64±0.18	Fiber	0.49±0.11	Bead	0.41±0.07	Bead

M=Morphology of fiber

Figure 4.12 Effect of gap distance on fiber size of PLA electrospun fiber. [v=15kV, F=1.0ml/hr.]

Figure4.13 SEM images of PLA electrospun fiber obtained from PLA 8%w/v (CHCl₃:DMF/75:25) with various gap distance (a)10cm (b)15cm (c)20cm (d)25cm.

[v=15kV, F=1.0ml/hr.]

Figure4.14 SEM images of PLA electrospun fiber obtained from PLA 18%w/v (CHCl₃:DMF/00:100) with various gap distance (a)10cm (b)15cm (c)20cm (d)25cm.

[v=15kV, F=1.0ml/hr.]

4.2 Preparation of PLA-PEO bicomponent fiber by co-electrospinning

4.2.1 Solution properties

4.2.1.1 Viscosity

The viscosity of PLA and PEO were measured by viscometer, Figure 4.15 showed the viscosity of PEO with 1, 3 and 5 %w/v in CHCl₃ compared viscosity of PLA 8%w/v (CHCl₃:DMF/75:25), PLA 12%w/v(CHCl₃:DMF/50:50), PLA 16%w/v(CHCl₃:DMF/25:75) and PLA19%w/v(CHCl₃:DMF/00:100).

Figure 4.15 Effect of PEO solution concentration on viscosity,

and effect of solvent system on viscosity of PLA solution.

4.2.1.2 Conductivity

The conductivity of PLA and PEO were measured by viscometer, Figure 4.15 showed the conductivity of PEO with 1, 3 and 5 %w/v in CHCl₃ compared conductivity of PLA 8%w/v (CHCl₃:DMF/75:25), PLA 12%w/v (CHCl₃:DMF/50:50), PLA 16%w/v (CHCl₃:DMF/25:75) and PLA19%w/v(CHCl₃:DMF/00:100).

Figure 4.16 Effect of PEO concentration on conductivity,

and conductivity of PLA solution with various solvent system.

4.2.2 Effect of co-electrospinning parameters on fiber formation

4.2.2.1 Effect of PLA solvent system

The solvent system is importance parameter, which clearly influence on morphology and fiber formation (refer from the effect of solvent system in part 1). For this part we choose the solvent system and concentration from part1, and using PEO 3%w/v dissolve in CHCl₃, that show in Table4.5 and figure 4.17. The results, we interested 2 solvent system that PLA 8%w/v (CHCl₃:DMF/75:25) obtained the larger fibers size ($2.17\pm0.40 \ \mu m$) and porous-smooth surface (called "porous surface system"). And 19%w/v (CHCl₃:DMF/00:100) obtain uniform fibers, smaller fibers size($1.07\pm0.13 \ \mu m$) and smooth surface (called "smooth surface system"). Which we choose both systems for investigate the effect of processing parameters on PLA-PEO bicomponent fibers. Figure4.18 showed the morphology of fiber with various PLA solvent systems.

Table 4.5 Effect of PLA solvent system with various concentrations, on fiber size and morphology of PLA-PEO bicomponent electrospun fiber.

No.	PLA solution	PEO in CHCl3)	Fiber size (µm)	Morphology
1		2.0/	2 17 0 40	Fiber,
1	8% w/v CHCl ₃ (75): DMF(25)	3 %0W/V	2.1/±0.40	Porous/smooth surface
2	120/ / CHC1 (50) DME(50)	2.0/	1.52+0.20	Fiber,
2	12% W/V CHCl ₃ (50): DMF(50)	3 %0W/V	1.52±0.30	Smooth/smooth surface
2	1(0/ / CHC1(25) DME(25))	2.0/	1.02+0.51	Fiber,
3	$16\% \text{ W/V CHCl}_3(25): \text{DMF}(75)$	3 %0W/V	1.03±0.51	Smooth/smooth surface
4	100/ / CUCL(00) DME(100)	2.0/	1.07+0.12	Fiber,
4	19% W/V CHCl ₃ (00): DMF(100)	3 %0W/V	1.0/±0.13	Smooth/smooth surface

Figure 4.17 Effect of PLA solvent system on fiber size of PLA-PEO bicomponent electrospun fiber.

Figure4.18 SEM images of PLA-PEO bicomponent electrospun fiber obtained from various PLA solvent system (a) PLA 8%CHCl₃(75): DMF(25), (b)PLA 12%CHCl₃(50): DMF(50),
(c) 16%CHCl₃(25): DMF(75) and (d) 19%CHCl₃(00): DMF(100).

Effect of PEO solution concentration, solution flow rate ratio and applied voltage on morphology and fiber formation of (Porous and smooth surface system) PLA-PEO bicomponent electrospun fiber were summarized in table 4.6 and 4.7

Table 4.6 Effect of PEO solution concentration, solution flow rate ratio and applied voltage on fibers size and morphology of PLA-PEO bicomponent electrospun fiber with porous surface system.

Polymer concentration (%w/v)		Solution f (F) (m	low rate 1/hr)	Applied voltage	Gap distance	fibers size (μm) ±SD	Remarks
PLA	PEO	PLA	PEO	(V) (KV)	(u), (ciii)		
8	1	0.5	0.5	15	20	1.08±0.26	Bead
8	3	0.5	0.5	15	20	2.17±0.40	Fiber
8	5	0.5	0.5	15	20	2.55±0.42	Fiber
8	3	1	0	15	20	0.83±0.41	Bead
8	3	0.9	0.1	15	20	0.39±0.08	Bead
8	3	0.75	0.25	15	20	2.06±0.29	Bead
8	3	0.5	0.5	15	20	2.17±0.40	Fiber
8	3	0.25	0.75	15	20	2.16±0.41	Fiber
8	3	0.1	0.9	15	20	2.56±0.20	Fiber
8	3	0	1	15	20	2.05±0.18	Fiber
8	3	0.5	0.5	10	20	2.78 ± 0.46	Fiber
8	3	0.5	0.5	20	20	2.19±0.38	Fiber
8	3	0.5	0.5	25	20	2.34±0.45	Fiber

Poly	mer			A 1° 1	C		
concentration		Solution flow		Applied	Gap	Average	
(%w	/v)	rate (F)	(ml/hr)	voltage	distance	fiber size	Remarks
ΡΙΔ	PEO	PI Δ	PEO	(v) (kv)	(d), (cm)	$(\mu m) \pm SD$	
1 12/1	TLO	1 12/1	TLO		• •		
19	1	0.5	0.5	15	20	0.71 ± 0.15	Bead
19	3	0.5	0.5	15	20	1.07 ± 0.13	Fiber
19	5	0.5	0.5	15	20	1.23±0.19	Fiber
19	3	1.0	0.0	15	20	0.23±0.06	Bead
19	3	0.9	0.1	15	20	$0.12{\pm}0.03$	Bead
19	3	0.75	0.25	15	20	0.41±0.32	Bead
19	3	0.5	0.5	15	20	1.07±0.13	Fiber
19	3	0.25	0.75	15	20	1.12 ± 0.20	Fiber
19	3	0.1	0.9	15	20	1.51±0.24	Fiber
19	3	0.0	1.0	15	20	2.05±0.18	Fiber
19	3	0.5	0.5	10	20	0.94±0.19	Bead
							Slight Bead
19	3	0.5	0.5	20	20	1.03±0.15	Formation
							Slight Bead
19	3	0.5	0.5	25	20	1.13±0.20	Formation

Table 4.7 Effect of PEO solution concentration, solution flow rate ratio and applied voltage on fibers size and morphology of PLA-PEO bicomponent electrospun fiber with smooth surface system.
4.2.2.2 Effect of PEO concentration

Under processing condition stated in table 4.6 and 4.7, it was found that changing PEO concentration from 1 to 3 and 5 %w/v increased fiber size from porous surface 1.08 ± 0.26 to 2.17 ± 0.40 and 2.55 ± 0.42 , and the smooth surface system from 0.71 ± 0.15 to 1.07 ± 0.13 and 1.23 ± 0.19 µm, respectively, that showed in figure4.19. Moreover, as shown in figure 4.20 and 4.21 fibers morphology was also affected PEO concentration as it changed from sporadically bead-on-string fiber at PEO concentration of 1%w/v to fairly smooth fiber at higher concentration. This could be the resulted of increase viscosity at higher PEO concentration that restricted PLA-PEO charged jet elongation. Our finding was in agreement with previous reports [64-68].

Figure 4.19 Effect of PEO solution concentration on fiber size of PLA-PEO bicomponent fiber with

porous surface system [PLA8%w/v (CHCl₃:DMF/75:25)] and

smooth surface system [PLA19%w/v (CHCl₃:DMF/00:100)].

(a) 1% w/v (b) 3% w/v (c) 5% w/v.

Figure 4.21 SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained from different PEO concentration in CHCl₃

(a) 1% (b) 3% (c) 5% (v/v.

4.2.2.3 Effect of solution flow rate ratio

Using the processing condition stated in table4.6 and 4.7, it was found that when the flow rate ratio of PLA:PEO was varied from 1.0:0.0 to 0.9:0.1, 0.75:0.25, 0.5:0.5, 0.25:0.75,0.1:0.9 and 0.0:1.0 ml/hr, the average fiber size was changed the porous surface system from 0.83 ± 0.41 , 0.39 ± 0.08 , 2.06 ± 0.29 , 2.17 ± 0.40 , 2.16 ± 0.41 , 2.56 ± 0.20 and 2.05 ± 0.18 µm, and the smooth surface system from 0.23 ± 0.06 to 0.12 ± 0.03 , 0.41 ± 0.32 , 1.07 ± 0.13 , 1.12 ± 0.20 , 1.51 ± 0.24 and 2.05 ± 0.18 µm, as shown in figure 4.22. The fiber morphology was also changed from bead-on–string morphology found at high PLA portion to a fairly smooth fiber at PLA portion around or lower than 0.5 ml/hr, as shown in figure 4.23 and 4.24. These results showed PLA: PEO flow rate ratio influenced on the fiber size and morphology of fiber.

Figure 4.22 Effect of PLA-PEO solution flow rate ratio on fiber size of PLA-PEO bicomponent fiber

with porous surface system [PLA8%w/v (CHCl₃:DMF/75:25)]

and smooth surface system [PLA19%w/v (CHCl₃:DMF/00:100)].

56

Figure 4.23 SEM images of PLA-PEO bicomponent fibers with porous surface system obtained from different PLA:PEO flow rate ratio (a)1.0:0.0 ml/h, (b) 0.9:0.1 ml/hr, (c) 0.75:0.25 ml/hr, (d) 0.5:0.5 ml/h(e) 0.25:0.75 ml/hr, (f) 0.9:0.1 ml/hr and (g)0:1.0 ml/hr. [v=15kV, d=20cm].

Figure 4.24 SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained from different PLA-PEO flow rate ratio (a)1.0:0.0 ml/hr, (b) 0.9:0.1 ml/hr, (c) 0.75:0.25 ml/hr, (d) 0.5:0.5 ml/hr, (e) 0.25:0.75 ml/hr, (f) 0.9:0.1 ml/hr and (g) 0.0:1.0 ml/hr. [v=15kV, d=20cm].

4.2.2.4 Effect of applied voltage

As shown in figures 4.25, increasing applied voltage from 10 to 15, 20 and 25 kV had small effect on fiber size of smooth surface system, as the size tended to increase slightly from 0.94 ± 0.19 to 1.07 ± 0.13 , 1.03 ± 0.15 and 1.13 ± 0.20 µm, respectively. Since the applied voltage affected on charge repulsion and solution mass flow rate [71-73], even though the experiment was conducted under constant flow rate, an actual flow rate at the jet forming site may fluctuated resulting in a morphology change and larger fiber size distribution. In addition, from visual observation during spinning process, a jet splitting at the spinneret tip were observed at high applied voltage (20 and 25 kV), which could also contribute to a formation of bead-on-string fibers.

While porous surface system, changing applied voltage from 10 to 15 had effect on decreasing fibers size (from 2.78 ± 0.46 to $2.17\pm0.40 \mu m$) because charge repulsion effect. Increasing applied voltage from 15 to 20 and 25 kV had small effect on fiber size tended to increase slightly from 2.17 ± 0.40 to 2.19 ± 0.38 and $2.34\pm0.45 \mu m$, respectively. Figure 2.26 and 2.27 showed the morphology of PLA-PEO bicomponent electrospun fiber with various applied voltage.

Figure 4.25 Effect of applied voltage on fiber size of PLA-PEO bicomponent fiber with various PLA solvent system of PLA 8%w/v (CHCl₃:DMF/75:25) and PLA 19%w/v (CHCl₃:DMF/00:100).

Figure 4.26 SEM images of PLA-PEO bicomponent fibers with porous surface system obtained

from different applied voltage (a) 10kV, (b) 15kV, (c) 20kV and (d) 25 kV.

Figure 4.27 SEM images of PLA-PEO bicomponent fibers with smooth surface system obtained

from different applied voltage (a) 10kV, (b) 15kV, (c) 20kV and (d) 25 kV.

4.2.3 PLA-PEO bicomponent fiber structure and composition

4.2.3.1 PLA-PEO bicomponent fiber structure

Figure 4.28 and 4.29 showed SEM images of porous surface system and smooth surface system PLA-PEO fibers (electrospun from 0.5:0.5 ratio) before and after PEO removal. After water immersion for adequate period, the PEO phase of PLA-PEO fiber was completed removed and rendered the fiber to C-shape fiber composed of only PLA. Similar the result of [74] Since the composition of the bicomponent fibers could be controlled by solution flow rate ratio (as previously discussed) and solution concentration, this technique could be used to produce fibers with desired size and wall thickness in a simple and straight forward fashion. These fibers could be useful for various applications including filtration, biomedical and environmental applications.

Figure 4.28 SEM images of PLA-PEO bicomponent fibers with porous surface prepared at PLA 8%w/v (CHCl₃:DMF/75:25) and PEO 3% w/v (CHCl₃) (a) before and (b,c) after PEO phase removal.

Figure 4.29 SEM images of PLA-PEO bicomponent fibers with smooth surface prepared at PLA19%w/v (DMF) and PEO 3% w/v (CHCl₃) (a) before and (b,c) after PEO phase removal.

4.2.3.2 Fourier Transform Infrared Spectroscopy (FTIR)

The compositions of PLA-PEO bicomponent electrospun fiber with various solution flow rate ratio were investigated by FTIR. By adjusting the flow ratio between 2 polymer phases, one can control the composition of the obtained bicomponent fiber as shown by FT-IR spectrum in figure 4.30 The IR spectrum of neat PLA fiber, graph (a), showed the carbonyl and C-H stretching around 1,750, 2,950 and 3,000 cm⁻¹, while that of neat PEO fiber, graph (g), showed the C-H stretching around 2,900 cm⁻¹[69,70]. As the composition of these 2 phases changed, so did the intensity and proportion of these signature peaks.

Figure 4.30 FTIR spectrum of PLA-PEO bicomponent fibers obtained from different PLA:PEO flow rate ratio (a) 1.0:0.0ml/hr, (b) 0.9:0.1ml/hr, (c) 0.75:0.25ml/hr, (d) 0.5:0.5ml/hr, (e) 0.25:0.75ml.hr, (f) 0.1:0.9ml/hr and (g) 0.0:1.0ml/hr, respectively.

In addition, Figure4.31 showed PLA, PEO, PLA-PEO bicomponent electrospun fiber with before and after PEO phase removal. The PLA-PEO bicomponent electrospun fiber with before PEO phase removal showed both of PLA and PEO peaks. While PLA-PEO bicomponent electrospun fiber with after PEO phase removal showed PLA peak only that indicate PEO phase can remove by water.

Figure 4.31 FTIR spectrum of PLA, PEO and PLA-PEO bicomponent fibers before and after PEO phase removal.

4.2.3.3 Thermal gravimetric analysis (TGA)

The compositions and weight fraction of PLA-PEO bicomponent electrospun fibers were determined by TGA. Figure 4.32 and table 4.8 showed TGA thermogram of PLA, PEO and PLA-PEO bicomponent electrospun fibers with prepared from various PLA-PEO solution flow rate ratio portion. PLA and PEO electrospun fiber showed one weight loss regions at different temperature degradation (around 298°C for PLA and around 400°C for PEO). PLA-PEO bicomponent electrospun fiber with PLA-PEO flow rate ratio portions of 0.9:0.1 and 0.75:0.25 ml/hr. showed only one weight loss regions of PLA around 333-346 °C without clear weight loss region of PEO. This could be because the PEO composition in the fiber was small compared to PLA phase as suggested by the calculation in table 4.8.

The PLA-PEO flow rate ratio of 0.5:0.5, 0.25:0.75 and 0.1:0.9 ml/hr showed clear decomposition of both PLA and PEO phases. These indicated that the composition of PLA-PEO bicomponent fibers were, indeed, proportional to PLA-PEO flow rate ratio. Table4.8 showed that the weight fraction of PLA and PEO phases determined from TGA thermogram and from the calculation were in good agreement.

Figure 4.32 TGA curve of PLA-PEO bicomponent with various PLA-PEO flow rate ratios.

Flow rate ratio (ml/hr:ml/hr)		%weight fraction from calculation		% weight fraction from TGA		Td	
PLA	PEO	PLA	PEO	PEO	PEO	PLA	PEO
1.00	0.00	100	0	100	0	298	-
0.90	0.10	98.28	1.72	~100	*	346	*
0.75	0.25	95	5	~100	*	333	*
0.50	0.50	86.36	13.64	82	18	315	410
0.25	0.75	67.86	32.14	70	30	319	412
0.10	0.90	41.30	58.70	40	60	299	417
0.00	1.00	0	100	0	100	-	418

Table 4.8 TGA characterization of PLA-PEO bicomponent with various flow rate ratios.

Remark * = small peak (cannot evaluate)

Figure 4.33 and table 4.9 showed TGA characterization of PLA-PEO bicomponent electrospun fiber (PLA-PEO flow rate ration portion of 0.5:0.5 ml/hr) before and after PEO phase removal. From the thermogram, before PEO phase removal, there were two weight loss regions for PLA and PEO, but after PEO phase removal, the TGA thermogram showed a large weight loss regions of PLA, with a very small decomposition region of PEO, which could be because incomplete removal in the process. Nonetheless, the result showed that PEO could be removed by simply rinsing the fibers in water, as expected, leaving only PLA phases in a C-shape PLA fiber.

In addition figure 4.33 and table 4.9, porous surface system $[8\%PLA (CHCl_3: DMF/75:25)$ and 3% PEO (CHCl_3)] at flow rate ratio of 0.5:0.5 ml/hr:ml/hr showed PLA : PEO weight fraction around 75 : 25 % of fiber. While surface system [19%PLA (DMF) and 3% PEO (CHCl_3)] showed PLA:PEO weight fraction around 82 : 18% of fiber. Because higher PLA concentration tend to yield higher weight fraction or higher solid of PLA on the fiber.

However, the limitations of the instrumentation and access time, heat rate had to been used at 20°C/min which is high to determine exact Td. However we can estimate the composition of PLA-PEO bicomponent fiber with various flow rate ratios and after PEO phase removal from TGA results.

Figure 4.33 TGA curve of PLA, PEO and PLA-PEO bicomponent with smooth surface system

and porous surface system (before and after PEO phase removal).

Table 4.9 TGA characterization of PLA, PEO and PLA-PEO bicomponent with smooth surface

Flow rate ratio (ml/hr:ml/hr)		%weight fraction from calculation		% weight fraction from TGA		Td		Td		Td		Remark
PLA	PEO	PLA	PEO	PLA	PEO	PLA	PEO					
1.0	0.0	100	0	100	0	298	-	PLA electrospunfiber				
0.0	1.0	0	100	0	100	-	418	PEO electrospunfiber				
0.5	0.5	86.36	13.64	82	18	315	410	(smooth) before PEO phase removal				
0.5	0.5	100	0	~100	*	334	*	(smooth) After PEO phase removal				
0.5	0.5	72.73	27.27	75	25	334	414	(Porous) before PEO phase removal				
0.5	0.5	100	0	~100	*	338	*	(Porous) After PEO phase removal				

system and porous surface system (before and after PEO phase removal).

Remark * = small peak (cannot evaluate)

4.2.4 Contact angle

The PLA-PEO bicomponent electrospun fiber with various PLA-PEO portions (from1.0:0.0 to 0.0:1.0 ml/hr) were studied surface properties by contact angle of water and glycerol. The results showed in figure 4.34 and 4.35. PEO electrospun fiber showed contact angle of water and glycerol around 0 ° and 30 ° indicating hydrophilic and oleophilic properties. PLA electrospun fiber showed contact angle of water and glycerol of around 125° and 140°, respectively, which indicated hydrophobic and oleophobic properties. This finding was similar to other report [75]. The PLA-PEO bicomponent fibers prepared with 0.25-1.0 ml/hr of PLA portion showed hydrophobic properties, while those prepared with 0.1-1.0 ml/hr of PLA portion showed oleophobic properties. In addition, fibers with porous surface system showed slightly higher contact angle of water and glycerol than fiber with smooth surface system might due to higher surface roughness in the porous surface system compared to that of the smooth surface, which also similar to previous reports [76-77].

Figure4.34 The water drop contact angle measured on PLA-PEO bicomponent electrospun fibers with various PLA-PEO portions.

Figure 4.35 The glycerol drop contact angle measured on PLA-PEO bicomponent electrospun fibers

with various PLA-PEO portions.

Figure 4.36 Images of water dropped on PLA-PEO bicomponent

electrospun fiber with various PLA and PEO portions.

Figure 4.37 Images of glycerol dropped on PLA-PEO bicomponent

electrospun fiber with various PLA and PEO portions.

4.3 Air filtration testing

4.3.1 Characterization of filter media

The SEM images are demonstrated the morphology of filter as shown in figure4.38 (ad). The spunbond, nylon6 nanofiber and C-shape PLA fiber were a uniform distribution of fiber. On the other hand, the melt blown was shown bad distribution of fiber. The average nylon6 electrospun nanofiber and C-shape PLA diameter were 0.13 and 1.52 micrometers, as compared to the spunbond fiber and melt blown fiber were 25 and 5 micrometers respectively,

The pore size was measured by image analysis technique. The spunbond, melt blown, nylon6 nanofibers and C-shape PLA fiber sizes were 48.09 ± 27.67 , 8.17 ± 4.58 , 0.24 ± 0.10 and 2.23 ± 1.19 µm respectively. Accordingly, fiber and pore size of nylon6 electrospun nanofiber and C-shape PLA fiber were smaller than commercials media as shown in table 4.10

Figure4.38 SEM images showed morphology of (a) Spunbond (Magnification 100x),(b) Meltblown (Magnification 100x), (c) Nylon 6 nanofibers (Magnification 10,000x) and (d) PLA-PEO bicomponent fiber (Magnification 1,000x), respectively.

Filter type	Basis weight (g/m ²)	Thickness (mm)	diameter of fibers (µm)	Pore size (µm)
Spunbond	0.34	0.211	24.72±2.04	48.10±27.67
Melt blown	0.21	0.136	5.51±3.77	8.18±4.58
NF (T1)	0.02	0.019	0.14±0.02	0.24±0.10
NF (T2)	0.07	0.030	0.14±0.02	0.24±0.10
NF (T3)	0.1	0.056	0.14±0.02	0.24±0.10
C-shape PLA	0.06	0.035	1.52±0.32	2.23±1.19

Table4.10 The characterization of filter media

4.3.2 Filtration efficiency of modified filter media

The structure of filter media used in this study was listed below. Figure 4.39 showed the filtration efficiency of unmodified filter media samples and the modified air filter media with nylon6 electrospun fiber and C-shape PLA fiber.

1 S/M/S	= Spunbond / Meltblown / Spunbond			
2 S/M/NF(T1)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.02 g/m^2)/ Spunbond			
3 S/M/NF(T2)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.07 g/m^2)/ Spunbond			
4 S/M/NF(T3)/S	= Spunbond / Meltblown / Nylon6 (basis weight 0.10 g/m^2)/ Spunbond			
5 S/M/C-shape fiber/S	= Spunbond / Meltblown / C-shape PLA / Spunbond			
6 S/M/M/S	= Spunbond / Meltblown / Meltblown / Spunbond			
*** Experimental data was showed in appendix. The total particulate matter from air volume 1,				
2, 4 and 6 liters were 3.44, 6.72, 11.04 and 15.27 mg, respectively				

Figure 4.39 Effect of air volume of side stream smoke on filtration efficiency with various modified filter media.

To compare filter of S/M/S, S/M/T2/S, S/M/C-shape fiber/S and S/M/M/S, the filtration efficiency at v1 liter of air showed 29.36%, 68.25%, 52.76% and 39.99%. The filtration efficiency of modification of nylon6 and C-shape fiber were higher than original commercial air filter media. Our result was in good agreement with the previous reports [78-82]. Because the pore sizes of nylon 6 electrospun fiber mats were smaller than that of C-shape fiber and melt blown filter media, they demonstrated better filtration efficiency than C-shape fiber and melt blown filter media.

However, after 4 liters of air, the C-shape fiber modified media had higher filtration efficiency than nylon 6 electrospun fiber modified filter and melt blown media. The filtration efficiency of media modified with nylon 6 nanofibers at high volume of air was decreased because of the accumulation of the particulate matters inside the filter media. The pores of filter were saturated or clogged by the particulate matters. While C-shape fiber did not fouling so it could still collect particulate matters, making C-shape fiber to have higher filtration capacity than nylon6 electrospun fiber modified filter. As for melt blown fibers modified filter after subject to 4 liters of air, the particles were not collected well on melt blown modified filter since the pore sizes of the media was large enough for particles of various sizes to pass through, as showed in table 4.11

Increasing thickness or basis weight of nylon 6 electrospun nanofibers tended to increase filtration efficiency at the expense of higher pressure drop. This finding was similar to other report [83-85]. However, increasing thickness of nanofibers did not always improve filtration capacity of the modified filter since the front side of the nanofiber layers might be clogged with particles. The SEM images in figure 4.40 which showed the back side of nylon 6 T2 after subjecting to 4 liters of air flow, confirmed that the particle cannot passed through nylon6 T2 media.

Figure 4.40 SEM image of back side of nylon6 nanofibers media after subjecting to filtration efficiency testing at 4 liters of air.

	Magnification 100x	Magnification 1,000x	Magnification 5,000x
Spunbond	Are in Sport Harry Det With September 200 million	AcV Stot Magn Det WD Esp THe	Acc V Spot Magn Det WD Exp 5pm 210xV 20 5005 SE 61 0 Filtration
Nylon6		Acc.V. Spot Mugn. Def. WrD. Eqp. 22 GIV 40 1000: St. 5.8 0 Wile	Ac.V. Spot Magn 22.5 V. 40 5000 Bt 40 Eg. The St 60 0
C-shape PLA fiber		ACV Sprit Magning Det WD End DOLV (10 1000) SE 6.4.0 Boorgonerd	AC M Spirit Magn Brit WD Ere 2010 K 10 5000 St Brit 40 Beorgedwirt

Table4.11 SEM image of spunbond, nylon6 electrospun fiber and C-shape PLA fiber after subjecting to filtration efficiency testing at 4 liters of air.

CHAPTER V

CONCLUSION

The work in this research was separated into 3 main parts. The first part was an investigation of effect of key processing parameters in PLA electrospinning, which provided necessary knowledge required for the development of PLA-PEO bicomponents electrospinning in the second part of the thesis. The last part was the demonstration of the newly developed bicomponents fiber in filtration application.

5.1 PLA electrospun fiber by electrospinning

Effects of processing parameters of PLA were studied in this research. The PLA electrospun fiber formed fiber without bead at 8, 8, 12, 14 and 18%/v, in solvent mixture system of (CHCl₃:DMF/ 100:00, 75:25, 50:50, 25:75 and 00:100), respectively. These formed fiber size with 0.707, 0.936, 0.560, 0.404 and 0.397 µm, respectively. The effect of solvent system, concentration, viscosity and conductivity showed clear influences on the resulting morphology and fiber size. The fiber size decreased with increasing DMF ratio and decreasing concentration. Increasing applied voltage showed both effect of increased and decreased fiber size. While increasing solution flow rate and increasing gap distance had a slight effect on fiber size, they affected on bead formation on fiber. In addition, high DMF ratio obtained smooth surface on the fiber.

5.2 PLA-PEO bicomponents fiber by co-electrospinning

PLA-PEO bicomponents fibers were successfully fabricated by co-electrospinning technique. The effect of PLA solution solvent system, PEO solution concentration and PLA:PEO solution flow rate ratio showed clear influence on fiber size and morphology. The surface of fiber was controlled by PLA solution solvent system. The fiber size increased with increasing PEO solution concentration. The compositions, morphology and fiber size can control by flow rate ratio, while an applied voltage showed minor impact on the fiber size. After PEO removal, the C-shape ultrafine fiber was generated.

5.3 Modification of filter with nylon6 and C-shape PLA fibers.

The last part of this research was to demonstrate potential use of electrospun nanofiber membrane in filtration application. Nylon 6 electrospun nanofiber membranes of various thickness and a C shape PLA electrospun fiber membrane derived from PLA-PEO bicomponent electrospinning were used to modified 3 plies filter media, consisted of spun bond-melt blownspun bond PP nonwoven fiber mats, normally used in ordinary face mask. The three piles fiber media showed the lowest filtration efficiency as expected, while all modified filter media showed significantly higher efficiency. Nylon 6 nanofiber mat modified media showed highest filtration efficiency at low particle stress. However, they also had the least filtration capacity as pores in the media were fouled by the test particles. The C shape membrane modified filter media, while had lower filtration efficiency than the nylon 6 modified filter at low particle stress level, it had higher particles filtration capacity than the nylon 6 counter part.

5.4 Future Aspects

The bicomponent electrospun fiber can create advance fiber, smart fiber or novel fiber. These can be divided into several types. For example.

- Material or composition, we can choose the properties of materials used to produce fiber for suitable applications or development of the properties.
- Morphology, the morphology can control by processing parameter conclude of fiber, bead, porous surface, smooth surface and fiber size etc.
- Structure or geometry, to use creates other novel geometry structure. Different structures can be used in different applications. For example figure 5.1 show national fiber (structure)

Figure 5.1 cross-section of national fiber [86].

The air filter testing still needs to be developed machine and analyzed such as particle pressure drop, particle counter etc. This knowledge, skills and logical way of scientific thinking can use to create air or liquid filtration which has high protective chemicals and high filtration efficiency.

REFERENCES

- [1] Honarbakhsh, S., and Pourdeyhimi, B. Scaffolds for delivery, part I: electrospun porous poly(lactic acid) and poly(lactic acid)/poly(ethylene oxide) hybrid scaffolds. <u>J. Mater.</u> <u>Sci.</u> 46 (2011): 2874-2881.
- [2] Gupta, P., and Wilkes, G. L. Some investigations on the fiber formation by utilizing a sideby-side bicomponent electrospinning approach. <u>Polymer</u> 44 (2003): 6353–6359.
- [3] Bazilevsky, A. V., Yarin, A. L., and Megaridis, C. M. Co-electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique. <u>Langmuir</u> 23 (2007): 2311-2314.
- [4] Mccann, J. T., Li, D. and Xia, Y. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. <u>Journal of Materials Chemistry</u> 15 (2005): 735–738.
- [5] Li, D., and Xia, Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. <u>NANO LETTERS</u> 4 (2004): 933-938.
- [6] Hong, Z., Chenguang, Z. Yunhui, Z., Gongwen, T., and Xiaoyan, Y. Electrospinning of ultrafine core/shell fibers for biomedical applications. <u>Sci. Chaina Chem.</u> 53, (2010): 1246–1254.
- [7] Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T., and Ramakrishna, S. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. <u>Biomacromolecules</u>, 6 (2005): 2583-2589.
- [8] Zhang, Y.Z., Su, B., Venugopal, J., Ramakrishna S., and Lim, C.T. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. <u>International</u> <u>Journal of Nanomedicine</u>. 2 (2007): 623–638.
- [9] Mccann, J. T., Marquez, M. and Xia, Y. Melt Coaxial Electrospinning: A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. <u>Nano Lett.</u> 6 (2006): 2868-2872.

- [10] Guorui, Y. and Wei, Y. The Preparation of Core/Shell Nanofibers by Electrospinning: Applications in Tissue Engineering and Drug Delivery. Available from: http://www.paper.edu.cn
- [11] Han, D., Boyce, S. T. and Steckl, A. J. Versatile Core-Sheath Biofibers using Coaxial Electrospinning. <u>Mater. Res. Soc. Symp. Proc.</u> 1094 (2008).
- [12] Owen, M. K., and Ensor, D. S. Airborne particle sizes and sources found in indoor air. <u>Atmospheric Environment</u> 26 (1992): 2149-2162.
- [13] Löfrth, G., Stensman, C., and Satzkorn, M. B. Indoor sources of mutagenic aerosol particulate matter: smoking, cooking and incense burning. <u>Mutation Research</u> 261 (1991): 21-28.
- [14] Haghi, A. K., and Zaikov, G. Advances in Nanofibre Research: Smithers Rapra, 2011.
- [15] Huang, Z. M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. <u>Composites</u> <u>Science and Technology</u> 63 (2003): 2223-2253.
- [16] Frenot, A., and Chronakis, I. S. Polymer nanofibers assembled by electrospinning. <u>Current</u> <u>Opinion in Colloid and Interface Science</u> 8 (2003): 64–75.
- [17] Teo, W. E., and Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. <u>Nanotechnology</u> 17 (2006): 89–106.
- [18] Thompson, C.J., Chase, G.G., Yarin, A. L., and Reneker, D. H. Effects of parameters on nanofiber diameter determined from electrospinning model. <u>Polymer</u> 48 (2007): 6913-6922.
- [19] Mckee, M. G., Wilkes, G. L., Colby, R. H., and Long, T. E. Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. <u>Macromolecules</u> 37 (2004): 1760-1767.

- [20] Subbiah, T., Bhat G. S., Tock, R. W., Parameswaran, S., and Ramkumar, S. S. Electrospinning of nanofibers. <u>Journal of Applied Polymer Science</u>, 96 (2005): 557-569.
- [21] Kilic A., Oruc, F., and Demir, A. Effect of polarity on electrospinning process. <u>Textile</u> research journal 78 (2008): 532-539.
- [22] Jian, F., HaiTao, N., Tong, L., and XunGai, W. Applications of electrospun nanofibers. <u>Chinese Science Bulletin</u> 53 (2008): 2265-2286.
- [23] Li, D., Frey, M. W. and Baeumner, A. J. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. <u>Journal of Membrane Science</u> 279 (2006): 354–363.
- [24] Sill, T. J., and Recum, H. A. V. Electrospinning: Applications in drug delivery and tissue engineering. <u>Biomaterials</u> 29 (2008): 1989-2006.
- [25] Pham, Q. P., Sharma, U. and Mikos, A. G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. <u>Tissue Engineering</u> 12 (2006): 1197-1211.
- [26] Agarwal, S., Wendorff, J. H., and Greiner, A. Use of electrospinning technique for biomedical applications. <u>Polymer</u> 49 (2008): 5603-5621.
- [27] Graham, K., Gibson, H. S., and Gogins, M. Incorporation of electrospun nanofibers into functional structures. <u>INTC</u> (2003): 1-16.
- [28] Moghe, A. K., and Gupta, B. S. Co-axial Electrospinning for Nanofiber Structures: Preparation and Applications. <u>Polymer Reviews</u>. 48 (2008): 353–377.
- [29] Yan, S., Xiaoqiang, L., Lianjiang, T., Chen, H., and Xiumei, M. Poly(L-lactide-co-Ecaprolactone) electrospun nanofibers for encapsulating and sustained releasing proteins. <u>Polymer</u> 50 (2009): 4212–4219.

- [30] Zhang, Y. Z., Wang, X., Feng, Y., Li, J., Lim, C. T., and Ramakrishna, S. Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum Albumin)-Encapsulated Poly(*E*-caprolactone) Nanofibers for Sustained Release. <u>Biomacromolecules</u> 7 (2006): 1049-1057.
- [31] Zhang, Y. Z., Huang, Z-M, Xu, X., Lim, C. T., and Ramakrishna, S. Preparation of Core-Shell Structured PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning. <u>Chem. Mater</u> 16 (2004): 3406-3409.
- [32] Fong, H., Chun, I., and Reneker, D. H. Beaded nanofibers formed during electrospinning. <u>Polymer</u> 40 (1999): 4585–4592.
- [33] Zhao, P., Jiang, H. Pan, H., Zhu, K., and Chen, W. Biodegradable fibrous scaffolds composed of gelatin coated poly(*E*-caprolactone) prepared by coaxial electrospinning. <u>Journal of Biomedical Materials Research</u> 83A (2007): 372-382.
- [34] He, C. L., Huang, Z. M., Han, X. J., Liu, L. Zhang, H. S. and Chen, L. S. Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug delivery. <u>Journal of</u> <u>Macromolecular Science</u> 45 (2006): 515-524.
- [35] Li, D., Bable, A., Jenekhe, S. A., and Xia, Y. Nanofibers of conjugated polymers prepared by electrospinning with a two-capillary spinneret. <u>Adv. Mater.</u> 16 (2004): 2062-2066.
- [36] Liu, Z., Sun, D. D., Guo, P., and Leckie, J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. <u>Nano Letters</u> 7 (2007): 1081-1085.
- [37] Xu, F., Li, L., and Cui, X. Fabrication of aligned side-by-side TiO2/SnO2 nanofibers via dual-opposite-spinneret electrospinning. <u>Journal of Nanomaterials</u> (2012): 1-5.

- [38] Chen, S., Hou, H., Hu, P., Wendorff, J. H., Greiner, A. and Agarwal, S. Effect of different bicomponent electrospinning techniques on the formation of polymeric nanosprings. <u>Macromolecular Materials and Engineering</u> 294 (2009): 781-786.
- [39] Srivastava, Y., Marquez, M., and Thorsen, T. Microfluidic electrospinning of biphasic nanofibers with janus morphology. <u>Biomicrofluidics</u> 3 (2009): 1-6.
- [40] Gupal, R., Kaur, S., Ma, Z. Chan, C., Ramakrishna, S., and Matsuura, T. Electrospun nanofibrous filtration membrane. <u>Journal of membrane Science</u> 281 (2006): 581-586.
- [41] Chuanfang Y. Arosol filtration application using fibrous media an industrial perspective. Chinese Journal of Chemical Engineering 2012; 20(1): 1-9.
- [42] Kraftmakher, Y. Rotational viscometers a subject for student projects. Physics Education 46 (2010): 622-628.
- [43] Measurement of electrolytic conductance in aqueous solutions. [online] 2005. Available from www.iccontrols.com. [2005]
- [44] Huang, F., Wei, Q., Cai, Y., and Wu, N. Surface structures and contact angles of electrospun poly(vinylidene fluoride) nanofiber membranes. <u>International Journal of</u> <u>Polymer Anal. Charact.</u> 13 (2008): 292-301.
- [45] Griffith, R. B. A sample machine for smoke analytical studied and total particulate matter collection for biological studies. <u>Toxicology</u> 33 (1984): 33-41.
- [46] Chen, Y. S., Hsiau, S. S, Lee, H. Y., and Chyou, Y. P. Filtration of dust particulates using a new filter system with louvers and sublouvers. <u>Fuel</u> 99 (2012): 118-128.
- [47] Uyar, T., and Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. <u>Polymer</u> 49, (2008): 5336-5343.

- [48] Hsu, C. M., and Shivkumar, S. N,N-Dimethylformamide additions to the solution for the electrospinning of Poly(*E*-caprolactone) nanofibers. <u>Macromolecular Materials and Enginerring</u> 289 (2004): 334-340.
- [49] Touny, A. H., Lawrence, J. G., Jones, A. D., and Bhaduri, S. B. Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. <u>J. Mater. Res.</u> 25 (2010): 857-865.
- [50] Qian, Y. F., Su, Y., Li, X. Q., Wang, H. S., and He, C. L. Electrospinning of polymethyl methacrylate nanofibres in different solvents. <u>Iranian Polymer Journal</u> 19 (2010): 123-129.
- [51] Megelski, S., Stephens, J. S., Chase, D. B., and Rabolt, J. F. Micro and nanostructured surface morphology on electrospun polymer fibers. <u>Macromolecules</u> 35 (2002): 8456-8466.
- [52] Tan, S-H., Inai, R., Kotaki, M., and Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. <u>Polymer</u> 46 (2005): 6128-6134.
- [53] Beachley, V., and Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. <u>Materials Science and Engineering</u> 29 (2009): 663-668.
- [54] Chowdhury, M., and Stylios, G. Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres. <u>International Journal of Basic& Applied Sciences</u> 10 (2010): 116-131.
- [55] Kanani, A. G., and Bahrami, S. H. Effect of changing solvents on Poly(ε-Caprolactone) nanofibrous webs morphology. Journal of nanomaterials (2011): 1-10.
- [56] Szentivanyi, A., Assmann, U., Schuster, R., and Glasmacher, B. Production of biohybrid protein/PEO scaffolds by electrospinning. Mat.-Wiss. U. <u>Werkstofftech</u> 40 (2009): 65-72.
- [57] Homayoni, H., Ravandi, S. A. H., and Valizadeh, M. Electrospinning of chitosan nanofibers: Precessing optimization. <u>Carbohydrate Polymer</u> 77 (2009): 656-661.

- [58] Wannatong, L., Sirivat, A., and Supaphol, P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. <u>Polymer International</u> 53 (2004): 1851-1859.
- [59] Heikkilä, P., and Harlin, A. Parameter study of electrospinning of polyamide-6. <u>European</u> <u>Polymer Journal</u> 44 (2008): 3067-3079.
- [60] Tang, S., Zeng, Y., and Wang, X. Splashing needleless electrospinning of nanofibers. <u>Polymer Engineering And Science</u> (2010): 2252-2257.
- [61] Jeun, J-P., Kim, Y-H., Lim, Y-M., Choi, J-H., Jung, C-H., Kang, P-H. and Nho, Y-C. Electrospinning of Poly(L-lactide-co-D, L-lactide). <u>J. Ind. Eng. Chem.</u> 13 (2007): 592-596.
- [62] Afifi, A. M., Yamane, H., and Kimura, Y. Effect of polymer molecular weight on the electrospinning of polylactides in entangled and aligned fiber forms. <u>SEN'I GAKKAISHI</u> 66 (2010): 35-44.
- [63] Yang, Y., Jia, Z., Li, Q., and Guan, Z. Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. <u>IEEE Transactions</u> <u>on Dielectrics and Electrical Insulation</u> 13 (2006).
- [64] Saraf, A., Lozier, G., Haesslein, A., Kasper, F. K., Raphael, R. M., Baggett, L. S., and Mikos, A. G. Frbrication of nonwoven coaxial fiber meshes by electrospinning. <u>Tissue</u> <u>engineering</u>: PartC 15 (2009): 333-344.
- [65] He, C. L., Huang, Z. M., and Han, X. J. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. <u>Journal of biomedical materials research</u> partA (2009): 80-95.
- [66] Kwak, G., Lee, G. H., Shim, S. H., and Yoon, K.B. Fabrication of light-guiding coresheath fibers by coaxial elctrospinning. <u>Macromol. Rapid commun</u>. 29 (2008): 815-820.

- [67] Lu, Y., Jiang, H., Tu, K., and Wang, L. Mild immobilization of diverse macromolecular bioactive agents onto multifunctional fibrous membranes prepared by coaxial electrospinning. <u>Acta biomaterialia</u>. 5 (2009): 1562-1574.
- [68] Zhang, L., and Hsieh, Y. L. Ultra-fine cellulose acetate/poly(ethylene oxide) bicomponent fibers. <u>Carbohydrate Polymers</u> 71 (2008): 196-207.
- [69] Wen, S. J., Richardson, T. J., Ghantous, D. I., Striebel, K. A., Ross, P. N., and Cairns, E. FTIR characterization of PEO+LiN(CF₃SO₂)₂ electrolytes. <u>Journal of electroanalytical</u> <u>Chemistry</u> 408 (1996): 113-118.
- [70] Paragkumar, T., Edith, N. D., and Luc, S. J. Surface characteristic of PLA and PLGA films. <u>Applied Surface Science</u> 253 (2006): 2758-2764.
- [71] Buyuktanir, E. A., Frey, M. W., and West, J. L. Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: formation and characterization. <u>Polymer</u> 51 (2010): 4823-4830.
- [72] Chan, K. H. K., and Kotaki, M. Fabrication and morphology control of poly(methyl methacrylate) Hollow structures via coaxial electrospinning. <u>Journal of applied</u> <u>Polymer Science</u>. 111 (2009): 408-416.
- [73] Srivastava, Y., Marquez, M., and Thorsen, T. Multijet electrospinning of conducting nanofibers from microfluidic manifolds. <u>J Appl Polym Sci.</u> 106 (2007): 3171-3178.
- [74] Lin, T., Wang, H., and Wang, X. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. <u>Advance Materials</u> 17 (2005): 2699-2703.
- [75] Hou, J. Z., Sun, X. P., Zhang W. X., Li, L. L., and Teng, H. Preparation and characterization of electrospun fibers based on poly(L-lactic acid)/cellulose acetate. <u>Chinese Journal of polymer science</u> 30 (2012): 916-922.

- [76] Vasita, R., Mani, G., Agrawal, C. M., and Katti, D. S. Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic F-108. <u>Polymer</u> 51 (2010): 3706-3714.
- [77] Chau, T. T., Bruckard, W. J., Koh, P. T. L., and Nguyen, A. V. A review of factors that affect contact angle and implications for flotation practice. <u>Advances in Colloid and Interface Science</u> 150 (2009): 106-115.
- [78] Kim, G. T., Ahn, Y. C., and Lee, J. K. Characteristics of Nylon 6 nanofilter for removing ultra fine particles. <u>Korean J. Chem. Eng.</u> 25 (2008): 368-372.
- [79] Park, H. S., and Park, Y. O. Filtration properties of electrospun ultrafine fiber webs. Korean J. Chem. Eng. 22 (2005): 165-172.
- [80] Barhate, R. S., and Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. <u>Journal of membrane science</u> 296 (2007): 1-8.
- [81] Kim, K., Lee, C., Kim, W., and Kim, J. Performance modification of a melt-blown filter medium via an addition nano-web layer prepared by electrospinning. <u>Fibers and</u> <u>Polymers</u> 10 (2009): 60-64.
- [82] Kalayci, V., Ouyang, M., and Graham, K. Polymeric nanofibers in high efficiency filtration applications. <u>Filtration</u> 6 (2006): 286-293.
- [83] Leung, W. W. F., Hung, C. H., and Yuen, P. T. Effect of face velocity, nanofiber packing density and thickness on filtration performance on filters with nanofibers coated on a substrate. <u>Separation and Purification Technology</u> 71 (2010): 30-37.
- [84] Wang, X., Kim, K., Lee, C., and Kim, J. Prediction of air filtration efficiency and pressure drop in air filtration media using a stochastic simulation. <u>Fibers and Polymers</u> 9 (2008): 34-38.

- [85] Yun, K. M., Hogan, Jr. C. J., Matsubayashi, Y., Kawabe, M., Iskandar, F., and Okuyama,
 K. Nanoparticle filtration by electrospun polymer fibers. <u>Chemical Engineering</u> <u>Science</u> 62 (2007): 4751-4759.
- [86] Textiles research and development unit [homepage on internet]. National metal and materials technology center [cited 15 04 2013]. Available from: https://www.mtec.or.th/laboratory/textiles/index.php/knowlegde/18--fiber.
Appendices

Appendix A

Raw data: Average fiber size from SEM image

Calculation of average fiber size

Preparation of PLA electrospun fiber by electrospinning

Average fiber size =
$$\sum_{n=1}^{n} \frac{di}{n}$$

di = Size of fiber segment

n = Total number of fiber

$$SD = \sqrt{\frac{\sum\limits_{i=1}^{N} (X_i - \overline{X})^2}{N}}$$

S = The standard deviation of the sample.

X = The midpoint of each class or individual.

 \overline{X} = The mean of the sample.

N = Number of samples.

Table A1: Measured	values of PLA fit	per segments size	electrospun at V=15kV.
		0	1 /

F=0.5ml/hr, d=15cm, PLA in $CHCl_3$:DMF (100:00 v/v) with various solution

concentration.	

Solvent System	PLA (CHCl ₃ :DMF / 100:00)							
D ¹	Fiber Segment Size (µm)							
Fiber Segment		Co	oncentration (%w/	v)				
No.	6	8	10	12	14			
1	0.14	0.14	0.27	0.64	0.35			
2	0.22	0.19	0.57	0.74	0.16			
3	0.35	0.38	0.25	0.4	0.21			
4	0.18	0.18	0.49	0.4	0.19			
5	0.18	0.15	0.68	0.89	0.3			
6	0.22	0.18	0.33	0.4	0.15			
7	0.18	0.14	0.24	0.74	0.25			
8	0.18	0.39	0.3	0.96	0.33			
9	0.18	0.19	0.25	0.91	0.43			
10	0.21	0.25	0.35	0.54	0.3			
11	0.18	0.25	0.35	0.64	0.22			
12	0.19	0.18	0.38	0.96	0.3			
13	0.3	0.22	0.82	1.09	0.33			
14	0.18	0.18	0.36	1.01	0.13			
15	0.21	0.21	0.4	2.00	0.36			
16	0.15	0.16	0.26	1.13	0.21			
17	0.16	0.18	0.6	2.00	0.3			
18	0.42	0.62	0.51	1.44	0.62			
19	0.27	0.35	0.54	1.69	0.893			
20	0.18	0.27	0.4	1.93	0.2			
21	0.51	0.28	0.57	0.21	0.29			
22	0.46	0.21	0.54	0.27	0.37			
23	0.19	0.6	1.02	0.33	0.32			

24	0.23	1.03	1.92	0.35	0.41
25	0.32	0.37	1.02	0.21	0.22
26	0.42	0.45	0.4	0.28	0.714
27	0.28	0.5	0.81	0.22	0.27
28	0.6	0.82	0.65	0.21	0.33
29	0.42	0.62	0.9	0.57	0.39
30	0.76	0.87	0.72	0.7	0.88
31	0.64	0.79	1.55	0.18	0.49
32	1.07	0.79	3.4	0.35	0.37
33	0.74	0.7	0.4	0.43	0.7
34	1.79	0.79	0.65	0.23	1.03
35	2.53	0.79	0.57	0.25	1.29
36	0.74	0.7	0.81	1.46	0.4
37	0.8	1.41	0.4	0.36	0.96
38	0.71	2.05	0.36	0.26	0.74
39	0.91	0.79	0.54	0.44	1.3
40	0.91	1.27	0.4	0.47	1.3
41	1.07	1.45	0.51	0.75	0.74
42	0.74	1.49	0.54	0.65	0.96
43	1.01	1.49	0.65	0.38	1.36
44	1.04	1.27	0.57	0.36	2.26
45	1.29	1.49	0.54	0.51	2.04
46	1.62	1.45	1.02	1.87	1.54
47	0.74	1.06	1.92	1.1	1.97
48	0.57	1.45	1.02	0.81	3.95
49	1.14	1.76	0.72	0.72	1.79
50	1.44	1.8	0.81	0.48	2.09
Average	0.599	0.707	0.686	0.718	0.754
SD	0.504	0.541	0.539	0.509	0.741

Solvent	PLA (CHCl ₃ :DMF / 75:25)						
system	-						
Fiber			Fiber size (µm)				
Segment		С	oncentration (%w/	v)			
No.	6	8	10	12	14		
1	0.725	0.72	1.91	1.45	1.61		
2	0.254	0.75	1.64	3.11	2.52		
3	0.423	0.54	1.2	0.988	1.23		
4	0.513	0.79	1.13	2.18	1.45		
5	0.758	0.78	2.24	1.33	1.47		
6	0.508	0.57	1.98	1.25	1.27		
7	0.254	1	1.05	2.81	1.66		
8	0.568	0.82	1.51	2.88	1.72		
9	0.428	1.11	2.16	0.996	1.39		
10	0.223	1.25	1	1.23	1.34		
11	0.55	0.88	1.01	1.06	1.35		
12	0.254	1.01	1.15	1.35	1.63		
13	0.428	1.65	1.27	1.7	1.02		
14	0.498	0.74	1.05	1.34	1.35		
15	0.787	0.79	1.54	1.21	1.29		
16	0.472	0.76	1.83	0.19	1.42		
17	0.498	1.08	1.65	1.37	1.48		
18	0.29	0.69	1.1	1.42	1.39		
19	0.29	0.8	1.11	1.45	1.49		
20	0.803	1.01	0.7	1.97	1.4		
21	0.563	0.9	1.03	3.55	1.74		
22	0.315	0.82	0.64	1.89	1.37		
23	0.189	1.13	2.25	1.16	1.26		
24	0.451	0.85	1.42	1.35	1.45		

Table A2: Measured values of PLA fiber segments electrospun at V=15kV, F=0.5ml/hr,

25	0.708	0.8	0.96	1.23	1.57
26	0.428	0.76	1.11	3.9	1.67
27	0.821	0.71	0.8	1.3	1.17
28	0.199	0.72	1.06	2.79	1.2
29	0.29	0.64	1.42	1.07	1.05
30	0.63	1.17	1.15	1.94	1.41
31	0.254	1.18	0.92	1.09	1.57
32	0.352	0.58	0.71	1.7	1.27
33	0.315	0.76	1.55	1.87	1.42
34	0.802	0.98	1.02	1.06	1.88
35	0.493	0.63	2.19	0.851	1.48
36	0.536	1.01	1.08	1.27	2.59
37	0.513	1.06	1.29	1.33	1.27
38	0.223	0.8	1.14	1.01	1.14
39	0.708	0.55	0.85	2.08	1
40	0.411	0.95	1.11	1.54	1.35
41	0.488	1.17	1.9	2.43	1.43
42	0.602	0.98	1.23	1.36	1.76
43	0.199	1.07	1.56	1.65	1.29
44	0.508	0.67	1.56	1.36	2.74
45	0.602	0.78	1.36	1.26	1.77
46	0.598	0.85	0.85	1.8	1.41
47	0.649	0.89	1	1.77	1.25
48	0.451	0.98	1.42	1.07	1.54
49	0.493	0.74	0.86	1.86	1.48
50	0.718	0.7	1.39	2.24	1.47
Average	0.481	0.871	1.301	1.641	1.490
SD	0.182	0.212	0.418	0.710	0.347

Solvent	PLA (CHCl ₃ :DMF / 50:50)							
Fiber	Fiber size (um)							
Segment		С	oncentration (%w/	v)				
No.	8	10	12	14	16			
1	0.363	0.63	0.623	0.493	0.958			
2	0.448	0.493	0.249	0.896	1.05			
3	0.489	0.472	0.498	0.758	1.01			
4	0.436	0.359	0.872	0.749	0.718			
5	0.52	0.445	0.334	0.958	0.996			
6	0.528	0.445	0.441	0.649	1.1			
7	0.463	0.568	0.523	0.664	0.918			
8	0.49	0.513	0.334	0.848	0.981			
9	0.459	0.352	0.872	0.668	0.978			
10	0.249	0.513	0.493	0.697	0.848			
11	0.325	0.29	0.857	0.55	0.758			
12	0.334	0.254	0.246	0.758	0.803			
13	0.284	0.513	0.6	0.86	0.718			
14	0.441	0.508	0.557	0.762	1.25			
15	0.52	0.563	0.458	0.902	0.986			
16	0.389	0.359	0.459	0.735	0.803			
17	0.459	0.352	0.624	0.775	0.821			
18	0.5	0.29	0.658	0.697	0.634			
19	0.389	0.797	0.504	0.848	0.871			
20	0.411	0.581	0.425	0.86	0.981			
21	0.332	0.664	0.523	0.902	0.821			
22	0.423	0.563	0.52	0.803	1.38			
23	0.493	0.223	0.411	0.848	0.708			
24	0.223	0.282	0.428	0.749	0.926			

Table A3: Measured values of PLA fiber segments electrospun at V=15kV, F=0.5ml/hr,

d=15cm, PLA in (CHCl₃:DMF / 50:50) with various solution concentration.

25	0.236	0.379	0.712	0.704	0.803
26	0.533	0.411	0.775	0.762	1.27
27	0.352	0.498	0.599	0.638	1
28	0.498	0.536	0.458	0.472	0.845
29	0.523	0.606	1	0.63	1.04
30	0.635	0.352	0.5	0.926	0.704
31	0.363	0.568	0.634	0.902	1.01
32	0.493	0.598	0.332	0.762	1.69
33	0.47	0.735	0.394	0.915	0.824
34	0.412	0.63	1.1	0.86	0.871
35	0.284	0.428	0.778	1.09	0.787
36	0.29	0.498	0.349	0.86	1.07
37	0.479	0.513	0.459	0.697	0.882
38	0.43	0.602	0.493	0.848	1.13
39	0.363	0.428	0.563	0.986	1.14
40	0.803	0.315	0.363	0.851	0.88
41	0.655	0.352	0.508	0.787	0.92
42	0.381	0.223	0.347	0.988	0.71
43	0.352	0.498	0.472	0.649	0.8
44	0.347	0.536	0.733	0.649	0.71
45	0.284	0.664	0.528	0.735	0.95
46	0.225	0.649	0.583	0.602	0.86
47	0.459	0.568	0.754	0.787	1.06
48	0.831	0.398	0.643	0.996	1.04
49	0.6	0.359	0.803	1.03	1.06
50	0.303	0.581	0.599	0.762	0.85
Average	0.431	0.479	0.560	0.786	0.938
SD	0.130	0.134	0.186	0.134	0.191

Solvent	PLA (CHCl ₃ :DMF / 25:75)							
Fiber	Eikor size ()							
Segment		C	oncentration (%w/	v)				
No	8	10	12	14	16			
1	0.167	0.205	0.263	0.424	0.498			
2	0.107	0.203	0.205	0.354	0.424			
3	0.167	0.22	0.220	0.374	0.528			
3	0.152	0.172	0.181	0.359	0.328			
5	0.152	0.243	0.161	0.352	0.463			
5	0.152	0.238	0.202	0.332	0.405			
0	0.19	0.192	0.22	0.387	0.5			
/	0.151	0.16/	0.291	0.352	0.374			
8	0.196	0.151	0.205	0.424	0.445			
9	0.168	0.186	0.151	0.459	0.47			
10	0.119	0.181	0.167	0.352	0.401			
11	0.119	0.192	0.173	0.494	0.47			
12	0.106	0.173	0.239	0.472	0.451			
13	0.139	0.203	0.287	0.349	0.436			
14	0.145	0.173	0.173	0.401	0.394			
15	0.152	0.173	0.172	0.332	0.479			
16	0.151	0.213	0.214	0.493	0.643			
17	0.119	0.243	0.202	0.448	0.523			
18	0.152	0.239	0.202	0.424	0.394			
19	0.119	0.186	0.245	0.474	0.498			
20	0.119	0.192	0.192	0.368	0.646			
21	0.128	0.151	0.192	0.428	0.5			
22	0.143	0.181	0.245	0.428	0.401			
23	0.168	0.19	0.243	0.428	0.411			
24	0.121	0.269	0.203	0.368	0.387			

Table A4: Measured values of PLA fiber segments electrospun at V=15kV, F=0.5ml/hr,

25	0.106	0.196	0.192	0.425	0.458
26	0.086	0.192	0.192	0.381	0.428
27	0.098	0.202	0.205	0.394	0.537
28	0.152	0.186	0.31	0.332	0.441
29	0.16	0.234	0.205	0.352	0.498
30	0.168	0.22	0.192	0.401	0.627
31	0.095	0.152	0.234	0.352	0.401
32	0.16	0.186	0.168	0.389	0.564
33	0.151	0.225	0.22	0.424	0.578
34	0.271	0.16	0.19	0.49	0.598
35	0.245	0.152	0.168	0.423	0.638
36	0.119	0.143	0.152	0.49	0.5
37	0.151	0.236	0.238	0.5	0.495
38	0.186	0.186	0.173	0.424	0.49
39	0.287	0.192	0.243	0.347	0.537
40	0.119	0.239	0.239	0.368	0.412
41	0.181	0.213	0.238	0.424	0.49
42	0.152	0.452	0.239	0.463	0.498
43	0.135	0.181	0.216	0.5	0.537
44	0.152	0.214	0.192	0.43	0.568
45	0.253	0.205	0.196	0.374	0.451
46	0.121	0.214	0.168	0.349	0.568
47	0.16	0.258	0.203	0.379	0.394
48	0.16	0.22	0.203	0.424	0.445
49	0.152	0.186	0.173	0.401	0.508
50	0.135	0.186	0.151	0.424	0.529
Average	0.152	0.204	0.208	0.408	0.488
SD	0.042	0.046	0.037	0.049	0.071

Solvent	\mathbf{D} A (CHC1 DME / 00.100)							
system	$FLA(CHCl_3,DWF/00;100)$							
Fiber			H	Fiber size (μm)			
Segment			Con	centration (%	w/v)			
No.	8	10	12	14	16	18	20	
1	0.067	0.095	0.121	0.192	0.31	0.374	0.385	
2	0.071	0.119	0.152	0.238	0.343	0.463	0.458	
3	0.086	0.095	0.098	0.22	0.238	0.352	0.519	
4	0.128	0.098	0.16	0.341	0.271	0.381	0.578	
5	0.086	0.101	0.128	0.319	0.313	0.299	0.455	
6	0.095	0.139	0.192	0.266	0.249	0.423	0.343	
7	0.053	0.095	0.145	0.263	0.258	0.459	0.408	
8	0.101	0.098	0.143	0.22	0.287	0.332	0.725	
9	0.066	0.119	0.16	0.216	0.337	0.401	0.556	
10	0.056	0.119	0.172	0.22	0.286	0.411	0.543	
11	0.095	0.119	0.192	0.238	0.405	0.325	0.382	
12	0.098	0.106	0.172	0.226	0.263	0.504	0.665	
13	0.126	0.151	0.128	0.19	0.253	0.394	0.465	
14	0.067	0.106	0.168	0.298	0.266	0.325	0.556	
15	0.067	0.086	0.196	0.298	0.279	0.401	0.679	
16	0.075	0.119	0.168	0.214	0.372	0.398	0.54	
17	0.086	0.121	0.127	0.192	0.394	0.352	0.48	
18	0.106	0.098	0.145	0.192	0.31	0.459	0.535	
19	0.101	0.172	0.145	0.238	0.303	0.412	0.523	
20	0.095	0.095	0.145	0.303	0.284	0.29	0.508	
21	0.106	0.106	0.145	0.249	0.303	0.284	0.401	
22	0.067	0.086	0.111	0.176	0.214	0.347	0.424	
23	0.095	0.173	0.145	0.284	0.223	0.334	0.606	
24	0.075	0.086	0.141	0.254	0.254	0.423	0.769	

Table A5: Measured values of PLA fiber segments electrospun at V=15kV, F=0.5ml/hr,

d=15cm, PLA in (CHCl₃:DMF / 00:100) with various solution concentration.

25	0.106	0.151	0.157	0.211	0.275	0.47	0.352
26	0.098	0.128	0.18	0.205	0.29	0.401	0.523
27	0.075	0.121	0.157	0.211	0.303	0.43	0.615
28	0.095	0.067	0.145	0.275	0.275	0.379	0.662
29	0.098	0.098	0.127	0.275	0.354	0.43	0.523
30	0.071	0.106	0.141	0.176	0.29	0.459	0.662
31	0.119	0.119	0.176	0.249	0.325	0.352	0.6
32	0.067	0.139	0.127	0.275	0.223	0.428	0.52
33	0.075	0.119	0.106	0.249	0.254	0.547	0.573
34	0.121	0.143	0.145	0.284	0.381	0.424	0.423
35	0.098	0.095	0.111	0.214	0.256	0.359	0.489
36	0.095	0.106	0.127	0.214	0.249	0.394	0.401
37	0.071	0.128	0.157	0.236	0.254	0.394	0.547
38	0.086	0.095	0.141	0.303	0.332	0.436	0.504
39	0.071	0.071	0.176	0.225	0.301	0.389	0.536
40	0.106	0.095	0.149	0.225	0.379	0.458	0.615
41	0.098	0.101	0.145	0.19	0.268	0.398	0.583
42	0.101	0.119	0.145	0.236	0.295	0.424	0.647
43	0.098	0.106	0.18	0.176	0.315	0.303	0.389
44	0.086	0.075	0.127	0.225	0.301	0.43	0.436
45	0.095	0.086	0.149	0.254	0.332	0.428	0.599
46	0.071	0.086	0.225	0.223	0.325	0.382	0.374
47	0.095	0.106	0.141	0.284	0.315	0.394	0.463
48	0.098	0.121	0.149	0.225	0.332	0.347	0.551
49	0.086	0.091	0.157	0.223	0.301	0.528	0.537
50	0.085	0.106	0.141	0.249	0.347	0.354	0.504
Average	0.089	0.110	0.150	0.239	0.298	0.398	0.523
SD	0.018	0.023	0.024	0.039	0.045	0.058	0.099

Solvent	8% PLA (CHCl ₃ :DMF / 75:25)			
system				
Fiber		Fiber si	ze (µm)	
Segment		Flow rat	e (ml/hr)	
No	0.25	0.5	0.75	1
1	0.59	0.72	0.967	0.78
2	0.489	0.75	0.451	0.482
3	0.735	0.54	0.68	0.887
4	0.6	0.79	0.733	1.06
5	0.647	0.78	0.47	0.602
6	0.459	0.57	0.677	0.754
7	0.581	1	0.458	0.382
8	0.6	0.82	0.428	0.819
9	0.725	1.11	0.852	0.759
10	0.649	1.25	0.647	0.819
11	0.47	0.88	0.332	0.504
12	0.889	1.01	0.523	0.764
13	0.702	1.65	0.658	0.356
14	0.548	0.74	0.523	0.551
15	0.647	0.79	0.445	0.587
16	0.352	0.76	0.747	0.677
17	0.779	1.08	0.332	0.554
18	0.725	0.69	0.662	0.745
19	0.498	0.8	0.835	0.895
20	0.315	1.01	0.256	0.568
21	0.472	0.9	0.668	0.728
22	0.424	0.82	0.303	0.677
23	0.635	1.13	0.586	0.723

Table A6 Measured values of PLA fiber segments electrospun at V=15kV, d=15cm, 8% PLA in (CHCl₃:DMF / 75:25) with various solution flow rate.

24	0.676	0.85	0.857	0.349
25	0.772	0.8	0.6	0.532
26	0.647	0.76	0.945	0.477
27	0.573	0.71	0.881	0.994
28	0.635	0.72	0.303	0.462
29	0.932	0.64	0.673	0.462
30	0.627	1.17	0.677	0.603
31	0.6	1.18	0.699	0.511
32	0.65	0.58	0.684	0.652
33	0.54	0.76	0.557	0.477
34	0.33	0.98	0.379	0.876
35	0.55	0.63	0.489	0.537
36	0.66	1.01	0.568	0.925
37	0.35	1.06	0.684	0.704
38	0.58	0.8	0.463	0.527
39	0.28	0.55	0.638	0.654
40	0.52	0.95	0.479	0.627
41	0.47	1.17	0.548	0.682
42	0.52	0.98	0.463	0.587
43	0.63	1.07	0.459	0.482
44	0.93	0.67	0.603	0.717
45	0.42	0.78	0.699	1.14
46	0.75	0.85	0.655	0.573
47	0.32	0.89	0.74	0.59
48	0.79	0.98	0.646	0.508
49	0.26	0.74	0.984	0.527
50	0.71	0.7	0.677	0.738
Average	0.585	0.871	0.606	0.652
SD	0.161	0.212	0.175	0.180

Solvent	12% PLA (CHCl ₃ :DMF / 50:50)			
Fiber		Fiber si	ze (um)	
Segment		Flow rat	e (ml/hr)	
No	0.25	0.5	0.75	1
1	0.615	0.623	0.568	0.852
2	0.504	0.249	0.308	0.704
2	0.304	0.249	1.06	0.704
3	0.411	0.498	1.00	0.489
4	0.423	0.872	0.282	0.354
5	0.246	0.334	0.504	0.898
6	0.317	0.441	0.479	0.256
7	0.223	0.523	1.03	0.743
8	0.586	0.334	0.349	0.6
9	0.29	0.872	1.03	0.606
10	0.398	0.493	0.349	0.498
11	0.268	0.857	0.436	0.424
12	0.474	0.246	0.569	0.563
13	0.819	0.6	0.627	0.586
14	0.459	0.557	0.608	0.211
15	0.303	0.458	0.398	0.246
16	0.394	0.459	0.472	0.536
17	0.249	0.624	0.568	0.214
18	0.374	0.658	0.606	0.451
19	0.352	0.504	0.568	0.441
20	0.246	0.425	0.352	0.804
21	0.6	0.523	0.59	0.655
22	0.411	0.52	0.673	0.548
23	0.458	0.411	0.573	0.708

Table A7 Measured values of PLA fiber segments electrospun at V=15kV, d=15cm, 12% PLA in $(CHCl_3:DMF / 50:50)$ with various solution flow rate.

24	0.699	0.428	0.616	0.425
25	0.401	0.712	0.394	0.411
26	0.474	0.775	0.459	0.756
27	0.332	0.599	0.791	0.223
28	0.256	0.458	0.504	0.284
29	0.205	1	1.11	0.634
30	0.557	0.5	0.586	0.713
31	0.537	0.634	0.705	0.627
32	0.647	0.332	0.504	0.93
33	0.268	0.394	0.598	0.676
34	0.451	1.1	0.489	0.211
35	0.354	0.778	0.504	0.615
36	0.332	0.349	0.498	0.852
37	0.424	0.459	0.769	0.55
38	0.301	0.493	0.387	0.249
39	0.49	0.563	0.352	0.533
40	0.573	0.363	0.59	0.528
41	0.398	0.508	0.445	0.458
42	0.223	0.347	0.635	0.655
43	0.479	0.472	0.74	0.421
44	0.586	0.733	0.504	0.411
45	0.44	0.528	0.756	0.627
46	0.374	0.583	0.533	0.533
47	0.225	0.754	0.472	0.655
48	0.47	0.643	0.458	0.53
49	0.374	0.803	0.43	0.499
50	0.317	0.512	0.29	0.512
Average	0.412	0.558	0.566	0.538
SD	0.137	0.186	0.189	0.186

	Γ				
Solvent	14% PLA (CHCl ₃ :DMF / 25:75)				
system					
Fiber		Fiber si	ze (µm)		
Segment		Flow rat	e (ml/hr)		
No	0.25	0.5	0.75	1	
1	0.459	0.424	0.401	0.381	
2	0.401	0.354	0.398	0.325	
3	0.379	0.374	0.445	0.374	
4	0.425	0.359	0.325	0.246	
5	0.332	0.352	0.424	0.387	
6	0.354	0.387	0.423	0.359	
7	0.352	0.352	0.315	0.282	
8	0.441	0.424	0.389	0.284	
9	0.459	0.459	0.347	0.368	
10	0.352	0.352	0.401	0.381	
11	0.381	0.494	0.647	0.494	
12	0.29	0.472	0.374	0.332	
13	0.347	0.349	0.319	0.332	
14	0.275	0.401	0.401	0.332	
15	0.389	0.332	0.325	0.412	
16	0.325	0.493	0.315	0.568	
17	0.379	0.448	0.428	0.458	
18	0.368	0.424	0.441	0.428	
19	0.352	0.474	0.284	0.424	
20	0.319	0.368	0.424	0.368	
21	0.315	0.428	0.394	0.394	
22	0.401	0.428	0.334	0.537	
23	0.398	0.428	0.458	0.379	

Table A8 Measured values of PLA fiber segments electrospun at V=15kV, d=15cm, 14% PLA in $(CHCl_3:DMF / 25:75)$ with various solution flow rate.

24	0.301	0.368	0.428	0.363
25	0.284	0.425	0.523	0.474
26	0.448	0.381	0.493	0.254
27	0.354	0.394	0.363	0.493
28	0.389	0.332	0.528	0.472
29	0.401	0.352	0.394	0.394
30	0.401	0.401	0.436	0.401
31	0.381	0.352	0.441	0.436
32	0.352	0.389	0.458	0.401
33	0.325	0.424	0.528	0.317
34	0.352	0.49	0.398	0.352
35	0.325	0.423	0.463	0.325
36	0.325	0.49	0.349	0.451
37	0.394	0.5	0.325	0.441
38	0.394	0.424	0.474	0.379
39	0.368	0.347	0.374	0.284
40	0.458	0.368	0.401	0.412
41	0.387	0.424	0.528	0.374
42	0.389	0.463	0.424	0.374
43	0.354	0.5	0.586	0.249
44	0.332	0.43	0.705	0.349
45	0.394	0.374	0.451	0.354
46	0.374	0.349	0.334	0.381
47	0.401	0.379	0.325	0.411
48	0.349	0.424	0.508	0.459
49	0.363	0.401	0.411	0.424
50	0.425	0.424	0.459	0.401
Average	0.370	0.408	0.422	0.385
SD	0.045	0.049	0.085	0.069

Solvent system	18% PLA (CHCl ₃ :DMF / 00:100)			
Fiber		Fiber si	ze (µm)	
Segment	_	Flow rat	e (ml/hr)	
No	0.25	0.5	0.75	1
1	0.363	0.374	0.557	0.347
2	0.412	0.463	0.583	0.359
3	0.325	0.352	0.5	0.389
4	0.401	0.381	0.363	0.479
5	0.363	0.299	0.368	0.441
6	0.275	0.423	0.363	0.363
7	0.354	0.459	0.319	0.379
8	0.319	0.332	0.354	0.55
9	0.332	0.401	0.303	0.459
10	0.268	0.411	0.301	0.368
11	0.394	0.325	0.282	0.334
12	0.424	0.504	0.441	0.332
13	0.319	0.394	0.459	0.381
14	0.374	0.325	0.424	0.315
15	0.359	0.401	0.315	0.398
16	0.352	0.398	0.411	0.557
17	0.352	0.352	0.458	0.528
18	0.394	0.459	0.5	0.359
19	0.299	0.412	0.504	0.47
20	0.347	0.29	0.374	0.398
21	0.275	0.284	0.459	0.458
22	0.52	0.347	0.325	0.474
23	0.498	0.334	0.401	0.352

Table A9 Measured values of PLA fiber segments electrospun at V=15kV, d=15cm, 18% PLA in $(CHCl_3:DMF / 00:100)$ with various solution flow rate.

24	0.394	0.423	0.268	0.394
25	0.319	0.47	0.398	0.334
26	0.411	0.401	0.319	0.319
27	0.332	0.43	0.303	0.352
28	0.359	0.379	0.451	0.412
29	0.436	0.43	0.441	0.354
30	0.428	0.459	0.332	0.389
31	0.424	0.352	0.319	0.5
32	0.334	0.428	0.394	0.299
33	0.394	0.547	0.504	0.379
34	0.368	0.424	0.489	0.394
35	0.325	0.359	0.459	0.6
36	0.381	0.394	0.424	0.401
37	0.325	0.394	0.424	0.315
38	0.389	0.436	0.635	0.347
39	0.325	0.389	0.401	0.411
40	0.352	0.458	0.445	0.412
41	0.254	0.398	0.428	0.5
42	0.424	0.424	0.445	0.363
43	0.445	0.303	0.394	0.301
44	0.498	0.43	0.389	0.368
45	0.398	0.428	0.489	0.394
46	0.374	0.382	0.354	0.315
47	0.398	0.394	0.49	0.459
48	0.459	0.347	0.436	0.441
49	0.354	0.528	0.436	0.325
50	0.459	0.354	0.275	0.445
Average	0.374	0.398	0.410	0.400
SD	0.059	0.058	0.081	0.071

Solvent	8% PLA (CHCl ₃ :DMF / 75:25)			
Fiber		Fiber si	ze (µm)	
Segment		Applied vo	oltage (kV)	
No	10	15	20	25
1	1.16	0.72	0.803	1
2	0.857	0.75	0.902	0.708
3	1.42	0.54	0.945	0.787
4	1.74	0.79	0.758	1.78
5	1.56	0.78	0.568	0.694
6	1.76	0.57	0.824	0.845
7	1.51	1	0.668	1.49
8	1.13	0.82	0.891	1.1
9	0.896	1.11	0.848	0.945
10	1.58	1.25	1.83	0.803
11	1.35	0.88	0.851	1.48
12	0.602	1.01	1.07	0.918
13	1.37	1.65	0.762	0.697
14	0.821	0.74	1.56	0.848
15	1.48	0.79	1.35	0.694
16	0.981	0.76	0.704	0.857
17	1.44	1.08	1.05	1.29
18	1.15	0.69	1	0.568
19	0.749	0.8	0.749	1.23
20	0.824	1.01	0.981	0.902
21	1.83	0.9	1.05	1.07
22	0.697	0.82	0.704	0.958
23	0.606	1.13	1.01	1.2

Table A10 Measured values of PLA fiber segments electrospun at F=0.5ml/hr, d=15cm, 8% PLA in $(CHCl_3:DMF / 75:25)$ with various applied voltage.

24	1.89	0.85	0.704	1.01
25	1.95	0.8	0.915	1.1
26	0.735	0.76	0.697	0.891
27	0.848	0.71	0.749	0.958
28	1.25	0.72	1.18	1.13
29	0.536	0.64	1.2	1.73
30	1.64	1.17	0.787	0.902
31	1.11	1.18	0.55	0.848
32	0.145	0.58	0.871	0.918
33	0.166	0.76	1.41	1.05
34	1.57	0.98	0.857	0.871
35	1.68	0.63	0.926	1.07
36	0.445	1.01	0.926	0.725
37	0.63	1.06	0.947	0.602
38	0.536	0.8	1.49	1
39	0.145	0.55	1.54	1.09
40	0.152	0.95	0.705	1.06
41	0.498	1.17	0.947	0.758
42	0.198	0.98	0.88	1.44
43	0.602	1.07	1.51	0.694
44	0.664	0.67	0.743	0.945
45	0.758	0.78	0.787	0.857
46	0.145	0.85	0.87	0.848
47	0.106	0.89	0.551	0.915
48	0.105	0.98	0.882	0.107
49	0.508	0.74	0.94	0.107
50	1.05	0.7	1.63	1.28
Average	0.952	0.871	0.961	0.955
SD	0.548	0.212	0.296	0.315

Solvent	12% PLA (CHCl ₃ :DMF / 50:50)			
system				
Fiber		Fiber si	ze (μm)	
Segment		Applied vo	oltage (kV)	
No	10	15	20	25
1	0.401	0.623	0.725	0.394
2	0.508	0.249	0.627	0.753
3	0.394	0.498	0.401	0.787
4	0.615	0.872	0.547	0.425
5	0.578	0.334	0.387	0.787
6	0.43	0.441	0.599	0.428
7	0.5	0.523	0.529	0.791
8	0.319	0.334	0.831	0.424
9	0.451	0.872	0.49	0.606
10	0.43	0.493	0.363	0.317
11	0.43	0.857	0.33	0.55
12	0.713	0.246	0.758	0.451
13	0.782	0.6	0.379	0.325
14	0.394	0.557	0.43	0.387
15	0.536	0.458	0.504	0.513
16	0.354	0.459	0.649	0.445
17	0.43	0.624	0.493	0.581
18	0.459	0.658	0.504	0.332
19	0.551	0.504	0.523	0.548
20	0.569	0.425	0.673	0.664
21	0.368	0.523	0.411	0.598
22	0.381	0.52	0.658	0.504
23	0.49	0.411	0.49	0.445

Table A11 Measured values of PLA fiber segments electrospun at F=0.5ml/hr, d=15cm, 12% PLA in (CHCl₃:DMF / 50:50) with various applied voltage.

24	0.528	0.428	0.568	0.379
25	0.87	0.712	0.551	0.504
26	0.474	0.775	0.775	0.74
27	0.43	0.599	0.63	0.547
28	0.52	0.458	0.563	0.668
29	0.635	1	0.905	0.563
30	0.445	0.5	0.606	0.332
31	0.368	0.634	0.649	0.616
32	0.436	0.332	0.718	0.758
33	0.301	0.394	0.749	0.508
34	0.319	1.1	0.513	0.458
35	0.436	0.778	0.638	0.676
36	0.379	0.349	0.709	0.624
37	0.445	0.459	0.602	0.474
38	0.301	0.493	0.581	0.55
39	0.401	0.563	0.697	0.43
40	0.379	0.363	0.803	0.508
41	0.359	0.508	0.568	0.712
42	0.47	0.347	0.508	0.5
43	0.423	0.472	0.536	0.557
44	0.47	0.733	0.602	0.649
45	0.389	0.528	0.803	0.479
46	0.379	0.583	0.649	0.829
47	0.498	0.754	0.704	0.59
48	0.49	0.643	0.749	0.733
49	0.498	0.803	0.606	0.573
50	0.352	0.599	0.697	0.635
Average	0.462	0.560	0.600	0.553
SD	0.114	0.186	0.131	0.136

Solvent	14% PLA (CHCl ₃ :DMF / 25:75)				
Fiber		Fiber si	ze (um)		
Segment		Applied vo	oltage (kV)		
No	10	15	20	25	
1	0.448	0.424	0.539	0.775	
2	0.315	0.354	0.315	0.463	
2	0.313	0.374	0.313	0.547	
5	0.234	0.374	0.387	0.347	
4	0.325	0.359	0.352	0.638	
5	0.5	0.352	0.474	0.539	
6	0.389	0.387	0.583	0.451	
7	0.43	0.352	0.424	0.694	
8	0.368	0.424	0.325	0.458	
9	0.573	0.459	0.389	0.533	
10	0.5	0.352	0.458	0.401	
11	0.459	0.494	0.563	0.423	
12	0.424	0.472	0.498	0.423	
13	0.246	0.349	0.428	0.569	
14	0.352	0.401	0.424	0.425	
15	0.459	0.332	0.463	0.508	
16	0.368	0.493	0.458	0.557	
17	0.374	0.448	0.381	0.479	
18	0.379	0.424	0.352	0.459	
19	0.401	0.474	0.374	0.775	
20	0.352	0.368	0.352	0.424	
21	0.513	0.428	0.349	0.412	
22	0.423	0.428	0.537	0.523	
23	0.459	0.428	0.537	0.479	

Table A12 Measured values of PLA fiber segments electrospun at F=0.5ml/hr, d=15cm, 14% PLA in (CHCl₃:DMF / 25:75) with various applied voltage.

24	0.387	0.368	0.303	0.523
25	0.352	0.425	0.43	0.568
26	0.352	0.381	0.387	0.479
27	0.424	0.394	0.533	0.459
28	0.359	0.332	0.43	0.616
29	0.424	0.352	0.389	0.573
30	0.463	0.401	0.708	0.529
31	0.459	0.352	0.445	0.436
32	0.441	0.389	0.564	0.394
33	0.557	0.424	0.564	0.55
34	0.401	0.49	0.646	0.603
35	0.523	0.423	0.411	0.528
36	0.389	0.49	0.583	0.451
37	0.319	0.5	0.451	0.6
38	0.334	0.424	0.363	0.623
39	0.394	0.347	0.494	0.425
40	0.352	0.368	0.599	0.536
41	0.474	0.424	0.379	0.5
42	0.225	0.463	0.398	0.423
43	0.458	0.374	0.412	0.655
44	0.387	0.43	0.282	0.354
45	0.458	0.374	0.459	0.523
46	0.347	0.349	0.474	0.43
47	0.411	0.379	0.394	0.445
48	0.441	0.424	0.352	0.782
49	0.315	0.401	0.458	0.563
50	0.354	0.424	0.615	0.479
Average	0.402	0.406	0.450	0.520
SD	0.074	0.047	0.095	0.099

Solvent	18% PLA (CHCl ₃ :DMF / 00:100)					
system						
Fiber		Fiber si	ze (µm)			
Segment		Applied vo	oltage (kV)			
No	10	15	20	25		
1	0.401	0.374	0.374	0.363		
2	0.349	0.463	0.332	0.334		
3	0.363	0.352	0.463	0.352		
4	0.394	0.381	0.282	0.394		
5	0.332	0.299	0.374	0.368		
6	0.49	0.423	0.334	0.352		
7	0.352	0.459	0.347	0.528		
8	0.301	0.332	0.564	0.424		
9	0.489	0.401	0.303	0.347		
10	0.47	0.411	0.459	0.513		
11	0.424	0.325	0.424	0.436		
12	0.325	0.504	0.528	0.47		
13	0.29	0.394	0.547	0.445		
14	0.246	0.325	0.635	0.474		
15	0.423	0.401	0.301	0.479		
16	0.494	0.398	0.394	0.479		
17	0.352	0.352	0.352	0.299		
18	0.394	0.459	0.325	0.489		
19	0.352	0.412	0.317	0.381		
20	0.489	0.29	0.474	0.325		
21	0.379	0.284	0.315	0.387		
22	0.394	0.347	0.425	0.504		
23	0.425	0.334	0.548	0.445		

Table A13 Measured values of PLA fiber segments electrospun at F=0.5ml/hr, d=15cm, 18% PLA in (CHCl₃:DMF / 00:100) with various applied voltage.

24	0.412	0.423	0.424	0.424
25	0.368	0.47	0.325	0.387
26	0.347	0.401	0.394	0.354
27	0.352	0.43	0.317	0.325
28	0.401	0.379	0.412	0.349
29	0.354	0.43	0.43	0.513
30	0.349	0.459	0.381	0.47
31	0.374	0.352	0.459	0.352
32	0.363	0.428	0.301	0.334
33	0.254	0.547	0.363	0.458
34	0.325	0.424	0.325	0.489
35	0.317	0.359	0.463	0.352
36	0.381	0.394	0.249	0.401
37	0.325	0.354	0.325	0.647
38	0.411	0.436	0.508	0.401
39	0.441	0.389	0.29	0.334
40	0.368	0.458	0.394	0.368
41	0.389	0.398	0.479	0.529
42	0.394	0.424	0.504	0.389
43	0.49	0.303	0.381	0.354
44	0.374	0.43	0.568	0.401
45	0.394	0.428	0.319	0.47
46	0.474	0.332	0.533	0.354
47	0.394	0.394	0.498	0.389
48	0.268	0.347	0.335	0.458
49	0.537	0.489	0.412	0.424
50	0.389	0.354	0.401	0.387
Average	0.383	0.395	0.404	0.414
SD	0.064	0.057	0.090	0.070

Solvent	8% PLA (CHCl ₃ :DMF / 75:25)						
Fiber		Fiber size (um)					
Segment		Applied vo	oltage (kV)				
No	10	15	20	25			
1	0.223	0.78	0.803	1.02			
2	0.536	0.482	0.847	0.49			
3	0.303	0.887	0.655	0.749			
4	0.474	1.06	0.347	0.758			
5	0.319	0.602	0.347	0.74			
6	0.256	0.754	0.59	0.598			
7	0.394	0.382	0.564	1.5			
8	0.359	0.819	0.445	0.726			
9	0.354	0.759	0.86	0.804			
10	0.303	0.819	1.02	0.811			
11	0.254	0.504	1.02	0.694			
12	0.425	0.764	1.26	1.07			
13	0.332	0.356	0.608	0.708			
14	0.425	0.551	0.813	0.953			
15	0.436	0.587	0.387	1.07			
16	0.379	0.677	0.557	1.03			
17	0.317	0.554	1.29	0.958			
18	0.474	0.745	0.948	0.74			
19	0.349	0.895	0.837	1.02			
20	0.412	0.568	0.753	0.851			
21	0.29	0.728	0.6	0.804			
22	0.303	0.677	1.03	1.03			
23	0.303	0.723	0.564	0.896			

Table A14 Measured values of PLA fiber segments electrospun at F=1.0 ml/hr, d=15cm, 8% PLA in (CHCl₃:DMF / 75:25) with various applied voltage.

24	0.458	0.349	1.07	0.915
25	0.401	0.532	1.09	0.976
26	0.317	0.477	0.74	1.3
27	0.325	0.994	0.722	0.798
28	0.479	0.462	1.22	0.852
29	0.379	0.462	1.18	0.924
30	0.401	0.603	1.03	0.59
31	0.256	0.511	0.606	0.882
32	0.299	0.652	0.713	1.071
33	0.301	0.477	0.903	1.01
34	0.352	0.876	0.523	1.28
35	0.43	0.537	1.09	0.813
36	0.599	0.925	0.394	0.817
37	0.401	0.704	0.702	1.17
38	0.428	0.527	0.898	1.24
39	0.401	0.654	0.523	0.83
40	0.394	0.627	0.903	0.852
41	0.319	0.682	0.598	0.798
42	0.347	0.587	0.568	1.19
43	0.424	0.482	0.696	0.912
44	0.374	0.717	0.824	1.03
45	0.49	1.14	0.702	1.087
46	0.394	0.573	0.801	1.042
47	0.303	0.59	0.801	0.742
48	0.303	0.508	0.632	0.989
49	0.445	0.527	0.798	0.698
50	0.284	0.738	0.798	1.092
Average	0.370	0.652	0.773	0.918
SD	0.083	0.180	0.268	0.206

Solvent	120/ DLA (CHCL.DME / 50.50)					
system	12% PLA (CHCI ₃ :DMF / 50:50)					
Fiber		Fiber si	ze (µm)			
Segment		Applied vo	oltage (kV)			
No	10	15	20	25		
1	0.47	0.852	0.49	0.883		
2	0.599	0.704	0.569	0.624		
3	0.458	0.489	0.635	0.946		
4	0.29	0.354	0.557	0.749		
5	0.909	0.898	0.822	0.872		
6	0.394	0.256	0.583	0.677		
7	0.586	0.743	0.539	0.458		
8	0.664	0.6	1.07	0.798		
9	0.647	0.606	0.349	0.846		
10	0.472	0.498	0.508	0.638		
11	0.49	0.424	0.472	0.459		
12	0.615	0.563	0.623	0.479		
13	0.43	0.586	0.787	0.817		
14	0.424	0.211	0.84	0.425		
15	0.655	0.246	0.568	0.694		
16	0.459	0.536	0.756	0.568		
17	0.536	0.214	0.573	0.753		
18	0.479	0.451	0.704	0.772		
19	0.568	0.441	0.662	0.837		
20	0.368	0.804	0.557	0.787		
21	0.363	0.655	0.55	0.726		
22	0.458	0.548	0.504	0.638		
23	0.301	0.708	0.649	0.563		

Table A15 Measured values of PLA fiber segments electrospun at F=1.0 ml/hr, d=15cm, 12% PLA in (CHCl₃:DMF / 50:50) with various applied voltage.

24	0.726	0.425	0.458	0.746
25	0.249	0.411	0.599	0.743
26	0.29	0.756	0.694	0.623
27	0.451	0.223	0.533	0.775
28	0.223	0.284	0.528	0.704
29	0.568	0.634	0.699	0.804
30	0.68	0.713	0.537	0.753
31	0.436	0.627	0.529	0.573
32	0.782	0.93	0.59	0.649
33	0.412	0.676	0.599	1.04
34	0.578	0.211	0.459	0.705
35	0.317	0.615	0.753	0.746
36	0.55	0.852	0.718	0.819
37	0.445	0.55	0.602	0.804
38	0.513	0.249	0.445	0.709
39	0.448	0.533	0.49	0.779
40	0.43	0.528	0.423	0.803
41	0.547	0.458	0.472	0.909
42	0.602	0.655	0.436	0.726
43	0.824	0.421	0.586	0.424
44	0.837	0.411	0.528	0.504
45	0.438	0.627	0.494	0.648
46	0.621	0.533	0.718	0.883
47	0.517	0.655	0.635	0.775
48	0.349	0.53	0.458	0.753
49	0.513	0.499	0.59	0.819
50	0.528	0.512	0.704	0.623
Average	0.510	0.538	0.593	0.717
SD	0.151	0.186	0.129	0.140

Solvent	14% PLA (CHCl ₃ :DMF / 25:75)				
Fiber	Fiber size (um)				
Segment		Applied vo	oltage (kV)		
No	10	15	20	25	
1	0.573	0.381	0.482	0.301	
2	0.349	0.325	0.396	0.459	
3	0.445	0.374	0.476	0.387	
4	0.5	0.246	0.321	0.428	
5	0.649	0.387	0.631	0.472	
6	0.649	0.359	0.501	0.583	
7	0.411	0.282	0.689	0.581	
8	0.528	0.284	0.428	0.332	
9	0.458	0.368	0.561	0.504	
10	0.441	0.381	0.415	0.441	
11	0.498	0.494	0.362	0.411	
12	0.602	0.332	0.482	0.379	
13	0.702	0.332	0.466	0.523	
14	0.352	0.332	0.511	0.43	
15	0.568	0.412	0.444	0.451	
16	0.398	0.568	0.532	0.379	
17	0.578	0.458	0.427	0.508	
18	0.55	0.428	0.292	0.436	
19	0.655	0.424	0.482	0.718	
20	0.489	0.368	0.454	0.436	
21	0.411	0.394	0.382	0.445	
22	0.489	0.537	0.476	0.423	
23	0.458	0.379	0.462	0.528	

Table A16 Measured values of PLA fiber segments electrospun at F=1.0 ml/hr, d=15cm, 14% PLA in (CHCl₃:DMF / 25:75) with various applied voltage.

24	0.658	0.363	0.527	0.523
25	0.726	0.474	0.482	0.349
26	0.529	0.254	0.327	0.347
27	0.424	0.493	0.431	0.635
28	0.564	0.472	0.39	0.493
29	0.539	0.394	0.454	0.411
30	0.498	0.401	0.384	0.347
31	0.428	0.436	0.493	0.359
32	0.381	0.401	0.501	0.523
33	0.635	0.317	0.496	0.389
34	0.479	0.352	0.462	0.638
35	0.441	0.325	0.335	0.445
36	0.441	0.451	0.426	0.401
37	0.539	0.441	0.382	0.401
38	0.398	0.379	0.533	0.513
39	0.47	0.284	0.461	0.317
40	0.479	0.412	0.439	0.508
41	0.424	0.374	0.37	0.508
42	0.451	0.374	0.319	0.394
43	0.381	0.249	0.639	0.598
44	0.451	0.349	0.392	0.548
45	0.5	0.354	0.462	0.423
46	0.479	0.381	0.482	0.581
47	0.668	0.411	0.482	0.643
48	0.504	0.459	0.433	0.489
49	0.528	0.424	0.356	0.49
50	0.569	0.401	0.524	0.55
Average	0.507	0.385	0.453	0.468
SD	0.093	0.069	0.081	0.093

Solvent	18% PLA (CHCl ₃ :DMF / 00:100)					
system						
Fiber		Fiber si	ze (µm)			
Segment		Applied vo	oltage (kV)			
No	10	15	20	25		
1	0.489	0.347	0.284	0.352		
2	0.425	0.359	0.489	0.436		
3	0.412	0.389	0.317	0.332		
4	0.424	0.479	0.379	0.513		
5	0.451	0.441	0.43	0.424		
6	0.436	0.363	0.498	0.459		
7	0.387	0.379	0.246	0.352		
8	0.474	0.55	0.387	0.379		
9	0.551	0.459	0.368	0.268		
10	0.445	0.368	0.428	0.445		
11	0.463	0.334	0.303	0.282		
12	0.47	0.332	0.381	0.474		
13	0.275	0.381	0.275	0.275		
14	0.712	0.315	0.319	0.423		
15	0.504	0.398	0.254	0.401		
16	0.379	0.557	0.436	0.479		
17	0.564	0.528	0.315	0.573		
18	0.569	0.359	0.319	0.411		
19	0.425	0.47	0.363	0.504		
20	0.634	0.398	0.458	0.352		
21	0.6	0.458	0.43	0.479		
22	0.498	0.474	0.299	0.315		
23	0.489	0.352	0.441	0.275		

Table A17 Measured values of PLA fiber segments electrospun at F=1.0 ml/hr, d=15cm, 18% PLA in (CHCl₃:DMF / 00:100) with various applied voltage.
24	0.474	0.394	0.43	0.268
25	0.463	0.334	0.317	0.301
26	0.303	0.319	0.458	0.436
27	0.563	0.352	0.352 0.381	
28	0.536	0.412 0.428		0.379
29	0.332	0.354	0.743	0.398
30	0.394	0.389	0.498	0.441
31	0.479	0.5	0.332	0.284
32	0.445	0.299	0.284	0.412
33	0.411	0.379	0.254	0.284
34	0.394	0.394	0.282	0.325
35	0.649	0.6	0.529	0.451
36	0.491	0.401	0.352	0.303
37	0.523	0.523 0.315 0.387		0.249
38	0.557	0.347 0.249		0.268
39	0.504	0.411	0.441	0.301
40	0.513	0.412	0.513	0.347
41	0.47	0.47 0.5		0.315
42	0.498	0.363	0.334	0.317
43	0.568	0.301	0.43	0.325
44	0.557	0.368	0.423	0.504
45	0.493	0.394	0.401	0.303
46	0.379	0.315	0.459	0.246
47	0.441	0.459	0.268	0.249
48	0.55	0.441	0.528	0.325
49	0.459	0.325	0.479	0.35
50	0.539	0.445	0.398	0.411
Average	0.481	0.400	0.388	0.369
SD	0.084	0.071	0.095	0.083

Solvent	8% PLA (CHCl ₃ :DMF / 75:25)			
Fiber		Fiber si	ze (um)	
Segment		Collecting d	istance (cm)	
No	10	15	20	25
1	0.284	0.78	0.396	0.389
2	0.6	0.482	0.401	0.325
3	0.635	0.887	0.321	0.459
4	0.459	1.06	0.567	0.423
5	0.423	0.602	0.39	0.508
6	0.662	0.754	0.415	0.529
7	0.739	0.382	0.427	0.315
8	0.504	0.819	0.433	0.317
9	0.635	0.759	0.619	0.374
10	0.634	0.819	0.317	0.303
11	0.303	0.504	0.451	0.424
12	0.709	0.764	0.286	0.523
13	0.463	0.356	0.504	0.635
14	0.441	0.551	0.362	0.615
15	0.655	0.587	0.461	0.394
16	0.779	0.677	0.561	0.359
17	0.301	0.554	0.654	0.445
18	0.319	0.745	0.39	0.498
19	0.401	0.895	0.718	0.713
20	0.508	0.568	0.428	0.387
21	0.359	0.728	0.561	0.568
22	0.394	0.677	0.305	0.673
23	0.352	0.723	0.27	0.624

Table A18 Measured values of PLA fiber segments electrospun at V=15kV, F=1.0 ml/hr, 8% PLA in (CHCl₃:DMF / 75:25) with various collecting distance.

24	0.603	0.349	0.327	0.537
25	0.557	0.532	0.461	0.352
26	0.615	0.477	0.717	0.47
27	0.794	0.994	0.454	0.523
28	0.523	0.462	0.427	0.583
29	0.394	0.462	0.303	0.608
30	0.479	0.603	0.476	0.472
31	0.583	0.511	0.508	0.662
32	0.568	0.652	0.327	0.368
33	0.539	0.477	0.415	0.349
34	0.354	0.876	0.356	0.423
35	0.528	0.537	0.356	0.379
36	0.6	0.925	0.476	0.325
37	0.394	0.704	0.551	0.387
38	0.903	0.527	0.449	0.646
39	0.389	0.654	0.317	0.249
40	0.668	0.627	0.327	0.504
41	0.379	0.682	0.303	0.354
42	0.303	0.587	0.356	0.537
43	0.284	0.482	0.619	0.352
44	0.528	0.717	0.317	0.47
45	0.676	1.14	0.451	0.529
46	0.448	0.573	0.303	0.315
47	0.528	0.59	0.476	0.459
48	0.494	0.508	0.508	0.423
49	0.514	0.527	0.401	0.379
50	0.479	0.738	0.451	0.325
Average	0.514	0.652	0.433	0.456
SD	0.146	0.176	0.111	0.115

system	12% PLA (CHCl ₃ :DMF / 50:50)			
Fiber		Fiber si	ze (um)	
Segment		Collecting d	istance (cm)	
No	10	15	20	25
1	0.441	0.852	0.643	0.568
2	0.557	0.704	0.424	0.401
3	0.655	0.489	0.851	0.458
4	0.317	0.354	0.423	0.694
5	0.669	0.898	0.643	0.573
6	0.608	0.256	0.317	0.638
7	0.811	0.743	0.6	0.743
8	0.655	0.6	0.669	0.726
9	0.599	0.606	0.523	0.635
10	0.63	0.498	0.352	0.352
11	0.578	0.424	0.615	0.676
12	0.673	0.563	0.374	0.603
13	0.529	0.586	0.664	0.692
14	1.07	0.211	0.684	0.875
15	0.55	0.246	0.749	0.699
16	0.35	0.536	1.02	0.451
17	0.436	0.214	0.817	0.459
18	0.598	0.451	0.557	0.479
10	0.378	0.441	0.857	0.379
20	0.474	0.804	0.772	0.673
20	0.325	0.655	0.463	0.655
21	0.525	0.055	0.30/	0.055
22	1.06	0.340	0.324	0.709
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.557 0.655 0.317 0.669 0.608 0.811 0.655 0.599 0.63 0.578 0.673 0.529 1.07 0.55 0.474 0.436 0.598 0.401 0.474 0.325 0.557 1.06	0.704 0.489 0.354 0.898 0.256 0.743 0.6 0.606 0.498 0.424 0.563 0.586 0.211 0.246 0.536 0.214 0.441 0.804 0.655 0.548 0.708	0.424 0.851 0.423 0.643 0.317 0.6 0.669 0.523 0.352 0.615 0.374 0.664 0.643 0.352 0.352 0.615 0.374 0.664 0.684 0.749 1.02 0.817 0.557 0.857 0.772 0.463 0.394 0.782	0.401 0.458 0.694 0.573 0.638 0.743 0.726 0.635 0.352 0.676 0.603 0.692 0.875 0.699 0.451 0.459 0.479 0.379 0.673 0.655 0.709 0.539

Table A19 Measured values of PLA fiber segments electrospun at V=15kV, F=1.0 ml/hr, 12% PLA in (CHCl₃:DMF / 50:50) with various collecting distance.

24	0.647	0.425	0.354	0.608
25	0.961	0.411	0.762	0.794
26	0.932	0.756	0.359	0.725
27	0.606	0.223	0.479	0.837
28	0.846	0.284	0.726	0.882
29	0.813	0.634	0.374	0.694
30	0.463	0.713	0.557	0.762
31	0.573	0.627	0.813	0.436
32	1.14	0.93	0.586	0.441
33	0.772	0.676	0.694	0.753
34	0.528	0.211	0.523	0.606
35	0.704	0.615	0.299	1.09
36	0.772	0.852	0.451	0.528
37	1	0.55	0.347	0.401
38	0.664	0.249	0.635	0.598
39	0.332	0.533	0.608	0.63
40	0.635	0.528	0.735	1.24
41	1.16	0.458	0.634	0.87
42	0.747	0.655	0.334	0.822
43	0.624	0.421	0.84	0.84
44	0.52	0.411	0.669	0.441
45	0.315	0.627	0.669	0.458
46	0.769	0.533	0.902	0.533
47	0.704	0.655	0.424	0.504
48	0.669	0.53	0.211	0.638
49	0.988	0.499	0.523	0.504
50	0.702	0.512	0.705	0.692
Average	0.665	0.538	0.588	0.640
SD	0.211	0.186	0.186	0.179

Solvent		14% PLA (CHC	Cl ₃ :DMF / 25:75)	
system			5	
Fiber		Fiber si	ze (µm)	
Segment		Collecting d	listance (cm)	
No	10	15	20	25
1	0.387	0.381	0.379	0.381
2	0.489	0.325	0.424	0.598
3	0.445	0.374	0.676	0.424
4	0.49	0.246	0.398	0.646
5	0.578	0.387	0.547	0.539
6	0.847	0.359	0.425	0.634
7	0.563	0.282	0.47	0.523
8	0.379	0.284	0.379	0.508
9	0.284	0.368	0.436	0.347
10	0.428	0.381	0.401	0.394
11	0.568	0.494	0.504	0.441
12	0.29	0.332	0.5	0.387
13	0.347	0.332	0.586	0.459
14	0.354	0.332	0.458	0.479
15	0.463	0.412	0.381	0.504
16	0.334	0.568	0.445	0.425
17	0.319	0.458	0.43	0.5
18	0.49	0.428	0.325	0.394
19	0.451	0.424	0.401	0.448
20	0.47	0.368	0.428	0.647
21	0.315	0.394	0.374	0.564
22	0.347	0.537	0.303	0.445
23	0.459	0.379	0.363	0.498

Table A20 Measured values of PLA fiber segments electrospun at V=15kV, F=1.0 ml/hr, 14% PLA in (CHCl₃:DMF / 25:75) with various collecting distance.

24	0.472	0.363	0.458	0.479
25	0.299	0.474	0.451	0.586
26	0.673	0.254	0.401	0.411
27	27 0.493		0.411	0.254
28	0.301	0.472	0.47	0.428
29	0.381	0.394	0.458	0.479
30	0.458	0.401	0.398	0.425
31	0.624	0.436	0.479	0.352
32	0.441	0.401	0.374	0.668
33	0.352	0.317	0.568	0.425
34	0.709	0.352	0.88	0.627
35	0.557	0.325	0.352	0.479
36	0.459	0.451	0.599	0.606
37	0.389	0.441	0.394	0.352
38	0.29	0.379	0.436	0.389
39	0.602	0.284	0.424	0.458
40	40 0.424		0.49	0.513
41	0.374	0.374	0.43	0.458
42	0.563	0.374	0.303	0.352
43	0.349	0.249	0.428	0.684
44	0.303	0.349	0.325	0.513
45	0.564	0.354	0.573	0.627
46	0.547	0.381	0.539	0.494
47	0.401	0.411	0.347	0.401
48	0.472	0.459	0.493	0.662
49	0.5	0.424	0.374	0.684
50	0.282	0.401	0.493	0.635
Average	0.448	0.385	0.448	0.493
SD	0.122	0.069	0.100	0.105

Solvent	18% PLA (CHCl ₃ :DMF / 00:100)					
Fiber		Fiber size (µm)				
Segment		Collecting d	istance (cm)			
No	10	15	20	25		
1	0.498	0.347	0.381	0.359		
2	0.325	0.359	0.303	0.472		
3	0.315	0.389	0.425	0.441		
4	0.479	0.479	0.359	0.441		
5	0.325	0.441	0.275	0.573		
6	0.352	0.363	0.394	0.513		
7	0.345	0.379	0.43	0.459		
8	0.398	0.55	0.325	0.411		
9	0.424	0.459	0.354	0.458		
10	0.387	0.368	0.354	0.513		
11	0.354	0.334	0.394	0.387		
12	0.63	0.332	0.379	0.368		
13	0.374	0.381	0.394	0.489		
14	0.423	0.315	0.55	0.489		
15	0.401	0.398	0.635	0.389		
16	0.47	0.557	0.425	0.275		
17	0.381	0.528	0.249	0.325		
18	0.528	0.359	0.325	0.428		
19	0.52	0.47	0.303	0.441		
20	0.623	0.398	0.458	0.523		
21	0.669	0.458	0.319	0.374		
22	0.6	0.474	0.303	0.459		
23	0.374	0.352	0.284	0.445		

Table A21 Measured values of PLA fiber segments electrospun at V=15kV, F=1.0 ml/hr, 18% PLA in (CHCl₃:DMF / 00:100) with various collecting distance.

24 0.368		0.394	0.303	0.394
25	0.459	0.334	0.43	0.398
26	0.374	0.319	0.401	0.374
27	0.394	0.352	0.332	0.389
28	0.387	0.412	0.334	0.368
29	0.489	0.354	0.352	0.363
30	0.498	0.389	0.448	0.349
31	0.49	0.5	0.425	0.334
32	0.325	0.299	0.586	0.256
33	0.381	0.379	0.268	0.448
34	0.463	0.394	0.381	0.363
35	0.578	0.6	0.569	0.412
36	0.424	0.401	0.513	0.354
37	0.354	0.315	0.363	0.424
38	0.394	0.347	0.325	0.299
39	0.379	0.411	0.412	0.387
40	0.528	0.412	0.401	0.389
41	0.284	0.5	0.282	0.352
42	0.533	0.363	0.368	0.599
43	0.441	0.301	0.463	0.368
44	0.504	0.368	0.352	0.412
45	0.568	0.394	0.563	0.354
46	0.401	0.315	0.334	0.441
47	0.539	0.459	0.474	0.352
48	0.374	0.441	0.401	0.533
49	0.49	0.325	0.474	0.472
50	0.363	0.445	0.317	0.334
Average	0.440	0.400	0.390 0.411	
SD	0.092	0.071	0.088	0.072

Appendix B

Raw data: Preparation of PLA-PEO bicomponent fiber by co-electrospinning

Solvent	Fixed 3% PEO (CHCl3)				
system	Fiber size (um)				
Fiber		PI A solv	ent system		
Sagmant	80/ DL A	120/ DL A		100/ DL A	
Ne	670 FLA			(CUCL:DME)	
INO.	$(CHCI_3;DMF)$	$(CHCI_3:DMF)$	$(CHCI_3:DMF)$	$(CHCI_3; DMF)$	
	(75:25)	(50:50)	(25:75)	(00:100)	
1	2.71	1.44	0.6	0.85	
2	2.22	1.25	0.42	0.98	
3	2.05	1.29	1	1.26	
4	1.74	1.29	0.82	0.98	
5	2.27	1.44	0.93	1.21	
6	1.57	1.4	1.74	1.35	
7	1.62	1.25	1.45	0.92	
8	2.81	1.25	0.86	1.14	
9	2.27	1.62	1.62	1.27	
10	2.59	1.53	2.67	1.06	
11	2.2	1.36	1.3	1.25	
12	1.79	1.29	0.51	0.96	
13	2.05	1.4	0.36	1.08	
14	2.23	2.02	0.35	0.88	
15	2.7	1.4	1.11	1.01	
16	1.41	1.61	0.16	0.82	
17	2.1	1.96	0.85	1.11	
18	1.91	1.44	1.59	1.01	
19	2.9	1.53	1.1	1.2	
20	2.6	2.04	1.1	1.14	
21	2.49	1.76	1.16	1.1	
22	2.05	1.53	0.22	1.07	

Table B1 Measured values of PLA-PEO bicomponent fiber segments electrospun at V=15 kV, $F_{PLA}=0.5$ ml/hr, $F_{PEO}=0.5$ ml/hr, 3% PEO in CHCl₃with various PLA solvent system.

23	1.79	1.65	1.1	1.11
24	1.83	1.43	1.21	1.21
25	1.89	1.53	1.97	0.92
26	2.97	1.36	1.23	0.85
27	2.01	1.2	1.11	1.08
28	2.05	1.4	1.36	0.85
29	1.79	0.96	1.95	1.13
30	2.05	1.25	1.36	1.07
31	2.23	1.93	1.18	1.17
32	2.27	1.92	0.95	1.32
33	2.53	2.04	1.04	1.14
34	1.6	1.36	1.68	1
35	2.05	1.13	0.39	1
36	1.83	1.4	0.88	1.1
37	1.42	1.36	0.3	1.15
38	2.36	1.47	0.83	1.14
39	2.29	1.47	0.87	1.14
40	3.18	1.4	1.42	0.9
41	2.01	1.4	1.12	1.15
42	2.83	1.14	1.17	0.9
43	2.22	1.54	1.26	1.21
44	1.74	2.6	0.3	1.17
45	2	1.69	0.86	0.99
46	2	1.6	0.45	1.08
47	2.22	1.76	1.02	1.05
48	2.51	1.65	1.23	1.16
49	2.05	1.3	0.33	1.15
50	2.36	2.02	1.2	0.92
Average	2.167	1.521	1.034	1.074
SD	0.403	0.299	0.507	0.130

Table B2 Measured values of PLA-PEO bicomponent fiber segments electrospun at V=15kV, F_{PLA} =0.5 ml/hr, F_{PEO} =0.5 ml/hr, d=20cm, 8% PLA (CHCl₃:DMF/75:25) and 19% PLA (CHCl₃:DMF/00:100) with various PEO concentration.

Solvent	8% PLA (CHC1 ·DMF/75·25)		19% PL	A (CHC1.:DMF	//00:100)	
system				197012	(energibili	,00.100)
Fiber			Fiber size	e (µm)		
Segment		PEO	O concentration	(%w/v) in CHC	1 ₃	
No.	1%	3%	5%	1%	3%	5%
1	0.57	2.71	2.74	0.51	0.85	1.27
2	1.29	2.22	2.32	0.65	0.98	1.06
3	0.57	2.05	2.18	0.47	1.26	1.2
4	0.76	1.74	3.11	0.36	0.98	1.41
5	0.8	2.27	2.49	0.61	1.21	1.15
6	1.29	1.57	2.47	0.96	1.35	1.2
7	0.89	1.62	2.21	0.63	0.92	1.07
8	0.64	2.81	2.34	0.86	1.14	1.23
9	0.91	2.27	2.48	0.8	1.27	1.3
10	0.91	2.59	2.29	0.66	1.06	1.36
11	0.8	2.2	3.91	0.73	1.25	1.17
12	1.14	1.79	2.3	0.76	0.96	1.2
13	1.14	2.05	2.46	0.78	1.08	1.27
14	0.76	2.23	2.61	0.82	0.88	0.94
15	1.14	2.7	2.64	0.69	1.01	0.99
16	0.64	1.41	2.38	0.76	0.82	0.95
17	1.13	2.1	2	0.6	1.11	1.26
18	1.09	1.91	2.63	0.76	1.01	1.41
19	0.89	2.9	2.55	0.92	1.2	1.32
20	0.74	2.6	2.45	0.85	1.14	0.94
21	1.4	2.49	2.9	0.87	1.1	1.21
22	1.01	2.05	2.61	0.7	1.07	1.31

23	1.2	1.79	3.59	0.74	1.11	1.27
24	0.8	1.83	2.35	0.71	1.21	1.25
25	1.09	1.89	2.27	0.69	0.92	1.35
26	1.47	2.97	1.76	0.6	0.85	1.06
27	1.36	2.01	2.53	0.51	1.08	1.3
28	1.26	2.05	2.64	0.76	0.85	1.27
29	1.13	1.79	3.04	0.8	1.13	0.94
30	1.29	2.05	2.18	0.96	1.07	1.28
31	1.13	2.23	2.93	0.72	1.17	1.2
32	1.14	2.27	2.29	1.06	1.32	1.22
33	1.2	2.53	2.24	0.57	1.14	1.27
34	1.09	1.6	2.53	0.66	1	1.21
35	1.2	2.05	3.04	0.45	1	1.51
36	1.01	1.83	2.33	0.66	1.1	1.93
37	1.01	1.42	2.16	0.6	1.15	1.44
38	1.04	2.36	3.08	0.61	1.14	1.65
39	1.44	2.29	3.55	0.85	1.14	0.98
40	1.4	3.18	2.24	0.65	0.9	1.3
41	1.07	2.01	2.96	0.78	1.15	1.3
42	1.36	2.83	2.24	0.65	0.9	1.36
43	0.89	2.22	2.24	0.57	1.21	1.39
44	1.4	1.74	2.32	0.61	1.17	1.28
45	1.09	2	2.7	0.79	0.99	1.12
46	1.69	2	2.08	0.69	1.08	1.21
47	0.91	2.22	2.73	0.57	1.05	1.24
48	1.13	2.51	2.72	0.67	1.16	1.09
49	1.44	2.05	1.92	0.86	1.15	0.96
50	1.4	2.36	2.88	0.7	0.92	1.13
Average	1.083	2.167	2.552	0.705	1.074	1.235
SD	0.258	0.403	0.422	0.138	0.130	0.183

Table B3 Measured values of PLA-PEO bicomponent fiber segments electrospun at V=15kV, d=20 cm, 8% PLA (CHCl₃:DMF/75:25) and 3% PEO (CHCl₃) with various PLA-PEO solution flow rate ratio.

Solvent system	8% PLA (CHCl ₃ :DMF / 75:25) : 3% PEO (CHCl ₃)										
Fiber]	Fiber size (µm)						
Segment		PLA:PEO flow rate ratio (ml/hr:ml/hr)									
No	1.0:0.0	0.9:0.1	0.75:0.25	0.5:0.5	0.25:0.75	0.1:0.9	0.0:1.0				
1	1.49	0.45	1.92	2.71	2.04	2.73	2.01				
2	1.3	0.43	1.82	2.22	3.62	2.68	2.08				
3	0.82	0.41	2.33	2.05	1.25	2.32	2.08				
4	0.5	0.36	1.76	1.74	2.09	2.49	1.79				
5	1.99	0.43	2.72	2.27	2.43	2.91	2.22				
6	0.8	0.32	2.54	1.57	2.18	2.38	2.22				
7	0.65	0.41	1.76	1.62	2.32	2.49	2.11				
8	0.75	0.48	2.35	2.81	2	2.27	2.08				
9	0.55	0.43	2.16	2.27	2.08	2.66	2.07				
10	0.51	0.3	2.18	2.59	2	2.35	2.08				
11	0.45	0.4	1.92	2.2	1.93	2.7	1.77				
12	0.38	0.29	1.82	1.79	2.32	2.32	2.26				
13	0.73	0.29	2.29	2.05	2.17	2.72	1.9				
14	0.87	0.43	2	2.23	2.49	2.6	2.05				
15	0.85	0.59	2.29	2.7	2	2.33	2.18				
16	0.51	0.36	2	1.41	1.97	2.43	2.12				
17	1.89	0.43	2.29	2.1	2	2.56	2.32				
18	1.71	0.5	1.65	1.91	1.76	2.43	2.5				
19	0.63	0.43	2	2.9	2.14	2.73	2.21				
20	0.6	0.3	1.79	2.6	1.92	2.68	1.77				
21	0.89	0.32	1.8	2.49	2.04	2.73	1.97				
22	0.79	0.41	2.14	2.05	2.27	2.93	1.99				

23	1.14	0.51	2.15	1.79	1.93	2.58	1.96
24	0.63	0.36	1.79	1.83	2.5	2.29	2.09
25	1.64	0.32	1.52	1.89	1.93	2.64	2.17
26	0.85	0.3	1.92	2.97	2	2.79	1.97
27	0.64	0.36	2.15	2.01	1.96	2.32	2.19
28	0.3	0.36	2.32	2.05	2.14	2.89	2.11
29	0.5	0.3	2.04	1.79	2.29	2.32	1.92
30	0.61	0.38	2.15	2.05	2.26	2.82	2.16
31	0.66	0.4	1.9	2.23	1.84	2.33	1.9
32	0.98	0.43	2.4	2.27	2.18	2.79	1.76
33	0.78	0.41	1.69	2.53	2.04	2.43	1.9
34	0.92	0.36	2.24	1.6	2.09	2.49	2.4
35	0.6	0.43	1.93	2.05	1.92	2.77	2.33
36	0.65	0.54	1.79	1.83	2.34	2.72	1.71
37	0.85	0.5	1.8	1.42	3.08	2.49	1.83
38	1.06	0.28	2.24	2.36	3.12	2.27	2.25
39	0.71	0.26	2.21	2.29	1.97	2.8	1.92
40	0.57	0.48	2.08	3.18	2.14	2.35	1.97
41	1.9	0.45	1.9	2.01	1.9	2.6	2.26
42	0.72	0.51	2.33	2.83	3.15	2.51	1.87
43	0.57	0.32	1.53	2.22	2.5	2.32	1.99
44	0.57	0.29	1.84	1.74	1.67	2.24	1.92
45	0.64	0.26	1.86	2	1.78	2.51	1.72
46	0.58	0.32	2.43	2	2.77	2.78	2.13
47	0.93	0.32	2.8	2.22	1.97	2.66	1.8
48	0.42	0.41	1.97	2.51	2.05	2.43	1.99
49	0.55	0.38	1.92	2.05	1.63	2.35	2
50	1.07	0.36	2.49	2.36	2.04	2.89	2.28
Average	0.834	0.387	2.058	2.167	2.164	2.556	2.046
SD	0.405	0.078	0.287	0.403	0.410	0.203	0.184

Table B4 Measured values of PLA-PEO bicomponent fiber segments electrospun at V=15kV, d=20 cm, 19% PLA (CHCl₃:DMF/00:100) and 3% PEO (CHCl₃) with various PLA-PEO solution flow rate ratio.

Solvent system	19% PLA (CHCl ₃ :DMF / 00:100) : 3% PEO (CHCl ₃)										
Fiber				Fiber size (µ	m)						
Segment		PLA:PEO flow rate ratio (ml/hr:ml/hr)									
No	1.0:0.0	0.9:0.1	0.75:0.25	0.5:0.5	0.25:0.75	0.1:0.9	0.0:1.0				
1	0.2	0.13	0.22	0.85	0.82	1.04	2.01				
2	0.23	0.18	0.22	0.98	1.14	1.4	2.08				
3	0.15	0.1	0.22	1.26	0.92	1.4	2.08				
4	0.11	0.11	0.45	0.98	1.15	1.44	1.79				
5	0.19	0.1	0.58	1.21	0.86	1.54	2.22				
6	0.3	0.14	0.16	1.35	1.14	1.61	2.22				
7	0.18	0.18	0.2	0.92	1.11	1.52	2.11				
8	0.18	0.1	0.2	1.14	1.08	1.14	2.08				
9	0.21	0.1	0.36	1.27	1.1	1.76	2.07				
10	0.18	0.13	0.22	1.06	1.22	1.29	2.08				
11	0.41	0.11	0.8	1.25	1.35	1.2	1.77				
12	0.28	0.18	0.2	0.96	1.13	1.44	2.26				
13	0.33	0.08	0.16	1.08	1.17	0.96	1.9				
14	0.28	0.1	0.25	0.88	0.99	1.3	2.05				
15	0.21	0.18	0.2	1.01	1.16	1.44	2.18				
16	0.24	0.1	1.08	0.82	1.45	2.04	2.12				
17	0.23	0.11	0.22	1.11	1.04	1.36	2.32				
18	0.25	0.1	0.47	1.01	0.99	1.79	2.5				
19	0.23	0.14	0.35	1.2	0.74	1.47	2.21				
20	0.21	0.13	0.21	1.14	0.79	1.29	1.77				
21	0.3	0.14	0.16	1.1	1.1	1.2	1.97				
22	0.26	0.18	0.95	1.07	1.25	2.09	1.99				

23	0.24	0.08	0.14	1.11	1.76	1.44	1.96
24	0.25	0.11	0.14	1.21	1.13	1.65	2.09
25	0.26	0.18	1.11	0.92	0.82	1.4	2.17
26	0.21	0.08	0.36	0.85	1.06	1.29	1.97
27	0.21	0.13	0.16	1.08	1.08	1.4	2.19
28	0.21	0.1	0.86	0.85	0.99	1.61	2.11
29	0.2	0.14	0.22	1.13	1.23	1.36	1.92
30	0.25	0.08	0.36	1.07	0.76	1.6	2.16
31	0.38	0.11	0.22	1.17	1.02	1.44	1.9
32	0.18	0.14	0.28	1.32	1.23	1.65	1.76
33	0.33	0.1	1.4	1.14	1.4	1.13	1.9
34	0.43	0.14	0.22	1	1.1	1.47	2.4
35	0.19	0.18	1.16	1	1.28	1.79	2.33
36	0.19	0.1	0.35	1.1	1.17	1.65	1.71
37	0.24	0.13	0.2	1.15	1.08	1.54	1.83
38	0.2	0.1	0.22	1.14	1.27	1.62	2.25
39	0.21	0.14	0.35	1.14	1.14	1.43	1.92
40	0.22	0.18	0.61	0.9	1.55	1.43	1.97
41	0.21	0.08	0.21	1.15	1.2	1.6	2.26
42	0.13	0.1	1.1	0.9	1.07	1.8	1.87
43	0.26	0.13	0.38	1.21	1.16	2.04	1.99
44	0.21	0.1	0.2	1.17	1.14	1.65	1.92
45	0.13	0.18	0.36	0.99	1.08	1.69	1.72
46	0.28	0.1	0.16	1.08	1.11	1.69	2.13
47	0.23	0.08	0.51	1.05	1.27	1.53	1.8
48	0.25	0.14	0.38	1.16	1.23	1.6	1.99
49	0.2	0.13	0.43	1.15	0.8	1.62	2
50	0.23	0.11	0.29	0.92	1.14	1.47	2.28
Average	0.234	0.124	0.405	1.074	1.119	1.506	2.046
SD	0.064	0.032	0.316	0.130	0.194	0.236	0.184

Table B5 Measured values of PLA-PEO bicomponent fiber segments electrospun at,

$F_{\rm PLA}{=}0.5 \text{ ml/hr}, F_{\rm PEO}{=}0.5 \text{ ml/hr}, d{=}20 \text{ cm}, [PLA 8\% (CHCl3:DMF/75:25) / PEO 3\% CHCl_3] \text{ and } F_{\rm PLA}{=}0.5 \text{ ml/hr}, F_{\rm PEO}{=}0.5 \text{ ml/hr}, f_{\rm PEO}{=}0.5 \text{ ml/hr}, d{=}20 \text{ cm}, [PLA 8\% (CHCl3:DMF/75:25) / PEO 3\% CHCl_3] \text{ and } F_{\rm PLA}{=}0.5 \text{ ml/hr}, F_{\rm PEO}{=}0.5 m$
[19% PLA (CHCl ₃ :DMF/00:100) / 3% PEO (CHCl ₃)] with various applied voltage.

Solvent	8%	PLA (CHC	l ₃ :DMF/75:2	25) /	19%PLA (CHCl ₃ :DMF/00:100) /				
system		PEO 3%	% CHCl ₃		PEO 3% CHCl ₃				
Fiber				Fiber si	ze (µm)				
Segment				Applied vo	oltage (kV)				
No.	10	15	20	25	10	15	20	25	
1	2.32	2.71	1.8	3.06	0.71	0.85	0.7	0.45	
2	3.44	2.22	1.93	2.4	0.72	0.98	0.9	0.26	
3	2.68	2.05	2.29	1.82	0.57	1.26	0.96	1.07	
4	3.29	1.74	2.6	2.58	0.58	0.98	1.2	1.2	
5	3.22	2.27	2.27	2.04	0.7	1.21	0.9	1.25	
6	1.97	1.57	2.29	1.8	0.86	1.35	1.37	1.26	
7	2.6	1.62	2.33	2.35	0.9	0.92	0.9	1.1	
8	2.49	2.81	1.82	3.04	1.01	1.14	1.1	1	
9	1.96	2.27	2.27	2.68	1.09	1.27	1.17	1.17	
10	2.15	2.59	2.24	1.69	0.96	1.06	0.93	0.93	
11	2.32	2.2	2.16	2.26	0.75	1.25	1.05	1.09	
12	3.12	1.79	3.04	2.26	1.21	0.96	1	1.14	
13	2.6	2.05	2.18	1.92	0.82	1.08	1.27	1.2	
14	3.12	2.23	1.8	2.6	0.86	0.88	1.17	0.86	
15	2.26	2.7	3.22	1.82	1.07	1.01	0.93	1.15	
16	2.54	1.41	1.69	2.15	0.6	0.82	0.92	1.2	
17	3.28	2.1	1.82	2.04	1	1.11	0.95	1.23	
18	2.14	1.91	2.29	2.51	0.98	1.01	0.9	1.22	
19	2.56	2.9	1.61	2.72	1.06	1.2	1.02	1.12	
20	2.73	2.6	2.66	3.07	1.1	1.14	0.99	1.17	
21	2.96	2.49	2.95	2.64	0.95	1.1	1.03	1.05	
22	2.7	2.05	2.38	1.4	1	1.07	1.02	1.29	
23	2.33	1.79	2.66	2.08	0.78	1.11	1.14	1.21	

24	2.95	1.83	1.79	2.02	0.78	1.21	1.07	1.28
25	2.51	1.89	1.86	2.82	0.96	0.92	0.96	1.15
26	2.93	2.97	2.38	2.93	1.41	0.85	1.25	1.15
27	3.55	2.01	1.93	3.37	1.06	1.08	1.03	1.07
28	2.6	2.05	1.9	2.09	1.14	0.85	1.08	1.17
29	2.78	1.79	1.97	2.73	0.58	1.13	0.83	1.23
30	3.34	2.05	1.77	2.56	0.99	1.07	0.9	1.09
31	2.73	2.23	1.76	1.9	1.15	1.17	1.14	1.28
32	3.16	2.27	2.53	2.15	0.99	1.32	1.09	1.37
33	1.93	2.53	1.9	2.86	1.09	1.14	1.03	1.29
34	2.24	1.6	2.04	2.35	1.2	1	1.46	1.2
35	2.88	2.05	2.09	1.53	0.8	1	0.85	1.2
36	3.21	1.83	1.43	2	1.27	1.1	0.65	1.23
37	3.57	1.42	2.4	2.38	1.05	1.15	1.14	1.16
38	2.73	2.36	1.93	2.6	0.95	1.14	1.06	1.16
39	3.18	2.29	2.09	2.93	1.01	1.14	0.92	1.27
40	2.68	3.18	2.15	1.62	1.03	0.9	0.96	1.17
41	2.78	2.01	2.73	2.04	1.08	1.15	1.04	1.13
42	2.96	2.83	2.97	2.56	0.99	0.9	1.18	1.06
43	2.17	2.22	2.29	3.06	0.85	1.21	0.99	1.06
44	2.53	1.74	2.48	2.04	1.19	1.17	0.96	1.34
45	3.66	2	2.24	2.08	1.05	0.99	1.05	1.07
46	3.12	2	2.16	2.04	0.81	1.08	1.06	0.69
47	3.29	2.22	2.21	2.04	0.95	1.05	1.1	1.2
48	3.52	2.51	2.04	2.56	1	1.16	0.86	1.32
49	2.51	2.05	2.24	2.56	0.71	1.15	1.27	1.39
50	2.82	2.36	1.86	2.04	0.76	0.92	1.14	1.17
Average	2.782	2.167	2.189	2.336	0.943	1.074	1.032	1.130
SD	0.455	0.403	0.384	0.453	0.188	0.130	0.152	0.203

Appendix C

Raw data of TGA

Table C1: PLA electrospun fiber

Curve Name:

!&Ruttapon_SP1

Index	Ts	Tr	Value
	[°C]	[°C]	[%]
0	50.0042	50	100
23	57.6869	57.6667	100.023
46	65.3487	65.3333	99.9508
69	72.9422	73	99.9105
92	80.6363	80.6667	99.8689
115	88.3437	88.3333	99.8445
138	96.0401	96	99.7817
161	103.695	103.667	99.7293
184	111.365	111.333	99.6918
207	119.007	119	99.6405
230	126.675	126.667	99.5851
253	134.303	134.333	99.553
276	141.925	142	99.4885
299	149.547	149.667	99.4598
322	157.256	157.333	99.4276
345	164.941	165	99.3785
368	172.621	172.667	99.3388
391	180.285	180.333	99.3263
414	187.959	188	99.2709
437	195.624	195.667	99.2401
460	203.285	203.333	99.1996
483	210.96	211	99.0984
506	218.639	218.667	98.9412
529	226.314	226.333	98.6271

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
1104	418.123	418	6.13052	1748	598.942	600	2.85278
1127	425.763	425.667	5.98419	1771	598.968	600	2.79833
1150	433.421	433.333	5.81938	1794	599	600	2.70553
1173	441.055	441	5.6663	1817	599.014	600	2.65381
1196	448.682	448.667	5.51829	1840	599.02	600	2.57179
1219	456.312	456.333	5.37278	1863	599.047	600	2.51529
1242	463.931	464	5.22264	1886	599.055	600	2.44607
1265	471.554	471.667	5.06718	1909	599.064	600	2.36822
1288	479.182	479.333	4.90063	1932	599.099	600	2.32209
1311	486.812	487	4.76208	1955	599.109	600	2.24268
1334	494.458	494.667	4.63154	1978	599.137	600	2.18983
1357	502.1	502.333	4.53008	2001	599.163	600	2.11703
1380	509.734	510	4.42832	2024	599.161	600	2.08049
1403	517.373	517.667	4.36364	2047	599.182	600	2.00153
1426	525.029	525.333	4.25642	2070	599.198	600	1.96289
1449	532.662	533	4.19686	2093	599.216	600	1.89031
1472	540.32	540.667	4.08632	2116	599.221	600	1.84397
1495	547.961	548.333	4.01661	2139	599.25	600	1.78678
1518	555.601	556	3.90392	2162	599.262	600	1.71981
1541	563.24	563.667	3.80911	2185	599.274	600	1.65216
1564	570.897	571.333	3.69027	2208	599.287	600	1.62474
1587	578.53	579	3.56035	2231	599.307	600	1.5339
1610	586.186	586.667	3.44522				
1633	593.807	594.333	3.33758	Results	:		
1656	599.234	600	3.22048	? Onset	273.46 °C		
1679	598.848	600	3.12327	Endset	321.45 °C		
1702	598.886	600	3.03679	Sample	:		
1725	598.948	600	2.95143	Ruttapo	on_SP1, 2.332	4 mg	

Table C2: PLA:PEO bicomponent filber (flow rate ratio 0.9:0.1 ml/hr:ml/hr)

Curve Name:

!&Ruttapon_sample7

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	49.9438	50	100	552	235.151	234	99.7851
23	57.52	57.6667	100.014	575	241.127	241.667	99.6725
46	65.0781	65.3333	99.9976	598	248.415	249.333	99.7075
69	72.6355	73	99.9862	621	256.388	257	99.6733
92	80.3182	80.6667	99.9758	644	264.248	264.667	99.5895
115	88.0127	88.3333	99.9696	667	272.137	272.333	99.4818
138	95.7445	96	99.958	690	279.826	280	99.325
161	103.405	103.667	99.946	713	287.473	287.667	99.0607
184	111.064	111.333	99.94	736	295.069	295.333	98.5888
207	118.708	119	99.9204	759	302.705	303	97.6753
230	126.358	126.667	99.9083	782	310.423	310.667	95.8816
253	134.01	134.333	99.8998	805	318.088	318.333	92.8428
276	141.609	142	99.9043	828	325.578	326	87.8881
299	149.209	149.667	99.9002	851	333.073	333.667	79.6804
322	156.943	157.333	99.8895	874	340.574	341.333	67.0842
345	164.633	165	99.8755	897	348.041	349	49.9882
368	172.318	172.667	99.8787	920	355.582	356.667	29.9438
391	180.01	180.333	99.8655	943	363.402	364.333	11.8322
414	187.68	188	99.8595	966	371.493	372	3.31976
437	195.347	195.667	99.8477	989	379.469	379.667	2.29574
460	203.02	203.333	99.8221	1012	387.256	387.333	2.13692
483	210.699	211	99.8112	1035	394.978	395	2.01967
506	218.388	218.667	99.7968	1058	402.722	402.667	1.92592
529	226.391	226.333	99.8165	1081	410.335	410.333	1.82546

Index	Ts	Tr	Value	Index	Ts	Tr	Value			
	[°C]	[°C]	[%]		[°C]	[°C]	[%]			
1104	417.98	418	1.74252	1748	599.322	600	0.98234			
1127	425.653	425.667	1.70926	1771	599.337	600	0.94727			
1150	433.313	433.333	1.649	1794	599.343	600	0.94792			
1173	440.991	441	1.58095	1817	599.359	600	0.93843			
1196	448.635	448.667	1.55341	1840	599.35	600	0.94725			
1219	456.271	456.333	1.50861	1863	599.361	600	0.91225			
1242	463.932	464	1.44142	1886	599.797	600	0.912173			
1265	471.59	471.667	1.43843	1909	599.44	600	0.902754			
1288	479.257	479.333	1.3688	1932	599.1	600	0.877092			
1311	486.904	487	1.36826	1955	599.255	600	0.894146			
1334	494.553	494.667	1.2986	1978	599.378	600	0.878755			
1357	502.188	502.333	1.27396	2001	599.419	600	0.87709			
1380	509.849	510	1.22794	2024	599.432	600	0.87656			
1403	517.49	517.667	1.20482	2047	599.434	600	0.842024			
1426	525.153	525.333	1.15944	2070	599.426	600	0.842006			
1449	532.842	533	1.15048	2093	599.429	600	0.807266			
1472	540.471	540.667	1.1227	2116	599.424	600	0.806923			
1495	548.113	548.333	1.09658	2139	599.436	600	0.812875			
1518	555.758	556	1.08759	2162	599.443	600	0.806892			
1541	563.411	563.667	1.08759	2185	599.448	600	0.806923			
1564	571.177	571.333	1.05302	2208	599.451	600	0.781544			
1587	578.724	579	1.05251	2231	599.449	600	0.771839			
1610	586.342	586.667	1.02567	Results:						
1633	594.002	594.333	1.01743	Texts:						
1656	599.505	600	1.0119	!&Ruttapon	_sample7					
1679	599.307	600	1.0043	Ruttapon_sa	ample7, 2.8503	mg				
1702	599.336	600	0.98567	Sample:						
1725	599.322	600	0.98234	Ruttapon_sa	Ruttapon_sample7, 2.8503 mg					

Table C3: PLA:PEO bicomponent filber (flow rate ratio 0.75:0.25 ml/hr:ml/hr)

Curve Name:

!&Ruttapon_sample2

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	49.9366	50	100	552	235.198	234	98.6679
23	57.4905	57.6667	100.002	575	241.171	241.667	98.3608
46	65.0556	65.3333	99.9005	598	248.466	249.333	98.3539
69	72.7137	73	99.8414	621	256.432	257	98.1572
92	80.4009	80.6667	99.7747	644	264.285	264.667	97.8242
115	88.0912	88.3333	99.7053	667	272.174	272.333	97.2801
138	95.7668	96	99.6535	690	279.857	280	96.4301
161	103.423	103.667	99.6031	713	287.512	287.667	95.1555
184	111.087	111.333	99.5462	736	295.099	295.333	93.187
207	118.749	119	99.4889	759	302.775	303	90.136
230	126.412	126.667	99.4198	782	310.538	310.667	85.5649
253	134.062	134.333	99.3791	805	318.279	318.333	78.8523
276	141.701	142	99.3425	828	325.863	326	69.0443
299	149.348	149.667	99.2765	851	333.481	333.667	55.4406
322	157.047	157.333	99.2292	874	341.124	341.333	37.4498
345	164.729	165	99.1759	897	348.825	349	17.8409
368	172.418	172.667	99.1403	920	356.598	356.667	5.26019
391	180.076	180.333	99.1058	943	364.394	364.333	3.87305
414	187.748	188	99.0561	966	372.124	372	3.33629
437	195.428	195.667	98.9792	989	379.806	379.667	2.81966
460	203.095	203.333	98.9134	1012	387.488	387.333	2.32929
483	210.767	211	98.8901	1035	395.165	395	1.88149
506	218.445	218.667	98.7886	1058	402.899	402.667	1.42315
529	226.446	226.333	98.7595	1081	410.521	410.333	0.90227

Index	Ts	Tr	Value	Index	Ts	Tr	Value			
	[°C]	[°C]	[%]		[°C]	[°C]	[%]			
1104	418.168	418	0.41434	1748	599.958	600	-2.77339			
1127	425.836	425.667	0.10983	1771	599.957	600	-2.77339			
1150	433.511	433.333	-0.12737	1794	599.957	600	-2.83278			
1173	441.206	441	-0.33872	1817	599.979	600	-2.79056			
1196	448.879	448.667	-0.54195	1840	599.962	600	-2.77339			
1219	456.543	456.333	-0.76522	1863	599.965	600	-2.77339			
1242	464.22	464	-1.02234	1886	600.401	600	-2.77339			
1265	471.878	471.667	-1.20635	1909	600.033	600	-2.8347			
1288	479.56	479.333	-1.47157	1932	599.694	600	-2.84103			
1311	487.212	487	-1.65314	1955	599.845	600	-2.8002			
1334	494.852	494.667	-1.89743	1978	599.941	600	-2.77341			
1357	502.495	502.333	-2.09006	2001	599.979	600	-2.77339			
1380	510.133	510	-2.23944	2024	599.991	600	-2.77467			
1403	517.763	517.667	-2.4098	2047	599.977	600	-2.77339			
1426	525.388	525.333	-2.50147	2070	599.972	600	-2.78666			
1449	533.07	533	-2.51727	2093	599.987	600	-2.84095			
1472	540.697	540.667	-2.63791	2116	599.972	600	-2.84103			
1495	548.342	548.333	-2.6887	2139	599.967	600	-2.82047			
1518	556.001	556	-2.70574	2162	599.973	600	-2.77344			
1541	563.675	563.667	-2.70575	2185	599.973	600	-2.77339			
1564	571.438	571.333	-2.77182	2208	599.974	600	-2.81699			
1587	579.014	579	-2.70598	2231	599.97	600	-2.84103			
1610	586.656	586.667	-2.75782	Results:						
1633	594.34	594.333	-2.77339	Texts:						
1656	599.992	600	-2.76936	!&Ruttapon	_sample2					
1679	600.006	600	-2.74627	Ruttapon_sa	Ruttapon_sample2, 1.4783 mg					
1702	599.984	600	-2.77333	Sample:						
1725	599.968	600	-2.77339	Ruttapon_sa	ample2, 1.478	3 mg				

Table C4: PLA:PEO bicomponent filber (flow rate ratio 0.5:0.5 ml/hr:ml/hr)

Curve Name:

!&Ruttapon_SP2

Index	Ts	Tr	Value	Inc	lex T	s Tr	Value
	[°C]	[°C]	[%]		[°(C] [°C]	[%]
0	50.0838	50	100	5	52 234.	069 234	4 99.0922
23	57.6635	57.6667	100.029	5	75 241.	752 241.6	67 98.9833
46	65.1567	65.3333	100.003	5	98 249.	423 249.3	33 98.7639
69	72.843	73	99.935	6	21 257.	093 257	7 98.4378
92	80.5551	80.6667	99.9248	6	44 264.	759 264.6	67 98.0104
115	88.2487	88.3333	99.9083	6	67 272.	435 272.3	33 97.2612
138	95.9039	96	99.8673	6	90 280.	097 280	96.1124
161	103.584	103.667	99.8242	7	13 287.	754 287.6	67 94.2347
184	111.264	111.333	99.8097	7.	36 295	5.4 295.3	33 91.064
207	118.92	119	99.7437	7.	59 302	.99 303	85.9606
230	126.593	126.667	99.6959	7	82 310.	556 310.6	67 77.5769
253	134.243	134.333	99.6707	8	05 318.	083 318.3	33 63.4895
276	141.878	142	99.6442	8	28 325.	651 326	6 44.8915
299	149.509	149.667	99.6083	8	51 333.	391 333.6	67 27.4908
322	157.245	157.333	99.5743	8	74 341.	326 341.3	33 20.3584
345	164.951	165	99.567	8	97 349.	151 349	9 19.5916
368	172.636	172.667	99.5183	9	20 356.	867 356.6	67 19.1989
391	180.314	180.333	99.5067	9	43 364.	558 364.3	33 18.8727
414	187.987	188	99.4429	9	66 372.	241 372	2 18.5231
437	195.677	195.667	99.4549	9	89 379.	882 379.6	18.0068
460	203.354	203.333	99.4108	10	387	.552 387.3	33 17.3111
483	211.019	211	99.364	10	35 395	.228 395	5 16.1053
506	218.706	218.667	99.2756	10	402	.879 402.6	13.8581
529	226.383	226.333	99.2238	10	081 410	.548 410.3	33 10.4489

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]	[°C]	[°C]	[%]
1104	418.194	418	6.75574	1748 59	98.496	600	1.58357
1127	425.852	425.667	4.12447	1771 59	98.52	600	1.58707
1150	433.497	433.333	3.17108	1794 59	98.56	600	1.54068
1173	441.143	441	2.93806	1817 59	98.559	600	1.55228
1196	448.77	448.667	2.79534	1840 59	98.553	600	1.55476
1219	456.411	456.333	2.65983	1863 59	98.562	600	1.54119
1242	464.046	464	2.5007	1886 59	98.558	600	1.58472
1265	471.674	471.667	2.36117	1909 59	98.568	600	1.53991
1288	479.288	479.333	2.21974	1932 59	98.573	600	1.57713
1311	486.917	487	2.12565	1955 59	98.59	600	1.53950
1334	494.543	494.667	2.0371	1978 59	98.589	600	1.55244
1357	502.172	502.333	1.95087	2001 59	98.598	600	1.53950
1380	509.786	510	1.89068	2024 59	98.597	600	1.55759
1403	517.405	517.667	1.87609	2047 59	98.616	600	1.54034
1426	525.024	525.333	1.82472	2070 59	98.617	600	1.55304
1449	532.632	533	1.78796	2093 59	98.614	600	1.56082
1472	540.255	540.667	1.75904	2116 59	98.626	600	1.53976
1495	547.883	548.333	1.72773	2139 59	98.63	600	1.57201
1518	555.501	556	1.7128	2162 59	98.642	600	1.53980
1541	563.13	563.667	1.70125	2185 59	98.655	600	1.51538
1564	570.76	571.333	1.65839	2208 59	98.654	600	1.53948
1587	578.376	579	1.6392	2231 59	98.664	600	1.51057
1610	585.998	586.667	1.60483	Results:			
1633	593.614	594.333	1.61201	Onset 294.24 °	°C		
1656	598.977	600	1.61852	Onset 397.04 °	°C		
1679	598.461	600	1.56907	Endset 426.19 °	°C		
1702	598.49	600	1.58919	Sample:			
1725	598.512	600	1.56431	Ruttapon_SP2, 2.0	0136 mg		

Table C5: PLA:PEO bicomponent filber (flow rate ratio 0.25:0.75 ml/hr:ml/hr)

Curve Name:

!&Ruttapon_sample4

Index	Ts	Tı	r Valı	ie	Index	Ts	Tr	Value
-		[°C]	[°C]	[%]		[°C]	[°C]	[%]
	0	50.012	50	100	552	235.381	234	98.3552
	23	57.5597	57.6667	99.9837	575	241.344	241.667	97.8076
	46	64.94	65.3333	99.9516	598	248.63	249.333	97.3722
	69	72.6778	73	99.8913	621	256.585	257	96.6333
	92	80.429	80.6667	99.8308	644	264.453	264.667	95.6636
	115	88.1146	88.3333	99.7741	667	272.312	272.333	94.3668
	138	95.8074	96	99.7142	690	279.983	280	92.5753
	161	103.491	103.667	99.6804	713	287.62	287.667	90.0283
	184	111.176	111.333	99.6249	736	295.177	295.333	86.4609
	207	118.842	119	99.5951	759	302.794	303	81.4002
	230	126.523	126.667	99.5389	782	310.492	310.667	74.532
	253	134.205	134.333	99.4796	805	318.164	318.333	65.3407
	276	141.843	142	99.4357	828	325.651	326	53.2615
	299	149.495	149.667	99.4153	851	333.277	333.667	39.2679
	322	157.199	157.333	99.3537	874	341.178	341.333	31.4518
	345	164.886	165	99.3092	897	349.011	349	30.493
	368	172.578	172.667	99.255	920	356.741	356.667	30.1163
	391	180.246	180.333	99.2185	943	364.443	364.333	29.7887
	414	187.927	188	99.1739	966	372.122	372	29.3512
	437	195.618	195.667	99.1143	989	379.795	379.667	28.6961
	460	203.282	203.333	99.0292	1012	387.482	387.333	27.612
	483	210.952	211	98.9639	1035	395.169	395	25.7489
	506	218.631	218.667	98.8366	1058	402.883	402.667	22.5678
	529	226.64	226.333	98.67	1081	410.478	410.333	17.605

Index	Ts	Tr	Value	In	ıdex	Ts	Tr	Value
	[°C]	[°C]	[%]			[°C]	[°C]	[%]
1104	418.126	418	11.3651	17	748	599.356	600	0.389250
1127	425.818	425.667	5.70838	17	771	599.378	600	0.340710
1150	433.548	433.333	2.33245	17	794	599.389	600	0.322460
1173	441.264	441	1.40333	18	817	599.413	600	0.328360
1196	448.932	448.667	1.21308	18	840	599.425	600	0.329180
1219	456.571	456.333	1.12198	18	863	599.44	600	0.291956
1242	464.223	464	1.05563	18	886	599.89	600	0.286195
1265	471.86	471.667	1.02179	19	909	599.527	600	0.243288
1288	479.511	479.333	0.92676	19	932	599.194	600	0.243282
1311	487.134	487	0.91907	19	955	599.346	600	0.218311
1334	494.758	494.667	0.83182	19	978	599.463	600	0.243264
1357	502.39	502.333	0.79338	20	001	599.513	600	0.194641
1380	510.009	510	0.77851	20	024	599.537	600	0.193891
1403	517.653	517.667	0.74643	20	047	599.525	600	0.145987
1426	525.279	525.333	0.71069	20	070	599.525	600	0.129047
1449	532.967	533	0.67097	20	093	599.54	600	0.097315
1472	540.577	540.667	0.63260	21	116	599.547	600	0.050993
1495	548.207	548.333	0.59614	21	139	599.554	600	0.063019
1518	555.841	556	0.58389	21	162	599.572	600	0.053243
1541	563.487	563.667	0.58388	21	185	599.564	600	0.048657
1564	571.23	571.333	0.53631	22	208	599.566	600	0.000112
1587	578.782	579	0.53522	22	231	599.579	600	0.000004
1610	586.385	586.667	0.49777	Results:				
1633	594.053	594.333	0.48657	Texts:				
1656	599.56	600	0.48432	!&Rutt	tapon_	sample4		
1679	599.33	600	0.46828	Ruttap	on_sar	mple4, 2.0552	2 mg	
1702	599.347	600	0.43810	Sample:				
1725	599.343	600	0.40246	Ruttap	on_sar	nple4,	2.0552	mg

Table C6: PLA:PEO bicomponent filber (flow rate ratio 0.1:0.9 ml/hr:ml/hr)

Curve Name:

!&Ruttapon_sample8

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	50.1986	50	100	552	235.699	234	98.8574
23	57.6263	57.6667	100.05	575	241.668	241.667	98.1787
46	64.8288	65.3333	100.071	598	248.959	249.333	97.4497
69	72.3679	73	100.064	621	256.896	257	96.3933
92	80.248	80.6667	100.031	644	264.767	264.667	94.9376
115	88.0358	88.3333	100.009	667	272.615	272.333	93.0247
138	95.8051	96	99.9787	690	280.284	280	90.4289
161	103.537	103.667	99.972	713	287.913	287.667	87.1086
184	111.261	111.333	99.9578	736	295.487	295.333	83.2732
207	118.985	119	99.9307	759	303.145	303	79.1321
230	126.691	126.667	99.9095	782	310.901	310.667	74.8733
253	134.395	134.333	99.8916	805	318.636	318.333	70.9034
276	142.062	142	99.8904	828	326.244	326	67.4815
299	149.734	149.667	99.8622	851	333.942	333.667	64.7429
322	157.453	157.333	99.8554	874	341.674	341.333	63.1617
345	165.137	165	99.8244	897	349.394	349	62.4316
368	172.846	172.667	99.7914	920	357.076	356.667	61.9412
391	180.525	180.333	99.7627	943	364.767	364.333	61.4169
414	188.206	188	99.738	966	372.423	372	60.6222
437	195.895	195.667	99.6804	989	380.082	379.667	59.4649
460	203.571	203.333	99.6131	1012	387.74	387.333	57.5736
483	211.263	211	99.5615	1035	395.397	395	54.4935
506	218.95	218.667	99.4245	1058	403.108	402.667	49.2686
529	226.952	226.333	99.2488	1081	410.643	410.333	40.4685

Index	Ts	Tr	Value	Index	x Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
1104	418.209	418	27.4044	1748	599.862	600	3.65197
1127	425.907	425.667	14.7874	1771	599.825	600	3.65197
1150	433.657	433.333	7.0306	1794	599.808	600	3.65270
1173	441.436	441	4.33298	1817	599.774	600	3.68065
1196	449.128	448.667	4.03063	1840	599.727	600	3.69041
1219	456.797	456.333	3.9467	1863	599.704	600	3.69041
1242	464.465	464	3.88467	1886	600.099	600	3.69041
1265	472.135	471.667	3.84423	1909	599.692	600	3.69041
1288	479.827	479.333	3.8066	1932	599.304	600	3.69041
1311	487.486	487	3.7675	1955	599.428	600	3.70887
1334	495.153	494.667	3.72934	1978	599.5	600	3.73305
1357	502.817	502.333	3.70216	2001	599.517	600	3.72886
1380	510.501	510	3.69042	2024	599.497	600	3.72812
1403	518.179	517.667	3.66507	2047	599.459	600	3.72885
1426	525.846	525.333	3.65197	2070	599.427	600	3.73111
1449	533.556	533	3.68217	2093	599.414	600	3.72885
1472	541.201	540.667	3.65202	2116	599.383	600	3.72885
1495	548.874	548.333	3.62322	2139	599.364	600	3.74054
1518	556.535	556	3.63278	2162	599.378	600	3.76727
1541	564.219	563.667	3.65197	2185	599.358	600	3.7673
1564	571.972	571.333	3.6197	2208	599.357	600	3.7673
1587	579.542	579	3.65197	2231	599.354	600	3.7673
1610	587.161	586.667	3.62238	Results:			
1633	594.823	594.333	3.64915	Texts:			
1656	600.353	600	3.64467	!&Ruttapo	on_sample8		
1679	599.974	600	3.63763	Ruttapon_	sample8, 2.6013	3 mg	
1702	599.955	600	3.65196	Sample:			
1725	599.917	600	3.65197	Ruttapon_	sample8, 2.601.	3 mg	

Table C7: PEO bicomponent filber

Curve Name:

!&Ruttapon_SP3

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	50.0818	50	100	552	233.973	234	100.014
23	57.6656	57.6667	100.059	575	241.656	241.667	99.9972
46	64.9434	65.3333	100.081	598	249.314	249.333	100.008
69	72.0438	73	100.14	621	256.979	257	99.9768
92	79.9099	80.6667	100.142	644	264.665	264.667	99.9762
115	87.8626	88.3333	99.9631	667	272.335	272.333	99.9412
138	95.6782	96	100.057	690	280.001	280	99.9332
161	103.425	103.667	100.049	713	287.684	287.667	99.906
184	111.174	111.333	100.076	736	295.369	295.333	99.8981
207	118.873	119	100.052	759	303.012	303	99.8708
230	126.56	126.667	100.058	782	310.689	310.667	99.8582
253	134.242	134.333	100.051	805	318.352	318.333	99.8065
276	141.906	142	100.054	828	326.008	326	99.7795
299	149.578	149.667	100.053	851	333.677	333.667	99.704
322	157.262	157.333	100.049	874	341.335	341.333	99.5956
345	164.925	165	100.044	897	349.013	349	99.3937
368	172.593	172.667	100.029	920	356.676	356.667	98.9875
391	180.254	180.333	100.036	943	364.333	364.333	98.2823
414	187.926	188	100.026	966	372.017	372	97.183
437	195.613	195.667	100.037	989	379.663	379.667	95.4639
460	203.277	203.333	100.039	1012	387.331	387.333	92.7452
483	210.949	211	100.04	1035	394.997	395	88.4368
506	218.634	218.667	100.016	1058	402.656	402.667	81.4644
529	226.309	226.333	100.012	1081	410.27	410.333	69.2979

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
1104	417.862	418	51.2574	1748	598.704	600	4.61154
1127	425.506	425.667	30.679	1771	598.715	600	4.64478
1150	433.215	433.333	13.6301	1794	598.734	600	4.61576
1173	440.994	441	5.96062	1817	598.729	600	4.64672
1196	448.71	448.667	5.08078	1840	598.731	600	4.62591
1219	456.384	456.333	4.99484	1863	598.734	600	4.64677
1242	464.042	464	4.92801	1886	598.713	600	4.6459
1265	471.684	471.667	4.8743	1909	598.714	600	4.64679
1288	479.327	479.333	4.82302	1932	598.719	600	4.6701
1311	486.972	487	4.78884	1955	598.721	600	4.64679
1334	494.622	494.667	4.7544	1978	598.719	600	4.68163
1357	502.257	502.333	4.7524	2001	598.725	600	4.67808
1380	509.901	510	4.71743	2024	598.715	600	4.68735
1403	517.547	517.667	4.71719	2047	598.719	600	4.68274
1426	525.184	525.333	4.71719	2070	598.732	600	4.71316
1449	532.822	533	4.70937	2093	598.727	600	4.69673
1472	540.456	540.667	4.66896	2116	598.741	600	4.71717
1495	548.09	548.333	4.67486	2139	598.745	600	4.72813
1518	555.724	556	4.66403	2162	598.744	600	4.7172
1541	563.343	563.667	4.67332	2185	598.751	600	4.72698
1564	570.976	571.333	4.6293	2208	598.756	600	4.75238
1587	578.595	579	4.61205	2231	598.762	600	4.73649
1610	586.22	586.667	4.61867	Results:			
1633	593.816	594.333	4.6273	? Onset 398.	88 °C		
1656	599.21	600	4.62824	Endset 435.4	49 °C		
1679	598.719	600	4.6225	Texts:			
1702	598.721	600	4.61161	!&Ruttapon_	SP3		
1725	598.738	600	4.62809	Ruttapon_SP	3, 2.8407 mg		

Curve Name: !&Ruttapon_SP3

Index	Ts	Tr	Value	Index	Ts	Tr	Value
 	[°C]	[°C]	[%]	 	[°C]	[°C]	[%]
0	50.0816	50	100	575	241.799	241.667	99.1911
23	57.7427	57.6667	100.044	598	249.469	249.333	98.898
46	65.3473	65.3333	100.029	621	257.125	257	98.5421
69	72.9592	73	100.017	644	264.795	264.667	98.1386
92	80.629	80.6667	100.015	667	272.472	272.333	97.6011
115	88.3627	88.3333	100.027	690	280.122	280	96.9185
138	96.0917	96	100.015	713	287.785	287.667	95.9596
161	103.747	103.667	100.011	736	295.44	295.333	94.5344
184	111.403	111.333	100.032	759	303.048	303	92.1929
207	119.05	119	100.011	782	310.633	310.667	88.3789
230	126.697	126.667	100.005	805	318.127	318.333	82.2978
253	134.339	134.333	100.003	828	325.561	326	72.2214
276	141.914	142	99.9953	851	332.917	333.667	56.7073
299	149.507	149.667	99.9865	874	340.302	341.333	36.2938
322	157.278	157.333	99.9836	897	348.065	349	16.4619
345	164.995	165	99.9794	920	356.359	356.667	8.49994
368	172.691	172.667	99.9678	943	364.422	364.333	7.3179
391	180.375	180.333	99.9701	966	372.261	372	6.91524
414	188.052	188	99.9377	989	379.97	379.667	6.63357
437	195.738	195.667	99.9181	1012	387.651	387.333	6.40851
460	203.415	203.333	99.8873	1035	395.305	395	6.17533
483	211.089	211	99.83	1058	402.964	402.667	5.89047
506	218.772	218.667	99.7522	1081	410.637	410.333	5.57151
529	226.441	226.333	99.6201	1104	418.265	418	5.26412
552	234.111	234	99.4281	1127	425.907	425.667	5.01764
Index	Ts	Tr	Value	Index Ts	Tr	Value	
-------	---------	---------	---------	----------------------	------	---------	--
	[°C]	[°C]	[%]	[°C]_	[°C]	[%]	
1150	433.567	433.333	4.83601	1794 598.529	600	3.77395	
1173	441.209	441	4.6909	1817 598.504	600	3.80086	
1196	448.862	448.667	4.58086	1840 598.476	600	3.78117	
1219	456.507	456.333	4.4671	1863 598.469	600	3.80094	
1242	464.146	464	4.35691	1886 598.449	600	3.8258	
1265	471.789	471.667	4.23836	1909 598.435	600	3.80099	
1288	479.438	479.333	4.12983	1932 598.442	600	3.82529	
1311	487.089	487	4.05356	1955 598.437	600	3.82232	
1334	494.753	494.667	3.9964	1978 598.441	600	3.8282	
1357	502.407	502.333	3.96557	2001 598.453	600	3.82849	
1380	510.064	510	3.93866	2024 598.432	600	3.8601	
1403	517.693	517.667	3.91113	2047 598.438	600	3.83252	
1426	525.343	525.333	3.88376	2070 598.431	600	3.85594	
1449	532.964	533	3.87714	2093 598.434	600	3.86782	
1472	540.621	540.667	3.84584	2116 598.437	600	3.88051	
1495	548.241	548.333	3.82317	2139 598.445	600	3.87724	
1518	555.886	556	3.81425	2162 598.43	600	3.88358	
1541	563.518	563.667	3.82138	2185 598.453	600	3.89191	
1564	571.151	571.333	3.79815	2208 598.446	600	3.91036	
1587	578.755	579	3.77374	2231 598.443	600	3.8836	
1610	586.341	586.667	3.77883	Results:			
1633	593.931	594.333	3.78609	? Onset 315.12 °C			
1656	599.275	600	3.77664	Endset 353.23 °C			
1679	598.618	600	3.76166	Texts:			
1702	598.607	600	3.77339	!&Ruttapon_SP3			
1725	598.622	600	3.76415	Ruttapon_SP3, 3.6307	mg		
1748	598.561	600	3.77338	Sample:			
1771	598.535	600	3.77262	Ruttapon_SP3, 3.6307	mg		

Table C9: PLA: PEO bicomponent filber (Porous surface system before PEO phase removal)

Curve Name:

!&Ruttapon_SP5

Curve Values:

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	50.1447	50	100	552	234.303	234	99.2252
23	57.8578	57.6667	100.081	575	241.98	241.667	98.7309
46	65.3837	65.3333	100.106	598	249.649	249.333	98.0999
69	73.1021	73	100.112	621	257.3	257	97.2996
92	80.8364	80.6667	100.13	644	264.966	264.667	96.3587
115	88.5517	88.3333	100.15	667	272.642	272.333	95.1535
138	96.2181	96	100.159	690	280.29	280	93.7211
161	103.883	103.667	100.157	713	287.963	287.667	91.8907
184	111.571	111.333	100.188	736	295.618	295.333	89.4498
207	119.246	119	100.156	759	303.222	303	85.6925
230	126.916	126.667	100.174	782	310.841	310.667	80.2101
253	134.56	134.333	100.154	805	318.414	318.333	71.7853
276	142.191	142	100.141	828	325.981	326	59.7554
299	149.845	149.667	100.161	851	333.564	333.667	44.6368
322	157.559	157.333	100.156	874	341.356	341.333	32.043
345	165.256	165	100.15	897	349.256	349	29.0313
368	172.94	172.667	100.131	920	357.018	356.667	28.5812
391	180.605	180.333	100.145	943	364.72	364.333	28.2965
414	188.275	188	100.127	966	372.405	372	27.9751
437	195.941	195.667	100.139	989	380.06	379.667	27.4982
460	203.628	203.333	100.098	1012	387.713	387.333	26.7818
483	211.291	211	100.014	1035	395.366	395	25.5008
506	218.977	218.667	99.8908	1058	403.015	402.667	23.1548
529	226.64	226.333	99.6174	1081	410.67	410.333	19.2279

	Index	Ts	Tr	Value	Index	x Ts	Tr	Value	
_		[°C]	[°C]	[%]		[°C]	[°C]	[%]	
	1104	418.302	418	13.7918	1748	598.69	600	3.74877	
	1127	425.947	425.667	8.25938	1771	598.69	600	3.79248	
	1150	433.63	433.333	4.88029	1794	4 598.721	600	3.77853	
	1173	441.295	441	4.05088	1817	598.712	600	3.79503	
	1196	448.947	448.667	3.96482	1840	598.693	600	3.80871	
	1219	456.597	456.333	3.90046	1863	3 598.693	600	3.84137	
	1242	464.242	464	3.84642	1886	5 598.687	600	3.88319	
	1265	471.891	471.667	3.80125	1909	598.688	600	3.87549	
	1288	479.539	479.333	3.74896	1932	2 598.686	600	3.88203	
	1311	487.191	487	3.70404	1955	5 598.687	600	3.88768	
	1334	494.837	494.667	3.70255	1978	3 598.695	600	3.93348	
	1357	502.481	502.333	3.70255	2001	598.705	600	3.93396	
	1380	510.133	510	3.69741	2024	4 598.674	600	3.98716	
	1403	517.766	517.667	3.68524	2047	7 598.689	600	3.98123	
	1426	525.4	525.333	3.69613	2070) 598.687	600	3.98259	
	1449	533.026	533	3.6824	2093	3 598.697	600	3.99963	
	1472	540.661	540.667	3.68542	2110	5 598.699	600	4.0265	
	1495	548.28	548.333	3.69326	2139	9 598.707	600	4.06193	
	1518	555.911	556	3.67862	2162	2 598.704	600	4.0728	
	1541	563.519	563.667	3.69115	2185	5 598.714	600	4.07539	
	1564	571.156	571.333	3.6738	2208	3 598.703	600	4.09176	
	1587	578.75	579	3.66398	223	598.714	600	4.07284	
	1610	586.354	586.667	3.71186	Results:				
	1633	593.942	594.333	3.72321	Texts:				
	1656	599.282	600	3.72445	!&Ruttapo	on_SP5			
	1679	598.719	600	3.71715	Ruttapon_	_SP5, 2.1607 mg			
	1702	598.726	600	3.74881	Sample:				
	1725	598.716	600	3.74805	Ruttapon_	_SP5, 2.1607 mg			

Table C10: PLA: PEO bicomponent filber (Porous surface system after PEO phase removal)

Curve Name:

!&Ruttapon_sample10

Curve Values:

Index	Ts	Tr	Value	Index	Ts	Tr	Value
	[°C]	[°C]	[%]		[°C]	[°C]	[%]
0	49.9804	50	100	552	235.279	234	97.7605
23	57.5695	57.6667	99.9808	575	241.256	241.667	97.3148
46	65.1189	65.3333	99.8888	598	248.544	249.333	97.162
69	72.7848	73	99.7836	621	256.509	257	96.8343
92	80.4573	80.6667	99.7047	644	264.372	264.667	96.4213
115	88.1194	88.3333	99.6447	667	272.243	272.333	95.9137
138	95.819	96	99.547	690	279.918	280	95.2753
161	103.512	103.667	99.4978	713	287.571	287.667	94.3965
184	111.18	111.333	99.4177	736	295.156	295.333	93.1289
207	118.831	119	99.3744	759	302.816	303	91.1546
230	126.489	126.667	99.2878	782	310.526	310.667	87.7671
253	134.15	134.333	99.2058	805	318.224	318.333	82.7759
276	141.771	142	99.1455	828	325.731	326	75.3742
299	149.443	149.667	99.0758	851	333.268	333.667	64.3472
322	157.148	157.333	98.9987	874	340.857	341.333	48.6947
345	164.819	165	98.885	897	348.458	349	30.2388
368	172.508	172.667	98.8249	920	356.223	356.667	14.8092
391	180.162	180.333	98.7066	943	364.137	364.333	7.84515
414	187.835	188	98.5946	966	371.952	372	5.75681
437	195.505	195.667	98.5186	989	379.684	379.667	4.91098
460	203.181	203.333	98.3738	1012	387.394	387.333	4.35092
483	210.847	211	98.2828	1035	395.075	395	3.8333
506	218.516	218.667	98.1132	1058	402.808	402.667	3.31178
529	226.529	226.333	98.0087	1081	410.429	410.333	2.71766

	Index	Ts	Tr	Value		Index	Ts	Tr	Value
. <u> </u>		[°C]	[°C]	[%]			[°C]	[°C]	[%]
	1104	418.077	418	2.22123		1748	599.759	600	-0.88239
	1127	425.748	425.667	1.88027		1771	599.766	600	-0.95013
	1150	433.414	433.333	1.60758		1794	599.777	600	-1.01347
	1173	441.079	441	1.37652		1817	599.778	600	-1.0334
	1196	448.731	448.667	1.20714		1840	599.766	600	-1.05673
	1219	456.383	456.333	1.02394		1863	599.781	600	-1.08605
	1242	464.039	464	0.871237		1886	600.232	600	-1.15372
	1265	471.692	471.667	0.747502		1909	599.863	600	-1.20718
	1288	479.372	479.333	0.611907		1932	599.526	600	-1.22181
	1311	487.019	487	0.502984		1955	599.67	600	-1.25256
	1334	494.673	494.667	0.353159		1978	599.769	600	-1.26412
	1357	502.33	502.333	0.229679		2001	599.813	600	-1.28969
	1380	509.993	510	0.139017		2024	599.826	600	-1.35451
	1403	517.649	517.667	0.028886		2047	599.819	600	-1.35757
	1426	525.311	525.333	-0.001879		2070	599.803	600	-1.42511
	1449	533.013	533	-0.081946		2093	599.821	600	-1.42544
	1472	540.645	540.667	-0.20033		2116	599.82	600	-1.49328
	1495	548.293	548.333	-0.29688		2139	599.818	600	-1.47329
	1518	555.95	556	-0.33936		2162	599.836	600	-1.49336
	1541	563.612	563.667	-0.33939		2185	599.817	600	-1.49332
	1564	571.372	571.333	-0.47410		2208	599.825	600	-1.5612
	1587	578.942	579	-0.47514		2231	599.82	600	-1.59891
	1610	586.568	586.667	-0.59394	Res	ults:			
	1633	594.233	594.333	-0.61090	Tex	ts:			
	1656	599.831	600	-0.67112	!&	Ruttapon_	sample10		
	1679	599.771	600	-0.70345	Ru	ittapon_san	nple10, 1.473	32 mg	
	1702	599.778	600	-0.74663	Sam	ple:			
	1725	599.773	600	-0.81446	Ru	ittapon_san	nple10, 1.473	32 mg	

APPENDIX D

Raw data of Air filtration testing

Calculation of filtration efficiency

(Refer form 2.5.6 Air filtration testing) In this research, the filtration efficiency was measured by the total particulate matter collection with micro balance <u>analytical</u> 5 digit (Mettler Toledo, Model MS105 from Switzerland), comparison before and after analyzing. The weight of total particle matter was calculated by using the following equation

$$W_c = W_a - W_b$$

 $W_c =$ The weight of total particulate matter.

 W_{b} = The weight of air filter media before testing

 $W_a =$ The weight of air filter media after testing.

The filtration efficiency percentage was calculated by using the following equation.

% Filtration efficiency =
$$\underline{W}_{C} \ge 100$$

 W_{T}

 W_{T} = The total weight particulate matter in each air volume

								S/M	/S							
N	Air volume	Weight (g)	Weight (g)	Weight (g)	Volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
No.	(Liter)	(before)	(After)	Collection	of air	(before)	(After)	Collection	(Liter)	(before)	(After)	Collection	(Liter)	(before)	(After)	Collection
		0.08955	0.09034			0.07752	0.07912			0.09162	0.09423			0.08806	0.09122	
1		0.08952	0.09036	0.00082		0.07750	0.07891	0.00149		0.09168	0.09421	0.00259		0.08806	0.09123	0.00216
1		0.08951	0.09033	0.00082		0.07748	0.07890	0.00148		0.09161	0.09421	0.00258		0.08805	0.09121	0.00316
		0.08953	0.09034			0.07750	0.07898			0.09164	0.09422			0.08806	0.09122	
		0.09144	0.09277			0.08956	0.09121			0.07788	0.07993			0.08292	0.08699	
2	1	0.09146	0.09271	0.00120	2	0.08957	0.09120	0.001/0	4	0.07783	0.07994	0.00208	0	0.08297	0.08699	0.00407
2	1	0.09140	0.09271	0.00130	2	0.08957	0.09110	0.00160	4	0.07789	0.07996	0.00208	8	0.08290	0.08698	0.00406
		0.09143	0.09273			0.08957	0.09117			0.07787	0.07994			0.08293	0.08699	
		0.08122	0.08212			0.09337	0.09482			0.09014	0.09261			0.08769	0.09104	
2		0.08122	0.08214	0.00001		0.09338	0.09477	0.00142		0.09013	0.09258	0.00244		0.08772	0.09101	0.00222
3		0.08122	0.08212	0.00091		0.09331	0.09476	0.00145		0.09015	0.09256	0.00244		0.08774	0.09108	0.00333
		0.08122	0.08213			0.09335	0.09478			0.09014	0.09258			0.08772	0.09104	

Table D1 The weight of S/M/S before and after air filter testing

								S/M/NF(T	°1)/S							
	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
No.	(Liter)	(before)	(After)	Collection												
		0.09052	0.09252			0.09172	0.09532			0.0861	0.09006			0.0861	0.09151	
		0.09051	0.09255	0.00004		0.09171	0.09536	0.00070		0.08606	0.09006	0.00007		0.08606	0.09146	0.00541
1		0.09047	0.09255	0.00204		0.09172	0.09534	0.00362		0.08608	0.09004	0.00397		0.08608	0.09149	0.00541
		0.09050	0.09254			0.09172	0.09534			0.08608	0.09005			0.08608	0.09149	
2		0.08803	0.09018			0.08726	0.09052			0.07584	0.07989			0.07584	0.08089	
	1	0.08803	0.09019	0.00015	2	0.08724	0.09054	0.00220	4	0.07583	0.07993	0.00400	0	0.07583	0.08093	0.00500
2	1	0.08803	0.09016	0.00215	2	0.08726	0.09053	0.00328	4	0.07583	0.07991	0.00408	8	0.07583	0.08091	0.00508
		0.08803	0.09018			0.08725	0.09053			0.07583	0.07991			0.07583	0.08091	
		0.08849	0.09013			0.07962	0.08363			0.08404	0.08855			0.08404	0.08895	
2		0.08850	0.09015	0.00165		0.07965	0.08365	0.00200		0.08404	0.08855	0.00440		0.08404	0.08895	0.00400
5		0.08845	0.09012	0.00165		0.07963	0.08359	0.00399		0.08408	0.08854	0.00449		0.08408	0.08894	0.00489
		0.08848	0.09013			0.07963	0.08362			0.08405	0.08855			0.08405	0.08895	

Table D2 The weight of S/M/NF(T1)/S before and after air filter testing

								S/M/NF(T	2)/S							
N	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
No.	(Liter)	(before)	(After)	Collection												
		0.08962	0.09238			0.09639	0.10050			0.09810	0.10292			0.09777	0.10388	
		0.08964	0.09235			0.09642	0.10055	0.00410		0.09814	0.10291	0.00400		0.09775	0.10388	0.00510
1		0.08963	0.09234	0.00273		0.09642	0.10058	0.00413		0.09810	0.10292	0.00480		0.09781	0.10387	0.00610
		0.08963	0.09236			0.09641	0.10054			0.09811	0.10292			0.09778	0.10388	
		0.09986	0.10197			0.09548	0.09943			0.09216	0.09727			0.09770	0.10296	
		0.09986	0.10193			0.09552	0.09943	0.00001		0.09217	0.09725	0.00-10		0.09770	0.10292	0.00.702
2	1	0.09984	0.10193	0.00209	2	0.09552	0.09940	0.00391	4	0.09211	0.09722	0.00510	8	0.09770	0.10497	0.00592
		0.09985	0.10194			0.09551	0.09942			0.09215	0.09725			0.09770	0.10362	
		0.08998	0.09221			0.09628	0.10042			0.09159	0.09681			0.09247	0.09868	
2		0.08998	0.09221	0.00000		0.09629	0.10041	0.00414		0.09161	0.09687	0.00506		0.09246	0.09871	0.00/24
3		0.08998	0.09218	0.00222		0.09626	0.10043	0.00414		0.09161	0.09691	0.00526		0.09244	0.09871	0.00624
		0.08998	0.09220			0.09628	0.10042			0.09160	0.09686			0.09246	0.09870	

Table D3 The weight of S/M/NF(T2)/S before and after air filter testing

								S/M/NF(T	°3)/S							
	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
No.	(Liter)	(before)	(After)	Collection												
		0.09796	0.10017			0.10209	0.10631			0.09660	0.10192			0.09790	0.10416	
		0.09801	0.10016			0.10207	0.10632			0.09662	0.10194			0.09786	0.10414	
1		0.09799	0.10015	0.00217		0.10209	0.10630	0.00423		0.09657	0.10192	0.00533		0.09789	0.10413	0.00626
		0.09799	0.10016			0.10208	0.10631			0.09660	0.10193			0.09788	0.10414	
		0.10498	0.10734			0.10312	0.10801			0.09475	0.09974			0.09433	0.10029	
		0.10499	0.10738			0.10314	0.10798			0.09482	0.09974			0.09430	0.10027	
2	1	0.10501	0.10738	0.00237	2	0.10314	0.10797	0.00485	4	0.09482	0.09975	0.00495	8	0.09433	0.10024	0.00595
		0.10499	0.10737			0.10313	0.10799			0.09480	0.09974			0.09432	0.10027	
		0.10355	0.10598			0.09662	0.10140			0.09212	0.09759			0.09782	0.10366	
		0.10359	0.10598			0.09662	0.10141	0.004=4		0.09218	0.09758	0.00740		0.09780	0.10352	0.00.700
3		0.10363	0.10596	0.00238		0.09668	0.10140	0.00476		0.09216	0.09757	0.00543		0.09780	0.10364	0.00580
		0.10359	0.10597			0.09664	0.10140			0.09215	0.09758			0.09781	0.10361	

Table D4 The weight of S/M/NF(T3)/S before and after air filter testing

							2	S/M/C-shape	PLA/S							
	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
No.	(Liter)	(before)	(After)	Collection	(Liter)	(before)	(After)	Collection	(Liter)	(before)	(After)	Collection	(Liter)	(before)	(After)	Collection
		0.09795	0.10016			0.09683	0.10031			0.09227	0.09822			0.09359	0.10038	
1		0.09798	0.10013	0.00017		0.09684	0.10034	0.00250		0.09228	0.09817	0.00501		0.09357	0.10037	0.00(70
1		0.09797	0.10013	0.00217		0.09679	0.10032	0.00350		0.09231	0.09819	0.00591		0.09358	0.10033	0.00678
		0.09797	0.10014			0.09682	0.10032			0.09229	0.09819			0.09358	0.10036	
2		0.09574	0.09777			0.09683	0.10000			0.09409	0.10028			0.09322	0.10030	
	1	0.09576	0.09774	0.00100	2	0.09684	0.10001	0.00210	4	0.09408	0.10022	0.00(1)	0	0.09320	0.10026	0.00700
2	1	0.09577	0.09773	0.00199	2	0.09679	0.10000	0.00318	4	0.09409	0.10023	0.00616	8	0.09320	0.10029	0.00708
		0.09576	0.09775			0.09682	0.10000			0.09409	0.10024			0.09321	0.10028	
		0.09440	0.09568			0.09748	0.10062			0.09545	0.10069			0.09359	0.09980	
2		0.09442	0.09566	0.00129		0.09740	0.10065	0.00220		0.09545	0.10068	0.00524		0.09357	0.09979	0.00(22
3		0.09442	0.09573	0.00128		0.09745	0.10066	0.00320		0.09545	0.10069	0.00524		0.09358	0.09980	0.00622
		0.09441	0.09569			0.09744	0.10064			0.09545	0.10069			0.09358	0.09980	

Table D5 The weight of S/M/C-shape PLA/S before and after air filter testing

								S/M/M	/S							
N	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)	Air volume	Weight (g)	Weight (g)	Weight (g)
NO.	(Liter)	(before)	(After)	Collection												
		0.11030	0.11143			0.10201	0.10385			0.10390	0.10797			0.10505	0.11007	
1		0.11027	0.11146	0.00116		0.10201	0.10381	0.00102		0.10397	0.10798	0.00400		0.10505	0.11004	0.00500
1		0.11031	0.11148	0.00116		0.10200	0.10383	0.00182		0.10400	0.10791	0.00400		0.10505	0.11003	0.00500
		0.11029	0.11146			0.10201	0.10383			0.10396	0.10795			0.10505	0.11005	
		0.11174	0.11311			0.11226	0.11479			0.11135	0.11586			0.11442	0.11981	
2	1	0.11177	0.11311	0.00120	2	0.11225	0.11479	0.00050	4	0.11139	0.11588	0.00450	0	0.11448	0.11985	0.00520
2	1	0.11172	0.11316	0.00138	2	0.11226	0.11474	0.00252	4	0.11139	0.11589	0.00450	8	0.11446	0.11987	0.00539
		0.11174	0.11313			0.11226	0.11477			0.11138	0.11588			0.11445	0.11984	
		0.11292	0.11451			0.10915	0.11188			0.10962	0.11368			0.11029	0.11541	
2		0.11295	0.11452	0.00150		0.10918	0.11189	0.00070		0.10962	0.11367	0.00406		0.11030	0.11539	0.00511
3		0.11295	0.11452	0.00158		0.10915	0.11191	0.00273		0.10961	0.11368	0.00406		0.11030	0.11543	0.00511
		0.11294	0.11452			0.10916	0.11189			0.10962	0.11368			0.11030	0.11541	

Table D6 The weight of S/M/M/S before and after air filter testing

	S/M	/S	
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00082	0.00344	23.76
	0.00130	0.00344	37.83
1	0.00091	0.00344	26.48
	avera	age	29.36
	SI)	7.46
	0.00148	0.00672	21.99
	0.00160	0.00672	23.87
2	0.00143	0.00672	21.29
	avera	age	22.38
	SE)	1.33
	0.00258	0.01104	23.37
	0.00208	0.01104	18.81
4	0.00244	0.01104	22.13
	avera	age	21.44
	SE)	2.36
	0.00316	0.01527	20.72
	0.00406	0.01527	26.57
6	0.00333	0.01527	21.79
	avera	age	23.02
	SE)	3.12

S/M/NF(T1)/S			
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00204	0.00344	59.36
	0.00215	0.00344	62.46
1	0.00165	0.00344	48.11
	average		56.64
	SD		7.55
	0.00362	0.00672	53.95
	0.00328	0.00672	48.78
2	0.00399	0.00672	59.40
	average		54.04
	SD		5.31
	0.00397	0.01104	35.99
	0.00408	0.01104	36.93
4	0.00449	0.01104	40.70
	average		37.87
	SD		2.49
6	0.00541	0.01527	35.41
	0.00508	0.01527	33.25
	0.00489	0.01527	32.05
	average		33.57
	SD		1.70

Table D8 Filtration efficiency of S/M/NF(T1)/S

S/M/NF(T2)/S			
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00273	0.00344	79.34
	0.00209	0.00344	60.81
1	0.00222	0.00344	64.60
	average		68.25
	SD		9.79
	0.00413	0.00672	61.54
	0.00391	0.00672	58.26
2	0.00414	0.00672	61.69
	average		60.50
	SD		1.94
4	0.00480	0.01104	43.51
	0.00510	0.01104	46.20
	0.00526	0.01104	47.64
	average		45.78
	SD		2.10
6	0.00610	0.01527	39.95
	0.00592	0.01527	38.75
	0.00624	0.01527	40.89
	average		39.86
	SD		1.07

Table D9 Filtration efficiency of S/M/NF(T2)/S

S/M/NF(T3)/S			
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00217	0.00344	63.24
	0.00237	0.00344	69.06
1	0.00238	0.00344	69.35
	average		67.22
	SD		3.45
	0.00423	0.00672	62.93
	0.00485	0.00672	72.26
2	0.00476	0.00672	70.92
	average		68.70
	SD		5.04
	0.00533	0.01104	48.28
	0.00495	0.01104	44.81
4	0.00543	0.01104	49.15
	average		47.41
	SD		2.30
6	0.00626	0.01527	41.00
	0.00595	0.01527	38.94
	0.00580	0.01527	37.98
	average		39.31
	SD		1.54

Table D10 Filtration efficiency of S/M/NF(T3)/S

S/M/NF(C-shape PLA)/S			
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00217	0.00344	63.24
	0.00199	0.00344	57.90
1	0.00128	0.00344	37.15
	average		52.76
	SD		13.78
	0.00350	0.00672	52.16
	0.00318	0.00672	47.39
2	0.00320	0.00672	47.64
	average		49.07
	SD		2.68
4	0.00591	0.01104	53.50
	0.00616	0.01104	55.77
	0.00524	0.01104	47.43
	average		52.23
	SD		4.31
6	0.00678	0.01527	44.40
	0.00708	0.01527	46.34
	0.00622	0.01527	40.71
	average		43.82
	SD		2.86

Table D11 Filtration efficiency of S/M/C-shape PLA/S

S/M/M/S			
Air volume (Liters)	Weight collection(g)	Total weight(g)	%Efficiency
	0.00116	0.00344	33.85
	0.00138	0.00344	40.25
1	0.00158	0.00344	45.88
	average		39.99
	SD		6.02
	0.00182	0.00672	27.15
	0.00252	0.00672	37.47
2	0.00273	0.00672	40.69
	average		35.10
	SD		7.08
4	0.00400	0.01104	36.20
	0.00450	0.01104	40.76
	0.00406	0.01104	36.78
	average		37.91
	SD		2.48
6	0.00500	0.01527	32.72
	0.00539	0.01527	35.30
	0.00511	0.01527	33.49
	average		33.84
	SD		1.32

VITAE

PERSONAL DATA

- NAME : Suttipan Pavasupree
- Nationality : Thai
- Date of Birth : April 3, 1984
- E-mail : suttipan01@gmail.com.

EDUCATION

2002 - 2005	Bachelor of Engineering	
	Department of Material and Metallurgical Engineering	
	Faculty of Engineering	
	Rajamangala University of Technology Thanyaburi	
	Major: Plastic Engineering	
	Thesis title: Polypropylene and Natural Rubber Blends	
2008 - Present	Master and Doctor of Philosophy	
	Doctor of Philosophy Program in Nanoscience and Technology,	
	Graduate School, Chulalongkorn University, Bangkok, Thailand.	
	Major: Nanoscience and Technology	
	Dissertation title: Development of side-by-side PLA/PEO bicomponent	
	electrospun fiber.	