การวิเคราะห์ toxin genes และ tcdC genotypes ของเชื้อ คลอสตริเดียม ดิฟฟิไซล์ ที่แยกได้ในโรงพยาบาลจุฬาลงกรณ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาจุลชีววิทยาทางการแพทย์ (สหสาขาวิชา)

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2555

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

MOLECULAR ANALYSIS OF TOXIN GENES AND tcdC GENOTYPES AMONG CLOSTRIDIUM DIFFICILE ISOLATES IN KING CHULALONGKORN MEMORIAL HOSPITAL

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Medical Microbiology (Interdisciplinary Program)

Graduate School
Chulalongkorn University
Academic Year 2012
Copyright of Chulalongkorn University

Thesis Title	MOLECULAR ANALYSIS OF TOXIN GENES AND tcdC GENOTYPES AMONG CLOSTRIDIUM DIFFICILE ISOLATES IN KING CHULALONGKORN MEMORIAL HOSPITAL
By	Miss Prasertsri Tunglertsumphan
Field of Study	Medical Microbiology
Thesis Advisor	Associate Professor Somying Tumwasorn, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

(Associate Professor Amorn Petsom, Ph.D.)
THESIS COMMITTEE

Chairman
(Associate Professor Ariya Chindamporn, Ph.D.)

Thesis Advisor
(Associate Professor Somying Tumwasorn, Ph.D.)
(Tanittha Chatsuwan, Ph.D...................................... ${ }^{\text {Examiner }}$

External Examiner
(Associate Professor Sunee Korbsrisate, Ph.D.)

ประเสริฐศรี ตั้งเลิศสัมพันธ์ : การวิเคราะห์ toxin genes และ $t c d C$ genotypes ของเชื้อ คลอสตริเดียม ดิฟฟิไซล์ ที่แยกได้ในโรงพยาบาลจุฬาลงกรณ์ (Molecular analysis of toxin genes and $t c d C$ genotypes among Clostridium difficile isolates in King Chulalongkorn Memorial Hospital) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.สมหญิง ธัมวาสร, 66 หน้า.

คลอสตริเดียม ดิฟฟิไซซ์ เป็นแบคทีเรียแอนแอโรบ ชนิดแกรมบวก รูปแท่ง สามารถสร้างสปอร์ได้ เชื้อนี้เป็น สาเหตุทำให้เกิดโรคท้องเสียและลำไส้อักเสบซึ่งถูกเรียกรวมว่าโรคจาก คลอสตริเดียม ดิฟฟิไซล์ ปัจจัยก่อโรคของเชื้อที่ สำคัญคือ ท็อกซินเอ (TcdA) และ ท็อกซินบี (TcdB) ซึ่งสร้างใน เชื้อที่เป็นสายพันธุ์ที่สร้างท็อกซิน (toxigenic strain) เนื่องจากมีรายงานอัตราการเกิดโรคสูงขึ้น และ มีความรุนแรงมากขึ้น การศึกษาครั้งนี้ จึงมุ่งศึกษาคุณลักษณะของเชื้อคลอ สตริเดียม ดิฟฟิไซล์ ที่แยกได้ในโรงพยาบาลจุฬาลงกรณ์ โดยศึกษายีนที่สร้างท็อกซินเอ (toxinA) ท็อกซินบี (toxin B) ไบ นาริท็อกซิน (binary toxin) และการกลายพันธุ์ของ $t c d C$ ทำการศึกษาในช่วงเดือน สิงหาคม 2554 ถึงเดือนกันยายน 2555 โดยนำตัวอย่างอุจจาระจำนวน 1,114 ตัวอย่างจากผู้่วยยที่สงสัยว่าเป็นโรคจาก คลอสตริเดียม ดิฟฟิไซล์ มาทำการเพาะเชื้อ ในสภาวะไร้อากาศ เลือกเชื้อที่สงสัยว่าเป็น C. difficile โดยใช้คุณสมบัติของเซลล์ กลิ่น และ ความสามารถสร้างสารเรือง แสงได้เมื่อสัมผัสกับรังสีอุลตราไวโอเลตที่ ความยาวคลื่น 365 nm ผลการเพาะเชื้อพบเชื้อที่สงสัยว่าเป็นคลอสตริเดียม ดิฟฟิไซล์ ในอุจจาระจำนวน 242 ตัวอย่าง การทดสอบด้วยวิธี multiplex polymerase chain reaction เพื่อพิสูจน์เชื้อและหา ยีนที่สร้างท็อกซินเอ และท็อกซินบี โดยมีเป้าหมายที่ยีน triose phosphate isomerase (tpi), tcdA (toxin A) และ $t c d B$ (toxin B) พบว่าเป็นเชื้อ คลอสตริเดียม คิฟฟิไซ ล์ จำนวน 235 ตัวอย่าง ซึ่งในจำนวนนี้เป็นสายพันธุ์ที่สร้างท็อกซิน จำนวน $149(63.40 \%)$ ตัวอย่าง และ สายพันธุ์ที่ไม่สร้างท็อกซิน จำนวน $86(36.60 \%)$ ตัวอย่าง สายพันธุ์ที่สร้างท็อกซิน จำนวน 149 ตัวอย่างเป็นสายพันธุ์ที่มียีนที่สร้างท็อกซิน เอ และ ท็อกซินบี $\left(\mathrm{A}^{+} \mathrm{B}^{+}\right)$จำนวน $84(56.38 \%)$ ตัวอย่าง และเป็น สายพันธุ์ที่ไม่สร้างท็อกซิน เอ แต่มียีนที่สร้างท็อกซินบี $\left(\mathrm{AB} \mathrm{B}^{+}\right.$จำนวน $65(43.63 \%)$ ตัวอย่าง และไม่พบสายพันธุ์ที่มียีนที่ สร้างท็อกซินเอ แต่ไม่สร้างท็อกซินบี ($\mathrm{A}{ }^{+} \mathrm{B}$) ในการศึกษาครั้งนี้ ผลการตรวจวิเคราะห์ ไบนาริท็อกซิน ด้วยวิธี multiplex polymerase chain reaction โดยหายีน $c d t A$ และ $c d t B$ พบคลอสตริเดียม ดิฟฟิไซล์ ที่มี ไบนาริท็อกซิน จำนวน 1 ตัวอย่าง คือ คลอสตริเดียม ดิฟฟิไซล์ No. 38 ซึ่งตัวอย่างนี้พบทั้งยีนที่สร้างท็อกซินเอ และ ท็อกซินบี ด้วยเมื่อนำ ตัวอย่างนี้ทดสอบยีน $t c d C$ ด้วยวิธีการหาลำดับเบส พบว่ายีน $t c d C$ มีการขาดหายไป 18 bp และเป็น in-frame deletion ซึ่ง มีผลต่อการขาดหายกรดอะมิโนจำนวน 6 โมเลกุลโดยไม่มีผลต่อตำแหน่งอื่น จาก ข้อมูลอายุที่สามารถหาได้ในผู้ป่วย จำนวน 176 ราย พบว่า ตรวจพบคลอสตริเดียม ดิฟฟิไซล์ ได้จากผู้ป่วยกลุ่มอายุมากกว่า 60 ปีมากที่สุด (69.81%) ซึ่ง สอดคล้องกับที่พบว่า กลุ่มผู้สูงอายุเป็นกลุ่มมีความเสี่ยงสูง โดยสรุปการศึกษานี้พบความชุกของคลอสตริเดียม ดิฟฟิไซล์ สายพันธุ์ที่มียีนที่สร้างท็อกซินใน กลุ่มผู้ป่วยที่สงสัยว่าเป็นโรคจาก คลอสตริเดียม ดิฟฟิ ไซล์ คือ 13.37% และไม่พบคลอ สตริเดียม ดิฟฟิไซล์ สายพันธุ์ที่มีความรุนแรงสูง

สาขาวิชา จุลชีววิทยาทางการแพทย์ ...ลายมือชื่อนิสิต

ปีการศึกษา. 2555

\# \#5387341020 : MAJOR MEDICAL MICROBIOLOGY
 KEYWORD : CLOSTRIDIUM DIFFICILE / DIARRHEA / TOXIN A / TOXIN B / BINARY TOXIN

PRASERTSRI TUNGLERTSUMPHAN : MOLECULAR ANALYSIS OF TOXIN GENES AND tcdC GENOTYPES AMONG CLOSTRIDIUM DIFFICILE ISOLATES IN KING CHULALONGKORN MEMORIAL HOSPITAL.ADVISOR ASSOC. PROF. SOMYING TUMWASORN, Ph.D., 66 pp.

Clostridium difficile, a Gram-positive, anaerobic spore-forming bacterium, is a major cause of antibiotic-associated diarrhea and pseudomembranous colitis known as C. difficile-associated disease (CDAD). Major virulence factors contributing to the diseases are toxins $A(T c d A)$ and B (TcdB) produced by toxigenic strain. With the increased frequency and severity of CDAD, this study aimed to characterize Clostrdium difficile isolates in King Chulalongkorn Memorial hospital for the presence of genes encoding toxins A and B, binary toxin and mutation in TcdC gene. From August 2011 to September 2012, 1,114 stool samples from suspected CDAD patients were cultured anaerobically. Suspected C. difficile colonies characterized by cell morphology, odor, and fluorescence under 365-nm UV illumination were isolated from 242 samples. Toxigenic C. difficile cultures were confirmed by multiplex polymerase chain reaction (PCR) targeting a species-specific internal fragment of triose phosphate isomerase (tpi) gene, toxin A gene ($t c d A$) and toxin B gene (tcdB). Of 242 C. difficile culture, 235 were confirmed to be C. difficile which 149(63.40\%) were toxigenic and 86(36.60\%) were non-toxigenic. Of 149 toxigenic C. difficile; toxins A and Bpositive $\left(\mathrm{A}^{+} \mathrm{B}^{+}\right)$C. difficile were found in 84 (56.38\%) samples and toxin A-negative, toxin Bpositive ($\mathrm{A}^{-}{ }^{+}$) C. difficile were found in 65 (43.63\%) samples. Toxin A- positive, toxin B- negative $\left(\mathrm{A}^{+} \mathrm{B}^{-}\right)$C. diffcile was not found. Binary toxin investigated by multiplex PCR targeting $c d t A$ and $c d t B$ revealed that binary toxin-positive C. difficile (No.38) was found in one sample. C. diffcille No. 38 which also harbor TcdA and TcdB genes was subjected to tcdC sequencing and the result showed 18 bp in frame deletion resulting in the truncate peptide of 232 amino acids. Clinical data available from 176 patients revealed that toxigenic C. difficile isolates were recovered from patients aged >60 years (69.81%), corresponding with the finding that advanced age is the risk factor of toxigenic C. difficile infection. In conclusion, the prevalence of toxigenic C. difficile in suspected CDAD patients was 13.37% and the hypervirulent strain was not found in this study.

Field of study : Medical Microbiology Student’s Signature
\qquad

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following whose gave me the possibility to complete my thesis: Associate Professor Somying Tumwasorn, Ph.D., my thesis advisor at the Department of Microbiology, Faculty of Medicine, Chulalongkorn University, for her kindness, suggestion, and strong encouragement during the period of this study.

I would like to express gratitude to the chairman of their committee, Associate Professor Ariya Chaindamporn, Ph.D., Tanittha Chatsuwan, Ph.D. and the external examiner Assoc. Prof. Dr. Sunee Korbsrisate, Ph.D. for their suggestions and comments.

My sincere thanks are also given to my friend in my research laboratory, for their direction, cooperation and collaboration.

Sincere thanks to the staff of Microbiology department at King Chulalongkorn Memorial Hospital to provide clinical stool samples from routine bacterial laboratory. Finally, I am deeply thankful to my parents and my friend for their understanding and support during my study period. My thanks also given to all of those whose names have not been mentioned, for helping me to make complete this work.

CONTENTS

Page

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES viii
LIST OF FIGURES ix
LIST OF ABBREVIATIONS xi
CHAPTER
I INTRODUCTION 1
II LITERATURE REVIEW 4
III METHERIALS AND METHODS 12
IV RESULT. 22
V DISCUSSIONS 33
REFERENCES 35
APPENDICES 47
APPENDIX A 48
APPENDIX B. 51
APPENDIX C 54
BIOGRAPHY 66

LIST OF TABLES

Table Page
1 PRIMERS FOR MULTIPLEX PCR FOR DETECT C. DIFFICILE, TOXIN A AND TOXIN B 14
2 PRIMER FOR MULTIPLEX PCR FOR DETECT BINARY TOXIN 14
3 PRIMERS FOR PCR FOR SCREENING tcdC DELETION 15
4 PRIMERS FOR tcdC SEQUENCING 16
5 PRIMERS FOR C.DIFFICILE PCR RIBOTYPING 16
6 RESULT OF C.DIFFICLE TARGET FOR $t p i$, $t c d A$ AND $t c d B$ FROM CLINICAL ISOLATES 25
7 RESULT OF C. DIFFICLE FOR BINARY TOXIN FROM CLINICAL ISOLATES 26
8 RESULT OF PCR SCREENING FOR INTERNAL IN-FRAME DELETION OF TCDC OF C. DIFFICLE FROM CLINICAL ISOLATES 28
9 AGE GROUP DISTRIBUTION OF CDAD IN THIS STUDY 31

LIST OF FIGURES

Figure Page
1 C. DIFFICILE TOXIN A, B AND BINARY TOXIN LOCATE ON C. DIFFICILE 630 CHROMOSOME 6
2 STRUCTURE OF C. DIFFICILE TOXIN A AND B 6
3 STRUCTURE OF BINARY TOXIN OR CALLED CLOSTRIDIUM 7 DIFFICILE TRANSFERASE (CDT)
4 MODEL OF CDI TRANSMISSION 8
5 ENDOSCOPIC OF PSEUDOMEMBRANOUS COLITIS IN
C. DIFFICILE-ASSOCIATED DIARRHEA PATIENT 9
6 MECHANISM OF INACTIVE AND; RHO BY TOXIN A, B 9
7 tcdC SEQUENCING OF C.DIFFICILE PCR-RIBOTYPE 027
COMPARED WITH C. DIFFICILE ATCC 43255 REFERENCE STRAIN 11
8 POSITIONS OF tcdA PRIMERS ALLOWING DIFFERENTIATION BETWEEN $\mathrm{A}^{+} \mathrm{B}^{+}$AND $\mathrm{A}^{-} \mathrm{B}^{+}$ISOLATES 13
9 SUSPECTED C. DIFFICILE COLONIES ON PHENYL ETHYL ALCOHOL AGAR SUPPLEMENTED WITH 5\% SHEEP BLOOD IN ANAEROBIC CONDITION AT $35 \pm 2 \mathrm{C}^{\circ}$ FOR 48 H 22
Figure Page
10
SUSPECTED C. DIFFICILE COLONIES (RIGHT HAND) ONPHENYL ETHYL ALCOHOL AGAR SUPPLEMENTED WITH5\% SHEEP BLOOD PRODUCE FLUORESCENCE UNDERUV 365 NM FROM THIS STUDY23
CLOSTRIDIUM DIFFICILE COLONIES ON BRUCELLA AGAR SUPPLEMENT WITH 5\% SHEEP BLOOD AT 48 H IN ANAEROBIC CONDITION FROM THIS STUDY 23
1213141516GRAPH DISPLAYED AGE GROUP DISTRIBUTION FORCDAD32

LIST OF ABBREVIATIONS

CHAPTER I

INTRODUCTION

Clostridium difficile is gram positive, anaerobic, spore-forming bacterium which was first isolated in 1935 from human newborn stool with named Bacillus diciffilis [1]. Commonly, C. difficile was found in humans as asymptomatic carrier [2-4], feces of animals such as horses, pigs, dogs and cats, and the environment such as soil [5-8]. In addition C. difficile was found in food ; retailed meat [9, 10], retailed pork [11], salad [12] and vegetable [13] but still unproven for foodborne pathogen [14]. Some strains of C. difficile, toxigenic strains, can produce toxins which are the important virulence factors of C. difficile. There are three known toxins; toxin A, toxin B and binary toxin which were found variably in toxigenic C. difficile strains. C. difficile plays important role in nosocomial diarrhea and colitis called Clostridium difficile-associated diseases (CDAD) which have wide-range of clinical symptoms from asymptomatic carrier, mild self limted diarrhea, severe diarrhea, colitis [15], ileus, pseudomembranus colitis [16], toxic megacolon and death [17-19]. The risk factors are antibiotic exposure which disturbs normal flora, leading to more number of toxigenic C. difficile which can produce and release toxins to damage intestinal epithelial cells. All antibiotics can cause CDAD, especially clindamycin, cephalosporins, quinolones and penicillin [20] ; long-term hospitalization offers more opportunity to be exposed with C. difficile spores which contaminate in hospital worker, environment and facility [21]; advanced age with changing of intestinal microbiota [22, 23] and patients with underlying diseases such as cancer, organ transplantation [24] and HIV [25]. The main virulence factors of C. difficile are toxins A and B which cause cell death and disruption of epithelium tight junction resulting in diarrhea and colitis [26]. The third toxin called binary toxin which is found in $6-12.5 \%$ of C. difficile isolates [14]. The other factor contributing to C. difficile virulence is its spore which helps C. difficile to resist heat, acid, harsh environment and disinfectants [27-29]. Moreover, CDAD are the burden in health system for the budget to cure the patients, stay in hospital longer [30] , more effective antibiotic , postsurgical and recurrent of CDAD [31].

Since 2000, there has been a changing of the incidence of CDAD with more severity [32] and mortality rate [33, 34] ; in non- risk group, non- antibiotic exposure, young age, children [35] [36], pregnant women [37], non-hospitalized patients [38, 39] and community-
acquired cases [40, 41]. C. diffcile PCR-Ribotype 027/NAP1was well known as C. difficille hypervirulent strain which was responsible for C. difficile epidemic in Canada [42, 43], England [44], Europe [45] with more patient number, more severity and more mortality rate. There were many reports of this strain being found around the world [46], North America [42, 47], Europe [48-51] and Asia [52-54]. The hypervirulent strain had these properties; production of higher amount of both of toxins A and B in vitro 16-23 times than reference strain (VPI 10463), presence of binary toxin and 18 bp deletion in tcdC which is known as negative regulator for toxins A and B production and single base deletion at position 11. Another C. difficile hypervirulent strain is C. difficile PCR-Ribotype 078 which had properties similar to C. difficile PCR-Ribotype 027 for production of both toxins A and B, presence of binary toxin and tcdC mutation with C184T transition that introduces a stop codon leading to a presumptive truncated protein of 61 residues, and a 39-bp deletion located downstream of the alternative stop codon. This strain was associated with community acquired cases more than C. difficile PCR-Ribotype 027 [55]. With the increase in frequency and severity of CDAD, this study aimed to search for the hypervirulent C. difficile strain by cultivation of C. difficile from stool samples of suspected CDAD patients and characterize for the presence of genes encoding toxin A, B and binary toxin and mutation in TcdC gene encoding anti-sigma factor which is negative regulator for toxin A and B production.

HYPOTHESIS

1. Some C. difficile Thai isolates have binary toxin gene together with toxin A (tcdA) and or toxin B ($t c d B$).
2. C. difficile PCR-Ribotype 027 may be found in King Chulalongkorn Memorial hospital.

OBJECTIVE

Characterize Clostrdium difficile isolates in King Chulalongkorn Memorial Hospital for the presence of genes encoding toxins A and B, and binary toxin and mutation in TcdC gene.

Conceptual framework

CHAPTER II

LITERATURE REVIEWS

Clostridium difficile

Clostridium difficile is gram positive, anaerobic, spore-forming bacterium which is major cause of nosocomial diarrhea and colitis called Closridium diffcile-associated disease (CDAD). Risk factors of CDAD are antibiotic exposure which eliminates normal flora in colon resulting in C. difficile colonization and overgrowth[56], advanced age by changing of gut microbiota[57], reduced immune status, and more frequent hospitalization [22]. Long term hospitalization has more chance for exposure to contaminated C. difficile spores in hospital environment such as air, facilities and from heath care workers whose hands transmitted C. difficile spores from person to person [58].

Virulence factors of C. difficile

1. Toxins A and B

Toxin A (TcdA) 308 kDa and toxin B (TcdB) 270 kDa encoded by tcdA and tcdB which located on Pathogenecity locus (PaLoc) in C. difficile chromosome Figure1 has size 19.6 kb , integrated with five genes encoded different proteins; tcdA encoded TcdA (toxin A), $t c d B$ encode TcdB (toxin B), tcdC encodes TcdC; anti sigma factor which is negative regulator for toxin A and $\mathrm{B}, t c d E$ encode $\mathrm{TcdE}, t c d R$ encode $T c d R$, In non toxigenic strain (TcdA ${ }^{-}$, TcdB ${ }^{-}$), PaLoc was replaced with short nucleotides of 115 bp .

Both toxins A and B belong to the group of large clostridial cytotoxins (LCT) and are characterized by a high molecular mass (more than 250 kDa). These toxins share common domain structure, approximately 66% sequence similarity and similar enzymatic activities. TcdA has an extended C-terminus, different cell tropism and is generally less potent in cell cytotoxicity than TcdB. The structure of C. difficile toxins A and B were shown in Figure 2. Toxins A and B are composed of three domains; enzymatic domain in N-terminal region, translocation domain in middle and binding domain in C-terminal region. These toxins share a common domain structure, similarity and similar enzymatic activities. These toxins are glycosyltransferase to inactivate small proteins, Rho, Rac and

Cdc42, which have important role in signaling pathway involved in morphological changes, tight junction disruption and cell apoptosis[59] TcdA and TcdB covalently modify and inactivate the Rho family GTPases, Rho, Rac and Cdc42 [59], which play key roles in regulating signaling pathways. Glucosylation of Rho GTPases results in disaggregation of the actin cytoskeleton, cell rounding, cell death and loss of intestinal epithelium barrier function. [60]

2. Binary toxin (Closridium difficile Transferase ,CDT)

Binary toxin or called Clostridium difficile transferase (CDT) is encoded by cdtR, $c d t A$ and $c d t B$ which located on CDT locus (CDTLoc) of C. difficile chromosome (Figure1) which encoded CdtR, CdtA and CdtB [Figure3]. In non binary toxin strains, CDTLoc is replaced with conserved sequence of 68 bp [61]. Binary toxin alone may not be the cause of disease [62] but Schwan et al. [63]found that C. difficile VPI 10463 with toxin A but no binary toxin, when manipulated to express binary toxin, can increase the attachment with cell.

CDT is one of Clostridial binary toxins family such as C. perfringens iota toxin, C. spiroforme toxin which destroys filamentous actin in epithelial cells[64] which also impair the structure of actin cytoskeleton. Recent study reported that binary toxin not only affects the actin cytoskeleton but also induces the formation of microtubule-based protrusions on the surface of epithelial cells, leading to increased adherence.

3. Spore-production

Spore-production property helps C. difficile to resist heat, acid, harsh environment and disinfectants [27-29] and to transmit C. difficile [65]. Highly purified spores permitted the study of their biology and infectivity. Cholate, taurocholate, or glycocholate supplementation of brain heart infusion (BHI) increased germination rates 100- to 1000-fold more than BHI agar plates alone. This observation has implications for recovery of C. difficile from clinical and environmental samples. Purified spores demonstrated resistance to high temperatures and 70% ethanol but were inactivated by sporicidal agents. Environmental spores infect mice in a dose-dependent manner; the dose required to infect 50% of the mice (ICD50) is ~ 7 spores per cm .
4. Other virulence factors

There are many factors involved in the initiation of C. difficile pathogenesis by facilitating C. difficile to colonize host cell. These are surface layer protein, adhesin, capsule and flagella.

Figure 1.C. difficile toxin A, B and binary toxin locate on C. difficile 630 chromosome [66]

Figure 2.Structure of C. difficile toxins A and B. Toxins A and B composed of three domains; enzymatic domain in N -terminal region, translocation domain in middle and binding domain in C-terminal region .[67]

Figure 3. Structure of binary toxin called Clostridium difficile transferase (CDT) in CDT locus [23]

Clinical Symptoms

Colon manifestations

1. Asymptomatic carrier

Host contacted with C. difficile spores will colonized with C. difficile toxingenic strains or non toxigenic strain (Figure4). In toxigenic strains can develop to CDI when host exposed with risk factor such as antibiotics, changing of intestinal microbiota.

2. Diarrhea

C. difficile was cause of antibiotic-associated diarrhea. Water diarrhea, unformed stool but not blood (rare) during use antibiotics, diarrhea will stops when stop use antibiotics [68].
3. Severe diarrhea

Patients had diarrhea with/without blood associated with hypovolemia or hypoalbuminemia, high fever and leukocytosis.
4. Colitis without Pseudomembrane formation [15, 68]

Patients had symptoms high white blood count, abdominal pain, nausea, anorexia, and watery diarrhea
5. Pseudomembranous colitis (PMC)

Patients had symptoms with high white blood count, hypoalbuminemia, ascites, abdominal tenderness [16, 69-71], C. difficile is considered the only cause of antibioticassociated pseudomembranous colitis [72]. The endoscopic presence of many whiteyellowish plaques with diameters $2-10 \mathrm{~mm}$ in all of the colon (Figure5) [68] and in histopathology pseudomembranous colitis were showed volcanic eruption.

6. Fulminant colitis [18, 73]

Found about 3-8 \% of patients. Fulminant colitis was the most severe complication cause of C. difficile infection. Patients have symptom with severe diarrhea, but in some patients may not have diarrhea from prolong ileus as a consequence of which secretions accumulate in the dilated [72] , toxic megacolon (defined by distension of colon diameters more than 6 cm) [74] toxin shock and death
7. Recurrent C. difficile

A first episode of C. difficile infection (CDI) is followed by a symptomatic recurrence in approximately $19-20 \%$ of patients affected. The pathophysiology is not quite clear and may be due to persistently altered fecal flora.

Extracolonic manifestations

Commonly, C. difficile infection due to C. difficile outside colon have infrequent found, such as bacteriamia [75-77], reactive arthritis [78-80]

Figure 4. Model of CDI transmission [23]

Figure 5. Endoscopic of pseudomembranous colitis in CDAD patient [81]

Figure 6. Regulation of Rho GTPases and inhibition by toxin A and B [67]

Pathogenesis

Host exposed with C. difficile spores from CDI patients by fecal-oral route, healthcare environment or facility. Normally vegetative cells and spores of C. difficile transmitted into gut but vegetative cells killed by acid in gastric juice, only spores survived to small intestine and germinated by bile salt to vegetative cells which colonized in colon. When hosts were susceptible for C. difficile from many factors (advanced age, antibiotic use, impaired immunity) [82]. C. difficile colonized in colon epithelium cell by use colonizing factors such as; adhesion, surface layer protein, then C. difficile will secrete toxins A and or B to destroy epithelium cell and epithelium tight junction by toxin A and B will inactive Ras superfamily of small GTPases due to morphology change and apoptosis (Figure6).

Epidemiology of Clostridium difficile

C. difficile is gram positive spore forming bacterium. In past decade, there are many reports about the changing epidemiology of C. difficile. Pepin et al. [32] reported that in Quebec, Canada between 1991-2003, there was dramatically increase in number of CDAD patients from 35.6 per 100,000 population in 1991 to 156.3 per 100,000 population in 2003. Especially in age group over 65 years, the rate increased from 102.0 to 866.5 per 100,000 population and, in 2005 Warny et al. [42] reported the outbreak of C. difficile in Sherbrook, Canada between June 2004 -April 2005. Cause of this of outbreak is C. difficile NAP1/PCR-Ribotype 027/Toxinotype III strain. This strain had the following properties: produced toxin A and toxin B in higher amount than reference strain (C.difficile VPI 10463 /Toxinotype 0) 16 and 23 times, along with binary toxin and tcdC 18 bp deletion. Furthermore, analysis of C. difficile NAP1/PCR-Ribotype 027/Toxinotype III strain which isolated from this study compared with C. difficile isolates of the same molecular type from UK, USA (Maine, Georgia, Pennsylvania, New Jersey) and France showed 94-100\% similarity. In 2006, MacCannell et al. studied C. difficile PCR Ribotype 027 from Eastern and Western Canada by sequencing tcdc gene and found single-base-pair deletion at position 117 and deletion 18 bp at positions 330 to 347 of the gene due to premature truncation of TcdC protein (Figure7) [83].

Figure 7. Comparison of $t c d C$ sequence of C. difficile PCR-Ribotype 027 with C. difficile ATCC 43255 reference strain [83].

Clostridium difficile in Thailand

The reports of C. diffcile in Thailand were yery few. In, 2003 Wongwanich et.al [84] reported that the prevalence of C. difficile isolated from the stools of Thai adult patients with suspected CDAD was 18.64% by using PCR and (of toxin genes ($t c d A$ and $t c d B$) by polymerase chain reaction (PCR) from stool samples yielded almost the same compared to the recovery rate of the toxin detection by enzyme immunoassay (EIA). In 2011, Thipmontree et al. [85] reported that the prevalence of CDAD in suspected C. difficileassociated hospital-acquired diarrhea was 12.3% (95% CI 8.5% to 17.6%) by detection of C. difficile toxins A and B in stool samples.

PCR-Ribotyping

PCR-ribotyping is the standard typing method in Europe by uses specific primers to amplify the variable-length intergenic spacer region (ITS) between 16S and 23S rDNA. C. difficile genome and copies also differ in the length of ITS and a single primer pair can result in a pattern of bands ranging from 200 to 700 bp . DNA band patterns are referred to as ribotypes. PCR-ribotyping is the molecular typing method with a high discriminatory power, type-ability, and reproducibility [86]. This method use for investigate epidemiology of C. difficile which found around the world [87]; such as PCR Ribotype 027 in Canada, Europe [50, 88-94] ,PCR Ribotype 078 in Europe [93] and PCR-Ribotype 027 in Asia [54, 95, 96] .

CHAPTER III

MATERIALS AND METHODS

Stool samples and cultivation of C.difficile

A total of 1,114 stool samples of suspected CDAD patients in King Chulalongkorn Memorial Hospital from August 2011 to September 2012 were included in this study. Fresh, loose, watery, unbound stool was sent to anaerobic bacteriology laboratory for toxin detection as routine service and the leftover sample was cultured for C. difficile with the method described by UK Standards for Microbiology Investigations [97].

Processing of Faeces for Clostridium difficile [97] with modification by using phenyl ethyl alcohol agar supplemented with 5% sheep blood instead of cefoxitincycloserine egg yolk agar. Alcohol shock was first performed to eliminate viable microbial cells except spores by mixing stool sample with absolute ethanol in a ratio of $1: 1$ and incubated at room temperature for 1 hr . The sample was then plated on phenyl ethyl alcohol agar (PEA) supplemented with 5% sheep blood and incubated in an anaerobic condition (mixture of $80 \% \mathrm{~N} 2,10 \% \mathrm{CO} 2$ and $10 \% \mathrm{H} 2$) at $35 \pm 2{ }^{\circ} \mathrm{C}$ for 48 hrs . C. difficile was presumptively identified with colony appearance as white-yellow and flat, gram positive rod and fluorescence under UV 365 nm . All up to 10 colonies of presumptively identified C. difficile were pooled and subcultured onto 2 plates of Brucella agar (BBL, BectonDickison) supplemented with 5% sheep blood and incubated in an anaerobic condition at $35 \pm 2{ }^{\circ} \mathrm{C}$ for 48 hrs. C. difficile culture from one plate was used for DNA extraction and the other was kept as stock culture in 20% skim milk and stored at $-80^{\circ} \mathrm{C}$.

DNA extraction

All colonies from 48 h culture on Brucella agar were suspended in $200 \mu \mathrm{l}$ sterile distilled water in 1.5 ml sterile microcentrifuge tube and centrifuged for 15 s . Cell pellet was washed twice with and resuspended with in $180 \mu \mathrm{l}$ sterile distilled water . Cell suspension was added with $20 \mu \mathrm{l}$ digestion buffer and incubated in a water bath at $60^{\circ} \mathrm{C}$ for 1 hr . After incubation in heat box at $100^{\circ} \mathrm{C}$ for 15 min , the suspension was centrifuged at $15,280.6 \mathrm{x} \mathrm{g}$ for 5 min and the supernatant was collected in 1.5 ml sterile microcentrifuge tube and stored at $-20^{\circ} \mathrm{C}$.

Molecular analysis of Clostridium difficile

1. Multiplex PCR for C.difficile , toxins A and B

Multiplex PCR was performed as described by Lemee et al. [98] to detect C. difficile , toxins A, and B by targeting species-specific internal fragment of the tpi (triose phosphate isomerase), internal fragment of the $t c d A$ (toxin A) and internal fragment of the $t c d B$ (toxin B) as shown in Figure 8. PCR mixture in a volume of $25 \mu \mathrm{l}$ contains PCR buffer (50 mM Tris-HCl, $10 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM}$ (NH4)2SO4 pH 8.3), 2.6 mM MgCl 2 , 1.0 U of Taq DNA polymerase, $200 \mu \mathrm{M}$ each dATP, dCTP , dGTP and dTTP, each primer [Table 1]; tpi-F and tpi-R $1.0 \mu \mathrm{M}$, tcdA-F and tcdA-R $2.0 \mu \mathrm{M}$, tcdB-F and tcdB-R $2.5 \mu \mathrm{M}$. PCR products were electrophoresed in 2% agarose gel at 100 V for 45 min and stained with ethidium bromide. The stained gel was recorded by gel documentation system. Reference strains of C. difficile were used as controls: C. diffcile ATCC 9689 as positive control for toxigenic C. difficile $(\mathrm{A}+\mathrm{B}+)$ and C. difficile ATCC 700057 as negative control for non- toxigrnic C. difficile.

Figure 8. Positions of tcdA primers allowing differentiation between $\mathrm{A}+\mathrm{B}+$ and $\mathrm{AB}+$ isolates[98]. (A) Partial map of the pathogenicity locus with $t c d A$ and $t c d B$ genes and their adjacent accessory genes $t c d D$, $t c d E$, and $t c d C$. Black regions represent the 3 ' repetitive sequences characteristic of C. difficile tcdA and tcdB genes. (B) Details of the $1.8-\mathrm{kb}$ deletion, resulting in combination of three small deletions (hatched regions). The tcdA primers flank the smallest deletion (in the 3' end of the gene) and generate a 369-bp amplified fragment from $\mathrm{A}+\mathrm{B}+$ strains but a $110-\mathrm{bp}$ amplified fragment from $\mathrm{A}-\mathrm{B}+$ variant strains

Table 1. Primers for multiplex PCR detect C. difficile , toxins A, and B

Target genes	Primer	Sequence (5'-3')	Reference
tpi	tpi-F	AAAGAAGCTACTAAGGGTACAAA	[98]
	tpi-R	CATAATATTGGGTCTATTCCTAC	[98]
$t c d A$	tcdA-F	AGATTCCTATATTTACATGACAATAT	[98]
	$t c d A-R$	GTATCAGGCATAAAGTAATATACTTT	[98]
$t c d B$	$t c d B-F$	GGAAAAGAGAATGGTTTTATTAA	[98]
	$t c d B-R$	ATCTITAGTTATAACTTTGACATCTTT	[98]

2. Multiplex PCR for binary toxin

Multiplex PCR was performed to detect binary toxin target to $c d t A$ and $c d t B$ in Table 2 performed by Persson .et al [99] in PCR mixture volume $25 \mu \mathrm{l}$ contain PCR buffer (50 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM}$ (NH4)2SO4 pH 8.3) $2.6 \mathrm{mM} \mathrm{MgCl} 2,1.0 \mathrm{U}$ of Taq DNA polymerase, $200 \mu \mathrm{M}$ each dATP, dCTP, dGTP and dTTP, each primer from [Table2] $1.0 \mu \mathrm{M}$. PCR condition, start from denature at $94^{\circ} \mathrm{C}$ for 10 min , follow with $94^{\circ} \mathrm{C}$ for $50 \mathrm{~s} 54^{\circ} \mathrm{C} 40 \mathrm{~s} 72{ }^{\circ} \mathrm{C} 50 \mathrm{~s}$ for 35 cycles and final extension at $72^{\circ} \mathrm{C}$ for 3 s. PCR products were electrophoresed in 2% agarose gel at 100 V for 45 min and stained with ethidium bromide. The stained gel was recorded by gel documentation system. Reference strains of C. difficile were used as controls: C. diffcile ATCC BAA-1870 as positive control (ctdA,$+ c d t B+$) and C. difficile ATCC 9689 as negative control ($c d t A-, c d t B-$).

Table 2. Primers for multiplex PCR to detect binary toxin

Target genes	Primer	Sequence (5'-3’)	Reference
$c d t A$	cdtA-F739A	GGGAAGCACTATATTAAAGCAGAAGC	$[99]$
	cdtA-F739B	GGGAAACATTATATTAAAGCAGAAGC	$[99]$
	cdtA-R958	CTGGGTTAGGATTATTTACTGGACCA	$[99]$
$c d t B$	cdtB-F617	TTGACCCAAAGTTGATGTCTGATTG	$[99]$
	cdtB-R878	CGGATCTCTTGCTTCAGTCTTTATAG	$[99]$

3. PCR screening for $t c d C$ deletion

Screening for tcdC gene deletion by PCR was performed as described by Persson et al. [100] using primers as in Table 3. PCR mixture in a volume of $25 \mu \mathrm{l}$ contains PCR buffer (50 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{KCl}, 5 \mathrm{mM}$ (NH4)2SO4 pH 8.3), $2.6 \mathrm{mM} \mathrm{MgCl2}$, 1.0 U of Taq DNA polymerase, $200 \mu \mathrm{M}$ each dATP, dCTP, dGTP and dTTP, each primer from [Table3] $1.0 \mu \mathrm{M}$. PCR products were electrophoresed in 2.5% agarose gel at 100 V for 45 min and stained with ethidium bromide. The stained gel was recorded by gel documentation system. C. difficile ATCC 9689 was used as a control with intact tcdC. Strain with tcdC deletion had smaller band size compared with that from C. difficile ATCC 9689.

Table 3. PCR primers for screening $t c d C$ deletion

Target gene	Primer	Sequence (5,-3')	Reference	
tcdC	tcdC-F252	CATGGTTCAAAATGAAAGAC	$[100]$	
			GAC	
	tcdC-R415	GGTCATAAGTAATACCAGTA	$[100]$	
			TCATATCCTTTC	

\qquad

4. Sequencing of $t c d C$

Amplifation of tcdC was performed with primers as described by Spigaglia et al. [101] as shown in table 4. PCR condition was as described by Cohen .et al [102] as follow. PCR mixture in a volume of $100 \mu \mathrm{l}$ contains PCR buffer (50 mM Tris- $\mathrm{HCl}, 10 \mathrm{mM} \mathrm{KCl}, 5$ mM (NH4)2SO4 pH 8.3), $2.6 \mathrm{mM} \mathrm{MgCl2}$, 5.0 U of Taq DNA polymerase, $200 \mu \mathrm{M}$ each dATP, dCTP, dGTP and dTTP, $1.0 \mu \mathrm{M}$ each primer from [Table4]. PCR condition was 95 ${ }^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 52^{\circ} \mathrm{C}$ for 1 min and $72^{\circ} \mathrm{C} 1 \mathrm{~min}$ in a total of 35 cycles and final extension at $72{ }^{\circ} \mathrm{C}$ for 10 min . PCR products were electrophoresed in 2% agarose gel at 100 V for 45 min and stained with ethidium bromide. The stained gel was recorded by gel documentation system. PCR products were purified by High Pure PCR Template Preparation Kit (Roche, Germany) and sent to sequencing by automated sequencer at 1st BASE DNA Sequencing Services, Singapore.

Table 4. Primers for $t c d C$ sequencing

Target gene	Primer	Sequence (5'-3')	Reference
tcdC	tcdC-C1	TTAATTAATTTTCTCTACA	[101]
		GCTATCC	
	tcdC-C2	TCTAATAAAAGGGAGATT	$[101]$
		GTATTATG	

5. PCR ribotyping for C.difficile ribotype 027 (hypervirulent strain)

Suspected C. difficile with properties similar with hypervirulent strain C. difficile which has toxin A, toxin B , binary toxin and deletion at tcdC gene. PCR reaction was performed with the method described by Bidet, et al. [103]. PCR mixture in a volume of $100 \mu \mathrm{l}$ contain PCR buffer 10 mM Tris- HCl (pH 8.8), $50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl}, 2.5 \mathrm{U}$ of Taq DNA polymerase, $200 \mu \mathrm{M}$ each dATP, dCTP, dGTP and dTTP, 50 pmol of each primer from (Table5). PCR started from 1 cycle of 6 min at $94^{\circ} \mathrm{C}$ for denaturation; 35 cycles of 1 min at $94^{\circ} \mathrm{C}, 1 \mathrm{~min}$ at $57^{\circ} \mathrm{C}$, and 1 min at $72^{\circ} \mathrm{C}$; and a final extension cycle of 7 min at $72^{\circ} \mathrm{C}$. Amplification products were fractionated by electrophoresis through 3% agarose gel for 6 h at 85 V in TBE buffer with a distance of 24 cm between electrodes (3.5 V / cm) and stained with ethidium bromide. The stained gel was recorded by gel documentation system.

Table 5. Primers for C.difficile PCR ribotyping

Target genes	Primer	Sequence (5'-3')	Reference
16 S	16 S	GTGCGGCTGGATCACCTCCT	[103]
23 S	23 S	CCCTGACCCTTAATAACTTGACC	$[103]$

Flowcharts

CHAPTER IV

RESULTS

Cultivation of C. difficile

A total of 1,114 stool samples were cultured anaerobically on PEA supplemented with 5% sheep blood. Suspected C. difficile colonies with white-gray and flat, horse manure odor were shown in (Figure 9) and fluorescence under 365-nm UV shown in (Figure 10). They were Gram stained and subcultured onto Brucella agar supplemented with 5% sheep blood for promoting the growth of C. difficile. Colonies of C. difficile on Brucella agar were shown in (Figure 11).

Figure 9. Suspected C. difficile colonies on phenyl ethyl alcohol agar supplemented with 5% sheep blood in anaerobic condition at $35 \pm 2 \mathrm{C}^{\circ}$ for 48 h .

Figure 10. Suspected C. difficile colonies (right hand) on phenyl ethyl alcohol agar supplemented with 5% sheep blood produce fluorescence under UV 365 nm from this study.

Figure 11. Clostridium difficile colonies on Brucella agar supplemented with 5% sheep blood at 48 h in anaerobic condition.

Molecular analysis of suspected C. difficile

Multiplex PCR for C. difficile , toxin A and toxin B

Of 1,114 stool samples, suspected C. difficile colonies, which may be toxigenic $\left(\mathrm{A}^{+} \mathrm{B}^{+}\right)$, $\left(\mathrm{A}^{-} \mathrm{B}^{+}\right)$or non-toxigenic $\left(\mathrm{A}^{-}, \mathrm{B}^{-}\right)$were found in 242 samples. Identification by multiplex PCR revealed that there were toxigenic C. difficile in 149 (61.57\%) samples. Out of these 149 samples, toxins A and B-positive ($\mathrm{A}^{+} \mathrm{B}^{+}$) C. difficile were found in 84 (56.38\%) samples, whereas toxin A-negative, toxin B-positive ($\mathrm{A}^{-}{ }^{+}$) C. difficile were found in 65 (43.62\%) samples. Non-toxigenic ($\mathrm{A}^{-}, \mathrm{B}^{-}$) C. difficile were found in 86 (35.54\%) samples and non C. difficile (tpi negative) were found in $7(2.89 \%)$ samples. Representative result of multiplex PCR was shown in (Figure 12) and details of C. difficile isolates were shown in (Table 6).

Figure12. Multipex PCR for detection of C. difficile, tcdA and tcdB targeted to internal fragment of tpi, internall fragment of $t c d A$ and internal fragment of $t c d B$. Lane M: 50 bp molecular weight marker, lane 1 : toxin A-negative, toxinB-positive C. difficile , lane 2 : toxin A-positive, toxin B-positive C. difficile, lane 3 : toxin A-negative, toxin B-negative (non-toxigenic) C. difficile.

Table 6 Molecular analysis for C. difficile and toxins A and B genes

Number of	PCR target for			Interpretation
C. difficile cultures	tpi		$t c d B$	
84	+	+	+	C. diffcile $\mathrm{A}^{+} \mathrm{B}^{+}$
0	+	+	-	C. diffcile $\mathrm{A}^{+} \mathrm{B}^{-}$
65	+	-	+	C. diffcile AB^{+}
86	+		-	C. diffcile $\mathrm{A}^{-}{ }^{-}$
7			-	Non C. diffcile
Total 242				

Multiplex PCR for Binary toxin
Of 1,114 samples, suspected C. difficile colonies which may be C. difficile were found in 242 samples. After identification by multiplex PCR as described above, it revealed that there were C. difficile (tpi positive) in 235 samples. These samples were then identified for the presence of binary toxin genes ($c d t A$ and $c d t B$). Binary toxin genes were found in C. difficile culture No. 38 from 1 sample (0.43%) which was also positive for toxins A and B genes $\left(\mathrm{A}^{+} \mathrm{B}^{+}\right)($Table 7$)$. The result of multiplex PCR was shown in (Figure13).

Figure 13. Multipex PCR for detection of C. difficile binary toxin gene. Lane 1 : C. difficile ATCC BAA-1870 with binary toxin, lane 2 : No. 38 ; C. difficile clinical isolate with binary toxin, lane 3 : C. difficile ATCC 9689 ; without binary toxin, lanes 4-6 : C. difficile clinical isolates without binary toxin.

Table 7. Molecular detection of C. difficle binary toxin gene

C. difficile culture		
ChULALONGKORIN UNI	Positive	Negative
Toxin $\mathrm{A}^{+} \mathrm{B}^{+}(\mathrm{n}=84)$	1	83
Toxin $\mathrm{A}^{-} \mathrm{B}^{+}(\mathrm{n}=65)$	0	65
Toxin $\mathrm{A}^{-} \mathrm{B}^{-}(\mathrm{n}=86)$	0	86

Total (n=235)

PCR screening for internal deletion of tcdC of C. difficle
C. difficile culture from 235 samples which include both toxigenic and nontoxigenic strains were screened for $t c d C$ deletion. The result was shown in Table 8 and representative result was shown in (Figure14). C. difficile ATCC 9689 strain with complete tcdC was used for comparison. C. diffcile culture No. 38 in this study had internal deletion of tcdC .

Figure 14. PCR results for screening internal deletion of tcdC of C. difficle. Lane 1 : C. difficile ATCC 9689, lane 2 : C. difficile ATCC BAA-1870, lane 3 : No. 38 showed internal in frame deletion of tcdC, lanes 4-10,12-13 : C. difficile clinical isolates, lane 11 : 50 bp molecular weight marker.

Table 8. PCR screening for internal deletion of $t c d C$

	Number of isolates with	
C. difficile culture	Intact gene	Deleted gene
Toxin $\mathrm{A}^{+} \mathrm{B}^{+}(\mathrm{n}=84)$	83	1
Toxin $\mathrm{A}^{-} \mathrm{B}^{+}(\mathrm{n}=65)$	65	0
Toxin A-B- $(\mathrm{n}=86)$	0	0
Total $(\mathrm{n}=235)$		

tcdC sequencing by automated sequencer
The sequence of amplified product of tcdC from C. difficile culture No. 38 was aligned and compared with $t c d C$ sequence from C. difficile VPI 10463 reference strain in GenBank with Multalin program as shown in (Figure15). The sequence showed 18 bp deletion at position 373-390, base substitution from thymine to cytosine at position 115, from cytosine to thymine at position 322, from guanine to adenine at position 337, from cytosine to thymine at position 363, from guanine to adenine at position 516 and 517, from guanine to adenine at position 580, from cytosine to thymine at position 608 and base insertion thymine at positions 244, 253 and 258. The result showed tcdC mutation pattern is different from tcdC of C. difficile PCR Ribotype 027 from previous study [83] which had single base deletion at position 117 and the 18 bp deletion at position 330 to 347 .

The tcdC sequences of C. difficile culture No. 38 was translated to protein by ExPASy translate, and compared with TcdC protein from C. difficile VPI 10463 reference strain in GenBank by Multalin program as shown in (Figure16). TcdC from C. difficile No. 38 had 6 amino acid residues in frame deletion at position 114-119. In addition, it has amino acid substitution from glycine to aspartic acid at position 31, leucine to phenylalanine at position 38, glutamic acid to lysine at position 107, serine to lysine at position 148, threonine to tyrosine at position 149, glycine to lysine at position 151, valine insertion at position 152 and one amino acid deletion at position 62.

Figure 15. Comparison between tcdC from C. difficile VPI10463 reference strain and tcdC from C. difficile culture No. 38 (large picture was showed in appendix C)

Figure 16. Comparison between TcdC from C. difficile VPI10463 reference strain and TcdC from C. difficile culture No. 38 (large picture was showed in appendix C)

PCR ribotyping for C. difficile PCR ribotype 027
Since it has been reported that C. difficile PCR-Ribotype 027 harbors toxins A and B, binary toxin and has $18 \mathrm{bp} t c d C$ deletion [42], C. difficile isolate No. 38 which had these properties may be C. difficile PCR-Ribotype 027. PCR-ribotyping of No. 38 was performed and the result in (Figure17) showed that it is not PCR -ribotype 027. We used C. difficile PCR-Ribotype 027 (ATCC BAA-1870) reference strain as positive control to compare with the suspected C. difficile PCR-Ribotype 027 isolated from this study.

Figure 17. PCR ribotyping of C.difficile culture No. 38 compare with ATCC strain; Lane 1 : C. diffcile ATCC 9689 (Ribotype 001), lane 2: C. diffcile ATCC BAA 1870 (Ribotype 027), lane 3 : C. difficile culture No.38, lane 4-5 : other C. diffcile culture from this study No. 228 , No. 238 and lane 6 : 100 bp molecular marker.

Age group correlation with CDAD

The correlation between age and C. difficile isolates was determined. Of 176 C. difficile isolates had age data available (76 males and 100 females whose mean age is 63.56 years (range 1-102 years), 106 (60.23%) were toxigenic and 70 (39.77%) were nontoxigenic. Among toxigenic isolates, 1 (0.94%) were ($\mathrm{A}^{+} \mathrm{B}^{+} \mathrm{CDT}^{+}$), 65 (61.32%) were $\left(\mathrm{A}^{+} \mathrm{B}^{+} \mathrm{CDT}^{-}\right)$and 40 (37.74\%) were ($\mathrm{AB}^{-} \mathrm{CDT}^{-}$). For age group distribution, toxigenic C. difficile was recovered from patients with different age group as follow: more than 60 yrs ; 74 (69.81\%), $30-39$ yrs ;11(10.38\%), $40-49$ yrs; 9 (8.49\%), $50-59$ yrs; 6 (5.66\%), 0-9 yrs; 3 (2.83\%), 10-19 yrs; 2 (1.89\%) and 20-29 yrs; 1 (0.94%) as showed on (Table 9) and (Figure 18).

Table 9. Age group distribution of CDAD in this study

Age	Toxigenic C. difficile
$0-9$	3
$10-19$	2
$20-29$	1
$30-39$	11
$40-49$	6
$50-59$	74
>60	$\mathbf{1 0 6}$
Total	9

Figure 18. Graph displayed age group distribution for CDAD

CHAPTER V

DISCUSSION

Isolation and identification of toxigenic C. difficile from 149 of 1,114 stool samples revealed that the prevalence of toxigenic C. difficile isolated from diarrhea patients in this study was 13.37%. This prevalence rate was not much different from those reported in previous studies. Wongwanich et al.[84] reported in 2003 that the prevalence of C. difficile isolated from the stools of Thai adult patients with suspected CDAD was 18.64% and Thipmontree et al.[85] has recently reported the prevalence rate of 12.3% in 2011. The result of this study thus suggested that the frequency of CDAD in Thailand was not increasing, which is different from the reports of increasing CDAD in western countries. For examples, Pepin et al. [32] reported in 2004 that there was dramatically increase in number of CDAD patients from 35.6 per 100,000 population in 1991 to 156.3 per 100,000 population in 2003 in Canada, Lyytikainen et al. in Finland reported in 2009 that CDAD cases doubled from 810 (16/100,000 population) in 1996 to 1,787 (34/100,000 population) in 2004 [33].

Clinical data were available from 176 patients who are 76 males and 100 females whose mean age is 63.56 years (range 1-102 years). For age group distribution as shown in (Figure 17), toxigenic C. difficile was recovered from patients with different age group as follow: more than 60 yrs ; 74 (69.81\%), 30-39 yrs ; 11 (10.38\%), 40-49 yrs; 9 (8.49\%), $50-59$ yrs; 6(5.66\%), $0-9$ yrs; $3(2.83 \%) 10-19$ yrs; 2(1.89\%) and 20-29yrs; $1(0.94 \%)$. This result agreed with the previous reports of Pepin et al. [32] and Lyytikainen et al. [33] that CDAD cases were found in patients more than 65 and 64 years of age, respectively. Our study indicated that elder age is still the important risk factor for C. difficile infection. People with elder age have decreased abundance and diversity of protective gut microbiota which play important role in preventing toxigenic C. difficile to proliferate in the colon and producing toxins leading to CDAD [57].

For molecular characteristic of C. difficile toxins genes, out of 149 toxigenic C. difficile ; toxins A and B-positive ($\mathrm{A}+\mathrm{B}+$) C. difficile were found in 84 (56.38\%) samples and toxin A-negative, toxin B-positive (A-B+) C. difficile were found in 65 (43.63\%) samples. Toxin A- positive, toxin B- negative (A+B-) C. difficile was not found in this study which is in agreement with the previous report by Cohen, et al. in1998 that
toxin A- positive, toxin B- negative (A+B-) was extremely rare [104]. Toxin A-negative, toxin B-positive (A-B+) C. difficile in this study was found in 43.6% samples. Previous studies showed the presence of toxin A-negative, toxin B-positive (A-B+) C. difficile. For examples, Samra et al.[105] reported in 2002 that 58.5% of C. difficile isolates in Israel were toxin A-negative, toxin B-positive (A-B+) and Drudy et al.[106] reported in 2007 that that 95% of C. difficile isolates in Dublin, Ireland were toxin A-negative and toxin Bpositive. This study found binary toxin-positive C. difficile (culture No.38) in only one stool sample. C. difficile culture (No.38) also had both toxins A and B as shown in (Table 7). In term of $t c d C$ deletion, 235 C. diffcile cultures which include both toxigenic and non-toxigenic isolates were screened for $t c d C$ deletion. Non-toxigenic C. difficile was also tested to confirm the result obtained by PCR for C. difficile, tcdA and tcdB. Amplification for screening of tcdC deletion did not show amplified product in non-toxigenic C. difficile (Table8). The tcdC deletion was found in C. difficile culture (No.38) and the tcdC sequence showed 18 bp deletion resulting in in- frame deletion of 6 amino acid residues .This deletion is different from that of C. difficile PCR-Ribotype 027 reported by MacCannell et al. in 2006 that a single-base-pair deletion at position 117 resulting in truncated TcdC of 65 amino acids in addition to 18 bp deletion. The predicted TcdC peptide of C. difficile culture (No.38) was found shorter than TcdC peptide of C. difficile VPI 10463 reference strain. The TcdC gene of C. difficile culture (No.38) was not like that of C. difficile PCR-Ribotype 078 which had properties similar to C. difficile PCR-Ribotype 027 for production of both toxins A and B, presence of binary toxin but different $t c d C$ mutation [55]. C. difficile PCRRibotype 078 had C184T transition that introduces a stop codon leading to a presumptive truncated protein of 61 residues, and a 39-bp deletion located downstream of the alternative stop codon. This strain was associated with community acquired cases more than C. difficile PCR-Ribotype 027 [55]. PCR-Ribotyping of C. difficile culture (No.38) in this study showed that it was not Ribotype 027 from different band pattern. Clinical data from patient from whom C. difficile culture (No.38) was isolated revealed that the patient had only mild diarrhea and susceptible to vancomycin treatment. C. difficile culture (No.38) seems not to be hypervirulent strain as the truncate TcdC seems to be more intact than that of the reported hypervirulent strains of both Ribotypes 027 and 078.

REFERENCES

[1] Hall , I . and E. O’Toole Intestinal flora in newborn infants with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Child 49(Feb 1935): 390-402.
[2] Bolton, R. P., S. K. Tait, P. R. Dear, and M. S. Losowsky, Asymptomatic neonatal colonisation by Clostridium difficile. Arch Dis Child 59(May 1984): 466-472.
[3] Penders, J., C. Vink, C. Driessen, N. London, C. Thijs, and E. E. Stobberingh, Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243(Feb 2005): 141-147.
[4] Rotimi, V. O. and D. Akindutire, Clostridium difficile in the normal adult faecal flora. Afr J Med Med Sci 15(Sep-Oct 1986): 73-77.
[5] Keel, K., J. S. Brazier, K. W. Post, S. Weese, and J. G. Songer, Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45(Jun 2007): 1963-1964.
[6] Lefebvre, S. L., D. Waltner-Toews, A. S. Peregrine, R. Reid-Smith, L. Hodge, L. G. Arroyo, and J. S. Weese, Prevalence of zoonotic agents in dogs visiting hospitalized people in Ontario: implications for infection control. J Hosp Infect 62(Apr 2006): 458-466.
[7] Madewell, B. R., J. K. Bea, S. A. Kraegel, M. Winthrop, Y. J. Tang, and J. Silva, Jr., Clostridium difficile: a survey of fecal carriage in cats in a veterinary medical teaching hospital. $\underline{\text { J Vet Diagn Invest }}$ 11(Jan 1999): 50-54.
[8] Medina-Torres, C. E., J. S. Weese, and H. R. Staempfli, Prevalence of Clostridium difficile in horses. Vet Microbiol 152(Aug 2011): 212-215.
[9] de Boer, E., A. Zwartkruis-Nahuis, A. E. Heuvelink, C. Harmanus, and E. J. Kuijper, Prevalence of Clostridium difficile in retailed meat in the Netherlands. Int J Food Microbiol 144(Jan 2011): 561-564.
[10] Rodriguez-Palacios,A., H.R.Staempfli, T.Duffield, and J.S.Weese, Clostridium difficile in retail ground meat, Canada. Emerg Infect Dis 13(Mar2007): 485-487.
[11] Metcalf, D., R. J. Reid-Smith, B. P. Avery, and J. S. Weese, Prevalence of Clostridium difficile in retail pork. Can Vet J 51(Aug 2010): 873- 876.
[12] Jobstl, M., S. Heuberger, A. Indra, R. Nepf, J. Kofer, and M. Wagner, Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138(Mar 2010): 172-175.
[13] Metcalf, D. S., M. C. Costa, W. M. Dew, and J. S. Weese, Clostridium difficile in vegetables, Canada. Lett Appl Microbiol 51(Nov 2010): 600-602.
[14] Karen, C. C. and G. B. John, Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 652011): 501-521.
[15] Bartlett, J. G., T. Chang, N. S. Taylor, and A. B. Onderdonk, Colitis induced by Clostridium difficile. Rev Infect Dis 1(Mar-Apr 1979): 370-378.
[16] George, R. H., J. M. Symonds, F. Dimock, J. D. Brown, Y. Arabi, N. Shinagawa, M. R. Keighley, J. Alexander-Williams, and D. W. Burdon, Identification of Clostridium difficile as a cause of pseudomembranous colitis. Br Med J 1(Mar 1978): 695.
[17] Hessen, M. T., In the clinic. Clostridium difficile Infection. Ann Intern Med 153(Oct 2010): ITC41-15; quiz ITC416.
[18] Sanchez-Perez, M., M. Munoz-Juarez, E. Luque-de Leon, E. MorenoPaquentin, F. Cordera-Gonzalez de Cosio, and E. Jean-Silver, Toxic megacolon secondary to Clostridium difficile colitis. Case report. Rev Gastroenterol Mex 75(Jan-Mar 2010): 103-106.
[19] Edwards, D. P., M. A. Saleemi, C. Grundy, and E. M. Chisholm, Clostridium difficile toxic megacolon following splenectomy. J R Army Med Corps 143(Oct 1997): 167-168.
[20] Funada, H., T. Ishizaki, T. Kuroda, K. Hattori, and S. Nakamura, Cefotaximeassociated diarrhea and Clostridium difficile. Jpn J Antibiot 37(Apr 1984): 555-557.
[21] Trillis, F., 3rd, E. C. Eckstein, R. Budavich, M. J. Pultz, and C. J. Donskey, Contamination of hospital curtains with healthcare-associated pathogens. Infect Control Hosp Epidemiol 29(Nov 2008): 1074-1076.
[22] Rea, M. C., O. O'Sullivan, F. Shanahan, P. W. O'Toole, C. Stanton, R. P. Ross, and C. Hill, Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. J Clin Microbiol 50(Mar2012) : 867-875.
[23] Rupnik, M., M. H. Wilcox, and D. N. Gerding, Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7(Jul 2009): 526-536.
[24] Khan, A., S. Raza, S. A. Batul, M. Khan, T. Aksoy, M. A. Baig, and B. J. Berger, The evolution of Clostridium difficile infection in cancer patients: epidemiology, pathophysiology, and guidelines for prevention and management. Recent Pat Antiinfect Drug Discov 7(Aug 2012): 157-170.
[25] Waywa,D.,S.Kongkriengdaj, S. Chaidatch, S. Tiengrim, B. Kowadisaiburana, S. Chaikachonpat, S. Suwanagool, A. Chaiprasert, A. Curry, W. Bailey, Y. Suputtamongkol, and N. J. Beeching, Protozoan enteric infection in AIDS related diarrhea in Thailand. Southeast Asian J Trop Med Public Health 32 Suppl 2(2001): 151-155.
[26] Poutanen, S. M. and A. E. Simor, Clostridium difficile-associated diarrhea in adults. CMAJ 171(Jul 2004): 51-58.
[27] Dawson, L. F., E. Valiente, E. H. Donahue, G. Birchenough, and B. W. Wren, Hypervirulent Clostridium difficile PCR-ribotypes exhibit resistance to widely used disinfectants. PLoS One 6(2011): e25754.
[28] Merrigan, M., A. Venugopal, M. Mallozzi, B. Roxas, V. K. Viswanathan, S. Johnson, D. N. Gerding, and G. Vedantam, Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production. J Bacteriol 192(Oct 2010): 4904-4911.
[29] Malamou-Ladas, H., S. O'Farrell, J. Q. Nash, and S. Tabaqchali, Isolation of Clostridium difficile from patients and the environment of hospital wards. J Clin Pathol 36(Jan 1983): 88-92.
[30] Mitchell, B. G. and A. Gardner, Prolongation of length of stay and Clostridium difficile infection: a review of the methods used to examine length of stay due to healthcare associated infections. Antimicrob Resist Infect Control 1(2012): 14.
[31] Yasunaga, H., H. Horiguchi, H. Hashimoto, S. Matsuda, and K. Fushimi, The of Clostridium difficile-associated disease following digestive tract surgery in Japan. J Hosp Infect 82(Nov 2012): 175-180.
[32] Pepin, J., L. Valiquette, M. E. Alary, P. Villemure, A. Pelletier, K. Forget, K. Pepin, and D. Chouinard, Clostridium difficile-associated diarrhea in a region of Quebec from 1991 to 2003: a changing pattern of disease severity. CMAJ 171(Aug 2004): 466-472.
[33] Lyytikainen, O., H. Turunen, R. Sund, M. Rasinpera, E. Kononen, P. Ruutu, and I. Keskimaki, Hospitalizations and deaths associated with Clostridium difficile infection, Finland, 1996-2004. Emerg Infect Dis 15(May 2009): 761-765.
[34] Eggertson, L., C. difficile hits Sherbrooke, Que., hospital: 100 deaths. CMAJ 171(Aug 2004): 436.
[35] Clostridium difficile Infection in Infants and Children. Pediatrics 131(Jan 2013): 196-200.
[36] Baker, S. S., H. Faden, W. Sayej, R. Patel, and R. D. Baker, Increasing incidence of community-associated atypical Clostridium difficile disease in children. Clin Pediatr (Phila) 49(Jul 2010): 644-647.
[37] Candiotto, A., I. Pascoli, A. Gritti, E. Busato, and G. Dal Pozzo, Toxic megacolon complicating a Clostridium difficile infection in a pregnant woman. J Med Microbiol 59(Jan 2010): 124-126.
[38] Severe Clostridium difficile-associated disease in populations previously at low risk--four states, 2005. MMWR Morb Mortal Wkly Rep 54(Dec 2005): 1201-1205.
[39] Surveillance for community-associated Clostridium difficile--Connecticut, 2006. MMWR Morb Mortal Wkly Rep 57(Apr 4 2008): 340-343.
[40] Khanna, S., D. S. Pardi, S. L. Aronson, P. P. Kammer, R. Orenstein, J. L. St Sauver, W. S. Harmsen, and A. R. Zinsmeister, The Epidemiology of Community-Acquired Clostridium difficile Infection: A PopulationBased Study. Am J Gastroenterol 107(Jan 2012): 89-95.
[41] Quesada-Gomez, C., P. Vargas, D. Lopez-Urena, M. Gamboa-Coronado Mdel, and E. Rodriguez-Cavallini, Community-acquired Clostridium difficile NAP1/027-associated diarrhea in an eighteen month old child. Anaerobe 18(Dec 2012): 581-583.
[42] Warny, M., J. Pepin, A. Fang, G. Killgore, A. Thompson, J. Brazier, E. Frost, and L. C. McDonald, Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366(Sep 2005): 1079-1084.
[43] Pepin, J., L. Valiquette, and B. Cossette, Mortality attributable to nosocomial Clostridium difficile-associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173(Oct 2005): 1037-1042.
[44] Brazier, J. S., R. Raybould, B. Patel, G. Duckworth, A. Pearson, A. Charlett, and B. I. Duerden, Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007-08.Euro Surveill 13(Oct 2008).
[45] Delmee, M., I. Ramboer, J. Van Broeck, and C. Suetens, Epidemiology of Clostridium difficile toxinotype III, PCR-ribotype 027 associated disease in Belgium, 2006. Euro Surveill 11(2006): E060914 060912.
[46] He, M., F. Miyajima, P. Roberts, L. Ellison, D. J. Pickard, M. J. Martin, T. R. Connor, S. R. Harris, D. Fairley, K. B. Bamford, S. D'Arc, J. Brazier, D. Brown, J. E. Coia, G. Douce, D. Gerding, H. J. Kim, T. H. Koh, H. Kato, M. Senoh, T. Louie, S. Michell, E. Butt, S. J. Peacock, N. M. Brown, T. Riley, G. Songer, M. Wilcox, M. Pirmohamed, E. Kuijper, P. Hawkey, B. W. Wren, G. Dougan, J. Parkhill, and T. D. Lawley, Emergence and global spread of epidemic healthcare- associated Clostridium difficile. Nat Genet \quad 45(Dec 2012): 109-113.
[47] Martin, H., B. Willey, D. E. Low, H. R. Staempfli, A. McGeer, P. Boerlin, M. Mulvey, and J. S. Weese, Characterization of Clostridium difficile strains isolated from patients in Ontario, Canada, from 2004 to 2006. J Clin Microbiol 46(Sep 2008): 2999-3004.
[48] Coignard, B., F. Barbut, K. Blanckaert, J. M. Thiolet, I. Poujol, A. Carbonne, J. C. Petit, and J. C. Desenclos, Emergence of Clostridium difficile toxinotype III, PCR- ribotype 027-associated disease, France, 2006. Euro Surveill 11(2006): E060914 060911.
[49] Kuijper, E. J., S. B. Debast, E. Van Kregten, N. Vaessen, D. W. Notermans, and P. J. van den Broek, [Clostridium difficile ribotype 027, toxinotype III in The Netherlands]. Ned Tijdschr Geneeskd 149(Sep 2005): 2087-2089.
[50] Long, S., L. Fenelon, S. Fitzgerald, N. Nolan, K. Burns, M. Hannan, L. Kyne, S. Fanning, and D. Drudy, First isolation and report of clusters of Clostridium difficile PCR 027 cases in Ireland. Euro Surveill 12(Apr 2007): E070426 070423.
[51] Goorhuis, A., T. Van der Kooi, N. Vaessen, F. W. Dekker, R. Van den Berg, C. Harmanus, S. van den Hof, D. W. Notermans, and E. J. Kuijper, Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands. Clin Infect Dis 45(Sep 2007): 695-703.
[52] Cheng, V. C., W. C. Yam, J. F. Chan, K. K. To, P. L. Ho, and K. Y. Yuen, Clostridium difficile ribotype 027 arrives in Hong Kong. Int J Antimicrob Agents 34(Nov 2009): 492-493.
[53] Tae, C. H., S. A. Jung, H. J. Song, S. E. Kim, H. J. Choi, M. Lee, Y. Hwang, H. Kim, and K. Lee, The first case of antibiotic-associated colitis by Clostridium difficile PCR ribotype 027 in Korea. J Korean Med Sci 24(Jun 2009): 520-524.
[54] Kato, H., Y. Ito, R. J. van den Berg, E. J. Kuijper, and Y. Arakawa, First of Clostridium difficile 027 in Japan. Euro Surveill 12(Jan 2007): E070111 070113.
[55] Goorhuis, A., D. Bakker, J. Corver, S. B. Debast, C. Harmanus, D. W. Notermans, A. A. Bergwerff, F. W. Dekker, and E. J. Kuijper, Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47(Nov 2008): 1162-1170.
[56] Owens, R. C., Jr., C. J. Donskey, R. P. Gaynes, V. G. Loo, and C. A. Muto, Antimicrobial-associated risk factors for Clostridium difficile infection. Clin Infect Dis 46 Suppl 1(Jan 2008): S19-31.
[57] Biagi, E., M. Candela, S. Turroni, P. Garagnani, C. Franceschi, and P. Brigidi, Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69(Mar 2013): 11-20.
[58] McFarland, L. V., M. E. Mulligan, R. Y. Kwok, and W. E. Stamm, Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 320(Jan 1989): 204-210.
[59] Voth, D. E. and J. D. Ballard, Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18(Apr 2005): 247-263.
[60] Lyras, D., J. R. O'Connor, P. M. Howarth, S. P. Sambol, G. P. Carter, T. Phumoonna, R. Poon, V. Adams, G. Vedantam, S. Johnson, D. N. Gerding, and J. I. Rood, Toxin B is essential for virulence of Clostridium difficile. Nature 458(Apr 2009): 1176-1179.
[61] Carter, G. P., D. Lyras, D. L. Allen, K. E. Mackin, P. M. Howarth, J. R. O'Connor, and J. I. Rood, Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. JBacteriol 189 (Oct 2007): 7290-7301.
[62] Geric, B., R. J. Carman, M. Rupnik, C. W. Genheimer, S. P. Sambol, D. M. Lyerly, D. N. Gerding, and S. Johnson, Binary toxin-producing, large clostridial toxin-negative Clostridium difficile strains are enterotoxic but do not cause disease in hamsters. J Infect Dis 193(Apr 2006): 11431150.
[63] Schwan, C., B. Stecher, T. Tzivelekidis, M. van Ham, M. Rohde, W. D. Hardt, J. Wehland, and K. Aktories, Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5(Oct 2009): e1000626.
[64] Stiles, B. G., D. J. Wigelsworth, M. R. Popoff, and H. Barth, Clostridial binary toxins: iota and c2 family portraits. Front Cell Infect Microbiol 1(2011): 11.
[65] Snelling, A. M., C. B. Beggs, K. G. Kerr, and S. J. Shepherd, Spores of Clostridium difficile in Hospital Air. Clin Infect Dis 51(Nov 2010): 1104-1105; author reply 1105.
[66] Deneve, C., C. Janoir, I. Poilane, C. Fantinato, and A. Collignon, New trends in Clostridium difficile virulence and pathogenesis. Int J Antimicrob Agents 33 Suppl 1(Mar 2009): S24-28.
[67] Jank, T., T. Giesemann, and K. Aktories, Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Glycobiology 17(Apr 2007): 15R-22R.
[68] Kelly, C. P. and J. T. LaMont, Clostridium difficile infection. Annu Rev Med 491998): 375-390.
[69] Gebhard, R. L., D. N. Gerding, M. M. Olson, L. R. Peterson, C. J. McClain, H. J. Ansel, M. J. Shaw, and M. L. Schwartz, Clinical and endoscopic findings in patients early in the course of Clostridium difficile-associated pseudomembranous colitis. Am J Med 78(Jan 1985): 45-48.
[70] Boaz, A., M. Dan, I. Charuzi, O. Landau, Y. Aloni, and S. Kyzer, Pseudomembranous colitis: report of a severe case with unusual clinical signs in a young nurse. Dis Colon Rectum 43(Feb 2000): 264-266.
[71] Zuckerman, E., G. Kanel, C. Ha, J. Kahn, B. S. Gottesman, and J. Korula, Low albumin gradient ascites complicating severe pseudomembranous colitis. Gastroenterology 112(Mar 1997): 991-994.
[72] Fordtran, J. S., Colitis due to Clostridium difficile toxins: underdiagnosed, highly virulent, and nosocomial. Proc (Bayl Univ Med Cent) 19(Jan 2006): 3-12.
[73] Adams, S. D. and D. W. Mercer, Fulminant Clostridium difficile colitis. Curr Opin Crit Care 13(Aug 2007): 450-455.
[74] Gan, S. I. and P. L. Beck, A new look at toxic megacolon: an update and review of incidence, etiology, pathogenesis, and management. Am J Gastroenterol 98(Nov 2003): 2363-2371.
[75] Feldman, R. J., M. Kallich, and M. P. Weinstein, Bacteremia due to Clostridium difficile: case report and review of extraintestinal C. difficile infections. Clin Infect Dis 20(Jun 1995): 1560-1562.
[76] Libby, D. B. and G. Bearman, Bacteremia due to Clostridium difficile--review of the literature. Int J Infect Dis 13(Sep 2009): e305-309.
[77] Elliott, B., R. Reed, B. J. Chang, and T. V. Riley, Bacteremia with a large clostridial toxin-negative, binary toxin-positive strain of Clostridium difficile. Anaerobe 15(Dec 2009): 249-251.
[78] McCluskey, J., T. V. Riley, E. T. Owen, and D. R. Langlands, Reactive arthritis associated with Clostridium difficile. Aust N Z J Med 12(Oct 1982): 535-537.
[79] Putterman, C. and A. Rubinow, Reactive arthritis associated with Clostridium difficile pseudomembranous colitis. Semin Arthritis Rheum 22(Jun 1993): 420-426.
[80] Dacheux, C., I. Pruvost, B. Herbaux, and E. Nectoux, [Clostridium difficile reactive arthritis in a 7-year-old child]. Arch Pediatr 19(Jun 2012): 607-611.
[81] Bouza, E., P. Munoz, and R. Alonso, Clinical manifestations, treatment and control of infections caused by Clostridium difficile. Clin Microbiol Infect 11 Suppl 4(Jul 2005): 57-64.
[82] Walk, S. T. and V. B. Young, Emerging Insights into Antibiotic-Associated Diarrhea and Clostridium difficile Infection through the Lens of Microbial Ecology. Interdiscip Perspect Infect Dis 20082008): 125081.
[83] MacCannell, D. R., T. J. Louie, D. B. Gregson, M. Laverdiere, A. C. Labbe, F. Laing, and S. Henwick, Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 44(Jun 2006): 2147-2152.
[84] Wongwanich, S., S. Rugdeekha, P. Pongpech, and C. Dhiraputra, Detection of Clostridium difficile toxin A and B genes from stool samples of Thai diarrheal patients by polymerase chain reaction technique. J Med Assoc Thai 86(Oct 2003): 970-975.
[85] Thipmontree, W., P. Kiratisin, S. Manatsathit, and V. Thamlikitkul, Epidemiology of suspected Clostridium difficile-associated hospitalacquired diarrhea in hospitalized patients at Siriraj Hospital. J Med Assoc Thai 94 Suppl 1(Feb 2011): S207-216.
[86] Kuijper, E. J., R. J. van den Berg, and J. S. Brazier, Comparison of molecular typing methods applied to Clostridium difficile. Methods Mol Biol 551(2009): 159-171.
[87] Clements, A. C., R. J. Magalhaes, A. J. Tatem, D. L. Paterson, and T. V. Riley, Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis 10(Jun 2010): 395-404.
[88] Terhes, G., E. Urban, M. Konkoly-Thege, E. Szekely, J. S. Brazier, E. J. Kuijper, and E. Nagy, First isolation of Clostridium difficile PCR ribotype 027 from a patient with severe persistent diarrhoea in Hungary. Clin Microbiol Infect 15(Sep 2009): 885-886.
[89] Indra, A., S. Huhulescu, P. Hasenberger, D. Schmid, C. Alfery, R. Wuerzner, M. Fille, K. Gattringer, E. Kuijper, and F. Allerberger, First isolation of Clostridium difficile PCR ribotype 027 in Austria. Euro Surveill 112006): E060914 060913.
[90] Lyytikainen, O., S. Mentula, E. Kononen, S. Kotila, E. Tarkka, V. J. Anttila, E. Mattila, M. Kanerva, M. Vaara, and V. Valtonen, First isolation of Clostridium difficile PCR ribotype 027 in Finland. Euro Surveill 12(Nov 2007): E071108 071102.
[91] Joseph, R., D. Demeyer, D. Vanrenterghem, R. van den Berg, E. Kuijper, and M. Delmee, First isolation of Clostridium difficile PCR ribotype 027, toxinotype III in Belgium. Euro Surveill 10(Oct 2005): E051020 051024.
[92] Pituch, H., D. Bakker, E. Kuijper, P. Obuch-Woszczatynski, D. Wultanska, G. Nurzynska, A. Bielec, E. Bar-Andziak, and M. Luczak, First isolation of Clostridium difficile PCR-ribotype 027/toxinotype III in Poland.

Pol J Microbiol 572008): 267-268.
[93] Baldan, R., P. Cavallerio, A. Tuscano, C. Parlato, L. Fossati, M. Moro, R. Serra,and D. M. Cirillo, First report of hypervirulent strains polymerase chain reaction ribotypes 027 and 078 causing severe Clostridium difficile infection in Italy. Clin Infect Dis 50(Jan 2010): 126-127.
[94] Ingebretsen, A., G. Hansen, C. Harmanus, and E. J. Kuijper, First confirmed cases of Clostridium difficile PCR ribotype 027 in Norway. Euro Surveill 13(Jan 2008).
[95] Lim, P. L., M. L. Ling, H. Y. Lee, T. H. Koh, A. L. Tan, E. J. Kuijper, S. S. Goh, B. S. Low, L. P. Ang, C. Harmanus, R. T. Lin, P. Krishnan, L. James, and C. E. Lee, Isolation of the first three cases of Clostridium difficile polymerase chain reaction ribotype 027 in Singapore. Singapore Med J 52(May 2011): 361-364.
[96] Kim, H., Y. Lee, H. W. Moon, C. S. Lim, K. Lee, and Y. Chong, Emergence of Clostridium difficile ribotype 027 in Korea. Korean J Lab Med 31(Jul 2011): 191-196.
[97] The Standards Unit, Health Protection Agency. UK Standards for Microbiology Investigations [Online]. 2012. Available from: http://www.hpa.org.uk/webc/hpawebfile/hpaweb_c/1317132856426 [2013,March 23]
[98] Lemee, L., A. Dhalluin, S. Testelin, M. A. Mattrat, K. Maillard, J. F. Lemeland, and J. L. Pons, Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (Toxin A), and tcdB (Toxin B) genes for toxigenic culture of Clostridium difficile. J Clin Microbiol 42(Dec 2004): 5710-5714.
[99] Persson, S., M. Torpdahl, and K. E. Olsen, New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin ($c d t A / c d t B$) genes applied to a Danish strain collection. Clin Microbiol Infect 14(Nov 2008): 1057-1064.
[100] Persson, S., J. N. Jensen, and K. E. Olsen, Multiplex PCR method for detection of Clostridium difficile tcdA, tcdB, cdtA, and $c d t B$ and internal in-frame deletion of tcdC. J Clin Microbiol 49(Dec 2011): 4299-4300.
[101] Spigaglia, P. and P. Mastrantonio, Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40(Sep 2002) : 3470-3475.
[102] Cohen, S. H., Y. J. Tang, and J. Silva, Jr., Analysis of the pathogenicity locus in Clostridium difficile strains. J Infect Dis 181(Feb 2000): 659-663.
[103] Bidet, P., V. Lalande, B. Salauze, B. Burghoffer, V. Avesani, M. Delmee, A. Rossier, F. Barbut, and J. C. Petit, Comparison of PCR-ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 38(Jul 2000): 2484-2487.
[104] Cohen, S. H., Y. J. Tang, B. Hansen, and J. Silva, Jr., Isolation of a toxin Bdeficient mutant strain of Clostridium difficile in a case of recurrent C. difficile-associated diarrhea. Clin Infect Dis 26(Feb 1998): 410-412.
[105] Samra, Z., S. Talmor, and J. Bahar, High prevalence of toxin A-negative toxin Bpositive Clostridium difficile in hospitalized patients with gastrointestinal disease. Diagn Microbiol Infect Dis 43(Jul 2002) : 189-192.
[106] Drudy, D., N. Harnedy, S. Fanning, M. Hannan, and L. Kyne, Emergence and control of fluoroquinolone-resistant, toxin A-negative, toxin B-positive Clostridium difficile. Infect Control Hosp Epidemiol 28(Aug 2007): 932-940.
[107] Rupnik, M., Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 32(May 2008): 541-555.

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongkorn University

APPENDIX A

MATERIALS AND EQUIPMENTS

Materials and reagents

```
- Agarose (Research organism, USA)
- Anaerobic indicator (Oxoid, Basingstroke, Hamps, UK)
- Boric acid (Sigma, USA)
- Brucellar agar (BBL, USA)
- Ethylene diamine tetraacetic acid (EDTA) (Sigma, USA)
- Ethidium bromide (Bio Rad, USA)
- Gaspak (AnaeroPack-Anaero, Mitsubishi, Japan)
- GeneRuler \({ }^{\text {TM }} 50\) bp DNA Ladder Plus (Fermentas, USA)
- GeneRuler \({ }^{\text {TM }} 100\) bp DNA Ladder Plus (Fermentas, USA)
- Phenylethyl Alcohol Agar (BBL, USA)
- Proteinase K (Sigma, USA)
- Skim milk (Difco, USA)
- Sodium chloride (NaCl) (Sigma, USA)
- Taq DNA polymerase (Invitrogen , USA)
- Tris base (Sigma, USA)
```

- Tween 20 (Merck, Germany)
- Tween 80 (Sigma, USA)

2. Equipments

- Anaerobic Chamber (Concept Plus, Ruskinn Technology, UK)
- Anaerobic Jar (BBL, USA)
- Autoclave (Hirayama, Japan)
- Autopipettes (Gilson, France)
- Deep Freezer (-20 $\left.{ }^{\circ} \mathrm{C}\right)$ (Sanyo, Japan)
- Deep Freezer (-80 $\left.{ }^{\circ} \mathrm{C}\right)$ (Sanyo, Japan)
- Electrophoresis chamber (BioRad, USA)
- Gel doc (BioRad, USA)
- Heat block (Scientific, USA)
- Hot air oven (Haraeus, Germany)
- Incubator (Forma Scientific, USA)
- Light Microscope (Nikon, Japan)
- Microcentrifuge (Eppendorf, USA)
- pH meter (Orion, USA)
- Thermal cycler (Eppendorf, Hamburg, Germany)
- Vortex mixer (Scientific, USA)
- Water bath (Memmert, USA)

3. Software and program

- GenBank DNA database search (http://www.ncbi.nlm.gov/BLAST).
- Multalin program (http://bioinfo.genotoul.fr/multalin)
- ExPASy translate http://web.expasy.org/translate/

APPENDIX B

PREPARATION OF MEDIA AND REAGENT

Media for Clostridium difficile

1. 5\% Sheep blood Brucella agar

Brucella agar (BBL) 43 g
Sterile sheep blood 50 ml

Distilled water
$1,000 \mathrm{ml}$
2. 5\% Sheep blood PEA agar

PEA agar (BBL)
42.5 g

Sterile sheep blood
Distilled water

50 ml
$1,000 \mathrm{ml}$

PEA agar using for Clostridium difficile isolated from stool sample.
3. 20% Skim milk

Skim milk (BBL) จูาลงกรณัมหาวิทยาล้ย 37 g
Distilled water $1,000 \mathrm{ml}$

The pH was adjusted to 7.2 before autoclaving at $121^{\circ} \mathrm{C}$ for 15 minutes.

Reagent for molecular analysis

1. 0.5M EDTA, pH 8.0

Ethylene diamine tetraacetic acid (EDTA) 93.05 g

Distilled water 500 ml

Dissolve 93.05 g of EDTA in 400 ml of distilled water, adjusted pH to 8.0 with NaOH (pellets) and final volume was bought up to 500 ml . The stock reagent sterile by
autoclaving at $121^{0} \mathrm{C}$ at 15 pounds $/ \mathrm{inch}^{2}$ pressure for 15 minutes. The solution was stored at room temperature.

2. 5 X TBE

Tris base
Boric acid
0.5M EDTA pH 8.0
Distilled water
27.5 g 54 g

20 ml $1,000 \mathrm{ml}$

Dissolve all of ingradients in $1,000 \mathrm{ml}$ of distilled water. The stock reagent sterile by [107]autoclaving at $121^{\circ} \mathrm{C}$ at 15 pounds/inch ${ }^{2}$ pressure for 15 minutes. The solution was stored at room temperature.

3. 1 M Tris-HCl, pH 8.0

Tris base
121.1 g

Distilled water Cuil Al Ongiongill| $1,000 \mathrm{ml}$

Dissolve 121.1 g of Tris base in 800 ml of distilled water. Adjust the pH to the desired value by adding concentrated HCl 42 ml and allow the solution to cool to room temperature before making final adjustments to the pH 8.0 . Adjust the volume of the solution to 1 liter with distilled water. Dispense in to aliquots and sterilize by autoclaving.

4. 10X Digestion buffer

The stock reagent 10X digestion buffer contained 5\% tween 20 and $10 \mathrm{mg} / \mathrm{ml}$ proteinase K in 0.2 M Tris pH 8.3. For example prepare 4 ml of the stock reagent.

Tween 20

Proteinase K

1M Tris pH 8.3

Distilled water
0.2 ml

40 mg
0.8 ml
3.0 ml

Dissolve 40 mg of Proteinase K in 3 ml of distilled water adding Tween 20 and 1M Tris pH 8.3 making final volume to 4 ml . Mix well and store at $4^{0} \mathrm{C}$.

APPENDIX C

Detail of PCR and Multiplex PCR results from C. difficile clinical isolates in this study

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
1	ND	M	+	0	+	0	N
2	34	F	+	0	+	0	N
3	54	F	+	+	+	0	N
4	87	M	$+$	0	0	0	-
5	ND	M	+	0	0	0	-
6	ND	F		0	+	0	N
7	ND	M		-	-	-	-
8	35	F		+	+	0	N
9	ND	F	+	0	0	0	-
10	37	F	+ + -	0	${ }^{+}$	0	N
11	7	F	+	0	0	0	-
12	54	F	ชาลง + กญ์มห	0	0	0	-
13	89	F	ULALOI + IKORN	0	+	0	N
14	25	F	+	0	+	0	N
15	ND	F	+	0	+	0	N
16	68	F	+	0	+	0	N
17	76	F	+	0	+	0	N
18	63	M	+	0	+	0	N
19	ND	F	+	0	+	0	N
20	ND	M	+	0	+	0	N
21	ND	M	+	0	+	0	N
22	95	M	+	+	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
23	ND	F	+	0	+	0	N
24	ND	M	+	0	+	0	N
25	ND	F	+	+	+	0	-
26	80	M	+	0	+	0	N
27	ND	F	+	+	+	0	N
28	ND	F	0	0	0	0	0
29	65	M	0	0	0	0	0
30	ND	M	0	0	0	0	0
31	ND	F	+	+	+	0	N
32	ND	F		+	+	0	N
33	ND	F		0	+	0	N
34	76	F	+	0	+	0	N
35	ND	F	$+$	0	0	0	-
36	ND	F	+	0	+	0	N
37	ND	M	ชาลงกรณัมช	0	$+$	0	N
38	77	M	$1 \mathrm{AlOH}+\mathrm{MORN}$	+	+	+	D
39	51	M	+	+	+	0	N
40	48	F	+	+	+	0	N
41	87	F	+	0	+	0	N
42	81	M	+	+	+	0	N
43	39	F	+	0	+	0	N
44	ND	M	+	+	+	0	N
45	87	F	+	+	+	0	N
46	ND	F	+	+	+	0	N
47	ND	F	+	0	\pm	0	N

No.	Age	Sex	C. difficile (tpi)	$t c d A$	$t c d B$	Binary	$t c d C$
48	ND	M	+	0	0	0	-
49	ND	F	+	0	0	0	-
50	44	F	+	0	0	0	-
51	ND	M	+	+	+	0	N
52	27	F	+	0	0	0	-
53	33	F	+	0	0	0	-
54	ND	F	+	0	+	0	N
55	ND	M	+	0	+	0	N
56	67	F		+	+	0	N
57	99	F		0	0	0	-
58	ND	F		0	0	0	-
59	ND	-	+	0	0	0	-
60	32	F	$+$	0	0	0	-
61	32	F	+	0	0	0	-
62	ND	F		0	$+$	0	N
63	58	M		0	0	0	-
64	32	F	+	0	0	0	-
65	ND	M	+	0	0	0	-
66	102	F	+	+	+	0	N
67	87	M	+	0	0	0	-
68	95	M	+	0	0	0	-
69	62	F	+	+	+	0	N
70	14	M	+	0	+	0	N
71	ND	M	+	0	0	0	-
72	ND	F	+	+	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
73	44	F	+	+	+	0	N
74	44	F	+	+	+	0	N
75	75	F	+	0	0	0	-
76	62	F	+	+	+	0	N
77	86	F	+	+	+	0	N
78	68	M	+	+	+	0	N
79	68	M	+	+	+	0	N
80	2	M	$+$	0	+	0	N
81	91	F		0	0	0	-
82	73	M		0	0	0	-
83	ND	M		0	+	0	N
84	1	F	+	0	0	0	-
85	87	M	$+$	0	0	0	-
86	84	M		+	+	0	N
87	81	M	+	0	ล	0	-
88	49	F	WLALOI ${ }^{+}$(MORN	0	$+$	0	N
89	ND	F	+	+	+	0	N
90	73	F	+	0	+	0	N
91	40	F	+	+	+	0	N
92	47	F	+	0	0	0	-
93	ND	M	+	0	0	0	-
94	95	M	+	0	+	0	N
95	7	F	+	0	0	0	-
96	7	F	+	0	0	0	-
97	84	M	+	0	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
98	32	F	+	0	0	0	-
99	ND	M	+	0	0	0	-
100	ND	M	+	+	+	0	N
101	43	F	+	+	+	0	N
102	60	M	+	+	+	0	N
103	33	F	+	0	0	0	-
104	32	F	+	0	0	0	-
105	16	F	+	0	0	0	-
106	ND	M		-	-	0	-
107	ND	F		0	+	0	N
108	76	F		0	0	0	-
109	60	M	+	+	+	0	N
110	11	M	$+$	0	0	0	-
111	78	F	+	+	+	0	N
112	39	F	พาลงก + ถัมห	0	ลั	0	-
113	85	M	JLALOItMORN	0	0	0	-
114	ND	M	+	0	0	0	-
115	60	M	+	+	+	0	N
116	82	M	+	0	+	0	N
117	82	M	+	0	+	0	N
118	60	M	+	0	0	0	-
119	40	M	+	0	+	0	N
120	74	M	+	+	+	0	N
121	ND	F	+	+	+	0	N
122	59	M	+	0	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
123	39	F	+	0	+	0	N
124	82	F	+	+	+	0	N
125	95	M	+	+	+	0	N
126	81	F	+	0	0	0	-
127	ND	M	+	0	0	0	-
128	58	M	+	0	+	0	N
129	88	F	+	0	0	0	-
130	ND	F	+	0	0	0	-
131	76	F		0	0	0	-
132	33	M		+	+	0	N
133	60	M		0	0	0	-
134	88	F	+	+	+	0	N
135	95	M	$+$	0	${ }^{+}$	0	N
136	63	F	+	0	+	0	N
137	9	M		0	ล	0	-
138	74		WALO + (\%ORN	0	+	0	N
139	83	F	+	+	+	0	N
140	44	M	+	0	0	0	-
141	ND	M	+	+	+	0	N
142	65	F	+	+	+	0	N
143	85	M	+	+	+	0	N
144	85	M	+	+	+	0	N
145	33	M	+	+	+	0	N
146	74	F	+	+	+	0	N
147	26	F	+	0	0	0	-

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
148	77	F	+	+	+	0	N
149	2	M	+	0	0	0	-
150	ND	F	+	0	0	0	-
151	85	M	+	+	+	0	N
152	82	F	+	0	0	0	-
153	42	M	+	0	0	0	-
154	42	M	+	0	0	0	-
155	49	M	+	0	0	0	-
156	49	M		0	0	0	-
157	95	M		0	+	0	N
158	93	F		+	+	0	N
159	96	F	+	0	0	0	-
160	ND	F	$+$	+	+	0	N
161	62	M	+	0	+	0	N
162	81	M	าลงกรณัมห	0	$+$	0	N
163	84	M	ILALO ${ }^{+}$	+	+	0	N
164	ND	F	+	+	+	0	N
165	78	F	+	+	+	0	N
166	ND	M	+	0	0	0	-
167	75	M	+	+	+	0	N
168	89	M	0	0	0	0	0
169	85	F	+	+	+	0	N
170	ND	F	+	0	+	0	N
171	69	F	+	0	0	0	-
172	1	M	+	+	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
173	ND	M	+	0	0	0	-
174	78	F	+	0	0	0	-
175	48	F	+	0	0	0	-
176	53	M	+	0	0	0	-
177	70	M	+	0	0	0	-
178	ND	M	+	0	0	0	-
179	96	F	+	0	0	0	-
180	96	F	+	0	0	0	-
181	96	F		0	0	0	-
182	46	M		0	0	0	-
183	61	M		0	0	0	-
184	58	F	+	0	0	0	-
185	95	F	+	0	0	0	-
186	79	F	+	0	0	0	-
187	71	M	$+{ }^{+}$	$+$	$+$	0	N
188	75	M	HALO + (\%ORN	+	+	0	N
189	35	F	+	0	+	0	N
190	17	M	+	0	+	0	N
191	93	F	+	+	+	0	N
192	96	F	+	0	0	0	N
193	82	F	+	0	0	0	N
194	74	M	0	0	0	0	-
195	96	F	+	0	0	0	N
196	96	F	+	0	0	0	N
197	84	M	+	0	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
198	87	M	+	0	0	0	-
199	88	M	+	+	+	0	N
200	ND	F	+	+	+	0	N
201	93	F	+	+	+	0	N
202	84	M	+	+	+	0	N
203	57	F	+	+	+	0	N
204	86	M	+	+	+	0	N
205	72	M	+	0	0	0	-
206	72	M		+	+	0	N
207	89	F		+	+	0	N
208	89	F		+	+	0	N
209	80	F	+	+	+	0	N
210	96	F	$+$	+	+	0	N
211	ND	F	+	+	+	0	N
212	80	F		$+$	$+$	0	N
213	35	F	WALOHKORN	+	+	0	N
214	ND	F	+	0	+	0	-
215	84	F	+	+	+	0	N
216	1	M	+	+	+	0	N
217	ND	M	+	0	+	0	N
218	ND	F	+	0	+	0	N
219	51	F	+	+	+	0	N
220	65	F	+	+	+	0	N
221	90	F	+	+	+	0	N
222	ND	M	+	+	+	0	N

No.	Age	Sex	C. difficile (tpi)	tcdA	$t c d B$	Binary	tcdC
223	ND	F	+	0	+	0	N
224	86	M	+	0	+	0	N
225	71	F	+	+	+	0	N
226	ND	M	+	+	+	0	N
227	82	M	+	0	+	0	N
228	47	F	+	0	0	0	-
229	80	F	+	0	0	0	-
230	37	F	+	0	+	0	N
231	84	F	+	+	+	0	N
232	ND	M		0	+	0	N
233	86	M		0	+	0	N
234	45	M	+	0	+	0	N
235	45	M	$+$	0	+	0	N
236	76	M	+	+	+	0	N
237	30	F		0	0	0	N
238	35	F	HALO + (\%ORN	0	+	0	N
239	ND	M	+	0	+	0	N
240	ND	F	+	0	+	0	N
241	ND	F	+	0	0	0	-
242	84	M	+	0	+	0	N

M: Male, F: Female, ND : no data, N : normal, D : deleted, (+) : positive, (-) negative

Comparison between tcdC from C. difficile VPI10463 reference strain and tcdC from C. difficile culture No. 38

Comparison between TcdC from C. difficile VPI10463 reference strain and TcdC from C. difficile culture No. 38 (large picture)

BIOGRAPHY

Miss Prasertsri Tunglertsumphan was born on April 23, 1981 in Bangkok, Thailand. She graduated with Bachelor degree of Science in Medical Technology from the Faculty of Allied Health Sciences at Chulalongkorn University in 2004.

