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Chapter 1

Superconductors in a
Magnetic Field

1.1 Introduction

The microscopic theory of superconductivity was established in 1957 by Bardeen,

Cooper and Schrieffer (BCS). The condensed state occurs when electrons of op-

posite spin and momentum form singlet pairs, so called the Cooper pair. The

phonon mediated interaction is responsible for attractive electrons. The crucial

concept of the BCS theory is the presence of an instability of the normal state

toward the formation of the Cooper pair. An infinite conductivity, perfect dia-

magnetism and existence of the energy gap are features of superconductivity. The

Cooper pair is always assumed to be uniform in a bulk superconductor. There-

fore the critical magnetic field is purely the response of the orbital electron, the

effect of electron spins is completely neglected. This superconductor is named as

type I. For the type II superconductor, the transition to the normal state with

increasing field is of the second order phase transition which is characterized by

the superconducting order parameter vanishing continuously at a field Hc2 greater

than the bulk thermodynamic critical field Hc.

The effect of a uniform static magnetic field on a superconductor par-

ticularly for the type II superconductor has attracted much attention recently.

The coupling of electron spins with the Zeeman magnetic field can make a signif-

icant contribution to the upper critical field Hc2 in a high field superconductor.
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Furthermore, the possibility of inhomogeneous superconductivity with spatial os-

cillation of the order parameter was investigated by Fulde and Ferrell (1964) and

Larkin and Ovchinnikov (1965), FFLO, who demonstrated that the pairing elec-

trons with nonzero total momentum can occur when the conduction electrons

have the spin energy splitting the Fermi surface due to the action of the Zeeman

energy.

The external applied magnetic field can be idealized as an internal ex-

change field acting on the electron spins. The ferromagnetic alignment of param-

agnetic impurities may be regarded as an external molecular field which produces

the spin exchange field. The FFLO state provides the coexistence of supercon-

ductivity and magnetism. Nevertheless, the FFLO state was never observed in

bulk materials due to the Clogston ’s criterion (Clogston, 1962) which stated that

the superconducting state at zero temperature is completely destroyed when the

paramagnetic field Hp(0) exceeds 4(0)/
√

2µ, where 4(0) is the zero tempera-

ture superconducting energy gap and µ the Bohr magneton. Although the FFLO

state is not favorable in bulk superconductors, the ferromagnetic/superconductor

proximity effect may be a good candidate because the Cooper pairs in a ferro-

magnetic layer behave like a damped oscillation which reveals the inhomogeneous

superconducting state.

Chapter 1 is organized as follows, in §1.2 we review the superconductor

in the presence of a magnetic field. It is argued that both the gap and the

thermodynamic properties change drastically due to the magnetic field. §1.3

explains the inhomogeneous superconducting state where the possibility of the

FFLO phase is discussed.
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1.2 Paramagnetic superconductors

In this section we will examine the effect of spin paramagnetism on a super-

conducting state as well as the thermodynamic behavior by assuming that the

magnetic field is uniform. The model Hamiltonian describes the conduction elec-

trons interact with other electrons by means of the attractive interaction in which

the uniform magnetic field acting on the electron spin.

H =
∑

~kσ

ξ~kσa
†
~kσ

a~kσ − V
∑

~k~k′
a†~k↑a

†
~−k′↓a~k′↑a ~−k↓ (1.1)

where ξ~kσ = ξ~k − σh, ξ~k is the one-electron energy measured from the Fermi sur-

face, h = µ0H is the Zeeman energy represents the electron magnetic moment µ0

coupled to the magnetic field H. a†~kσ
and a~kσ are the creation and the destruction

operators of an electron state (~k, σ). The interaction range is confined in the stripe

of thickness 2ωD around the Fermi surface, ωD is the maximum phonon (Debye)

frequency. This model Hamiltonian neglects the vector potential involving the

Meissner effect, this enables us to generalize the BCS treatment by taking into

account only the effect of electron spins. As a result

Heff =
∑

~kσ

ξ~kσa
†
~kσ

a~kσ +
∑

~k

(4a†~k↑a
†
−~k↓ + h.c.) (1.2)

with the order parameter

4 = −V
∑

~k

〈a−~k↓a~k↑〉 (1.3)

where < .... > means the grand canonical average of any operator and h.c. refers to

the hermitian conjugate. The self-consistency condition for the order parameter

4(T, h) is obtained by virtue of the Bogoliubov transformation and one has the

result

4 = V
∑

~k

41− f(E~k↑)− f(E~k↓)

2E~k

(1.4)
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with E~kσ = E~k − σh, E~k =
√

ξ2
~k

+42(T, h) is the finite temperature supercon-

ducting order parameter in a magnetic field, and the Fermi distribution function

f(E) = 1/(1 + exp E/T ).

We pass from the sum over momentum space to the integral over energy

and introduce the density of states at the Fermi level N(0), (1.4) becomes

1 = N(0)V
∫ ωD

0

dξ

2
√

ξ2 +42(T, h)
[tanh(

√
ξ2 +42(T, h)− h

2T
)

+ tanh(

√
ξ2 +42(T, h) + h

2T
)]. (1.5)

We must solve (1.5) self-consistency to obtain the order parameter 4(T, h). If we

taking h = 0 in (1.5), the ordinary BCS gap equation is obtained as expected,

further by observing that the replacement h → −h leaves 4(T, h) invariant then

we can write down (1.5) as

1 = N(0)V
∫ ωD

0

dξ√
ξ2 +42(T, h)

tanh(

√
ξ2 +42(T, h)− h

2T
). (1.6)

At T = 0 this equation reduces to

1 = N(0)V
∫ ωD

0

dξ√
ξ2 +42(0, h)

θ(
√

ξ2 +42(0, h)− h), (1.7)

where the step function θ(x) = 1 when x > 1 and θ(x) = 0 when x < 1. The

argument of the step function must satisfies the inequality

ξ >
√

h2 −42(0, h). (1.8)

This inequality shows that the conduction electron energy is bounded only when

h > 4(0, h) while in the opposite case i.e., when h < 4(0, h), (1.7) has no
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solution so the possible one is 4(0, h) = 4(0, 0). We now determine the solution

of (1.7) in the case h > 4(0, h) by using (1.8)

1

N(0)V
=

∫ ωD√
h2−42(0,h)

dξ√
ξ2 +42(0, h)

. (1.9)

Performing the integral and eliminating the coupling constant we obtain

sinh−1 ωD

4(0, 0)
= sinh−1 ωD

4(0, h)
− cosh−1 h

4(0, h)
. (1.10)

Eq.(1.10) in the weak-coupling approximation yields the zero temperature solu-

tion

4(0, h) = 4(0, 0)

√
2h

4(0, 0)
− 1, (1.11)

which is the result first obtained by Sarma (1963), the range of the Sarma’s gap

energy lie in the intervals 2h/4(0, 0)− 1 > 0 and h > 4(0, h) together with the

fact that the Zeeman energy tends to break electron pairs i.e., 4(0, h) < 4(0, 0).

Combining these inequalities we thus get the confined region of (2.11)

1

2
4(0, 0) < h < 4(0, 0). (1.12)

To investigate the stability of the superconducting state we employ the

Abrikosov’s formula (1988) of the free energy difference between the supercon-

ductive and the normal phases

Fs(h)− Fn(h) =
∫ 4(0,h)

0
42d

1

V
. (1.13)

For the BCS superconductor we have the gap equation in the weak-

coupling limit

1 = N(0)V ln
2ωD

4(0, 0)
,
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with 4(0, h) = 4(0, 0), after inserting the BCS gap equation into the equation

(1.13), the calculated result is

Fs(h)− Fn(h) = −1

2
N(0)42(0, 0) = Fs(0)− Fn(0). (1.14)

This result reveals that the BCS free energy is independent of the magnetic field,

however, the energy of the normal state paramagnetism is given by

Fn(h)− Fn(0) = −N(0)h2. (1.15)

The free energy difference should be rewritten as

Fs(h)− Fn(h) = [Fs(h)− Fs(0)] + [Fs(0)− Fn(0)] + [Fn(0)− Fn(h)]. (1.16)

Combining (1.14)-(1.16) together with Fs(h) = Fs(0) for the superconducting

BCS state (the perfect Meissner effect) we get

Fs(h)− Fn(h) = −N(0)(
1

2
42(0, 0)− h2). (1.17)

Because of the condition h < 4(0, 0) for the BCS superconductor this obtained

result indicates that Fs(h) is smaller than Fn(h) at low h. As increasing h the

free energy difference, (1.17), increases gradually. There will be the critical field

h = hc in which Fs(h) = Fn(h) and for the field below the critical value h < hc

there is a stable superconducting state . At the critical field hc, (1.17) implies

hc =
1√
2
4(0, 0), (1.18)

which is the result first obtained by Clogton(1962).

For the spin polarized superconductor we have the weak-coupling solution

of (1.9)

1 = N(0)V [ln
2ωD

4(0, h)
− cosh−1 h

4(0, h)
],
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we calculate (1.13) by using this expression the result is

Fs(h)− Fn(h) = N(0)[−1

2
42(0, h) + h(h−

√
h2 −42(0, h))],

By substituting the paramagnetic superconducting gap solution of Sarma,(1.11),

into the above equation, we obtain

Fs(h)− Fn(h) =
1

2
N(0)(4(0, 0)− 2h)2, (1.19)

in the interval 1/2 < h/4(0, 0) < 1, this result indicates that Fs(h) is greater

than Fn(h). As h increases from the lower limit the free energy difference being

initially zero and then increases continuously until they reach the upper field limit.

So when comparing their energies,(1.14) and (1.15), we find the spin polarized

superconductive state places above the BCS state. Thus we conclude that the

formation of the spin polarized state is unstable towards the BCS state.

We consider now the situation when T 6= 0 the finite temperature gap

equation (1.6) can be rewritten in a more convenient form as

ln
4(T, h)

4(0, 0)
=

∫ ωD

0

dξ√
ξ2 +42(T, h)

[tanh

√
ξ2 +42(T, h)− h

2T
− 1]. (1.20)

If we take h = 0, this equation reduces to the usual BCS expression of the BCS

theory. In the low temperature region, T ¿ Tc, (1.20) is expressed as

ln
4(T, h)

4(0, 0)
=

∫ ωD

0

dξ√
ξ2 +42(T, h)

[θ(
√

ξ2 +42(T, h)− h)− 1

+2
∞∑

n=1

(−1)n exp
n(h−

√
ξ2 +42(T, h))

T
. (1.21)

It follows from the argument of the step function that for h < 4(T, h) we obtain

the solution to the BCS superconducting state

ln
4(T, h)

4(0, 0)
= 2

∞∑

n=1

(−1)n exp
nh

T
K0(

n4(T, h)

T
), (1.22)
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where K0(x) is the zeroth order Bessel function, while in the case h > 4(T, h)

we have the gap in the spin polarized superconducting state

ln
4(T, h)

4(0, 0)
= − cosh−1 h

4(T, h)
+ 2

∞∑

n=1

exp
nh

T
K0(

n4(T, h)

T
). (1.23)

Both solutions reduce to the zero temperature gap energy when T = 0.

In the vicinity of the critical temperature T < Tc we express (1.6) in an

alternative form by using the series representation of the hyperbolic tangent

tanh
x

2T
= 2T

∞∑

n=−∞

1

x± iωn

,

with ωn = (2n + 1)πT, then (1.6) becomes

1

N(0)V
= 4T

∞∑

n=0

∫ ωD

0

dξ

ξ2 +42(T, h) + (ωn + ih)2
. (1.24)

We do further by expanding the denominator of the integrand in power series of

4(T, h) and integrating over the energy in the weak-coupling limit ωD/Tc → ∞
to obtain

ln
T

Tc0

= ψ(
1

2
)− ψ(

1

2
+ iρ)− 1

2
f1(ρ)(

4(T, h)

2πT
)2 +

3

8
f2(ρ)(

4(T, h)

2πT
)4 + .... (1.25)

where Tc0 is the transition temperature at h = 0, ρ = h/2πT, ψ(z) is the digamma

function

ψ(z) =
∞∑

n=0

(
1

n + 1
− 1

n + z
)− 0.5772..

and

f1(z) = Re
∞∑

n=0

1

(n + 1
2

+ iz)3
,

and

f2(z) = Re
∞∑

n=0

1

(n + 1
2

+ iz)5
.
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In (1.25) the small 4 has been assumed while the parameter ρ is arbitrary. We

consider the two limiting cases: the high field limit ρ À 1 using the asymptotic

representation of the digamma function,|z| À 1,

ψ(z) = ln(z)− 1

2z
− 1

12z2
+ ...., (1.26)

and taking 4 = 0 in (1.25), the critical temperature can be approximated as

T 2
c =

2h2

π2
ln

2h

4(0, 0)
, (1.27)

where the BCS universal ratio 4(0, 0) = 1.65Tc0 has been used. In the case of

low field limit ρ ¿ 1, (1.25) with 4 = 0 implies

Tc

Tc0

= 1− 7ζ(3)(
h

2πTc0

)2, (1.28)

in which ζ(z) is the Riemann-zeta function.

We will calculate the free energy difference between the superconducting

and normal phases according to the formula (Maki and Tsuneto, 1964)

Fs(T, h)− Fn(T, h) =
∫ 4(T,h)

0
42d(

1

V
). (1.29)

Near the critical temperature we have

d(
1

V
) = −N(0)[f1(ρ)

4
(2πT )2

− 3

2
f2(ρ)

43

(2πT )4
]d4, (1.30)

and for the free energy

Fs(T, h)− Fn(T, h) = −1

4
N(0)42[f1(ρ)(

4
2πT

)2 − f2(ρ)(
4

2πT
)4]. (1.31)

This result shows that Fs(T, h) is smaller than Fn(T, h). As h and T are increased

to the critical value h = hc and T = Tc, we have the condition Fs(T, h) = Fn(T, h),
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which form the critical line. When 4 = 0, the transition is of the the second

order while 4 6= 0 indicates the first order phase transition and is determined by

42 =
f1(ρ)

f2(ρ)
(2πT )2. (1.32)

The critical point in which the type of phase transition changes is characterized

by the root of the equation

f1(ρ0) = 0, (1.33)

which gives ρ0 = 0.308 and corresponds to t = Tc/Tc0 = 0.566, the function f1(ρ)

is a monotonously decreasing function of ρ, then for ρ < ρ0 or t > 0.566, f1(ρ)

is positive and the phase transition is of the second order while for ρ > ρ0 or

t < 0.566, f1(ρ) is negative and the phase transition is of the first order.

1.3 The Fulde-Ferrell-Larkin-Ovchinnikov state

In the previous section we have considered the superconductor under the action

of a magnetic field within the assumption that the pair electrons have the net

zero momentum, however there is some possibility of the oscillatory pair wave

function in which the pair momentum is non-zero, this state has been studied

by Fulde and Ferrell (1964) and by Larkin and Ovchinnikov (1965). We follow

the work of Takada and Izuyama (1969). The effective BCS Hamiltonian of the

electron in the presence of a magnetic field is

Heff =
∑

~kσ

ξσ(~k)a†~kσ
a~kσ +

∑

~k

[4qa
†
~k+~q/2,↑a

†
−~k+~q/2,↓ + h.c.], (1.34)

with

ξσ(~k) = ξ(~k)− σh, (1.35)

where ξ(~k) is the conduction electron energy measured from the Fermi surface

and σ = 1(−1) for up(down) electron spins. The magnetic energy h acting on
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the electron spins can be regarded as a ferromagnetic impurity which produces

the molecular field in the superconducting state which is the coexistence problem

of superconductivity and ferromagnetism, in this circumstance, h is modelled as

h = niJ < Sz >,

where ni is the number of impurity atoms per unit volume, J is the strength of

impurity spin S and < Sz > denotes the thermal average of the impurity spin

along the z-axis. The inhomogeneous superconducting order parameter is defined

as

4q = −V
∑

~k

< a−~k+~q/2,↓a~k+~q/2,↑ >, (1.36)

when q = 0 is taken, (1.36) reduces to the BCS order parameter with zero pair

momentum. The superconducting state can be described by the Gorkov’s equa-

tions

[iωn − ξσ(σ~k + ~q/2)]Gσ(~k, iωn) +4qF
†
σ(~k, iωn) = 1,

[iωn − ξ−σ(−σ~k + ~q/2)]F †
σ(~k, iωn) +4∗

qGσ(~k, iωn) = 0. (1.37)

We will assume the wave vector |~q| is small when compared with the Fermi wave

vector kF since |~q| represents the displaced Fermi surfaces of up-and -down spin

electrons due to the Zeeman energy h according to the relation

kF↑ − kF↓ =
h

µ
kF , (1.38)

here µ is the chemical potential, so we define the dimensionless quantity, q̄,

q = q̄(kF↑ − kF↓). (1.39)

Combining both equations we have q̄ = vF q/2h. We linearize the electron energy

near the Fermi surface and neglected the q2 term

ξσ(σ~k + ~q/2) = ξ(~k) + σ(q̄x− 1)h, (1.40)
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where x = cos θ is the cosine of the angle between vector ~k and ~q. Solving the

Gorkov’s equations,(1.37), we obtain

Gσ(~k, iωn) =
iωn + ξ(~k)− σ(q̄x− 1)h

(iωn − Eσ(~k))(iωn + E−σ(~k))
,

F †
σ(~k, iωn) = − 4∗

q

(iωn − Eσ(~k))(iωn + E−σ(~k))
, (1.41)

where the excitation spectrum of the superconductive FFLO state is defined by

Eσ(~k) = σ(q̄x− 1)h +

√
ξ2(~k) +42

q. (1.42)

The FFLO gap equation (1.36) can be expressed in terms of the anomalous

Green’s function as

4∗
q = V T

∑

~k,ωn

F †
↑ (~k, iωn). (1.43)

Inserting (1.41) into (1.43) and performing the sum over the fermionic Matsub-

ara’s frequency by means of the Poisson summation formula

∞∑

n=−∞
F (iωn) =

1

2T

∮

C

dω

2πi
F (ω) tanh

ω

2T
,

where the contour C does not enclose any singularities in the imaginary axis of

the complex ω− plane, as the result one arrives at the result

1 = V
∑

~k

tanh(
E↑(~k)

2T
) + tanh(

E↓(~k)

2T
)

4
√

ξ2(~k) +42
q

. (1.44)

In the absence of the Zeeman energy h = 0, (1.44) becomes the self-consistent

equation of the BCS superconductor. From the excitation energy in the super-

conducting state (1.42), we see that

E↑(~k) + E↓(~k) = 2

√
ξ2(~k) +42

q > 0.
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However, we may have Eσ(~k) < 0 for some value of ~k which is another type of the

superconducting state, such a state is called the Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) state. For the BCS superconducting state, both E↑(~k) and E↓(~k) are

greater than zero, this means that the electron state (~k+~q/2, ↑) and (−~k+~q/2, ↓)
are occupied in pairs. For the FFLO superconducting state, there is some value of

~k which satisfies the condition which is the depairing zone, i.e, the Cooper pairs

are broken. So the electron state (σ~k + ~q/2, σ) is blocked while (−σ~k + ~q/2,−σ)

a vacant one. This means that the unoccupied electron states must obey the

inequality ξ−σ(−σ~k + ~q/2) > 4q at the Fermi surface e.g., we have

−σ(q̄x− 1)h > 4q. (1.45)

The FFLO state will be analyzed for two values of q̄, i.e., 0 < q̄ < 1, and q̄ > 1.

In the first case 0 < q̄ < 1, E↓(~k) is positive definite while E↑(~k) may be

less than zero for some value of ~k. The inequality (1.45) of the down spin electron,

σ = −1, implies the condition

h >
4q

1− q̄
. (1.46)

The blocking region for E↑(~k) < 0 is determined to be

−1 ≤ x ≤ φ−(ξ),

|ξ| ≤ (1− q̄)hx2, (1.47)

where

x1,2 =

√
1− [

4q

(q̄ ± 1)h
]2,

φ±(ξ) =
1

q̄h
(h±

√
ξ2(~k) +42

q). (1.48)
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We note that the condition (1.46) and the blocked region (1.47) differ from the

results obtained by Takada and Izuyama. They have used only the condition of

the unoccupied up - spin electron state, h > 4q/(1 + q̄), which is incorrect.

In the latter case: q̄ > 1 both E↑(~k) and E↓(~k) are less than zero for some

values of ~k. The blocking region of the up-spin electron is found to be

h >
4q

q̄ + 1
,

−1 ≤ x ≤ φ−(ξ),

|ξ(~k)| ≤ (q̄ + 1)hx1, (1.49)

and for the down- spin electron

h >
4q

q̄ − 1
,

φ+(ξ) ≤ x ≤ 1,

|ξ(~k)| ≤ (q̄ − 1)hx2. (1.50)

The parameter x1,2,(1.48) measuring the blocking and the ranges are taken be-

tween zero and unity, when x1 = x2 = 0 we get the BCS state while x1 = x2 = 1

the normal state is recovered.

Let us calculate the gap energy at T = 0, we have from (1.44)

1 = V (
∑

~k

− ∑

Eσ(~k)<0

)
1

2
√

ξ2(~k) +42
q

, (1.51)

here 4q = 4q(T, h). The effect of blocking is expressed in the second term of the

right side of (1.51) in which the unpaired electron will reduce the energy gap. In

the weak coupling limit, (1.51) is transformed to be

ln
4q

40

= − 1

2N(0)

∑

Eσ(~k)<0

1√
ξ2(~k) +42

q

, (1.52)
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where 40 = 40(0, 0) is the BCS energy gap

40 = 2ωD exp(− 1

N(0)V
),

N(0) is the density of states at the Fermi level. Performing the right side sum-

mation of (1.52) and using the blocked regions, (1.49) and (1.50), the results

are

ln
4q

40

=
1 + q̄

4q̄
[ln

1− x2

1 + x2

+ 2
1− q̄

1 + q̄
x2], (1.53)

for 0 < q̄ < 1, and

ln
4q

40

=
q̄ + 1

4q̄
[ln

1− x1

1 + x1

+ 2x1] +
q̄ − 1

4q̄
[ln

1− x2

1 + x2

+ 2x2], (1.54)

for q̄ > 1. We note that Takada and Izuyama have obtained only (1.54) for all

values of q̄. The equations (1.53)and (1.54), are complicated equations because

x1,2, (1.48), also contains 4q.

It can be shown later that the FFLO state is stable only when q̄ > 1.

We will assume q̄ > 1 and consider the two limiting cases, the BCS limit (no

blocking) and the normal limit (perfect blocking).

BCS limit: In this case x1 = x2 = 0, (1.54) implies 4q = 40 for h ≤ hB

where the critical field defined by

hB

40

=
1

q̄ + 1
, (1.55)

when h > hB is the necessary condition for the FFLO state.

Normal limit: We expand x1,2 in powers of (4q/h)2, retaining to the term

(4q/h)4 and neglected the higher order terms, substituting these expansions into

(1.54), we obtain

42
q = 4(q̄2 − 1)h2f(q̄, h), (1.56)
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with

f(q̄, h) = 1− ln
2h

40

− 1

2
ln(q̄2 − 1)− 1

2q̄
ln

q̄ + 1

q̄ − 1
. (1.57)

In this limit there has the critical field hN defined by

4q = 4qθ(hN − h), (1.58)

with fixed value of q̄. Then (1.56) gives

f(q̄, hN) = 0.

Solving this equation we get the normal critical field

hN

40

=
e

2(q̄ + 1)
(
q̄ + 1

q̄ − 1
)

q̄−1
2q̄ . (1.59)

The FFLO state is confined in the range hB < h < hN for fixed value of q̄.

The second order phase transition from the normal to FFLO states can occur

at the critical value of q̄ = q̄c at which the normal critical field is maximized,

hc = hN(q̄c). We determine q̄c by differentiating (1.59)

d

dq̄
ln hN(q̄c) = 0,

which gives

2q̄c = ln
q̄c + 1

q̄c − 1
.

This equation gives the numerical value q̄c = 1.2, and consequently, we get hc =

0.7540.

In order to calculate the ground state energy of the FFLO phase we denote

4E = (Energy of FFLO state) -(Energy of the normal state), by means of the

variation of the thermodynamic potential, we have

4E =
∫ 4q

0
42

qd
1

V
,
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by using (1.54)

d(
1

V
) = −N(0)[

1

4q

+
q̄ + 1

2q̄

x2
1

1− x2
1

dx1

d4q

+
q̄ − 1

2q̄

x2
2

1− x2
2

dx2

d4q

]d4q.

The straightforward calculation yields

4E

N(0)
= h2 + (

h2q̄2

3
− 1

2
42

q)−
h2

6q̄
[(q̄ + 1)3x3

1 + (q̄ − 1)3x3
2]. (1.60)

Let us examine (1.60) in some limiting cases.

For the perfectly paired state we put x1 = x2 = 0 with 4q = 40 then

4E = N(0)[h2 +
1

3
(hq̄)2 − 1

2
42

0], (1.61)

where the first and second and third terms represent the Zeeman energy of the

normal state, the kinetic energy of Cooper pairs and the formation energy of the

superconductive state, respectively.

For the normal limit, since 4q/h ¿ 1 in expanding x1 and x2, we are

retaining to the term (4q/h)4. Upon substituting these expansions into (1.60),

we obtain

4E = − N(0)h2

8(q̄2 − 1)
(
4q

h
)4. (1.62)

This formula clearly indicates that only for q̄ > 1 is necessary to establish the

superconductive state.

Near the critical point it is worth determining the transition temperature

and the free energy difference between the FF state and the normal one, the gap

equation (1.43) can be written as

1 = V T
∑

~k,ωn

1

[ωn + i(q̄x− 1)h]2 + ξ2(~k) +42
q

, (1.63)
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where ωn = (2n + 1)πT and the sum is taken for all value of n. Near the critical

temperature, (1.63) is approximated as

1 = V T
∑

~k,ωn

[
1

[ωn + i(q̄x− 1)h]2 + ξ2(~k)
− 42

q

([ωn + i(q̄x− 1)h]2 + ξ2(~k))2
]. (1.64)

Performing the calculation yields

ln
T

Tc0

= g0(q̄, h, T ) + g1(q̄, h, T )(
4q

2πT
)2, (1.65)

where

g0(q̄, h, T ) = −1

2

∫ 1

−1
dxRe[ψ(

1

2
+ iρ(x))− ψ(

1

2
)],

g0(q̄, h, T ) = ψ(
1

2
)− Tπ

hq̄
Im[ln(

1

2
+ iρ(1))− ln(

1

2
+ iρ(−1))], (1.66)

and

g1(q̄, h, T ) = −1

2

∫ 1

−1
dxRe[ψ(

1

2
+ iρ(x))− ψ(

1

2
)],

g1(q̄, h, T ) =
Tπ

4hq̄
Im[ψ′(

1

2
+ iρ(1))− ψ′(

1

2
+ iρ(−1))]. (1.67)

Therefore ψ(z) is the digamma function, and the parameter

ρ(x) =
h(q̄x− 1)

2πT
, (1.68)

and Tc0 is the BCS transition temperature. By taking 4q = 0 in (1.65) we get

the transition temperature equation

ln
T

Tc0

= g0(q̄, h, T ). (1.69)

We are interested in the high field limit h À T, the asymptotic form of g0(q̄, h, T )

is represented as

g0(q̄, h, T ) = ln
T

Tc0

+ f(q̄, h)− 1

8(q̄2 − 1)
(
2πT

h
)2, (1.70)
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where f(q̄, h) has been already stated in (1.57). Thus in this limit we arrive at

the relation

T 2 =
2

π2
(q̄2 − 1)h2f(q̄, h). (1.71)

Next let us evaluate the free energy difference near Tc. The usual ex-

pression for the free energy difference between the FF and normal state is given

by

4F =
∫ 4q

0
42

qd(
1

V
),

with the derivation of (1.65)

d(
1

V
) =

2N(0)

(2πT )2
g1(q̄, h, T )4qd4q.

The result is thus

4F =
N(0)

2(2πT )2
44

q. (1.72)

In the high field limit h À T, employing the asymptotic behavior of g1(q̄, h, T ),

we have

g1(q̄, h, T ) = − 4

(q̄2 − 1)
(
πT

h
)2. (1.73)

The expression (1.72) becomes

4F = − N(0)h2

2(q̄2 − 1)
(
4q

h
)4. (1.74)

This expression shows that we cannot obtain the stable FFLO state with q̄ < 1.

In this section, the theoretical investigation of the FFLO state is pre-

sented. The properties such as the energy gap and the thermodynamic poten-

tial at zero temperature as well as near the critical temperature Tc are shown.

Although, there is a possibility in the theoretical model but it has never been

detected yet.



Chapter 2

Proximity Effect Theories

2.1 Introduction

The proximity effect was proposed by de Gennes(1964) and applied to the layered

structures of superconducting (S) and normal-metal (N) materials. In his work

the S/N sandwiches in which the normal metals having a smaller critical tem-

perature were considered. The boundary conditions were derived and the critical

temperature in the Cooper-de Gennes limit for thin layers was determined.

The de Gennes theory was later developed by Takahashi and Tachiki

(1986) for multilayers systems. In their formalism the method of the eigenfunc-

tion expansion and the de Gennes boundary conditions were used to calculate the

upper critical fields both in the perpendicular and parallel directions. Auvil and

Ketterson (1988) used this theory to show that the Cooper-de Gennes limit for

the critical temperature in the limit of small layer thickness corresponds to the

diagonal approximation method, the critical temperature was calculated exactly

by Jin and Ketterson (1989) whereas Takanaka (1991) numerically calculated the

transition temperature and the upper critical fields for the S/N superlattice and

found the qualitative agreement between the exact result and the approximated

one of Takahashi and Tachiki. Auvil, Ketterson and Song (1989) have general-

ized the Takahashi and Tachiki theory of dirty coupled superconductors to include

the effects of orbital diamagnetism, Pauli spin paramagnetism, spin-orbit scat-

tering and magnetic impurity scattering. Koperdraad and Lodder (1995, 1996)

attempted to analyze the experimental data of the upper critical fields for the
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metallic multilayers system within the concept of the unrealistic magnetic co-

herence length scaling factor and fitting to the theory of Takahashi and Tachiki.

Kuboya and Takanaka (1998) studied theoretically the temperature dependence

of the upper critical fields, perpendicular and parallel to the layers for dirty su-

perconducting (S)/ferromagnetic (F) superlattices. An interesting feature of the

S/F system is the existence of the π -phase state in which the phase shift of the

superconducting order parameter between adjacent layers is π. The superconduct-

ing transition temperature of the superlattice as a function of the ferromagnetic

layers thickness shows an oscillatory behavior under appropriate conditions which

is due to the π-phase state.

Another theory of proximity effect is the Usadel’s dirty-limit version of

the quasiclassical theory of superconductivity (Usadel, 1970). This theory re-

quires a zero critical temperature for the non-superconducting material and only

the perpendicular upper critical field was calculated. The Usadel equations were

solved exactly by Radovic et al. (1991 a, b, c) to calculate the transition temper-

ature and the perpendicular upper critical field of S/N and of S/F superlattices.

The equivalence between the Takahashi and Tachiki theory and the Usadel’s qua-

siclassical theory has been shown by Lodder and Koperdraad (1993) to be valid

only for the S/N system. The Usadel’s equations including spin-orbit scattering

terms were solved for S/F bi-layers by Demler, Arnold and Beasley (1997) and

for S/F superlattices by Oh, Kim, Youm and Beasley (2000). The results indicate

that the oscillatory behavior of the transition temperature is reduced by the spin-

orbit scattering and strongly depends on the properties of materials. Khusianov

and Proshin (1997) and Tagirov (1998) have developed the Usadel’s theory of

proximity effect in S/F bi-layers by taking into account the finite transparency
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of the F/S interface. They have shown that the oscillatory dependance of the

critical temperature on the F-layer thickness is due to a periodic modulation of

the F/S boundary transparency by the pair amplitude within the F layer.

Motivated by studying the interaction of superconductivity and mag-

netism, we review the proximity effect theories in this chapter. §2.2-2.7 is devoted

to the de Gennes-Takahashi-Tachiki theory in the context of the correlation func-

tion method while the rest describes the Usadel equations and its applicability in

the S/F problem.

2.2 Bogoliubov-de Gennes’s equations

It is well known that the microscopic theory of superconductivity was estab-

lished by BCS, the trial wave function method is used to determine the motion

of electrons self-consistently, however, this method is applicable only for the ho-

mogeneous system.

For the non-uniform system such as in the presence of impurity atom or

in the vicinity of the external field the BCS theory must be treated appropri-

ately. One approach in this section is the Bogoliubov-de Gennes self-consistent

field method which we follow de Gennes (1966). The Hamiltonian in the second

quantized form reads as

Ĥ = Ĥ0 + V̂ , (2.1)

where the circumflex denotes the second quantized operator, Ĥ0 is the one electron

Hamiltonian including the one point interaction term, Uαβ(~r),

Ĥ0 =
∫

d3rψ̂†α(~r)[− 1

2m
(∇− i

e

c
~A)2δαβ + Uαβ(~r)]ψ̂β(~r), (2.2)

and

V̂ =
∫

d3rd3r′ψ̂†δ(~r)ψ̂
†
γ(~r

′)Vδγ,αβ(~r, ~r′)ψ̂α(~r′)ψ̂β(~r), (2.3)
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is the instantaneous electron-electron interaction. The lower indices refer to their

spins and the sum over repeated indices is understood. For simplicity the spin

independent interactions are assumed

Uαβ(~r) = U(~r)δαβ,

Vδγ,αβ(~r, ~r′) = V (~r)δαγδδβδ(~r − ~r′), (2.4)

in the last line the delta function-like form is made for the two body interaction

as well as the inhomogeneity of the system. ψ̂†α(~r)(ψ̂α(~r)) is the field operator

which creates (destroys) a particle of spin α at the point ~r and obeys the anti-

commutation relations

ψ̂†α(~r)ψ̂β(~r′) + ψ̂β(~r′)ψ̂†α(~r) = δαβδ(~r − ~r′),

ψ̂α(~r)ψ̂β(~r′) + ψ̂β(~r′)ψ̂α(~r) = 0. (2.5)

The number operator

N̂ =
∫

d3rψ̂†α(~r)ψ̂α(~r), (2.6)

will be added to the one electron Hamiltonian when the electron energy is mea-

sured with respect to the Fermi energy, µ, i.e.,

Ĥ0 −→ Ĥ0 − µN̂.

In the many-body problem the two-particle interaction is factorized to be an

effective one-electron Hamiltonian and the result is of the form

Ĥeff =
∫

d3r[ψ̂†α(~r)Hψ̂α(~r) + (4(~r)ψ̂†↑(~r)ψ̂
†
↓(~r) + h.c.)] (2.7)

where

H = − 1

2m
(∇− ie

c
~A)2 + U(~r)− µ. (2.8)
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The self-consistent field 4(~r) is called the pair potential because it changes the

number of particles by two.

Having obtained the effective Hamiltonian, we employ the canonical trans-

formation to calculate the trace of the effective Hamiltonian as follows

ψ̂↑(~r) =
∑
n

[un(~r)γ̂n↑ − v∗n(~r)γ̂†n↓]

and

ψ̂↓(~r) =
∑
n

[un(~r)γ̂n↓ + v∗n(~r)γ̂†n↑]. (2.9)

where un(~r) and vn(~r) are the eigenfunctions and in order to preserve the anti-

commutation relation,(2.5), between the old and the new bases, the eigenfunctions

un(~r) and vn(~r) must satisfy the normalization and completeness conditions

∫
d3r[u∗n(~r)um(~r) + v∗n(~r)vm(~r)] = δn,m

and
∑
n

[u∗n(~r)un(~r′) + v∗n(~r)vn(~r′)] = δ(~r − ~r′). (2.10)

by means of equations (2.9)and (2.10) the diagonalized Hamiltonian has the sim-

ple form

Ĥeff = Eg +
∑
n,α

εnγ̂†n,αγ̂n,α, (2.11)

where Eg is the ground-state energy and εn is the excitation energy in the state

n. The equations of motion are governed by

[Ĥeff , γ̂n,α] = −εnγ̂n,α,

[Ĥeff , γ̂
†
n,α] = εnγ̂†n,α. (2.12)

These equations impose un(~r) and vn(~r), we then obtain the set of equations for

un(~r) and vn(~r) known as the Bogoliubov-de Gennes equations

εnun(~r) = Hun(~r) +4(~r)vn(~r),
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εnvn(~r) = −H∗vn(~r) +4∗(~r)un(~r). (2.13)

The pair of coupled equations for eigenfunctions un(~r) and vn(~r) describe the

superconducting state.

Upon factorizing the effective Hamiltonian, (2.7), we have the pair po-

tential

4(~r) = −V (~r) < ψ̂↓(~r)ψ̂↑(~r) >, (2.14)

where the angular brackets represent the statistical average of the field operator

over the Gibbs ensemble. Using the canonical transformation of field opera-

tor,(2.9), as well as the thermal average of the products of operators γ̂nα

< γ̂†nαγ̂mβ >= δαβδnmfn,

< γ̂nαγ̂mβ >= 0, (2.15)

where

fn =
1

exp(εn/T ) + 1
(2.16)

is the Fermi distribution function at temperature T in the eigenstate n. We obtain

4(~r) = V (~r)
∑
n

un(~r)v∗n(~r)(1− 2fn). (2.17)

The Bogoliubov-de Gennes approach covers the inhomogeneous system. If 4 is

constant, the system becomes the uniform superconductor.

2.3 Linearized pair potential

Near the transition point between the superconducting and the normal phases,

the pair potential 4(~r) in the linearized form may be treated as a perturbation.

The eigenfunctions un(~r)and vn(~r) of the Bogoliubov-de Gennes equation,(2.13),
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coincide with the normal state eigenfunctions, say φn(~r), at the transition point.

To verify them, we introduce the eigenvalue equation in the normal state

Hφn(~r) = ξnφn(~r),

or in the explicit form

[− 1

2m
(∇− ie

c
~A)2 + U(~r)− µ]φn(~r) = ξnφn(~r). (2.18)

The solutions to the Bogoliubov-de Gennes equations can be derived in an ap-

proximate way by expanding the eigenfunctions un(~r) and vn(~r) to first order

un = u(0)
n + u(1)

n + ....,

vn = v(0)
n + v(1)

n + ...,

and also

εn = ε(0)
n + ε(1)

n + .... (2.19)

Substituting (2.19) into the Bogoliubov-de Gennes equations, (2.13), and arrang-

ing them along the order of expansions, we obtain

ε(0)
n u(0)

n = Hu(0)
n ,

ε(0)
n v(0)

n = −H∗v(0)
n . (2.20)

in the zeroth order. Note that the pair potential 4 is of the first order manner.

The solutions to (2.20) are

u(0)
n = φn, v

(0)
n = 0, ε(0)

n = ξn,

and

u(0)
n = 0, v(0)

n = φ∗, ε(0)
n = −ξn,
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respectively, we rewrite these solutions in a more compact form as follows

u(0)
n = φnθ(ξn),

v(0)
n = φ∗nθ(−ξn), (2.21)

where θ(x) is the step function. The product u(0)
n v(0)

n = 0, this gives, when insert it

into the self-consistent equation, (2.17), the pair potential 4 identically vanishes

in the zeroth order. To the first order correction of the Bogoliubov-de Gennes

equations, we have

ε(0)
n u(1)

n + ε(1)
n u(0)

n = Hu(1)
n +4v(0)

n ,

ε(0)
n v(1)

n + ε(1)
n v(0)

n = −H∗v(1)
n +4∗u(0)

n , (2.22)

Using the eigenfunction φn as a basis set, we expand

u(1)
n =

∑
m

anmφm,

v(1)
n =

∑
m

bnmφ∗m. (2.23)

We now determine the coefficients anm and bnm by inserting (2.23) into (2.22),

multiplying by φ∗n and φn respectively, and performing the integration over d3r,

we arrive at the following relation

(|ξn| − ξm)anm + ε(1)
n θ(ξn)δnm = θ(−ξn)

∫
d3r4(~r)φ∗n(~r)φ∗m(~r),

(|ξn|+ ξm)bnm + ε(1)
n θ(−ξn)δnm = θ(ξn)

∫
d3r4∗(~r)φn(~r)φm(~r). (2.24)

For n 6= m we have

anm =
θ(−ξn)

|ξn| − ξm

∫
d3r4(~r)φ∗n(~r)φ∗m(~r),

bnm =
θ(ξn)

|ξn|+ ξm

∫
d3r4∗(~r)φn(~r)φm(~r) (2.25)
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while for n = m, the coefficients anm and bnm are set to be zero in order to

preserve the normalized wave functions u(1)
n and v(1)

n .

The self-consistent equation for the pair potential,(2.17), to the first order

correction, can be written as

4(~r) = V (~r)
∑
n

[u(0)
n (~r)v(0)∗

n (~r) + (u(0)
n (~r)v(1)∗

n (~r) + u(1)
n (~r)v(0)∗

n (~r))](1− 2fn(ε(0))).

(2.26)

Since the product of the zeroth order eigenfunction u(0)
n v(0)∗

n = 0, this equation

becomes

4(~r) = V (~r)
∑
n,m

[θ(ξn)b∗nm + θ(−ξn)anm]φn(~r)φm(~r)(1− 2f(|ξn|)). (2.27)

Inserting the coefficients anm and bnm in (2.25) we then obtain the spatial variation

of the pair potential in an integral form

4(~r) =
∫

K(~r, ~r′)4(~r′)d3r′, (2.28)

where the kernel K(~r, ~r′) is defined as

K(~r, ~r′) = V (~r)
∑
nm

[1− 2f(|ξn|)]( θ(ξn)

|ξn|+ ξm

+
θ(−ξn)

|ξn| − ξm

)φ∗n(~r′)φ∗m(~r′)φn(~r)φm(~r).

(2.29)

If we use the properties of the step function

θ(−ξn)

|ξn| − ξm

= − θ(−ξn)

ξn + ξm

,

θ(ξn) + θ(−ξn) = 1,

together with the identity 1−2f(|ξn|) = tanh(ξn/2T ), the kernel may be rewritten

as

K(~r, ~r′) =
1

2
V (~r)

∑
n,m

tanh(ξn/2T ) + tanh(ξm/2T )

ξn + ξm

φ∗n(~r′)φ∗m(~r′)φn(~r)φm(~r).

(2.30)
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Note that the hyperbolic tangent function has an odd symmetry and the kernel

has the symmetry when the indices n and m are interchanged. The kernel may

be expressed in an alternative form by making use of the analytic continuation

of the function tanh x in the complex plane which implies

tanh(x) =
∑
ν

1

x± (ν + 1
2
)iπ

,

or in our desired formula

tanh(
ξ

2T
) = 2T

∑
ων

1

ξ ± iων

,

where ων = (2ν + 1)πT, the sum is taken over positive and negative integers ν.

and either ± in the denominator of (2.30) both contribute. Then

tanh(ξn/2T ) + tanh(ξm/2T )

ξn + ξm

= 2T
∑
ων

1

(ξn − iων)(ξm + iων)
.

Thus we obtain the kernel in another form

K(~r, ~r′) = V (~r)T
∑
ων

∑
n,m

φ∗n(~r′)φ∗m(~r′)φn(~r)φm(~r)

(ξn − iων)(ξm + iων)
. (2.31)

2.4 Correlation functions

Although the kernel (2.31) is obtained, it remains to calculate the matrix element

between states φ∗m(~r) and φ∗n(~r). In practice this is an unusual work. However,

with the aid of the definition of the complex conjugation operator C, we can

write the products like φ∗m(~r)φ∗n(~r) in a suitable form. The complex conjugation

operator C having the property

Cφm = φ∗m,

then permits us to write

φ∗n(~r)φ∗m(~r) = φ∗n(~r)Cφm(~r).
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In doing so, let us insert the completeness relations of the position states ~r1 and ~r2

into the above equation and performing the integration over d3r1 and d3r2 yields

φ∗n(~r)φ∗m(~r) =< n|δ(~R− ~r)C|m >,

φn(~r)φm(~r) =< n|C†δ(~R− ~r)|m > . (2.32)

where ~R is the position operator. The energy denominator of (2.31) shall be

written as

1

(ξn − iων)(ξ + iων)
=

∫
dξdξ′

δ(ξ − ξn)δ(ξ′ − ξm)

(ξ − iων)(ξ + iων)
,

=
∫

dξdξ′
δ(ξ − ξn)δ(ξm − ξn − Ω)

(ξ − iων)(ξ′ + iων)
, (2.33)

with Ω = ξ′−ξ. We introduce the correlation function gξ(~r, ~r′, Ω) of a one-electron

in the normal state having the energy ξ located at a point ~r move to another point

~r′ at the energy state ξ′

gξ(~r, ~r′, Ω) =
∑
n,m

< n|δ(~R−~r)C|m >< m|C†δ(~R−~r′)|n > δ(ξ−ξn)δ(ξm−ξn−Ω).

(2.34)

Then the kernel can be expressed in terms of the correlation function as

K(~r, ~r′) = V (~r)T
∑
ων

∫
dξdξ′

gξ(~r, ~r′, Ω)

(ξ − iων)(ξ′ + iων)
. (2.35)

Since the dominant contribution of energy states lies on the Fermi level then we

shall approximate ξ ≈ 0.

The Fourier’s transform of the correlation function is

gξ≈0(~r, ~r′, Ω) =
∫ dt

2π
eiΩtgξ≈0(~r, ~r′, t), (2.36)

and its inverse transform

gξ≈0(~r, ~r′, t) =
∫

dΩe−iΩtgξ≈0(~r, ~r′, Ω). (2.37)
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The kernel (2.35) is simply written as

K(~r, ~r′) = V (~r)T
∑
ων

∫ dt

2π

∫
dξdξ′

eiΩtgξ≈0(~r, ~r′, t)
(ξ − iων)(ξ′ + iων)

. (2.38)

Performing the energy integrals of (2.38) using the residue theorem, there are four

cases: t < 0, ων < 0; t > 0, ων > 0; t < 0, ων > 0; t > 0, ων < 0, the nonvanishing

integrals are

∫
dξdξ′

eiΩt

(ξ − iων)(ξ + ων)
= (2π)2[θ(t)θ(−ων)e

−2|ων |t + θ(−t)θ(ων)e
−2ωνt].

We insert the above integral into (2.38) and arrange the time interval to obtain

K(~r, ~r′) = 2πV (~r)T
∑
ων

∫ ∞

0
dte−2|ων |tgξ≈0(~r, ~r′, t). (2.39)

We proceed further to calculate the correlation function, the time derivative of

the complex conjugation operator C is governed by the Heisenberg equation of

motion

dC

dt
= i[H, C] = − e

mc
(∇. ~A + ~A.∇)C,

we work in the gauge ∇. ~A = 0, this provides

C(t) = e−iφ(t)C(0), (2.40)

where

φ(t) =
2e

c

∫ ~r(t)

~r(0)

~A(~l).d~l. (2.41)

let us calculate (2.37) by using (2.34) then we arrive at the following result

gξ≈0(~r, ~r′; t) =
∑
n,m

e−i(ξm−ξn)t < n|δ(~R− ~r)C|m >< m|C†δ(~R− ~r′)|n > δ(ξ − ξn).

(2.42)
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We note that the delta function contains Ω in gξ≈0(Ω). When it is integrated, an

exponential factor exp[−i(ξm − ξn)t] in (2.42) is obtained. This factor and the

first matrix element in (2.42) is recasted as

e−i(ξm−ξn)t < n|δ(~R− ~r)C|m >=< n|δ(~R− ~r)C(t)|m >, (2.43)

where the Heisenberg operators are defined as

δ(~R(t)− ~r) = eiHtδ(~R− ~r)e−iHt, (2.44)

and

C(t) = e−iHtCe−iHt. (2.45)

Substituting (2.43) into (2.42) and using the closer relation
∑

m |m >< m| = 1,

we have

gξ≈0(~r, ~r′, t) =
∑
n

< n|δ(~R(t)− ~r)C(t)C†(0)δ(~R(0)− ~r)|n > δ(ξ − ξn). (2.46)

2.5 Spin-dependent correlation functions

When the potentials are spin dependent, the generalized Bogoliubov-de Gennes

equation is required, the main goal is to obtain the kernel of the linearized pair

potential. We begin with the eigenvalue equation

[
1

2m
(~p− e

c
~A)2 − µ]φN(~r, α) +

∑

β

Uαβ(~r)φN(~r, α) = ξNφN(~r, α), (2.47)

where the subscript N includes both the translational and the spin quantum

numbers while the indices α or β refer to the spin components of a wavefunction.

Instead of (2.31), the kernel is generalized to include spins as

K(~r, ~r′) =
1

2
V (~r)T

∑
ων

∑

M,N

∑

αβγδ

φ∗N(~r′, α)ραβφ∗M(~r′, β)φM(~r, γ)ργδφN(~r, δ)

(ξN − iων)(ξM + iων)
,

(2.48)
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here the factor 1/2 taking into account the sum over spin conmponents, the

operator ρ = iσy where σy is a Pauli spin matrix. Next we introduce the Wigner

time reversal operator

K = ρC, (2.49)

with the usual complex conjugate operator C, the product of the wavefunctions

can be written formally as

∑

αβ

φ∗N(~r, α)ραβφ∗M(~r, β) =< N |δ(~R− ~r)K|M >,

and
∑

αβ

φM(~r, α)ραβφN(~r, β) = − < M |K†δ(~R− ~r)|N > . (2.50)

The correlation function analogous to (2.34) is

gξ≈0(~r, ~r′, Ω) = −1

2

∑

NM

< N |δ(~R− ~r)K|M >< M |K†δ(~R− ~r′)|N >

δ(ξ − ξN)δ(ξM − ξN − Ω), (2.51)

with Ω = ξ − ξ′.

The Fourier transform of this equation is calculated to be

gξ≈0(~r, ~r′, t) = −1

2

∑

N

δ(ξ−ξN) < N |δ(~R−~r)K(t)K†(0)δ(~R(0)−~r′)|N > . (2.52)

Thus the linearized kernel has the same form as (2.35)

K(~r, ~r′) = V (~r)T
∑
ων

∫
dξdξ′

gξ≈0(~r, ~r′, Ω)

(ξ − iων)(ξ′ + iων)
, (2.53)

or, identical with (2.39)

K(~r, ~r′) = 2πV (~r)T
∑
ων

∫ ∞

0
dte−2|ων |tgξ≈0(~r, ~r′; t). (2.54)
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2.6 Proximity effect theory of Takahashi and Tachiki

The starting point of the Takahashi and Tachiki theory (1986) is the Gorkov

linearized integral equation for the pair potential

4(~r) = V (~r)T
∑
ω

∫
d3r′Qω(~r, ~r′)4(~r′), (2.55)

which contains a position-dependent pairing interaction and a summation over

Matsubara’s frequencies ω = (2n + 1)πT, (h̄ = kB = 1). The kernel has been

expressed in terms of the correlation function as

Qω(~r, ~r′) = 2π
∑
σ

∫ ∞

0
dte−2|ω|tgσ

ξ=0(~r, ~r
′; t), (2.56)

where ξ = 0 corresponds to the Fermi energy and the sum over spins. The one-

electron correlation function is already evaluated in the previous section, namely,

gσ
ξ=0(~r, ~r

′; t) = −1

2

∑
n

δ(ξ−ξµ) < µ|δ(~R(t)−~r)K†(t)K(0)δ(~R(0)−~r′)|µ >, (2.57)

where µ = (n, σ), n is the translation part and σ the spin part. ~R is the position

operator and K is the time reversal operator.

For t → 0, gσ
ξ=0(~r, ~r

′; t) reduces to the initial condition

lim
t→0

gσ
ξ=0(~r, ~r

′; t) =
1

2
δ(~r − ~r′)N(~r), (2.58)

where N(~r) is the position-dependent density of states at the Fermi level.

The equation of motion for the time reversal operator K(t) satisfies

∂

∂t
K(t) = 2iIm(~r(t))σzK(t)− i

dθ(t)

dt
K(t), (2.59)

θ(t) =
2e

c

∫ ~r(t)

~r(0)

~A(~s).d~s. (2.60)
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Im is the mean-field exchange potential, σz is the Pauli matrix along the z-

component and the phase θ(t) results from the semiclassical phase approximation.

The diffusion equation of δ(~R(t)− ~r) is given by

∂

∂t
δ(~R(t)− ~r) = D(~r)∇2δ(~R(t)− ~r), (2.61)

D(~r) being the position-dependent electronic diffusion constant. Using (2.57),

(2.59) and (2.61), the equation of motion for the correlation function (2.57) yields

[
∂

∂t
+ 2iIm(~r)(σz)σσ]gσ

ξ=0(~r, ~r
′; t) = −Lgσ

ξ=0(~r, ~r
′; t); (t > 0), (2.62)

where the differential operator L is given by

L = −D(~r)(∇− 2ie

c
~A)2. (2.63)

In order to construct the differential equation for Qω(~r, ~r′), we introduce the

auxiliary function Rω(~r, ~r′) defined by

Rω(~r, ~r′) = 2π
∑
σ

(σz)σσ

∫ ∞

0
dte−2|ω|tgσ

ξ=0(~r, ~r
′; t). (2.64)

The time derivative of (2.56) is

∂

∂t
Qω(~r, ~r′) = −2|ω|Qω(~r, ~r′) + 2π

∑
σ

∫ ∞

0
dte−2|ω|t ∂

∂t
gσ

ξ=0(~r, ~r
′; t), (2.65)

we integrate the last term on the right-side by parts and use (2.58) to yield

∂

∂t
Qω(~r, ~r′) = −2πN(~r)δ(~r − ~r′), (2.66)

while the direct substitution of (2.62) into (2.65) gives

∂

∂t
Qω(~r, ~r′) = −[2|ω|+ L]Qω(~r, ~r′)− 2iIm(~r)Rω(~r, ~r′). (2.67)
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Combining (2.66) and (2.67) we obtain

[2|ω|+ L]Qω(~r, ~r′) + 2iIm(~r)Rω(~r, ~r′) = 2πN(~r)δ(~r − ~r′). (2.68)

The differential equation of Qω(~r, ~r′) is coupled with the auxiliary kernel Rω(~r, ~r′)

this means we require the differential equation for Rω(~r, ~r′).

The time derivative of (2.64) is

∂

∂t
Rω(~r, ~r′) = −2|ω|Rω(~r, ~r′) + 2π

∑
σ

(σz)σσ

∫ ∞

0
dte−2|ω|t ∂

∂t
gσ

ξ=0(~r, ~r
′). (2.69)

Integrating (2.69) by parts implies

∂

∂t
Rω(~r, ~r′) = 0, (2.70)

since the trace of Pauli matrix is zero, using (2.62) in (2.69) gives

∂

∂t
Rω(~r, ~r′) = −[2|ω|+ L]Rω(~r, ~r′)− 2iIm(~r)Qω(~r, ~r′). (2.71)

From (2.70) and (2.71), we have

[2|ω|+ L]Rω(~r, ~r′) + 2iIm(~r)Qω(~r, ~r′) = 0 (2.72)

The equations (2.68) and (2.72) form a set of coupled differential equations. We

now define the eigenvalue equation for the operator L :

Lψλ(~r) = ελψλ(~r), (2.73)

the eigenfunctions ψλ(~r) obey the de Gennes boundary conditions at the inter-

faces. The quantities ψλ(~r)/
√

N(~r) and
√

N(~r)D(~r)(∇ − 2ie ~A(~r)/c)ψλ(~r) are

continuous at the interfaces. Further, the eigenfunctions have the orthogonality

and closure properties as follows

∫
d3rψ∗λ(~r)ψλ′(~r) = δλλ′ , (2.74)
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and
∑

λ

ψ∗λ(~r)ψλ(~r′) = δ(~r − ~r′). (2.75)

By using the eigenfunctions ψλ(~r) as a basis set we expand Qω and Rω in terms

of the eigenfunctions ψλ(~r) of the operator L with corresponding eigenvalues ελ,

Qω(~r, ~r′) =
√

N(~r)N(~r′)
∑

λλ′
aλλ′ψλ′(~r′)ψλ(~r), (2.76)

and

Rω(~r, ~r′) =
√

N(~r)N(~r′)
∑

λλ′
bλλ′ψλ′(~r′)ψλ(~r). (2.77)

We also define the pair function F (~r) = 4(~r)/V (~r) to solve the linearized integral

equation of the gap function (2.55). We try to expand the pair function F (~r) in

terms of the eigenfunction ψλ(~r)

F (~r) =
√

N(~r)
∑

λ

cλψλ(~r). (2.78)

The expansion coefficients aλλ′ and bλλ′ are determined from the set of coupled

differential equations, (2.68) and (2.72). Inserting (2.76) and (2.97) into (2.68)

and (2.72), respectively, and multiplying by ψλ′(~r′) and ψλ(~r) and then integrating

over ~r and ~r′, we have

[2|ω|+ ελ]aλλ′ + 2i
∑

ζ

< λ|Im|ζ > bζλ′ = 2πδλλ′ , (2.79)

[2|ω|+ ελ]bλλ′ + 2i
∑

ζ

< λ|Im|ζ > aζλ′ = 0, (2.80)

where the matrix element < λ|Im|ζ > is denoted by

< λ|Im|ζ >=
∫

d3rψ∗λ(~r)Im(~r)ψζ(~r). (2.81)

We rewrite (2.80) as

bζλ′ = −2i

∑
ζ′ < ζ|Im|ζ ′ > aζ′λ′

(2|ω|+ εζ)
, (2.82)
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and by inserting the above equation into (2.79), we obtain the equation

∑

ζ

Γλζ(ω)aζλ′ = 2πδλλ′ , (2.83)

where the matrix element Γλλ′(ω) satisfies the relation

Γλλ′(ω) = (2|ω|+ ελ)δλλ′ + 4
∑

ζ

< λ|Im|ζ >< ζ|Im|λ′ >
(2|ω|+ εζ)

. (2.84)

The coefficient aλλ′ can be determined from (2.83)

aλλ′ = 2πΓ−1
λλ′(ω). (2.85)

where Γ−1(ω) is an inverse matrix of Γ(ω). Substituting (2.85) back into (2.76)

we obtain the expression for Qω(~r, ~r′)

Q(~r, ~r′) = 2π
√

N(~r)N(~r′)
∑

λλ′
ψλ(~r)Γ

−1
λλ′(ω)ψ∗λ′(~r′). (2.86)

The linearized integral equation, (2.55), is written in terms of the pair function

F (~r) as

F (~r) = T
∑
ω

∫
d3r′Qω(~r, ~r′)V (~r′)F (~r′),

when inserting (2.86) into this equation, we have

F (~r) = 2πT
√

N(~r)
∑
ω

∑

λλ′
ψλ(~r)Γ

−1
λλ′(ω)

∫
d3r′ψ∗λ′(~r′)

√
N(~r′)V (~r′)F (~r′). (2.87)

Using the eigenfunction expansion of the pair function, (2.78), then (2.87) reads

as
∑

ζ

cζψζ(~r) = 2πT
∑
ω

∑

ζλλ′
ψλ(~r)Γ

−1
λλ′(ω) < λ′|NV |ζ > cζ . (2.88)

Multiplying both sides of (2.88) by ψ∗ζ′(~r) and integrating over ~r yields

∑

λ′
[δλλ′ − 2πT

∑
ω

∑

ζ

Γ−1
λζ (ω) < ζ|NV |λ′ >]cλ′ = 0. (2.89)
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When the matrix equation of the coefficient cλ has nontrivial solutions, the secular

equation must satisfy

det |δλλ′ − 2πT
∑
ω

∑

ζ

Γ−1
λζ (ω) < ζ|NV |λ′ > | = 0. (2.90)

The secular equation (2.90) is the central result in determining the upper critical

field, parallel and perpendicular to the layer planes of superlattices, as a func-

tion of temperature. The highest magnetic field solution among the solutions

corresponds to the upper critical field. Numerical calculations were performed

by Takahashi-Tachiki and Takanaka in S/N systems to show that (i) only the

lowest eigenstate is sufficient to take into account for the parallel upper critical

field Hc2|| of superconductors when the diffusion constant is varied. (ii) one can

calculate Hc2|| with the spatial variation of the BCS interaction constant using

the lowest eigenvalue eigenfunction for the harmonic oscillator and the secular

equation. (iii) If the density of states changes spatially, it is necessary to obtain

all eigenvalues and eigenfunctions.

2.7 Generalized Takahashi- Tachiki proximity effect the-
ory

In the previous section the Takahashi-Tachiki theory of proximity coupled su-

perconductors has been formulated. They have extended the de Gennes theory

using an eigenfunction expansion to determine the secular equation from the ker-

nel Qω(~r, ~r′) of the linearized integral equation for the pair potential 4(~r). The

solutions of the secular equation give the upper critical field of the dirty type II

superconductor as a function of temperature. In their work, the kernel Qω(~r, ~r′)

is derived from a set of coupled differential equations including diamagnetic and

paramagnetic effects. However, in the real systems the interactions such as the
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magnetic impurity scattering and spin-orbit scattering will have also included, as

studied by Auvil, Ketterson and Song (1989) and Jin and Ketterson (1989).

We consider the spin-dependent potential Uαβ(~r) as being composed of

four terms

• U(~r)δαβ is the direct potential,

• I(σz)αβ is the Pauli spin paramagnetism where I denotes the exchange

energy which arises from the interaction of the electron magnetic moment

with a magnetic field,

• Himp =
∑

i Γ(~r − ~ri)~σ.~Si is the pair-breaking Hamiltonian of the diluted

magnetic impurity. Here Γ(~r − ~ri) is the exchange interaction between the

electron spin ~σ and the impurity spin ~Si. The impurity sites are located

randomly so the impurity spins have no interaction between them,

• Hso = e
4(mc)2

∇U(~r).(~σ × ~p) is the spin-orbit Hamiltonian.

The effect of these interaction will be treated on the time reversal operator K(t)

in the Heisenberg representation

K(t) = e−iHtK(0)e−iHt. (2.91)

The equation of motion of K(t) is governed by

∂

∂t
K(t) = (−i

dθ(t)

dt
+ 2iIσz − 1

τm

)K(t), (2.92)

where the first term refers to the orbital diamagnetism involving the vector po-

tential,

θ(t) =
2e

c

∫ ~r(t)

~r(0)

~A(~s).d~s,
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the second term accounts the spin paramagnetism and the last term arises from

the magnetic impurities atoms with the spin-flip scattering time τm. Formally,

the spin-orbit coupling term commutes with the time reversal operator. We use

the phenomenological approach to incorporate them at the initial time, say t = 0,

there is no evolution of K(t) a combination of K and its transpose K̃ satisfy this

requirement, thus (2.92) becomes

∂

∂t
K(t) = (−i

dθ(t)

dt
+ 2iIσz − 1

τm

)K(t)− 1

τso

(K(t)− K̃(t)). (2.93)

We have the one-electron correlation function evaluated at the Fermi surface,

(2.57),

gσ
ξ=0(~r, ~r

′; t) = −1

2

∑
n

δ(ξ− ξn,σ) < n, σ|δ(~R(t)− ~r)K†(t)K(0)δ(~R(0)− ~r′)|n, σ > .

Using (2.61) and (2.93), the equation of motion for gσ
ξ=0(~r, ~r

′; t) obeys

[
∂

∂t
+ 2iI(~r)(σz)σσ +

1

τm(~r)
+

1

τso(~r)
]gσ

ξ=0(~r, ~r
′; t)− 1

τso(~r)
g−σ

ξ=0(~r, ~r
′; t)

= −Lgσ
ξ=0(~r, ~r

′; t); (t > 0), (2.94)

where the differential operator L is defined by (2.63).

The kernels Qω(~r, ~r′) and Rω(~r, ~r′; t), (2.56) and (2.64), have a set of

coupled differential equations as follows

[2|ω|+L+
1

τm(~r)
+

2

τso(~r)
]Qω(~r, ~r′) + 2iI(~r)Rω(~r, ~r′) = 2πN(~r)δ(~r− ~r′), (2.95)

[2|ω|+ L+
1

τm(~r)
]Rω(~r, ~r′) + 2iI(~r)Qω(~r, ~r′) = 0. (2.96)

To solve the coupled differential equations, (2.95) and (2.96), we adopt the eigen-

function expansion method of Takahashi and Tachiki and the boundary conditions

of de Gennes. We choose the eigenvalue equation of the operator L as

(L+
1

τm(~r)
)ψλ(~r) = ελψλ(~r), (2.97)
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and let us expand the kernels Qω(~r, ~r′) and Rω(~r, ~r′) and the pair function F (~r)

in terms of eigenfunctions with the undetermined coefficients aλλ′ , bλλ′ and cλ

respectively;

Qω(~r, ~r′) =
√

N(~r)N(~r′)
∑

λλ′
aλλ′ψλ(~r)ψ

∗
λ′(~r

′)

Rω(~r, ~r′) =
√

N(~r)N(~r′)
∑

λλ′
bλλ′ψλ(~r)ψ

∗
λ′(~r

′),

F (~r) =
√

N(~r)
∑

λ

cλψλ(~r).

The linearized integral equation of the pair potential can be rewritten as

F (~r) = T
∑
ω

∫
d3r′Qω(~r, ~r′)V (~r′)F (~r′).

The pair of coupled differential equations, (2.95) and (2.96), can be transformed

into the set of the expansion coefficients as

(2|ω|+ ελ)aλλ′ +
∑

ζ

[< λ| 2

τso

|ζ > aζλ′ + 2i < λ|I|ζ > bζλ′ ] = 2πδλλ′ , (2.98)

(2|ω|+ ελ)bλλ′ + 2i
∑

ζ

< λ|I|ζ > aζλ′ = 0. (2.99)

Only the coefficient aλλ′ is needed to be evaluated then by defining

Γλλ′(ω) = (2|ω|+ ελ)δλλ′+ < λ| 2

τso

|λ′ > +4
∑

ζ

< λ|I|ζ >< ζ|I|λ′ >
(2|ω|+ εζ)

. (2.100)

We obtain
∑

ζ

Γλζ(ω)aζλ′ = 2πδλλ′ , (2.101)

and the solution to (2.101) is

aλλ′ = 2πΓ−1
λλ′(ω). (2.102)

with the given aλλ′ the kernel Qω(~r, ~r′) will be set up and we can solve the integral

equation of the pair potential to determine the secular equation

det |δλλ′ − 2πT
∑
ω

∑

ζ

Γ−1
λζ (ω) < ζ|NV |λ′ > | = 0. (2.103)
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This equation is a generalized Takahashi-Tachiki result, the lowest eigenvalue of

which yields the highest transition temperature Tc.

A single layer

To test the validity of an eigenfunction expansion method of Takahashi

and Tachiki for dirty coupled superconductors. We regard the single layer which

is infinite in the x-y plane, occupies the range 0 ≤ z ≤ L, the bulk limit L →∞
will be then taken later. The magnetic field is directed along the z-axis by using

the polar coordinates so the vector potential ~A = Hρρ̂/2. The solutions to the

eigenvalue equation,(2.97), are of the form

ψ(ρ, ϕ, z) ∼= cos(
nπz

L
)eimϕLmN(ρ),

with the eigenvalue

ελ =
1

τm

+
1

τso

+ D(
nπ

L
)2 + [(N +

1

2
) +

1

2
(|m| −m)](

4DeH

c
),

where λ = (n,N, m), n = 0, 1, 2, ..., N = 0, 1, 2, ... and m = 0,±1,±2, ...

The lowest eigenvalue, ελ is obtained by setting λ = (0, 0, 0) i.e.,

ε0 =
1

τm

+
1

τso

+
2DeH

c
. (2.104)

Because of the orthogonality of ϕ′s and the constant value of τm, τso, I and NV.

Eq. (2.100) is reduced to

Γλλ′ = [(2|ω|+ ελ) +
2

τso

+
4I2

(2|ω|+ ελ)
]δλλ′ ,

and the secular equation,(2.103), becomes

det |δλλ′(1− 2πTNV
∑
ω

Γ−1)| = 0. (2.105)
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Before performing the frequency summation, we use the partial fraction method

to write

Γ−1 =
1

(2|ω|+ ε0) + 2
τso

+ 4I2

(2|ω|+ε0)

,

=
A+

2|ω|+ ω−
+

A−
2|ω|+ ω+

, (2.106)

where

A± =
1

2
(1± 1/τso√

(1/τso)2 − (2I)2
), (2.107)

and

ω± =
1

τm

+
1

τso

+
2DeH

c
±

√
(

1

τso

)2 − (2I)2. (2.108)

Finally, we obtain the transition temperature equation which includes all pair-

breaking parameters as follows

ln
Tc

Tc0

= ψ(
1

2
)− A+ψ(

1

2
+

ω−
4πTc

)− A−ψ(
1

2
+

ω+

4πTc

), (2.109)

with the BCS transition temperature Tc0 denotes by

1

NV
= ln

1.14ωD

Tc0

.

The result (2.109) shows that the Pauli spin paramagnetism, I, coupled to the

spin-orbit scattering. Although the magnetic impurity scattering is independent

of the Pauli spin paramagnetic term, it may enhance the superconducting critical

temperature. Note that the result does not depend on the thickness, L, this

corresponds to the thin layer limit for the sandwich systems.

2.8 Usadel equations

Almost all theoretical work on type II superconductors has been laid on the

Gorkov formulation of a set of coupled equation for the normal and anoma-

lous Green’s functions. Eilenberger (1968) derived transport-like equations by
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transforming the set of Gorkov’s equations to the set for integrated Green’s func-

tion. Usadel (1970) studied Eilenberger’s equations for a dirty superconductor.

Diffusion-like equation is derived in a short mean-free path limit. According to

the Eilenberqer transport-like equation

[2ω + ~v.(∇− 2ie ~A(~r))]f(ω,~r,~k) = 24(~r)g(ω,~r,~k)

+
ni

(2π)2

∫ d2k′

v′
|u(~k, ~k′)|2[g(ω,~r,~k)f(ω,~r, ~k′)− f(ω,~r,~k)g(ω,~r, ~k′)], (2.110)

where g(ω,~r,~k) and f(ω,~r,~k) are the energy integrated Green’s functions, ω =

(2n + 1)πT is the Matsubara frequency, ~v is the Fermi velocity, ~A(~r) is a vector

potential of the magnetic field, ni the density of impurities and u(~k) the Fourier

transformed impurity potential. The functions f and g are connected by the

normalization condition

g(ω,~r,~k) =
√

1− f(ω,~r,~k)f ∗(ω,~r,~k) (2.111)

The self-consistency condition is given by

4(~r) ln
T

Tc

+ 2πT
∑

ω>0

[
4(~r)

ω
−

∮ dΩ~k

4π
f(ω,~r,~k)] = 0, (2.112)

where Tc denotes the transition temperature of the free field bulk superconduc-

tor, for the diluted impurity one can assume that the motion of electron nearly

isotropic in the momentum space, therefore we expand the functions f(ω,~r,~k)

and g(ω,~r,~k) in terms of the spherical harmonics by retaining only l = 0 and 1

terms,

f(ω,~r,~k) = f0(ω,~r) + k̂. ~f(ω,~r) (2.113)

g(ω,~r,~k) = g0(ω,~r) + k̂.~g(ω,~r) (2.114)

here k̂ = ~k/k and f0, g0 are scalar functions while ~f and ~g are vector ones.
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Using (2.111),(2.113),(2.114) and separating along the order of spherical harmon-

ics we have

g0(ω,~r) =
√

1− |f0(ω,~r)|2 (2.115)

~g(ω,~r) = −f ∗0 (ω,~r)~f(ω,~r) + f0(ω,~r)~f ∗(ω,~r)

2g0(ω,~r)
. (2.116)

Integrating (2.110) over all solid angle we get

2ωf0(ω,~r) +
v

3
(∇− 2ie ~A(~r)). ~f(ω,~r) = 24(~r)g0(ω,~r), (2.117)

and multiplying through (2.110) by k̂ and integrating over all solid angle gives

2ω ~f(ω,~r) + v(∇− 2ie ~A(~r))f0(ω,~r) = 24(~r)~g(ω,~r)

+
1

τtr

[~g(ω,~r)f0(ω,~r)− ~f(ω,~r)g0(ω,~r)], (2.118)

where τtr is the transport scattering time.

The vector functions ~f and ~g of (2.117) and (2.118) can be eliminated by using

(2.116), with straightforward calculations we obtain the Usadel equation

2ωf0(ω,~r)−D(∇− 2ie ~A(~r)).[g0(ω,~r)(∇− 2ie ~A(~r))f0(ω,~r)

+
f0(ω,~r)

2g0(ω,~r)
∇|f0(ω,~r)|2] = 24(~r)g0(ω,~r), (2.119)

where D = v2τtr/3 is the diffusion coefficient.

Finally the self-consistency condition of the order parameter in the lowest order

is given by

4(~r) ln
T

Tc

+ 2πT
∑

ω>0

[
4(~r)

ω
− f0(ω,~r)] = 0. (2.120)

We shall show that in the vicinity of Tc, the Usadel equations lead to the de

Gennes kernel of the linearized self-consistency equation. Near Tc, f0 → 0 while

g0 → 1 then (2.119) can be linearized as

[2ω −D(∇− 2ie ~A)2]f0(ω,~r) = 24(~r). (2.121)
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Fourier transforming of this equation with neglecting the vector potential gives

f0(ω, ~q) =
24(~q)

2ω + Dq2
. (2.122)

The self-consistency condition of the order parameter (2.120) can be expressed

as

4(~q) = K(~q)4(~q), (2.123)

where the de-Gennes - Gorkov kernel K(~q) in the dirty limit reads as

K(~q) = 2πT
∑
ω

1

2ω + Dq2
. (2.124)

We see that the diffusion-like Usadel equations are equivalent to the Gorkov

Green’s function and the de-Gennes correlation function method.

2.9 Transition temperature of superconductor- ferromag-
net superlattices

Superconductivity and ferromagnetism are two antagonistic orderings. With an

advance of nano-fabricated multilayers, the interaction of superconducting (S)

and ferromagnetic (F) layers exhibits phenomena such as coexistence of super-

conductivity and ferromagnetism, reentrant behavior, and the oscillatory critical

current. The ferromagnetic exchange field tends to polarize the electron spins,

then breaking the Cooper pairs inside F and thus strongly suppresses the super-

conducting order parameter in the vicinity of an S/F interface. Besides the pair

breaking effect, the possibility of π− phase difference between two neighboring S

layers is an interesting feature, these features are oscillatory of Tc with a variation

of F thicknesses. In this section we review the work of Radovic et al,(1991b), who

calculated Tc by solving the Usadel equations in the exact multimode method.
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We start with the Usadel’s dirty limit version of the Eilenberger equations

−D

2
∇[G(~r, ω)∇F (~r, ω)− F (~r, ω)∇G(~r, ω)] = G(~r, ω)4(~r)− ωF (~r, ω), (2.125)

and the normalization condition

G2(~r, ω) + F (~r, ω)F †(~r, ω) = 1. (2.126)

Here, D is the diffusion coefficient, ω = (2n+1)πT with n being an integer, 4(~r)

is the pair potential and the functions F (~r, ω) and G(~r, ω) are Gorkov’s Green

functions integrated over energy.

We consider the superlattice consisting of an alternating S and F layers

with thicknesses ds and df , the modulation taking along the x-axis and has the

repeated structure L = ds + dm.

Near the second order phase transition, G = sgn(ω), the Usadel equations

reduce to a linearized form,

(|ω| − 1

2

d2

dx2
)Fs(x, ω) = 4s(x), (2.127)

for S layers and

(
d2

dx2
− k2

f )Ff (x, ω) = 0, (2.128)

with

k2
f =

2

Df

(|ω|+ iIsgn(ω)),

for F layers with 4 = 0 means that there is no the formation of Cooper pairs

in F but Ff 6= 0 due to the proximity of S. We consider the case where the

ferromagnetic exchange field is so strong, |I| >> TcS, then

k2
f =

2i

Df

Isgn(ω). (2.129)
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The supplementary equation in order to complete the Usadel equations, (2.127)

and (2.128) is

4s(x) = λπT
∑
ω

Fs(x, ω), (2.130)

where the BCS coupling constant,

λ = (ln
1.134ωD

TcS

)−1, (2.131)

TcS is the bulk critical temperature and ωD the Debye cutoff frequency.

The functions Fs(x, ω) and Ff (x, ω) are connected by the boundary conditions

at each S/F interface

Fs(x, ω) = Ff (x, ω), (2.132)

d

dx
Fs(x, ω) = η

d

dx
Ff (x, ω) (2.133)

where the phenomenological parameter η = σf/σs is the ratio of the normal

state conductivities. The periodicity of the superlattice is subject to the Bloch

condition

F (x + L) = eiϕF (x), (2.134)

here the phase difference ϕ takes values 0 ≤ ϕ ≤ π. Using (2.132)-(2.134) we get

the set of boundary conditions

Fs(0, ω) = e−iϕFf (ds + df , ω), (2.135)

Fs(ds, ω) = Ff (ds, ω), (2.136)

d

dx
Fs(ds, ω) = η

d

dx
Ff (ds, ω), (2.137)

d

dx
Fs(0, ω) = e−iϕη

d

dx
Ff (ds + df , ω). (2.138)

The Usadel equation for F, (2.128) has the solution

Ff (x, ω) = C1e
kf x + C2e

−kf x, (2.139)
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The coefficient C1 and C2 are determined by using (2.135) and (2.136) and we

find

C1 =
e−kf ds

2 sinh(kfdf )
(eiϕFs(0, ω)− e−kf df Fs(ds, ω)),

C2 = − ekf ds

2 sinh(kfdf )
(eiϕFs(0, ω)− ekf df Fs(ds, ω)),

The boundary conditions, (2.137) and (2.138), when using (2.139), give

d

dx
Fs(0, ω) = ηkf [coth(kfdf )Fs(0, ω)− e−iϕ

sinh(kfdf )
Fs(ds, ω)], (2.140)

d

dx
Fs(ds, ω) = −ηkf [coth(kfdf )Fs(ds, ω)− eiϕ

sinh(kfdf )
Fs(0, ω)], (2.141)

In order to solve (2.127) and (2.130) in an exact multimode method, we

introduce the Fourier transforms of the Usadel function of S, namely,

Fs(x, ω) =
∞∑

m=−∞
Fs(qm, ω) cos(qmx), (2.142)

Fs(qm, ω) =
1

ds

∫ ds

0
dxFs(x, ω) cos(qmx), (2.143)

as well as the superconducting order parameter

4s(x) =
∞∑

m=−∞
4s(qm) cos(qmx), (2.144)

4s(qm) =
1

ds

∫ ds

0
dx4s(x) cos(qmx), (2.145)

with an eigenmode qm = mπ/dS, m being integer, this implies the orthogonality

relation
∫ ds

0
dx cos(qmx) cos(qm′x) = dsδmm′ . (2.146)

The Usadel equation (2.127) and the superconducting order parameter, (2.130)

are transformed as follows

4s(qm) = (|ω|+1

2
Dsq

2
m)Fs(qm, ω)−Ds

2ds

[(−1)m d

dx
Fs(ds, ω)− d

dx
Fs(0, ω)], (2.147)
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4s(qm) = λπT
∑
ω

Fs(qm, ω), (2.148)

respectively. Inserting the boundary conditions (2.140) and (2.141) into (2.147)

give the relation between Fs(qm, ω) and 4s(qm) as

4s(qm) =
∞∑

m′=−∞
Γmm′(ω)Fs(qm′ , ω), (2.149)

where the matrix element of Γ(ω)

Γmm′(ω) = (|ω|+ 1

2
Dsq

2
m)δmm′ +

Dsηkf

2ds

([1 + (−1)m+m′
] coth(kfdf )

−[(−1)meiϕ + (−1)m′
e−iϕ]

1

sinh(kfdf )
). (2.150)

We must now express Fs(qm, ω) in terms of 4s(qm),

Fs(qm, ω) =
∞∑

m′=−∞
Γmm′(ω)4s(qm′). (2.151)

Combining the above equation with (2.148) we obtain

∞∑

m′=−∞
Amm′4S(qm′) = 0, (2.152)

where

Amm′ = δmm′ − λπT
∑
ω

Γ−1
mm′(ω), (2.153)

here one has

Γ−1
mm′ =

1

|ω|+ 1
2
Dsq2

m

δmm′ − cω

(|ω|+ 1
2
Dsq2

m)(|ω|+ 1
2
Dsq2

m′)

X

Y
, (2.154)

X = [1 + (−1)m+m′
][aωcω + coth(kfdf )]− [(−1)m + (−1)m′

]bωcω

−[(−1)meiϕ + (−1)m′
e−iϕ]

1

sinh(kfdf )
(2.155)

Y = 1 + 2cω[aω coth(kfdf )− bω
cos ϕ

sinh(kfdf )
] + c2

ω(a2
ω − b2

ω), (2.156)
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with

aω =
∞∑

m=−∞

1

|ω|+ 1
2
Dsq2

m

=

√√√√ 2d2
s

Ds|ω| coth

√
2d2

s|ω|
Ds

, (2.157)

bω =
∞∑

m=−∞

(−1)m

|ω|+ 1
2
Dsq2

m

=

√√√√ 2d2
s

Ds|ω|
1

sinh
√

2d2
s|ω|
Ds

, (2.158)

cω =
Dsηkf

2ds

, (2.159)

we note that kf is frequency dependent. The coherence length of Cooper pairs in

S layers denotes by

ξs =

√
Ds

2πTcS

, (2.160)

while the penetration length of Cooper pairs in F layers is

ξf =

√
4Df

I
. (2.161)

The nontrivial solutions to (2.153) obey the secular equation

det |A| = 0, (2.162)

which provides the transition temperature.

In the single-mode approximation or the Cooper-de Gennes thin film

limit, when the S layers are very thin, the single-mode approximation is valid. In

this case only the (0, 0) component of Γ−1
mm′(ω), (2.154), is nonvanishing,

Γ−1
00 (ω) =

1

|ω|+ 2πTcSρ
(2.163)

where the pair breaking parameters

ρ =
ξ2
sηkf

ds

tanh
kfdf

2
, (2.164)

for ϕ = 0 (0- phase) and

ρ =
ξ2
sηkf

ds

coth
kfdf

2
, (2.165)
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for ϕ = π(π-phase). So the transition temperature reduces to the well-known

expression

ln
Tc

TcS

= ψ(
1

2
)− ψ(

1

2
+

TcS

Tc

ρ), (2.166)

where ψ is the digamma function. This expression looks like the bulk supercon-

ductor in the presence of the diluted paramagnetic impurity which was obtained

by Abrikosov and Gorkov in 1961. The reduction of the transition temperature

due to the Cooper pair is destroyed by the spin of impurity atoms. Then (2.166)

shows that the short-period S/F superlattices behave like a bulk superconductor

in a uniform exchange field.

2.10 Perpendicular upper critical field Hc2⊥ of super-
conductor- ferromagnet superlattices

In the previous section the Usadel equations are solved exactly to determine the

transition temperature of S/F superlattices. Here we calculate the perpendicular

upper critical field Hc2⊥ of S/F superlattices by solving the Usadel equations

in the multimode method following Radovic, Ledvij and Dobrosavljevic-Grujic

(1991c).

Consider the S/F superlattice parallel to the x-y plane in a perpendicu-

lar magnetic field ~H = Hẑ. Near the second order phase transition the Usadel

equations for the anomalous functions Fs(~r, ω) and Ff (~r, ω) are

Ds

2
~Π2Fs(~r, ω)− |ω|Fs(~r, ω) = −4(~r), (2.167)

for S and

Df

2
~Π2Ff (~r, ω)− (|ω|+ iIsgn(ω))Ff (~r, ω) = 0, (2.168)

for F.



54

The self-consistency equation supplemented with (2.167) and (2.168) is

4s(~r) = λsπT
∑
ω

Fs(~r, ω) (2.169)

here, there is no pairing in F, λf = 0, But Ff 6= 0 due to the proximity of

S. Ds,f is the diffusion coefficient, I is the ferromagnetic exchange field inside

F, ω = (2n + 1)πT with n being integer, the gauge-invariant operator has the

components as

~Π = (
∂

∂x
,

∂

∂y
+

2πiH

φ0

x,
∂

∂z
), (2.170)

in which the gauge ~A = (0, Hx, 0) is chosen, and φ0 = hc/2e is the flux quantum.

The boundary conditions at each S/F interfaces are

Fs(~r, ω) = Ff (~r, ω), (2.171)

d

dz
Fs(~r, ω) = η

d

dz
Ff (~r, ω), (2.172)

with η = σf/σs the ratio of normal state conductivities. The periodicity of

superlattices having the repeated structure L = ds + df . Both Fs and Ff satisfy

the Bloch condition

F (~r + Lẑ) = eiϕF (~r), (2.173)

Assume the Usadel functions Fs,f can be separated according to the fact that

the modulation of Abrikosov vortex lattices occur only on the z-direction, this

assumption is true because of the perpendicular magnetic field normal to the x-y

plane,

Fs,f (~r, ω) = f(x, y)gs,f (z, ω). (2.174)

For F with the relation

k2
f =

2

Df

(|ω|+ iIsgn(ω)),
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of the propagating momentum in the ferromagnet, (2.168) becomes

d2

dz2
gf (z, ω) = q2

fgf (z, ω), (2.175)

and

[
∂2

∂x2
+ (

∂

∂y
+

2iπH

φ0

x)2]f(x, y) = (q2
f − k2

f )f(x, y). (2.176)

The lowest eigenvalue of f(x, y) gives the perpendicular upper critical field,

2π

φ0

Hc2⊥ = q2
f − k2

f . (2.177)

Since we have assumed f(x, y) to be identical for both metals then for S layers

we get

Ds

2
(

d2

dz2
− 2π

φ0

Hc2⊥)Fs(z, ω)− |ω|Fs(z, ω) = −4(z). (2.178)

Relating Fs(z, ω) to Ff (z, ω) via the boundary conditions, (2.171)- (2.173), the

results are

d

dz
Fs(0, ω) = ηqf [coth(qfdf )Fs(0, ω)− e−iϕ

sinh(qfdf )
Fs(ds, ω)], (2.179)

d

dz
Fs(ds, ω) = −ηqf [coth(qfdf )Fs(ds, ω)− eiϕ

sinh(qfdf )
Fs(0, ω)]. (2.180)

Introduce the Fourier transforms of Fs(z, ω)

Fs(z, ω) =
∞∑

m=−∞
Fs(Qm, ω) cos(Qmz), (2.181)

Fs(Qm, ω) =
1

ds

∫ ds

0
dzFs(z, ω) cos(Qmz), (2.182)

as well as for 4s(z) and 4s(Qm), the eigenmode has the relation

Qm =
mπ

ds

. (2.183)
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We repeat the whole argument in solving the superconducting order parame-

ter 4S(z), (2.169) together with the Usadel equation,(2.178), as in the previous

section, we arrive at the multimode solution

∞∑

m′=−∞
Amm′ = 0, (2.184)

with

Amm′ = δmm′ − λπT
∑
ω

Γ−1
mm′ , (2.185)

here one has

Γ−1
mm′ =

1

|ω̃|+ 1
2
Dsq2

m

δmm′ − cω

(|ω̃|+ 1
2
Dsq2

m)(|ω̃|+ 1
2
Dsq2

m′)

X

Y
, (2.186)

X = [1 + (−1)m+m′
][aωcω + coth(qfdf )]− [(−1)m + (−1)m′

]bωcω

−[(−1)meiϕ + (−1)m′
e−iϕ]

1

sinh(qfdf )
, (2.187)

Y = 1 + 2cω[aω coth(qfdf )− bω
cos ϕ

sinh(qfdf )
] + c2

ω(a2
ω − b2

ω), (2.188)

where

|ω̃| = |ω|+ πDs

φ0

Hc2⊥, (2.189)

aω =
∞∑

m=−∞

1

|ω̃|+ 1
2
DsQ2

m

=

√√√√ 2d2
s

Ds|ω̃| coth

√
2d2

s|ω̃|
Ds

, (2.190)

bω =
∞∑

m=−∞

(−1)m

|ω̃|+ 1
2
DsQ2

m

=

√√√√ 2d2
s

Ds|ω̃|
1

sinh
√

2d2
s|ω̃|
Ds

, (2.191)

cω =
Dsηqf

2ds

, (2.192)

The nontrivial solutions of (2.184)

det |A| = 0, (2.193)

gives the perpendicular upper critical field Hc2⊥ as functions of temperature. In

doing the numerical calculations, the following approximations are made
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• Strong ferromagnets I À TcS, k2
f ≈ 2iIsgn(ω)/Df ,

• Neglecting the orbital magnetic field in F layers, i.e., q2
f = k2

f or the critical

field Hc2⊥ exists only in S layers.

2.11 Effect of spin orientation dependence on transition
temperatures in ferromagnet/superconductor/ fer-
romagnet trilayers

The studies of proximity effects between superconductor/ ferromagnet (S/F) ar-

tificial superlattices suggest the possibility of the FFLO phase. The oscillatory

behavior of the critical temperature in the ferromagnetic layer is a direct evi-

dence of such state in which there exists the π-phase superconducting state, the

adjacent superconducting layers have opposite phase. The interplay between su-

perconductivity and magnetism in F/S/F sandwiches will be examined in details

in this section. The dependence of the critical temperature on the mutual ori-

entation of ferromagnetic moments of the outer layers is calculated for both the

parallel and antiparallel orientations of ferromagnetic moments by solving the Us-

adel equations in the single mode approximation, i.e., the Cooper limit when the

thickness of a superconductor is smaller than or of the order of the superconduct-

ing coherence length, ds < ξs. The theoretical studies of the mutual orientation

of magnetizations alignment has been considered by Tagirov(1999) for the case

of the arbitrary F-layer thickness df , by taking the effect of the finite boundary

transparency interface into account and by Buzdin, Vedyayev and Ryzhanova

(1999) and Baladie, Buzdin, Ryzhonova and Vedyayev (2001) for the case of the

thick F layers with the highly transparent F/S interfaces.

The calculated results show that the superconducting transition tempera-

ture for the parallel magnetization alignment is always lower than the antiparallel
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one and demonstrate the occurrence of the superconducting π-phase even in tri-

layer structures.

We shall examine the F/S/F structure assuming that the dirty limit con-

ditions are held in the superconducting layer. Let the superconductor and fer-

romagnet located in x-y plane, the modulation of the pair amplitude is taking

along the x-direction. The origin is defined at the middle of the superconducting

layer with thickness be 2ds whereas df is the thickness of ferromagnet layers.

We start with the Usadel equations that describe the diffusion motion of

electrons in dirty superconductors. For the proximity system one has

(|ω| − 1

2
Ds

d2

dx2
)Fs(x, ω) = 4(x), (2.194)

in S and

(
d2

dx2
− k2

f )Ff (x, ω) = 0, (2.195)

in F with the the propagation wave vector in ferromagnets obeys

k2
f =

2

Df

(|ω|+ iI(x)sgn(ω)). (2.196)

here Ds(f) = vs(f)ls(f)/3 is the diffusion coefficient in S(F) regions, vs,(f) and

ls(f) are the Fermi velocity and the electron mean free path in a given layer,

ω = (2n + 1)πT is the Matsubara frequency, F (x, ω) is the spatial Gorkov’s

anomalous function, the pair potential, 4s is assumed to exist only in the S layer

whereas the pairing in F layers be zero but the leakage of the pair amplitude

from S to F is allowed due to the proximity. The ferromagnetic exchange field,

I(x), may either parallel or antiparallel alignment in F layers; for the parallel

orientation,

I(x > ds) = I = I(x < −ds), (2.197)
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and for the antiparallel one

I(x > ds) = I = −I(x < −ds). (2.198)

The Usadel equations, (2.194) and (2.195), must be supplemented to the self-

consistency condition for the superconducting order parameter

4s(x) ln
TcS

Tc

= πTc

∑
ω

(
4s(x)

|ω| − Fs(x, ω)), (2.199)

with TcS is the bulk transition temperature and the summation is taken for both

positive and negative integers.

For simplicity we considering the case of highly transparent F/S inter-

faces ( it means a small potential barrier at the S/F interfaces ). The boundary

conditions at the interfaces x = ±ds are

Fs(x, ω) = Ff (x, ω), (2.200)

d

dx
Fs(x, ω) = η

d

dx
Ff (x, ω), (2.201)

where η = σf/σs is the ratio of the normal-state conductivities, and η ¿ 1 will

be assumed to follow from the hypothesis of the weak proximity effect.

We seek the solution of (2.194) in the single-mode approximation which

is familiar in the Abrikosov and Gorkov theory for the magnetic impurity

Fs(x, ω) =
4s cos(kx)

|ω|+ ρ
+ f(x, ω), (2.202)

where 4s(x) = 4s cos(kx) and ρ = Dsk
2/2 is the pair-breaking parameter that is

to be determined from the self-consistency condition, (2.199). Upon substituting

(2.202) into (2.194), we get the equation for f(x, ω),

(|ω| − 1

2
Ds

d2

dx2
)f(x, ω) = 0.
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The above equation has the solution as

f(x, ω) = Aωeksx + Bωe−ksx, (2.203)

where ks =
√

2|ω|/Ds.

Applying (2.202) in (2.199) with splitting the sum over ω into two con-

tributions, ω < 0 and ω > 0, and then rearranging the summation we obtain

4s(x) ln
TcS

Tc

= 2πTc

∑

ω>0

[(
1

|ω| −
1

|ω|+ ρ
)4s(x)− 1

2
(f(x, ω) + f(x,−ω))]. (2.204)

Observing that 4s(x) behaves in an oscillatory manner while Fs(x, ω) behaves as

an exponential decay thus to obtain the reduced transition temperature equation,

we therefore must impose the condition

f(x, ω) + f(x,−ω) = 0, (2.205)

then (2.204) becomes

ln
TcS

Tc

= 2πTc

∑

ω>0

(
1

|ω| −
1

|ω|+ ρ
). (2.206)

Since we have assumed that the Cooper limit for the superconducting layer, ds ¿
ξs, where ξs =

√
Ds/2πTcS being the coherence length, then (2.203) and (2.205)

imply

(Aω + Bω) + (A−ω + B−ω) = 0. (2.207)

AP-Phase

For the case of an antiparallel alignment of magnetizations in F-layers,

i.e, I(x > ds) = I = −I(x < −ds). The solutions of (2.195) are

Ff (x, ω) = Cω cosh(kf [x− ds − df ]), (2.208)
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for ds ≤ x ≤ ds + df , and

Ff (x, ω) = Dω cosh(k∗f [x + ds + df ]), (2.209)

for −(ds + df ) ≤ x ≤ −ds, here kf = (1 + i)
√

I/Df is the approximation of

(2.196) in the strong exchange field limit, I À TcS. Note that (2.208) and (2.209)

satisfy the condition of no supercurrent passing through the free boundaries at

x = ±(ds + df ), i.e.,

d

dx
Ff (x, ω) = 0

Using the boundary conditions (2.200) and (2.201) with the Usadel equations

for S, (2.202) and(2.203), and for F, (2.208) and (2.209). The equations for the

coefficients Aω and Bω are

[ks + ηkf tanh(kfdf )]Aωeksds − [ks − ηkf tanh(kfdf )]Bωe−ksds

= [k tan(kds)− ηkf tanh(kfdf )]
4s(ds)

|ω|+ ρ
, (2.210)

at the interface x = ds and

[ks + ηk∗f tanh(k∗fdf )]Aωeksds − [ks − ηkf tanh(kfdf )]Bωe−ksds

= −[k tan(kds)− ηk∗f tanh(k∗fdf )]
4s(ds)

|ω|+ ρ
, (2.211)

at x = −ds. The set of coupled equations, (2.210) and (2.211), give Aω = A−ω

and Bω = B−ω then (2.207) becomes

Aω + Bω = 0. (2.212)

Solving (2.210) and (2.211) for the coefficients Aω, Bω in the single- mode approx-

imation and using (2.212) we obtain the equation for the pair-breaking parameter

ρ = Dsk
2/2,

k tan(kds) =
1

2
η[kf tanh(kfdf ) + k∗f tanh(k∗fdf )]. (2.213)
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The reduced transition temperature in AP-phase can now be written in terms of

the digamma function

ln
Tc

TcS

= ψ(
1

2
)−Reψ(

1

2
+

ρ

2πTc

). (2.214)

P-Phase

For the parallel alignment of magnetizations, the pair-breaking parameter

equation (2.213) is replaced by

k tan(kds) = ηkf tanh(kfdf ), (2.215)

here we have changed from k∗f to kf .

In the limit of thick ferromagnetic layers, df À ξf , where ξf =
√

4Df/I

is the penetration length in the ferromagnets, we approximate tanh(kfdf ) ≈ 1,

the superconducting layer could be justified in the Cooper limit ds/ξs ¿ 1. As a

result, we get the pair-breaking parameters (2.213) and (2.215) in an approximate

form

ρAP =
ηDs

2ds

√
I

Df

,

ρP =
ηDs

2ds

(1 + i)

√
I

Df

.

According to (2.214) we arrive at the final results

ln
Tc

TcS

|AP = ψ(
1

2
)− ψ(

1

2
+

ηDs

4πdsTc

√
I

Df

), (2.216)

and

ln
Tc

TcS

|P = ψ(
1

2
)−Reψ(

1

2
+ (1 + i)

ηDs

4πdsTc

√
I

Df

). (2.217)

Both equations show that Tc is substantially higher for AP configuration. This

means that the AP-phase is energetically preferable to the P phase.



Chapter 3

Upper Critical Field and
Transition Temperature in

Ferromagnet/Superconductor
/Ferromagnet Sandwiches

3.1 Introduction

Superconductivity and ferromagnetism are two antagonistic orderings, it is well

known that the former occurs in an antiparallel spin configuration of electron

spins, while the latter tends to break the spins of the Cooper pair which leads

to the parallel spin orientation of electrons. The question whether supercon-

ductivity can coexist with ferromagnetism has been considered long time ago.

Fulde and Ferrel (1964) and Larkin and Ovchinnikov (1965) who demonstrated

that the inhomogeneous superconducting state may occur in a narrow range of the

spin-exchange field. Unfortunately, the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)

phase has not been detected yet. The interplay between superconductivity and

magnetism is possible when the two orders are spatially separated. Much at-

tention has been paid to the proximity effect of layered structures consisting of

superconductors (S) and ferromagnets (F) in which the nonmonotonic critical

temperature is the most striking effect.

Experimentally, this nonmonotonic behavior was observed by Wong et

al.(1986) in V/Fe multilayers as a function of the Fe thickness when the V thick-

nesses were fixed. Instead, the sharp decrease of Tc with increasing Fe thickness,

the upturn of Tc at large dFe for some fixed dV was found. Subsequent study of
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the V/Fe system by Koorevaar et al. (1994) and on Nb/Gd triple layers by Strunk

et al. (1994) showed no evidence for an oscillatory behavior. Jiang et al. (1995)

also studied the Nb/Gd multilayers and observed an oscillatory behavior of Tc as

a function of the ferromegnetic Gd layer thickness dGd for fixed Nb thickness dNb.

For an explanation of the nonmonotonic Tc behavior, Strunk et al. ex-

plained the observed step-like behavior of Tc could be attributed to the change

in the underlying pair-breaking mechanism due to the transition of the Gd layer

from a paramagnetic to a ferromagnetic state with increasing dGd. Contrary to

Jiang et al. who concluded that their results provide the first evidence for the

predicted theoretically π−phase in S/F multilayers. The situations seem contra-

dicting. Later on, Muhge et al. (1996, 1997) observed for Fe/Nb/Fe trilayers

a nonmonotonic dependence of the superconducting transition temperature Tc

with increasing dFe for fixed dNb which look similar to the observed Tc in Nb/Gd

multilayers as reported by Jiang et al. Because of the Fe/Nb/Fe trilayer system,

there is only one S layer then the model based on the π−phase can be ruled

out. It was concluded that Tc(dFe) occurs due to the existence of magnetically

dead Fe layers near the interface and their properties change drastically upon

the onset of ferromagnetic order. The study of this effect has been performed on

Nb/Fe bilayers by Muhge et al.(1998) and on Nb/Fe multilayers by Verbanck et

al. (1998). Both groups observed the step-like behavior of Tc versus Fe layers

thickness.

Until now the superconductor/ferromagnet proximity effect is far from

being qualitatively understood (see, Garifullin, 2002). The superconducting Tc

increasing with the thickness of the ferromagnetic layer contradicts the physical

intuition, since it is expected that the strong exchange field in the ferromagnet
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should strongly suppresses the superconductivity. Obviously, there is no consen-

sus in the literature concerning the origin of the nonmonotonic Tc behavior. In

particular, the results between experiments and theories were not conclusive.

Theoretical study of proximity effect can be divided into two formula-

tion; the Usadel dirty-limit version of Eilenberger theory (Usadel,1970; Eilen-

berger, 1968) which is the differential equation for transport-like motion and the

de Gennes-Takahashi-Tachiki theory based on the correlation function method

(de Gennes, 1964; Takahashi and Tachiki, 1986), the latter theory apparently is

an integral equation of the former one. Radovic et al.(1991 a,b,c ) developed

the Usadel equation to calculate the superconducting transition temperature Tc

and the perpendicular upper critical field Hc2⊥. The oscillatory dependence of

Tc and Hc2⊥ on the ferromagnetic layers thickness was first predicted theoreti-

cally. Fominov, Chtchelkatchev and Golubov (2002) developed a general method

for investigating the nonmonotonic Tc as a function of the S/F bilayer parame-

ters. Various types of nonmonotonic behavior of Tc as a function of df , such as a

minimum of Tc and even reentrant superconductivity were found.

To explain the Tc oscillation leads Tagirov (1999) proposed a supercon-

ducting spin switch device based on the proximity effect of F/S/F trilayers, the

spin- dependent pairing function is influenced by the alignment of magnetiza-

tions thus the Tc depends on the orientation of the ferromagnet exchange field.

Calculations show that the antiparallel configuration of the magnetization is ener-

getically preferable to the parallel configuration. The same result was concluded

by Buzdin, Vedyayev and Ryzhanova (1999) and Baladie et al.(2001). It is worth

mentioning that the Tc behavior is still controversial in some range of the ferro-

magnetic thickness. Demler, Arnold and Beasley (1997) suggested that spin-orbit
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scattering plays a major role in the superconducting proximity effect. The reason

is that the exchange interaction coupled to the spin-orbit scattering and yields

large modification of the oscillatory Tc. Oh et al.(2000) extended the work of

Demler, Arnold and Beasley to calculate the Tc of S/F multilayers, the results

indicate the oscillatory behavior of Tc is reduced by the spin-orbit scattering.

Besides the Usadel equations and its application, the Takahashi-Tachiki

proximity effect theory first succeeded in explaining the upper critical field of

superconductor (S)/normal-metal (N) multilayers. In their formalism the eigen-

function expansion method and the de Gennes boundary conditions were used

to obtain the phase diagram of the upper critical field versus temperature by

means of numerical calculations. Auvil, Ketterson and Song (1989) generalized

the Takahashi-Tachiki theory to include the pair-breaking effects such as orbital

diamagnetism, Pauli spin paramagnetism, spin-orbit scattering and magnetic im-

purity scattering. Auvil and Ketterson (1988) showed that the critical temper-

ature of S/N systems in the limit of small layer thickness is equivalent to the

diagonal approximation method, or the Cooper-de Gennes limit. Kuboya and

Takanaka (1998) numerically calculated the transition temperature and the up-

per cirtical field of superconductor/ferromagnetic superlattices. The difficult task

in applying the Takahashi- Tachiki theory to the proximity effect of S/F systems

is the requirement of the numerical calculation, then the Usadel equations seem

to be popularly used more than the Takahashi-Tachiki theory. Apparently, the

equivalence between two theories was shown by Lodder and Koperdraad (1993)

but limited only to the S/N system.

Motivated by the theoretical and experimental works, the attention is

paid to the F/S/F proximity structure. We theoretically study the transition
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temperature Tc and perpendicular upper critical field Hc2⊥ of F/S/F trilayers.

Because of the trilayer structure, there is one superconducting layer, the occur-

rence of the π−phase, due to the interference of the pairing function between

adjacent superconducting layers, can be ruled out. We will show that the tri-

layers structure can demonstrate the superconducting π−phase by regarding the

mutual orientation of ferromagnetic moments of the outer layers. Previous cal-

culations of Tc were involved with thick or thin layers, the interface boundaries

having high transparency, the exchange energy was often assumed to be much

larger than the superconducting condensation energy. The method for solving the

problem were usually treated in the single-mode approximation (Tagirov, 1998,

1999; Buzdin, Vedyayev, Ryzhanova, 1999; Baladie et al. 2001 ). We develop

the method for solving the problem by using the multimode method exactly and

show that the Usadel equations can be derived from the Takahashi-Tachiki the-

ory even in the presence of pair-breaking effects. The parameters entering in our

calculations such as the role of the finite transparency at boundary interfaces as

reported by Lazar et al. (2000) and the arbitrary exchange energy which account

for both weak and strong ferrromagnets will be treated in a generalized way.

This chapter is organized as follows. In §3.2, we derive the Usadel equa-

tions of an S/F system from the Takahashi-Tachiki theory. In §3.3, the Usadel

equations including the pair-breaking effects is also derived for the first time. In

§3.4, we calculate exactly the dependence of the transition temperature Tc as a

function of the mutual orientation of ferromagnetic exchange fields in magnetic

layers by solving the Usadel equations in a multimode method. The calculation

of the perpendicular upper critical field Hc2⊥ is performed in §3.5. We note here

that until now there has no theoretical study Hc2⊥ of F/S/F trilayers using the
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multimode solutions.

3.2 Equivalence between Takahashi-Tachiki and Usadel
proximity effect theories

Based on the early work of Lodder and Koperdraad (1993) who have shown that

the proximity effect theories, the theory of Takahashi and Tachiki (1986) used

the de Gennes correlation function method, and the Usadel’s dirty-limit version

of the Eilenberger theory (Usadel, 1970) are completely equivalent to the S/N

system. Here we will show that both formulations are also equivalent even for

the S/F structure.

We start with an integral equation for the superconducting order param-

eter, which according to Takahashi-Tachiki, is

4(~r) = V (~r)T
∑
ω

∫
d3r′Qω(~r, ~r′)4(~r′), (3.1)

where ω = (2n + 1)πT, with n is integer, V (~r) is the position-dependent pairing

interaction, and the kernel Qω(~r, ~r′) is expressed as an integral of the correlation

function gσ
ξ=0(~r, ~r

′; t),

Qω(~r, ~r′) = 2π
∑
σ

∫ ∞

0
dte−2|ω|tgσ

ξ=0(~r, ~r
′; t). (3.2)

Here the subscript ξ = 0 means the Fermi energy, so the equation of motion for

the spin-dependent correlation function satisfies

[
∂

∂t
+ 2iI(~r)(σz)σσ]gσ

ξ=0(~r, ~r
′; t) = −Lgσ

ξ=0(~r, ~r
′; t); (t > 0),

with the gauge-invariant differential operator L denotes by

L = −D(~r)(∇− 2ie

c
~A(~r))2. (3.3)
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Therefore I(~r) is the position-dependent exchange potential of conduction elec-

trons, σz is the Pauli matrix, D(~r) is the diffusion coefficient and ~A(~r) the vector

potential. We also denote N(~r) the density of states at the Fermi surface.

Because the electron spin coupled with the exchange interaction which

yields the spin split Fermi surface it is necessary to define the auxiliary kernel

Rω(~r, ~r′),

Rω(~r, ~r′) = 2π
∑
σ

(σz)σσ

∫ ∞

0
dte−2|ω|tgσ

ξ=0(~r, ~r
′; t), (3.4)

then one has the set of coupled differential equations

[2|ω|+ L]Qω(~r, ~r′) + 2iI(~r)Rω(~r, ~r′) = 2πN(~r)δ(~r − ~r′), (3.5)

[2|ω|+ L]Rω(~r, ~r′) + 2iI(~r)Qω(~r, ~r′) = 0. (3.6)

The case where I(~r) = 0 was considered by Lodder and Koperdraad, we further

investigate for the I(~r) 6= 0 case. The kernels Qω(~r, ~r′) and Rω(~r, ~r′) can be

decomposed into the up-and down-spin contributions

Qω(~r, ~r′) = Q+
ω (~r, ~r′) + Q−

ω (~r, ~r′), (3.7)

Rω(~r, ~r′) = Q+
ω (~r, ~r′)−Q−

ω (~r, ~r′). (3.8)

Applying (3.7), (3.8) to (3.5), (3.6) and by adding and subtracting these equa-

tions, we obtain the uncoupled differential equations for Q+
ω (~r, ~r′) and Q−

ω (~r, ~r′)

separately

[2|ω|+ L ± 2iI(~r)]Q±
ω (~r, ~r′) = πN(~r)δ(~r − ~r′). (3.9)

We observe that (3.9) gives the relation for the kernel Q±
ω (~r, ~r′),

Q+
ω (~r, ~r′;−I) = Q−

ω (~r, ~r′; I). (3.10)



70

Consequently, the superconducting order parameter (3.1) has the symmetry with

respect to I,

4(~r) = 4(~r; |I|), (3.11)

this allows us to rewrite (3.1) as

4(~r) = 2V (~r)T
∑
ω

∫
d3r′Q+

ω (~r, ~r′)4(~r′). (3.12)

Before going further we note that the kernel Q+
ω (~r, ~r′) behaves like Green’s func-

tion. To compare with the Usadel equations as used by Radovic et al. in S/F

multilayers, we denote the pair function F (~r, ω) by the relation

F (~r, ω) =
2

πN(~r)

∫
d3r′Q+

ω (~r, ~r′)4(~r′). (3.13)

By virtue of (3.13) we get the self-consistency condition for the pair potential

4(~r) = πTN(~r)V (~r)
∑
ω

F (~r, ω), (3.14)

as well as the diffusion-like differential equation

[
1

2
L+ (|ω|+ iI(~r))]F (~r, ω) = 4(~r). (3.15)

Equations (3.14 ) and (3.15) are identical with the Usadel equations. In applying

these equations to the S/F proximity effect problems, parameters for each layer

are treated separately. The exchange potential exists only in ferromagnets while

the pairing interaction and the gap function are taken to be zero. The set of

equations used in determining the critical temperature Tc and the perpendicular

upper critical field Hc2⊥ are

4s(~r) = πλsT
∑
ω

Fs(~r, ω), (3.16)
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and

[−Ds

2
(∇− 2ie

c
~A(~r))2 + |ω|]Fs(~r, ω) = 4s(~r), (3.17)

for the superconducting layer and

[−Df

2
(∇− 2ie

c
~A(~r))2 + (|ω|+ iIsgn(ω))]Ff (~r, ω) = 0, (3.18)

for the ferromagnetic layer. The coupling constant λs = NsVs in the weak-

coupling approximation obeys

1

λs

= ln(
1.134ωD

TcS

),

where TcS is the isolated superconducting critical temperature and ωD the Debye

cutoff frequency.

In solving the Usadel equations, the boundary conditions are incorporated

to relate Fs with Ff at each S/F interface, following Radovic et al.

Fs(~r, ω) = Ff (~r, ω), (3.19)

∇Fs(~r, ω) = η∇Ff (~r, ω), (3.20)

in which the parameter η denotes the ratio of normal-state conductivity of ma-

terials. In the theory of Radovic et al., the perfect interface transparency was

assumed. However, Aart et al. (1997), were the first who argued the important

role of the interface transparency. They discussed their experimental results using

the boundary conditions which have been derived by Kupriyanov and Lukichev

(1988). The boundary condition (3.19) is modified to be

−Df (n̂f .∇Ff ) =
vfTf

2
(Fs − Ff ), (3.21)

where n̂f is the unit vector outward normal to the interface, vf is the Fermi

velocity inside ferromagnets and Tf is the dimensionless interface transparency
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parameter (Tf ∈ [0,∞]). The difference between (3.19) and (3.21) is that the

latter allows the jump of the anomalous Green function at the interface while the

former assumes the pairing function to be continuous across the interface.

3.3 Usadel equations including pair-breaking effects

We begin with the linearized integral equation for the superconducting order

parameter,

4(~r) = V (~r)T
∑
ω

∫
d3r′Qω(~r, ~r′)4(~r′), (3.22)

the kernels Qω(~r, ~r′) and Rω(~r, ~r′) in the presence of pair-breaking scatterers are

governed by the set of coupled differential equations, following Auvil, Ketterson

and Song (1989),

[2|ω|+ L+
1

τm

+
1

τso

]Qω(~r, ~r′) + 2iIRω(~r, ~r′) = 2πNδ(~r − ~r′), (3.23)

[2|ω|+ L+
1

τm

]Rω(~r, ~r′) + 2iIQω(~r, ~r′) = 0, (3.24)

where the gauge-invariant differential operator is denoted by

L = −D(∇− 2ie

c
~A)2. (3.25)

Therefore the position-dependent parameters D, ~A, τm, τso, I and N represent the

diffusion coefficient, the vector potential, the magnetic impurity scattering time,

the spin-orbit scattering time, the Pauli spin paramagnetism and the density of

states at the Fermi surface.

To proceed further, we will derive the Usadel equations by including

pair-breaking scatterers through the generalized de Gennes- Takahashi-Tachiki

proximity effect theory. To accomplish this we introduce the Usadel anomalous
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functions F±(~r, ω);

F+(~r, ω) =
1

πN(~r)

∫
d3r′Qω(~r, ~r′)4(~r′), (3.26)

F−(~r, ω) =
1

πN(~r)

∫
d3r′Rω(~r, ~r′)4(~r′). (3.27)

It is obvious that the order parameter (3.22) becomes

4(~r) = πTN(~r)V (~r)
∑
ω

F+(~r, ω). (3.28)

Applying (3.26) and (3.27) to the set of coupled differential equations (3.23)and

(3.24), one arrives at the following equations

[2|ω|+ L+
1

τm

+
1

τso

]F+(~r, ω) + 2iIF−(~r, ω) = 24(~r), (3.29)

[2|ω|+ L+
1

τm

]F−(~r, ω) + 2iIF+(~r, ω) = 0. (3.30)

The set of coupled differential equations (3.29 ) and (3.30) are the Usadel equa-

tions in the presence of the magnetic impurity scattering τm, the spin-orbit scat-

tering τso, and the spin exchange potential I.

Note that the extended Usadel equations as derived by Demler , Arnold

and Beasley have considered only the spin-orbit scattering effect. This result

shows the generalization of the Usadel equations whose the magnetic impurity

scattering is included for the first time.

3.4 Transition temperature of ferromagnet/ supercon-
ductor/ ferromagnet trilayers

We assume that the dirty-limit conditions are held, and calculate exactly the

transition temperature Tc of the FSF trilayer within the context of the linearized

Usadel equations by using a multimode method. We investigate the influence
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of the mutual orientation of the ferromagnetic exchange field in the parallel and

antiparallel configurations. The ferromagnetic layers occupy the regions ds/2 ≤
|x| ≤ ds/2 + df whereas −ds/2 ≤ x ≤ ds/2 is the region for the superconducting

layer. Near Tc the Usadel equations for the anomalous function take the form

Ds

2

d2

dx2
Fs(x, ω)− |ω|Fs(x, ω) = −4(x), (3.31)

for the superconducting region and

Df

2

d2

dx2
Ff (x, ω)− (|ω|+ iI(x)sgn(ω))Ff (x, ω) = 0, (3.32)

for the ferromagnetic regions. The self-consistency condition for the order pa-

rameter is given by

4(x) = πλT
∑
ω

Fs(x, ω), (3.33)

with the BCS coupling constant λ satisfies

1

λ
= ln(

1.134ωD

TcS

).

In the above Ds = vsls/3 and Df = vf lf/3 are the diffusion coefficients in S and F

which expressed in terms of the Fermi velocity and the mean free path. TcS is the

isolated critical temperature and ωD the Debye cutoff frequency, ω = (2n+1)πT,

with n = 0,±1,±2, .. are the Matsubara frequency, I(x) is the ferrromagnetic

exchange field.

The functions Fs and Ff are connected by the boundary conditions of no

supercurrent at the outer surfaces, |x| = ds/2 + df ,

d

dx
Ff (

ds

2
+ df , ω) = 0 =

d

dx
Ff (−ds

2
− df , ω), (3.34)

as well as at the SF interfaces x = ±ds/2;

d

dx
Fs(x, ω) =

NfDf

NsDs

d

dx
Ff (x, ω), (3.35)



75

Fs(x, ω) = Ff (x, ω)∓ 2Df

vfTf

d

dx
Ff (x, ω). (3.36)

Here Ns,f is the density of states in a given layer, vf is the Fermi velocity in fer-

romagnets, Tf is the dimensionless interface transparency parameter Tf ∈ [0,∞]

and the ∓ refers to the right and to the left ferromagnets, respectively.

Let us denote the propagating momentum in the ferromagnet by

kf =

√
2

Df

[|ω|+ iIsgn(ω)], (3.37)

and seek the solution to (3.32) in two cases.

For the case of the parallel alignment of magnetizations (P-phase): I(x >

ds/2) = I = I(x < −ds/2), the solution of the Usadel equation (3.32) that

satisfies the condition of no supercurrent at the outer surfaces is

Ff (x, ω) = Cω cosh(kf [|x| − ds

2
− df ]), (3.38)

for both F layers, and the boundary conditions at x = ±ds/2 can be written in a

closed form with respect to Fs :

d

dx
Fs(

ds

2
, ω) = −W (ω)Fs(

ds

2
, ω), (3.39)

d

dx
Fs(−ds

2
, ω) = W (ω)Fs(−ds

2
, ω), (3.40)

with

W (ω) =
NfDf

NsDs

kf tanh(kfdf )

1 +
2Df kf

vf Tf
tanh(kfdf )

. (3.41)

For the case of the antiparallel alignment of magnetizations (AP-phase):

I(x > ds/2) = I = −I(x < −ds/2), the difference from the parallel case is that

kf → k∗f for the left ferromagnetic layer (x < −ds/2) then we obtain the boundary

conditions at interfaces x = ±ds/2:

d

dx
Fs(

ds

2
, ω) = −W (ω)Fs(

ds

2
, ω), (3.42)
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d

dx
Fs(−ds

2
, ω) = W ∗(ω)Fs(−ds

2
, ω), (3.43)

here W ∗ means the complex conjugation of W.

In order to calculate Tc in the multimode method, we must solve the Us-

adel equation in the superconducting layer (3.31) together with the self-consistency

equation for the order parameter (3.33). We propose the method for solving the

problem exactly.

We employ the Takahashi-Tachiki differential equation for the diffusive

kernel (3.9) in the superconducting region, namely

Ds

2

d2

dx2
Q̄ω(x, x′)− |ω|Q̄ω(x, x′) = −δ(x− x′), (3.44)

here Q̄ω(x, x′) = 2Q±
ω (x, x′)/πNs plays the role of mathematical Green’s functions

and has the similar boundary conditions as Fs(x, ω);

d

dx
Q̄ω(

ds

2
, x′) = −W (ω)Q̄ω(

ds

2
, x′), (3.45)

d

dx
Q̄ω(−ds

2
, x′) = W (ω)Q̄ω(−ds

2
, x′), (3.46)

for P-phase, while we replace W → W ∗ in (3.46) for AP-phase. The anomalous

function Fs(x, ω) can be expressed in an integral equation form

Fs(x, ω) =
∫ ds/2

−ds/2
dx′Q̄ω(x, x′)4(x′). (3.47)

Introducing the eigenfunction expansion of Q̄ω(x, x′),

Q̄ω(x, x′) =
∞∑

m=−∞
Q̄ω(qm, x′) cos(qmx), (3.48)

Q̄ω(qm, x′) =
1

ds

∫ ds/2

−ds/2
dxQ̄ω(x, x′) cos(qmx), (3.49)
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where qm = 2mπ/ds with m = 0,±1,±2, .... are the eigenmodes in the supercon-

ducting region and provides the orthogonality relation

1

ds

∫ ds/2

−ds/2
dx cos(qmx) cos(qm′x) = δmm′ . (3.50)

Performing the Fourier transform of (3.44) yields

ds(|ω|+Ds

2
q2
m)Q̄ω(qm, x′) = cos(qmx′)+

Ds

2
(−1)m[

d

dx
Q̄ω(

ds

2
, x′)− d

dx
Q̄ω(−ds

2
, x′)].

(3.51)

In the last term of (3.51) we use (3.48) the symbol

αω =
Ds

ds

W (ω); P − phase, (3.52)

αω =
Ds

ds

ReW (ω); AP − phase, (3.53)

to obtain the eigenfunction expansion of the diffusive kernel Q̄ω as follows

Q̄ω(qm, x′) =
cos(qmx′)

ds(|ω|+ Ds

2
q2
m)
− αω

|ω|+ Ds

2
q2
m

∞∑

l=−∞
(−1)m+lQ̄ω(ql, x

′). (3.54)

Solving (3.54) for Q̄ω(qm, x′) algebraically we have

Q̄ω(qm, x′) =
cos(qmx′)

ds(|ω|+ Ds

2
q2
m)
− αω

1 + αωβω

∞∑

l=−∞

(−1)m+l cos(qlx
′)

ds(|ω|+ Ds

2
q2
m)(|ω|+ Ds

2
q2
l )

,

(3.55)

where the frequency-dependent coefficient βω is denoted by

βω =
∞∑

m=−∞

1

|ω|+ Ds

2
q2
m

=

√√√√ d2
s

2Ds|ω| coth(

√
d2

s|ω|
2Ds

). (3.56)

We proceed further by transforming the order parameter equation (3.33) and the

integral equation of the anomalous function Fs (3.47), the results are

4(qm) = πλT
∑
ω

Fs(qm, ω), (3.57)
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and

Fs(qm, ω) =
∞∑

m′=−∞
Lmm′(ω)4(qm′), (3.58)

where we define

Lmm′(ω) =
∫ ds/2

−ds/2
dx′Q̄ω(qm, x′) cos(qm′x′), (3.59)

Substituting (3.55) into (3.59) and then utilizing (3.57) and (3.58) we obtain

∞∑

m′=−∞
Amm′4(qm′) = 0. (3.60)

Here

Amm′ = δmm′ − λπT
∑
ω

Lmm′(ω), (3.61)

Lmm′(ω) =
δmm′

(|ω|+ Ds

2
q2
m)
− αω

1 + αωβω

(−1)m+m′

(|ω|+ Ds

2
q2
m)(|ω|+ Ds

2
q2
m′)

. (3.62)

Equation (3.60) has a nontrivial solution when

det |A| = 0. (3.63)

The secular equation (3.63) provides the transition temperature Tc as the largest

solution.

In the single-mode approximation when the superconducting layer thick-

ness is very small comparable to their coherence length, i.e., ds/ξs ¿ 1, the all

other elements of Amm′ are vanished except A00, then (3.60) reduces to

A00 = 0,

or

ln
Tc

TcS

=
∞∑

n=0

(
1

n + 1
2

+ αω

2πTc

− 1

n + 1
2

). (3.64)
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In the case of strong ferromagnets I À TcS, we can write (3.64) in terms of the

digamma function

ln
Tc

TcS

= ψ(
1

2
)−Re ψ(

1

2
+

TcS

Tc

ρ), (3.65)

where the pair-breaking parameter

ρ =
2φ2

(ds/ξs)2
, (3.66)

with

φ2
P =

ds

2
W, φ2

AP =
ds

2
ReW.

We examine the effect of the interface transparency Tf in two limiting cases.

In the limit of the low interface transparency Tf ¿ 1 with an arbitrary

ferromagnetic thicknesses df , we find the same result as Tagirov, i.e.,

φ2
P = φ2

AP = Tf
Nf

Ns

dsvf

4Ds

. (3.67)

This result shows that T P
c = TAP

c for any ferromagnetic thickness thus the mutual

orientation of magnetizations does not have influence on the transition tempera-

ture.

In the limit of the high interface transparency Tf À 1 with a very thick

ferromagnet, we obtain the similar result as Baladie et al.,

φ2
P = (1 + i)

ds

2

NfDf

NsDs

√
I

Df

, (3.68)

φ2
AP =

ds

2

NfDf

NsDs

√
I

Df

. (3.69)

We conclude that the parallel alignment of magnetizations strongly suppresses

Tc of trilayer structures meanwhile the antiparallel one enhances the supercon-

ductivity. Thus TAP
c > T P

c or the antiparallel phase is more favorable than the

parallel phase.
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3.5 Perpendicular upper critical field of ferromagnet/
superconductor/ferromagnet trilayers

In this section we study the magnetic field effect on the F/S/F trilayer by calcu-

lating the perpendicular upper critical field Hc2⊥ as a function of temperature for

any thickness ds or df . The trilayer structure lies in the x-y plane with the mod-

ulation of the pairing amplitude is taking along the z-axis parallel to the external

magnetic field ~H = Hẑ. We choose the gauge ~A = (0, Hx, 0), the gauge-invariant

operator L reads as

L = −Ds,f [
∂2

∂x2
+ (

∂

∂y
− 2iπ

φ0

Hx)2 +
∂2

∂z2
], (3.70)

where φ0 = hc/2|e| is the flux quantum.

Assuming that the anomalous functions Fs,f can be separated according

to

Fs,f (~r, ω) = f(x, y)gs,f (z, ω), (3.71)

here we have supposed that f(x, y) is a frequency-independent function because

of the Abrikosov vortex lattice occurs only in the z-direction.

For ferromagnetic layers, ds/2 ≤ |z| ≤ ds/2 + df , we have the Usadel

equation

1

2
LFf (~r, ω) + [|ω|+ iI(z)sgn(ω)]Ff (~r, ω) = 0. (3.72)

we denote the propagating momentum in ferromagnets by

kf =

√
2

Df

[|ω|+ iIsgn(ω)], (3.73)

and examine the solution to (3.72) when the spin-exchange fields align either

parallel or antiparallel with respect to the magnetization axis. For the case of the
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parallel alignment of magnetizations: I(z > ds/2) = I = I(z < −ds/2), (3.72)

can be written as

d2

dz2
gf (z, ω) = p2

fgf (z, ω), (3.74)

and

[
∂2

∂x2
+ (

∂

∂y
− 2iπ

φ0

Hx)2]f(x, y) + (p2
f − k2

f )f(x, y) = 0. (3.75)

We seek the solution to f(x, y) by taking f(x, y) = eikyyf(x) and x0 = φ0ky/2πH

and introduce the new variable ζ =
√

2πH/φ0x and η = (p2
f − k2

f )φ0/2πH, then

we have

f(ζ) = e−
1
2
ζ2

Hn(ζ),

where Hn(ζ) is the Hermite polynomial of order n, we can show that η = 2n + 1

thus

p2
f − k2

f = (2n + 1)
2πH

φ0

,

the lowest eigenvalue gives the highest magnetic field i.e.,

2πHc2⊥
φ0

= p2
f − k2

f . (3.76)

Since we have assumed that f(x, y) is the same for both layers then for the

superconductor layer we consider only the z-dependent part of Fs(~r, ω)

Ds

2
(

d2

dz2
− 2π

φ0

Hc2⊥)Fs(z, ω)− |ω|Fs(z, ω) = −4(z). (3.77)

Relating Fs(z, ω) to gf (z, ω) through the interface boundaries z = ±ds/2, we

arrive at the relations

d

dz
Fs(

ds

2
, ω) = −W (ω)Fs(

ds

2
, ω), (3.78)

d

dz
Fs(−ds

2
, ω) = W (ω)Fs(−ds

2
, ω), (3.79)
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with

W (ω) =
NfDf

NsDs

pf tanh(pfdf )

1 +
2Df pf

vf Tf
tanh(pfdf )

. (3.80)

For the case of the antiparallel alignment of magnetizatons: I(z > ds/2) =

I = −I(z < −ds/2), we replace kf → k∗f for the lower ferromagnet (z < −ds/2)

thus

d

dz
Fs(

ds

2
, ω) = −W (ω)Fs(

ds

2
, ω), (3.81)

d

dz
Fs(−ds

2
, ω) = W ∗(ω)Fs(−ds

2
, ω), (3.82)

are the boundary conditions at interface z = ±ds/2.

In analogous to (3.77) we introduce the differential equation for the dif-

fusive kernel Q̄ω(z, z′)

Ds

2
(

d2

dz2
− 2π

φ0

Hc2⊥)Q̄ω(z, z′)− |ω|Q̄ω(z, z′) = −δ(z − z′), (3.83)

this enables us to express the anomalous function Fs(z, ω) as an integral equation

of Q̄ω(z, z′)

Fs(z, ω) =
∫ ds/2

−ds/2
dx′Q̄ω(z, z′)4(z′). (3.84)

The kernel Q̄ω(z, z′) has the similar boundary conditions as Fs(z, ω).

Transforming the kernel Q̄ω(z, z′) by virtue of the eigenfunction expansion

method, we have

Q̄ω(z, z′) =
∞∑

m=−∞
Q̄ω(qm, z′) cos(qmz), (3.85)

Q̄ω(qm, z′) =
1

ds

∫ ds/2

−ds/2
dzQ̄ω(z, z′) cos(qmz), (3.86)

with qm = 2mπ/ds, m is integer. The Fourier transforms of the anomalous

function Fs(z, ω), (3.84) and the order parameter equation (3.33) imply

Fs(qm, ω) =
∞∑

m′=−∞
Lmm′(ω)4(qm′), (3.87)
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and

4(qm) = πλT
∑
ω

Fs(qm, ω), (3.88)

where the matrix element Lmm′(ω) is given by

Lmm′(ω) =
∫ ds/2

−ds/2
dz′Q̄ω(qm, z′) cos(qm′z′), (3.89)

Combining (3.87) and (3.88) to obtain the equation for 4(qm),

∞∑

m′=−∞
Amm′4(qm′) = 0. (3.90)

Here

Amm′ = δmm′ − λπT
∑
ω

Lmm′(ω), (3.91)

Lmm′(ω) =
δmm′

(|ω̃|+ Ds

2
q2
m)
− αω

1 + αωβω

(−1)m+m′

(|ω̃|+ Ds

2
q2
m)(|ω̃|+ Ds

2
q2
m′)

, (3.92)

|ω̃| = |ω|+ πDs

φ0

Hc2⊥, (3.93)

αω =
Ds

ds

W (ω); P − phase, (3.94)

αω =
Ds

ds

ReW (ω); AP − phase, (3.95)

and

βω =
∞∑

m=−∞

1

|ω̃|+ Ds

2
q2
m

=

√√√√ d2
s

2Ds|ω̃| coth(

√
d2

s|ω̃|
2Ds

). (3.96)

The nontrivial solutions to (3.90) provide the secular equation

det |A| = 0, (3.97)

in which the largest solution gives the perpendicular upper critical field Hc2⊥ as

a function of temperature.

Our analytical expressions should be justified in the single-mode approx-

imation where the thin superconducting layer limit (ds ¿ ξs), ξs being the super-

conducting coherence length, is taken into account as well as the strong exchange
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field limit (I À Tcs), where Tcs is the bulk superconducting transition temperature

in the zero field. We also neglect the critical field Hc2⊥ inside the ferromagnetic

layer i.e., p2
f = k2

f . As a result, the secular equation (3.97) implies

A00 = 0,

or

ln
T

Tcs

= ψ(
1

2
)−Re ψ(

1

2
+

1

2πT
[
πDs

φ0

HP
c2⊥(T ) +

DsW

ds

]), (3.98)

for the P-phase and

ln
T

Tcs

= ψ(
1

2
)− ψ(

1

2
+

1

2πT
[
πDs

φ0

HAP
c2⊥(T ) +

Ds

ds

Re W ]), (3.99)

for the AP-phase, where ψ(z) is the digamma function and therefore

W =
NfDf

NsDs

kf tanh(kfdf )

1 +
2Df kf

vf Tf
tanh(kfdf )

, (3.100)

with kf = (1 + i)
√

I/Df .

In the following, we will examine the effect of the interface transparency

Tf on the perpendicular upper critical field Hc2⊥(T ) in two limiting cases.

(i) In the case of the low transparency limit Tf ¿ 1, the unity factor

in the denominator of W, (3.100), may be dropped regardless the ferromagnetic

layer thickness df , then W becomes

W =
NfDf

NsDs

vfTf

2Df

, (3.101)

this result shows that HP
c2⊥(T ) = HAP

c2⊥(T ) for all temperature range. Hence the

critical field Hc2⊥(T ) is independent of the oriented magnetization alignment.

(ii) In the case of the nearly perfect transparency Tf À 1 with an arbitrary

ferromagnetic layer thickness, the Taylor’s series expansion of denominator of
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(3.100) leads to

W =
NfDf

NsDs

kf tanh(kfdf )[1− 2Df

vfTf

kf tanh(kfdf )], (3.102)

we proceed further by considering the thin ferromagnetic layer thickness limit, in

this case tanh(kfdf ) ≈ kfdf and (3.102) is simplified to be

W =
NfDf

NsDs

[
2iIdf

Df

+
2Df

vfTf

(
2Idf

Df

)2 ]. (3.103)

Substituting (3.103) into (3.98) and (3.99), we obtain

ln
T

Tcs

= ψ(
1

2
)−Re ψ(

1

2
+

1

2πT
[
πDs

φ0

HP
c2⊥(T ) + 2iI

Nfdf

Nsds

] ), (3.104)

for the P-phase and

ln
T

Tcs

= ψ(
1

2
)− ψ(

1

2
+

1

2πT
[
πDs

φ0

HAP
c2⊥(T ) + 8

I2df

vfTf

Nfdf

Nsds

] ), (3.105)

for the AP-phase, respectively. The obtained results show that the critical field

HP
c2⊥(T ) does not depends on the parameter Tf while HAP

c2⊥(T ) increases as Tf

increases from the high limit Tf À 1 to the perfect limit Tf → ∞. Because of

the weak suppression character of the exchange field on the pairing function in

the antiparallel aligned ferromagnetic layers, the paired electrons are preferable

to situate in the superconducting layer than the ferromagnetic layers even though

the perfect transparency limit is reached.



Chapter 4

Discussion and Conclusions

4.1 Numerical Results

In the previous chapter the superconducting transition temperature Tc and the

perpendicular upper critical field Hc2⊥ of the proximity effect of F/S/F trilayers

are calculated, regarding the mutual orientation of ferromagnetic exchange fields

of the outer layers, in a multimode method by taking the role of the interface

boundary transparency Tf and the arbitrary exchange energy I into account. The

central results shown in §3.4 and §3.5 and we will write them again for practical

purpose. We begin with the secular equation (3.97)

det |A| = 0, (4.1)

where the matrix element Amm′ and their related expressions are

Amm′ = δmm′ − λπT
∑

ω

Lmm′(ω), (4.2)

Lmm′(ω) =
δmm′

(|ω̃| + Ds

2
q2
m)

−
αω

1 + αωβω

(−1)m+m′

(|ω̃| + Ds

2
q2
m)(|ω̃| + Ds

2
q2
m′)

. (4.3)

|ω̃| = |ω| +
πDs

φ0

Hc2⊥, (4.4)

αω =
Ds

ds

W (ω); P − phase, (4.5)

αω =
Ds

ds

ReW (ω); AP − phase, (4.6)

and

βω =
∞
∑

m=−∞

1

|ω̃| + Ds

2
q2
m

=

√

√

√

√

d2
s

2Ds|ω̃|
coth(

√

d2
s|ω̃|

2Ds

). (4.7)
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The function W (ω) follows from the boundary condition at F/S interfaces and is

expressed as

W (ω) =
NfDf

NsDs

pf tanh(pfdf )

1 +
2Df pf

vf Tf
tanh(pfdf )

, (4.8)

here the propagating momentum inside ferromagnets, pf , including the perpen-

dicular upper critical field, Hc2⊥, has the relation according to (3.76)

p2
f = k2

f +
2π

φ0

Hc2⊥, (4.9)

with

kf =

√

2

Df

(|ω| + iIsgn(ω)). (4.10)

In the above equations λ is the dimensionless coupling constant of the supercon-

ducting layer in which we have assumed that the pairing interaction does not

exist in ferromagnets and in the case of the isolated superconducting metal with

the hypothetical weak-coupling approximation, ωD/Tcs À 1, ωD is the Debye

cutoff frequency and Tcs the bulk critical temperature, one has

λ = (ln
1.14ωD

Tcs

)−1, (4.11)

ω = (2n + 1)πT is the discrete frequency, n = 0,±1,±2, .. qm = 2mπ/ds, with

m being integer, is the eigenmode, ds(f) represents the layer thicknesses of S(F)

metals, φ0 = hc/2|e| is the flux quantum, D = vl/3 is diffusion coefficient where

v and l denote the Fermi velocity and the mean free path in a given layer, N is

the constant density of states,Tf serve as an (dimensionless) interface boundary

transparency and I the exchange energy of ferromagnetic layers.

It should be noted that the set of equations (4.1)-(4.11) are for determin-

ing the phase diagram (H,T ) where the critical line Hc2⊥ at a given temperature

T separates the regions between the superconducting and the normal phases
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where the pairing amplitude from the S sides can penetrate through the F side

due to the proximity effect. If we take Hc2⊥ in (4.9) to be equal to zero, the

problem reduces to investigating the nonmonotonic behavior of the transition

temperature,Tc, over the ferromagnetic thickness.

In the following, we introducing the coherence length of S and F layers,

respectively

ξs,f =

√

Ds,f

2πTcs

, (4.12)

and denote the notations

γ =
NfDf

NsDs

=
σf

σs

, (4.13)

γb =
2Df

vfξfTf

=
2

3

(lf/ξf )

Tf

, (4.14)

here σs,f means the normal-state conductivity for each material (S and F), usually

σf ¿ σs then γ characterizes the weak proximity and γb may be interpreted as

the boundary resistivity at FS interfaces. Within the framework of the Ginzburg-

Landau theory, the perpendicular upper critical field at zero temperature Hc2⊥(0)

of an isolated superconducting film is given by

Hc2⊥(0) =
φ0

2πξ2
GL(0)

, (4.15)

the temperature dependent Ginzburg-Landau coherence length ξ2
GL(T ), or the GL

magnetic coherence length, is related to the superconducting coherence length

ξs,(4.12) through

ξGL(T ) =
πξs

2
(1 − T/Tcs)

−1/2. (4.16)

Combining (4.15)and (4.16) gives the relation

πDs

φ0

Hc2⊥(T ) = 2πTcs
2Hc2⊥(T )

π2Hc2⊥(0)
. (4.17)
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By virtue of (4.12)-(4.14), we can rewritten W (ω),(4.8), as follows

W (ω) =
γ/ξf

Bf (ω) + γb

, (4.18)

where

Bf (ω) = (pfξf tanh(pfdf ))
−1, (4.19)

then the matrix element Amm′ , (4.2), can be expressed in terms of dimensionless

reduced parameters such as T/Tcs, ds/ξs, dfξf , Hc2⊥(T )/Hc2⊥(0),

Amm′ = δmm′ − λ
T

Tcs

∞
∑

ω≥0

(
δmm′

Em

− (−1)m+m′ Ω(ω)

EmEm′

), (4.20)

here

Em =
ω

2πTcs

+
2Hc2⊥(T )

π2Hc2⊥(0)
+

2(mπ)2

(ds/ξs)2
, (4.21)

ΩP (ω) =
E2

0Reaω + E0|aω|
2bω

E2
0 + 2E0bωReaω + |aω|2b2

ω

, P − phase; (4.22)

ΩAP (ω) =
E0Reaω

E0 + bωReaω

, AP − phase; (4.23)

with

aω =
(γξs/ξf )

(ds/ξs)

1

Bf (ω) + γb

, (4.24)

bω =

√

√

√

√

1

2
(
ds

ξs

)2[
ω

2πTcs

+
2Hc2⊥(T )

π2Hc2⊥(0)
] coth(

√

√

√

√

1

2
(
ds

ξs

)2[
ω

2πTcs

+
2Hc2⊥(T )

π2Hc2⊥(0)
]). (4.25)

The set of equations (4.20)-(4.26) are suitable for numerical calculations, if we

take Hc2⊥ equal to zero, the problem then reduces to determinations of the tran-

sition temperature Tc as a function of a ferromagnetic layer thickness, df .

In numerical calculation, it is sufficient to taking only the (0,0) component

of Amm′ , (4.20), therefore the reduced length ds/ξs and df/ξf are arbitrary values.

Because of all other modes are included via the summation over m which appeared
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in βω, (4.7), or bω, (4.25). Then the secular equation (4.1) becomes A00 = 0. Using

(4.11) and (4.20), we get the equation for the phase diagram (Hc2⊥, T ),

ln
T

Tcs

= ψ(
1

2
) − ψ(

1

2
+

2Hc2⊥(T )

π2Hc2⊥(0)

Tcs

T
) −

T

Tcs

∑

ω≥0

Ω(ω)

E2
0

, (4.26)

where ψ(z) is the digamma function

ψ(y) − ψ(x) =
∞
∑

n=0

(
1

n + x
−

1

n + y
). (4.27)

For the P and AP magnetization alignments, one has from (4.26)

ln
T

Tcs

= ψ(
1

2
) − ψ(

1

2
+

2HP
c2⊥(T )

π2Hc2⊥(0)

Tcs

T
) −

T

Tcs

∑

ω≥0

ΩP (ω)

E2
0

, (4.28)

ln
T

Tcs

= ψ(
1

2
) − ψ(

1

2
+

2HAP
c2⊥(T )

π2Hc2⊥(0)

Tcs

T
) −

T

Tcs

∑

ω≥0

ΩAP (ω)

E2
0

, (4.29)

where ΩP (AP )(ω) is given by (4.22) and (4.33). The parameters used here corre-

spond to Fominov et al.,(2002) and are following ds = 22 nm, ξs = 8.9 nm, ξf =

7.6 nm, γ = 0.125, I = 6.8πTcs, and varying only γb, it can be seen from (4.14)

that the parameter γb depends linearly on the ratio lf/ξf while is proportional

inversely to the interface boundary transparency parameter Tf . As point out by

Garifullin et al.,(2002) and Tagirov et al.,(2002) who observed the re-entrant

behavior of the superconducting transition temperature in Fe/V/Fe trilayered

system, the electron mean free path lf is essential for observing the re-entrant

superconductivity where the transparency parameter Tf is fit to the experimental

data. We illustrate this phenomenon by plot Tc(df ) for several values of γb which

is achieved by taking Hc2⊥ = 0 in (4.28) and (4.29). The results for Tc/Tcs versus

df/ξf are showed in Figs.(4.2)-(4.8). We obtain various types of Tc(df ) behavior,

Fig.(4.2) is of the parallel alignment while Fig.(4.3) the antiparallel one, (i) the

monotonic decay of Tc at a very low γb, superconductivity completely vanishes at
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a particular df , (ii) the re-entrant superconductivity at a moderate γb, Tc drops

to zero at finite df and it restores again. (iii) the nonmonotonic decay of Tc

at a large γb, superconductivity existing throughout the ferromagnet but it is

a particular df that Tc has a minimum value. Note that the P-case of F/S/F

trilayers is equivalent to the F/S bilayers when the relation dtri
s = 2dbi

s is held

and Fig.(4.2) reproduces the result of the F/S bilayers of Fominov et al., (2002).

The Tc(df ) in AP-case is shown in Fig.(4.3), one can see that TAP
c ≥ T P

c , i.e., the

AP-phase is more favorable than the P-phase, the physical reason is simply; the

ferromagnetic exchange fields strongly suppress the Cooper pair in the parallel

magnetization alignment and weakly suppress in the antiparallel one. Figs.(4.4)-

(4.8) are drawn to compare Tc between the P-and AP-phases for several γb, at

small γb. TAP
c is much larger than T P

c and decreases when γb increases until γb

is larger than unity, TAP
c equals T P

c . For the perpendicular upper critical field

Hc2⊥(T ), Figs.(4.9)-(4.10) show the linear temperature dependence of Hc2⊥ near

Tcs. Therefore the parameters are the same as in the calculations of Tc(df ) and we

have chosen df/ξf = 0.25 which corresponds to the real situation (ds À df ), i.e.,

thick S and thin F layers. For the P-case, Fig.(4.8) shows that the small value of

γb does not have influence on the critical field Hc2⊥, the effect of γb on Hc2⊥ be-

come significant at a moderate value, the reduced critical field Hc2⊥(T )/Hc2⊥(0)

increases due to the pairing amplitude is confined in the S layer. For the AP-case,

the result is different from the P-case as shown in Fig.(4.9), the reduced critical

field Hc2⊥(T )/Hc2⊥(0) decreases as γb increase from zero to the moderate value

but it is higher when γb is large.
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Fig. 4.1 Schematic pictures of ferromagnet(F)/ superconductor(S)/ ferro-

magnet layered structures, F and S occupy the regions ds/2 ≤ |x| ≤ ds/2 + df

and −ds/2 ≤ x ≤ ds/2, respectively. (a) the parallel magnetization alignment

(P-phase) of F and (b) the antiparallel one (AP-phase).
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Fig. 4.2 The reduced transition temperature Tc/Tcs as a function of the

reduced ferromagnetic layer thickness df/ξf in the P-phase for γ = 0.125, ds/ξs =

2.5, I = 6.8πTcs, ξf = 7.6 nm and varying the boundary resistivity γb. The

Tc(df ) curves show the monotonic decay for γb = 0, the nonmonotonic decay for

γb = 0.1, 0.5, 2 and the re-entrant superconductivity for γb = 0.05.
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Fig. 4.3 The reduced transition temperature Tc/Tcs as a function of the

reduced ferromagnetic layer thickness df/ξf in the AP-phase with varying the

boundary resistivity γb. The parameters are the same as in Fig. 4.2. The Tc(df )

curves show only the nonmonotonic behavior.
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Fig. 4.4 The dependence of the reduced transition temperature Tc/Tcs on

the normalized ferromagnetic thickness df/ξf between the parallel and antiparal-

lel magnetization alignments (P-and AP-phases), for γ = 0.125, ds/ξs = 2.5, I =

6.8πTcs, ξf = 7.6 nm with the boundary resistivity γb = 0.
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Fig. 4.5 The dependence of the reduced transition temperature Tc/Tcs on

the normalized ferromagnetic thickness df/ξf between the parallel and antiparal-

lel magnetization alignments (P-and AP-phases), for γ = 0.125, ds/ξs = 2.5, I =

6.8πTcs, ξf = 7.6 nm with the boundary resistivity γb = 0.05
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Fig. 4.6 The dependence of the reduced transition temperature Tc/Tcs on

the normalized ferromagnetic thickness df/ξf between the parallel and antiparal-

lel magnetization alignments (P-and AP-phases), for γ = 0.125, ds/ξs = 2.5, I =

6.8πTcs, ξf = 7.6 nm with the boundary resistivity γb = 0.1
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Fig. 4.7 The dependence of the reduced transition temperature Tc/Tcs on

the normalized ferromagnetic thickness df/ξf between the parallel and antiparal-

lel magnetization alignments (P-and AP-phases), for γ = 0.125, ds/ξs = 2.5, I =

6.8πTcs, ξf = 7.6 nm with the boundary resistivity γb = 0.5
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Fig. 4.8 The dependence of the reduced transition temperature Tc/Tcs on

the normalized ferromagnetic thickness df/ξf between the parallel and antiparal-

lel magnetization alignments (P-and AP-phases), for γ = 0.125, ds/ξs = 2.5, I =

6.8πTcs, ξf = 7.6 nm with the boundary resistivity γb = 2.
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Fig. 4.9 The normalized perpendicular upper critical field Hc2⊥(T )/Hc2⊥(0)

versus the reduced temperature T/Tcs in the P-phase for γ = 0.125, ds/ξs =

2.5, df/ξf = 0.25, I = 6.8πTcs, and varying the boundary resistivity γb. The

effect of γb on the phase diagram (Hc2⊥, T ) becomes significant at a moderate

value, e.g., γb = 0.5, 2, the normalized critical field Hc2⊥(T )/Hc2⊥(0) increases

due to the pairing amplitude is confined in the S layer.
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Fig. 4.10 The normalized perpendicular upper critical field Hc2⊥(T )/Hc2⊥(0)

versus the reduced temperature T/Tcs in the AP-phase for γ = 0.125, ds/ξs =

2.5, df/ξf = 0.25, I = 6.8πTcs, and varying the boundary resistivity γb. The

normalized critical field Hc2⊥(T )/Hc2⊥(0) decreases as γb increase from zero to

the moderate value, e.g., γb = 0, 0.05, 0.1, 0.5, but it is higher when γb is large.
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4.2 Discussion

We study the influence of the proximity effect on FSF trilayers by considering

the effect of spin orientation dependence on the transition temperature Tc and

Hc2⊥ and calculate them as a function of the mutual orientation of ferromagnetic

exchange fields. Therefore we treat the cases of parallel and antiparallel orien-

tation of ferromagnetic moments. The Usadel equations are solved in the exact

multimode method.

In this work, the Usadel equations, the transport-like differential equation,

are derived from the Takahashi-Tachiki theory, the integral equation of the de

Gennes correlation function. Moreover the generalized Usadel equations including

the pair-breaking effects such as orbital diamagnetism, Pauli spin paramagnetism,

spin-orbit scattering and magnetic impurity scattering are obtained for the first

time.

We propose the exact method for calculating Tc and Hc2⊥ as a func-

tion of the SF parameters by solving the Usadel equations with making use the

Takahashi-Tachiki differential equation. The obtained results are identical with

Radovic et al.,’s method, the multimode method. Therefore we treat the role

of finite transparency at boundary interfaces as well as the arbitrary exchange

energy which account for both weak and strong ferromagnets.

We obtain the dependence of Tc and Hc2⊥ on the mutual orientation of

ferromagnetic exchange fields in parallel and antiparallel configurations. The

multimode solution to the Usadel equations is expressed through the secular

equation which contains the SF parameters such as the superconducting layer

thickness ds, the ferromagnetic layer thickness df , the density of states Ns,f , the

diffusion coefficients Ds,f , the exchange energy I and the dimensionless interface
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transparency parameter Tf .

When the superconducting layer thickness is thin enough comparable to

their coherence length ds/ξs ¿ 1, all other elements of the secular equation

vanish except for the zeroth mode, the single-mode approximation. In the strong

ferromagnet limit, we can write down the result in terms of the digamma function.

We proceed further by examining the effect of the interface transparency in some

limiting cases and find that the high interface transparency limit together with

a thick ferromagnet layer gives the transition temperature Tc of the antiparallel

phase enhances than the parallel one. The important of the multimode method

arises when we deal with the perpendicular upper critical field Hc2⊥ since the exact

solution is required. We have assumed that the anomalous function Fs,f (~r, ω)

behaves the same in both layers. This allows us to treat the anomalous function

having proximity only in the normal direction. The solution to the anomalous

function in the layer plane gives the relation between the magnetic field and the

propagating momentum, the perpendicular upper critical field is achieved as the

lowest eigenvalue of the harmonic oscillator.
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4.3 Conclusions

The proximity effect of superconductors (S) and ferromagnets (F) has unusual

features such as the superconducting π− phase, the oscillation of the supercon-

ducting transition temperature Tc in ferromagnetic layers, of the SF multilayers.

Particular interest is paid to the FSF trilayers proximity structure where

the mutual orientations of magnetization can be aligned either parallel (P) or

antiparallel (AP). We have calculated the transition temperature Tc and the per-

pendicular upper critical field Hc2⊥ as a function of the mutual orientation of

the ferromagnetic exchange fields in magnetic layers by solving the Usadel equa-

tions in a multimode method. Numerical results of the transition temperature Tc

and the perpendicular upper critical field Hc2⊥ show that the AP configuration

enhances the superconductivity than the P one. We obtain the nonmonotonic

and the re-entrant behaviors of Tc depending on the material parameters. In-

vestigations of the critical field Hc2⊥ reveal that the low boundary resistivity γb

does have influence only on the AP-phase which is due to the weak suppression

character of the ferromagnetic exchange fields.
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