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CHAPTER 1

INTRODUCTION

In [3], Sirichan Pahupongsab studied and generalized theorems in vector spaces
over fields to those in vector spaces over semifields satisfying a certain property.
Moreover, she considered linear transformations of vector spaces over semifields.

In this research, we carry on investigating and generalizing some other theorems in
vector spaces over semifields with the same property. In addition, we study modules
over any semifields and obtain similar theorems in ring modules. Furthermore, we
explore tensor products of modules over semifields and tensor products of vector
spaces over semifields.

This thesis contains 4 chapters. Chapter I is an introduction.

In Chapter II, we introduce some notation, definitions, theorems, corollaries and
examples which are required in the following chapters.

In Chapter III, we study modules over semifields, homomorphisms of modules
over semifields, tensor products of modules over semifields and multilinear maps. We
also give examples in each topic.

In Chapter IV, we extend our work from [3] in order to obtain more theorems
in vector spaces over semifields. Moreover, we discuss deeply in tensor products of
vector spaces over semifields.

In this thesis references are denoted by square brackets [ | and equations by round

brackets ( ), for example, (1.2.3) denotes the equation 3 in Section 2 of Chapter I.



CHAPTER 11

PRELIMINARIES

In this chapter, we present some notation, known definitions and theorems which

will be referred later in this thesis.

2.1. Notation

We summarize standard notation being used throughtout this thesis.

Z  is the set of all integers.

ZT is the set of all positive integers.

Q s the set of all rational numbers.

Q* s the set of all positive rational numbers.
Qs = Q*u{o}.

R is the set of all real numbers.

R* is the set of all positive real numbers.

RS = RTU {0}

Ny is the cardinal number of Z.

2.2. Known Definitions and Theorems

In this section, we require the following definitions, theorems and examples that
will be used in Chapter I1I and. Chapter IV.

First, we follow notion of semifields given in [3] and [5].

Definition 2.2.1. [3] A system (K, +,) is said to be a semifield if

(i) (K,+) is a commutative semigroup with identity 0,

(ii) (K\{0},-) is an abelian group and k-0 =0-k =0 for all k£ € K and



(iii) - (y+2)=z-y+x-z forall z,y,z€ K.

We always denote the identity of the group (K\{0},) by 1x and x -y by zy for all

x,y € K. Moreover, we call an element of K is a scalar.

Definition 2.2.2. [3] Let K be a semifield. A nonempty subset L of K is said to

be a subsemifield of K if

(i) 0 € L and L # {0},
(i) for all z,y € L, with y # 0, implies zy™' € L, and

(iii) for all z,y € L, +y e L.

Example 2.2.3. [3]

(i) Every field is a semifield.

(ii) (QE{, +, ) and (Rg - ) are semifields which are not fields.

(iii) If we define the binary operation * on Qf by z xy = max{z,y} for all
r,y € Qf, then (Qa“, *, ) is a semifield but not a field.

(iv) If we define two binary operations @ and © on Z U {c}, where ¢ is a new
symbol which is not an integer, by = @ y = max{z,y},r e =cdr =12
and eGe=cand xOQy=r+y,r0e=c@rx =c,c0ec=c forall x,y € Z.
Then (Z U {e},®, ®) is a semifield but not a field. Moreover, this example
is still true if Z is replaced by Q.

(v) (QF xQTU{(0,0)},+,-) is a semifield.

Later, we will deal with infinite sets so that we need the followings which are

standard.

Definition 2.2.4. [2] Let a and ( be cardinal numbers, A and B be disjoint sets
such that |A| = @ and |B| = 3. The sum a+ (3 is defined to be the cardinal number

|AU B|. The product af is defined to be the cardinal number |A x B].



Theorem 2.2.5. [2] Schroeder-Bernstein

If A and B are sets such that |A| < |B| and |B| < |A|, then |A| = |B|.

Theorem 2.2.6. [2] If « and § are cardinal numbers such that 0 # 5 < o and «

is infinite, then af = «; in particular, a®o = a and if § is finite Ro = Ny .

Corollary 2.2.7. [2] If A is an infinite set and P(A) the set of all finite subsets

of A, then |B(A)| = |A].

The following familiar definitions and theorems regarding notion of free abelian

groups are needed to define tensor products of modules over semifields in Section 3.3.

Theorem 2.2.8. Let X be a nonempty set and let

FAX)={f:X— Z|3F C X such that |F| < 0o and f(z) =0 for allz € X\ F}.
Define + on FA(X) by for any f,g € FA(X),

(f+9)x) = f(z)+ g(x) for all z € X.

Then (FA(X),+) is-an abelian group.
Definition 2.2.9. Let X be a nonempty set. For any « € X, define f, : X — Z by

1, ify=unx,
fx(y) = 59[:3/ —

0, otherwise.

We can see that for each nonempty set X, f, € FA(X) for all z € X.

Definition 2.2.10. Let X be a nonempty set. We define a function 7 from X into
FAX) by 7(z) = f, for all x € X. We usually denote 7(z) by T for any = € X

since T is injective.
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Proposition 2.2.11. Let X be a nonempty set and f € FA(X). Then either f =0
(the zero function) or f = Zf(:r;)fw where ) £ F C X, |F| < oo and f(x) =0 for

zeF

al e X\ F.

Lemma 2.2.12. For any g € FA(X)\{0}, there exist unique distinct xq,...,x, € X

and unique non-zero integers sy, ...,a, such that
g:aljl"i_"'"i_anfn: Z g(x)fx
ze{z1,....xn}

Definition 2.2.13. A group A is a free abelian group on a nonempty set X if

(i) A is an abelian group and
(i) Vg € A\ {0} 3! distinct 21,..., 2, € X Flay, ..., o, € Z\ {0},
g =121+ +opT,.

We sometimes call X a basis for the free abelian group A.

Note 2.2.14. Let X be a nonempty set. Then (FA(X),+) is a free abelian group

on 7(X). Sometimes, we say, instead that F.A(X) is a free abelian group on X.

Proposition 2.2.15. Let A be an (additive) abelian group, X a nonempty set and
¢: X — A a function. Then there exists a unique gz~5 : FA(X) — A such that b is a

group homomorphism and ggo T = @, i.e., the following diagram commutes:
x —— FAX)

¢ .

e

»

A



CHAPTER 111

MODULES OVER SEMIFIELDS

In this chapter, we investigate modules over semifields in various aspects. Defi-
nitions and theorems of modules over semifields are given in Section 3.1. Then, in
Section 3.2, we study homomorphisms of modules over semifields. We discuss tensor
products of modules over semifields in Section 3.3. Finally, we introduce and study

multilinear maps of modules over semifields in Section 3.4.

3.1. Modules over Semifields

Roughly speaking, we can see from Definition 2.2.1 that the definition of a semifield
is similar to the one of a commutative ring by interchanging roles between addition
and multiplication. For this reason, we define modules over semifields in the same

way as modules over rings.

Definition 3.1.1. Let K be a semifield. A left K -module or left module over K is
an additive abelian group M together with a function K x M — M (the image of

(k,m) being denoted by km ) such that for all m,m;, my € M and k, ki, ks € K,

(1) k(my+mg)=kmy + kma,
(i) (k1 + k2)m = kym + kom and
(iil) (Kkrka)m =k (kam).
Moreover, if 1xm = m for all m € M where 1k is the identity of (K \{0},-), then
M is said to be a left vector space over K or unitary left K -module.
A right K -module is defined similarly via a function M x K — M (the image of

(m, k) being denoted by mk) and satisfies the obvious analogues of (i)—(iii). Besides,
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M is a right vector space over K or unitary right K -module if it is a right K -module

and mlg =m for all m e M.

Note 3.1.2. Let K be a semifield. Then
M is a left K-module if and only if M is a right K-module

with mk = km for all k € K and m € M .

Proof. Assume that M is a left K-module. Let £, ki, ks € K and m,mi,mg € M.

Thus

(my + mao)k = k(my + my) = kmy + kma = mqk + mok,
m(ky + ko) = (k1 + ka)m = kym + kom = mk; + mks and

m(kﬁlkg) == (k’le)m == (k?gk?l)m = k’g(k’lm) =3 (klm)kQ = (mkﬁl)kg

Therefore M is a right K-module.
Conversely, if M is a right K-module, then M is also a left K-module by the

similar way. O

Example 3.1.3.

(i) Q" is both a left-and a-right module over Qf and also both a left and a
right vector space over Qg for all n € N,
(ii). R™ is both a left and a right module over Ry and also both a left and a
right vector space over Ry for all n'€ N.
(iii) @ x R is both a left and a right module over Qf and also both a left and
a right vector space over Qar.
(iv) If n € N and M, ..., M, are modules over a semifield K, then M;x---xM,

is a module over K under usual addition and scalar multiplication.
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Definition 3.1.4. Let Kand S be semifields. An abelian group (M,+) isa K — S
bimodule provided that M is both a left K-module and a right S-module and
k(ms) = (km)s for all k € K,s € S and m € M.

We sometimes write Mg to indicate the fact that M is a K-S bimodule. Sim-
ilary, x M indicates a left K'-module M and Mg a right S-module M. Sometimes,
we simply write xM as “M is a left K-module”. From now on, unless specified
otherwise, “K-module”means “left K-module”. Moreover, if M is a vectore space

over K, then “vector space "means “left vector space ”

Example 3.1.5.

(i) If K is a semifield and M is a K-module, then M is a K-K bimoddule.
(i) R™ is an QF -Rg bimodule.

Proposition 3.1.6. If M is a module over a semifield K , then the following state-
ments hold:
(i) 0m =0 for all m € M,
(ii) k0 =0 for all k € K,
iii) —(km) = k(=m) for all k € K and m € M and
1v)

—(k(=m)) = km for all k € K and m € M .

Proof. This is straightforward. 0J

From now on, if M is a module over a semifield K, then we write —km instead

of —(km) for all k€ K and m e M.

Definition 3.1.7. Let M be a module over a semifield K. A submodule of M
is a subset of M which is, itself, a module over K with the addition and scalar
multiplication of M. A submodule of a vector space over a semifield K is called a

subspace.
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Theorem 3.1.8. Let N be a nonempty subset of a module M over a semifield K .
Then N is a submodule of M if and only if ny — no,kn € N for all n,ny,ny € N
and k € K.

Proof. This is straightforward. 0J

Theorem 3.1.9. [3] Let W be a nonempty subset of a vector space V' over a semi-

field K. Then the following statements are equivalent.

(i) W is a subspace of V.
(ii) If w,wy,wy € W and k € K, then wy — wy, kw € W .

(iil) If wy,wy € W _and ki, ky € K, then kjw; — kgwy € W.

Example 3.1.10.

(i) Q" is a submodule of R” over Qf and also a subspace of R™ over Qg .

(ii) QxR is a submodule of R xR over @ and also a subspace R xR over Qg .

Theorem 3.1.11. The intersection of any collections of submodules of a module M

over a semifield is also a submodule of M .

Proof. Let M be a module over a semifield K and {N; |7 € I} be any collections of
submodules M. Let ni,ny € ﬂNi and o, € K. Then ny,no,n € N; for all 7.

iel
For each i € I, since N; is a submodule of M, we have ny — no,an € N;. Thus

ny — Ng,an € m N;. Therefore ﬂ N; is a submodule of M. O

i€l iel
Corollary 3.1.12. The intersection of any collections of subspaces-of a vector space V'

over a semifield is also a subspace of V.

Proposition 3.1.13. Let M be a module over a semifield and X a subset of M.
Moreover, let {N;|i € I} be the family of all submodules of M containing X, then

ﬂNi is the smallest submodule of M containing X .

iel
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Moreover, if M 1is a vector space over a semifield, then ﬂN,- 1s the smallest

iel
subspace of M containing X .

Proof. By Theorem 3.1.11, ﬂNi is a submodule of M. Since X C N; for all 7,

iel
we have mNi is a submodule of M containing X. Let W be a submodule of M
iel
containing X. Then W € {N;|i € I}. Thus ﬂNi C W. Therefore ﬂNi is the
iel iel
smallest submodule of M containing X . ([l

Definition 3.1.14. If X is a subset of a module M over a semifield, then the
intersection of all submodules of M containing X is called the submodule of M
generated by X .

In particular, if M is a vector space over a semifield, then the intersection of all

subspaces of M containing X is called the subspace of M generated by X .

Definition 3.1.15. Let M be a module over a semifield K and X asubset of M. De-
fine (X') to be the smallest subgroup of M containing KX = {kz|k € Kandz € X}.

Moreover, if X =0, then (X) = {0}.

Note 3.1.16. Let M be a module over a semifield K and X a nonempty subset
of M. Since KX is asubset of M, the subgroup of M generated by KX is, in fact,
(X) ={a1z1 + -+ apen + B1(—=21) + - - + B(—27) [m,n € N,z;,2; € X and
oy, B €115 }

Theorem 3.1.17. Let V' be a vector space over a semifield and X a subset of V.

Then (X) is a subspace of V' generated by X .

Proof. Let V' be a vector space over a semifield K. If X = ), then (X) = {0}
so that (X) is a subspace of V generated by (). Thus we assume that X # (.
First, we show that (X) is a subspace of V containing X. Let a € K and

v,v" € (X). Then v—v € (X) since (X) is a subgroup of V. Since v € V,
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there exist aq,...,q,,qq,...,0,, € K and zq,...,2,,27,...,2, € X such that

v=ar + -+ e, + di(—24) + -+ b (—a7,). Then

av =a(zy + -+, + A (=21) + o+ ap(—27))

= (ao)zy + - - + ()T, + (ady) (—21) + - - + (aa,) (—x,).

Hence av € (X). Thus (X) is a subspace of V. Since 1x € K, we obtain that
X C KX C (X). Therefore (X) is a subspace of V' containing X. Let W be
a subspace of V' containing X. Thus KX C KW C W. Since W is a subspace
of Vand KX C W, we obtain that W is a subgroup of V containing KX . Then
(X) C W. Therefore (X) is the smallest subspace of V' containing X, i.e., (X) isa

subspace of V' generated by X. 0

If V' is a vector space over a semifield and X is a subset of V', then we can char-
acterize the smallest subspace W of V' generated by X according to Theorem 3.1.17,
Le, W=(X)={agx1+ -+ ez, +i(=21)+ -+ Gn(—2x) |[m,n € Nyz;, 7 € X
and oy, 3; € K}.

On the other hand, if V' is a module over a semifield but not a vector space and
X is a subset of V', we know only that the smallest submodule of V' generated by X

is just simply the intersection of all submodules of M containing X .

Notation 3.1.18. [3] Let V' be a vector space over a semifield and X a subset
of V. If X ={zy,...,2,}, let (z1,...,2,) denote <{l‘1,...,l’n}> and simply call
(x1,...52,) the subspace of V. generated by x1,...,2,. We denote the cardinality
of X by | X|.

Definition 3.1.19. Let V be a vector space over a semifield and X a subset of V.

If (X) =1V, then we say that X spans V or V is a vector space generated by X.
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Example 3.1.20. Let e,...,e, € Q" be defined by
e1 = (1,0,...,0,0), es = (0,1,0...,0,0), ..., e, = (0,0,...,0,1).
(i) In Example 3.1.10 (i), Q" is a subspace of R” over Qj and Q" = {ey,...,e,).

(i) R™ is a vector space over Ry and R™ = (ey, ..., e,).

Definition 3.1.21. [3] A subset X of a vector space V' over a semifield K is linearly
independent if it satisfies one of the following conditions:
(i) X =0,
(i) | X| =1 and X # {0}, or
(iii) | X]>1 and = ¢(X\{«}) for all z € X.

Moreover, X is said to be a linearly dependent set if X is not linearly independent.

Remark 3.1.22. [3] If X is a subset of a vector space V' containing 0, then X is

always linearly dependent.

Definition 3.1.23. [3] Let X be a subset of a vector space V' over a semifield. Then

X is a basis of V if X is a linearly independent set which spans V.
Note 3.1.24. If V' = {0}, then ) is the ounly basis of V.

Example 3.1.25.

(i) In Example 3.1.20-(i), @™ is a vector space over QF and {ej,...,e,} is a
basis of Q.

(i) In Example 3.1.20 (i), R" is-a vector space over, Rj-and {ey,...,e,} is a
basis of R".

3.2. Homomorphisms

In this section, we are interested in studying homomorphisms of modules over

semifields which, again, are analogous to those of modules over rings.
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Definition 3.2.1. Let M and N be modules over a semifield K and T" a mapping
from M into N. Then T is said to be a (left) K -module homomorphism if for all
a € K and m,m;,mo € M,
T(my+mg) =T(m1)+T(my) and T(am)=aT(m).

If a (left) K-module homomorphism 7' is injective, then we say that T is a
(left) K -module monomorphism.

If a (left) K-module homomorphism 7' is surjective, then we say that T is a
(left) K -module epimorphism.

If a (left) K -module homoemorphism T is bijective, then we say that T is a (left) K -
module isomorphism.

Moreover, we say that M is isomorphic to N, denoted by M = N, if there exists
a (left) K -module isomorphism from M into N.

Furthermore, T is said to be a (right) K -module homomorphism if My and N

are modules over K and for all o € K and m,my,ms € M,

T(my 4+ mg) = T(my) + T(my) and T(ma)=T(m)a.

Definition 3.2.2. Let V' and W be vector spaces over a semifield K. Then a
K-linear transformation 1s a left K -module homomorphism from V into W.

If a K -linear transformation 7" is injective, then we say that T is a monomorphism
(over K).

If a K-linear transformation 7' is surjective, then we say that T is an epimorphism
(over K).

If a K -linear transformation is bijective, then we say that 7" is an isomorphism

(over K).
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Example 3.2.3.

(i) Let n and m be positive integers with m > n and let R™ R" be vector
spaces over R . Then the function 7' : R™ — R™ defined by T'(x1, ..., T,,) =
(z1,...,2,) for all (zi,...,7,) € R™ is an R -linear transformation.

(ii) Let n be a positive integer and R™ be a vector space over QF . Then the
function 7' : R — R"™ defined by T'(z1,...,2,) = (0,21,...,2,_1) for all
(z1,...,7,) € R" is a Q -linear transformation.

(iii) Let n be a positive integer and R™ be a vector space over Qg . Then the
function T : R" = R" defined by T(x1,...,2,) = (xn,21,...,2,_1) for all

(z1,...,2,) € R" is a QF -linear transformation.

Lemma 3.2.4. Let M and N be modules over a semifield K and T be a K -module

homomorphism of M into N . Then

T(0) =0 and T(=m) = =T (m) for all m € M.

Proof. This is obvious. O

Proposition 3.2.5. Let V' and W be vector spaces over a semifield K andT :V — W.

Then the following statements are equivalent:

(i) T is a K<linear transformation:
(i1) For all vi,vo €V and o, € K, T(avy + Pug) = T (vy) + BT (v3).

(iii). For all vi;up € V and a € K, T(av, + v2) = aT(v1) + 1L(vs).

Proof. This is straightforward. O

Definition 3.2.6. Let M and N be modules over a semifield K and T a K -module

homomorphism of M into N. We define the kernel of T', denoted by kerT, and
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image of T, denoted by imT", as follows:

kerT ={m € M | T(m)=0}=T"({0}) and

im T = {T(m) | me M} =T(M).

Example 3.2.7.
(i) From Example 3.2.3 (i), ker T' = {(0,...,0,zps1,...,2p) |z, € R for i=
n+1,...,m} and im T =R".
(ii) From Example 3.2.3 (ii), ker 7" = {(0,...,0,2,) | z, € R} and im T =
{0,z1,...,2p 1) |2, €R for i=1,...,n—1}={0} x R" .

(iii) From Example 3.2.3 (iil), ker 7' = {(0,...,0)} and im 7 =R".

Proposition 3.2.8. Let M and N be modules over a semifield K and T : M — N
a K -module homomorphism. Then the following statements hold.
(i) T is injective if and only if T(m) = 0 implies that m =0 for all m € M.
(ii) If M’ is a submodule of M , then T(M') is a submodule of N . In particular,
im T is a submodule of N .
(iii) If N’ is a submodule of N, then T='(N") is -a submodule of M . In partic-

ular, ker T is a submodule of M .

Proof. This is straightforward. U

Corollary 3.2.9. If T : M — N 1is a K -module homomorphism, then

T is injective if and only if ker T'={0}.

Proposition 3.2.10. Let M, N and W be modules over a semifield K. Then the

following statements hold.

(i) If Ty : M — N and Ty : N — W are K-module homomorphisms, then

TooTy: M — W is also a K-module homomorphism.
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(ii) If T is a K -module isomorphism from M onto N, then T~ is a K -module
isomorphism from N onto M .

(i) If Ty : M — N and Ty : N — W are K-module isomorphisms, then

TooTy : M — W s also a K-module isomorphism.

Proof. This is obvious. 0

3.3. Tensor Products of Modules over Semifields

This section devotes to tensor products of modules over semifields. For given
modules M and N over asemifield K, we know from Example 4.1.3 (iv) that M x N
is a module over K. We would like to find another module over K arising from M
and N which is different from M x N .

We come across that the tensor product of M and N is the case. Moreover,
the notion of free abelian groups (summarized in Section 2.2) plays a major role for

construction the tensor product of modules over a semifield.

Definition 3.3.1. Let Mg and N be modules over a semifield K and let F be the
free abelian group FA(M x N) on M x N. Let L be the subgroup of F generated

by all elements of the following forms (where @ € K,m,m’ € M and n,n’ € N):

(1) fmtm'n— fonn— firm, which is the same.as 7(m+m',n)—7(m,n)—7(m’,n),
(i) fontnt = fin — finnr s which is the same as 7(m, n+n’) —7(m,n) —7(m,n’),

(ii1) fieen — fm.an, which is the same as 7(ma,n) — 7(m,an).

Since L is the subgroup of the abelian group F, we obtain that the quotient group
F /L exists. We call F/L the tensor product of M and N, and denoted by M @k N .

Note 3.3.2. If My and g N are modules over a semifield K, then (M ®@x N,+) is

an abelian group.
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Definition 3.3.3. Let Mg and N be modules over a semifield K. For each m € M

and n € N define a function f,, ) : M x N — Z by

1, if (z,y) = (m,n),

f(m,n) (LE, y) =
0, otherwise,

forall z € M and y € N.

Note 3.3.4. If My and xN are modules over a semifield K, then it is easy to see

that fonn) € F forall me€ M and n € N.

Recall that F/L={f+ L | [ € F} and F = FA(M x N). For any m € M
and n € N, we write m @n for fo,,) + L = 7(m,n) + L. Moreover, we can see that

F/L is generated by {m @n | m € M and n € N} as a ring-module over Z, i.e.,

Vf+LeF/L f+L= Z Ay (Mm @ n), where oy, ) € Z and |F| < oo,

(m,n)EFCMXN
p p
and we simply write f+ L as Za(mhm)(mi@mi) or Zai(mi®ni) where a(m, n,) =
=1 i=1
a; € Z,m; € M and n; € N.
Proposition 3.3.5. Let Mg and xN be modules over a semifield K. Then, for
each o € K,m,m' € M and n,n' € N,
(i) (m+m)@n=men+m @n,
(i) m@n+n)=men+men and

(iii) ma®@n=m® an.

Proof. Let o € K,m,m" € M and n,n’ € N. Recall that 7(m +m/,n) — 7(m,n) —
7(m/,n) € L. Thus, 7(m+m/,n)—(7(m,n) + 7(m',n)) € L. Then 7(m+m/,n)+L =
(tr(m,n) +7(m',n))+ L= (r(m,n)+ L)+ (r(m/,n) + L). Thatis (m+m') @ n =
men+m @n.

The other results are obtained by similar agument. 0
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Remark 3.3.6. Let My and xN be modules over a semifield K. Then

(i) m0=0®n=0®0=0 forall me M and n € N,
(i) (—m)®@n=—-(m®&n)=m® (—n) for all m € M and n € N, and

(i) am®n =a(m®n) =m®an for all m € M,n € N and a € Z.

Proof. The proofs of (i) and (ii) are obvious. We abtain (iii) by applying (ii) and

induction. O
P p p

From Remark 3.3.6, we simply write Z a;(m; ®n;) as Z m;®mn; or Z m; @n

i=1 i=1 i=1
z / 3
where a;, € Z, m;,€ M. n; € N and m; = a;m;, n; = a;n;. Consequently, if

r € M Qg N, then there exist p € N,m; € M and n; € N such that x = imi@mi.

Now, we are ready to define a scalar multiplication on the tensor préahct of M
and N where My and g /N are modules over a semifield K. Recall that M ®x N =
FA(M x N)/L where L is defined in Definition 3.3.1 and FA(M x N) is a free
abelian group on a basis 7(M x N). Thus, we will define a scalar multiplication on

T(M x N) first, and then extend linearly in order to obtain a scalar muliplication on

M ®k N.

Definition 3.3.7. Let Mg and g /N be modules over a semifield K. For each o € K,

m € M and n € N, we define a scalar multiplication on a basis 7(M x N) as follows:
am®n)=ma®n=me an.

Extend the definition linearly, we obtain that

a <Z(mz ® nz)) = Za(mi ® n;)

=1

p
for all Z(ml ®nl) € M®K N.

i=1
Proposition 3.3.8. Let Mg and x N be modules over a semifield K. Then M Qg N
is a K -module. Moreover, if M and x N are vector spaces over a semifield K , then

M ®k N is a vector space over K .



19

Proof. This is straightforward. 0

Example 3.3.9.

(i) Recall that @QJ and QJR are vector spaces over QF. Then the tensor
product Q gy R is a vector space over Qg .
(ii) Let n,m € N. Since Q" and QJR’” are vector spaces over Qi , the tensor
0

product Q" Doy R™ is a vector space over Q.

A very important tool for studying tensor products of modules over rings is the
universal mapping property of tensor products. How so?

For given modules M, N and A over a ring R, in order to define an R-module
homomorphism from the tensor product M ®zr N into A, it is enough to define a
bilinear map from the product M x N into A.

This inspires us to achieve the version of the universal mapping property for tensor

products of modules over semifields.

Definition 3.3.10. If My and xg/N are modules over a semifield K and A is an
(additive) abelian group, then a middle linear map (over K ) from M x N to A is a

function T': M x N — A such that for all m,m' € M, n,n’ € N, and a € K,

(i) T(m+m/,n)=T(m,n)+T(m' n),
(ii) T(m,n+n') =T(m,n)+T(m,n') and
(iii) T(mayn) =T (m,an).

Example 3.3.11. Given modules Mg and xN over a semifield A, the mapping

B: M x N — M ®g N given by (m,n) +— m ®n is a middle linear map.

Proof. Let m,m’ € M,n,n" € N, and a € K. Then

Bm+m',n)=(m+m)Y@n=men+m'®@n=B(m,n)+ B(m',n),
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B(m,n+n)=m®&n+n)=men+men = B(m,n)+ B(m,n’) and

B(ma,n) =ma®n=m® an = B(m,an).

Thus B is a middle linear map. O

Definition 3.3.12. The middle linear map B defined in Example 3.3.11 is called the

canonical middle linear map.

Theorem 3.3.13. Let My and x N be modules over a semifield K. Then a function
7: FAM x N) — FAM x N)/L defined by n(x) = x+ L for all x € FAM x N)

1s an epimorphism of groups.
Proof. This is straightforward. O

Definition 3.3.14. The function 7 in Theorem 3.3.13 is called the canonical projec-

tion.

Lemma 3.3.15. [2] Let A and B be additive abelian group. If f : A — B is a
group homomorphism and C is a subgroup of ker f, then there is a unique group
homomorphism f + AJC — B such that f(a+ C) = f(a) for all a € A, imf = imf
and kerf = ker f/C. Moreover, f s an group isomorphism if and only if f is a

group epimorphism and C = ker f. In particular A/ker f = imf.

Theorem 3.3.16. Let My and g N be modules over a semifield K and B : M XN —
M ®k N the canonical middle linear map. For-any module A over K and any
middle-linear map-B M X N —. A, there exists a unique group homomorphism

B:M®g N — A such that 5 = 3o B, i.c., the following diagram commutes:

MxN -2+ MoxN

B
. 8

A
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Proof. We consider (A, +) as an abelian group. By Proposition 2.2.15, there exists a
unique group homomorphism B : FA(M x N) — A such that § = B oT.
Let L be the subgroup defined in Definition 3.3.1. Then L is a subgroup of ker 3
because ( is a middle linear map and 3 = B oT.
Let 7 : FAM x N) — FA(M x N)/L be the cannonocal projection. Since L is
a subgroup of kerB, by Lemma 3.3.15, there exists a unique group homomorphism
B: FAMxN)/L — A such that 3 = Fom. Now we obtain a group homomorphism
B:M®xg N — A. We must show that 1) G= B o B and ii) (3 is unique.

i) Consider the diagram

MXN~Zs FAMxN) —"—~ M®xN

16}

A

For each m € M and n € N, the canonical middle linear map B: M x N — M ®x N
satisfies B(m,n) = m ® n = 7(m,n) + L = w(r(m,n)) = m o 7(m,n). This shows
that, in fact, B = m o 7. Hence BoBzBo(ﬂor) = (BOW)OT:BOTIﬁ.

ii) Let f: M ®g N-— A be a group homomorphism such that 3 = f o B and let

1 = f om. Consider the diagram

MxNo—"—+ FAM x N) ——~ M®N

B N f

Note that Y or = (fom)or=fo(mor)= foB=/f. Then ¥ = /3 because of the
uniqueness of B Next, for =119 = B — Bom. Then, by the uniqueness of 3, we
obtain that f = 3. O
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Corollary 3.3.17. If Mg, My, kN and xN' are modules over a semifield K,
f:M—M and g : N — N’ are right and left K-module homomorphisms, re-
spectively, then there is a unique group homomorphism M Qg N — M' @y N’ such

that m @ n — f(m)® g(n) for allm € M and n € N .

Proof. Define h : M xxg N — M’ @k N’ by h(m,n) = f(m) ® g(n) for all m € M
and n € N. From Theorem 3.3.16, it is enough to define a function A from M x N
into M’ ®x N'. Next, we claim that h is a middle linear map. Since f and g are

functions, we obtain that h is well-defined. Let @« € K, m,m’ and n,n’ € N. Then

h(m+m/,n) = f(m +m") ® g(n) = (f (m) + f(m)) ® g(n)

= f(m) @ g(n) + F(m') & g(n) = h(m.n) + h(m', ).

Similary, we also have h(m,n +n’) = h(m,n) + h(m,n’). Next,

h(ma,n) = f(ma) @ g(n) = fm)a© g(n) = f(m) ® ag(n)

= f(m) ® g(an) = h(m, an).

Therefore h is a middle linear map. By Theorem 3.3.16, there exists a unique
group homomorphism A : M @ N — M’ ® N’ such that h(m®n) = ho B(m,n) =

h(m,n) = f(m)® g(n) for all m € M and n € N. O

Note 3.3.18. The unique group homomorphism arised in Corollary 3.3.17 is denoted

by fg: M Qx N — M Q@ N'.

Proposition 3.3.19. Let My, My, My, kN, kN and gk N" be modules over a semi-
field K. If f: M — M and f: M — M" are right K -module homomorphisms

and g : N — N and ¢ : N' — N" are left K-module homomorphisms, then
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(FOg)fe g)=(lof)®(dog): Mex N — M &N is a group homomor-
phism.

If f and g are right and left K-module isomorphisms, respectively, f ® g is a

group isomorphism with inverse f~'® g7'.

Proof. This is straightforward. 0

Theorem 3.3.20. Let K and S be semifields and sAk, sA%, kB, kB',Ck,Cl, kDsg,

kDY be modules as indicated.

(i) Then ARk B is a left S-module such that s(a ® b) = sa® b for all
seSac A andbe B.

(ii) If f: A — A’ is a homomorphism of S — K bimodules and g : B — B’ is
a left K-module homomorphism, then the induced map f®Rg: ARk B —
A" @k B’ is a left S-module homomorphism.

(iii) Then C ®k D is a right S-module such that (¢ ® d)s = ¢ ® ds for all
seSceC and deD.

(iv) If f: C — C" is a right K-module homomorphism and g : D — D’ is a
homomorphism of K—S bimodules, then the induced map fQg: CRxD —

C' @k D' is a homomorphism of right S -modules.

Proof. (i) Let s € S and ¢s + A x B — A ®k B be a function defined by (a,b) —

sa ® b. It is easy to verify that ¢, is a middle linear map over K. Therefore, by

Theorem 3.3.16 there exists a unique group homomorphism (Z;S A®g B— A®k B

such that ¢,0B(a,b) = ¢,(a®b) = sa®b for each a € A and b € B. For each element
p

P
u = Zai ®b; € ARy B, define su to be the element gzgs(u) = ZQES(CM ® b)) =
, = ) i=1
Z sa; ®b;. Since ¢, is a group homomorphism, this action of s is well-defined (that

i=1
is, independent of how wu is written as a sum of elements in a basis).
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Next, we show that A ®x B is a left S-module. Let k, ki, ks € K and u, uy, us €
r P q
ARk B. Thus u = Zai@)bi,ul = Zaé@b’i, and uy = Z al @b where a;,al,a € A
=1 =1
and b;, 0., b/ € B. We can see that

1y Y Y

. P q ~ pt+q p+q
s<u1+uQ>=¢s(Za;®b;+2a;'®b;'>=¢S(Za2®bé) Zcbs i ®b)

i=1 i=1 i=1
p+q p q
_ / N ! / " /o
—E sai®bi—g sai®bi+2 sa; @by = suy + sug,
P i=1 i=1

where a; = a; , and b; =b] , fori=p+1,...,p+gq,

(81 + SQ)U - é51+82 (Z a; ® bz)

=1

7 Z $51+32 (ai %Y bi)
1=

T

= 2(81 + $9)(a; ® b;)

r

= Z(sla,— -+ 52(17;) & bl

=i

= Zslai ® b; +ZS2CM R b;
i=1 i=1

=Y b la;@b)+ Y dula; b))
i=1 i=1

F 6531 (Z a; ® bi) + ¢~552 (Z a; & bi)
i=1

i=1

= S1U + Sl

and

(s152)u = éslsg (Z a; ® bi)

=1
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= ; D150 (0 @ b;)
= i(sm)ai ® b
i
=Y si(saa) @
pa
- Z o (5205 @ by)
pa
= 5, i S20; & bi)>
pr
= O ; (e, (0; ® b,-))
= o4 |04 (Z a; @ b»)) = 81(s9u).
=

Hence A @k B is a left S-module.

(ii) Let f: A — A’ be a homomorphism of S — K bimodules and g : B — B’ be
a left K-module homomorphism. From (i), we obtain that A ®x B and A’ ®f B’
are left S-modules. By Corollary 3.3.17, there exists a unique group homomorphism
h: AR B— A’ @k B" such that a ® b — f(a) ® g(b) for all a € A and b€ B. So

we claim that, for each s € S and Zai b, € ARk B,

=1

(ER )

Let s € S and Zai@)bi € A®k B. By (i) we have s (Z a; ® bl-> = Zsai®bi.
i=1

i=1 i=1

(o)) o8y

Thus
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_ Zﬁ;h(sai @ b)

- gﬂsa» & g(b)

_ lﬁ;sf(ai) © g(b)
Ly éf(m) o g(bn)
=% Zrlh(ai ® m)

ANNG (éaieabi))).

Hence h is a left S-module homomorphism.

(ili) The proof of (iii) is similar to (i).

(iv) The proof of (iv) is similar to (ii). O

Remark 3.3.21. Let K be a semifield . Every K-module M is a K-K bimodule

from Note 3.1.2. In this case for every modules M and N over K, the tensor product

M ®g N is also a K- K bimodule with
km@n)=km@n=mk®n=m®kn=menk=(men)k

for all Kk € K,m € M and n € N. Since K is a semifield, the tensor product of

K -modules may be characterized by a useful variation of Theorem 3.3.20.

Definition 3.3.22. Let M, N and W he modules over a semifield K. A bilinear
map (over K) from M x N to Wis a function T: M X N — W such that for all
m,m' € M,n,n € N, and o € K,

(i) T(m+m/,n)=T(m,n)+T(m' n),

(il) T(m,n+n")=T(m,n)+T(m,n’) and

(iii) T(ma,n) = oT(m,n) =T (m,an).
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Note 3.3.23. The conditions (i) and (ii) in Definition 3.3.22 are the same condi-
tions (i) and (ii) in Definition 3.3.10. For a semifield K, the condition (iii) in Def-
inition 3.3.22 clearly implies the condition (iii) in Definition 3.3.10, whence every

bilinear map is a middle linear map.

Example 3.3.24. If M and N are modules over a semifield K, so is M ®x N and

the canonical middle linear map B : M x N — M ®x N is easily seen to be bilinear.

Definition 3.3.25. The bilinear map B in Example 3.3.24 is called the canonical

bilinear map (over K).

Theorem 3.3.26. The Universal Mapping Property of Tensor Products
Let M, N and A be modules over a semifield K and B : M x N — M Q@ N the

canonical bilinear map. For any bilinear map 3 : M X N — A, there exists a unique

K -module homomorphism B M®x N — A such that 8= B0 B, i.e., the following

diagram commutes:
MxN -2+ MexN

i
. 313

A

Proof. By Theorem 3.3.16 there is a unique group homomorphism B Mg N — A

such that 8 = B0 B. Now, it suffices to prove that

(i) B(az) = af(z) for all « € K and z € M ®@x N and

(ii) G is unique as a K-module homomorphism.

P
Let o € K and £ € M Qg N. Then z = Zmi@)ni for some m; € M and
i=1
n; € N . Therefore

p

Blax) = <Oz Z(mz‘ ® "i)) = ZB (a(m; @ny)) =Y Blam; @n;)

i=1
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= B(B(ami,ni)) = Zﬁ(ami,ni) = Zaﬁ(mi,ni) = aZﬁ(mi,ni)

i=1 i=1 =1 i=1

bS]

=a) f[oB(min) = aZB(mi Qn;) = af (Z(ml ® n,)) = af(x).

i=1 i=1 i=1
For a K-module homomorphism f : M ®x N — A such that 3 = fo B, we
obtain that f is a group homomorphism such that 7 = f o B. By the uniqueness

of 3, it follows that § = f. Hence [ is a unique K -module homomorphism such

that 3 = 30 B. O

Note 3.3.27. If K and S are semifields and My, xNg, sW are modules, then
M ®g N is a right S-module and N @5 W is a left A'-module by Theorem 3.3.20.
Consequently, both (M @x N) ®s W and M @5 (N @ W) are well-defined abelian

additive groups.

Theorem 3.3.28. Let K and S be semifields and My , xkNs, sW are modules, then
there is a group isomorphism between (M ®@x N)®@s W and M Q@ (N @5 W).

P
Proof. For each v € (M ®@x N) ®g W, we know that v is a finite sum Zul ® w;
where u; € M @k N and w; € W. Since u; € M @k N, we obtain that uZ:ils a finite

T4
sum Zmij ® n;; where m;; € M and n;; € N. Thus
j=1

v = zp:ui(@wi = zp: (2mij ®nij> Q@ w; = zp:i:((mw ® nij) @ w;).
i=1 =1\ j=1 i=1 j=1
Therefore, (M ®x N) ®s W s generated by all elements of the form (m @ n) ® w
where m€ M,n € N and w € W. Similarly, M ®k (N ®g W) is generated by all
m® (n®w) where me€ M,ne N and we W.

Now, we define a function f: (M ®@x N) x W — M ®k (N ®¢ W) by

p

f <Zmi®m,w> :Z(mi@)(ni@w))

i=1
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p

for all (Z m; @ n;, w) € (M ®k N) x W. Next, we show that f is a middle linear
i=1

p P
map over S. It is obvious that f is well-defined. Let o € S, Z m; @n;, Z m;n; €
i=1 i=1

M ®g N and w,w’ € W. Thus

p p pt+q p+q
/ (zmnﬁzm;@ng,w) y (zmim,w) o T
=1 =1 =1

=1

(m: ® (n; @ w>>+Z (m} ® (n; ® w)) ='f (Z m; ® n;, w) +f (Z m; ® nj, w) :

p

=1

where m; =m;_,

and m; =ng, fori=p+1,...,p+q,

M=

(17 ® (n; ® (w +w)))

p
f (Zmi®ni,w+w’> £

i=1 1

-
Il

3

(m; @ ((ni @ w) + (n; ® w')))

1=1

I
AME

il

bS]

= (Mm@ mew)+ > (MM eu))

1 Z=+1

p p
=1 =1
and

p

f ((ZmZ@)nZ) a,w) =f (Zmi@)nia,w) :Z<mi®(nia®w»

= Z(mi®(ni®@w)) =f (Zmi@)ni,aw) .

Therefore f is a middle linear map over S. By Theorem 3.3.16 there exists a group

homomorphism
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¢: (Mg N)@sW — M @k (N g W)

with ¢((m @ n) @ w) = ¢po B((m@n),w) = f(m@n,w) = m® (n®w) for all
méeMmneN and we W.

Similary, a function h: M x (N ®s W) — (M ®x N) ®s W defined by

p
for all (m, Z n; @w; | € M x (N ®gW) is also a middle linear map over K which
i=1
induces a group homomorphism

such that Y(m @ (n®@ w)) = Yo B(m, (n®@w)) =h(mn®@w)=(men)@w for all
méeM,neN and w e W.

For each m € M,n € N and w € W,y o ¢((m @ n) ® w) = (m ®@n) ® w, whence
Yo¢ is the identity function on (M &y N)@gW and gpop(m®(n@w)) = m®(n@w),
whence ¢ o1 is the identity function on M @k (N ®g W).

Therefore ¢ and @ are group isomorphisms. 0

Corollary 3.3.29. Let M, N and W be modules over a semifield K. Then
(M®g N)@xg W =2 M Qg (N Q@ W)

as a K -module isomorphism.

Proof. From Theorem 3.3.28, the function f: (M @k N) x W — M Qg (N @x W)

p p
defined by <Z m; @ ng, w) — z:(mZ ® (n; ® w)) is a middle linear map over K.
i=1

=1

P
Next, we show that f is a bilinear map over K. Let a € K, Z m;Rn; € Mk N and
i=1

p p
w € W. It remains to show that f (a (Z m; ®ni> ,w) = af <Z m; & ni,w>
i=1 i=1
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p p
because f ((Z m; ® nz> Q, w) =f (Z m; @ ng, aw) . We can see that
i=1 i=1

f (a (ZmZ@)nz) ,w> =f (Zami(&ni,w)

(am; @ (n; ® w))

%

a(m; ® (n; @ w))

i=1

(Z(mi ® (ni @ w)))

—

= af (Zmi@)ni,w) .

|

Il
Q

Therefore f is a bilinear map. By the universal mapping property of tensor products

there exists a K-module homomorphism

with ¢((m ®@n) @ w) = Bog((m @ n),w) = f(m@n,w) = m® (n®w) for all
mé&e M,n € N and w € W. From the proof of Theorem 3.3.28 we obtain that ¢ is
a bijective function. Therefore ¢ is a K-module isomorphism.

Hence (M ®@x N)@x W = M @k (N @k W) as a K-module isomorphism. [

Later, we shall identify (M @x N) QW as M @k (N @k W) under K-module
isomorphism in Corollary 3.3.29 and simply write M @ x N @ W .-It is now possible

to define recursively the n-fold tensor product:
M, @k My QK --- Qg M,

where K is a semifield and M, ..., M, are module over K. Such iterated tensor
product may also be characterized in terms of n-linear maps over K which will be

discussed in Section 3.4.
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3.4. Multilinear Maps

Definition 3.4.1. Let M;,..., M, and W be modules over the same semifield K .
An n-linear map or a multilinear map (over K) from M; x --- x M, into W is a
function g : My x -+ x M, — W such that if Vj € {1,...,n} Vmy,...,m, with
m; € M; for all i Vm); € M; Va € K, then

(1) plma, ... omyg,my+my,my, . myi, . my) =

P(ML, e MG, M Gy ) (M, Mg, MY My, my,) and
(i) plma,...,mj_1, My, my, ... M,y My) =

ap(ma, ..., Myeg, M Mg, . .., M),

In the case n = 2, an n-linear map p: My x My — W is a bilinear map.
Moreover, we use L(M, ..., M,; W) to denote the set of all n-linear maps from

My x -+ X M, into W. For n =1 we simply write £(M;) instead of L(M;, M;).

Proposition 3.4.2. Let M,,..., M, and W be modules over a semifield K. Then
L(My, ..., M,; W) becomes a module over K if we use the zero function for the zero

element of L(My, ..., M,; W) and define the operations as follows:

() (f +9)may. o smn) = flma, . omn) + g(ma, <. my) , and
(i) (af)(my, . mn) = af (ma, ..., 1)
foralla € K, f,g€ L(M,...,M,;W) and m; € M; for all i.
Moreover, if My,... ., M, and W. are.vector spaces over K., then L(My, ..., M,; W)

1S a vector space over K .

Proof. This is straightforward. O

Multilinear maps are important parts in order to define tensor products of more
than two modules over semifields. We need another version of the universal mapping
property of tensor products. Although, tensor products are defined between two

modules over a semifield, we can generalize this to tensor products of finite modules
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My, ..., M, over a same semifield K and write this as M| @ Ms Qg -+ Rk M, by

dropping all parentheses because it is independent of those.

Example 3.4.3. Let n > 2 and M, ..., M, be modules over the semifield K. Then
the function B,, : My X -+ x M,, — M; ® --- Qg M, defined by (mq,...,m,) —

mi ® -+ ®m, is multilinear.

Proof. This is straightforward. 0

Definition 3.4.4. The multilinear map B, defined in Example 3.4.3 is called the

canonical n-linear map or canonnical multilinear map.

Theorem 3.4.5. Let n > 2, My,..., M, and W be modules over a semifield K .
For any multilinear map v : My x ... x M, — W, there exists a unique K -module
homomorphism fi: My Q - -+ @ M, — W such that = jio B,,, i.e., the following

diagram commutes:
By
Ml X XMn o M1®K®KMn

12
eI
a

w

Proof. Let u be a multilinear map from M; Rk -+ ®x M, into W. We prove by
induction. If n = 2, this is the universal mapping property of tensor products.

For'each m € M, 1, let p,, : My X --- x M, — W be defined by
tm(ma, ... ,my) = p(my, ... ,m,,m) forall m; € M;, 1 <i<n.

Then p,, is multilinear. By the induction hypothesis, there exists a unique K-

module homomorphism fi,, : M} ®k -+ @ M, — W such that p,, = fi, o B, (see
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the following diagram):
Ml X XMn i’ M1®K®KMn

Hm
" i
a

w

Let 5 : (M) ®k -+ &g My) X My — W be defined by §(z,m) = fi,(x) for
all x € My ®k -+ ®x M, and m € M, ;. Then ( is well-defined because of the
uniqueness of fi,,. Next, we show that (3 is bilinear.

Let a e K, z,y € M1 ®F -+ ®x M, and u,v € M, ;. Then

Bz +y,0) = (@+y) = () + fy) = Bz, v) + 5y, v)  and

Blaz,v) = fi,(ax) = ajfi,(z).
Moreover, we have to show that

(1) ﬁ(x,u+v) = ﬁ(:r:,u) +/3($,’U), i-e-u ﬂquv = ﬂu +/~Lv and

(i) Bz, aw) = af(z,v); fe; floy = fly-

Recall that fi,., is the unique K-module homomorphism such that i, .,
= flu+v© By, . Thus it is enough to show only that (fi, +fi)o By = plury. Let m; € M;

forall 2=1,...,n. Then

((ﬂu+ﬂv> OBn) (mlv"'vmn) = (ﬂuan) (mlv"'ﬂmn) + (/lv OBn) (mlv"‘7mn>

= (myy. o my) + (Mg .. my,)
::u(mla"')mnau)+ﬂ(mla---7mn7v)
= pu(my,...,mu,u+v)

= Mu+v(m17 s 7mn)'



35
Since [i,, is the unique K-module homomorphism such that o, = i, o B,, we

will show that («ji,) © By = flay. Let m; € M; for all i =1,...,n. Then

((afiy) © By) (M, . ..,my) = a(fi, 0 By) (M, ..., my)

= ap,(my,...,my)
= au(my,...,my,v)
= p(my,...,m,,av)
= low(my, ..., my).

Therefore (3 is a bilinear.
For each m; € M; for all 4 = 1,... ., n,n + 1. Consider the bilinear map B :
(My Qg -+ Qx Myp) X Mypyy — (M) Qp - Qg M,) @ M, 1. We can see that

canonical

B(Bp(mq,...,mpu)Myi1) = Ba(ma, ..., my) @ myyq
= (M ® - Qmy) @ Myt
=M1 Q- &My & Myyq
:Bn+1(m1,...,mn,mn+1).

Now, fix i € {1,...,n,n+ 1} and let @ € K, m;, m; € M; for ali .
Case 1 1<4<n. Then
Bryi(my, ...omi+ml, .o my, M)
=B (Bn(my,...,m; +mj,...,my), Myi1)

= B(Bn(my,...,mi....my) + Bu(my,...,m ... my), M)
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= B(Bn(my,...,mi,....,my),Mpy1) + B (Bu(my,...,m . ...my), M)
= Bpii(ma, .. ,miy .oy my,Mpy1) + Buyr(ma, oo ,mi, oo my, M)
and
Buii(my,...;amy, .. omp,myq) = B(Bu(my,...,amy, .o my), Myy)
= B(aB,(my,...,mj,...,my,), My1)

=aB(B,(my,...,mi,...,my), Myi1)

=aB, 1(my,...,mi ..., My, Mp11).
Case 2 i1 =n+ 1. Then

Bn+1(ml7 ceey M, M1 7 m’ll’b-‘rl)
=B (Bn(ml, ey M) My + m;Hl)
/

= B(B,(mi,...,my)ymyi1) + B (Bn(ml, . ,mn),mnﬂ)

/
= Buii(ma, ..., Mp, Mpi1) + Buar(ma, ... ymy  mpyq)
and

Bii(myy o my, amy o) = B (B (my o oymi); amy 1)
=aB (Bu(my,...,my), Myi1)

=aB, 1(m,. .. m,, myy1).

Therefore B, is an (n + 1)-linear map.
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Now, we consider the case n+1 where p: My X --- X M,,.1 — W is a multilinear
map. Since § and B are bilinear and by induction hypothesis, there exists a unique

K-module homomorphism i : M ®k -+ Qg M, @k M, 1 — W such that § = jioB.
(My x -+ X M,) X My . M, @k -+ Qx My Qg My

=17

i

w

Consider the following diagram.

B

Mlx...an+1 — 5 (M1®K"'®KMTL)XMH+1 M1®K"'®KMH+1

W

Next, we show that i) = o B, and ii) f is unique.

i) Let m; € M; forall i=1,... , n+ 1. Then

(ﬂ © Bn+1>(m17 ey M, mn+1) = /1 (B<Bn(m1/ s 7mn)7 anrl))

Thus p=jto Byiq.

ii) Suppose that p: My ®k -+ @ M,, @ M1 — W is a K-module homomorphism
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such that 4 = po B,;1. For each v € M1, let p, : My Qi -+ Qg M, = W be
defined by p,(x) = p (B(z,v)) for all x € M} @ --- @k M,,. Thus p, is a K-module

homomorphism. Let m; € M; for all : =1,...,n. Then

(pyo Bp)(ma,...,my) = p(B(Bn(my,...,my,),v))
= p(Bpii(my,...,my,,v))
= w(ms,...,my,v)

— My ).

This shows that p, o B,, = u,. By the uniqueness of ji, we obtain that p, = fi,.
Next, we show that 7 =po B. Let x € M| Qg - -- @, M,, and v € M,,,. Then
(poB)(x,v) = p (B(a,0)) = pyl) = fie(w) = B, v) = fio B(x,v). By the uniqueness

of ji, we have p = [i. O

Theorem 3.4.6. Let M, N and W be modules over a semifield K. Then

LM, N;W) 2 LM @k N,W).

Proof. For each ¢ € L(M, N; W), by the universal mapping property of tensor prod-

ucts and the following diagram,

MxN -2+ MogN

¢ B4
Ell)

A

w

where B_is the canonical bilinear map and ¢ is a bilinear map from M x N into W
and the universal mapping property of tensor products, there exists a unique K-
module homomorphism % M ®@g N — W such that ¢ = 5 o B. For this reason, we
define T : L(M,N;W) — L(M ®x N,W) by ¢ — ¢ for all ¢ € L(M, N;W). Then
T is well-defined from the uniqueness of (E for each ¢ € L(M,N;W).
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Next, we show that T is a K-module homomorphism. Let a € K and ¢,v €
L(M,N;W). Since ¢, € L(M,N;W), we obtain that ap,¢ + 1 € L(M,N;W).
By the universal mapping property of tensor products, there exist K-module homo-
morphismsc%:M@KNﬁW,m:M®KN—>W, $:M®KN—>W,

and ¢ : M ®x N — W such that a¢ = apo B, ¢ +¢ = ¢+ 0B, ¢ = ¢oB
and Y = Jo B. Then o?c/boB = ap = a(%o B) = aggo B. For the uniqueness

of a¢ we have a¢ = a¢. Thus T(ap) = ad = ad = aT(¢). Since ¢+ o B =
O+ = 50 B+ zZo B = (5+ @Z) o B and the uniqueness of m, we obtain that
m =¢+1. Thus T(¢ +1b) = m = ¢+ 1) = T(¢) + T (). Therefore T is a
K -module homomorphism.

In order to show that T is an injective function by showing that ker T = {0}, let
¢ € kerT. Then ¢ € £(M, N:W) and there exists ¢ € L(M @, N, W) such that
O = ¢§o B. Since ¢ € kerT', we obtain that 0 = T(¢) = 5 Thus ¢ = ggo B =0.
Therefore 7' is an injective function.

Finally, we show that T is a surjective function. Let 5 € LM ®@x N,W). Let
o = 50 B and we claim that ¢ is a bilinear map. Since (E M @ N — W and
B:Mx N — M®g N, we obtain that ¢ is a function from M x N into W. Let

a€ K, mm' € M and n,n' € N. Then

¢(m+m',n) = ¢o B(m+m',n)

O QS(B(m_'_mI?n))
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= ¢ (B(am,n))

¢ (aB(m,n))

= a6 (B(m,n))

= agp(m,n)

and, similarly, we also have ¢(m,n + n') = ¢(m,n) + ¢(m,n’) and ¢(m,an) =
ap(m,n). Thus ¢ is a bilinear map. Therefore ¢ € L(M, N;W). By the universal
mapping property of tensor products, there exists a unique K -module homomorphism

QAS : M ®@x N — W such that ¢ = ¢ o B. By the uniqueness of ¢, we have QAS = o.
Therefore T(¢) = ¢ = ®.
Hence T is a K-module isomorphism from L(M, N; W) onto L(M ®@x N,W).

Therefore L(M,N;W) = L(M & N, W). O

Theorem 3.4.7. Let M, ..., M, and W be modules over a semifield K. Then

L(Myy .., My, W) =2 LM @ -+ @M, W).

Proof. We obtain this theorem by applying Theorem 3.4.6 and induction. O



CHAPTER IV

TENSOR PRODUCTS OF VECTOR SPACES OVER

SEMIFIELDS

In this chapter, we investigate tensor products of vector spaces over semifields
satisfying a certain property. Definitions and theorems involving vector spaces over
semifields satisfying a specific property are given in Section 4.1. Then, in Section 4.2,

we discuss tensor products of vector spaces over such a semifield.

4.1. Vector Spaces over Semifields
Recall that, a system (K, +,-) is said to be a semifield if

(i) (K,+) is a commutative semigroup with identity 0,
(ii) (K\{0},-) is an abelian group and k-0 =0-k =0 for all £k € K, and

(iii) - (y+2)=z-y+ax-z forall z,y,z € K,

and for a semifield K, a vector space V' over K is an abelian additive group with
identity 0, together with a function K x V' — V (the image of (k,v) being denoted

by kv) such that for all v,vi,v; €V and k, ki, ks € K,

(1 k<U1+U2): k:v1 +I€U2,

)

(ll) (kl N k’g)’Ul == kl’U + kZ/U,

(111) (k?lkfg)v = kl(k’gﬂ), and
)

(iv) 1xv =wv where 1 is the identity of (K\{0},-)

Definition 4.1.1. Let V be a vector space over a semifield K. An element of V is

called a vector of V. A vector v € V is a linear combination of vy,... v, € V if



42

v =1 + -+ + ayv, for some aq,...,a, € K. We denote ayv; + - -+ + a,v, by
n

E ;U5 .

i=1

Recall that, if V' is a vector space over a field F' and B is a basis of V', then
each element of Vcan be written as a unique linear combination of elements of B.
However, let K be a semifield and V' be a vector space over K. If B is a basis of V',
then there has not been proved yet that each element of V' can be written as a unique
linear combination of elements of B.

For this reason, we consider a particular semifield K which satisfies the following
property:

(%) For all a,f € K there exists a v € K such that a =3+~ or 8 =a + 7.

Example 4.1.2.

(i) Every field is a semifield and satisfies the property ().
(i) Qg is a semifield satisfying the property (x) but is not a field.
(iii) (QF,*,-) and (ZU {e},®,®) in Example 2.2.3 are semifields satisfying the
property (%) but are not fields.
(iv) (QF x Q1) U{(0,0)} is a semifield which does not satisfy the property (*)
is not a field since (1,2) # (2,1) + (z,y) and (2,1) # (1,2) + (x,y) for all

z,y € Qf.

Proposition 4.1.3. [5] Let K be a semifield. If there exists @ € K such that x has
an additive inverse, then every.element of K has an additive inverse and hence K 1is

a field.

Proposition 4.1.4. [3] Let V' be a nonzero vector space over a semifield K which

is not a field, i.e., every nonzero vector has no additive inverse. If B is a basis of V,
n

then every vector v of V' can be written uniquely as v = Z@igibi where n € N,
i=1
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a; € K and £b; € {b;,—b;} for all b; € B, that is, if v = Y oueib = Y Bie},

i=1 =1
then m =n and by appropriate rearranging, o; = (3; and €;b; = ;b; for all i.

In this chapter, as a result of Proposition 4.1.3, we let K denote a semifield
satisfying the property (%) such that K is not a field, i.e., every nonzero vector has

no additive inverse. Moreover, let 15 be the identity of K.

Theorem 4.1.5. Let V be a vector space over a semifield K and X CV . Then X
15 linearly independent if and only if for all distinet elements x1,...,x, € X and for

all ay,...,a, € K, if ane1xy + -+ + ayenx, =0, then a; =0 for all ©.

Proof. First, assume that X is a linearly independent subset of V.

Casel If X = (), we are done.

Case2 If |X| =1 and X # {0}, then X = {a} for some a € V' \ {0}. Thus, if
aca =0, then a =0 since ea # 0.

Case3 Let |X| > 1 and z ¢ (X\{«}) forall z € X. Without loss of generality, we
suppose that there exist distinct zy,..., 2, € X and aq,...,a, € K with a; # 0

such that ajeyxy + - -+ + apenx, = 0. Then
£1T1 = — <g—f52x2 + Eeozs EEE z—?enann) e (X\{z1}),

which is a contradiction. Therefore, for all distinct elements zq,...,z, € X and for
all aq,...,a, € K, if ayeiz1 + -+ ape,r, = 0, then «o; = 0 for all 7.

Conversely, we assume that for all distinct elements z,..., 2z, € X and for all
ai, ... 0 € K if agerey 4+ oo+ auenx, = 0, then a; = 0 for all g.
Casel If X =0, we are done.
Case2 Let | X| =1 and suppose that X = {0}. Then there exists a € K\ {0} such
that ac0 = 0 which is a contradiction. Thus X # {0}.
Case3 Let |X| > 1 and we suppose that there exists z € X such that z € (X\ {z}).

Then there exist aq,...,a, € K\ {0} and distinct z1,...,z, € X\ {z} such that
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T =121 + -+ + apenwy, . Therefore aneyzy + -+ + apenx, + 1x(—x) = 0 which is
a contradiction. Hence Vz € X, z ¢ (X\ {z}).

Therefore X is linearly independent. 0

Notation 4.1.6. In Proposition 4.1.4 we sometime write Z &bi—i-z vi(—b;) instead
i=1 i=1

of Zaieibi. It means that, for each i = 1,...,n if g;,b; = b;, then 3; = a; and v, =0

1=1
and if &Tibi == —bi, then 61 =0 and VA 5487 4

Recall that, a subset X of a vector space V' over a semifield is said to be a basis

of V if X is a linearly independent set which spans V.

Theorem 4.1.7. [3] Let A and B be finite subsets of a vector space V over a

semifield. If they are bases of V', then |A] = |B].

Theorem 4.1.7 shows that if a vector space V' over a semifield has two finite bases,
then the two bases of V' must have the same cardinality.

Now, we will extend this to the case that V' has an infinite basis.

Theorem 4.1.8. Let V' be a wector space over a semifield which has an infinite

basis X . Then every basis of V' _has the same cardinality as the cardinality of X .

Proof. Let Y be another basis of a vector space V over a semifield K. First, we
show that Y is infinite. Suppose on the contrary that Y were finite. Moreover, since
Y generates V' and every element of Y is a linear combination of a finite number of
elements of X, there is a finite subset {z1,...,2,,} of X which generates V. Since

X is infinite, let
reX\{z1,...,Tn}.

Then there exist «; € K such that © = ayg;21 + ... + apem®y,, which contradicts
the linear independence of X . Therefore, Y is infinite. Hence every basis of V' must

be infinite.
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Now, it remains to show that all bases of V' have the same cardinality by applying
Schroeder-Bernstein Theorem. Let P(Y) be the set of all finite subsets of Y. Define
a function f: X — P(Y) by v — {y1,...,yn}, where x = aye1y1 + - - - + aneny, and
a; # 0 for all i. Since Y is a basis, we obtain that f is well-defined. If im f were
finite, then U W would be a finite subset of Y that would generate (X) and
hence V. T}If;se ilrge{ds to a contradiction that a basis of V' must be infinite according
to the preceding paragraph. Hence im f is infinite.

Next, we show that f~!'(T/) is a finite subset of X for all W € im f C PB(Y).
Let W € im f CB(Y). Since W is finite and each w € W is a linear combination
of a finite number of elements of X, there exists a finite subset U of X such that
(W) C(U). Let x € f7*(W). Then x € (W) C (U) and x is a linear combination
of elements of U. Since © € X and U C X, this contradicts the linear independence
of X unless x € U. Therefore, f~' (W) C U, whence f~*(W) is finite.

For each W € im f, order the clements of f~'(W), say x1,...,7,,, and define
a function gy : f~Y(W) — im f x N by x3 — (W, k). Clearly, gy is an injective
function. Next, we show that the set of all f=1(WW) where W € im f forms a partition
of X. Tt is obvious that U 71w = X.

Let Wy, W5 € im f Squﬁl&gt Wy ={a,...,a,} and Wy = {by,...,b,}. Suppose
that f~'(Wy) N f71 (W) # 0. Then x = ajera; + -+ + apena, and x = [1e1by +
<o+ BrEmby, where o, 6; € K. Since Y is a basis of V' and from Proposition 4.1.4,
we can conclude that n =m,a; = 3; and €;a; = ¢;b;. Then W; = W,. Therefore
Y (Wy)= f74Ws). Hence the set: f~%(W), where W € im. f, forms a partition
of X . Define a function ¢ : X — im fxN by z — gy (z) where z € f~1(W). Clearly,

¢ is an injective function. Then |X| < |[im f x N|. Therefore, by Definition 2.2.4,

Theorem 2.2.6 and Corollary 2.2.7, we obtain that

[ X| < Jim f > N| = [im f[Ro = [im f] < |B(Y)] = [Y].
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Interchanging X and Y in the preceding argument shows that |Y| < |X|. Therefore
Y| = | X| by Schroeder-Bernstein Theorem. O

Corollary 4.1.9. Let V' be a vector space over a semifield which has a finite basis X .

Then every basis of V' has the same cardinality as the cardinality of X .

Proof. We obtain that every basis of V' must be finite from the proof of Theorem 4.1.8
and then must have the same cardinality as X from Theorem 4.1.7. Therefore, every

basis of V' has the same cardinality as the cardinality of X . U

Definition 4.1.10. Let V' be a nonzero vector space over a semifield K. Then V
is said to be finite-dimensional if V' has a finite basis and V' is said to be infinite-
dimensional if V' has an infinite basis. Moreover, if a basis of V' has cardinality n,
then we say that V is an n-dimensional vector space.

The dimension of V', denoted by dimV or dimgV', is the cardinality of a basis
of V.

Example 4.1.11.
(i) dim@Q = 1 since {1} is a basis of Q over Q.
(ii) Let eq,...,e, € Q™ be defined by
e =(1,0,...,0,0), es = (0,1,...,0,0), ..., en = (0,0,...,0,1).
Then {ey;.: ey} is a basis of the vector space Q" over the field Q. In
fact, by the definition of a vector space over a semifield, we also obtain that

ei,...,en} is a basis of the vector space Q" over the semifield Q7 , hence
0

dimQ" = n. Also, this fact is true if we replace Q by R and Q7 by R .

Theorem 4.1.12. [3] Let V' be a vector space over a semifield and X a linearly
independent nonempty subset of V. Then there exists a subset B of V such that

X C B and B is a basis of V.
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Corollary 4.1.13. [3] Every vector space over a semifield has a basis.

Theorem 4.1.14. [3] Let V' be a vector space over a semifield and X a subset of V
such that X spans V. Then there exists a subset B of X such that B is a basis

of V.

Recall that, if V and W are vector spaces over a semifield K and 7T is a mapping
from V into W, then T is said to be a linear transformation if for all o € K and
v, V1, U2 S V7

T(vy+vy) =T(v1) +T(ve) and T(aw) = aT(v).

Lemma 4.1.15. [3] Let V. and W be vector spaces over a semifield and T : V — W
a linear transformation. If B is a subset of V. which spans V', then T(B) spans

im 1.

Theorem 4.1.16. [3] Let V and W be vector spaces over a semifield and let B =
{b1,...,b,} be a basis of V where b; # b; for i # j. If {c1,...,c,} is a subset of W,
then there exists a unique linear transformation T : V — W such that T'(b;) = ¢; for

all i€ {1,...,n}.

Definition 4.1.17. Let 7' be a linear transformation from V into W . The nullity
of T, denoted by nullT, is the dimension of kerT'. The rank of T, denoted by

rank 7', is the dimension of im 7.

Definition 4.1.18. Let n € N and V/ be a vector space over a semifield. A subset X

of V' is'm-independent if | X| > n and any n-vectors of X are linearly independent.

In [1], Guo, Y. Q. and Shum, K. P. studied an infinite n-independent subset of

vector spaces over fields and some facts, independent subsets, proper subspaces and

¢

linear transformations. These are also true if we replace “ vector spaces over fields ”

by ¢ vector spaces over semifields 7.
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Theorem 4.1.19. Let V' be an n-dimensional vector space over a semifield and
s € N. Then the following statements are equivalent.

S

(i) If Vi is a proper subspace of V' for all i =1,2,...,s, then UV; cV.

(i) If {au1,...,qu} is a linearly independent subset of V withizl1 <r<n-1
and 1 = 1,2,...,s, then there exists an o € V' such that the extended set
{a, i, ..., u ) is still linearly indepdent for all i =1,2,...s.

(iii) There ezists an infinite n-independent subset of V.

(iv) If T;,T; € L(V) with T; # T; whenever i # j for all 1,5 =1,2,...,s, then
there exists an o € V' _such that Tyo # Tjov.

(v) If T;,T; € L(V) with rank T; = rank T; = n and T; # T; whenever i # j
forall v,7 =1.2,...,s, then there exists an o € V' such that Tya # Tjcx.

(vi) If T;,T; € L(V) with rank T; = rank T; = 1 and T; # T; whenever i # j

forall i,5 =1,2,...,s, then there exists an o € V' such that Tya # T

Proof. (i) = (i) For each ¢ = 1,2,....s and 1 <r <n—1, let {ay,...,q;} be
linearly independent and V; = (a1, ..., ;) be the subspace of V. It is easy to see
that V; is a proper subspace of V' because dimV; = r < n for all : = 1,2,...,s.
By (i), we obtain that UV; C V. Then there exists an a € V such that o ¢ V;
for all i = 1,...,s. S;I:lée a ¢V, = {ay,...5q4) and {1, ..., a4} is linearly
independent, we can conclude that the set {a, a1, ..., a;} is linearly independent,
for any i = 1,2,...,s.

(i) = (iii) We proof by induction. First, let X; = {a1,. .., a,, } be an n —independent
subset of V. This subset X always exists, for example, a basis of V. Then |X;| =
m > n Let Xi; be a subset of X; consisting n — 1 elements for : = 1,2,..., (n’fl)
Since X consists of n linearly independent vectors and X7; is a set containing n — 1

linearly independent vectors for all i =1,2,..., (n’fl), by (ii) there exists a1 € V
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such that the n-vector set Ty; = X1; U {@y1} is still linearly independent for all
i=12,...,(").

Let Xo = Xj U {ams1}. It is obvious that X5 is still a subset of V' in which
any n vectors are linearly independent and |Xs| = |X;| + 1. Continue this process,

we obtain a chain of subsets X; of V' in which any n vectors of X; are linearly

independent, say the chain

PCXiCXo Crr GX; C -,

o0

Clearly, U X; is an infinite set in which any n vectors are linearly independent.
i=1
(i) = (iv) Let X be an infinite n-independent subset of V. Assume that

T;,T; € L(V) such that T; # T} if i # j, for all 4,5 =1,2,...,s. let
Vij={aeV|Ta=Tia}.

Then, for all 7,5 = 1,2,...,s with 7 # j, we can see that 0 < dimV;; <n —1. So
that Vj; is a proper subspace of V. Then |[Vj; N X| <n —1. Let m be a number of

subspaces V;;. Then we have

S

Uvitoxi=lJ Gnx) <> VynX|<mn-1).
ij=1 i,j=1 ij=1
i#] i#] i#]

This leads to X\ U Vij # 0. Hence, there exists e € X \ U V;j such that a ¢ V;;
irj=1 ij=1
ijfj ijij

for all 4,j. This implies that (T3 — Ij)(a) # 0 -for all i # j,i,5 = 1,2,...,s.

Consequently, T;(«) # Tj(«) for all i # j, i,j =1,2,...,s. This proves (iv).

(iv) = (v) and (iv) = (vi) are obvious.

(v) = (i) Let V; be a proper subspace of V' for all : =1,2,...,s. We show that
OV; C V. Without loss of generality, we may assume that V; ¢ V; where i # j

i=1
and i,7 = 1,2,...,s. For i,j = 1,2,...,s, let {aj1q42,...,q;,} be a basis of V;,
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where 1 < r; = dimV; < n — 1. We extend this basis of V; to a basis of V', say
{Oéﬂ, Qq2y ooy Ay y Ot 15 - - 7Oém}.

Now, we construct the linear transformation 7; on V by

Qi > QG ifj=1,2,...,7;

T; : (4.1.20)

Oéij'—)aij—’—ai,j—l lfj:’l“z—l-]_,,n

Clearly, rank 7; = n and T; # I (the identity transformation) for all 7,5 =1,...,s.
Since T(V;) = V;, we obtain that T; # 7;, where ¢ # j, and 4,5 = 1,2,...,s.
Therefore {TO = I1,T1,15,-- ,Ts} is a set of linear transformations satisfying the
condition in (v). By the assumption, there exists o € V' such that T;a # T;a where
i # j and 4,j = 0,1,...;s. In particular, T;(a) # Tp(a) = I(a) = «, for all

i=1,...,s. By the definition of (4.1.20), T'(V;) = V; is a subspace of V' under T;.

S

Thus v ¢ V; for all i =1,...,s. Hence UVi A YA
i=1
(vi) = (i) Let V; be a proper subspace of V for all i = 1,2,...,s. Without

loss of generality, we assume that V; € V;, and dimV; = n — 1 where ¢ # j and
,j=1,2,...,s.

Now, forany i € {1,2,..., s}, let {a;1, 4, ..., ;1) be abasis of V;. We extend
this basis of V; to a basis of V', say {ay1, i, ..., ® 1,0, }. Now we construct the
linear transformations on V as follow:

(
a;j—0 ifj=1,2,...,n—1; and

1T (4.1.21)
Qi = Qi

\

4

a;; — 0 ifj=1,2...,n—1, and

o1 (4.1.22)

Uin > Olip + On—1-
\
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Clearly, rank 17; = rank o7; = 1. If o, = o, where 7 # 7, and 4,5 = 1,2,...,s,
then V; = V; where i # j and 7,5 = 1,2,...,s so that V; = V;. This leads to
a contradiction. So ,T; # ;I; where k,l = 1,2, and 4,j = 1,...,s with (k,i) #
(I,7). Thus there are 2s linear transformations 77, 171s, ..., 1Ty, 211, 215, ..., 2T
satisfying the condition in (vi). By the assumption we see that there exists o € V'
such that ,7; # ,1; where k,l = 1,2, and i,j = 1,...,s with (k,7) # (/,7). In
particular, 1T;(«) # oTi(«) forall i = 1,...,s. By (4.1.21) and (4.1.22), we can see
that V; = ker 1T; = ker 57} for all i = 1,...,s. Thus « ¢ V;. Hence OV} cVv. 0O

=1

4.2. Tensor Products of Vector Spaces over Semifields

One major different poeints from a vector space over any semifield and a vector
space over a semifield satisfying the property () is the existence of a basis. Although
tensor products of vector spaces over any semifields were studied in Section 3.3, it
is more benefit to learn whether there are other results regarding tensor products of

vector spaces over a semifield satisfying the property (x) by means of bases.

Theorem 4.2.1. [3] Let V' and W be finite-dimensional vector spaces over the same
semifield and T : V' — W a linear transformation. If dim V = dim W, then T 1is

injective if and only if T is surjective.

Definition 4.2.2.[3] Let K be a semifield and ‘Fi a field containing a subsemi-
field K.~ A linear transformation from a vector space V -over K into Fy is called
a linear function. Moreover, let V* = L(V, F) and V** = (V*)*. We call V* the
dual space of V and V** the double dual of V.

Remark 4.2.3. [3] If V is a finite-dimensional vector space over a semifield, then

dim V = dim V* = dim V**.
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Theorem 4.2.4. [3] Let V be a finite-dimensional vector space over a semifield,
dimV =mn, and B = {by,...,b,} a basis of V. For each i € {1,2,...,n}, let
fi € V* be such that

L, ifj =i,
0, ifj#i.

Then the following statements hold.

(i) {f1,..., fu} is @ basis of V* which is called the dual basis of B.
(ii) For all f € V¥ f =" f(b:)f;.
i=1
(iii) For all ve V,u= Zfi(v)bi.
i=1
Definition 4.2.5. Let V' and W be vector spaces over a semifield. For each v € V'
and w € W, we say that ev and e'w have the same sign if
(i) ev =v and €'w =w . or
(i) ev = —v and ¢'w = —w.
Moreover, we say-that v _and £w have the different sign if ev and ¢’w does not

have the same sign.

Proposition 4.2.6. Let Voand W._be vector spaces over a semifield K and o, € K .
Let veV and w & W be such that ev and éw have the same sign and év and Ew
have the same sign. Then there exists v € K such that a(cv) + B(€v) = v(¢'v) and

a(éw) + B(Ew) = y("w) where v and €"w have the same sign.

Proof. There are four cases to be considered.
Casel Assume that a(ev) = av and [(év) = fv. Then a(éw) = aw and [(cw) =
fw. Thus a(ev) + (év) = av + v = (a + B)v and a(éw) + f(éw) = aw + fw =

(o + B)w. Then we choose 7= a + [3.
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Case 2 Assume that a(v) = a(—v) and B(év) = B(—v). Then a(fw) = a(—w)
and fB(zw) = B(—w). Thus a(ev) + B(év) = a(—v) + B(=v) = (a + 8)(—v) and
a(éw) + f(ew) = a(—w) + f(—w) = (o + ) (—w). Then we choose v = a + 3.
Case3 Assume that a(sv) = av and B(év) = B(—v). Then a(fw) = aw and
Blew) = f(—w).

If a =0+~ for some v € K, then a(ev) + (év) = (8 + v)v+ B(—v) = yv and
a(éw) + f(ew) = (B + 7w + B(-w) = yw.

If 3 =a+~y for some v € K, then afev)+ G(év) = av + B(—v) = av + (o +
7)(=v) =7(-v) and a(ew) + Blew) = aw + B(-w) = aw + (a +7)(-w) = y(-w).

Case4 Assume that a(ev) = a(—v) and [(év) = fv. Then a(éw) = a(—w) and

If « =p+7 for some y € K, then a(sv) + B(v) = (8 + 7)(—v) + fv = y(—v)
and a(éw) + B(ew) = (B+ 9)(~w) + fw =7(-w).

If 3 =a+~ for some v € K, then a(ev) + 5(év) = a(—v) + (o +v)v = v(v)
and a(Zw) + B(Ew) = a(—w) +{aty)w = A(w).

From Case 1 — Case 4, we can conclude that there exists v € K such that
a(ev) + B(év) = v(e'v) and a(éw) + B(éw) = y(e"w) where ¢'v and £”w have the

same sign. 0

Lemma 4.2.7. Let V' and W be vector spaces over a semifield K, B a basis of W
and C = {wy, ., w,} TB. Let 3V X W — V be defined as follows: for each

veV and w e W such that

n
w = E QEW; + E Oébe’ibb
=1

beB\C

where Z apepb 1S a finite sum with aq, ..., a,, ap € K,
beB\C
Blv,w) = Z a;(gv).
i=1
Then (3 is bilinear.
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Proof. Let v,v" € V, w,w € W and a € K. Then

w—Z&ewﬁ— Z apepb and W’ —Zﬁléwl—l— Z Bperb

beB\C beB\C

where aq,...,0n, ap, B1,..., 00, By € K for all b € B\ C. Then 3 is well-defined
because every vector in W can be written uniquely as a linear combination of elements
in B. It is easy to verify that B(v,aw) = af(v,w) = B(av,w) and (v + v',w) =
Blv,w) + B, w).

Next, we show that B(v, w+ w') = f(v,w) + B(v,w"). We can see that (v, w) =
Zal g;v) and [G(v,w") Z Bi(elv). For each i, since g;w; and ;v have the same
sligln and glw; and ;v havei:tlhe same sign, by Proposition 4.2.6 there exists v; € K
such that a;e;w; + Bighw; = vielw;, cie;v+ fielv = yefv and €/w; and €/v have the

same sign. It follows that

ﬂ(v, w + w') = ﬂ v, Z QG W, + Zﬁ,a;wl - Z absbb + Z ﬁ[ﬁgb
=1 =1+

beB\C beB\C

=31 Z Ew; + Fichw;) + Z apepb + Z Byenb
beB\C beB\C
=0 U,Z%(sg’wi) + Z aperh + Z Breyb
i=1 beB\C beB\C
23k
i=1
and
Bv,w) + B(v,w) Zalelwl + Z apepb | + Zﬁ@&t W; + Z Breib
beB\C beB\C

= ai(ew) + Z Bilew)

i=1
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n

— Z (a;(gv) + B(elw))
= e,

i=1

Therefore ( is bilinear. 0]

Theorem 4.2.8. Let V' and W be vector spaces over a semifield and let vy, ... v, €V,
Wi, . .., w, € W If {wy, ... w,} is linearly independent and Z v; ®e;w; =0, then

i=1

v; =0 forall 7.

Proof. Let B be a basis of W containing wy, ..., w,. For each ¢+ = 1,2,...,n, define

G; :VxW —V by for each v € V and w € B

(
v if w = w;,

Bilvwy= ¢ —y ifw= —wy;,

0 otherwise.
\

It follows from Lemma 4.2.7 by letting C = {w;} that [ is bilinear. By the universal
mapping property of tensor products, there exists a unique linear transformation
B:V®rgW — V such that 3 = 0B where B: VX W — V@g W is the canonical

bilinear map. From Zvj ® gjw; = 0, we apply (. Then
j=1

0

3 (Z v ® 51%‘)
j=1

n

B(v; ® ejw;)
J=1
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Thus v; = 0 for all 7. [
Corollary 4.2.9. Let V and W be vector spaces over a semifield. For all v € V
and w €W, if v#0 and w#0 then v @ w # 0.

Proof. This is straightforward. 0J
Corollary 4.2.10. Let V' and W' be wector spaces over a semifield and B a basis

of V_and C a basis of W. If v,0" € B and w,w" € C are such that v # v or w # W',

then v @ w # v @ w'.

Proof. This follows from Corollary 4.2.9. O
Note 4.2.11. Let V and W be vector spaces over a semifield, v € V and w € W.
Then (v @ w) = (v @w) = (v ew).

Proof. This follows from Remark 3.3.6 (ii). O
Theorem 4.2.12. Let V. -and W be vector spaces-over-a.semifield K, B a basis of V'
and C a basis of W. Then {v@w | ve B andw € C} is a basis of V &k W.

Proof. Let D ={v®w |v € B and w € C}. We claim that D is linearly independent.

First of all, let v,v" € B, w € C and a,b € K be such that v # v" and
ag(v @ w) + bé(v' @ w) = 0.

Then 0 = aé(v @ w) + bE(WV @ w) = (afv @ w) + (bév' @ w) = (aév + béV') @ w.

Thus, we obtain from Theorem 4.2.8 that agv + bév’ = 0. Suppose that a # 0. Then
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gv = a~'(—bév') which is a contradiction because v,v’ are distinct elements in the
basis B. Therefore a = 0 and then b= 0.

For this reason, in order to show that D is linearly independent it is enough to let
Vi,...,0, € B, wy,...,w, € C, aq,...,a, € K be such wy,...,w, are all distinct
and aqer (v @wq) + -+ + apen(v, @ wy,) = 0. Then (ae1v; @ wy) + -+ + (AERVL @
wy,) = 0. Since wy,...,w, are all distinct elements in the basis C, we obtain that
{wy,...,w,} is linearly independent. So that o;e;v; = 0 for all ¢ = 1,...,n from
Theorem 4.2.8. Since v; is an element of B for all i, we obtain that «; = 0. Hence
D is linearly independent.

Next, we show that D spans V@gW . Let z € Vg W . Then x = Zmi(vi®wi)
where m; € Z, v; € V. and w; € W for all ¢. For each v; € V and uijzz-le W, there
exist a1, ..., ;s Bity ooy Bigys Yits - - s Yikss Nils - - - Niky, € K and by, ..., b;, € B and

c1,..., ¢ € C such that

vi = ainby + -+ o by + B (=by) + oo £ B35, (=05,) = ma(eabi) + -+ + 735, (€5,05)

w; = Y11+ - Vik Cr, + A (=€) + o A, (— ki) = Galerer) + - 4 Gk (ki Cx;)

where
Nij = and Gj =

Then

n Ji k; n Ji k;
= Z my; (Z Cmbl & Z ’yipcp> + Z m; (Z Oéilbl X Z )\ip(—cp)>
i=1 =1 p=1 i=1 =1 p=1
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n Ji ki n Ji ki
+ Z my (Z Bu(—=b) ® Z %‘pcp> + Z my <Z Bu(—=b) ® Z )\ip(_cp)>
i=1 =1 p=1 i=1 1=1 p=1
n  Ji ks n o Ji ks
= Z Z Z m; oG Yip(b ® ¢p) + Z Z Z micNip(b ® —c;)
i=1 [=1 p=1 i=1 [=1 p=1
n o Ji ki noJi ki
Y D miBuvi(—bi @) + > ) Y maiBudip(—b ® —¢,)
i=1 [=1 p=1 i=1 [=1 p=1
n  Ji ks
=D D Imilcab @ vipep) + milaabs @ \ip(—cp)) + ma(Ba(—br) @ Yipcy)
i=1 =1 p=1

+ mi(Bau(—br) @ Xip(—ep))].

Fix 4,l,p and consider

mi(ab; @ Yipcp) +m; (b & Xip(—cp))

+ mi(Bi(=bi) @ Yipcp) + mi(Bu(—br) @ Aip(—cp)). (4.2.13)

Casel If a; # 0 and 7, # 0, then 5; = A\ = 0. Thus (4.2.13) is m;(aub ® vipcy) -

Case2 If ay; # 0 and \;, # 0, then 3 = 45, = 0. Thus (4.2.13) is m; (b @ Aip(—c¢p))-

Case 3 If 3; # 0 and ~,;;, # 0, then oy = Ay = 0. Thus (4.2.13) is m; (Bu(—b1) ® vipcy) -

Case4 If §; # 0 and \;, # 0, then o = 45, = 0. Thus (4.2.13) is m; (Gu(—b) @ Aip(—cp)).
Therefore (4.2.13) is m; (nu(eiby) ® Cip(epcy)). Hence

n o Ji

2 = 5750 S s () 8 Llepe))

1=1 [=1 p=1

n o Ji

- Z Z Z minuCi(eibr) & (epcp)

i=1 I=1 p=1

n o Ji

ki
- Z Z Z minuCacicp(by ® ¢)

i=1 I=1 p=1
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which is a finite sum. This shows that z € (D). Hence {v®@ w | v € B and w € C}

is a basis of V@ W. ]

Example 4.2.14. Let V be a vector space over a semifield K of dimension 2 with

basis B = {v1,v2}. Then the following set is a basis of V @k V:

{v1 ® v1,v1 ® V2, V2 @ V1, V2 @ Va}.

Example 4.2.15.

(i) {I1® 1} is a basis of Q Rgz R

(ii) Q" and R™ are vector spaces over Qg with basis {e;,...,e,} and {¢],... €.},
respectively, then {e; @ eili = 1,....,n, and j = 1,...,m} is a basis of

Corollary 4.2.16. Let V' and W be finite-dimensional vector spaces over a semi-

field K. Then V ®@x W s also finite-dimensional and

dim V. @x W = (dim V) (dim W).

Proof. This follows from Theorem 4.2.12. O

Note 4.2.17. Let V. and W be finite-dimensional vector spaces over a semifield K .
Let B = {vy,...,v,} be a basis of V' with dual basis B = {¢1,...,¢,} and C =
{wy,...,wy} abasis of W with dual basis C" = {4, ...,1,}. Then

{p;®%; |i=1,.0.inand §=1,.../m}

is a basis of V*®@xg W*.

Theorem 4.2.18. Let V and W be finite-dimensional vector spaces over a semi-

field K. Then
Vg W= (Veg W)*

via the isomorphism 7 : V* @ W* — (V @k W)* defined by
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T(PpR@Y)(v@w) = d(w)(w) forall p e V*, b eW* veV and we W.

Proof. In order to define a linear transformation from V* ®@x W* to (V @x W)*, we
need to define a bilinear map 3 : V* x W* — (V @ W)* satisfying the following

diagram:
VEX W e V@i W

(Veg W)
where B is the canonical bilinear map. Note that 3(¢,1) must be an element of
(V @k W)* for each ¢ € V* and 1) € W*.
Let ¢ € V* and ¢ € W*. An element of (V ®x W)* can be derived from the

universal mapping property of tensor products by considering the diagram below:

VW L. VoeW
Fop

Fi

where B is the canonical bilinear map and fs, is a bilinear map defined by
fow(v,w) = p(v)Y(w) for all v € V and w e W.

Then there exists a unique linear transformation f¢7w :V®k W — Fy such that
fow = Fouro Bi Consequently, fsp € (V@i W) and fiy(w@w) =(fss0B)(v,w) =
fow(v,w) = ¢(v)p(w) forall veV and we W.

Now we define 3: V* x W* — (V @x W)* by B(¢,10) = fys for all ¢ € V* and
1 € W*. By the uniqueness of qu, we obtain that 3 is well-defined.

Next, we show that [ is bilinear. Let a,b € K, ¢,p € V*, ¥, & e W* v eV
and w € W. Then
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Blag +bip, ) (v @ W) = fupbo (v @ W)
= Jagbpu (v, 0)
= (a¢ + bp) (v)¥ (w)
= ap(v)y(w) + bp(v)(w)
= afep(@Ww) +0fo (v, w)
= afs.y 0 B(v,w) +bfp.y 0 B(v,w)
= afy (0 @w) +bfpy(v®w)

= aB(9,¥)(v @ w) + bB(, ¥) (v @ w).

Similary, we also obtain f(¢,at + b§) = af(p,¥) + bG(4,&). Therefore, by
the universal mapping property of tensor products, there exists a unique linear
transformation 7 : V* @xg W* — (V ®@x W)* such that § = 7 o B. Moreover,
T(p @) (v @ w) = fopv @w) = d(v)(w) for all ¢ € V*, ¢ € W* v €V and
weW.

Next, we will show that 7 is an isomorphism. Let B = {v1,...,v,} be a basis
of V' with dual basis B' = {¢1,...,¢,} and C = {wy,...,w,} be a basis of W with
dual basis C' = {158 .- Then

705 @4 ) (v @ wy)-= @i (vp)ab;(wr)

1 ifi=kandj=1

0 ifi#korj#l
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This shows that {7(¢; ® ¢;) |i=1,...,n and j =1,...,m} forms the dual
basis of the basis {vy @ w; |i=1,...,n and j=1,...,m} for V@ W. Thus 7
maps the basis {¢;®¢; |1 =1,...,n and j=1,...,m} of V*®xW?* to the basis
{r(pi®@;)|i=1,...,n and j=1,...,m} of (V®x W)". By Theorem 4.1.15
and Theorem 4.1.16, it follows that 7 is surjective. Furthermore, 7 is injective from

Theorem 4.2.1. Hence 7 is an isomorphism. Therefore V* @ W* = (V @x W)* O

Remark 4.2.19. Let V and W be finite-dimensional vector spaces over a semi-

field K. Then
VEQrW* 2= (V @x W)*= L(V,W:; Fk).

Proof. We obtain from Theorem 4.2.18 that V*®@x W* = (V ®x W)* and from The-

Il

orem 3.4.6 that (V @x W)* = L(V,W; Fk). As aresult, V*@x W* = (V @x W)*
L(V,W; F).

O
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