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Current unsupervised classification using self-organizing competitive learning 

is based on the minimum Euclidean distance between a prototype neuron and the 

selected data. Euclidean distance measure does not consider the clustering structure of 

the data. This approach is not suitable for several classification problems where the 

geometrical structure and surface of the data space are the main concern.  The 

prototype neurons must flow along the natural curvature of the data space and 

correctly classify the space. This implies that the distances among the data should be 

non-Euclidean and measured along the natural structure of the space.  The problem 

studied in this paper concerns the algorithm for measuring the non-Euclidean distance 

in a data point space, i.e. the surface function is unknown, and moving the prototype 

neurons along the actual geometrical structure of the data points. Our algorithm 

successfully classifies the experimental data spaces with various aspects while the 

unsupervised Euclidean distance classification gives incorrect results. 
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CHAPTER 1

INTRODUCTION

1.1 Problem Identification

Kohonen’s Self-Organizing Map (SOM) neural network [1] is a type of unsu-

pervised neural model, which is not necessary to specify the targets in the training

data. The model partitions the data into the clusters. The SOM neural network

is broadly applied to several industrial problems such as pattern classification,

feature extraction, data compression, data mining, and many more. In addition,

it may be used to quantize large data by grouping the data into a number of

clusters and representing each groups by a prototype neuron.

While the applications of the self-organizing map (SOM) neural network are

extremely widespreaded, most proposed SOM learning models such as hierarchical

variants [2], the ASSOM [3], the GTM [4], the ESOM [6] and the stochastic SSOM

for mapping of proximity data [5] still employ Euclidean distance to measure the

similarity among the data. Furthermore, the training algorithms must specify

the number of clusters in advance. These constraints are not suitable for many

classification problems where the classes are defined by the natural curvature of

the data space. Consider the example shown in Figure 1.1. The data points

are scattered and formed a spiral shape in a 2-dimensional space. Two different
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measures are used to measure the distances between these two points. Euclidean

distance is shown in Figure 1.1(b) but the natural manifold distance is used in

Figure 1.1(c). It is obvious that Euclidean measure gives an incorrect classification

but the natural manifold distance correctly classifies the data points.
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(a) (b) (c)

Figure 1.1: An example of different distance measures. All data points are scat-

tered and formed a spiral shape in a 2-dimensional space. (a) Two random points

in a spiral. (b) Euclidean distance between the two points. (c) The natural

manifold distance between the points.

In the classical SOM learning, the prototype neuron does not move on the nat-

ural surface or inside the cloud of data but it always moves toward the training

data point in the direction defined in terms of Euclidean distance between the

prototype location and the data point. Actually, the prototype neuron must be

moved along the surface or the manifold of the data point space. If the surface

or the manifold of the data space can be captured in forms of a function then

the problem of moving all prototype neurons becomes simple. The concept of a

Reimanian distance and tensor can be directly applied. But in the actual appli-

cations, it is impossible to formulate a surface function. Therefore, the problem
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is how to estimate the natural manifold distance between two data points.

In this research, we concentrate on scattered data on a surface or a manifold

due to the fact that many data are regarded as a discrete surface or a manifold.

For example, the surface of a 3-D image is formed by a set of unorganized cloud

points representing surface samples from laser range scanners. The goal of this

research is to develop a new Self-Organizing Maps learning algorithm using a non-

Euclidean distance on a surface to identify the winning neuron and to move the

synaptic weight vectors of the neurons along the surface.

1.2 Objective and Contributions

The goal of this research is to develop a new Self-Organizing Maps learning

algorithm using a non-Euclidean distance on a surface to identify the winning

neuron and to move the synaptic weight vectors of the neurons along the surface.

The algorithm developed can be applied to several industrial problems such as

feature extraction, pattern classification, and data compression.

1.3 Scope of Work and Constraints

1. The data are scattered and formed a discrete surface or a manifold.

2. The surface function is not known and not defined in advance.
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1.4 Outline of the Thesis

The remaining contents are organized into six chapters. Chapter II reviews

the related literatures. Chapter III gives a review of Self-Organizing Map. Our

new Self-Organizing Map on a non-Euclidean space model and the algorithm are

proposed in Chapter IV. The experimental results and a comparison between this

experimental results and the results in [1] are given in Chapter V. Chapter VI

concludes the research.



CHAPTER 2

LITERATURE REVIEW

Ritter [10] proposed a new type of Self-Organizing Map (SOM) called hyper-

bolic SOM (HSOM) based on a regular tessellation of the hyperbolic plane. It is a

non-Euclidean space characterized by constant negative Gaussian curvature. The

HSOM uses the hyperbolic lattice topology for the arrangement of the HSOM

nodes. The number of nodes in the lattice grows very rapidly with the chosen

lattice radius r. Each lattice node carries a prototype neuron from a high di-

mensional feature space. Demartines and Herault [7] presented a new strategy

called curvilinear component analysis (CCA) for dimensionality reduction to im-

prove Kohonen’s self-organizing map. The CCA algorithm, which borrows both

the ideas of multivariate data analysis and the principle of SOM, proceeds in two

steps: vector quantization (VQ) of the sub-manifold in the input space and non-

linear projection of these quantizing vectors toward an output space, providing

a revealing unfolding of the sub-manifold. In addition, the projection of CCA

is similar to other nonlinear mapping methods such as multidimensional scaling

(MDS) and Sammon’s nonlinear mapping (NLM). The CCA has been successfully

applied to various nonlinear problems of data representation in the framework of

process surveillance, sensor fusion, and generation of metric spaces from non-

metric cost functions. Bishop and Svensen [4] introduced a form of non-linear
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latent variable model called the Generative Topographic Mapping for which the

parameters of the model can be determined using the EM algorithm. GTM pro-

vides a principle alternative to the widely used Self-Organizing Map (SOM) of

Kohonen and overcomes the most significant limitations of the SOM such as the

absence of a cost function, the lack of a theoretical basis for choosing learning

rate parameter schedules, and neighborhood parameters to ensure topographic

ordering. The GTM model is defined in terms of a mapping from the latent space

into the data space. The GTM algorithm uses the batch version which all of

the training data are used together to update the model parameters. Deng and

Kasabov [6] proposed a dynamic version of the Kohonen’s Self-Organizing Map

(SOM) called “Evolving Self-Organizing Maps” (ESOM). The network structure

of ESOM is different from the standard SOM. The network structure is not fixed

and the prototype nodes are not organized onto one or two-dimensional lattices.

The ESOM network starts without any node and some new nodes are created dur-

ing learning. Each node carries a weight vector of the same dimensionality as the

input data. The connections between the mapped nodes are used to maintain the

neighborhood relationships between the close nodes. The strength of the neigh-

borhood relation is determined by the distance between those connected nodes.

If the distance is too large, the connection can be pruned.



CHAPTER 3

BACKGROUND KNOWLEDGE

3.1 An Overview of Artificial Neural Networks

The human brain contains many different specialized information centers scat-

tered throughout its three-dimensional space. The most basic component of the

human brain is a specific type of cells, which provides us with the abilities to

remember, think, and apply previous experiences to our every action. These cells

are known as neurons. Each of these neurons can connect with up to 200000 other

neurons. All biological neurons have four basic components, which are dendrites,

soma (or cell body), axon, and synapses [11] as shown in Figure 3.1.

Soma 

Nucleus 

Axon 

Dendrite 

Synapse 

Figure 3.1: Two interconnected biological cells.
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Learning in biological systems involves the adjustments of the synaptic con-

nections that exist between the neurons. This is also true for artificial neural

networks .

Artificial neural networks are collections of mathematical models that emulate

some properties of the human brain. Each artificial neuron is designed to have the

same components similar to a biological neuron in the human brain as follows:

Soma corresponds to a neuron node.

Axon corresponds to an output.

Dendrite corresponds to an input.

Synapse corresponds to a weight.

There are three categories of learning algorithms which are:

1. Supervised learning: A neuron is forced to generate an output signal equal

to a specific target signal of an input pattern and to reproduce this target

signal whenever the specific input pattern appears.

2. Unsupervised learning: It must not specify a target signal associated with a

specific input pattern. A neural competitively adjusts its weight similar to

the input patterns.

3. Reinforcement learning: It is a hybrid between supervised and unsuper-

vised learnings under the environment which the target cannot be explicitly

defined.
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3.2 A Self-Organizing Map

The self-organizing map (SOM) is the type of unsupervised learning model.

The principal goal of the self-organizing map is to transform an incoming signal

pattern into a one- or two-dimensional discrete map, and to perform this trans-

formation adaptively in a topologically ordered fashion. This network usually

contains neurons arranged in rows and columns in a lattice and each neuron is

completely connected to all the source nodes in the input layer. A one-dimensional

lattice comprises only of a single column or row of neurons. Figure 3.2 shows a

two-dimensional lattice of neurons commonly used as the discrete map.

Figure 3.2: The network of the self-organizing map.

The learning algorithm for the self-organizing map commence with initializing

the synaptic weights in the network. After the network has been appropriately

initialized, there are three essential processes involved in the learning algorithm
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of the self-organizing map:

1. Competition: Each neuron competes with each other to be a winner. A

winner is a neuron whose weight vector and the currently learned input

vector have a shortest Euclidean distance among the distances between the

currently learned input vector and other weight vectors. Only the weight of

the winner is updated.

2. Cooperation: Not only the winning neuron will have its weights updated,

but its close neighbors will also have the chance to update their weights,

although not as much as the winning neuron.

3. Synaptic Adaptation: The weights should be updated in such a way that

the new weights will be closer to the input.

The details of the processes of competition, cooperation, and synaptic adaptation

are now demonstrated.

3.2.1 Competitive Process

Let m be the dimension of the input space. Let an input vector selected at

random from the input space be denoted by

x = [x1 x2 . . . xm]T (3.1)

The synaptic weight vector of each neuron in the network has the same dimension

as the input space. Let the synaptic weight vector of neuron j be denoted by

wj = [wj1 wj2 . . . wjm]T , j = 1, . . . , k (3.2)
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where k is the total number of neurons in the network.

We use the Euclidean distance to find the best match of the input vector x

with respect to the synaptic weight vector wj.

If we use the index i∗ to identify the neuron that best matches the input vector

x, we may then determine i∗ by applying the condition:

i∗ = arg min
j

‖x − wj‖ , j = 1, . . . , k. (3.3)

The particular neuron i that satisfies this condition is called the best-matching

or the winning neuron for the input vector x.

Depending on the interested application, the response of the network could

be either the index of the winning neuron (i.e., its position in the lattice), or the

synaptic weight vector that is closest to the input vector in a Euclidean sense.

3.2.2 Cooperative Process

In neurobiological studies, there exists the lateral interaction among a set of

exited neurons. In particular, a neuron that is firing tends to excite the neurons

in its immediate neighborhood more than those farther away from it. There is a

topological neighborhood that decays with distance. This neurobiological evidence

defines a resembling topological neighborhood for the neurons in the SOM.

Let dj,i be the lateral distance between winning neuron i∗ and excited neuron

j, we define

hj,i∗ = exp

(
−d2

j,i∗

2σ2

)
(3.4)

as the topological neighborhood, where i∗ is the index of the winning neuron and

σ is the width of the topological neighborhood. The topological neighborhood
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hj,i∗ depends on lateral distance dj,i∗ which is the Euclidean distance between

winning neuron i∗ and excited neuron j measured in the output space. The

distance between neurons are usually calculated from their positions in a row-

dimensional rectangular or hexagonal grid as demonstrated in Figure 3.3 (a) and

(b), respectively.
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(a) (b)

Figure 3.3: (a) The positions of 100 neurons arranged in rectangular grid. (b)

The positions of 100 neurons arranged in hexagonal grid.

For the special feature of SOM, the size σ of the topological neighborhood

needs to decrease with time. A popular time dependence is the exponential decay

described by

σ(n) = σ0 exp

(
− n

τ1

)
, n = 0, 1, . . . , (3.5)

where σ0 is the value of σ at the initiation of the SOM algorithm, and τ1 is a time

constant. We substitute Eq.(3.5) in Eq.(3.4) and obtain

hj,i∗(n) = exp

(
− d2

j,i∗

2σ2(n)

)
, n = 0, 1, . . . , (3.6)
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where σ(n) is defined by Eq.(3.5). Henceforth we will refer to hj,i∗(n) as the

neighborhood function. The goal of the neighborhood function is essentially

to correlate the directions of the weight adjusting of a large number of excited

neurons in the lattice.

3.2.3 Adaptive Process

For the network to be self-organizing, the synaptic weight vector wj of neuron

j in the network should be updated in such a way that the new weights will be

closer to the input vector x. Concerning weight adjusting, not only the winning

neuron gets its weight updated, but its close neighbors will also have updated

their weights, although not as much as the winner.

Given the synaptic weight vector wj(n) of neuron j at time n, the updated

weight vector wj(n + 1) at time n + 1 is defined by

wj(n + 1) = wj(n) + η(n)hj,i∗(n)(x −wj(n)) (3.7)

where η(n) is a learning rate depending on time as indicated by

η(n) = η0 exp

(
− n

τ2

)
, n = 0, 1, . . . , (3.8)

where τ2 is another time constant and η0 is the value of η at the initiation of the

SOM algorithm.

The effect of the weight adjusting is to move the synaptic weight vector wj of

winning neuron j and its neighbors toward the input vector x.
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3.3 Summary of SOM Algorithm

All neurons are organized in a two dimensional array and their physical lo-

cations in the input data space are represented by their weight vectors. There

are four essential steps concerning the SOM learning process: initialization: sam-

pling, similarity matching, and updating. These four steps are iterated until the

formation of the feature map has completed. Let wj(t) be the prototype neuron

j at time t. The dimension of each prototype neuron is equal to the dimension of

the data space. The stages of SOM algorithm can be summarized as follows:

1. Initialization. Randomly set the values of all prototype neurons wj(0),

1 ≤ j ≤ k, where k is the number of neurons in the lattice. Another way of

initializing is to select the prototype neurons {wj(0)}k
j=1 from the available

set of data vectors {xi}N
i=1 in a random manner.

2. Sampling. Draw a sample training data vector xi from the data space.

3. Similarity Matching. Find the winning neuron wi∗(t) with respect to

data vector xa by using the minimum-distance Euclidean criterion:

||wi∗(t) − xa|| = min
j

(||xa − wj(t)||), 1 ≤ j, i∗ ≤ k. (3.9)

4. Updating. Adjust the synaptic weight vectors of all neurons at time t by

using the updating formula:

wj(t) = wj(t − 1) + η(t − 1)hj,i(t − 1)(xa − wj(t − 1)). (3.10)

5. Continuation. Return to step 2 until the feature map stops changing.
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3.4 An Example of Self-Organizing Mapping Neural Net-

work

This example shows how a two-dimensional self-organizing map can be trained

using a network with 100 neurons arranged in 10 rows and 10 columns. First, 1000

random input data were created as demonstrated in Figure 3.4(a). Second, the

initial values of the synaptic weights are chosen randomly as presented in Figure

3.4(b). Then, we set the initial values of the learning-rate parameter and set the

initial values of the neighborhood size . After that we start training each of the

input vector. During the ordering phase, the map has begun to organize itself

to form a mesh, as shown in Figure 3.4(c). Finally, after 200 epochs, the map

spreads out to fill the input space as given in Figure 3.4(d).

3.5 The batch version of the SOM

The batch computation version is significantly faster. If all samples {xi}N
i=1

are the available set of data vectors, they can be trained by batch algorithm. The

batch algorithm can be summarized as follows:

1. Initialize the values for the prototype neurons wi in some proper way.

2. For each map unit j, collect a list of all data vectors xi, whose most similar

prototype neuron wj belongs to the neighborhood set Nj of node j.

3. Compute the mean of the vectors xi in each Nj and replace the old values

wj by the corresponding mean.

4. Repeat from step 2 until the values of all prototype neurons are not changed.
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Figure 3.4: (a) A plot of 1000 input vectors. (b) 100 initial synaptic weight

vectors. (c) The ordering phase. (d) The convergence phase.

Notice that step 3 is to calculate the mean over the union of the lists that belong

to the neighborhood set Nj of unit j.



CHAPTER 4

Mathematical Model and Algorithm

4.1 Mathematical Model for Self-Organizing Artificial Neu-

ral Network in a Non-Euclidean Space

The principal of unsupervised learning is to measure the similarity among

input data and to partition them into a set of clusters. The Euclidean distance is

one of the most popular measures used in this unsupervised learning. In fact, the

similarity between two input data measured by the Euclidean distance is based

on the direct coordinate distance between these input data considered as two

vectors in a high dimensional space. The actual geometrical structure of data

space is not involved during this similarity measure. Generally, the input data

are scattered and formed a discrete surface or a manifold which is non-linear.

Therefore, the Euclidean measure is inappropriate when the input data space has

a curvature. Some other similarity measure must be introduced. Our problem is

different from the problem of finding a curvature distance between two points on

a manifold whose function is known. In our case, the input data are scattered and

formed clouds of data. The scattering function is not known and not defined in

advance. This makes the problem of measuring the curvature distance between

any two vectors more difficult than measuring the distance on a manifold with a
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known function such as those in the Riemanian space. A manifold distance which

is the shortest distance along the manifold is applied to identify the similarity

among the data vectors and then separate them into the same cluster. Since it is

difficult to evaluate the manifold distance along unknown surface, we propose a

new algorithm to estimate a manifold distance to measure the similarity among

input vectors. The approximation criterion can be calculated without knowing

the surface function and can be generalized to a high dimensional curved space.

The exact manifold distance can be approximated by a sequence of short hops

between neighboring data vectors. Our manifold distance is developed from the

algorithm proposed in [8]. The algorithm for approximating manifold distances

can be summarized as follows. Point xj is the neighbor of point xi if the Euclidean

distance ||xi−xj || ≤ ε , where ε is a constant or xj is one of the K nearest neighbor

points.

Algorithm for Estimating Manifold Distance

1. For every xi Do

2. determine all neighbors of xi.

3. EndFor

4. Construct a weighted undirected graph such that vertex i corresponds to xi

and an edge (i, j) if and only if xi and xj are neighbors and its weight is di,j.

5. Find the sequence of points denoted by {Pk}n
k=0 with P0 = xi and Pn = xj such

that the distance between xi and xj is minimal.

6. Find the discrete curve specified by sequence {Qj}n+1
j=0 of points where Q0 = P0,

Q1 = (midpoint of P0 and P1), Q2 = (midpoint of P1 and P2) , . . . . . . ,
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Qn = (midpoint of Pn−1 and Pn), Qn+1 = Pn.

7. Calculate an estimation of manifold distance by dmanifold =
∑n

k=0dU(Qk,Qk+1)

where dU(Qk,Qk+1) is the Euclidean distance between Qk and Qk+1.

The shortest distance between vertices i and j in the graph is the estimated

manifold distance between xi and xj . The approximation of the manifold distance

between two points on the data space is demonstrated in Figure 4.1. Obviously,

this distance is different from the Euclidean distance (the straight line) as shown

in Figure 4.1.
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0
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Figure 4.1: Euclidean distance(straight line) and manifold distance(curved line).

Let dM(x,y) be the manifold distance and dG(x,y) be the graph distance be-

tween points x and y. The proof in [9] shows that for a sufficiently high density

(α) of data points, we can always choose a neighborhood size (ε and K) large

enough so that the graph will have a path not much longer than the true man-

ifold distance, but small enough to prevent the edges that “short circuit” the

true geometry of the manifold. More precisely, given arbitrarily small values of

λ1, λ2, µ > 0, we can guarantee that with probability at least 1− µ, the estimates
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of the following form

(1 − λ1)dM(x,y) ≤ dG(x,y) ≤ (1 + λ2)dM(x,y) (4.1)

will hold uniformly over all pairs of data points x,y.

4.2 Weight Adjusting in Non-Euclidean Space and Spher-

ical Mapping

The purpose of weight adjusting in a self-organizing network is to place all

prototype neurons at their appropriate locations in order to represent their cor-

responding clusters. A cluster is represented by a prototype neuron. Usually, the

weight adjusting procedure is based on the minimum Euclidean distance between

a prototype neuron and an input training vector. The adjusted prototype neuron

is moved toward the input training vector and, eventually, located at the centroid

of the corresponding cluster. If the input space is a curved space, this algorithm is

not appropriate because the prototype neurons cannot be moved along the actual

surface of the space. The process of weight adjusting in a non-Euclidean space is

similar to that of a Euclidean space. The only differences are the criteria to select

a winner and the adjusted weights moved on the surface or manifold. A manifold

distance is used to select a winner. A mesh covering the data space is formed by

connecting all neighboring neurons. In classical SOM, a neighbor of any neuron is

determined from its coordinates on a 2-dimensional map. This mapping scheme

cannot be applied to the non-Euclidean case since there are two possible curved

distances for any neuron and its neighbor. In this paper, a spherical mapping

scheme where all neurons are mapped to a sphere called a neighborhood sphere



21

is introduced to resolve this feasibility. This concept is different from the con-

cept in [10]. In Spherical SOM [10], neurons must be arranged in the spherical

lattice before training for considering the neighbors and the position of neurons

are fixed through training. In our model, the geometrical structure of data space

will be considered so the map should not be fixed position and it can be changed

according to the structure of data space. The concept of weight adjusting in a

non-Euclidean data space is as follows.

Let {xi | 1 ≤ i ≤ N} be a finite set of N input data, whose elements will be

referred to as a “data vector”. The distance between two vectors xi and xj on

manifold M is defined by the manifold metric dM as follows:

dM(xi,xj) = inf
γ
{length(γ)} (4.2)

where γ is in the set of smooth arcs connecting xi to xj in the manifold. This

distance is used to find the winning neuron. The location of neuron j is captured

by its synaptic prototype vector wj . Suppose there are k neurons. Each neuron

j is represented by a node Ωj on the sphere. Let {Ωj | 1 ≤ j ≤ k} be a set of

neuron nodes. Each of Ωj contains the prototype vectors wj, whose dimension is

equal to the data vectors xi. Let wi∗ be the weight of the winning neuron. The

value of wi∗ with respect to data vector xa is determined by the condition:

dM(wi∗,xa) = min
j

dM(xa,wj), 1 ≤ j, i∗ ≤ k (4.3)

The algorithm of weight adjusting for a self-organizing artificial neural network

in a non-Euclidean space can be demonstrated as follows:
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Proposed Weight Updating Algorithm

1. Initialize the weight vector w1 selected from data vectors. Create node Ω1

and set k = 1.

2. For each vector xa, find the winning neuron i∗ by using the manifold distance

criterion in equation (4.3)

(a) If dM(xa,wi∗) > ε, then create the new node, k ⇐ k + 1,wk = xa,

Ωk ⇐ Ωk ∪ {xa};

(b) Otherwise Ωi∗ ⇐ Ωi∗ ∪ {xa}.

3. For each Ωk, compute a = arg min
xi∈Ωk

( ∑
xj∈Ωk

dM(xi,xj)

)
and then update

weight by wnew
k = xa.

4. Repeat steps 2 to 4 until the solutions can be regarded as steady.

Figure 4.2 shows an example of a 3-dimensional spiral strip consisting of a

set of scattered data and the prototype neurons. Notice that all the prototype

neurons are located within the data vectors.

Next, a mesh is formed to cover these data vectors by connecting the neigh-

boring neurons. Since each neuron is mapped onto a sphere, the locations of two

nearest neurons on the sphere must be determined. First, each prototype neuron

in the data space must be mapped to a location on the surface of the neighborhood

sphere. Then, based on these locations, the neighboring neurons are searched. Let

Dij be a minimum manifold distance of two neurons i and j measured in the data

space. This Dij is used as an estimated distance on the neighborhood sphere. We

assume that Dij is the spherical distance lying along the great circle of the sphere
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Figure 4.2: An example of applying weight updating algorithm to a 3-dimensional

spiral strip. (a) Data vectors of the spiral strip. (b) The prototype neurons

produced by the weight updating algorithm.

as shown in Figure (4.3). Let r be the radius of the circle and si be the location

of neuron i on the sphere. Note that si is a vector in a 3-dimensional space.

To find the positions of neurons on a two-dimensional sphere, we apply Mul-

tidimensional Scaling in [8] by changing the Multidimensional Scaling procedure

[8] for finding the scalar product matrix τ(D) in the following steps.

si · sj = ||si||||sj|| cos(θ) (4.4)

where si, sj are positions on a great circle of sphere of radius r and θ is an angle

between si and sj . Since ||si|| = ||sj|| = r, we have

si · sj = r2 cos(θ) (4.5)

If Dij is the arc length between si and sj on great circle of radius r as shown in
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Figure 4.3 then we have θ =
Dij

r
and replace θ in equation 4.5 to obtain:

si · sj = r2 cos

(
Dij

r

)
(4.6)

The value of si·sj will be used to map a prototype neuron onto its neighborhood

sphere by this algorithm.

Figure 4.3: A great circle of radius r.

Algorithm for Mapping Prototype Neurons to Neighbor-

hood Sphere

1. Approximate the radius of sphere r = max
i,j

(
Dij

π

)
.

2. Set matrix τ(D) = r2 cos
(

Dij

r

)
.

3. Compute the location matrix of all neurons by solving [sT
i sj ] = τ(D) using

these steps:

(a) let λp be the pth eigenvalue of the matrix τ(D)

(b) let νp be the pth eigenvector of λp

(c) set the pth row of the location matrix to
√

λpνp
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4. Keep the first three rows of the location matrix and assign each normalized

column of the location matrix j to each sj .

Example Given distance matrix D as followed:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0000 1.0000 1.4142

1.0000 0 1.4142 1.0000

1.0000 1.4142 0 1.0000

1.4142 1.0000 1.0000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

1. Approximate radius of sphere r = max
i,j

(
Dij

π

)
.

2.

τ(D) = r2 cos

(
Dij

r

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2026 −0.1227 −0.1227 −0.2026

−0.1227 0.2026 −0.2026 −0.1227

−0.1227 −0.2026 0.2026 −0.1227

−0.2026 −0.1227 −0.1227 0.2026

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. Compute the location matrix such that [sT
i sj] = τ(D):

(a) Find eigenvalues of the matrix τ(D).

λ1 = 0.4053, λ2 = 0.4053, λ3 = 0.2455, λ4 = −0.2455

(b) Find eigenvectors of the matrix τ(D).

ν1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7071

−0.0000

0.0000

−0.7071

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ν2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0000

0.7071

−0.7071

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ν3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5000

−0.5000

−0.5000

0.5000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ν4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5000

−0.5000

−0.5000

−0.5000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(c) ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ1ν1

√
λ2ν2

√
λ3ν3

√
λ4ν4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.4502 −0.0000 0.0000 −0.4502

0.0000 0.4502 −0.4502 0

0.2477 −0.2477 −0.2477 0.2477

−0.2477i −0.2477i −0.2477i −0.2477i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4. Choose the first three rows of the matrix in 3(c),⎡
⎢⎢⎢⎢⎣

0.4502 −0.0000 0.0000 −0.4502

0.0000 0.4502 −0.4502 0

0.2477 −0.2477 −0.2477 0.2477

⎤
⎥⎥⎥⎥⎦

s1 =

⎡
⎢⎢⎢⎢⎣

0.4502

0.0000

0.2477

⎤
⎥⎥⎥⎥⎦ , s2 =

⎡
⎢⎢⎢⎢⎣
−0.0000

0.4502

−0.2477

⎤
⎥⎥⎥⎥⎦ , s3 =

⎡
⎢⎢⎢⎢⎣

0.0000

−0.4502

−0.2477

⎤
⎥⎥⎥⎥⎦ , s4 =

⎡
⎢⎢⎢⎢⎣
−0.4502

0

0.2477

⎤
⎥⎥⎥⎥⎦

and normalize each vector to have unit length:

s1 =
s1

‖s1‖ =

⎡
⎢⎢⎢⎢⎣

0.8761

0.0000

0.4821

⎤
⎥⎥⎥⎥⎦ , s2 =

s2

‖s2‖ =

⎡
⎢⎢⎢⎢⎣
−0.0000

0.8761

−0.4821

⎤
⎥⎥⎥⎥⎦

s3 =
s3

‖s3‖ =

⎡
⎢⎢⎢⎢⎣

0.0000

−0.8761

−0.4821

⎤
⎥⎥⎥⎥⎦ , s4 =

s4

‖s4‖ =

⎡
⎢⎢⎢⎢⎣
−0.8761

0

0.4821

⎤
⎥⎥⎥⎥⎦

where ‖·‖ is the Euclidean norm.

Thus s1, s2, s3, and s4 are the positions of neurons in the output space.
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The locations of all prototype neurons in Figure 4.2 on the neighborhood sphere

are denoted in Figure 4.4(a). Figure 4.4(b) shows the mesh formed by the con-

nections of all prototype neurons.
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Figure 4.4: The neighborhood sphere of the data space in Figure 4.2. (a) The

locations of all prototype neurons on the sphere. (b) The feature map of the

prototype neurons.



CHAPTER 5

Experimental Results

5.1 Discrete Shortest Curve on Manifold

A manifold distance is the length of the shortest curve between two points

on the manifold. The exact manifold distance can be estimated by a sequence of

short hops between neighboring data vectors. In this experiment, we use 24 nearest

neighbor points to construct a graph and apply our algorithm for approximating

the shortest curve on a discrete surface of a cylinder. The results of our model

are shown in Figures 5.1 (a), (c), and (e) compared with the model in [8] shown

in Figures 5.1 (b), (d), and (f). For the other experiment, we use eight nearest

neighbor points to construct a graph and apply our model to estimate the shortest

curve on noisy Swissroll data and spherical data. The results indicate that the

approximation of the shortest curve on manifold of our algorithm is smoother and

more robust with noisy data than the algorithm in [8] as shown in Figures 5.2 (a)

and (c) compared with the algorithm in [8] as shown in Figures 5.2 (b) and (d).
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5.2 Prototype Selection

Prototype selection concerns the method of finding representative elements

from a given data set. It is necessary for several applications such as pattern

classification, clustering, data compression, data analysis, data mining, image

segmentation, and others. Most of all existing prototype selection schemes are

not suitable for large data set on or near a curved space such as a surface or a

manifold. In this experiment, we show that our method can be used for finding

representative elements from data set in a curved space. We use the synthetic

data randomly generated by sinusoidal function and spiral function to be the test

data as shown in Figures 5.3(a) and 5.3(d), respectively.

We apply our algorithm and SOM algorithm to find the representative elements

from the synthetic data and set ε to 4 for the data generated by sinusoidal function

and ε to 15 for the data generated by spiral function. After training, the result

from our algorithm as presented in Figures 5.3(c) and 5.3(f). We initialize four

weight vectors for the data generated by sinusoidal function and initialize five

weight vectors for the data generated by spiral function to SOM algorithm and

the results from SOM algorithm are shown in Figures 5.3(b) and 5.3(e). In the

sinusoidal function, our algorithm and SOM give the same results. But in the

spiral function, our algorithm correctly clusters the data according to their natural

distribution while SOM does not preserve the natural distribution of the data in

each cluster.
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5.3 Data Compression

Data Compression is an important problem in the data preprocessing to reduce

a large data set. In this section, we will compare the result of our algorithm with

the conventional SOM algorithm and show that the performance of our algorithm

is better than the conventional SOM algorithm. Especially, when the data space

is a curved space such as a surface or a manifold. In the experiment, we use

Swissroll data shown in Figure 5.4 which is the 2-dimensional manifold embedded

in a 3-dimensional space to test our model and compare the result with SOM. We

use 10 nearest neighbor points to construct the graph for estimating the manifold

distance and set ε to 3.73 in weight adjusting step. After six epochs, we get 100

weight vectors for representing the input data as shown in Figure 5.5(b). After

that we initiate 100 weight vectors by random from the input data for SOM

algorithm and train the same data for 1000 epochs. After training, the prototype

neurons representing the input data as presented in Figure 5.5(a) are obtained.

Furthermore, we demonstrate that SOM does not preserve the feature map in a

curved space. Another experimental example of a spherical data set in a closed

discrete surface is given in Figure 5.6. In this experiment, we set the parameter ε

to 0.32 in weight adjusting step and construct the graph with 8 nearest neighbor

points. After training by our algorithm, there are 100 weight vectors representing

the data set as demonstrated in Figure 5.7(b). In classical SOM algorithm, 100

neurons are trained and the result is presented in Figure 5.7(a). Clearly, when

the input data are on a closed surface, the marginal neurons on one side of SOM

map cannot be the neighbors of the neurons on the opposite side. This creates an
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incomplete and disconnected mesh. But the mesh generated by our algorithm is

completely connected.

5.4 Data Clustering

Clustering techniques are important tools for a variety of scientific area such

as data mining, pattern recognition, image segmentation, statistical data analy-

sis and others. Its goal is to partition N data vectors x1,x2, . . . ,xN into the k

clusters with respect to a distance or a similarity measure. Although the clus-

tering techniques have been widely applied in several scientific fields, it always

deploys conventional Euclidean distance to measure the similarity between the

data vectors. This conventional distance cannot be applied to measure the sim-

ilarity between the data vectors in a curved space such as a manifold. In this

experiment, we partition the Swissroll data into two, three, four, and five clusters

by setting ε to 40, 30, 25, and 22.5, respectively. The experimental results are

shown in Figures 5.8 (a), (b), (c), and (d), respectively. Each cluster is painted

with dotted patterns. Figure 5.9 shows the classification results using classical

SOM. Note that when the number of clusters increases the data are not classified

along their natural surface. The second clustering test set is shown in Figure

5.10(a). This test set is trained by our model with ε equals 10 and four nearest

neighbors in the step of the manifold distance approximation. The experimental

results are shown in Figures 5.10(b) and 5.10(c) and compared with SOM in Fig-

ure 5.10(d). Although both classical SOM and ours can classify the data into two

clusters, the locations of the prototype neurons of SOM are not located inside the

clusters. The third test set of clustering is shown in Figure 5.11(a). This test
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set is trained by our model with ε equals 8 and 4-nearest neighbors in the step

of the manifold distance approximation. The experimental results are shown in

Figure 5.11(b) and compared with SOM in Figure 5.11(c). The fourth test set of

clustering is shown in Figure 5.12(a). This test set is trained by our model with ε

to 5 and 10-nearest neighbors in the step of the manifold distance approximation.

The experimental results are shown in Figure 5.12(b) and compared with SOM

in Figure 5.12(c). Another experiment, we partition two spiral data set into two

class compared the result with SOM as showed in Figure 5.13 (a) and (b).

5.5 Piecewise Linear Skeletonization on Manifold

Skeletonization is one of the fundamental problems in image processing and

computer vision. In this section, we apply our approach to find the skeleton of

a surface. First, we use our approach to partition the data into the different

classes in order to get the different prototype vectors on a surface. Second, Prim’s

Algorithm is used to find the minimum spanning tree for these prototype vectors

and connect these vectors with a discrete curve using the algorithm for estimating

the manifold distance. This discrete curve that passes through these prototype

vectors is also the skeleton of the surface. We apply this concept to find the

skeleton of Swissroll data and S-curved data with 50% noise and 75% noise. To

set the parameter, the number neighboring points for the original data and the

data with 50% noise is set to eight while that of the data with 75% noise is set to

four. The results are shown in Figures 5.14 and 5.15.
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Figure 5.1: (a), (c) and (e) show the manifold distance by our algorithm. (b), (d)

and (f) show the manifold distance by the algorithm in [8].
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Figure 5.2: (a) and (c) Manifold distance by our algorithm. (b) and (d) Manifold

distance by the algorithm in [8].
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Figure 5.3: (a) and (d) show manifold data. (b) and (e) show prototype vectors

(star points) trained by SOM. (c) and (f) show prototype vectors (star points)

trained by our model.
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Figure 5.4: Swissroll data plotted in a 3-dimensional space.
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Figure 5.5: Two different meshes and mappings of the swissroll. (a) Mesh trained

by SOM. (b) Mesh trained by our algorithm.
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Figure 5.7: An example of data scattered on a spherical space. (a) Mesh generated

by SOM. (b) Mesh generated by our algorithm.
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Figure 5.8: An example data clustering based on our Algorithm. (a) Two clusters.

(b) Three clusters. (c) Four cluster. (d) Five clusters.
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Figure 5.9: An example data clustering based on SOM Algorithm. (a) Two clus-

ters. (b) Three clusters. (c) Four cluster. (d) Five clusters.
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Figure 5.10: An example of clustering a 2-dimensional data set. (a) The input

data. (b) Two possible clusters. (c) Two clusters generated by our model with

two prototype neurons (black points). (d) Two clusters generated SOM with two

prototype neurons (black points).
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Figure 5.11: (a) The input data. (b) Three clusters of our model with three weights

(black point). (c) Three clusters of SOM with three weights (black point).
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Figure 5.12: (a) The input data. (b) Two clusters of our model. (c) Two clusters

of SOM.
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Figure 5.13: (a) two clusters trained by our Algorithm. (b) two clusters trained

by SOM. Each group is illustrated by different color interesting.
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Figure 5.14: The skeleton of the surface.
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Figure 5.15: The skeleton of the surface.



CHAPTER 6

CONCLUSION

This research presents a novel unsupervised competitive learning algorithm

to adjust a weight of neurons for a Self-Organizing Artificial Neural Network

in a non-Euclidean space. A novel method bases on the competitive learning

using an estimation of manifold distance, the shortest distance on a manifold, to

measure the similarity between weight vectors and data vectors and partition the

data into the k cluster base on a distance on a manifold. This distance can be

computed without a function of a surface or manifold. Furthermore, we present

a new mapping of neurons which is more appropriate to a curved space than the

traditional mapping in SOM model. A new criterion suits for several problems

such as feature extraction, pattern classification, and data compression when the

actual surface distance is most the critical factor. However, the drawback of our

algorithm still exists in the step of an approximation of manifold distance which

may be lead to errors in the algorithm. If the neighborhood is too large with

respect to folds in the manifold, it can lead to short-circuit errors. But, if the

neighborhood is very small, it can fragment the input data into a large number of

disconnected regions. So, the achievement of this algorithm depends on the ability

of choosing a neighbor size (ε or K) in the algorithm for estimating of manifold

distance.
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