

A Thesis Submitted in Partial Fulfillment of the Requirements

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2003
ISBN 974-17-3953-2

Thesis Title
By
Field of study
Thesis Advisor

Order-preserving Generalized Transformation Semigroups
Miss Sawian Jaidee
Mathematics
Associate Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree

Dean of Faculty of Science
(Professor Piamsak Menasveta, Ph.D.)

Thesis Committee

(Assistant Professor Patanee Udomkavanich , Ph.D.)

เสวียน ใจดี : กึ่งกรุปการแปลงนัยทั่วไปที่รักษาอันดับ (ORDER-PRESERVING GENERALIZED TRANSFORMATION SEMIGROUPS) อ. ที่ปรึกษา : รศ. ดร. ยุพาภรณ์ เข็มประสิทธิ์ จำนวนหน้า 33 หน้า ISBN 974-17-3953-2

สำหรับเซต X ให้ $P(X), T(X)$ และ $I(X)$ แทนกึ่งกรุปการแปลงบางส่วนบน X กึ่งกรุปการแปลง เต็มบน X และกึ่งกรุปการแปลงบางส่วนหนึ่งต่อหนึ่งบน X ตามลำดับ เราให้นัยทั่วไปของกึ่งกรุปการแปลง เหล่านี้ดังนี้ สำหรับเซต X และ Y ให้ $P(X, Y)=\{\alpha: A \rightarrow Y \mid A \subseteq X\}, T(X, Y)=\{\alpha \in P(X, Y)$ $\mid \operatorname{dom} \alpha=X\}$ และ $I(X, Y)=\{\alpha \in P(X, Y) \mid \alpha$ หนึ่งต่อหนึ่ง $\}$ สำหรับ $\theta \in P(Y, X)$ ให้ $(P(X, Y), \theta)$ แทนกึ่งกรุป $(P(X, Y), *)$ โดย $\alpha * \beta=\alpha \theta \beta$ สำหรับทุก $\alpha, \beta \in P(X, Y)$ เรานิยามกึ่ง กรุป $(T(X, Y), \theta)$ โดย $\theta \in T(Y, X)$ และ $(I(X, Y), \theta)$ โดย $\theta \in I(Y, X)$ ในทำนองเดียวกัน

สำหรับโพเซต X ให้ $O P(X), O T(X)$ และ $O I(X)$ แทนกึ่งกรุปการแปลงบางส่วนที่รักษาอันดับบน X กึ่งกรุปการแปลงเต็มที่รักษาอันดับบน X และกึ่งกรุปการแปลงบางส่วนหนึ่งต่อหนึ่งที่รักษาอันดับบน X ตามลำดับ สำหรับโพเซต X และ Y ใดๆ ให้ $O P(X, Y)=\{\alpha \in P(X, Y) \mid \alpha$ รักษาอันดับ $\}$ สำหรับ $\theta \in O P(Y, X)$ ให้ $(O P(X, Y), \theta)$ แทนกึ่งกรุป $(O P(X, Y), *)$ โดยกำหนดการดำเนินการ * เช่นเดียวกับ ข้างบน เรานิยามกึ่งกรุป $(O T(X, Y), \theta)$ โดย $\theta \in O T(Y, X)$ และ $(O I(X, Y), \theta)$ โดย $\theta \in O I(Y, X)$ ในทำนองเดียวกัน

ความจริงต่อไปนี้เป็นที่รู้กันแล้ว ถ้า X เป็นเซตอันดับทุกส่วน แล้ว $O P(X)$ และ $O I(X)$ เป็นกึ่งกรุป ปรกติ สำหรับสับเซต X ของ \mathbf{Z} ที่ไม่ว่างใดๆ $O T(X)$ เป็นกึ่งกรุปปรกติ ยิ่งไปกว่านั้น สำหรับช่วง X ของ $\boldsymbol{I R}$ ที่ไม่ว่าง $O T(X)$ เป็นกึ่งกรุปปรกติกีต่อเมื่อ X เป็นเซตปิดและมีขอบเขต

ในการวิจัยนี้ เราให้นำความจริงที่รู่กันอันแรกที่กล่าวไว้แล้วข้างต้นมาใช้ในการบอกลักษณะว่าเมื่อใดกึ่งกรุป $(O P(X, Y), \theta)$ โดย $\theta \in O P(Y, X)$ และ กึ่งกรุป $(O I(X, Y), \theta)$ โดย $\theta \in O I(Y, X)$ เป็นกึ่งกรุปปรกติ โดยที่ X และ Y เป็นเซตอันดับทุกส่วน เราแสดงว่าการเป็นสมสัณฐานของ θ เป็นเงื่อนไขจำเป็นและเพียงพอ หลักสำหรับการเป็นปรกติของกึ่งกรุปเหล่านี้ และเรายังให้ลักษณะด้วยว่าเมื่อใดกึ่งกรุป $(O T(X, Y), \theta)$ โดย $\theta \in O T(Y, X)$ เป็นกึ่งกรุปปรกติ โดยที่ X และ Y เป็นเซตอันดับทุกส่วน ในการให้ลักษณะนี้ จะให้ใน เทอมของความเป็นกึ่งกรุปปรกติของ $O T(X),\{X X,|Y|$ และ θ จากผลที่รู้กันแล้วอันที่สองและที่สามข้างต้น ทำให้การให้ลักษณะของความเป็นกึ่งกรุปปรกติของ $(O T(X, Y), \theta)$ โดยที่ทั้ง X และ Y เป็นสับเซตของ Z ที่ มีสมาชิกมากกว่าหนึ่งตัว และเมื่อทั้ง X และ Y เป็นช่วงของ $\boldsymbol{I R}$ ที่มีสมาชิกมากกว่าหนึ่งตัวสามารถให้ในเทอม ของ θ และในเทอมของ X และ θ ตวมลำดับ ชิ่งไปกว่านั้นเราให้ทฤษฎีบทสมสัณฐานที่นาสสนใจบางทฤษฎี บท โดยที่ X และ Y เป็นเซตอันดับทุกส่วน เราให้เื่อนไขที่จำเป็นและเพียงพอเพื่อว่า $(O S(X, Y), \theta) \cong$ $O S(X)$ และเพื่อว่า $(O S(X, Y), \theta) \cong O S(Y)$ โดยที่ $O S(X, Y)$ คือ $O P(X, Y), O T(X, Y)$ หรือ $O I(X, Y)$ และ $\theta \in O S(Y, X)$

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2546

ลายมือชื่อนิสิต.
ลายมือชื่ออาจารย์ที่ปรึกษา.

\# \# 4472474123 : MAJOR MATHEMATICS
KEY WORDS : REGULAR SEMIGROUPS, ORDER-PRESERVING GENERALIZED
TRANSFORMATION SEMIGROUPS
SAWIAN JAIDEE : ORDER-PRESERVING GENERALIZED TRANSFORMATION SEMIGROUPS. THESIS ADVISOR : ASSOC. PROF. YUPAPORN KEMPRASIT, Ph.D., 33 pp. ISBN 974-17-3953-2

For a set X, let $P(X), T(X)$ and $I(X)$ denote respectively the partial transformation semigroup on X, the full transformation semigroup on X and the 1-1 partial transformation semigroup on X. These transformation semigroups are generalized as follows: For sets X and Y, let $P(X, Y)=\{\alpha: A \rightarrow Y \mid A \subseteq X\}$, $T(X, Y)=\{\alpha \in P(X, Y) \mid \operatorname{dom} \alpha=X\}$ and $I(X, Y)=\{\alpha \in P(X, Y) \mid \alpha$ is 1-1 $\}$. For $\theta \in P(Y, X)$, let $(P(X, Y), \theta)$ denote the semigroup $(P(X, Y)$,*) where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in P(X, Y)$. The semigroups $(T(X, Y), \theta)$ with $\theta \in T(Y, X)$ and $(I(X, Y), \theta)$ with $\theta \in I(Y, X)$ are defined similarly.

For a poset X, let $O P(X), O T(X)$ and $O I(X)$ denote the order-preserving partial transformation semigroup on X, the full order-preserving transformation semigroup on X and the order-preserving 1-1 partial transformation semigroup on X, respectively. For any posets X and Y, let $O P(X, Y)=\{\alpha \in P(X, Y) \mid \alpha$ is orderpreserving \}. For $\theta \in O P(Y, X)$, let ($O P(X, Y), \theta)$ denote the semigroup ($O P(X, Y), *$) where the operation * is defined as above. The semigroups ($O T(X, Y$), θ) with θ $\in O T(Y, X)$ and $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ are defined similarly.

The following facts are known. If X is a chain, then $O P(X)$ and $O I(X)$ are regular semigroups. For any nonempty subsets X of $Z, O T(X)$ is regular. Moreover, for a nonempty interval X of $\boldsymbol{I R}, O T(X)$ is regular if and only if X is closed and bounded.

In this research, the first known fact mentioned above is used to characterize when the semigroup $(O P(X, Y), \theta)$ with $\theta \in O P(Y, X)$ and the semigroup $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ are regular where X and Y are chains. It is shown that being an order-isomorphism of θ is mainly necessary and sufficient for regularity of these semigroups. We also characterize when the semigroup ($O T(X, Y), \theta$) with $\theta \in O T(Y, X)$ is regular where X and Y are chains. This characterization is given in terms of regularity of $O T(X),|X|,|Y|$ and θ. Due to the above second and third known results, the characterizations of regularity of $(O T(X, Y), \theta)$ when both X and Y are nontrivial subsets of Z and when both X and Y are nontrivial intervals of $\boldsymbol{I R}$ can be given respectively in term of θ and in terms of X and θ. Here, a nontrivial set means a set containing more than one element. Moreover, some interesting isomorphism theorems are provided where X and Y are chains. Necessary and sufficient conditions are given for that $(O S(X, Y), \theta) \cong O S(X)$ and for that $(O S(X, Y), \theta) \cong O S(Y)$ where $O S(X, Y)$ is $O P(X, Y), O T(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$.

Department Mathematics
Field of study Mathematics

Student's signature.
Advisor's signature

ACKNOWLEDGEMENTS

I am indebt to my advisor, Associate Professor Yupaporn Kemprasit, for her invaluable comments, suggestions and guidance in preparing and writing this thesis. I am also grateful to other members of my committee, Assistant Professor Patanee Udomkavanich and Dr. Sajee Pianskool. I would like to thank all of the teachers who have taught me for my knowledge and skills.

I am sincerely grateful to my parents' kind encouragement throughout my study. Finally my thankfulness goes to the Development and Promotion of Science and Technology Talents Project (DPST) for its financial support given during my study.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
I INTRODUCTION AND PRELIMINARIES 1
II REGULAR ORDER-PRESERVING GENERALIZED
PARTIAL TRANSFORMATION SEMIGROUPS 8
III REGULAR FULL ORDER-PRESERVING GENERALIZED TRANSFORMATION SEMIGROUPS 13
IV SOME ISOMORPHISM THEOREMS 23
 32
VITA 33
จุฬาลงกรณมหาวทยาลย

CHAPTER I

INTRODUCTION AND PRELIMINARIES

For a set X, let $|X|$ denote the cardinality of X. The identity mapping on a nonempty set A is denoted by 1_{A}. The set of all integers and the set of all real numbers are denoted by \mathbb{Z} and \mathbb{R}, respectively.

We call an element a of a semigroup S an idempotent of S if $a^{2}=a$ and S is said to be an idempotent semigroup or a band if every element of S is an idempotent.

An element a of a semigroup S is said to be regular if $a=a b a$ for some $b \in S$ and we call S a regular semigroup if every element of S is regular. Therefore every idempotent semigroup is regular.

The domain and the range of any mapping α will be denoted by dom α and ran α, respectively. For an element x in the domain of a mapping α, the image of α at x is written by $x \alpha$. For any mappings α and β, the composition $\alpha \beta$ of α and β is defined as follows: $\alpha \beta=0$ if $\operatorname{ran} \alpha \cap \operatorname{dom} \beta=\varnothing$, otherwise $\alpha \beta$ is the composition of $\alpha \mid(\operatorname{ran} \alpha \cap$ dom $\beta) \alpha-1$ and $\beta \mid$ ran $\alpha \delta$ dom β where 0 is the empty transformation, that is, the mapping with empty domain. Then for mappings α, β and γ, we have

$$
\begin{aligned}
\operatorname{dom}(\alpha \beta) & =(\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \alpha^{-1} \subseteq \operatorname{dom} \alpha, \\
\operatorname{ran}(\alpha \beta) & =(\operatorname{ran} \alpha \cap \operatorname{dom} \beta) \beta \subseteq \operatorname{ran} \beta, \\
x \in \operatorname{dom}(\alpha \beta) & \Leftrightarrow x \in \operatorname{dom} \alpha \text { and } x \alpha \in \operatorname{dom} \beta, \\
(\alpha \beta) \gamma & =\alpha(\beta \gamma) .
\end{aligned}
$$

For a set X, a partial transformation of X is a mapping from a subset of X into X. Then the empty transformation 0 is a partial transformation of X. Let $P(X)$ be the set of all partial transformations of X, that is,

$$
P(X)=\{\alpha: A \rightarrow X \mid A \subseteq X\}
$$

Then $1_{A} \in P(X)$ for every nonempty subset A of X. In particular, $1_{X} \in P(X)$. Therefore under the composition of mappings, $P(X)$ is a semigroup having 0 and 1_{X} as its zero and identity, respectively. The semigroup $P(X)$ is called the partial transformation semigroup on X. By a transformation semigroup on X we mean a subsemigroup of $P(X)$.

By a transformation of X we mean a mapping of X into itself. Let $T(X)$ be the set of all transformations of X. Then

$$
T(X)=\{\alpha \in P(X) \mid \operatorname{dom} \alpha=X\}
$$

which is a subsemigroup of $P(X)$ containing 1_{X} and it is called the full transformation semigroup on X.

Let $I(X)$ denote the set of all 1-1 partial transformations of X, that is,
 1-1 partial transformation semigroup on X or the symmetric inverse semigroup on X.

It is well-known that $P(X), T(X)$ and $I(X)$ are all regular for every set $X([2]$, page 4).

For sets X and Y, let

$$
\begin{aligned}
& P(X, Y)=\{\alpha: A \rightarrow Y \mid A \subseteq X\} \\
& T(X, Y)=\{\alpha \in P(X, Y) \mid \text { dom } \alpha=X\} \\
& I(X, Y)=\{\alpha \in P(X, Y) \mid \alpha \text { is } 1-1\}
\end{aligned}
$$

Note that $P(X, X)=P(X), T(X, X)=T(X)$ and $I(X, X)=I(X)$. For a nonempty subset A of X and $y \in Y$, let A_{y} be the element of $P(X, Y)$ with domain A and range $\{y\}$.

Let $S(X, Y)$ be $P(X, Y), T(X, Y)$ or $I(X, Y)$. For $\theta \in S(Y, X)$, let $(S(X, Y), \theta)$ denote the semigroup $(S(X, Y), *)$ where the operation $*$ is defined by

$$
\alpha * \beta=\alpha \theta \beta \text { for all } \alpha, \beta \in S(X, Y) \text {. }
$$

We observe that $S(X)=\left(S(X, X), 1_{X}\right)$.

Example 1.1. Let X and Y be nonempty sets and $a \in X$. Then $\left(T(X, Y), Y_{a}\right)$ is the semigroup $T(X, Y)$ with the operation $*$ defined as follows:

$$
\alpha * \beta=\alpha Y_{a} \beta=X_{a \beta} \quad \text { for all } \alpha, \beta \in T(X, Y)
$$

Also, $\left(P(X, Y), Y_{a}\right)$ is the semigroup $P(X, Y)$ with the operation o defined by $q \alpha \circ \beta=\alpha Y_{a} \beta=\left\{\begin{array}{l}(\operatorname{dom} \alpha)_{a \beta}, \text { if } \alpha \neq 0 \text { and } a \in \operatorname{dom} \beta, \\ 0 \quad \text { otherwise. }\end{array}\right.$

Moreover, for $b \in Y$, the semigroup $\left(I(X, Y),\{b\}_{a}\right)$ is the semigroup $(I(X, Y), \bullet)$ where

$$
\alpha \bullet \beta=\alpha\{b\}_{a} \beta= \begin{cases}\left\{b \alpha^{-1}\right\}_{a \beta} & \text { if } b \in \operatorname{ran} \alpha \text { and } a \in \operatorname{dom} \beta \\ 0 & \text { otherwise } .\end{cases}
$$

Let X and Y be partially ordered sets. For $\alpha \in P(X, Y), \alpha$ is said to be order-preserving if

$$
\text { for } x_{1}, x_{2} \in \operatorname{dom} \alpha, x_{1} \leq x_{2} \text { in } X \Rightarrow x_{1} \alpha \leq x_{2} \alpha \text { in } Y \text {. }
$$

A bijection $\varphi: X \rightarrow Y$ is called an order-isomorphism if φ and φ^{-1} are orderpreserving. It is clear that if both X and Y are chains and $\varphi: X \rightarrow Y$ is an order-preserving bijection, then φ is an order-isomorphism from X onto Y. We say that X and Y are order-isomorphic if there is an order-isomorphism from X onto Y. Naturally, a bijection $\varphi: X \rightarrow Y$ satisfying the condition

$$
\text { for } x_{1}, x_{2} \in X, x_{1} \leq x_{2} \text { in } X \Leftrightarrow x_{2} \varphi \leq x_{1} \varphi \text { in } Y
$$

is called an anti-order-isomorphism. We say that X and Y are anti-order-isomorphic if there is an anti-order-isomorphism from X onto Y.

A transformation semigroup on a poset X is said to be an order-preserving transformation semigroup on X if all of its elements are order-preserving. Define $O P(X)$ by

$$
O P(X)=\{\alpha \in P(X) \mid \alpha \text { is order-preserving }\} .
$$

Then $O P(X)$ is clearly a subsemigroup of $P(X)$ containing 0 and 1_{X}. We define $O T(X)$ and $O I(X)$ similarly. Then $O T(X)$ and $O I(X)$ are subsemigoups of $T(X)$ and $I(X)$, respectively. Note that $1_{X} \in O T(X)$ and $0,1_{X} \in O I(X)$. The semigroups $O P(X), O T(X)$ and $O I(X)$ are called the order-preserving partial transformation semigroup on X, the full order-preserving transformation semigroup on X and the order-preserving 1-1 partial transformation semigroup on X, respectively.

In this research, the partial order on any subset of \mathbb{R} always means the natural partial order on \mathbb{R}.

In [4], Y. Kemprasit and T. Changphas characterized when $O T(X)$ is a regular
semigroup where X is a nonempty subset of \mathbb{Z} and X is a nonempty interval of \mathbb{R} as follows:

Theorem 1.2. [4] For any nonempty subset X of \mathbb{Z}, the semigroup $O T(X)$ is regular.

Theorem 1.3. [4] For a nonempty interval X of $\mathbb{R}, O T(X)$ is a regular semigroup if and only if X is closed and bounded.

Moreover, they answered similar questions for $O P(X)$ and $O I(X)$ for an arbitrary chain X as follows:

Theorem 1.4. [4] If X is a chain, then the semigroups $O P(X)$ and $O I(X)$ are regular.

A significant isomorphism theorem of full order-preserving transformation semigroups is as follows:

Theorem 1.5. [5, page 223] For posets X and $Y, O T(X) \cong O T(Y)$ if and only if X and Y are order-isomorphic or anti-order-isomorphic.

Example 1.6. (1) Since \mathbb{Z} is order-isomorphic to $2 \mathbb{Z}$ through the map $x \mapsto 2 x$, by Theorem 1.5, we have $O T(\mathbb{Z}) \cong O T(2 \mathbb{Z})$.
(2) We have that $O T(\mathbb{R}) \cong O T\left(\mathbb{R}^{+}\right)$where \mathbb{R}^{+}is the set of positive real numbers because the map $x \mapsto e^{x}$ is an order-isomorphism of \mathbb{R} onto \mathbb{R}^{+}.
(3) Since $x \mapsto \frac{1}{x}$ is an anti-order-isomorphism from $[1, \infty)$ onto $(0,1]$, we deduce from Theorem 1.5 that $O T([1, \infty)) \cong O T((0,1])$.

We generalize the semigroups $O P(X), O T(X)$ and $O I(X)$ where X is a poset as follows: For any posets X and Y, let

$$
O P(X, Y)=\{\alpha \in P(X, Y) \mid \alpha \text { is order-preserving }\}
$$

and for $\theta \in O P(Y, X)$, let $(O P(X, Y), \theta)$ denote the semigroup $(O P(X, Y), *)$ where $\alpha * \beta=\alpha \theta \beta$ for all $\alpha, \beta \in O P(X, Y)$. The semigroups $(O T(X, Y), \theta)$ with $\theta \in O T(Y, X)$ and $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ are defined similarly. Note that if $S(X, Y)$ is $P(X, Y), T(X, Y)$ or $I(X, Y)$ and $\theta \in O S(Y, X)$, then $(O S(X, Y), \theta)$ is a subsemigroup of $(S(X, Y), \theta)$. We remark here that $O S(X)=$ $\left(O S(X, X), 1_{X}\right)$.

Example 1.7. From Example 1.1, if X and Y are posets, $a \in X$ and $b \in Y$, then $Y_{a} \in O T(Y, X) \subseteq O P(Y, X)$ and $\{b\}_{a} \in O I(Y, X)$, then $\left(O T(X, Y), Y_{a}\right)$, $\left(O P(X, Y), Y_{a}\right)$ and $\left(O I(X, Y),\{b\}_{a}\right)$ are subsemigroups of $\left(T(X, Y), Y_{a}\right)$, $\left(P(X, Y), Y_{a}\right)$ and $\left(I(X, Y),\{b\}_{a}\right)$, respectively.

Example 1.8. Let $\theta: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$
n \theta=(n+1) \theta=n \text { for every } n \in 2 \mathbb{Z}
$$

Then $\theta \in O T(\mathbb{Z})$ and ran $\theta=2 \mathbb{Z}$. Suppose that $(O T(\mathbb{Z}), \theta)$ has an identity, say η. Thus

$$
\alpha \theta \eta=\eta \theta \alpha=\alpha \text { for every } \alpha \in O T(\mathbb{Z})
$$

in particular, $n \theta 1_{\mathbb{Z}}=\eta \theta=1_{\text {, }}$. This implies that $\operatorname{ran} \theta=\mathbb{Z}$, a contradiction. Hence $(O T(\mathbb{Z}), \theta)$ does not have an identity. But by Example $1.6(1), O T(\mathbb{Z}) \cong$ $O T(2 \mathbb{Z})$ and both have an identity, so we conclude that

$$
(O T(\mathbb{Z}), \theta) \nsubseteq O T(\mathbb{Z}) \text { and }(O T(\mathbb{Z}), \theta) \nsubseteq O T(2 \mathbb{Z})
$$

In Chapter II, we are concerned with regularity of the order-preserving generalized transformation semigroups $(O P(X, Y), \theta)$ with $\theta \in O P(Y, X)$ and $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ where X and Y are any chains. We give necessary and sufficient conditions for θ and $|X|$ so that the semigroup $(O P(X, Y), \theta)$
is regular and for θ so that $(O I(X, Y), \theta)$ is a regular semigroup. The main tool for this chapter is Theorem 1.4.

The main purpose of Chapter III is to characterize when the semigroup $(O T(X, Y), \theta)$ with $\theta \in O T(Y, X)$ is regular where X and Y are chains. The characterization is given in terms of regularity of $O T(X),|X|,|Y|$ and θ.

Some interesting isomorphism theorems are provided in Chapter IV. We characterize when the following statements hold where X and Y are chains.

$$
\begin{aligned}
& (O P(X, Y), \theta) \cong O P(X) \quad \text { where } \quad \theta \in O P(Y, X) \\
& (O P(X, Y), \theta) \cong O P(Y) \quad \text { where } \quad \theta \in O P(Y, X), \\
& (O I(X, Y), \theta) \cong O I(X) \quad \text { where } \quad \theta \in O I(Y, X) \\
& (O I(X, Y), \theta) \cong O I(Y) \quad \text { where } \quad \theta \in O I(Y, X), \\
& (O T(X, Y), \theta) \cong O T(X) \quad \text { where } \quad \theta \in O T(Y, X), \\
& (O T(X, Y), \theta) \cong O T(Y) \quad \text { where } \quad \theta \in O T(Y, X)
\end{aligned}
$$

We can see from our purpose that we confine our attention when posets X and Y are chains. However, some required lemmas for our main results can be given in terms of any posets X and $Y \curvearrowleft 9$? $Q 9$ \& จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

REGULAR ORDER-PRESERVING GENERALIZED PARTIAL TRANSFORMATION SEMIGROUPS

We know from Theorem 1.4 that for any chain X, the semigroups $O P(X)$ and $O I(X)$ are always regular. The purpose of this chapter is to extend this result by considering when the semigroup $(O P(X, Y), \theta)$ with $\theta \in O P(Y, X)$ and the semigroup $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ are regular.

To obtain the main two theorems of this chapter, Theorem 1.4 and the following two lemmas are required.

Lemma 2.1. Let X and Y be posets and let $O S(X, Y)$ be $O P(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$. If the semigroup $(O S(X, Y), \theta)$ is regular, then dom $\theta=Y$ and $\operatorname{ran} \theta=X$.

Proof. We prove the lemma by contrapositive. Assume that $\operatorname{dom} \theta \neq Y$ or $\operatorname{ran} \theta \neq$ X.
 $\{x\}_{y} \theta=0$. This implies that $\{x\}_{y} \theta \alpha \theta\{x\}_{y}=0 \neq\{x\}_{y}$ for every $\alpha \in O S(X, Y)$. Thus $\{x\}_{y}$ is not a regular element of $(O S(X, Y), \theta)$.

Case 2: $\operatorname{ran} \theta \neq X$. Let $x \in X \backslash \operatorname{ran} \theta$ and $y \in Y$. Then $\{x\}_{y} \in O S(X, Y)$ and $\theta\{x\}_{y}=0$ which implies that $\{x\}_{y} \theta \alpha \theta\{x\}_{y}=0 \neq\{x\}_{y}$ for every $\alpha \in O S(X, Y)$, and so $\{x\}_{y}$ is not a regular element of $(O S(X, Y), \theta)$.

Therefore $(O S(X, Y), \theta)$ is not a regular semigroup, and hence the lemma is proved.

Lemma 2.2. Let X and Y be posets and let $O S(X, Y)$ be $O P(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$. If θ is an order-isomorphism from Y onto X, then the following statements hold.
(i) The map $\alpha \mapsto \alpha \theta$ is an isomorphism of $(O S(X, Y), \theta)$ onto $O S(X)$.
(ii) The map $\alpha \mapsto \theta \alpha$ is an isomorphism of $(O S(X, Y), \theta)$ onto $O S(Y)$.

Proof. It is clear that $\alpha \theta \in O S(X)$ and $\theta \alpha \in O S(Y)$ for all $\alpha \in O S(X, Y)$. Define $\varphi: O S(X, Y) \rightarrow O S(X)$ and $\varphi^{\prime}: O S(X, Y) \rightarrow O S(Y)$ by $\alpha \varphi=\alpha \theta$ and $\alpha \varphi^{\prime}=\theta \alpha$ for all $\alpha \in O S(X, Y)$. Then for $\alpha, \beta \in O S(X, Y)$,

$$
\begin{gathered}
(\alpha \theta \beta) \varphi=\alpha \theta \beta \theta=(\alpha \theta)(\beta \theta)=(\alpha \varphi)(\beta \varphi) \\
(\alpha \theta \beta) \varphi^{\prime}=\theta \alpha \theta \beta=(\theta \alpha)(\theta \beta)=\left(\alpha \varphi^{\prime}\right)\left(\beta \varphi^{\prime}\right)
\end{gathered}
$$

so φ and φ^{\prime} are homomorphisms. Next, we will show that φ and φ^{\prime} are bijections. For $\alpha, \beta \in O S(X, Y)$, then

$$
\begin{gathered}
\alpha \varphi=\beta \varphi \Rightarrow \alpha=\alpha 1_{Y}=\alpha \theta \theta^{-1}=(\alpha \varphi) \theta^{-1}=(\beta \varphi) \theta^{-1}=\beta \theta \theta^{-1}=\beta 1_{Y}=\beta \\
\alpha \varphi^{\prime}=\beta \varphi^{\prime} \Rightarrow \alpha=1_{X} \alpha=\theta^{-1} \theta \alpha \underset{\sigma}{=} \theta^{-1}\left(\alpha \varphi^{\prime}\right)=\theta^{-1}\left(\beta \varphi^{\prime}\right)=\theta^{-1} \theta \beta=1_{X} \beta=\beta .
\end{gathered}
$$

Thus φ and φ^{\prime} are1-1. Also, for $\gamma \in O S(X)$ and $\lambda \in O S(Y)$, we have $\gamma \theta^{-1}, \theta^{-1} \lambda$ $\in O S(X, Y)$ and $\left(\gamma \theta^{-1}\right) \varphi=\left(\gamma \theta^{-1}\right) \theta=\gamma\left(\theta^{-1} \theta\right)=\gamma 1_{X}=\gamma \quad$ and $\quad\left(\theta^{-1} \lambda\right) \varphi^{\prime}=$ $\theta\left(\theta^{-1} \lambda\right)=\left(\theta \theta^{-1}\right) \lambda=1_{Y} \lambda=\lambda$, so φ and φ^{\prime} are onto.

Hence φ is an isomorphism of $(O S(X, Y), \theta)$ onto $O S(X)$ and φ^{\prime} is an isomorphism of $(O S(X, Y), \theta)$ onto $O S(Y)$. Therefore (i) and (ii) are proved.

Theorem 2.3. Let X and Y be chains. For $\theta \in O I(Y, X)$, the semigroup $(O I(X, Y), \theta)$ is regular if and only if θ is an order-isomorphism from Y onto X.

Proof. Assume that $(O I(X, Y), \theta)$ is regular. By Lemma 2.1, we have dom $\theta=Y$ and $\operatorname{ran} \theta=X$. Since $\theta \in O I(Y, X), \theta$ is order-preserving and 1-1. It therefore follows that θ is an order-isomorphism from Y onto X.

Conversely, assume that θ is an order-isomorphism from Y onto X. It then deduces from Lemma 2.2(i) that $(O I(X, Y), \theta) \cong O I(X)$. Since X is a chain, $O I(X)$ is a regular semigroup by Theorem 1.4. Therefore the semigroup $(O I(X, Y), \theta)$ is regular, as required.

We observe here from the proof of Theorem 2.3 that the following fact is true. For posets X and Y, if the semigroup $(O I(X, Y), \theta)$ with $\theta \in O I(Y, X)$ is regular, then θ is an order-isomorphism from Y onto X.

Theorem 2.4. Let X and Y be chains. For $\theta \in O P(Y, X)$, the semigroup $(O P(X, Y), \theta)$ is regular if and only if
(i) θ is an order-isomorphism from Y onto X or
(ii) $\operatorname{dom} \theta=Y$, $\operatorname{ran} \theta=X$ and $|X|=1$.

Proof. To prove necessity, assume that $(O P(X, Y), \theta)$ is a regular semigroup. We have by Lemma 2.1 that dom $\theta=Y$ and $\operatorname{ran} \theta=X$. If $|X|=1$, then (ii) holds, that is, $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X| \neq 1$. Assume that $|X|>1$. We will show that θ is an order-isomorphism from Y onto X. Itremains to show that θ is 1-1. Suppose in the contrary that θ is not 1-1. Then there exist $a \in X, e, f \in Y$ such that $e<f$ and $e \theta=f \theta=a$. Since $|X|>1$, there is $b \in X \backslash\{a\}$. Then $b<a$ or $a<b$ because X is a chain.

Case 1: $b<a$. Define $\alpha:\{a, b\} \rightarrow Y$ by $a \alpha=f$ and $b \alpha=e$. Then $\alpha \in$ $O I(X, Y) \subseteq O P(X, Y)$. Since $e \theta=f \theta=a$, we have that $a \alpha \theta=a=b \alpha \theta$. But $\operatorname{dom}(\alpha \theta) \subseteq \operatorname{dom} \alpha$, thus $\operatorname{dom}(\alpha \theta)=\{a, b\}$ and $\operatorname{ran}(\alpha \theta)=\{a\}$. Consequently, for
$\beta \in O P(X, Y)$,

$$
|\operatorname{ran}(\alpha \theta \beta \theta \alpha)| \leq|\operatorname{ran}(\alpha \theta)|=1
$$

Therefore $\alpha \neq \alpha \theta \beta \theta \alpha$ for every $\beta \in O P(X, Y)$ since \mid ran $\alpha|=|\{e, f\}|=2$. Thus α is not a regular element of $(O P(X, Y), \theta)$ which is a contradiction.

Case 2: $a<b$. Define $\lambda:\{a, b\} \rightarrow Y$ by $b \lambda=f$ and $a \lambda=e$. Then $\lambda \in$ $O I(X, Y) \subseteq O P(X, Y)$. We can show similarly to Case 1 that λ is not a regular element of $(O P(X, Y), \theta)$. This is contrary to the assumption.

Hence we deduce that θ is $1-1$, so (i) holds if $|X|>1$.
To prove sufficiency, assume that (i) or (ii) holds. If (i) is true, then we have that $(O P(X, Y), \theta) \cong O P(X)$ by Lemma 2.2(i). Since $O P(X)$ is regular from Theorem 1.4, it follows that $(O P(X, Y), \theta)$ is a regular semigroup.

Next, assume that (ii) holds, that is, dom $\theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$. Let $X=\{x\}$. Then $Y \theta=\{x\}$. If $\alpha \in O P(X, Y) \backslash\{0\}$, then $\operatorname{dom} \alpha=\{x\}$ and $\operatorname{ran} \alpha=\{x \alpha\}$. Since $x \alpha \in Y=\operatorname{dom} \theta, x \alpha \theta=x$, and so $x \alpha \theta \alpha=x \alpha$. Thus $\alpha \theta \alpha=\alpha$. This proves that $(O P(X, Y), \theta)$ is an idempotent semigroup, and therefore $(O P(X, Y), \theta)$ is a regular semigroup.

Hence the theorem is completely proved. 9 ?

Then the mappings θ_{1} and θ_{2} are order-preserving. Moreover, θ_{1} is an orderisomorphism from \mathbb{Z} onto \mathbb{Z} and θ_{2} is an order-isomorphism from \mathbb{Z} onto $2 \mathbb{Z}$. We then deduce from Theorem 2.3 and Theorem 2.4 that the semigroups $\left(O I(\mathbb{Z}, \mathbb{Z}), \theta_{1}\right),\left(O I(2 \mathbb{Z}, \mathbb{Z}), \theta_{2}\right),\left(O P(\mathbb{Z}, \mathbb{Z}), \theta_{1}\right)$ and $\left(O P(2 \mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$ are all regular but the semigroups $\left(O I(\mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$ and $\left(O P(\mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$ are not regular. For the later
conclusion, we can see directly from the fact that $\{1\}_{0} \in O I(\mathbb{Z}, \mathbb{Z}) \subseteq O P(\mathbb{Z}, \mathbb{Z})$ and $\theta_{2}\{1\}_{0}=0\left(\right.$ since $\left.1 \notin \operatorname{ran} \theta_{2}\right)$ which implies that $\{1\}_{0} \theta_{2} \beta \theta_{2}\{1\}_{0}=0 \neq\{1\}_{0}$ for all $\beta \in O P(\mathbb{Z}, \mathbb{Z})$.

CHAPTER III

REGULAR FULL ORDER-PRESERVING GENERALIZED TRANSFORMATION SEMIGROUPS

In this chapter, we consider the semigroup $(O T(X, Y), \theta)$ with $\theta \in O T(Y, X)$ where X and Y are chains. The main purpose is to characterize when $(O T(X, Y), \theta)$ is a regular semigroup. This characterization is given in terms of regularity of $O T(X),|X|,|Y|$ and θ. This characterization with Theorem 1.2 and Theorem 1.3 will tell us when the semigroup $(O T(X, Y), \theta)$ is regular where both X and Y are nontrivial subsets of \mathbb{Z} and both X and Y are nontrivial intervals of \mathbb{R}. By a nontrivial set we mean a set containing more than one element.

Throughout this chapter, let X and Y be any chains and θ any element of $O T(Y, X)$, unless otherwise mentioned.

The following sequence of lemmas is desired to obtain our main result of this chapter.

Lemma 3.1. Let $a, b \in X$ and $c, d \in Y$ be such that $a<b, c<d$ and $c \theta=d \theta$. If $\alpha: X \rightarrow Y$ is defined by

$$
x \alpha= \begin{cases}c & \text { if } x<b \\ d & \text { if } x \geq b\end{cases}
$$

then $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\alpha \theta)|=1$.

Proof. Since $a \in\{x \in X \mid x<b\}$, we have that $\{x \in X \mid x<b\} \neq \varnothing$ and so $\{x \in X \mid x<b\} \alpha=\{c\}$. Also, $\{x \in X \mid x \geq b\} \alpha=\{d\}$. But $c<d$, thus $\alpha \in O T(X, Y)$ and $\operatorname{ran} \alpha=\{c, d\}$. Consequently, $\operatorname{ran}(\alpha \theta)=(\operatorname{ran} \alpha) \theta=\{c, d\} \theta=$ $\{c \theta, d \theta\}=\{c \theta\}$ because $c \theta=d \theta$. Hence $|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\alpha \theta)|=1$.

Lemma 3.2. Let $|X|>1$. If the semigroup $(O T(X, Y), \theta)$ is regular, then θ is 1-1.

Proof. We will prove the lemma by contrapositive. Assume that θ is not 1-1. Then there are $a, b \in X$ and $c, d \in Y$ such that $a<b, c<d$ and $c \theta=d \theta$. Define $\alpha: X \rightarrow Y$ as in Lemma 3.1. By Lemma 3.1, $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\alpha \theta)|=1$. Since for each $\beta \in O T(X, Y),|\operatorname{ran}(\alpha \theta \beta \theta \alpha)| \leq|\operatorname{ran}(\alpha \theta)|=1$, so we have that $|\operatorname{ran}(\alpha \theta \beta \theta \alpha)|=1 \neq|\operatorname{ran} \alpha|$. Thus $\alpha \theta \beta \theta \alpha \neq \alpha$ for every $\beta \in O T(X, Y)$. Hence α is not a regular element of $(O T(X, Y), \theta)$. Therefore, $(O T(X, Y), \theta)$ is not a regular semigroup.

Lemma 3.3. Let e, $f \in Y$ be such that $e<f$ and $a \in X$.
(i) If $x<a$ for all $x \in \operatorname{ran} \theta$ and $\alpha: X \rightarrow Y$ is defined by

$$
\begin{aligned}
& \text { 6. } \\
& \text { then } \alpha \in O T(X, Y),|\operatorname{ran} \alpha|=2 \text { and }|\operatorname{ran}(\theta \alpha)|=1 \text {. }
\end{aligned}
$$

(ii) If $x>a$ for all $x \in \operatorname{ran} \theta$ and $\beta: X \rightarrow Y$ is defined by

$$
x \beta= \begin{cases}e & \text { if } x \leq a \\ f & \text { if } x>a\end{cases}
$$

then $\beta \in O T(X, Y), \mid$ ran $\beta \mid=2$ and $|\operatorname{ran}(\theta \beta)|=1$.

Proof. (i) Since ran $\theta \subseteq\{x \in X \mid x<a\},\{x \in X \mid x<a\} \neq \varnothing$, so $\{x \in$ $X \mid x<a\} \alpha=\{e\}$. We also have $\{x \in X \mid x \geq a\} \alpha=\{f\}$. It then follows that $\alpha \in O T(X, Y)$ since $e<f, \operatorname{ran} \alpha=\{e, f\}$ and $\operatorname{ran}(\theta \alpha)=(\operatorname{ran} \theta) \alpha=\{e\}$. Therefore $|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\theta \alpha)|=1$.
(ii) Because ran $\theta \subseteq\{x \in X \mid x>a\}$, we have $\{x \in X \mid x>a\} \beta=\{f\}$. But $\{x \in X \mid x \leq a\} \beta=\{e\}$ and $e<f$, so we have $\beta \in O T(X, Y), \operatorname{ran} \beta=\{e, f\}$ and $\operatorname{ran}(\theta \beta)=(\operatorname{ran} \theta) \beta=\{f\}$. Therefore $|\operatorname{ran} \beta|=2$ and $|\operatorname{ran}(\theta \beta)|=1$.

Lemma 3.4. Let $|Y|>1$. If the semigroup $(O T(X, Y), \theta)$ is regular, then for every $x \in X, y \leq x \leq z$ for some $y, z \in \operatorname{ran} \theta$.

Proof. We prove the lemma by contrapositive. Assume that it is not true that for every $x \in X, y \leq x \leq z$ for some $y, z \in \operatorname{ran} \theta$. Then there is an element $a \in X$ such that $x<a$ for all $x \in \operatorname{ran} \theta$ or $x>a$ for all $x \in \operatorname{ran} \theta$. Let $e, f \in Y$ be such that $e<f$.

Case 1: $x<a$ for all $x \in \operatorname{ran} \theta$. Define $\alpha: X \rightarrow Y$ as in Lemma 3.3 (i). Then $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\theta \alpha)|=1$. But for each $\lambda \in$ $O T(X, Y),|\operatorname{ran}(\alpha \theta \lambda \theta \alpha)| \leq\left|\operatorname{ran}\left(\theta_{\alpha}\right)\right|=1$ for all $\lambda \in O T(X, Y)$, so it follows that $|\operatorname{ran}(\alpha \theta \lambda \theta \alpha)| \Rightarrow 1$ for every $\lambda \in O T(X, Y)$. Thus $\alpha \theta \lambda \theta \alpha \neq \alpha$ for all $\lambda \in O T(X, Y)$. Hence α is not a regular element of the semigroup $(O T(X, Y), \theta)$. Q
Case 2: $x>a$ for all $x \in \operatorname{ran} \theta$. Define $\beta: X \rightarrow Y$ as in Lemma 3.3 (ii). Then $\beta \in O T(X, Y),|\operatorname{ran} \beta|=2$ and $|\operatorname{ran}(\theta \beta)|=1$. Since for each $\lambda \in O T(X, Y)$ $|\operatorname{ran}(\beta \theta \lambda \theta \beta)| \leq|\operatorname{ran}(\theta \beta)|=1$, we deduce that $|\operatorname{ran}(\beta \theta \lambda \theta \beta)|=1$ for every $\lambda \in$ $O T(X, Y)$. Thus $\beta \theta \lambda \theta \beta \neq \beta$ for all $\lambda \in O T(X, Y)$. Hence β is not a regular element of the semigroup $(O T(X, Y), \theta)$.

From Case 1 and Case 2, we have that $(O T(X, Y), \theta)$ is not a regular semigroup, and hence the lemma is proved.

Lemma 3.5. Let $a \in X \backslash$ ran θ be such that $b<a<c$ for some $b, c \in \operatorname{ran} \theta$ and $e, f, g \in Y$ such that $e<f<g$. If $\alpha: X \rightarrow Y$ is defined by

Then $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=3$ and $|\operatorname{ran}(\theta \alpha)|=2$.

Proof. Since $b \in\{x \in X \mid x<a\}, c \in\{x \in X \mid x>a\}$, it follows that

$$
\{x \in X \mid x<a\} \alpha=\{e\}, a \alpha=f,\{x \in X \mid x>a\} \alpha=g
$$

and hence ran $\alpha=\{e, f, g\}$. But $e<f<g$, so $\alpha \in O T(X, Y)$. Moreover,

$$
\begin{aligned}
\operatorname{ran}(\theta \alpha) & =(\operatorname{ran} \theta) \alpha \\
& =\{x \in \operatorname{ran} \theta \mid x<a\} \alpha \cup\{x \in \operatorname{ran} \theta \mid x>a\} \alpha \text { since } a \notin \operatorname{ran} \theta \\
& =\{e\} \cup\{f\} \quad \text { since } b \in\{x \in \operatorname{ran} \theta \mid x<a\} \text { and } \\
& =\{e, f\} .
\end{aligned}
$$

Hence $\operatorname{ran} \alpha \mid=3$ and $9 \operatorname{ran}(\theta \alpha) \mid=2$, as required. $9 / \ell \| ?$ 9
Lemma 3.6. Let $|Y|>2$. If the semigroup $(O T(X, Y), \theta)$ is regular, then ran $\theta=$ X.

Proof. This lemma is proved by contrapositive. Since $|Y|>2$, there are $e, f, g \in Y$ be such that $e<f<g$. Assume that $\operatorname{ran} \theta \neq X$. Then there is $a \in X \backslash \operatorname{ran} \theta$ satisfying one of three following conditions.
(1) $x<a$ for all $x \in \operatorname{ran} \theta$.
(2) $x>a$ for all $x \in \operatorname{ran} \theta$.
(3) $b<a<c$ for some $b, c \in \operatorname{ran} \theta$.

If (1) or (2) holds, then by Lemma 3.4, $(O T(X, Y), \theta)$ is not regular. Assume that (3) holds, define $\alpha: X \rightarrow Y$ as in Lemma 3.5. By Lemma 3.5, $\alpha \in O T(X, Y)$, $|\operatorname{ran} \alpha|=3$ and $|\operatorname{ran}(\theta \alpha)|=2$. Hence for every $\lambda \in O T(X, Y),|\operatorname{ran}(\alpha \theta \lambda \theta \alpha)| \leq$ $|\operatorname{ran}(\theta \alpha)|=2$, so $\alpha \neq \alpha \theta \lambda \theta \alpha$ for every $\lambda \in O T(X, Y)$. Thus α is not a regular element of $(O T(X, Y), \theta)$. Therefore $(O T(X, Y), \theta)$ is not a regular semigroup if (3) is true.

Hence the lemma is proved.

Lemma 3.7. Let $|Y|=2$. If $\operatorname{ran} \theta=\{\min X, \max X\}$, then $(O T(X, Y), \theta)$ is an idempotent semigroup.

Proof. Let $\alpha \in O T(X, Y)$. Then either $|\operatorname{ran} \alpha|=1$ or \mid ran $\alpha \mid=2$ because $|Y|=2$. Since $\operatorname{ran}(\alpha \theta \alpha) \subseteq \operatorname{ran} \alpha$, it follows that $\alpha \theta \alpha=\alpha$ if $|\operatorname{ran} \alpha|=1$. Next, assume that $|\operatorname{ran} \alpha|=2$. Then $\operatorname{ran} \alpha=Y$. Let $Y=\{e, f\}$ with $e<f$. Thus $X=e \alpha^{-1} \cup f \alpha^{-1}$ which is a disjoint union. Then $\min X \in e \alpha^{-1}$ and $\max X \in f \alpha^{-1}$ because $e<f$ and α is order-preserving. Since θ is order-preserving, $\operatorname{ran} \theta=\{e, f\} \theta=\{\min X$, $\max X\}$ and $e<f$, it follows that $e \vec{\theta}=\min X$ and $f \theta=\max X$. Consequently,
$9 \quad\left(e \alpha^{-1}\right) \alpha \theta \alpha=\{e \theta\} \alpha=\{\min X\} \alpha=\{e\}=\left(e \alpha^{-1}\right) \alpha$,

$$
\left(f \alpha^{-1}\right) \alpha \theta \alpha=\{f \theta\} \alpha=\{\max X\} \alpha=\{f\}=\left(f \alpha^{-1}\right) \alpha
$$

which implies that $\alpha=\alpha \theta \alpha$, so α is an idempotent of $(O T(X, Y), \theta)$.
This proves that $(O T(X, Y), \theta)$ is an idempotent semigroup, as desired.

Lemma 3.8. Let θ be an order-isomorphism from Y onto X. Then the following statements hold.
(i) The map $\alpha \mapsto \alpha \theta$ is an isomorphism of $(O T(X, Y), \theta)$ onto $O T(X)$.
(ii) The map $\alpha \mapsto \theta \alpha$ is an isomorphism of $(O T(X, Y), \theta)$ onto $O T(Y)$.

Proof. It is clear that for any $\alpha \in O T(X, Y), \alpha \theta \in O T(X)$ and $\theta \alpha \in O T(Y)$. Define $\varphi:(O T(X, Y), \theta) \rightarrow O T(X)$ by $\alpha \varphi=\alpha \theta$ for all $\alpha \in O T(X, Y)$ and define $\varphi^{\prime}:(O T(X, Y), \theta) \rightarrow O T(Y)$ by $\alpha \varphi^{\prime}=\theta \alpha$ for all $\alpha \in O T(X, Y)$. We can show similarly to the proof of Lemma 2.2 that φ is an isomorphism of $(O T(X, Y), \theta)$ onto $O T(X)$ and φ^{\prime} is an isomorphism of $(O T(X, Y), \theta)$ onto $O T(Y)$.

Now we are ready to provide our main theorem of this chapter.
Theorem 3.9. The semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) The semigroup $O T(X)$ is regular and θ is an order-isomorphism from Y onto X.
(ii) $|X|=1$.
(iii) $|Y|=1$.
(iv) $|Y|=2$ and $\operatorname{ran} \theta=\{\min X, \max X\}$.

Proof. To prove necessity, assume that the semigroup $(O T(X, Y), \theta)$ is regular and suppose that (ii), (iii) and (iv) are false. Then ? ?

$$
29|X|>1,|Y|>1 \text { and }(|Y| \neq 2 \text { orran } \theta \neq\{\min X, \max X\}) .
$$

Therefore we have $|X|>1$ and either $|Y|>2$ or $|Y|=2$ and $\operatorname{ran} \theta \neq\{\min X$, $\max X\}$. Note that $\min X$ or $\max X$ may not exist. We will show that (i) is true, that is, $O T(X)$ is regular and θ is an order-isomorphism from Y onto X. From that $|X|>1$, we have by Lemma 3.2 that θ is $1-1$. We claim that the case $|Y|=2$ and $\operatorname{ran} \theta \neq\{\min X, \max X\}$ cannot occur. Suppose that $|Y|=2$ and $\operatorname{ran} \theta \neq\{\min X, \max X\}$. Since $|Y|=2$ and θ is $1-1,|\operatorname{ran} \theta|=2$. Let $\operatorname{ran} \theta=\{b, c\}$ with $b<c$. Then $\{b, c\} \neq\{\min X, \max X\}$.

Case 1: $\min X$ does not exist. Then there exists $a \in X$ such that $a<b$, so $a<b<c$.

Case 2: $\max X$ does not exist. Then $a>c$ for some $a \in X$, so $a>c>b$.
Case 3: $\min X$ and $\max X$ exist. But $\{b, c\} \neq\{\min X, \max X\}$, so $\min X<b$ or $\max X>c$. Then either $\min X<b<c$ or $\max X>c>b$.

From Case 1 - Case 3, we conclude that there exists an element $a \in X$ such that $x<a$ for all $x \in \operatorname{ran} \theta$ or $x>a$ for all $x \in \operatorname{ran} \theta$. It therefore follows from Lemma 3.4 that $(O T(X, Y), \theta)$ is not a regular semigroup which contradicts the assumption. Hence we prove the claim. Thus $|Y|>2$, and so by Lemma 3.6, we have $\operatorname{ran} \theta=X$. Consequently, θ is an order-isomorphism from Y onto X. We then deduce from Lemma 3.8(i) that $(O T(X, Y), \theta) \cong O T(X)$. But $(O T(X, Y), \theta)$ is regular, so $O T(X)$ is regular. Hence (i) holds.

To prove sufficiency, assume that one of (i)-(iv) holds.

Case 1: (i) is true. By Lemma 3.8(i), we have $(O T(X, Y), \theta) \cong O T(X)$. Since the semigroup $O T(X)$ is regular, $(O T(X, Y), \theta)$ is a regular semigroup.
Case 2: $|X| \approx 1$. For $\alpha \in O T(X, Y),|\operatorname{ran} \alpha| \# \widetilde{1}$, so $\alpha=\widetilde{\alpha \theta} \alpha$ since $\operatorname{ran}(\alpha \theta \alpha) \subseteq$ ran α. Thus α is an idempotent element of $(O T(X, Y), \theta)$. For this case, $(O T(X, Y), \theta)$ is an idempotent semigroup, so it iscregular. 6

Case 3: $|Y|=1$. Then $|O T(X, Y)|=1$, and thus the semigroup $(O T(X, Y), \theta)$ is trivially regular.

Case 4: (iv) is true. Then by Lemma 3.7, $(O T(X, Y), \theta)$ is an idempotent semigroup, so it is regular.

Hence the theorem is completely proved.

We know from Theorem 1.2 that $O T(X)$ is a regular semigroup for any nonempty subset of \mathbb{Z}. Then this fact and Theorem 3.9 yield the following two corollaries directly.

Corollary 3.10. If X is a nonempty subset of \mathbb{Z}, then the semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) θ is an order-isomorphism from Y onto X.
(ii) $\quad|X|=1$.
(iii) $\quad|Y|=1$.
(iv) $|Y|=2$ and $\operatorname{ran} \theta=\{\min X, \max X\}$.

Corollary 3.11. Let X and Y be nontrivial subsets of \mathbb{Z}. Then the semigroup $(O T(X, Y), \theta)$ is regular if and only if
(i) θ is an order-isomorphism from Y onto X or
(ii) $|Y|=2$ and $\operatorname{ran} \theta=\{\min X, \max X\}$.

We note that if (ii) of Corollary 3.11 holds, then X must be finite.
It is known from Theorem 1.3 that for a nonempty interval X of \mathbb{R}, then $O T(X)$ is regular if and only if X is closed and bounded. We also know that for a nonempty interval X of \mathbb{R}, either $|X| \neq 1$ or X is (uncountably) infinite. Then following three corollaries are directly obtained from thesefacts and Theorem 3.9.

Corollary 3.12. Let X be a nonempty interval of \mathbb{R}. Then the semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) $\quad X$ is closed and bounded and θ is an order-isomorphism from Y onto X.
(ii) $\quad|X|=1$.
(iii) $\quad|Y|=1$.
(iv) $|Y|=2$ and ran $\theta=\{\min X, \max X\}$.

Corollary 3.13. Let X and Y be nonempty intervals of \mathbb{R}. Then the semigroup $(O T(X, Y), \theta)$ is regular if and only if one of the following statements holds.
(i) X is closed and bounded and θ is an order-isomorphism from Y onto X.
(ii) $\quad|X|=1$.
(iii) $\quad|Y|=1$.

Corollary 3.14. Let X and Y be nontrivial intervals of \mathbb{R}. Then the semigroup $(O T(X, Y), \theta)$ is regular if and only if X is closed and bounded and θ is an orderisomorphism from Y onto X.

Example 3.15. Define $\theta_{1}, \theta_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ as in Example 2.5, that is,

$$
x \theta_{1}=x+1 \text { and } x \theta_{2}=2 x \text { for all } x \in \mathbb{Z}
$$

Since θ_{1} is an order-isomorphism from \mathbb{Z} onto \mathbb{Z} and θ_{2} is an order-isomorphism from \mathbb{Z} onto $2 \mathbb{Z}$, by Corollary 3.10, $\left.O T(\mathbb{Z}, \mathbb{Z}), \theta_{1}\right)$ and $\left(O T(2 \mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$ are regular semigroups but $\left(O T(\mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$ is not a regular semigroup. For the later inclusion, we can show directly as follows: Since $1_{\mathbb{Z}} \in O T(\mathbb{Z}, \mathbb{Z})$ and for any $\alpha \in O T(\mathbb{Z}, \mathbb{Z})$,

$$
\operatorname{ran}\left(1_{\mathbb{Z}} \theta_{2} \alpha \theta_{2} 1_{\mathbb{Z}}\right)=\operatorname{ran}\left(\theta_{2} \alpha \theta_{2}\right) \subseteq \operatorname{ran}\left(\theta_{2}\right)=2 \mathbb{Z} \subsetneq \mathbb{Z}
$$

so $1_{\mathbb{Z}} \theta_{2} \alpha \theta_{2} 1_{\mathbb{Z}} \neq 1_{\mathbb{Z}}$ for all $\alpha \in O T(\mathbb{Z}, \mathbb{Z})$, so $\mathbb{1}_{\mathbb{Z}}$ is not a regular element of $\left(O T(\mathbb{Z}, \mathbb{Z}), \theta_{2}\right)$.

Next, let $\theta_{3}=\left.\theta_{1}\right|_{\{0,1\}}$. Then $\operatorname{ran} \theta_{3}=\{1,2\}$. If $X=\{0,1,2\}$, then ran $\theta_{3}=$ $\{1,2\} \neq\{\min X, \max X\}=\{0,2\} \neq X$. Therefore from Corollary 3.11, $\left(O T(\{0,1,2\},\{0,1\}), \theta_{3}\right)$ is not a regular semigroup. If $\theta_{4}=\left.\theta_{2}\right|_{\{0,1\}}$. Then $\operatorname{ran} \theta_{4}=\{0,2\}$. If X is as above, that is, $X=\{0,1,2\}$, then ran $\theta_{4}=\{0,2\}=$ $\{\min X, \max X\}$, so by Corollary 3.11, the semigroup $\left(O T(\{0,1,2\},\{0,1\}), \theta_{4}\right)$ is a regular semigroup.

Example 3.16. Let $\theta: \mathbb{R} \rightarrow \mathbb{R}^{+}$and $\theta^{\prime}: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be defined by

$$
x \theta=10^{x} \text { for all } x \in \mathbb{R} \text { and } x \theta^{\prime}=\log _{10} x \text { for all } x \in \mathbb{R}^{+} .
$$

Then θ is an order-isomorphism from \mathbb{R} onto \mathbb{R}^{+}and θ^{\prime} is an order-isomorphism from \mathbb{R}^{+}onto \mathbb{R}. Let $\theta_{1}=\left.\theta\right|_{[0,1]}$ and $\theta_{2}=\left.\theta^{\prime}\right|_{[10,100]}$. Then θ_{1} is an orderisomorphism from $[0,1]$ onto $[1,10]$ and θ_{2} is an order-isomorphism from $[10,100]$ onto $[1,2]$. It therefore follows from Corollary 3.14 that $\left(O T([1,10],[0,1]), \theta_{1}\right)$ and $\left(O T([1,2],[10,100]), \theta_{2}\right)$ are both regular semigroups.

Remark 3.17. In fact for $a, b, c, d \in \mathbb{R}$ with $a<b$ and $c<d$, there is an orderisomorphism θ from [a,b] onto [c,d]. To show this, define $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
x \varphi=\left(\frac{b-a}{d-c}\right)(x-c)+a \text { for all } x \in \mathbb{R}
$$

Then the slope of the line φ is $\frac{b-a}{d-c}>0$, so φ is a strictly increasing continuous function. But $c \varphi=a$ and $d \varphi=b$, so $\left.\varphi\right|_{[c, d]}$ is an order-isomorphism from [c,d] onto $[\mathrm{a}, \mathrm{b}]$. Let $\theta=\left.\varphi\right|_{[, d]}$. Then θ is an order-isomorphism from $[\mathrm{c}, \mathrm{d}]$ onto $[\mathrm{a}, \mathrm{b}]$. This implies by Corollary 3.14 that $(O T([a, b],[c, d]), \theta)$ is a regular semigroup.

Note that if $\theta^{\prime}=\left.\varphi\right|_{(c, d)}$, then θ^{\prime} is an order-isomorphism from (c,d) onto (a,b). However, the semigroup $\left(O T((a, b),(c, d)), \theta^{\prime}\right)$ is not regular by Corollary 3.14. สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

SOME ISOMORPHISM THEOREMS

In the last chapter, we provide some isomorphism theorems of order-preserving generalized transformation semigroups. The purpose is to characterize when the semigroup $(O S(X, Y), \theta)$ is isomorphic to $O S(X)$ and when it is isomorphic to $O S(Y)$ where X and Y are chains, $O S(X, Y)$ is $O P(X, Y), O T(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$. We obtain some interesting isomorphism theorems as follows: $(O S(X, Y), \theta) \cong O S(X)[O S(Y)]$ if and only if θ is an order-isomorphism from Y onto X where $O S(X, Y)$ is $O P(X, Y)$ or $O I(X, Y)$ and $\theta \in O S(Y, X)$. Also, $(O T(X, Y), \theta) \cong O T(X)$ if and only if θ is an order-isomorphism from Y onto X, but $(O T(X, Y), \theta) \cong O T(Y)$ if and only if $|Y|=1$ or θ is an order-isomorphism from Y onto X. To obtain these results, Theorem 1.4, Lemma 2.2, Theorem 2.3 and Theorem 2.4 will be referred.

Theorem 4.1. For $\theta \in O I(Y, X),(O I(X, Y), \theta) \cong O I(X)$ if and-only if θ is an order-isomorphism from Y ontox.oong 9 GME

Proof. First, assume that $(O I(X, Y), \theta) \cong O I(X)$. We know from Theorem 1.4 that $O I(X)$ is a regular semigroup. We then have that the semigroup $(O I(X, Y), \theta)$ is regular. It therefore follows from Theorem 2.3 that θ is an order-isomorphism from Y onto X.

Conversely, assume that θ is an order-isomorphism from Y onto X. We have from Lemma 2.2(i) that $(O I(X, Y), \theta) \cong O I(X)$, as required.

Theorem 4.2. For $\theta \in O I(Y, X),(O I(X, Y), \theta) \cong O I(Y)$ if and only if θ is an order-isomorphism from Y onto X.

Proof. Assume that $(O I(X, Y), \theta) \cong O I(Y)$. Since the semigroup $O I(Y)$ is regular by Theorem 1.4, we deduce that the semigroup $(O I(X, Y), \theta)$ is regular. Therefore by Theorem 2.3, θ is an order-isomorphism from Y onto X.

Conversely, assume that θ is an order-isomorphism from Y onto X. It therefore follows from Lemma 2.2(ii) that $(O I(X, Y), \theta) \cong O I(Y)$, as desired.

As a consequence of Theorem 4.1 and Theorem 4.2, we have
Corollary 4.3. For $\theta \in O I(Y, X)$, the following statements are equivalent.
(i) $\quad(O I(X, Y), \theta) \cong O I(X)$.
(ii) $\quad(O I(X, Y), \theta) \cong O I(Y)$.
(iii) θ is an order-isomorphism from Y onto X.

The following lemma gives necessary conditions for the semigroup $(O S(X, Y), \theta)$ to have an identity where $O S(X, Y)$ is $O P(X, Y)$ or $O T(X, Y)$ and $\theta \in O S(Y, X)$.

Lemma 4.4. Let $O S(X, Y)$ be $O P(X, Y)$ or $O T(X, Y)$ and $\theta \in O S(Y, X)$. If the semigroup $(O S(X, Y), \theta)$ has an identity η, then $\theta \eta=1_{Y}$, and hence θ is $1-1$ and ran $\eta=Y$.
Proof. We have that for any $y \in Y, X_{y} \in \Omega S(X, Y) \cdot /$ since η is the dentity of $(O S(X, Y), \theta)$, we have

$$
\eta \theta \alpha=\alpha \theta \eta=\alpha \text { for every } \alpha \in O S(X, Y)
$$

in particular,

$$
X_{y} \theta \eta=X_{y} \text { for every } y \in Y
$$

Therefore for $x \in X$,

$$
y \theta \eta=x X_{y} \theta \eta=x X_{y}=y \text { for every } y \in Y
$$

This shows that $\theta \eta=1_{Y}$ which implies that θ is 1-1 and $\operatorname{ran} \eta=Y$.

We remark here from the proof of Lemma 4.4 that Lemma 4.4 is true for any posets X and Y.

Theorem 4.5. For $\theta \in O P(Y, X),(O P(X, Y), \theta) \cong O P(X)$ if and only if θ is an order-isomorphism from Y onto X.

Proof. First, assume that $(O P(X, Y), \theta) \cong O P(X)$. By Theorem 1.4, the semigroup $O P(X)$ is regular, and therefore $(O P(X, Y), \theta)$ is a regular semigroup. From Theorem 2.4, one of the following statements holds.
(1) θ is an order-isomorphism from Y onto X.
(2) $\operatorname{dom} \theta=Y, \operatorname{ran} \theta=X$ and $|X|=1$.

Since $(O P(X, Y), \theta) \cong O P(X)$ and $O P(X)$ has an identity, we deduce from Lemma 4.4 that θ is $1-1$. Hence if (2) holds, then $|Y|=1$. Therefore we conclude that θ must be an order-isomorphism from Y onto X.

For the converse, assume that θ is an order-isomorphism from Y onto X. Then $(O P(X, Y), \theta) \cong O P(X)$ by Lemma 2.2(i).
Theorem 4.6. For $\theta \in O P(Y, X),(O P(X, Y), \theta) \cong O P(Y)$ if and only if θ is an order-isomorphism from Y onto X.
Proof. By Theorem 1.4, $O P(Y)$ is a regular semigroup.
If $(O P(X, Y), \theta) \cong O P(Y)$, then the semigroup $(O P(X, Y), \theta)$ is regular, so by Theorem 2.4,
(1) θ is an order-isomorphism from Y onto X or
(2) dom $\theta=Y$, ran $\theta=X$ and $|X|=1$.

Since $O P(Y)$ has an identity, $(O P(X, Y), \theta)$ has an identity. Thus θ is 1-1 by Lemma 4.4, so (2) implies $|Y|=1$. Hence θ is an order-isomorphism from Y onto
X.
Conversely, if θ is an order-isomorphism from Y onto X, then $(O P(X, Y), \theta) \cong$ $O P(Y)$ by Lemma 2.2(ii).

The following corollary is an immediate consequence of Theorem 4.5 and Theorem 4.6.

Corollary 4.7. For $\theta \in O P(Y, X)$, the following statements are equivalent.
(i) $\quad(O P(X, Y), \theta) \cong O P(X)$.
(ii) $\quad(O P(X, Y), \theta) \cong O P(Y)$.
(iii) θ is an order-isomorphism from Y onto X.

Beside Lemma 4.4, the following series of lemmas are required to determine when $(O T(X, Y), \theta) \cong O T(X)$ and when $(O T(X, Y), \theta) \cong O T(Y)$ where $\theta \in$ $O T(Y, X)$.

Lemma 4.8. For $\theta \in O T(Y, X)$, if $|Y|>1$ and the semigroup $(O T(X, Y), \theta)$ has an identity, then for every $x \in X, y \leq x \leq z$ for some $y, z \in \operatorname{ran} \theta$.

Proof. Let $e, f \in Y$ be such that $e<f$. Suppose that the conclusion is false. Then there is an element $a \in X$ such that $\square \int \square \rrbracket 𠃌$

Case 1: (1) holds. Define $\alpha: X \rightarrow Y$ as in Lemma 3.3(i), Then by Lemma 3.3(i), $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=2$ and $|\operatorname{ran}(\theta \alpha)|=1$. Thus for any $\eta \in O T(X, Y)$, $\operatorname{ran}(\eta \theta \alpha) \subseteq \operatorname{ran}(\theta \alpha)$, so $|\operatorname{ran}(\eta \theta \alpha)|=1$. Hence

$$
\eta \theta \alpha \neq \alpha \text { for every } \eta \in O T(X, Y)
$$

which implies that $(O T(X, Y), \theta)$ has no identity.

Case 2: (2) holds. Let $\beta: X \rightarrow Y$ be defined as in Lemma 3.3(ii). By Lemma 3.3(ii), $\beta \in O T(X, Y),|\operatorname{ran} \beta|=2$ and $|\operatorname{ran}(\theta \beta)|=1$. We then have similarly to Case 1 that

$$
\eta \theta \beta \neq \beta \text { for every } \eta \in O T(X, Y)
$$

and hence $(O T(X, Y), \theta)$ has no identity.

Therefore the lemma is proved.

Lemma 4.9. For $\theta \in O T(Y, X)$, if $|Y|>2$ and the semigroup $(O T(X, Y), \theta)$ has an identity, then $\operatorname{ran} \theta=X$.

Proof. Let $e, f, g \in Y$ be such that $e<f<g$. Suppose that ran $\theta \neq X$. Then there is an element $a \in X \backslash \operatorname{ran} \theta$. Then one of the following three cases must occur.
(1) $x<a$ for all $x \in \operatorname{ran} \theta$.
(2) $x>a$ for all $x \in \operatorname{ran} \theta$.
(3) $b<a<c$ for some $b, c \in \operatorname{ran} \theta$.

Case 1: (1) or (2) holds. By Lemma 4.8, the semigroup $(O T(X, Y), \theta)$ has no identity

Case 2: (3) holds. Let $\alpha: X \hookrightarrow Y$ be defined as in Lemma 3.5. Then by this lemma, $\alpha \in O T(X, Y),|\operatorname{ran} \alpha|=3$ and $|\operatorname{ran}(\theta \alpha)|=2$. But $|\operatorname{ran}(\eta \theta \alpha)| \leq|\operatorname{ran}(\theta \alpha)|$ for any $\eta \in O T(X, Y)$, so $|\operatorname{ran}(\eta \theta \alpha)| \leq 2$ for all $\eta \in O T(X, Y)$. Hence

$$
\eta \theta \alpha \neq \alpha \text { for every } \eta \in O T(X, Y)
$$

which implies that the semigroup $(O T(X, Y), \theta)$ has no identity.
Therefore the lemma is proved.

Lemma 4.10. For $\theta \in O T(Y, X)$, if $|Y|=2$, $\operatorname{ran} \theta=\{\min X, \max X\}$ and the semigroup $(O T(X, Y), \theta)$ has an identity, then $|X|=2$.

Proof. Let $Y=\{e, f\}$ with $e<f$ and η the identity of the semigroup $(O T(X, Y), \theta)$.
From Lemma 4.4, θ is 1-1. But $|Y|=2$ and $\theta: Y=\{e, f\} \rightarrow \operatorname{ran} \theta=$ $\{\min X, \max X\}$ is order-preserving, so e $\theta=\min X<\max X=f \theta$. To show that $|X|=2$, suppose not. Then $|X|>2$ and so $\min X<a<\max X$ for some $a \in X$. Since $\eta: X \rightarrow Y=\{e, f\}, a \eta=e$ or $a \eta=f$. Define $\alpha, \beta: X \rightarrow Y$ by

$$
x \alpha=\left\{\begin{array}{ll}
e & \text { if } x<a, \\
f & \text { if } x \geq a,
\end{array} \quad x \beta= \begin{cases}e & \text { if } x \leq a, \\
f & \text { if } x>a .\end{cases}\right.
$$

Since $e<f$ and $\min X<a<\max X$, we have $\alpha, \beta \in O T(X, Y),(\min X) \alpha=e$ and $(\max X) \beta=f$.

Case 1: $a \eta=e$. Then $a \eta \theta \alpha=e \theta \alpha=(\min X) \alpha=e<f=a \alpha$.
Case 2: $a \eta=f$. Then $a \eta \theta \beta=f \theta \beta=(\max X) \beta=f>e=a \beta$.

From Case 1 and Case 2, we have $\eta \theta \alpha \neq \alpha$ and $\eta \theta \beta \neq \beta$, respectively. This is contrary to that η is the identity of the semigroup $(O T(X, Y), \theta)$. This proves that $|X|=2$, as required
Lemma 4.11. For $\theta \in O T(\widetilde{Y}, X)$, the semigroup $O T(X, Y), \theta$ has an identity if and only if $|Y|=1$ or θ is an order-isomorphism from Y onto X.

Proof. To prove necessity, assume that the semigroup $(O T(X, Y), \theta)$ has an identity and $|Y|>1$. From Lemma $4.4, \theta$ is $1-1$. We will show that $\operatorname{ran} \theta=X$.

Case 1: $|Y|=2$. Let $Y=\{e, f\}$ with $e<f$. Then $\operatorname{ran} \theta=\{e \theta, f \theta\}$ and $e \theta<f \theta$ since θ is $1-1$ and order-preserving. It then follows from Lemma 4.8, $e \theta \leq x \leq f \theta$ for all $x \in X$. This implies that $e \theta=\min X$ and $f \theta=\max X$.

Hence $\operatorname{ran} \theta=\{\min X, \max X\}$. It therefore follows from Lemma 4.10 that $|X|=2$. Consequently, $\operatorname{ran} \theta=X$

Case 2: $|Y|>2$. Therefore that $\operatorname{ran} \theta=X$ is directly obtained from Lemma 4.9. Therefore θ is an order-isomorphism from Y onto X.

To prove sufficiently, assume that $|Y|=1$ or θ is an order-isomorphism from Y onto X. If $|Y|=1$, then $|O T(X, Y)|=1$, so $(O T(X, Y), \theta)$ has an identity. If θ is an order-isomorphism from Y onto X, then by Lemma 3.8(i), we have that $(O T(X, Y), \theta) \cong O T(X)$. But $O T(X)$ has an identity, thus $(O T(X, Y), \theta)$ has an identity.

Theorem 4.12. For $\theta \in O T(Y, X),(O T(X, Y), \theta) \cong O T(X)$ if and only if θ is an order-isomorphism from Y onto X.

Proof. First, assume that $(O T(X, Y), \theta) \cong O T(X)$. Then the semigroup $(O T(X, Y), \theta)$ has an identity since the semigroup $O T(X)$ does. By Lemma 4.11, $|Y|=1$ or θ is an order-isomorphism from Y onto X. Assume that $|Y|=1$. Then $|O T(X, Y)|=1$, so $|O T(X)|=1$ since $(O T(X, Y), \theta) \cong O T(X)$. Since $|O T(X)|=1$ and $X_{x} \in O T(X)$ for every $x \in X$, we deduce that $|X|=1$. This shows that θ is an order-isomorphism from Y onto X.

The converse is obtained directly from Lemma 3.8(i).

Theorem 4.13. For $\theta \in O T(Y, X),(O T(X, Y), \theta) \cong O T(Y)$ if and only if $|Y|=$ 1 or θ is an order-isomorphism from Y onto X.

Proof. Assume that $(O T(X, Y), \theta) \cong O T(Y)$. Then $(O T(X, Y), \theta)$ has an identity. Then from Lemma 4.11, we have $|Y|=1$ or θ is an order-isomorphism from Y onto X.

$$
\text { If }|Y|=1 \text {, then }|O T(X, Y)|=1=|O T(Y)| \text {, so }(O T(X, Y), \theta) \cong O T(Y) \text {. If }
$$ θ is an order-isomorphism from Y onto X, then by Lemma 3.8(ii), we have that

$$
(O T(X, Y), \theta) \cong O T(Y)
$$

Hence the theorem is proved, as required.

We can see in this chapter that having an identity and being isomorphic are closely related. We combine this relationship to be a theorem as follows:

Theorem 4.14. For $\theta \in O T(Y, X)$ and $|Y|>1$, the following statements are equivalent.
(i) $\quad(O T(X, Y), \theta)$ has an identity.
(ii) $\quad(O T(X, Y), \theta) \cong O T(X)$.
(iii) $(O T(X, Y), \theta) \cong O T(Y)$.
(iv) θ is an order-isomorphism from Y onto X.

Proof. Since $|Y|>1$, by Lemma 4.11, (i) \Leftrightarrow (iv). That (ii) \Leftrightarrow (iv) follows from Theorem 4.12. Because $|Y|>1$, we obtain that (iii) \Leftrightarrow (iv) from Theorem 4.13.

Example 4.15. Let $\theta_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined as in Example 3.15, that is,

$$
x \theta_{2}=2 x \text { for all } x \in \mathbb{Z}
$$

By Theorem 4.1-4.2, Theorem 4.4-4.5 and Theorem 4.12-4.13, we have $\left(O I(2 \mathbb{Z}, \mathbb{Z}), \theta_{2}\right) \cong O I(2 \mathbb{Z}) \cong O I(\mathbb{Z}),\left(O P(2 \mathbb{Z}, \mathbb{Z}), \theta_{2}\right) \cong O P(2 \mathbb{Z}) \cong O P(\mathbb{Z})$ and $\left(O T(2 \mathbb{Z}, \mathbb{Z}), \theta_{2} \cong O T(2 \mathbb{Z}) \cong O T(\mathbb{Z})\right.$, respectively. $\left.9 / E \rightarrow G\right\}$ 9
Remark 4.16. Let $a, b, c, d \in \mathbb{R}$ be such that $a<b$ and $c<d$, then from Remark 3.16, there are order-isomorphisms $\theta:[a, b] \rightarrow[c, d]$ and $\theta^{\prime}:(a, b) \rightarrow(c, d)$. By Theorem 4.1-4.2, Theorem 4.4-4.5 and Theorem 4.12-4.13, we have respectively that

$$
\begin{aligned}
& \text { (1) }(O I([a, b],[c, d]), \theta) \cong O I([a, b]) \cong O I([c, d]), \\
& \quad\left(O I((a, b),(c, d)), \theta^{\prime}\right) \cong O I((a, b)) \cong O I((c, d)),
\end{aligned}
$$

(2) $(O P([a, b],[c, d]), \theta) \cong O P([a, b]) \cong O P([c, d])$,

$$
\left(O P((a, b),(c, d)), \theta^{\prime}\right) \cong O P((a, b)) \cong O P((c, d))
$$

(3) $(O T([a, b],[c, d]), \theta) \cong O T([a, b]) \cong O T([c, d])$,

$$
\left(O T((a, b),(c, d)), \theta^{\prime}\right) \cong O T((a, b)) \cong O T((c, d)) .
$$

Note that all the above semigroups except those on the last line are regular semigroups.

$$
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
$$

REFERENCES

[1] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain, Semigroup Forum 54 (1997), 230-236.
[2] P.M. Higgins, Techniques of semigroup theory, Oxford University Press, Oxford, 1992.
[3] P.M. Higgins, Combinatorial results on semigroups of order-preserving mappings, Math. Proc. Cambridge Phil. Soc. 113 (1993), 281-296.
[4] Y. Kemprasit and T. Changphas, Regular order-preserving transformation semigroups, Bull. Austral. Math. Soc. 62 (2000), 511-524.
[5] E.S. Lyapin, Semigroups, Translations of Mathematical Monographs Vol. 3, Amer. math. Soc., Providece, R.I., 1974.
[6] T. Saito, K. Aoki and K. Kajitori, Remarks on isomorphisms of regressive transformation semigroups, Semigroup Forum 53 (1996), 129-134.
[7] A.S. Vernitskii and M.V. Volkop, A proof and a generalization of Higgins' devision theorem for semigroups of order preserving mappings, Izv. vuzov.
 จุฬาลงกรณ์มหาวิทยาลัย

VITA

Miss Sawian Jaidee was born on March 15, 1978 in Srisaket. She got a Bachelor of Science in mathematics from Khon Kaen University in 2001. She has furthered her study at Chulalongkorn University to obtain a Master of Science in mathematics. For her financial support for these both programs, she got a scholarship from the Development and Promotion of Science and Technology Talents Project (DPST). After this, she will be a lecturer at the Department of Mathematics, Faculty of Science, Khon Kaen University.

