CHAPTER VI

CONTROL STRUCTURES AND DYNAMIC SIMULATION

The essential task of plantwide control for a complex plant consists of recycle streams and energy integration is maintaining the plant energy and mass balances. As the operating condition changes, the control system is needed to reject loads and regulate an entire process into a design condition to achieve its objectives. Therefore, our purpose of this chapter is to present the new control structures of HDA process with energy integration (Alternative 6). In addition, the four new designed control structures are also compared with the prior work based on rigorous dynamic simulation using the commercial software HYSYS.

6.1 Design of plantwide Control for HDA Process with minimum Auxiliary Reboiler

The plantwide control systems for the HDA process is developed based on the HPH. However, the designed control systems must achieve certain control objectives within prescribed operational constraints. The control objectives for this process are typical for a chemical processes and listed below:

- 1. Maintain process variables at desired values
- 2. Keep process operating conditions within equipment constraints.
- Minimize variability of the product rate and the product quality during Disturbances
- 4. Minimize the disturbance propagation

For the HDA process, several constraints are given by Douglas (1988). These include:

1. The reactor feed ratio of hydrogen to aromatic feed must be greater than 5:1

to prevent coking

- The reactor outlet temperature must be less than 704°C to prevent hydro cracking
- 3. The reactor effluent must be quenched to 621.1°C with liquid from separator to prevent fouling in the process-to-process heat exchanger
- The conversion must be less than 0.97 for the product distribution Correlation

The four new control structures are designed for HDA process alternative 6 with minimum auxiliary utility unit that is propose in this research

6.1.1 Control Structure 1 (CS1) for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Units.

This control structure is shown in Figure 6.1.In this control structure, the all bypass of 3 feed effluent heat exchangers (FEHE) is on cold side. A selector controller with low selector switch (LSS) for FEHE1 is employed to select an appropriate heat pathway. This control system involves one manipulated variable (bypass valve of FEHE1) and two controlled variable (hot and cold outlet temperature of FEHE1). The appropriate controlled variable is selected by LSS in order to achieve maximum energy recover.

Since the hot reactor product is used to drive reboiler in the three columns, part of this stream is bypassed and manipulated to control the tray temperatures in the three columns. In odder to prevent the propagation of thermal disturbance to separation section, the hot outlet temperatures of FEHE2 (the temperature at the entrance of the reboilers at stabilizer column) are controlled by manipulating the bypass valves and the hot outlet temperatures of FEHE3 (the temperature at the entrance of the reboilers at recycle column) are controlled by manipulating the bypass valves of FEHE3.

Since the four auxiliary utility units consist of three auxiliary reboilers at stabilizer column, product column and recycle column and one auxiliary condenser at recycle column. There are employed next to process to process heat exchanger as reboiler or condenser unit as show in figure 6.1. The optimum operation would be to minimize the heat load of auxiliary utility units. One way to do this is the using split range control. This control system involves two manipulated variable (the bypass valve of process to process heat exchanger and heat load of auxiliary utility unit) and one controlled variables (temperature or pressure) and works as for example: if the decreasing disturbance loads of hot stream occurs at reboiler and then the percent opening of bypass valve at reboiler will decrease in order to increase heat transfer at reboiler unit until the target tray temperature achieves. The heat load of the auxiliary utility units will be used when the bypass valve is full close but the target tray temperature still doesn't achieves the target tray temperature. The split range control is used for the tray temperature control in stabilizer column, product column and recycle column by manipulating the bypass valve of reboiler and the heat load of the auxiliary reboiler. For recycle column, the split control is also applied to control column pressure by manipulating the bypass valve of condenser and the heat load of the auxiliary condenser.

Since the temperature profile in the recycle column is very sharp because of temperature changes from tray to tray. This means that the process gain is very large when a single tray temperature is controlled. The standard solution for this problem is to use an average (AVG) temperature of several trays instead of a single tray (Luyben, 2002).

A heat exchanger (i.e. as a heat source or a heat sink) is artificially installed in the hot-side stream in order to make the disturbance loads of the hot stream (i.e. the hot reactor product). Note that, this exchanger is not used in the real plant. The control structure and controller parameter are given in table 6.1. P controllers are employed for level loops, PI controllers for the pressure and flow loops and PID controllers for temperature loop.

6.1.2 Control Structure 2 (CS2) for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Unit

This control structure is shown in Figure 6.2. The major loops in this control structure are the same as CS1 except for control loop for FEHE .We apply the CS1 by

changing the manipulated variable of the column C2 base level control from the feed flowrate of recycle column to the cold inlet flowrate of R2 and the feed flowrate of recycle column is flow-controlled for to reduce the material and flow fluctuation before propagate to the recycle column when the disturbance occurs. The controller parameter is given in table 6.2.

6.1.3 Control Structure 3 (CS3) for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Unit

This control structure is shown in Figure 6.3 and the control configuration is given in table 6.3. The major loops in this control structure are the same as CS1 except for temperature control in product distillation column. The temperature control in product distillation column is two point controls as the tray 12 and tray 17 temperatures.

6.1.4 Control Structure 4 (CS4) for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Unit

This control structure is shown in Figure 6.4 and the control configuration is given in table 6.4. The major loops in this control structure are the same as CS1 except for control loop for FEHE. The all bypass of 3 FEHEs will be on hot side.

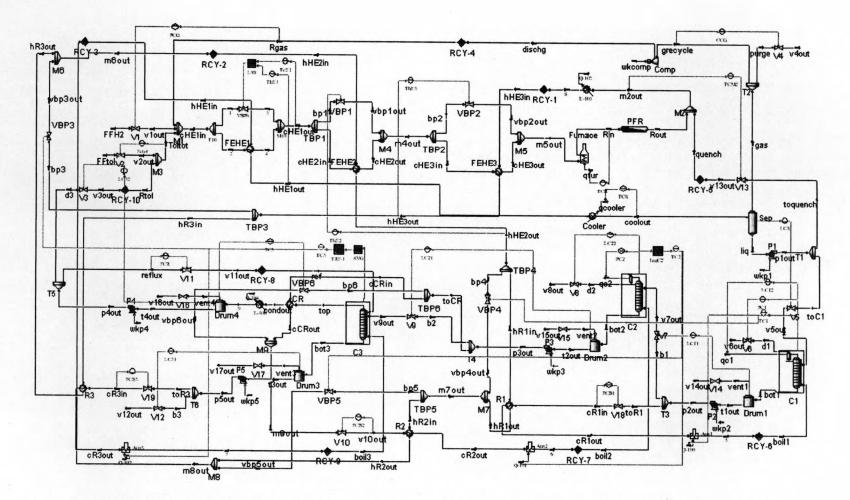


Figure 6.1 Control Structure 1 (CS1) for HDA Process Alternative 6(Basecase) with Three Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.300	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.970	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.40	1.360	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min		•	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.040
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
тсі	column C1 tray-6 temperature	R1 bypass valve (VBP3) and auxiliary reboiler 1 (AR1) duty	PID	3.93	1.40	0.31
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	÷
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	1.4
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	1.5
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	1.0	
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2	-	-
FCC3	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5) and auxiliary condenser(ACR) duty	PI	2	10	-
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4) and auxiliary reboiler 3 (AR3) duty	PID	0.575	1.46	0.32
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		(
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

 Table 6.1 Control Structure and Controller Parameter for HDA Process Alternative 6

(Basecase) with Three Auxiliary Utility Units: Control Structure 1

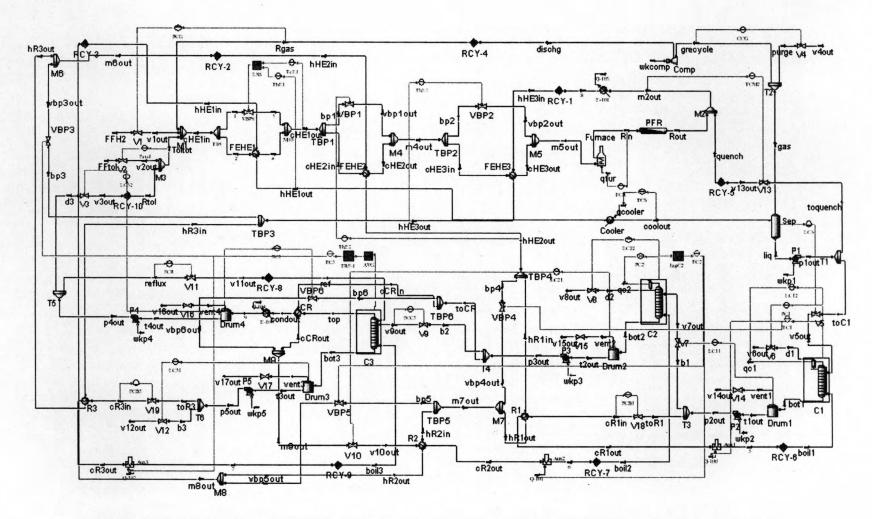


Figure 6.2 Control Structure 1 (CS2) for HDA Process Alternative 6(Basecase) with Three Auxiliary Utility Units

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	•
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	•
TCQ	quenched temperature	quench valve (V6)	PID	2.300	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.970	0.319	0.07
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.40	1.360	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	+	-	
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.04
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.19
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
тсі	column C1 tray-6 temperature	R1 bypass valve (VBP3) and auxiliary reboiler 1 (AR1) duty	PID	3.93	1.40	0.31
LCII	column C1 base level	column C2 feed valve (V8)	Р	2	-	•
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	1.4
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2	•	-
FCC3	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5) and auxiliary condenser(ACR) duty	PI	2	10	-
ТС3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4) and auxiliary reboiler 3 (AR3) duty	PID	0.575	1.46	0.32
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	-	-
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

Table 6.2 Control Structure and Controller Parameter for HDA Process Alternative 6

(Basecase) with Three Auxiliary Utility Units: Control Structure 2

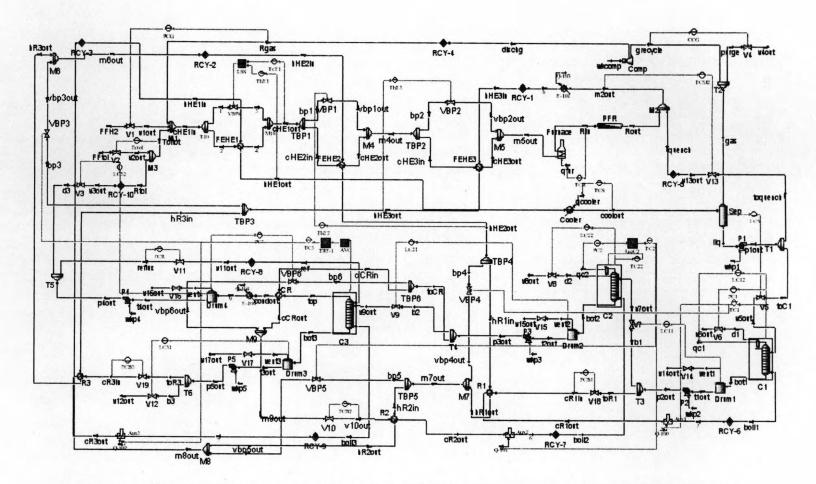


Figure 6.3 Control Structure 3 (CS3) for HDA Process Alternative 6(Basecase) with Three Auxiliary Utility Units

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.30	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.97	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min		-	•
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3) and auxiliary reboiler 1 (AR1) duty	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2		-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC21	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.9	6.9	0.325
TC22	column C2 tray-17 temperature	column 2 reflux flow rate	PID	6.87	7.34	1.63
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2	÷	.+
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5) and auxiliary condenser(ACR) duty	PI	2	10	
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4) and auxiliary reboiler 3 (AR3) duty	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		•
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

 Table 6.3 Control Structure and Controller Parameter for HDA Process Alternative 6

 (Basecase) with Three Auxiliary Utility Units: Control Structure 3

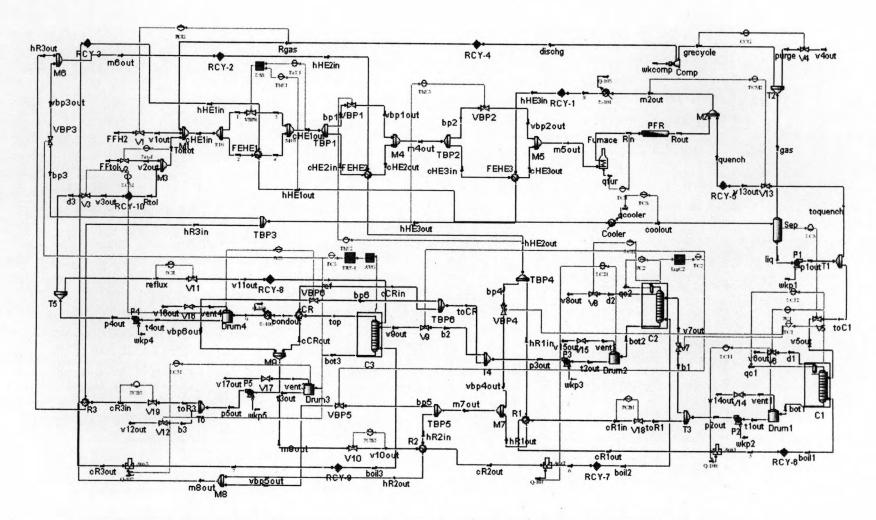


Figure 6.4 Control Structure 4 (CS4) for HDA Process Alternative 6(Basecase) with Three Auxiliary Utility Units

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	•
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.300	0.303	0.06
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.970	0.319	0.07
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.40	1.360	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min			
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.040
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3) and auxiliary reboiler 1 (AR1) duty	PID	3.93	1.40	0.31
LC11	column C1 base level	column C2 feed valve (V8)	Р	2		
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	1.41	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	-
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	(
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	2.1	1.0
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2		i de
FCC3	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5) and auxiliary condenser(ACR) duty	PI	2	10	
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4) and auxiliary reboiler 3 (AR3) duty	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	94.8	
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.4 Control Structure and Controller Parameter for HDA Process Alternative 6

(Basecase) with Three Auxiliary Utility Units: Control Structure 4

6.1.5 Control Structure 1 (CS1) for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary utility unit

The same control structure 1 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.5). Since the number of minimum auxiliary utility unit for HDA process alternative 6 is only one unit therefore the split range control will employ only one for product column to control the tray temperature. The control structure and controller parameter are given in table 6.5.

6.1.6 Control Structure 2 (CS2) for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary utility unit

The same control structure 2 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.6). We apply the CS1 by changing the manipulated variable of the column C2 base level control from the feed flowrate of recycle column to the cold inlet flowrate of R2 and the feed flowrate of recycle column is flow-controlled for to reduce the material and flow fluctuation before propagate to the recycle column when the disturbance occurs. The control structure and controller parameter are given in table 6.6.

6.1.7 Control Structure 3 (CS3) for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.7 and the control configuration is given in table 6.7. The major loops in this control structure are the same as CS1 except for temperature control in product distillation column. The temperature control in product distillation column is two point controls as the tray 12 and tray 17 temperatures.

6.1.8 Control Structure 4 (CS4) for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.8 and the control configuration is given in table 6.8. The major loops in this control structure are the same as CS1 except for control loop for FEHE. The all bypass of 3 FEHEs will be on hot side.

6.1.9 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN1 with Minimum Auxiliary utility unit

The same control structure 1 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.9). Since the number of minimum auxiliary utility unit for HDA process alternative 6 is only one unit therefore the split range control will employ only one for product column to control the tray temperature. The control structure and controller parameter are given in table 6.9.

6.1.10 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN1 with Minimum Auxiliary utility unit

The same control structure 2 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.10). We apply the CS1 by changing the manipulated variable of the column C2 base level control from the feed flowrate of recycle column to the cold inlet flowrate of R2 and the feed flowrate of recycle column is flow-controlled for to reduce the material and flow fluctuation before propagate to the recycle column when the disturbance occurs. The control structure and controller parameter are given in table 6.10.

6.1.11 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN1 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.11 and the control configuration is given in table 6.11. The major loops in this control structure are the same as CS1 except for temperature control in product distillation column. The temperature control in product distillation column is two point controls as the tray 12 and tray 17 temperatures.

6.1.12 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN1 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.12 and the control configuration is given in table 6.12. The major loops in this control structure are the same as CS1 except for control loop for FEHE. The all bypass of 2 FEHEs will be on hot side.

6.1.13 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

The same control structure 1 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.13). Since the number of minimum auxiliary utility unit for HDA process alternative 6 is only one unit therefore the split range control will employ only one for product column to control the tray temperature. The control structure and controller parameter are given in table 6.13.

6.1.14 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

The same control structure 2 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.14). We apply the CS1 by changing the manipulated variable of the column C2 base level control from the feed flowrate of recycle column to the cold inlet flowrate of R2 and the feed flowrate of recycle column is flow-controlled for to reduce the material and flow fluctuation before propagate to the recycle column when

the disturbance occurs. The control structure and controller parameter are given in table 6.14.

6.1.15 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.15 and the control configuration is given in table 6.15. The major loops in this control structure are the same as CS1 except for temperature control in product distillation column. The temperature control in product distillation column is two point controls as the tray 12 and tray 17 temperatures.

6.1.16 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.16 and the control configuration is given in table 6.16. The major loops in this control structure are the same as CS1 except for control loop for FEHE. The all bypass of 2 FEHEs will be on hot side.

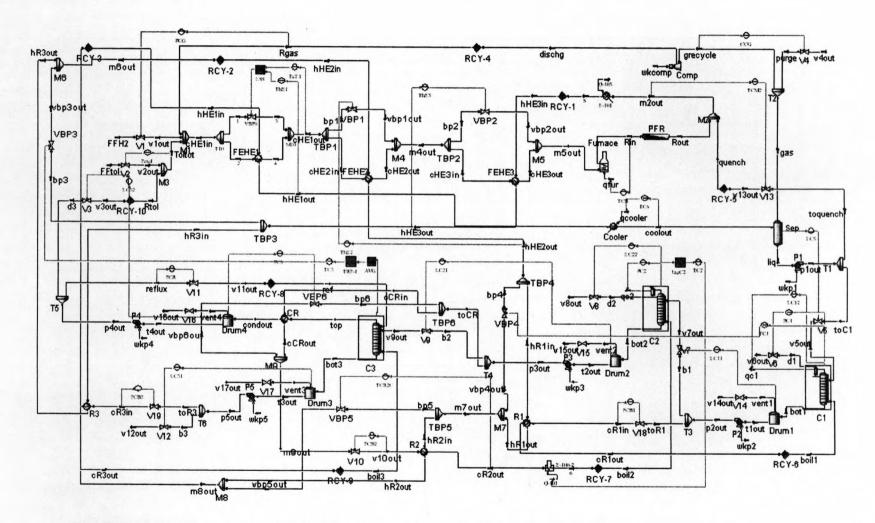


Figure 6.5 Control Structure 1 (CS1) for HDA Process Alternative 6(Basecase) with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	1	-	•
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2		-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	•	1
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	-
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	10.00	-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	•
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.32
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	(Gana)	1. 4
FCB3	column C3 boil up flow rate .	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	1

 Table 6.5 Control Structure and Controller Parameter for HDA Process Alternative 6

 (Basecase) with minimum Auxiliary Utility Unit: Control Structure 1

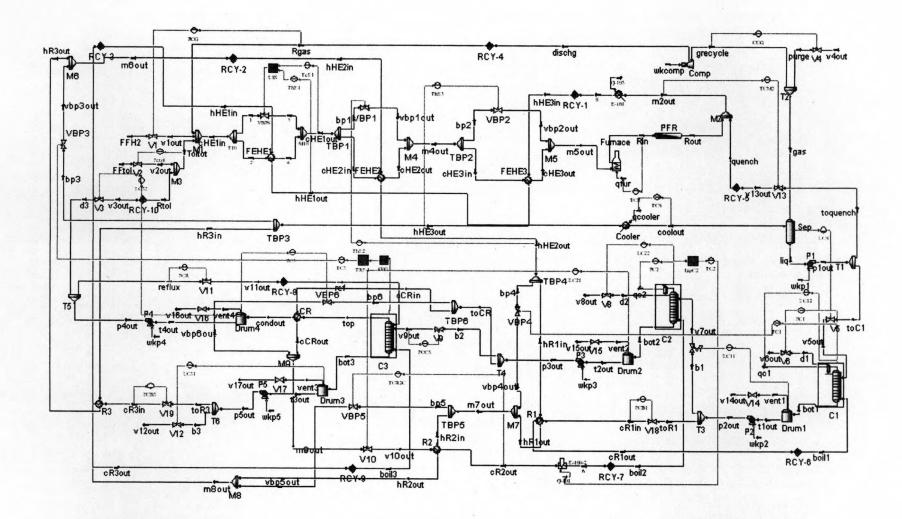


Figure 6.6 Control Structure 2 (CS2) for HDA Process Alternative 6(Basecase) with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	•
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	1.	
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	10.00	
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	1
TC1	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2	-	÷ -
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	1.91
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		1.41
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		1
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	-	-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

Table 6.6 Control Structure and Controller Parameter for HDA Process Alternative 6(Basecase) with minimum Auxiliary Utility Unit: Control Structure 2

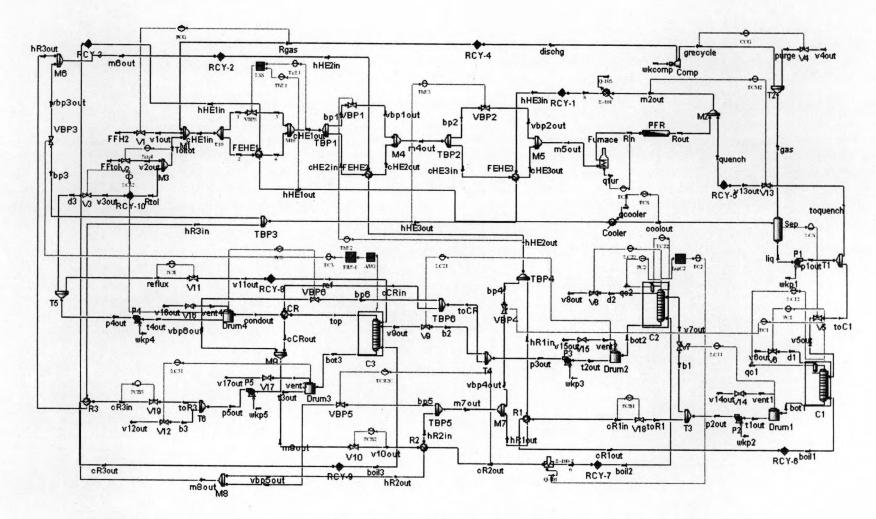


Figure 6.7 Control Structure 3 (CS3) for HDA Process Alternative 6(Basecase) with minimum Auxiliary Utility Unit

controller name	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.97	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2	1.4	-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	1
PC2	column C2pressure	column C2 condenser duty (qc2)	Ы	2	10	•
TC21	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
TC22	column C2 tray-17 temperature	column 2 reflux flow rate	PID	6.87	7.34	1.63
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	-	-
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2	-	-
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
ТС3	AVG avg. temp. of C3- tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	-	-
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

 Table 6.7 Control Structure and Controller Parameter for HDA Process Alternative 6

 (Basecase) with minimum Auxiliary Utility Unit: Control Structure 3

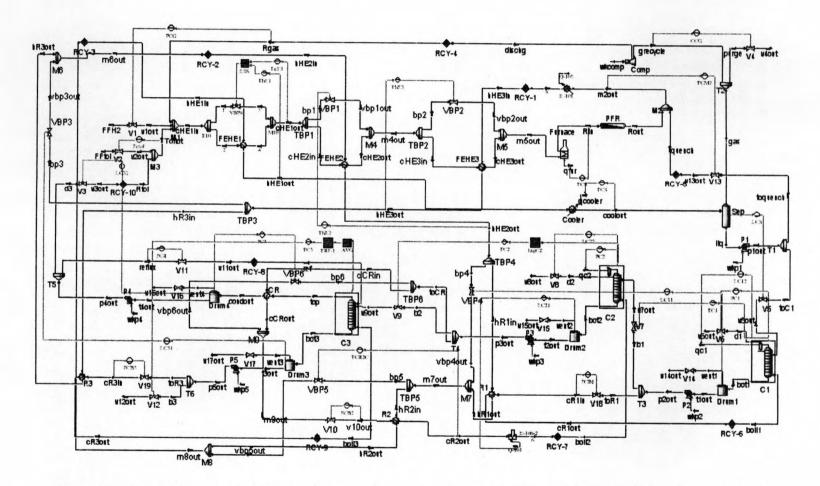


Figure 6.8 Control Structure 4 (CS4) for HDA Process Alternative 6(Basecase) with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	•	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
ThE3	FEHE3 hot-outlet temperature	FEHE3 bypass cold stream valve (VBP3)	PID	0.566	0.893	0.199
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		11.40
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	0.040
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	14
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	2.0	4
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	+
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
ТС3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		+
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	114	-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

 Table 6.8 Control Structure and Controller Parameter for HDA Process Alternative 6

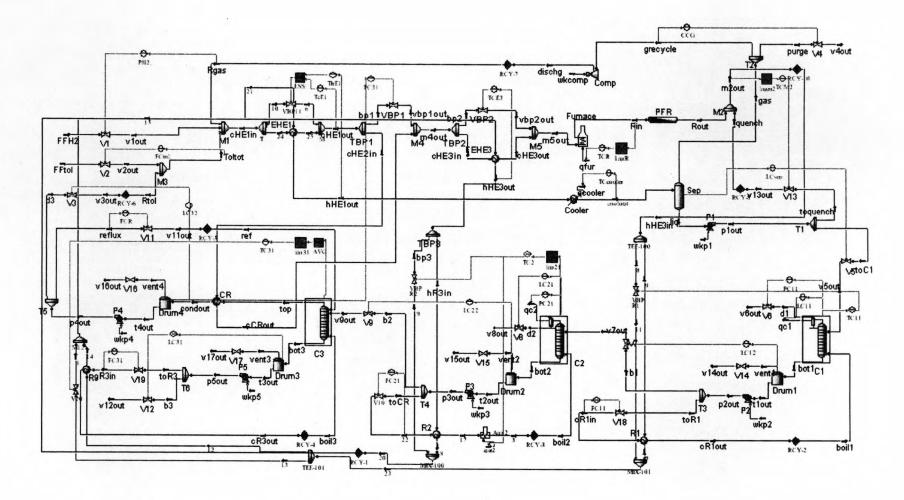


Figure 6.9 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN1 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min		-	
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	18 - 19	100
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	1.0
TC1	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2		÷
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	104	
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		-
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	5. yr
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	1

Table 6.9 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 1 with minimum Auxiliary Utility Unit: Control Structure 1

Figure 6.10 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN1 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThEI	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	10 2 01	•
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2		
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	•
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	•
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2		
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	1.4
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		1.4
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.10 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 1 with minimum Auxiliary Utility Unit: Control Structure 2

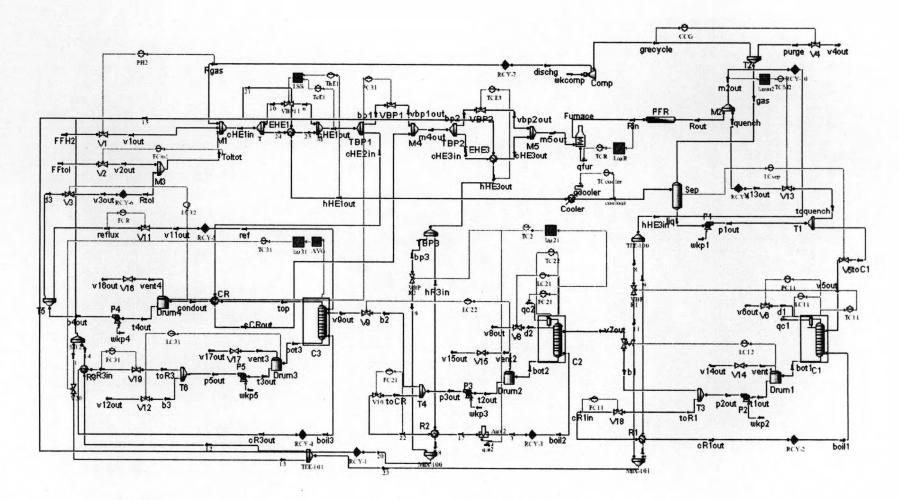


Figure 6.11 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN1 with minimum Auxiliary Utility Unit

controller name	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	•
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.97	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	1.20	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		•
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	•
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2		-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	•
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	•
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC21	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
TC22	column C2 tray-17 temperature	column 2 reflux flow rate	PID	6.87	7.34	1.63
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2	•	
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	•
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
TC3	AVG avg. temp. of C3- tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	10411	1.
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	•
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

Table 6.11 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 1 with minimum Auxiliary Utility Unit: Control Structure 3

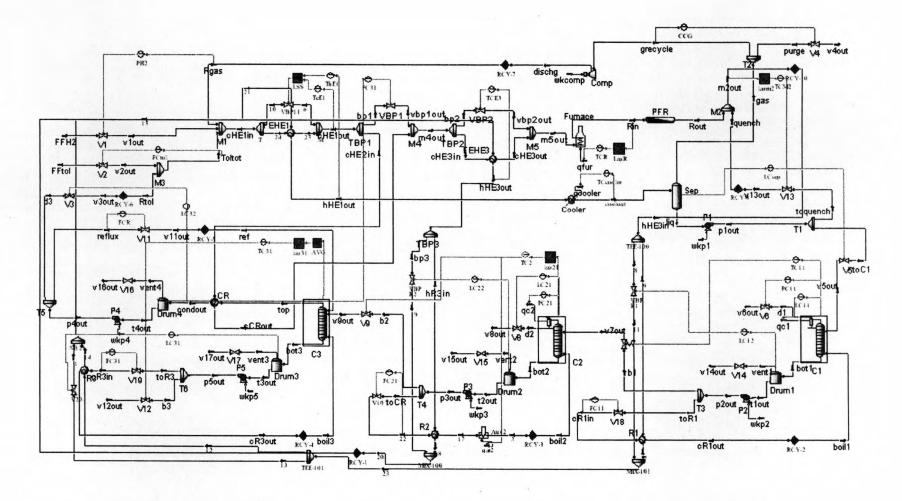


Figure 6.12 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN1 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	1.1		÷
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	1.82	n nên
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	1.7.	-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	144
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	ne:
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2		-
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	104
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	1.14	-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.12 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 1 with minimum Auxiliary Utility Unit: Control Structure 4

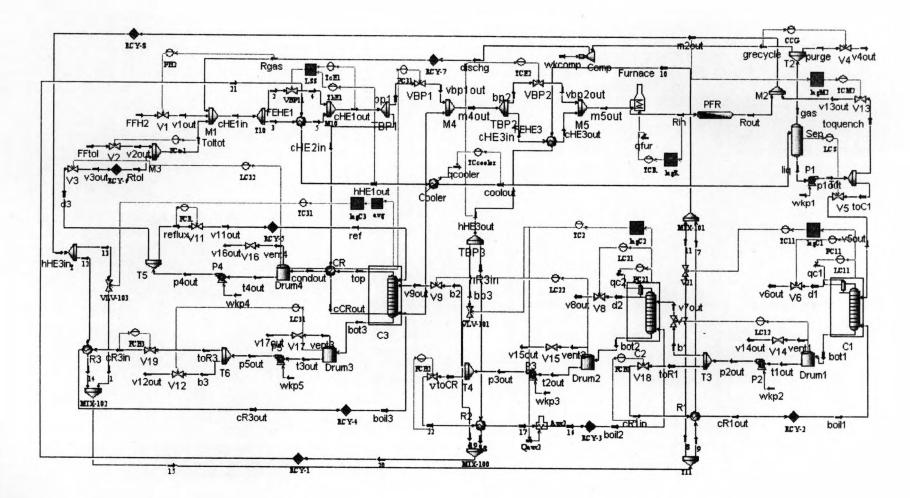


Figure 6.13 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN2 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TĊQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	•	+	
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	14
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2	-	
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	•	4
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	-
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	+
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	
ТС3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	100
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		-
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	1.2
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.13 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 2 with minimum Auxiliary Utility Unit: Control Structure 1

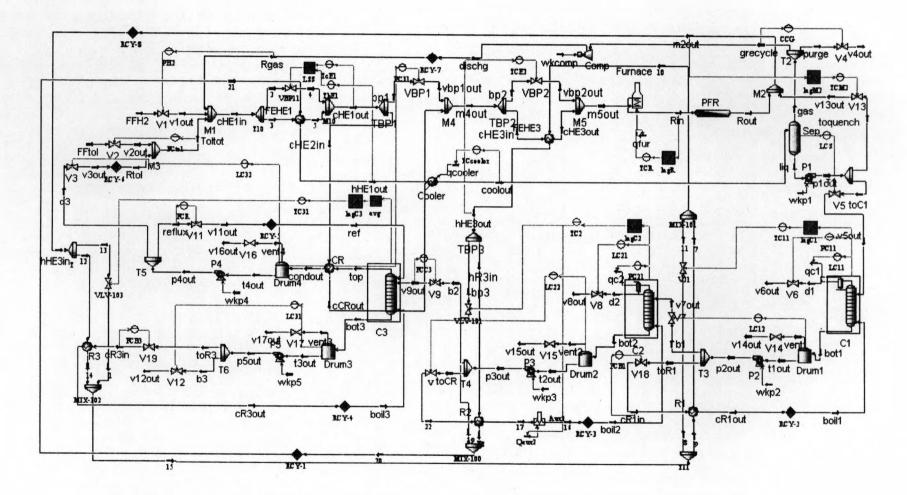


Figure 6.14 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN2 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	0.00
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.040
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	1.147	-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.31
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	٠
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	1.4	-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.32
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.14 Control Structure and Controller Parameter for HDA Process Alternative

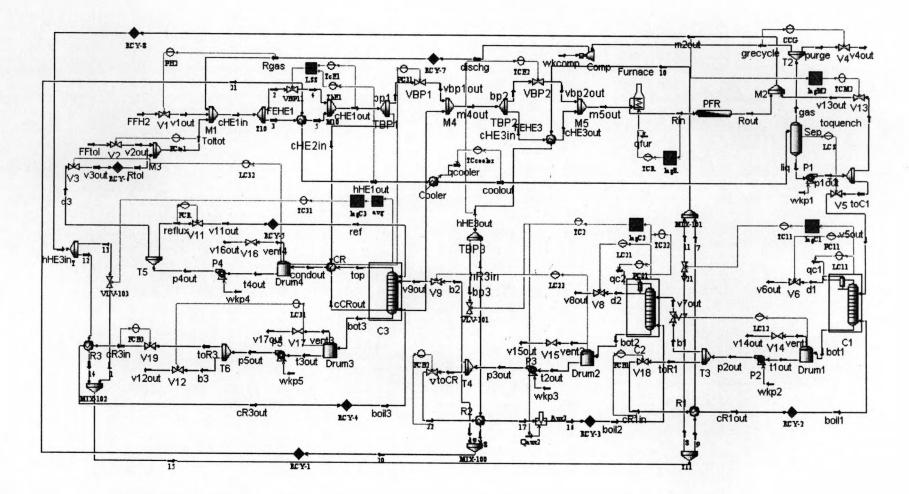


Figure 6.15 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN2 with minimum Auxiliary Utility Unit

controller name	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.97	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	20
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	1.4
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC21	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
TC22	column C2 tray-17 temperature	column 2 reflux flow rate	PID	6.87	7.34	1.63
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	1.4	-
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2		+
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	-
ТС3	AVG avg. temp. of C3- tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	1	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	-	-
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	4

Table 6.15 Control Structure and Controller Parameter for HDA Process Alternative6: RHEN 2 with minimum Auxiliary Utility Unit: Control Structure 3

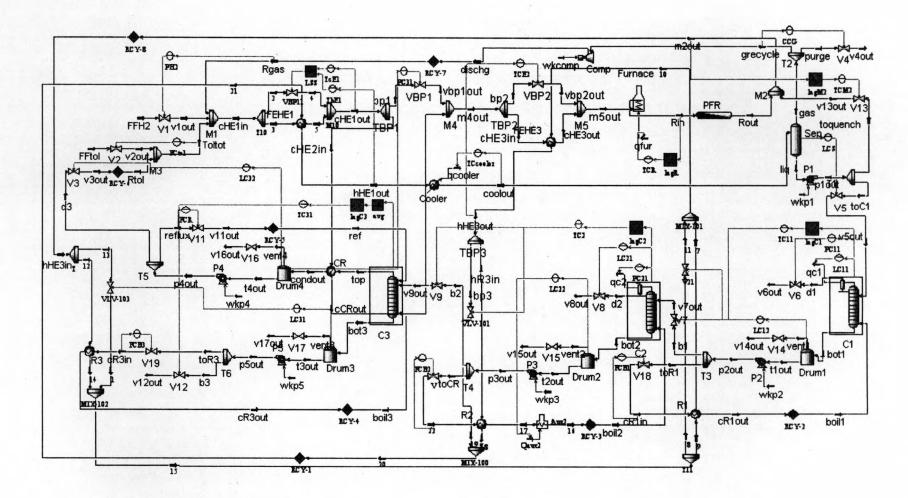


Figure 6.16 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN2 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	÷.
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TĊQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	+	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3	-	
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	•
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	-	-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	-
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	
ТС3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.16 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 2 with minimum Auxiliary Utility Unit: Control Structure 4

6.1.17 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN3 with Minimum Auxiliary utility unit

The same control structure 1 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.17). Since the number of minimum auxiliary utility unit for HDA process alternative 6 is only one unit therefore the split range control will employ only one for product column to control the tray temperature. The control structure and controller parameter are given in table 6.17.

6.1.18 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN3 with Minimum Auxiliary utility unit

The same control structure 2 for HDA process alternative 6 with four auxiliary utility units is employed to HDA process alternative 6 with minimum auxiliary utility units (figure 6.18). We apply the CS1 by changing the manipulated variable of the column C2 base level control from the feed flowrate of recycle column to the cold inlet flowrate of R2 and the feed flowrate of recycle column is flow-controlled for to reduce the material and flow fluctuation before propagate to the recycle column when the disturbance occurs. The control structure and controller parameter are given in table 6.18.

6.1.19 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.19 and the control configuration is given in table 6.19. The major loops in this control structure are the same as CS1 except for temperature control in product distillation column. The temperature control in product distillation column is two point controls as the tray 12 and tray 17 temperatures.

6.1.20 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN2 with Minimum Auxiliary utility unit

This control structure is shown in Figure 6.20 and the control configuration is given in table 6.20. The major loops in this control structure are the same as CS1 except for control loop for FEHE. The all bypass of 2 FEHEs will be on hot side.

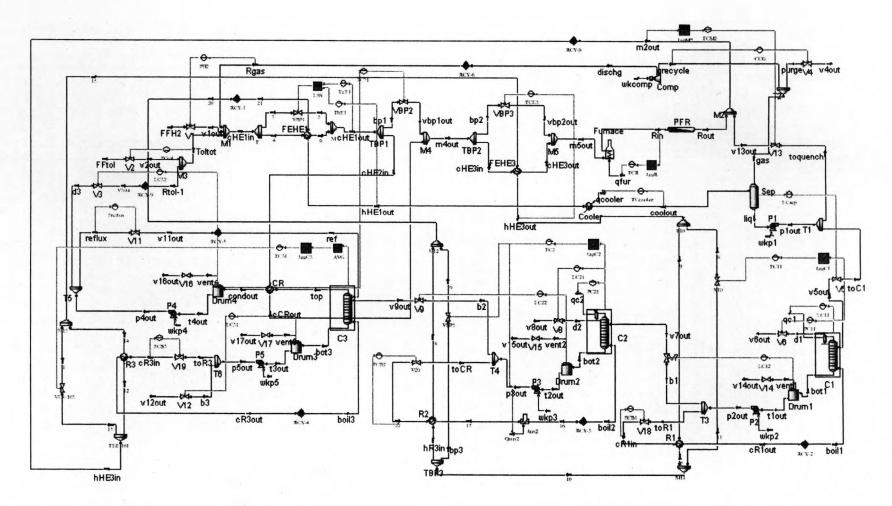


Figure 6.17 Control Structure 1 (CS1) for HDA Process Alternative 6: RHEN3 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	-
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	-	
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	24
TC1	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2	-	1.
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		-
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	-
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	-	
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	1.2
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	-	
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.17 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 3 with minimum Auxiliary Utility Unit: Control Structure 1

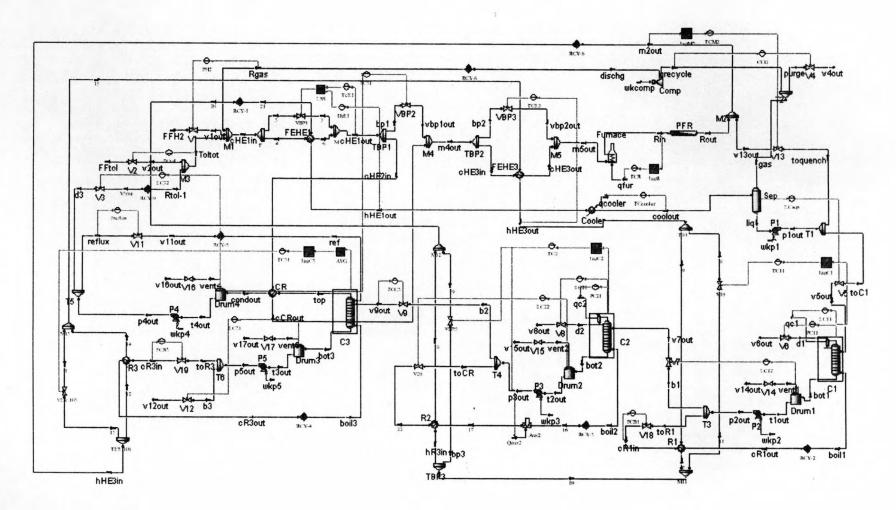


Figure 6.18 Control Structure 2 (CS2) for HDA Process Alternative 6: RHEN3 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	1 .
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	•
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	1.54
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min			-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.04
LCS	separator liquid level	column C1 feed valve (V5)	Р	2		-
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	1.5
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.31
LC11	column C1 base level	column C2 feed valve (V8)	Р	2		-
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	-
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	-
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2		-
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	•	1.9
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	04
TC3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.32
LC31	column C3 base level	C3 bottom valve (V14)	Р	2	-	-
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	÷	-
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	-

Table 6.18 Control Structure and Controller Parameter for HDA Process Alternative	
6: RHEN3 with minimum Auxiliary Utility Unit: Control Structure 2	

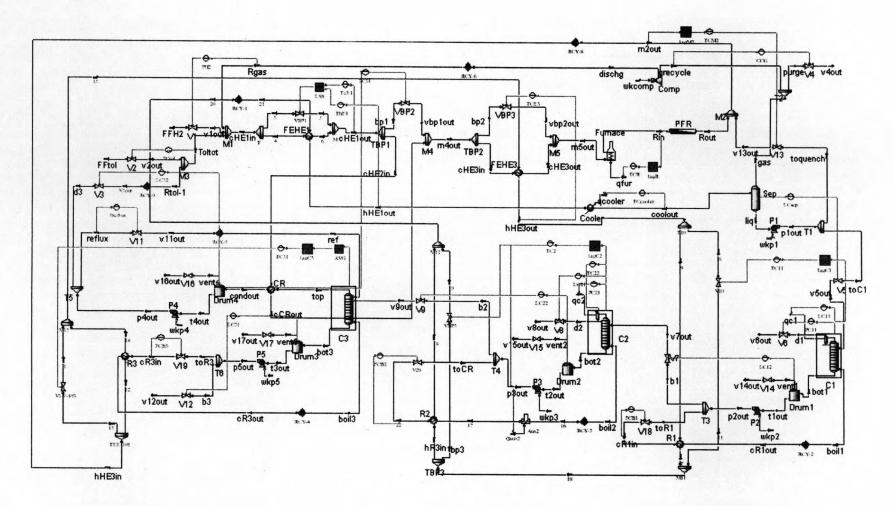


Figure 6.19 Control Structure 3 (CS3) for HDA Process Alternative 6: RHEN3 with minimum Auxiliary Utility Unit

controller name	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	-
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	9.97	0.319	0.071
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	-	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	10200	1.2
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	1.
TCI	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LCII	column C1 base level	column C2 feed valve (V8)	Р	2		
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	PI	0.5	0.3	
PC2	column C2pressure	column C2 condenser duty (qc2)	PI	2	10	
TC21	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
TC22	column C2 tray-17 temperature	column 2 reflux flow rate	PID	6.87	7.34	1.63
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	-	
LC22	column C2 reflux drum level	column C2 product valve level (V10)	Р	2		
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	-
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	1.4
TC3	AVG avg. temp. of C3- tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2		
FCB3	column C3 boil up flow rate	R3 cold-inlet valve (V15)	PI	0.5	0.3	
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.19 Control Structure and Controller Parameter for HDA Process Alternative6: RHEN 3 with minimum Auxiliary Utility Unit: Control Structure 3

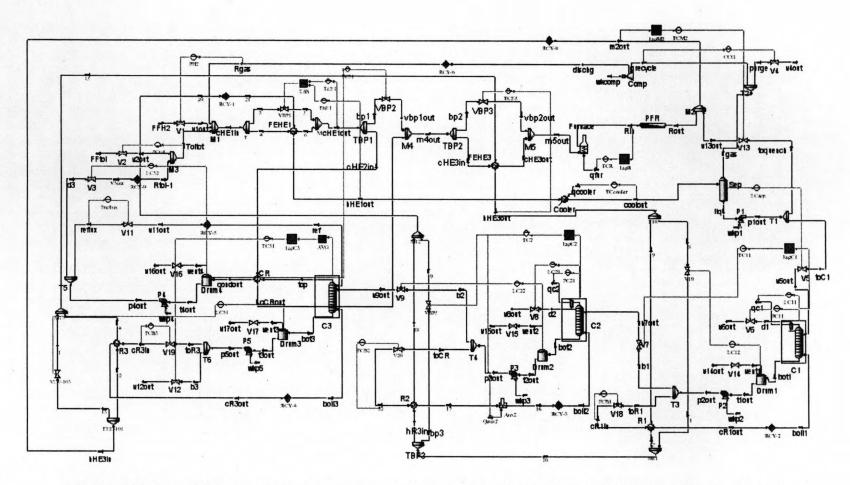


Figure 6.20 Control Structure 4 (CS4) for HDA Process Alternative 6: RHEN3 with minimum Auxiliary Utility Unit

controller	controlled variable	manipulated variable	type	Kc	Ti	Td
FCtol	total toluene flow rate	fresh feed toluene valve (V2)	PI	0.5	0.3	
PCG	gas recycle stream pressure	fresh feed hydrogen valve (V1)	PI	2	10	
CCG	methane in gas recycle	purge valve (V4)	PI	0.5	15	-
TCQ	quenched temperature	quench valve (V6)	PID	2.3	0.303	0.067
TCR	reactor inlet temperature	furnace duty (qfur)	PID	0.344	0.419	0.093
TCS	separator temperature	cooler duty (qcooler)	PID	0.813	0.374	0.083
TcE1	FEHE2 cold inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	3.93	1.40	0.312
ThE1	cooler inlet temperature	FEHE1 bypass cold stream valve (VBP1)	PID	14.4	1.36	0.303
LSS	output of TCE1c and TCE1h	FEHE1 bypass cold stream valve (VBP1)	Min	÷	-	-
ThE2	FEHE2 hot-outlet temperature	FEHE2 bypass cold stream valve (VBP2)	PID	1.24	0.207	0.046
LCS	separator liquid level	column C1 feed valve (V5)	Р	2	0.400	
PC1	column C1 pressure	column C1 gas valve (V7)	PI	2	10	-
TC1	column C1 tray-6 temperature	R1 bypass valve (VBP3)	PID	3.93	1.40	0.312
LC11	column C1 base level	column C2 feed valve (V8)	Р	2	-	
LC12	column C1 reflux drum	column C1 condenser duty (qc1)	Р	3		
FCB1	column C1 boil up	cold-inlet valve of R1 flow rate (V9)	Ы	0.5	0.3	
PC2	column C2pressure	column C2 condenser duty (qc2)	Ы	2	10	•
TC2	column C2 tray-12 temperature	R2 bypass valve (VBP4) and auxiliary reboiler 2 (AR2) duty	PID	6.90	6.90	1.53
LC21	column C2 base level	column C3 feed valve (V11)	Р	2	-	
LC22	column C2 reflux drum	column C2 product valve level (V10)	Р	2	-	-
FCB2	column C2 boil up flow rate	R2 cold-inlet valve (V12)	PI	0.5	0.3	
PC3	column C3 pressure	CR bypass valve (VBP5)	PI	2	10	1121
ТС3	AVG avg. temp. of C3-tray 1,2, 3, and 4	R3 bypass valve (VBP4)	PID	0.575	1.46	0.325
LC31	column C3 base level	C3 bottom valve (V14)	Р	2		
LC32	column C3 reflux drum level	toluene recycle valve (V3)	Р	2	10-01	10.0
FCC3	column C3 flow rate	inlet valve (V9)	PI	0.5	0.3	-
FCR	column C3 reflux flow rate	reflux valve (V13)	PI	0.5	0.3	

Table 6.20 Control Structure and Controller Parameter for HDA Process Alternative 6:RHEN 3 with minimum Auxiliary Utility Unit: Control Structure 4

6.2 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Units: CS1

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.21 to 6.23. Results for individual disturbance load changes are as follows:

6.2.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.21 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

Again, the heat load disturbance of the hot stream can be shifted to the cold stream, since the hot outlet temperature of FEHE3 has to be kept constant. Both positive and negative disturbance loads of the hot stream are shifted to a furnace utility. When the hot temperature decreases, it will result in decrease of the furnace inlet temperature (Figure 6.21.h). Consequently, the furnace duty increases (Figure 6.21.l). On the other hand, when the positive disturbance load is originating from the hot stream (i.e. the hot inlet temperature increases), the furnace duty will be decreased, since the furnace inlet temperature increases. The tray temperature in the recycle column has a deviation about 2°C and it takes long time to return to its nominal value of 290.3°C (Figure 6.21.p). Besides, the separator temperature and the reactor inlet temperature are quite well controlled (Figure 6.21.b and c).

6.2.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.22 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

Both the cold and hot outlet temperatures of FEHE1 decrease as the cold inlet temperature decreases. As a result, the hot outlet temperature of FEHE1 decreases and the cooler duty decreases (Figure 6.22.f and m).

When the cold inlet temperature of FEHE1 increases, both the cold and hot outlet temperatures of FEHE1 increase. Again, the hot outlet temperature of FEHE1 quickly increases then the hot outlet temperature of FEHE1 back to steady state (Figure 6.22.f) so the cooler duty increases. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.22.b and n), but the oscillations occur in the recycle column temperature (Figure 6.22.p).

6.2.3 Change in the Total Toluene Feed Flow Rate

Figure 6.23 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

Energy integration causes the plant will be more difficult to control. Though HDA plant with energy integration (alternative 6) can recover more energy, but the control system in this complex energy integrated plant cannot handle large amount of disturbances.

To increase in total toluene flowrate raises the reaction rate, so the benzene product flowrate increases (Figure 6.23.q). On the other hand, the drop in total toluene

feed flowrate reduces the reaction rate, so the benzene product flowrates drops but the benzene product quality is rarely affected by this change (Figure 6.23.q). The separator temperature is slightly well controlled (Figure 6.23.d), but the oscillations occur in the tray temperature of the stabilizer column and the reactor inlet temperature (Figure 6.23.i and h). For the tray temperature of the product column, it is quite well controlled when this disturbance occurs (Figure 6.23.o), but the tray temperature in the recycle column has a deviation about 5°C and it takes long time to return to its nominal value of 290.3°C (Figure 6.23.p).

6.3 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Units: CS2

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.24 to 6.26. Results for individual disturbance load changes are as follows

6.3.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.24 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

The dynamic responses of this control structure are better than CS1 when the change in the disturbance load of the hot stream occurs, since the feed flowrate of the recycle column is flow-controlled. Then, the effect of this disturbance does not propagate to downstream unit operation like recycle column. Thus, the tray temperatures in the stabilizer and recycle column provide well controlled (Figure 6.24.n and p). The separator temperature, the reactor inlet temperature is slightly well controlled (Figure 6.24.d) but the oscillation happens in the tray temperature of the product column (Figure 6.24.o.).

6.3.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.25 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of this control structure are better than that CS1 when the change in the disturbance load of the cold stream happens. Particularly, the tray temperature in the recycle column provides a well controlled (Figure 6.25.p) because the feed flowrate of the recycle column is fixed for to reduce the propagation when disturbance occurs. In addition, the other dynamic responses are similar to the earlier control structures. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.25.d and n) and the smooth control response happens in the tray temperature of the recycle column. But the small oscillations occur in the tray temperature of the product column (Figure 6.25.o).

6.3.3 Change in the Total Toluene Feed Flow rate

Figure 6.26 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of CS2 are worser than that of the CS 1 when this disturbance occurs. Particularly, the tray temperature in the recycle column provides the well controlled (Figure 6.26.p) because the feed flowrate of the recycle column is flow-controlled for reducing the material and flow propagation during the disturbance occurs. In addition, the separator temperature is quite well controlled (Figure 6.26.d), the oscillations occur in the tray temperature of the product column (Figure 6.26.o).

6.4 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Units: CS3

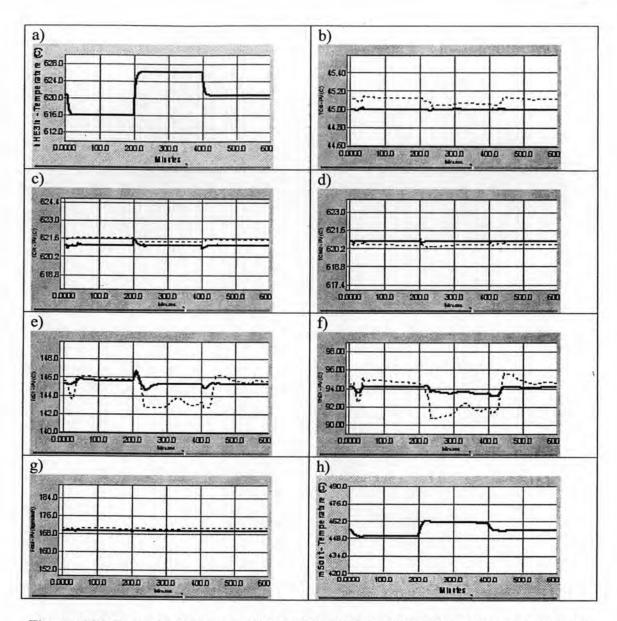
In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.27 to 6.29. Results for individual disturbance load changes are as follows:

6.4.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.27 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

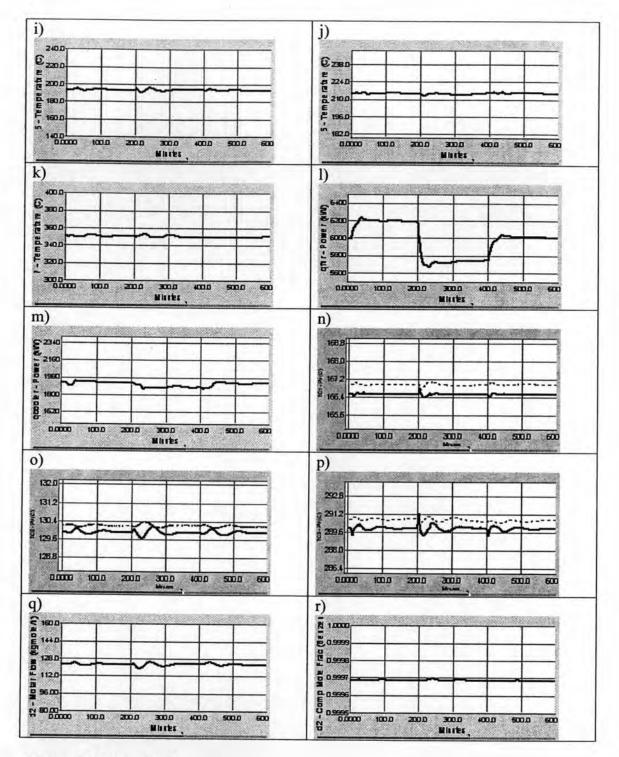
The dynamic responses of this control structure are better than CS1 when the change in the disturbance load of the hot stream occurs, since the temperature of the product column is two-point control .Thus, the tray temperatures in the product and stabilizer column provide well controlled (Figure 6.27.o, p and n). The separator temperature, the reactor inlet temperature is slightly well controlled (Figure 6.27.d) but the oscillation happens in the tray temperature of the recycle column (Figure 6.27.p.).

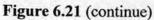
6.4.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)


Figure 6.28 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of this control structure are better than that CS1 when the change in the disturbance load of the cold stream happens. Particularly, the tray temperature in the product column provides a well controlled (Figure 6.28.0 and p) because the temperature of the product column is two-point control. In addition, the other dynamic responses are similar to the earlier control structures. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.28.d and n) and the smooth control response happens in the tray temperature of the recycle column. The molar flow of benzene is well controlled (figure 6.28.r).

6.4.3 Change in the Total Toluene Feed Flow rate


Figure 6.29 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.


The dynamic responses of CS2 are better than that of the CS 1 when this disturbance occurs. Particularly, the tray temperature in the product column better control than CS1 (Figure 6.29.0 and p) because the temperature of the product column is two-point control In addition, the separator temperature is quite well controlled (Figure 6.29.d), the oscillations occur in the tray temperature of the recycle column (Figure 6.29.q).

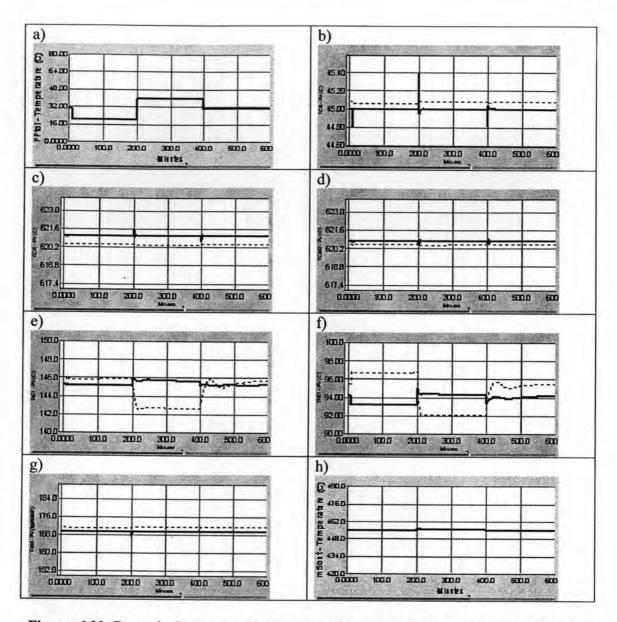


Figure 6.21 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS1, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

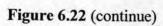


Figure 6.22 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS1, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j)
2400	
220.0	©280
2000	# 224.0
190,0	E.210.0
160.0	P 196.0
	¹⁶⁷ 182.0
0.0000 100.0 200.0 300.0 400.0 500.0 600. Wintes	0.0000 1001 2000 3000 4000 5000 500 Nintes
	1)
400.01	19
380.0	£ e400
	8 600
360.0	
340.0	1 5800
0.052	500
0.0000 100.0 200.0 300.0 400.0 500.0 600	0.0000 1000 2000 3000 4000 5000 500
Wirks ,	Wintes ,
)	n)
2340	168.8
2340	165.0
1960	6
	ă 167.2
1600	£ 166.1
	165.6
0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.0000 100.0 200.0 200.0 400.0 500.0 600
20,	p)
	292.8
312	
	§ 2912
96	g 289.6
88	288.0
00000 1000 2005 3000 4000 500a 600	286.4
0.0000 100.0 200.0 300.0 400.0 500.0 600. Minami	0,0000 100,0 200,0 300,0 400,0 500,0 600
	r)
600	8 10000
44D	P.0.9999
28.0	
120	
	\$ 0.9997
0000 1000 2000 3000 4000 5000 600	0 03996 0 03996 0 0000 1000 2000 3000 4000 5000 600 0 0000 1000 2000 3000 600

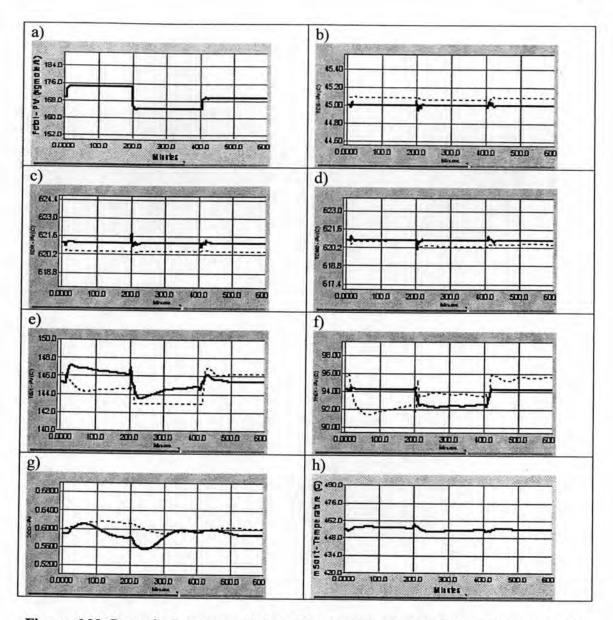
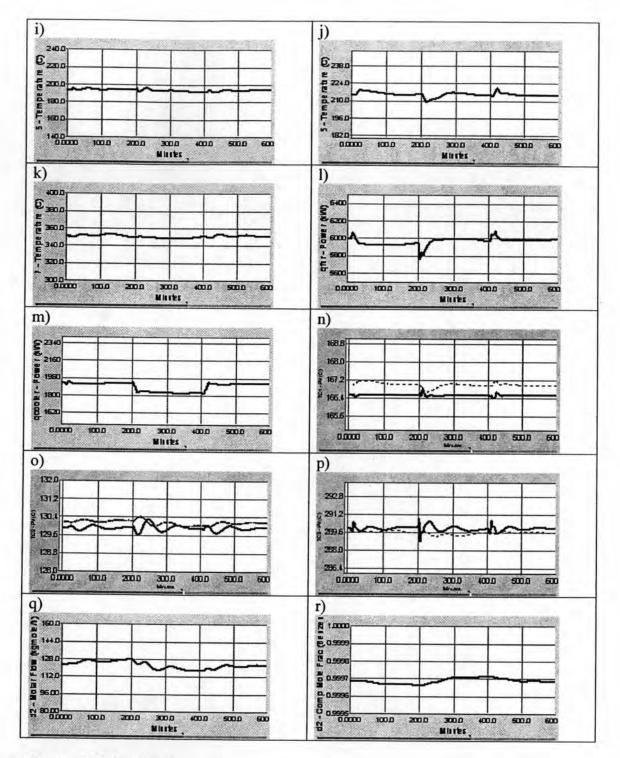
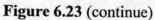
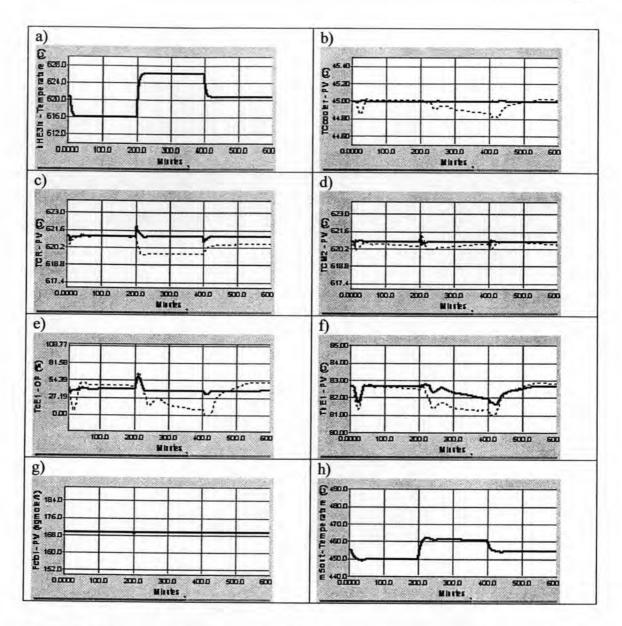
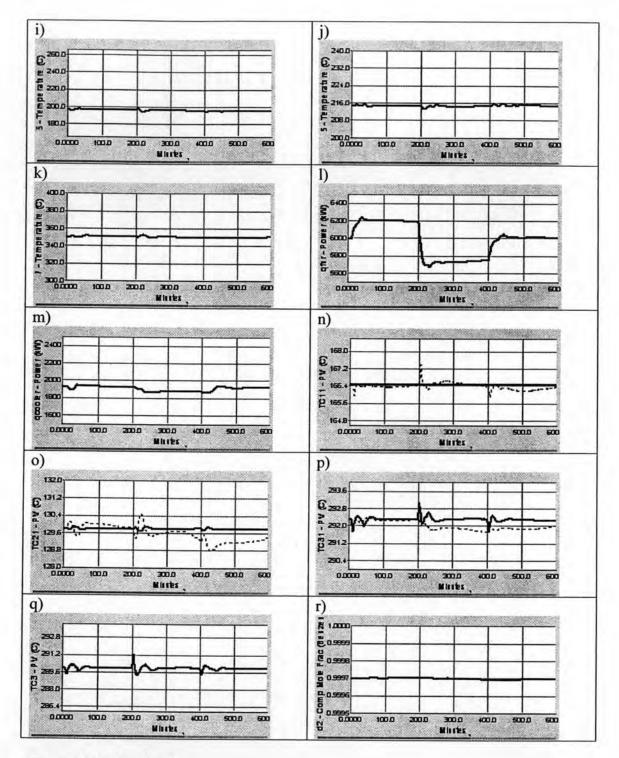
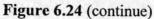





Figure 6.23 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS1, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)





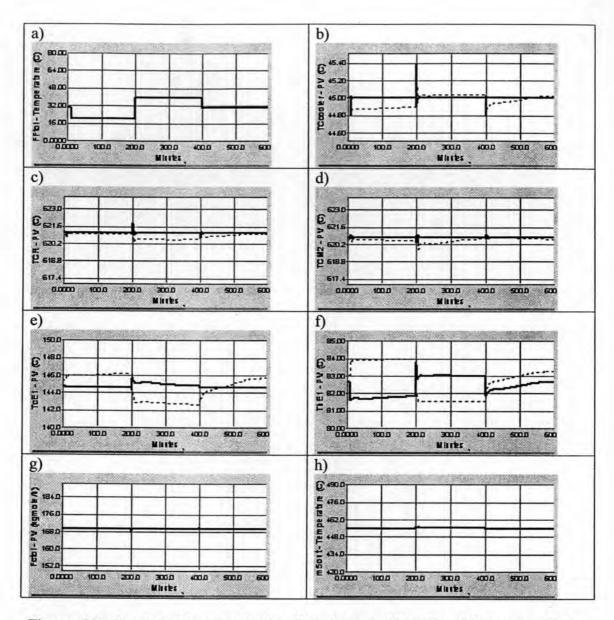


Figure 6.24 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS2, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

Figure 6.25 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS2, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
240.0	
200	©280
20.0	£ 2240
180.0	E 210.0
160.0	E 196.0
	182.0
10000 1000 2000 3000 4000 5000 600 Mintes	0,0000 1000 2000 2000 4000 5000 500 Milities
	1)
	The second se
80.0	£ 6400
0.00	5 620
240.0	
50.0	2 5800
	5 sco.
non tana zana zana kana sana kan Mites	0,0000 100,0 200,0 300,0 400,0 500,0 600 Milites
)	n)
1340	C 168.D
160	E 1672
	166.4 international and intern
800	2 165.5
	164.8
0.0000 0.001 0.001 0.000 0.000 Mintes	0.0000 100.0 200.0 200.0 400.0 500.0 600. Mintes
	p)
	P
31.2	£ ²⁹³⁵
30.4	E > 2928
25	- 3920
25.8	P 2912
28.0	20.4
ondoo and and and and soon soon soon Mintes	0,0000 100,0 200,0 300,0 400,0 500,0 500 Wints
	r)
	1 10000
44D	E 0 9999
26.0	
	(° 0.9998)
12.0	g 0.9997
500 00000 1000 2000 3000 4000 5000 600	0.05556 0.05556 0.0000 100.0 200.0 300.0 400.0 500.0 600

Figure 6.25 (continue)

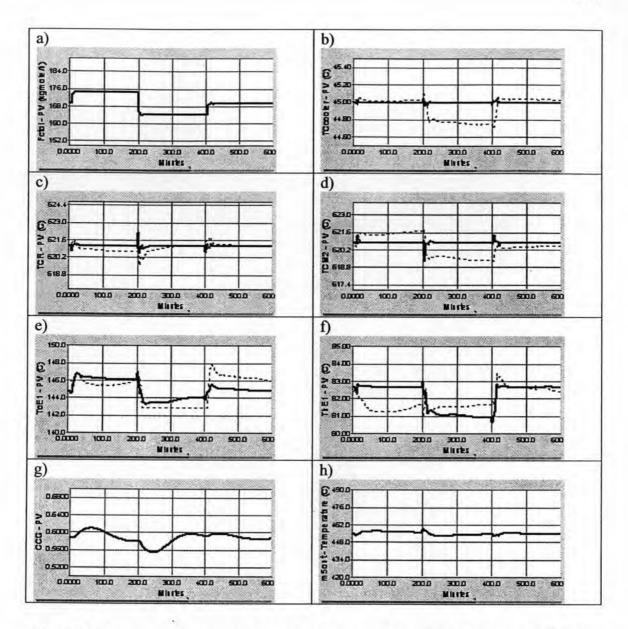
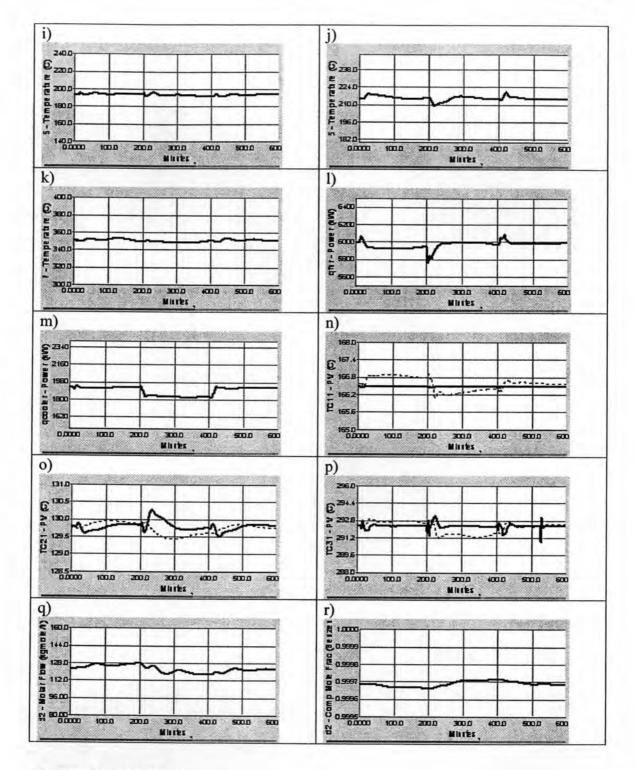
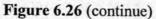
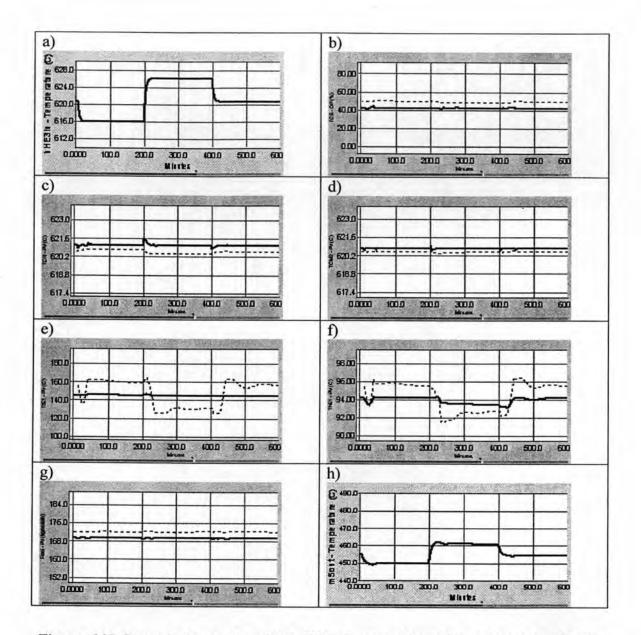
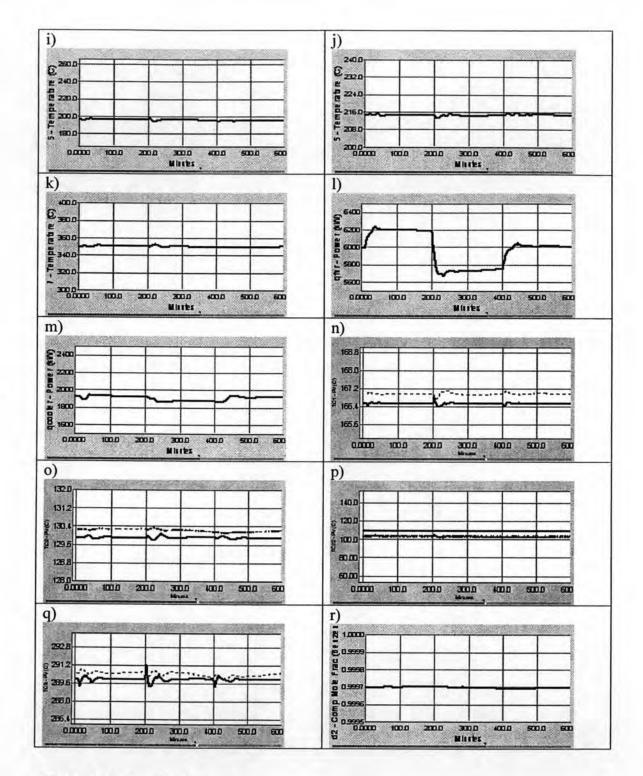
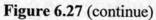





Figure 6.26 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS2, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column


(Note. Process variable (PV), Manipulated variable)



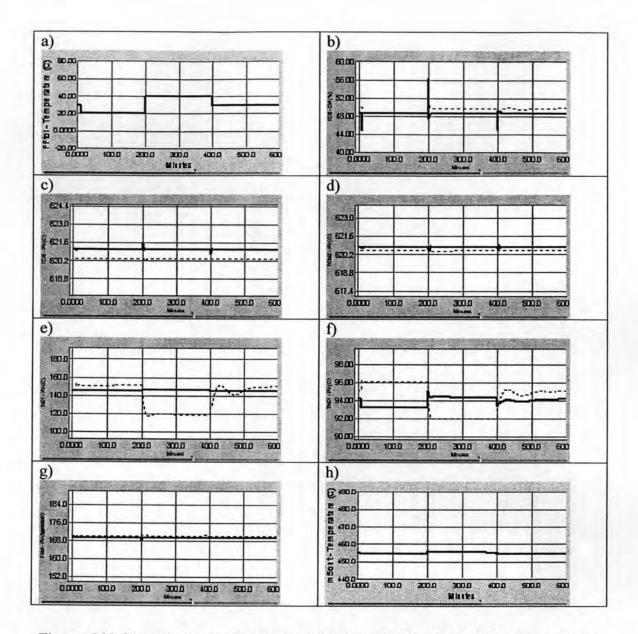


Figure 6.27 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS3, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene of product column (Note. — Process variable (PV), … Manipulated variable)

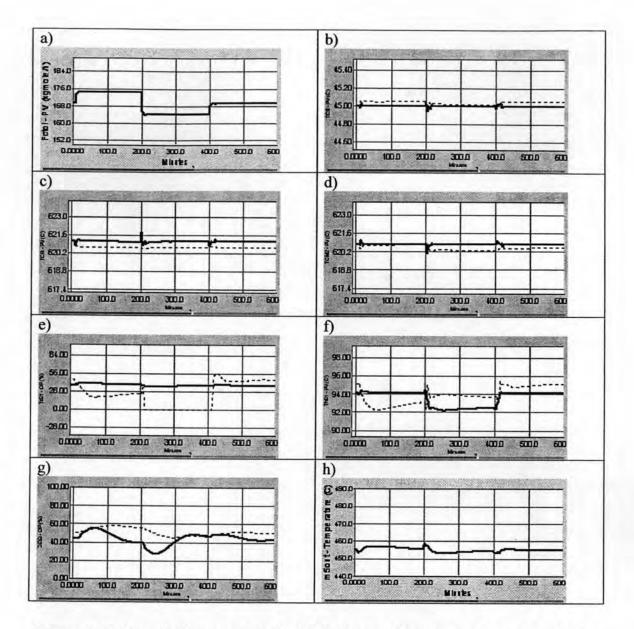


Figure 6.28 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS3, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. Process variable (PV), Manipulated variable)

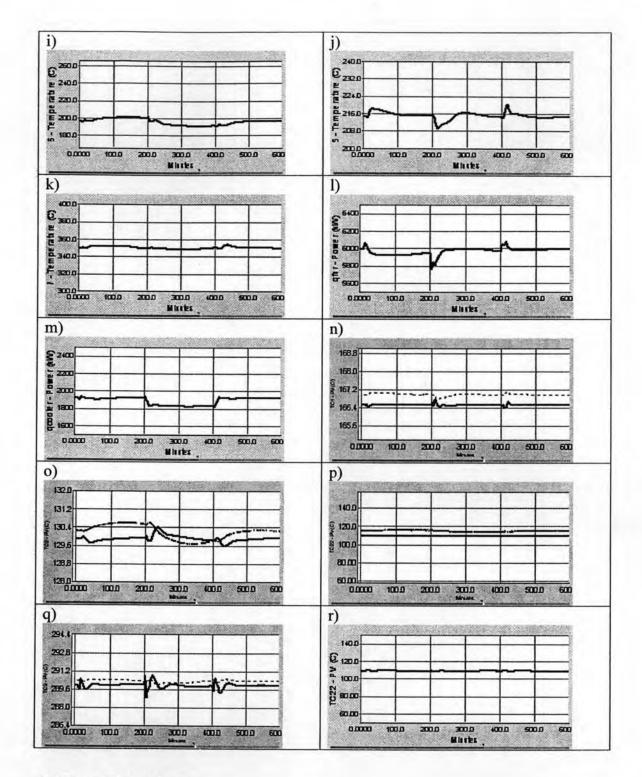

	j)
2000	240.0
240.0	C 2220
220.0	224D
	E 2160
	F 2080
180.0	÷
0.0000 100.0 200.0 300.0 400.0 500.0 600 Wittes	2000 1000 2000 3000 4000 5000 600 Whites
)	1)
2000	§ 500
360.0	
3300	
300.0	Sen
- 0,0000 100,0 200,0 300,0 400,0 500,0 500 Ninster	0,0000 100,0 200,0 300,0 400,0 500,0 500 Mintes
a)	n)
zam	168.8
2400	166.0
2200	8
	a 167 2
	P 166.6
1600	165.6
0,0000 100,0 200,0 300,0 400,0 500,0 500 Minter	ບລັດດວ່າແລ້ວ 2000 3000 ແລ້ວ 600
	p)
3200	and the second
	160.0
312	140.0
	200
29.6	§ 100.0
28.8	80.00
280 0.0000 100.0 200.0 300.0 400.0 500.0 600	0.0000 100.0 200.0 300.0 400.0 500.0 600
thus	0.0000 100.0 200.0 300.0 400.0 500.0 600
	r)
	R 1.0000
928	e, 0.9999
	0.9556
912	
89.6	g 0.9997

Figure 6.28 (continue)

Figure 6.29 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS3, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. Process variable (PV), Manipulated variable)

6.5 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Three Auxiliary Utility Units: CS4

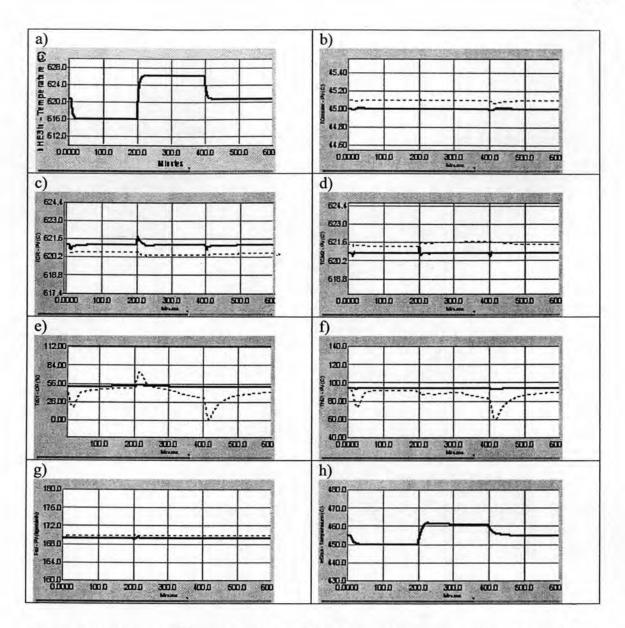
In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.30 to 6.32. Results for individual disturbance load changes are as follows:

6.5.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.30 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes

The dynamic responses of this control structure are worse than CS1. Particularly, the tray temperature control in the recycle column provides a poor performance (Figure 6.30.p) because the performance of the tray temperature controlling in distillation column by valve of bottom product is worser than the bypass valve. The separator temperature and the reactor inlet temperature are slightly well controlled (Figure 6.30.d and c), the oscillations occur in the tray temperature of the product column and stabilizer column (Figure 6.30.n and o).

6.5.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)


Figure 6.31 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the cold stream occurs, since the performance of the tray temperature controlling in distillation column by valve by-pass is better than that by valve of bottom product. As this disturbance occurs, the effect of this change is reduced before entering to the downstream unit operation Thus, the performances of the tray temperature control in the product and recycle column of this control structure are worse than that of CS1. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.31.d and c). A deviation of 5°C happens in the tray temperature of the recycle column and it takes over 500 minutes to return to its nominal value of 290.³⁰C (Figure 6.31.p).

6.5.3 Change in the Total Toluene Feed Flow rate

Figure 6.32 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

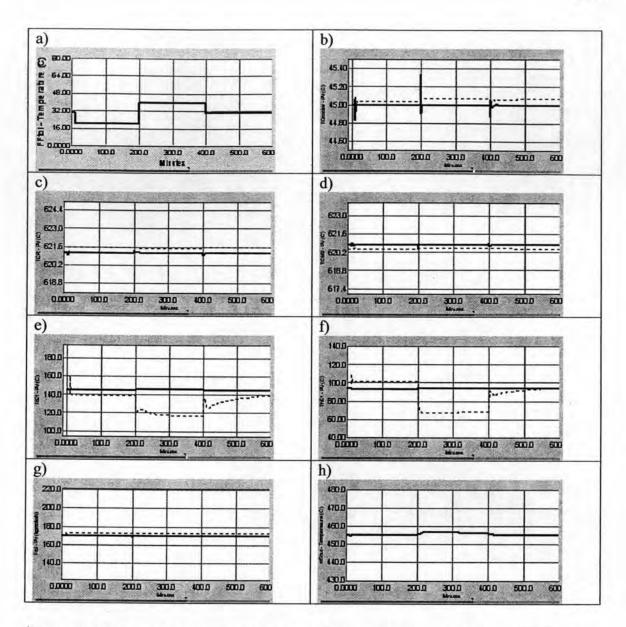

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the total toluene occurs, since the performance of the tray temperature controlling in distillation column by valve by-pass is better than that by valve of bottom product. As this disturbance occurs, the effect of this change is reduced before entering to the downstream unit operation Thus, the performances of the tray temperature control in the product and recycle column of this control structure are worse than that of CS1. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.32.d and c). A deviation of 18 °C happens in the tray temperature of the recycle column and it takes over 800 minutes to return to its nominal value of 290.3°C (Figure 6.32.p). A variation of 5 °C happens in the tray temperature of the stabilizer column (Figure 6.32.n) the oscillations occur in the tray temperature of the product column (Figure 6.32.o).

Figure 6.30 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS4, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
98,04	180.0
94,41	§ 160.0
90.78	140.0
87.14	120.0
83.51	100.0
0.0000 100,0 200,0 300,0 400,0 500,0 600 Minutes	0.0000 1000 2000 3000 4000 5000 600
)	1)
240.0	6400
200	\$ 6200
180.0	3 500
140 0	500
0,000 1000 2000 3000 4000 5000 500	0.000 1000 2000 3000 4000 5000 600
)	n)
200	168.0
	© 167.2
	5 165.6
	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 500 Minutes	0.0000 100.0 200.0 300.0 400.0 500.0 600
	p)
80	
312	330.0
214	2000
35	2000
28.8	2400
0.0000 100.0 200.0 300.0 400.0 500.0 500. Winawa	0,0000 1000 2000 3000 4000 5000 600
	r)
	1000
μΩ	09999
	0.9998
120	0.9997
	0 09996
00000 1000 2000 3000 4000 5000 600	0.0000 100.0 200.0 300.0 400.0 500.0 600

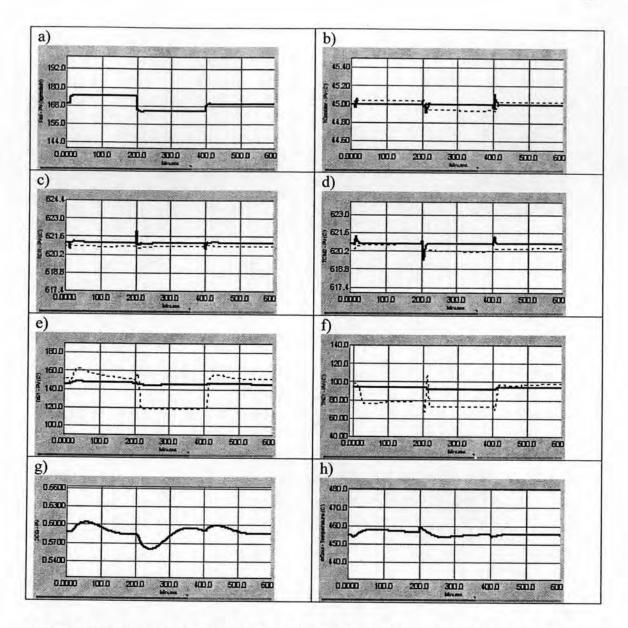

Figure 6.30 (continue)

Figure 6.31 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS4, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j)
98.04	180.0
94.41	£ 160.0
90.78	100
87.14	1200
83.51	100,0
0.0000 100.0 200.0 300.0 400.0 500.0 500	0,0000 1000 2000 3000 4000 5000 500
)	Manag
) 240.0	1)
20.0	6400
2000	§ 6200
180.0	
160.0	3 500
140.0	5600
0.0000 100.0 200.0 300.0 400.0 500.0 600 Minutes	0,0000 100,0 200,0 300,0 400,0 500,0 600
)	n)
2400	163.8
200	168.0
	Q 167.2
	ž 166.1
	165.5
0.000 1000 2000 3000 4000 5000 600	164.8 1000 1000 2000 3000 4000 5000 600
Mann .	Brais
320	p)
312	294.0
304	8 282.0
29.5	200
26.8	233.0
	286.0
0.0000 100,0 200,0 300,0 400,0 500,0 600 Hitters	0,0000 100,0 200,0 300,0 400,0 500,0 600 Minune ,
	r)
	A REAL PROPERTY AND A REAL PROPERTY A REAL PRO
80	
	1,0000 0 39999 0 39996

Figure 6.31 (continue)

Figure 6.32 Dynamic Responses of the HDA Process Alternative 6:Basecase with four Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS4, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. ---- Process variable (PV), ······ Manipulated variable)

	j)
98.04	1800
94.41	£ 160.0
9078	140.0
87.14	120.0
B351	100.0
0,0000 100,0 200,0 300,0 400,0 500,0 500	0,0000 100,0 200,0 300,0 400,0 500,0 600
x)	1)
2400	
200	6400
300	6200
180.0	
160.0	* 5300
140.0 100.0 200.0 300.0 400.0 500.0 600	5600
0.0000 100.0 200.0 300.0 100.0 500.0 600 Minutes	0.0000 100.0 200.0 300.0 400.0 500.0 600 Minana
n)	n)
2093	
2015	168.0
1938	§ 167.2
1830	166.6 ······
1783	165,6
0.0000 100.0 200.0	
Minana	0,0000 100,0 200,0 300,0 100,0 500,0 600 Minutes
)	p)
132.0	
131.2	100
130.4	§ 3000
129.5	280.0
126.8	260.0
1260 0.0000 100.0 200.0 300.0 400.0 500.0 600	0,0000 100,0 200,0 300,0 400,0 500,0 600
Mines y	Minana
	r)
	. 0.9999
141D	09998
	0.9997
112.0	£ 0.9996
96.00	9 03660
80,00 0,0000 100,0 200,0 300,0 400,0 500,0 600	
Mass	0.0000 100.0 200.0 300.0 400.0 500.0 600 Maruna

Figure 6.32 (continue)

6.6 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary Utility Units: CS1

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.33 to 6.35. Results for individual disturbance load changes are as follows:

6.6.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.33 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

Again, the heat load disturbance of the hot stream can be shifted to the cold stream, since the hot outlet temperature of FEHE3 has to be kept constant. Both positive and negative disturbance loads of the hot stream are shifted to a furnace utility. When the hot temperature decreases, it will result in decrease of the furnace inlet temperature (Figure 6.33.h). Consequently, the furnace duty increases (Figure 6.33.l). On the other hand, when the positive disturbance load is originating from the hot stream (i.e. the hot inlet temperature increases), the furnace duty will be decreased, since the furnace inlet temperature increases. The tray temperature in the recycle column has a deviation about 2°C and it takes long time to return to its nominal value of 290.3°C (Figure 6.33.p). Besides, the separator temperature and the reactor inlet temperature are quite well controlled (Figure 6.33.b and c).

6.6.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.34 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

Both the cold and hot outlet temperatures of FEHE1 decrease as the cold inlet temperature decreases. As a result, the hot outlet temperature of FEHE1 decreases and the cooler duty decreases (Figure 6.34.f and m).

When the cold inlet temperature of FEHE1 increases, both the cold and hot outlet temperatures of FEHE1 increase. Again, the hot outlet temperature of FEHE1 quickly increases then the hot outlet temperature of FEHE1 back to steady state (Figure 6.34.f) so the cooler duty increases. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.34.b and n), but the oscillations occur in the recycle column temperature (Figure 6.34.p).

6.6.3 Change in the Total Toluene Feed Flow Rate

Figure 6.35 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

Energy integration causes the plant will be more difficult to control. Though HDA plant with energy integration (alternative 6) can recover more energy, but the control system in this complex energy integrated plant cannot handle large amount of disturbances.

To increase in total toluene flowrate raises the reaction rate, so the benzene product flowrate increases (Figure 6.35.q). On the other hand, the drop in total toluene feed flowrate reduces the reaction rate, so the benzene product flowrates drops but the

benzene product quality is rarely affected by this change (Figure 6.35.q). The separator temperature is slightly well controlled (Figure 6.35.d), but the oscillations occur in the tray temperature of the stabilizer column and the reactor inlet temperature (Figure 6.35.i and h). For the tray temperature of the product column, it is quite well controlled when this disturbance occurs (Figure 6.35.o), but the tray temperature in the recycle column has a deviation about 5°C and it takes long time to return to its nominal value of 290.3°C (Figure 6.35.p).

6.7 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with Minimum Auxiliary Utility Units: CS2

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.36 to 6.38. Results for individual disturbance load changes are as follows

6.7.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.36 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

The dynamic responses of this control structure are better than CS1 when the change in the disturbance load of the hot stream occurs, since the feed flowrate of the recycle column is flow-controlled. Then, the effect of this disturbance does not propagate to downstream unit operation like recycle column. Thus, the tray temperatures in the stabilizer and recycle column provide well controlled (Figure 6.36.n and p). The separator temperature, the reactor inlet temperature is slightly well controlled (Figure 6.36.d) but the oscillation happens in the tray temperature of the product column (Figure 6.36.o.).

6.7.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.37 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of this control structure are better than that CS1 when the change in the disturbance load of the cold stream happens. Particularly, the tray temperature in the recycle column provides a well controlled (Figure 6.37.p) because the feed flowrate of the recycle column is fixed for to reduce the propagation when disturbance occurs. In addition, the other dynamic responses are similar to the earlier control structures. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.37.d and n) and the smooth control response happens in the tray temperature of the recycle column. But the small oscillations occur in the tray temperature of the product column (Figure 6.37.o).

6.7.3 Change in the Total Toluene Feed Flow rate

Figure 6.38 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of CS2 are worse than that of the CS 1 when this disturbance occurs. Particularly, the tray temperature in the recycle column provides the well controlled (Figure 6.38.p) because the feed flowrate of the recycle column is flow-controlled for reducing the material and flow propagation during the disturbance occurs. In addition, the separator temperature is quite well controlled (Figure 6.38.d), the oscillations occur in the tray temperature of the product column (Figure 6.38.o).

6.8 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with minimum Auxiliary Utility Units: CS3

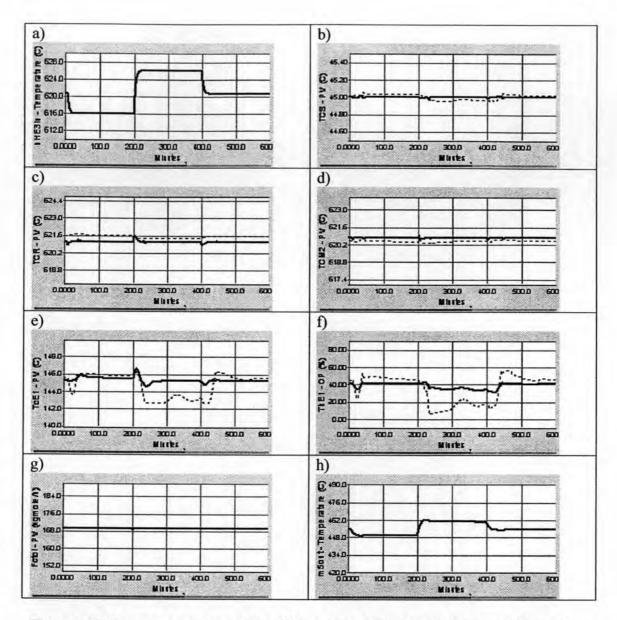
In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.39 to 6.41. Results for individual disturbance load changes are as follows:

6.8.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.39 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

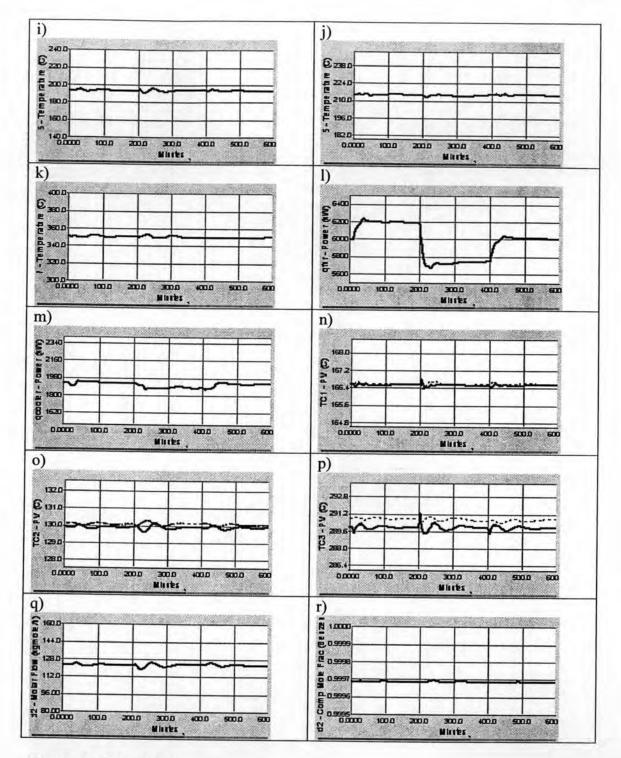
The dynamic responses of this control structure are better than CS1 when the change in the disturbance load of the hot stream occurs, since the temperature of the product column is two-point control .Thus, the tray temperatures in the product and stabilizer column provide well controlled (Figure 6.39.0, p and n). The separator temperature, the reactor inlet temperature is slightly well controlled (Figure 6.39.d) but the oscillation happens in the tray temperature of the recycle column (Figure 6.39.p.).

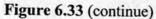
6.8.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)


Figure 6.40 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of this control structure are better than that CS1 when the change in the disturbance load of the cold stream happens. Particularly, the tray temperature in the product column provides a well controlled (Figure 6.40.0 and p) because the temperature of the product column is two-point control. In addition, the other dynamic responses are similar to the earlier control structures. The separator temperature and the tray temperature in the stabilizer column are well controlled (Figure 6.40.d and n) and the smooth control response happens in the tray temperature of the recycle column. The molar flow of benzene is well controlled (figure 6.40.r).

6.8.3 Change in the Total Toluene Feed Flow rate


Figure 6.41 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.


The dynamic responses of CS2 are better than that of the CS 1 when this disturbance occurs. Particularly, the tray temperature in the product column better control than CS1 (Figure 6.41.0 and p) because the temperature of the product column is two-point control In addition, the separator temperature is quite well controlled (Figure 6.41.d), the oscillations occur in the tray temperature of the recycle column (Figure 6.41.q).

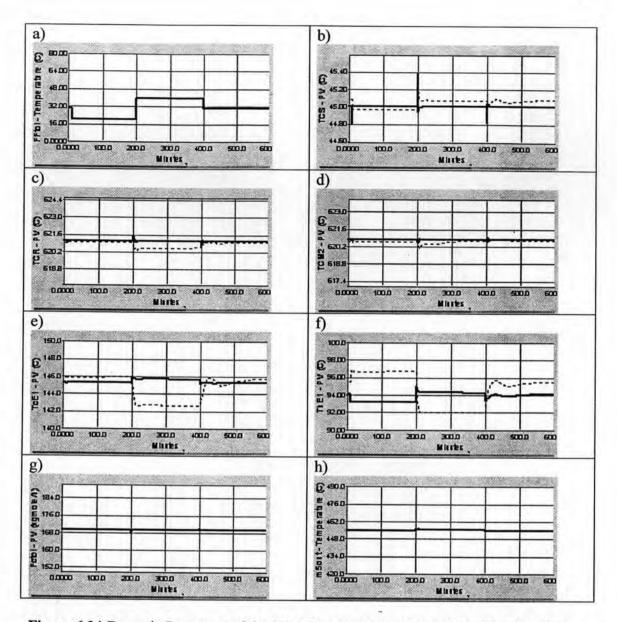


Figure 6.33 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS1, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

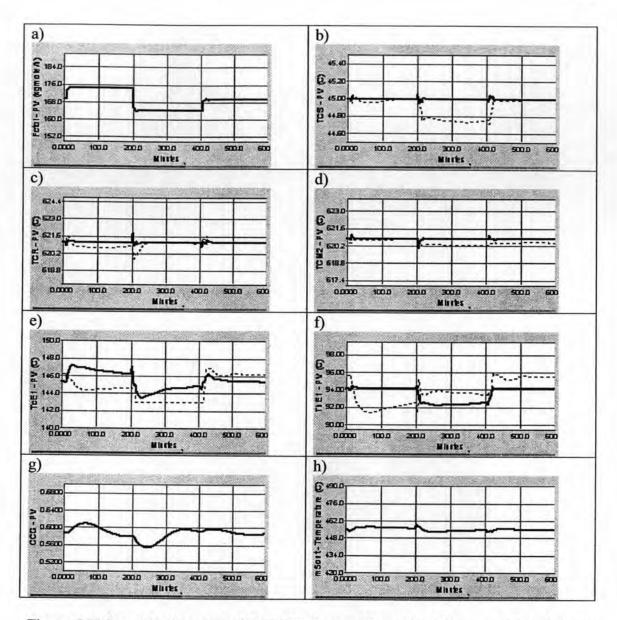
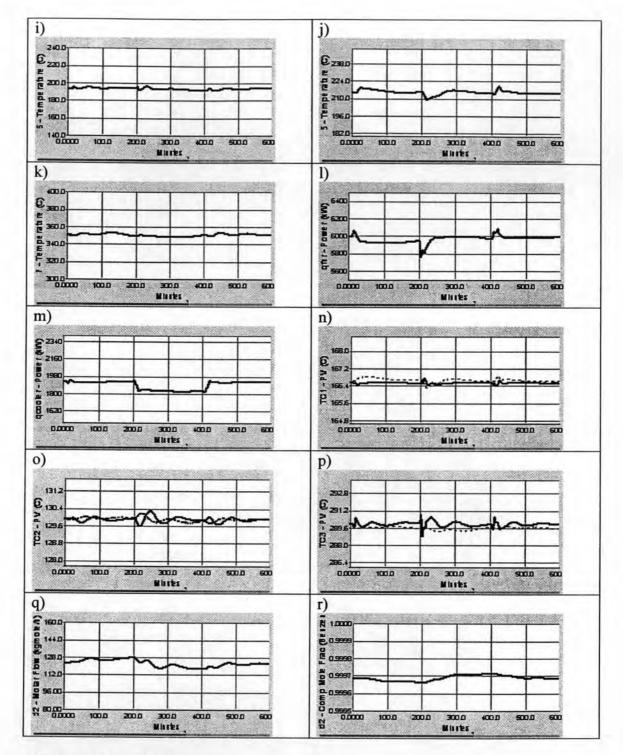
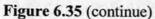


Figure 6.34 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS1, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature,(p) recycle column tray temperature,(q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)


	j)
240.0	© 280
220.0	2
	6 2240 6 2000
160.0	Ê F 196.D
140.0	in 182.0
1400 100000 1000 2000 3000 4000 500 600 Mintes	0.0000 100.0 200.0 300.0 400.0 500.0 500 Nintes
)	1)
400.01 1 1 1 1 1 1 1 1 1	
3000	Second Se
360.0	
340.0	
330.0	6 sato
30000 1000 2000 2000 000 000 000	0,0000 1000 2000 3000 4000 5000 600
White ,	Whites
)	n)
2340	163.0
	C 1672
	166.4
1620	P 165.6
0.0000 1000 2000 3000 4000 5000 500	164.8 0.0000 100.0 200.0 300.0 400.0 500.0 500
Wintes .	Ninces ,
	p)
1312	292.0
	Q ²⁸¹²
120.4	
128.8	P 286.
128.0	268.0
0,0000 100,0 200,0 300,0 400,0 500,0 500 Minites	0,0000 100,0 200,0 300,0 400,0 500,0 500 Mintes
	r)
	1 1000
144.0	809999
	C 09998
112.0	g 05997

80,001 100,0 200,0 300,0 400,0 500,0 600	0.05000 100.0 200.0 300.0 400.0 500.0 500 N Mintes


Figure 6.34 (continue)

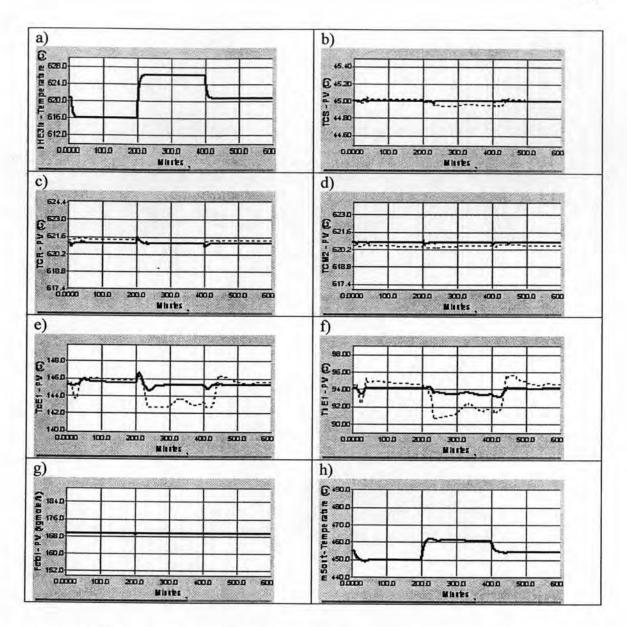
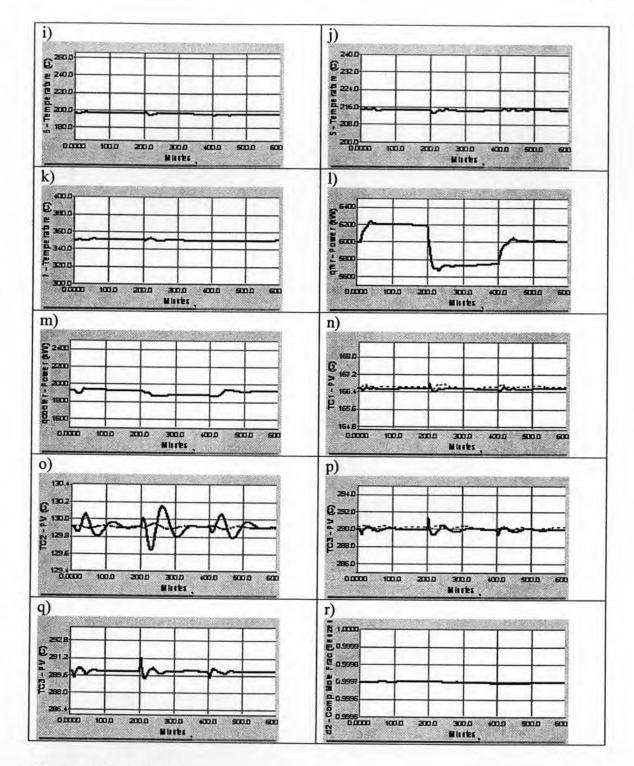
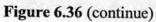


Figure 6.35 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS1, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (n) cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)





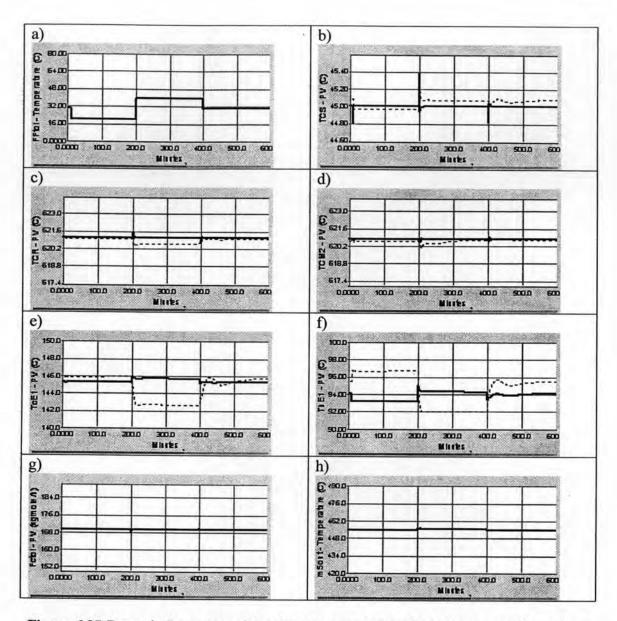
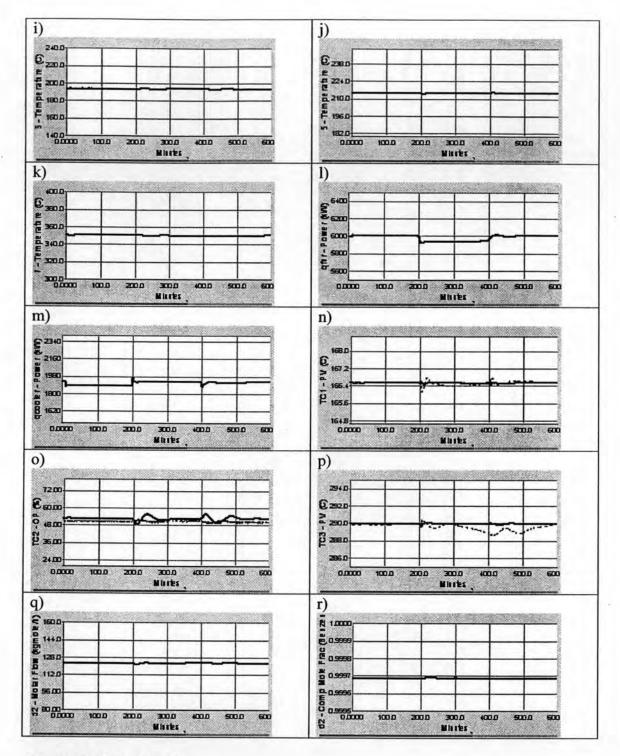
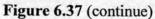


Figure 6.36 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS2, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column


(Note. Process variable (PV), Manipulated variable)



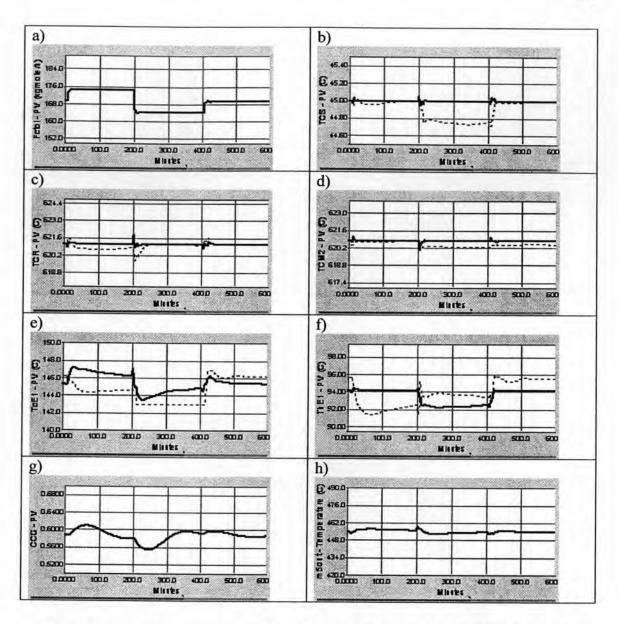
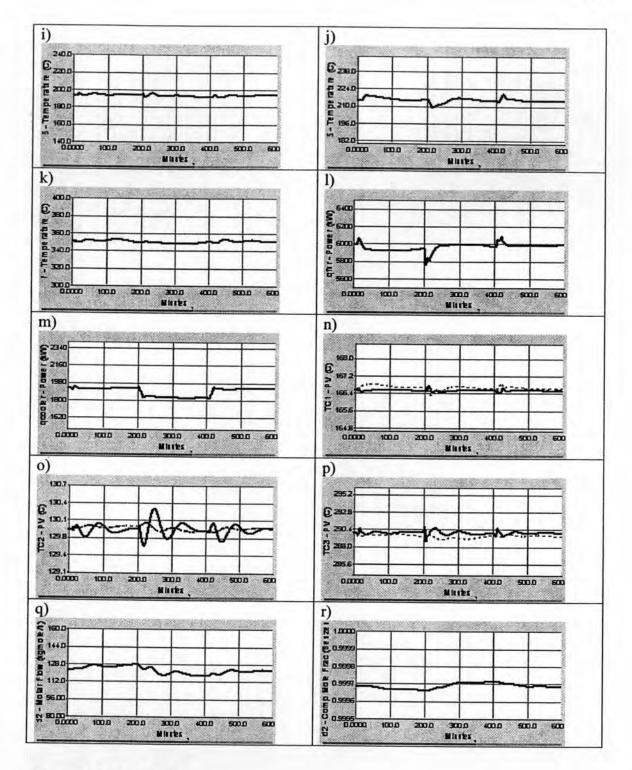
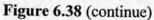


Figure 6.37 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS2, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)





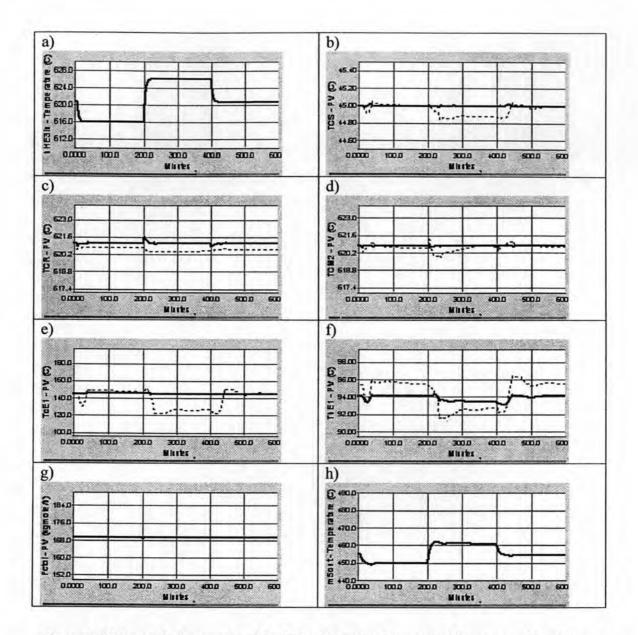


Figure 6.38 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS2, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. — Process variable (PV), •••••• Manipulated variable)

Figure 6.39 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS3, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene of product column (Note. — Process variable (PV), … Manipulated variable)

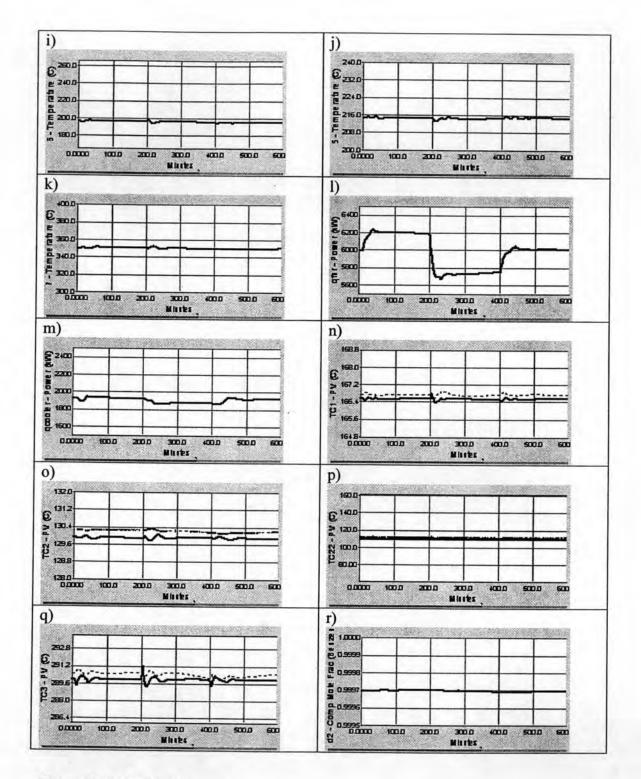
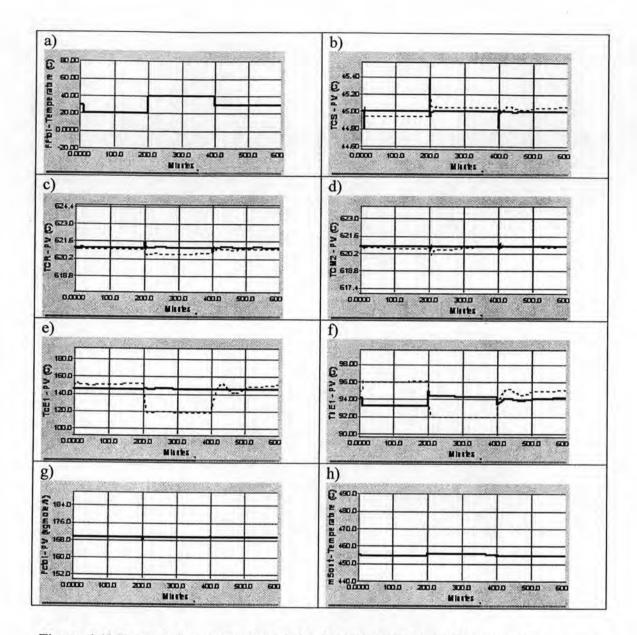
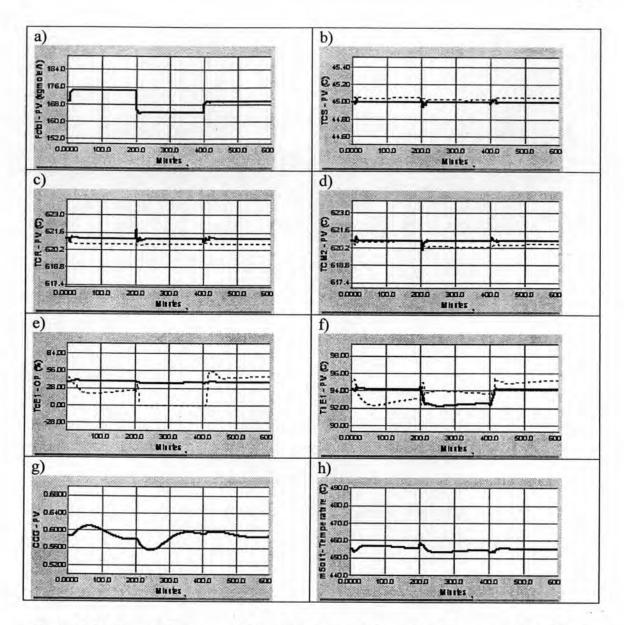
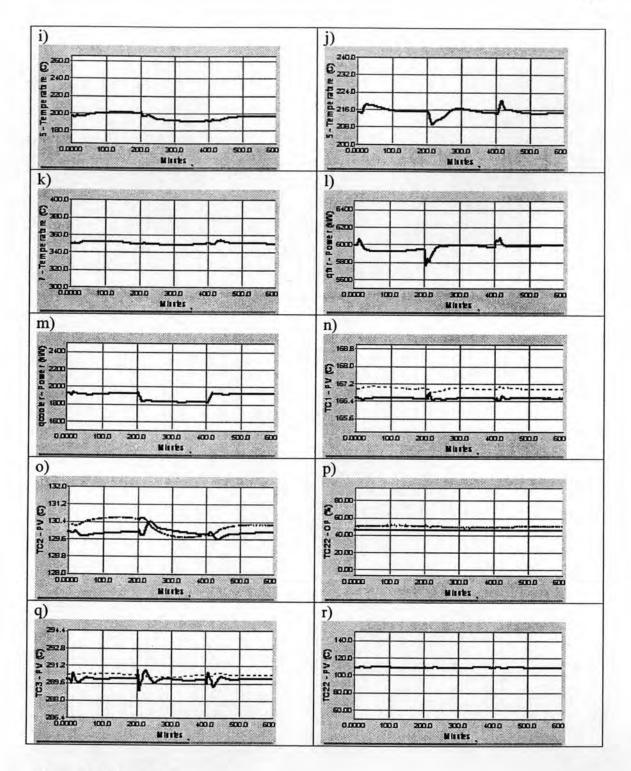



Figure 6.39 (continue)



174

Figure 6.40 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS3, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene (Note. — Process variable (PV), … Manipulated variable)


	j)
280.0	240.0
2000	£ 200
2400	<u> </u>
220.0	2240
	E 2160
180.0	F 2080
0,0000 100,0 200,0 300,0 400,0 500,0 600	2000 1000 2000 3000 4000 5000 500
Whees ,	Whites
)	1)
400.0	19
300	6400
300	
340.0	2 9900
320.0	ε l
3000 1000 2000 3000 4000 5000 500	
0.0000 100.0 200.0 300.0 100.0 500.0 600 Withes	0.0000 100.0 200.0 300.0 400.0 500.0 500 Mintes
1)	n)
-,	11)
2400	
200	
2000	> 167.2
	1 166.4 100 100 100 100 100 100 100 100 100 10
	P 165.5
	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 500 Mintes	0000 1000 2000 2000 0000 0000 0000 Mintes
	Research Control of Co
	p)
	160.0
131.2	£ 140.0
129.6	S 100.0
128.8	
128.0	
0,0000 100,0 200,0 200,0 400,0 500,0 500 Mintes	0,0000 100,0 2002 200,0 400,0 500, 500 Wints
	r)
	- Real Part of an analysis and the second
828	N 1440
	E.0.9999
	8
2912	K 0.9996
2912	0.9996
2912	0.9996
812 895	0.9996

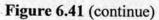

Figure 6.40 (continue)

Figure 6.41 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS3, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. — Process variable (PV), •••••• Manipulated variable)

6.9 Dynamic Simulation Results for HDA Process Alternative 6 (Basecase) with minimum Auxiliary Utility Units: CS4

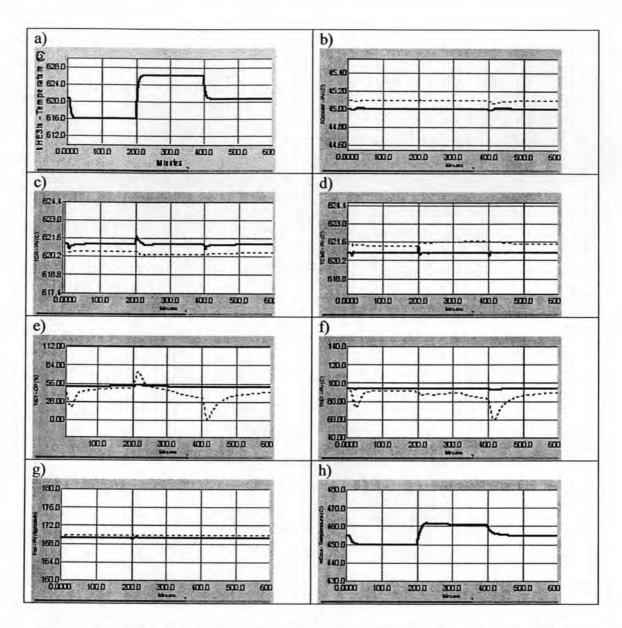
In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.42 to 6.44. Results for individual disturbance load changes are as follows:

6.9.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.30 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes

The dynamic responses of this control structure are worse than CS1. Particularly, the tray temperature control in the recycle column provides a poor performance (Figure 6.42.p) because the performance of the tray temperature controlling in distillation column by valve of bottom product is worse than the bypass valve. The separator temperature and the reactor inlet temperature are slightly well controlled (Figure 6.42.d and c), the oscillations occur in the tray temperature of the product column and stabilizer column (Figure 6.42.n and o).

6.9.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)


Figure 6.43 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the cold stream occurs, since the performance of the tray temperature controlling in distillation column by valve by-pass is better than that by valve of bottom product. As this disturbance occurs, the effect of this change is reduced before entering to the downstream unit operation Thus, the performances of the tray temperature control in the product and recycle column of this control structure are worse than that of CS1. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.43.d and c). A deviation of 5°C happens in the tray temperature of the recycle column and it takes over 500 minutes to return to its nominal value of 290.3°C (Figure 6.43.p).

6.9.3 Change in the Total Toluene Feed Flow rate

Figure 6.44 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

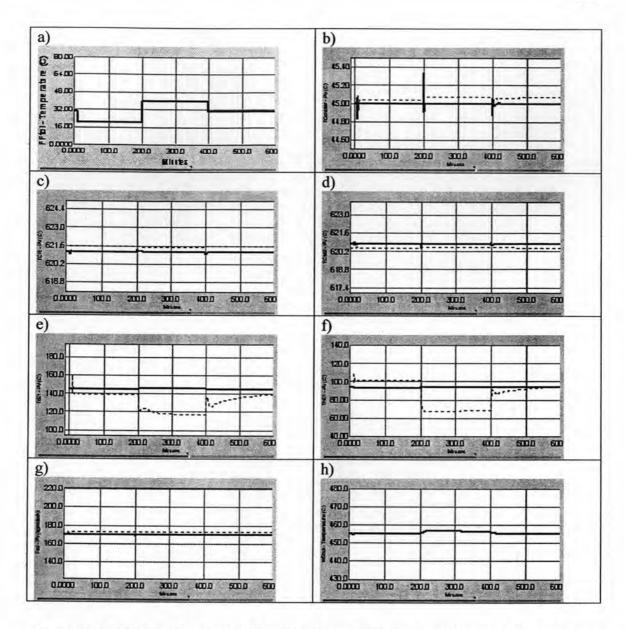

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the total toluene occurs, since the performance of the tray temperature controlling in distillation column by valve by-pass is better than that by valve of bottom product. As this disturbance occurs, the effect of this change is reduced before entering to the downstream unit operation Thus, the performances of the tray temperature control in the product and recycle column of this control structure are worse than that of CS1. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.44.d and c). A deviation of 18 °C happens in the tray temperature of the recycle column and it takes over 800 minutes to return to its nominal value of 290.3°C (Figure 6.44.p). A variation of 5 °C happens in the tray temperature of the stabilizer column (Figure 6.44.o).

Figure 6.42 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS4, where: (a)the variation hot outlet temperature of reactor, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j) ,
98.04	180.0
94.41	
0078	50305
	140.0
87.14	3 120.0
33.51	100.0
0.0000 100,0 200,0 300,0 400,0 500,0 600 Wrann -	0.0000 100.0 200.0 300.0 400.0 500.0 600 Minutes
	1)
0.02	6400
2000	
0.081	
160,0	3 500
	5500
0.0000 100.0 200.0 300.0 400.0 500.0 600 Minuse	00000 100.0 200.0 300.0 400.0 500.0 600 Minute
1)	n)
2400	£ 198.0
200	> 167 2
	167.2 166.4
	P 165.5
600	164.8
0.0000 100.0 200.0 300.0 100.0 500.0 600 Minute	1000 2000 3000 4000 5000 600 Mintes
	p)
	F7
1320	320.0
130.4	> 3000
1236	280.0
126.8	
	2400
1000 2000 3000 000 000 000 000 Wintes	100.0 200.0 200.0 400.0 500.0 600 Minites
	r)
60.0	
40	1 D.9999
28.0	
	0.9996
	g 09997
600	¥ 0.9996
	0.9995

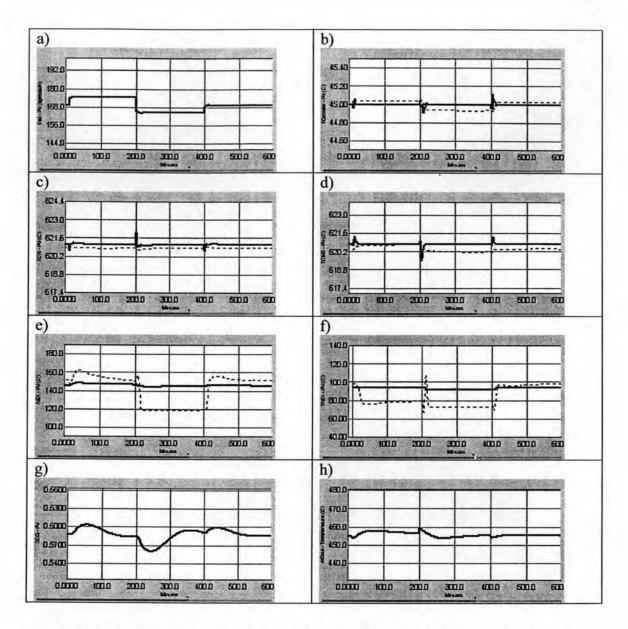

Figure 6.42 (continue)

Figure 6.43 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS4, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature,(p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
98,04	180.0
94.41	Q 160.0
90,78	140.0
87.14	1200
83.51	100.0
0.0000 100.0 200.0 300.0 400.0 500.0 500	0.0000 100.0 200.0 300.0 400.0 500.0 600
)	1)
3400	1)
200	5400
200	§ 5200
0.081	
160.0	3 500
140.0	5500
0.0000 100.0 200.0 300.0 400.0 500.0 500. Minutes ,	0,000 1000 2000 3000 4000 5000 600
1)	n)
2400	163.8
2200	£ 168.D
2000	2 167 2
	- 166.4
1600	P 165.5
0,0000 100,0 200,0 300,0 400,0 500,0 600	1648 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Minute	Witchs,
	p)
1320	294.0
1912	© 252D
130.4	200
129.6	2 288D
	295.0
0000 0.002 0.002 0.002 0.000 0000.0 Mintes	100.0 200.0 300.0 400.0 500.0 500. Mints
	r)
600	1000
44.0	F 0.9999
28.0	¥ D996
12.0	1 0.997
6.00	0.9996
	09995
0,0000 100,0 200,0 300,0 400,0 500,0 600	0.0000 100,0 200,0 300,0 400,0 500,0 600

Figure 6.43 (continue)

Figure 6.44 Dynamic Responses of the HDA Process Alternative 6:Basecase with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS4, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. — Process variable (PV), … Manipulated variable)

	j)
	180.0
IL.L1	£ 160.0
078	1400
R.14	1 120.0
351	100.0
0.0000 100.0 200.0 300.0 400.0 500.0 600	0,0000 100.0 200.0 300.0 400.0 500.0 600
in the second	1)
	ı, <u> </u>
200	6200
	§ 6200
0.0	² sau
	5600
0,0000 100,0 200,0 300,0 400,0 500,0 600	0,0000 100.0 200.0 300.0 400.0 500.0 600 Hinters ,
)	n)
33	
015	168.0
	0 167 2 8
300	166.4
183	165.5
0.000 100.0 200.0 300.0 400.0 500.0 600	164.8 0.0000 100.0 200.0 300.0 400.0 500.0 600
Manne	
	p)
	3000
312	©
nin	E to an and the second second
	2400
80000 100.0 200.0 300.0 100.0 500.0 600	100,0 200,0 300,0 400,0 500,0 500 Mintes
	r)
00	and the second
4.0	8 09999
	0.9998
20	0.9997
	§ 0.9995
00000 1000 2000 3000 4000 5000 500	¥ 03995

Figure 6.44 (continue)

6.10 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN1) with minimum Auxiliary Utility Units: CS1

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.45 to 6.47. Results for individual disturbance load changes are as follows:

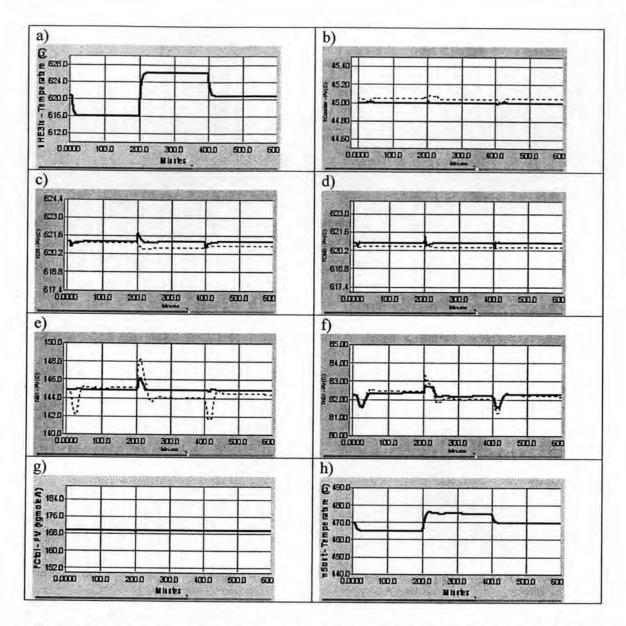
6.10.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.45 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS1 are similar to the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.45.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.45.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.45.p).

6.10.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.46 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN1 with CS1 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.46.n and o).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure6.46.c,d and p).

6.10.3 Change in the Total Toluene Feed Flow rate

Figure 6.47 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

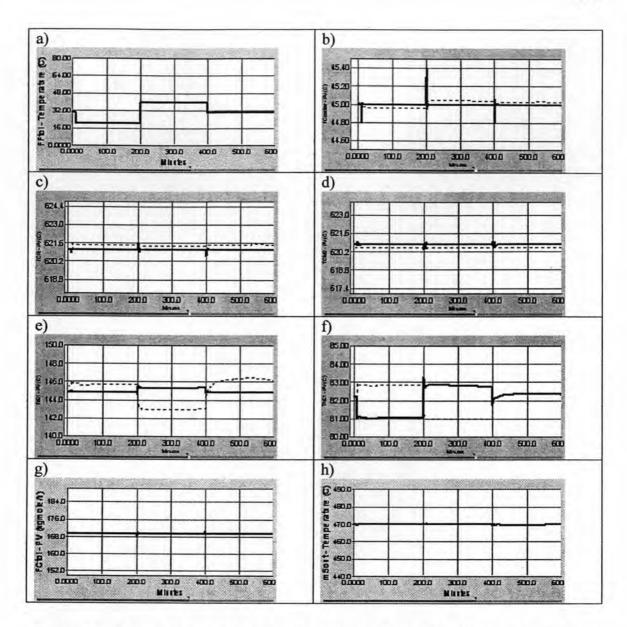

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.47.d).A small oscillation of 3°C happens in the product column (Figure6.47.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.47.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure6.47.p).

Figure 6.45 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS1, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j)
00	2400
20.0	E 232.0
	E 224D
	E 216D
0.0	F 205.0
	2000
0.0000 100.0 200.0 300.0 400.0 500.0 600 Mintes	0.0000 100.0 200.0 300.0 400.0 500.0 600 Mintes
	1)
00, , , , , , , , , , , , , , , , , , ,	5000
00	8962230229
00	§ 300
	5 500 5 5400
00	
000000 1000 2000 3000 4000 5000 600 Mints	00000 1000 2000 3000 4000 5000 600 Mintes
	n)
	1)
	168.0
	Q 167.2
	§ 166.4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	165.5
0000 1000 2000 3000 4000 5000 600	161.5 1000 1000 2000 3000 4000 5000 600
Miarles _	Brand
	p)
	294.4
2	233.6
	§ 292.8
	1 200 V
8	2912
	290,4
10000 100.0 200.0 300.0 400.0 500.0 600 History	0,0000 100,0 200,0 200,0 400,0 500,0 600
	r)
	Ř 1000
	E.09999
	2 0.9998
	ő 0997
0	e. 0.9996
10000 1000 2000 3000 4000 5000 500	5 09995 0.0000 1000 2000 3000 4000 5000 600
0000 100.0 200.0 300.0 400.0 500.0 600	00000 1000 2000 3000 4000 5000 600

Figure 6.45 (continue)

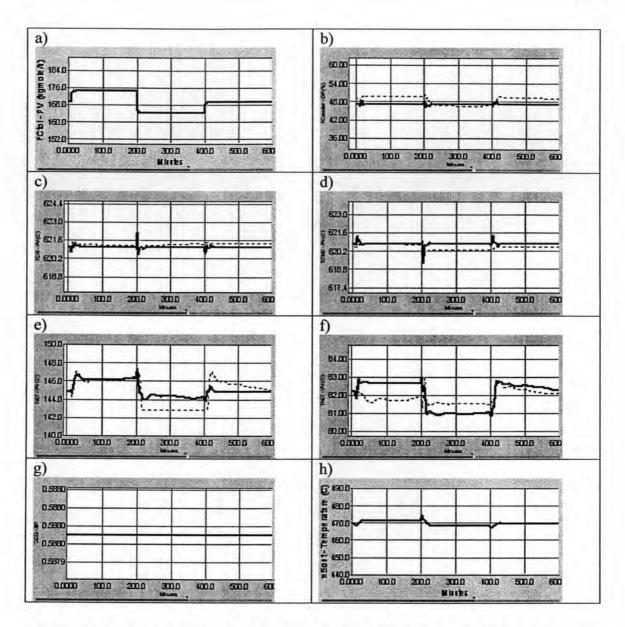


Figure 6.46 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS1, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	J)
240.01	240.01
220.0	6 ₂₃₂₀
2005	E 22+D
180,0	£2160
160.0	F ZOED
1400 1000 2000 2000 4000 5000 600	2000 1000 2000 2000 2000 000 5000
Whites	Mintes
)	L)
	5000,
380.0	£ 5800
300	8- 2 9300
340.0	5400
320.0	÷ 500
	•
0000 0001 0002 0002 0000 000 Wints	5000 1000 2000 3000 4000 5000 600 Wintes
)	N)
	168.D
	\$ 167.2
1440	¥ 166.4
1280	165.6
1120	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 600	0.0000 100,0 200,0 300,0 400,0 500,0 600
Nurtes ,	Maan
	P)
312	233.6
10.4	§ 292.8
85	§ 200.0
88	2912
	20.4
0,0000 100.0 200.0 300.0 400.0 500.0 500 Minute ,	0.0000 100,0 200,0 300,0 400,0 500,0 600
	R)
	R 10000
**0	8 0 9999
260	
12.0	g 03997
	2 00000000 2
500	D.noppcl
	0.9995 0.9995 0.0000 100.0 200.0 300.0 400.0 500.0 600

Figure 6.46 (continue)

191

Figure 6.47 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS1, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

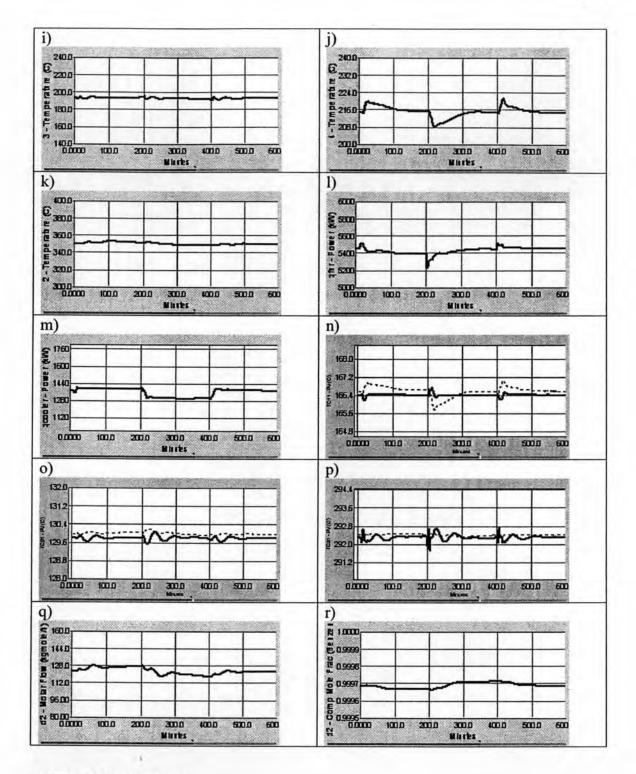


Figure 6.47 (continue)

6.11 Dynamic Simulation Results for HDA Process Alternative6 (RHEN1) with minimum Auxiliary Utility Units: CS2

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.48 to 6.50. Results for individual disturbance load changes are as follows

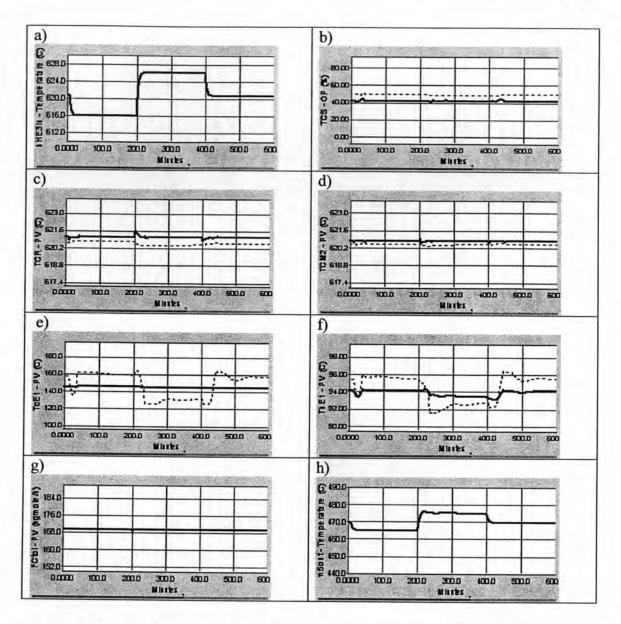
6.11.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.48 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS2 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.48.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.48.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.48.p). The oscillations occur in the molar flow of the benzene (Figure 6.48.q).

6.11.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.49 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS2 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.49.d and c). A deviation of 5°C happens in the tray temperature of the recycle column and it takes over 500 minutes to return to its nominal value of 290.3°C (Figure 6.49.p) and the oscillations occur in the molar flow of the benzene (Figure 6.49.q).

6.11.3 Change in the Total Toluene Feed Flow rate

Figure 6.50 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

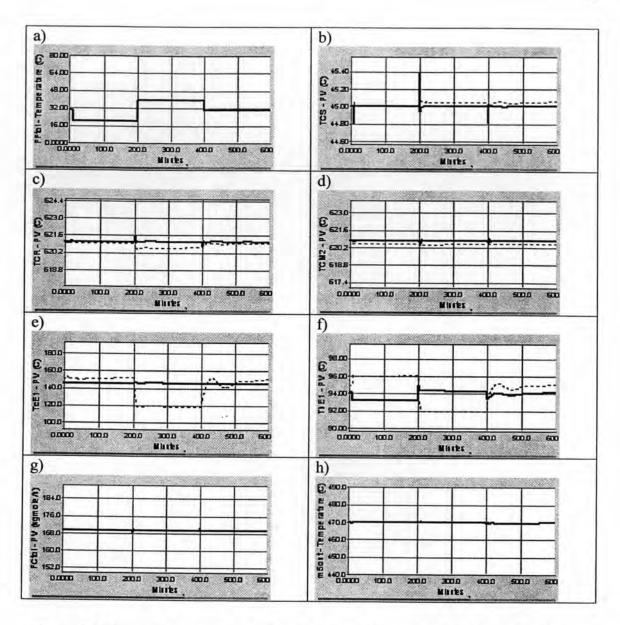

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.50.d).A small oscillation of 3°C happens in the product column (Figure6.50.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.50.n). The tray temperature of the recycle column has a small deviation about 2°C and it takes over 500 minutes to return to its nominal value (Figure6.50.p). The oscillations occur in the molar flow of the benzene (Figure 6.50.q).

Figure 6.48 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS2, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	(3)
STATE OF A	j)
	240.0
220.0	2320
2000	2240
	£ 216D
160.0	2060
1000 1000 2000 3000 000 5000 500	2000 0,0000 1000 2000 3000 4000 5000 500
Mintes	0,0000 100,0 200,0 300,0 400,0 500,0 600 Mintes
)	1)
	The second se
	600
300	§ 5500
360.0	5600
340.0	2 500
320.0	
	£ 500
0.0000 100.0 200.0 300.0 400.0 500.0 500	0.000 100.0 200.0 300.0 400.0 500.0 600
Nintes ,	Mittes ,
	n)
1300	and the second
1760	168.8
	© 168 D
	2 157 2
1380	
1120	P
	165.5
0.0000 101.0 201.0 301.0 400.0 501.0 600 Mintes	0.0000 1000 2000 3000 4000 5000 600 Minter
•	And and a second s
	p)
100.00	296.8
80.00	Q ²⁹⁴⁰
60.00	5 2912
	- Verture
40.00	B 288.4
2000	265
100,0 200,0 300,0 400,0 500,0 500	0,0000 100,0 200,0 200,0 400,0 500,0 600
Whites	Wirts
	r)
510	
	ë 09999
28.0	L 0.9996
12.0	
	§ 0997
600	E 09996
0.0000 100.0 200.0 300.0 400.0 500.0 600	E 0.0000 100.0 300.0 400.0 500.0 600.0 N 0.0000 100.0 200.0 300.0 400.0 500.0 600.0
Whites	, 0.0000 100.0 200.0 300.0 400.0 500.0 600 Nintes

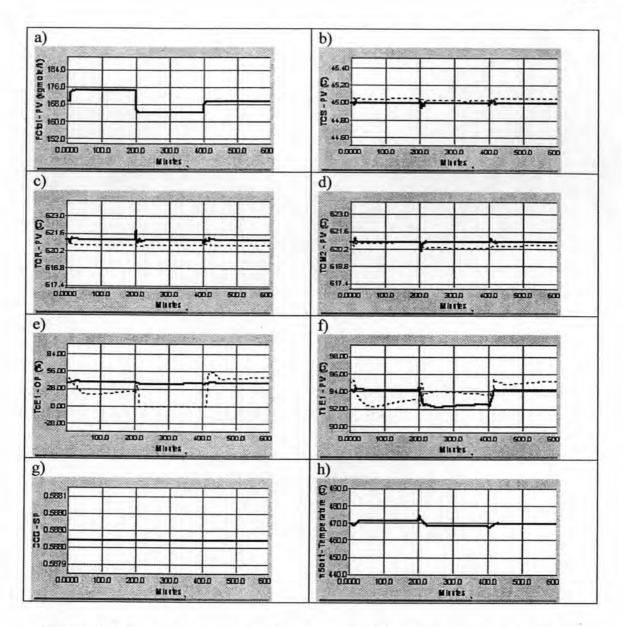

Figure 6.48 (continue)

Figure 6.49 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS2, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
240.0	2400
220.0	6 ₂₂₂₀
200	2 Z240
180.0	2160
160.0	2000
100000 100.0 200.0 300.0 400.0 500.0 600	2000 1000 2000 2000 4000 5000 600
Whites ,	Martes ,
	1)
	6000
30.0	§ 5500
60.0	9 5600
340.0	S400
000	2 500
	"
0.0000 100.0 2000 3000 4000 500.0 500 Minites	00000 0001 0002 0003 000 0000 000 Whites
)	n)
600	168.8
••••	£ 160.0
1440	5 1672
	166.4
120	P 165.6
00000 1000 2000 3000 4000 5000 600	1648
Minets ,	Whites
	p)
30.2	2928
	© 2812
2)8	2206 A
25	P 2580
8.4	26.4
0.0000 100.0 200.0 300.0 400.0 500.0 500	0,0000 100,0 200,0 300,0 400,0 500,0 500
Wirtes ,	Minchs ,
	<u>r)</u>
0.0	<u>R</u> 10000
11D	ë.09999
	E 0.9996
12.0	# 09997
5m	B 09996
	0 0995
00000 1000 2000 3000 4000 5000 500	0,0000 1000 2000 3000 4000 5000 600

Figure 6.50 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS2, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. — Process variable (PV), •••••• Manipulated variable)

	j)
240.0	240.0
220.0	E 2320
2000	# # 224.0
180.0	8 216D
160.0	F 2060
	2000
1000 1000 2000 3000 4000 5000 600	0.0000 100.0 200.0 300.0 100.0 500.0 500
Mintes ,	Mintes ,
	1)
	·····
380.0	§ 5800
360.0	5500
340.0	2 5400 have a second se
320.0	E 500
300,0 100,0 200,0 300,0 400,0 500,0 600	
0.0000 100.0 200.0 300.0 400.0 500.0 500. Mintes	0,0000 1000 2000 3000 4000 5000 500 Wintes
)	
	n)
1760	168.8
1500	£ 168.0
	2 1672
	105.1 Total
1120	F 165.6
0.0000 100.0 200.0 300.0 400.0 500.0 600	00000 1000 2000 3000 4000 5000 500
Whites .	Mintes ,
	p)
13301 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24.4
131.5	E ²⁵²⁸
1302	2 2512
127.4	P 2880
260	
0200 1000 2000 3000 4000 5000 600 Wintes	295.4 0.0000 100.0 200.0 300.0 400.0 500.0 600
-1455	Wirths ,
	<u>r</u>)
	R 1000
44.0	6.09999
	E 09996
	2 0 9997
600	B 0.9996
nm 8	0.0000 1000 2000 3000 4000 5000 600 N Minter
70,000 100,0 200,0 300,0 400,0 500,0 600 Wittes	1, ^{™00} 0000 100.0 200.0 300.0 400.0 500.0 600 N Mintes,

Figure 6.50 (continue)

6.12 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN1) with minimum Auxiliary Utility Units: CS3

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.51 to 6.53. Results for individual disturbance load changes are as follows:

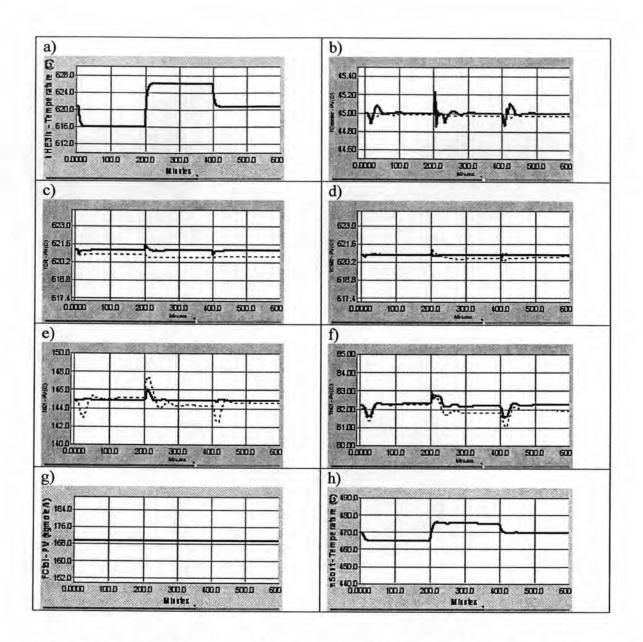
6.12.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.51 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS3 are better than the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.51.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.51.n, o and p). Its advantages is that it provides higher performance of the tray temperature control in the product column, since there are two point controls in the product column. The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.51.q).

6.12.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.52 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh


toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN1 with CS3 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.52.n, o and p), since there are two tray temperature controls in the product column (One is the tray-12 temperature control and the other is tray-18 temperature control).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure6.52.c,d and q).

6.12.3 Change in the Total Toluene Feed Flow rate

Figure 6.53 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.53.d).A small oscillation of 3°C happens in the product column (Figure6.53.o and p) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.53.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure6.53.q).

Figure 6.51 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS3, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene of product column (Note. — Process variable (PV), … Manipulated variable)

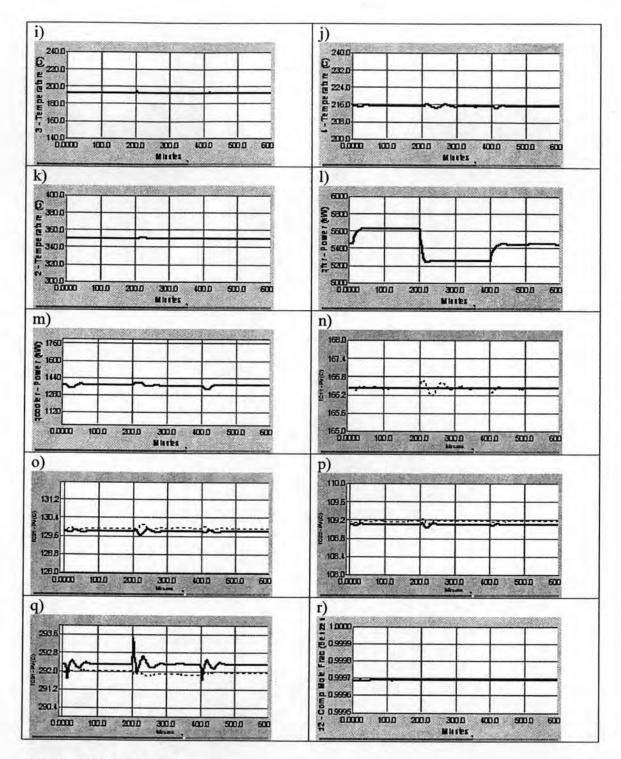
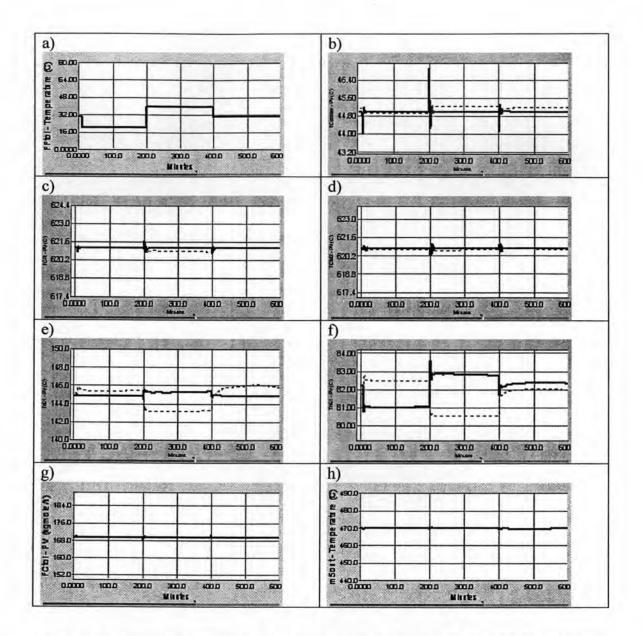



Figure 6.51 (continue)

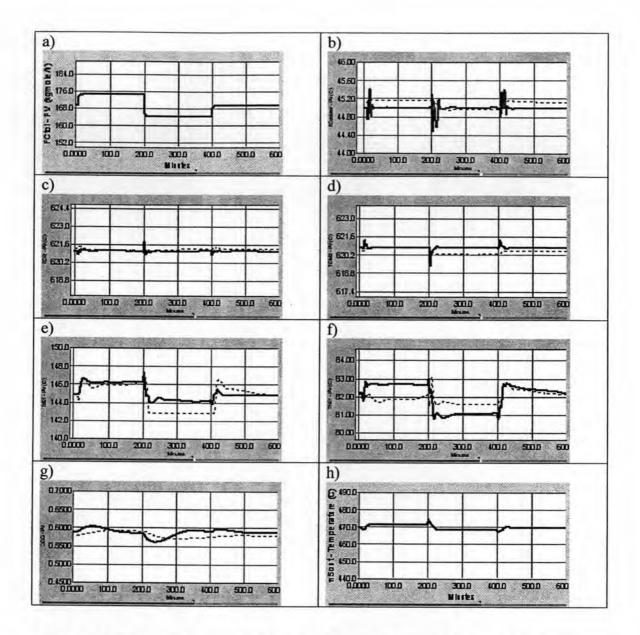
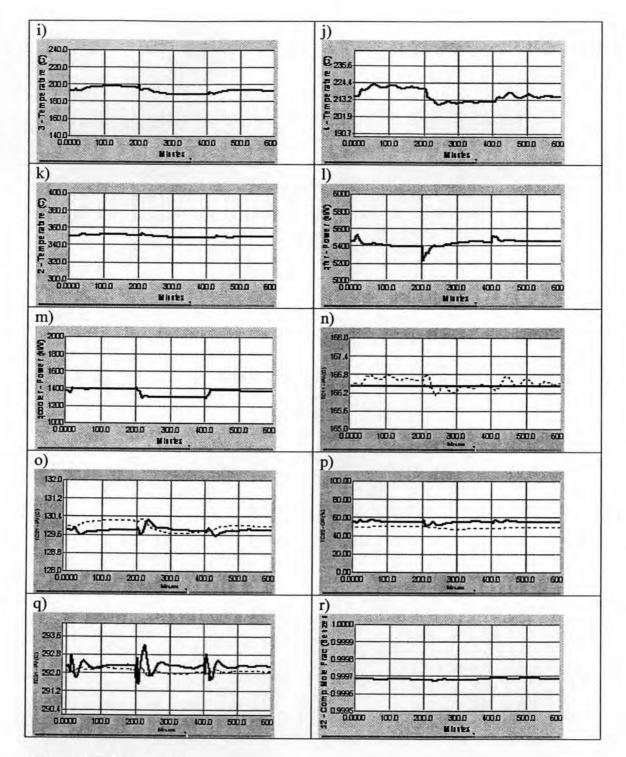


Figure 6.52 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS3, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. Process variable (PV), Manipulated variable)


	j)
2400	2400
2200	©2220
2000	2240
180.0	216.D
160.0	F 208.0
140.0	* 200
0000 0.001 0.002 0.002 0.001 0.000 Wintes	0,0000 100,0 200,0 200,0 400,0 500,0 600 Whites
)	1)
	§
0.056	§ 500
340.0	5400
3300	È 500
30000 1000 2000 3000 4000 5000 600	5000 1000 2000 3000 4000 500
Blurtes ,	Mintes
1)	n)
1760	168.0
1600	167.4
1440	§ 166.8
1280	5 1662
1120	165.5
00000 1000 2000 3000 4000 5000 500	165.0
Whites	0,0000 100,0 200,0 300,0 400,0 500,0 600 Minutes ,
)	p)
	110.0
1312	109.6
130.4	§ 109.2
23.6	§ 105.8
28.8	105.4
28.0	103.0
0.0000 100.0 200.0 300.0 400.0 500.0 500 History	0,0000 100,0 200,0 300,0 400,0 500,0 600
	r)
	R 10000
	e. 0 9999
928	E 0.9998
S20	0.9997
912	2.09996
90.4	6 0.0995 0.0000 1000 2000 3000 4000 500

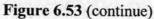

Figure 6.52 (continue)

Figure 6.53 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS3, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. Process variable (PV), Manipulated variable)

6.13 Dynamic Simulation Results for HDA Process Alternative6 (RHEN1) with minimum Auxiliary Utility Units: CS4

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.54 to 6.56. Results for individual disturbance load changes are as follows

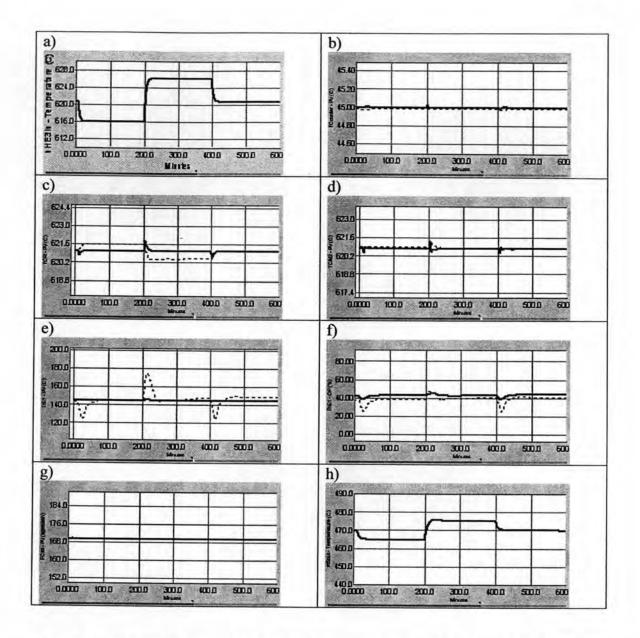
6.13.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.54 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS3 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.54.c and d), the oscillations occur about 5°C in the tray temperature of the stabilizer and the product column (Figure 6.54.n and o). The tray temperature in the recycle column has a large oscillation and it takes more than 800 minutes to come back to setpoint (Figure 6.54.p). The oscillations occur in the molar flow of the benzene (Figure 6.54.q).

6.13.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.55 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS3 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.55.d and c). A deviation of 6°C happens in the tray temperature of the recycle column and it takes over 800 minutes to return to its nominal value of 290.3°C (Figure 6.55.p) and the oscillations occur in the molar flow of the benzene (Figure 6.55.q).

6.11.3 Change in the Total Toluene Feed Flow rate

Figure 6.56 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

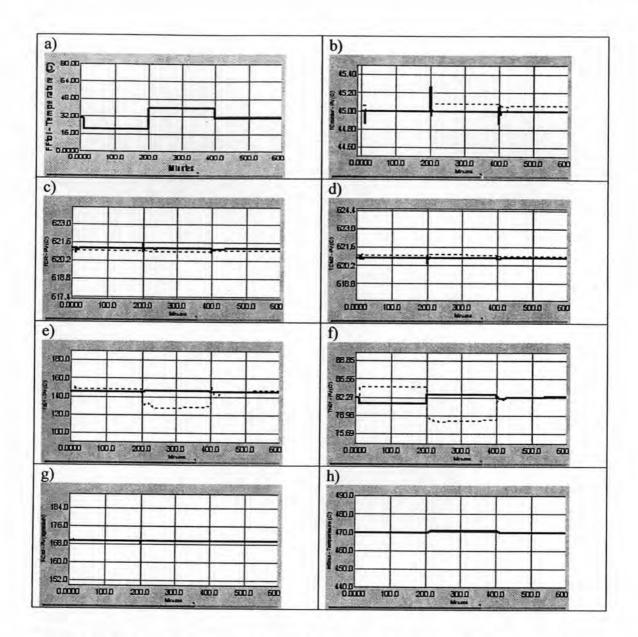
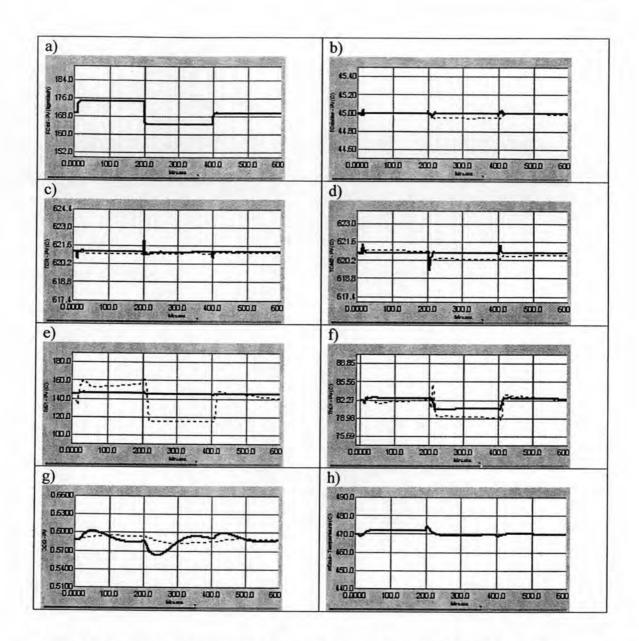

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.56.d).A small oscillation of 3°C happens in the product column (Figure6.56.o), Also a slightly worse controlled occurs in the tray temperature of the stabilizer column (Figure6.56.n). The tray temperature of the recycle column has a large deviation about 20°C and it takes over 900 minutes to return to its nominal value (Figure6.56.p). The oscillations occur in the molar flow of the benzene (Figure 6.56.q).

Figure 6.54 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS4, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

)	j)
240.0	260.0
200	240.0
200.0	\$ 200
180.0	2000
160.0	180.0
140.0	
00000 100.0 200.0 300.0 400.0 500.0 600	1600 0.000 100.0 200.0 300.0 400.0 500.0 600
)	1)
	6000
380.0	5200
350.0	5600
340.0	5400
330.0	5300
3000	5000
0.0000 100.0 200.0 300.0 100.0 500.0 600 History	00000 100.0 200.0 300.0 400.0 500.0 500
1)	n)
1760	
1600	168.0
1440	g 167 2
	166.4
	165.5
1120	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 600 Minute	0.0000 100.0 200.0 300.0 400.0 500.0 500
	p)
1312	293.6
30.1	§ 292.8
235	232.0
25.8	2912
28.0	290.4
0,0000 100,0 200,0 300,0 400,0 500,0 600 Minute	0,0000 100,0 200,0 300,0 400,0 500,0 600
	r)
60.	1000
44D	§ 0.9999
38.0	09996
12.0	0 9997
600	0.9996
om	
0,000 100,0 200,0 300,0 400,0 500,0 600 Marana	0.9995 0.0000 100.0 200.0 300.0 400.0 500.0 600

Figure 6.54 (continue)


Figure 6.55 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS4, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

	j)
240.0	260.0
220.0	240.0
200.0	220.0
180.0	2000
160.0	180.0
Mrana ,	0.0000 100.0 200.0 300.0 400.0 500.0 600
)	1)
3000	5000
360.0	500
340.0	5600
300	5400
300	5200
0.0000 100.0 200.0 300.0 400.0 500.0 600	5000 0.0000 100.0 200.0 300.0 400.0 500.0 600
Brun , and an	Mann.
1)	n)
1760	
1600	165.0
1440	g 167.2
	166.C
1120	165.5
0,0000 100,0 200,0 300,0 400,0 500,0 600	0.0000 100.0 200.0 300.0 400.0 500.0 600
Binare	Mérana v
	p)
1312	253.6
33.4	
29.5	§ 20.8
28.8	2912
38.0	20.0
0,0000 100.0 200.0 300.0 100.0 500.0 600	6,0000 100.0 200.0 300.0 100.0 500.0 600
	r)
600	1000
	Î 0.9999
33.0	03998
120	0.9997
6.00	
	¥ 09996

Figure 6.55 (continue)

215

Figure 6.56 Dynamic Responses of the HDA Process Alternative 6:RHEN1 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS4, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

	j)
	280.0
α.α	S 240.0
	2000
00	2000
00	180.0
0000 1000 2000 3000 4000 5000 600	160.0 0.0000 100.0 200.0 300.0 400.0 500.0 500 Minute
	1)
	500
	500
	5500
	500
	500
0.0000 100.0 200.0 300.0 400.0 500.0 600	5000 00000 1000 2000 3000 4000 5000 600
Mann	Paramateria de la construcción d
	n)
60	163.0
	8 167.2
	166.I Comment
	2 165.6
	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 600 Hitsee	0.0000 100.0 200.0 300.0 400.0 500.0 600
	p)
20 1 1 1 1	233.6
12	s 2228
"	An Antonia
	2912
88	20.4
00000 100.0 200.0 300.0 400.0 500.0 600 Minutes	0,0000 100,0 200,0 300,0 400,0 500,0 600
	r)
	. 0.9999
10	09998
	09997
20	0.000
	5
	9 0 9995

Figure 6.56 (continue)

6.14 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN2) with minimum Auxiliary Utility Units: CS1

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.57 to 6.59. Results for individual disturbance load changes are as follows:

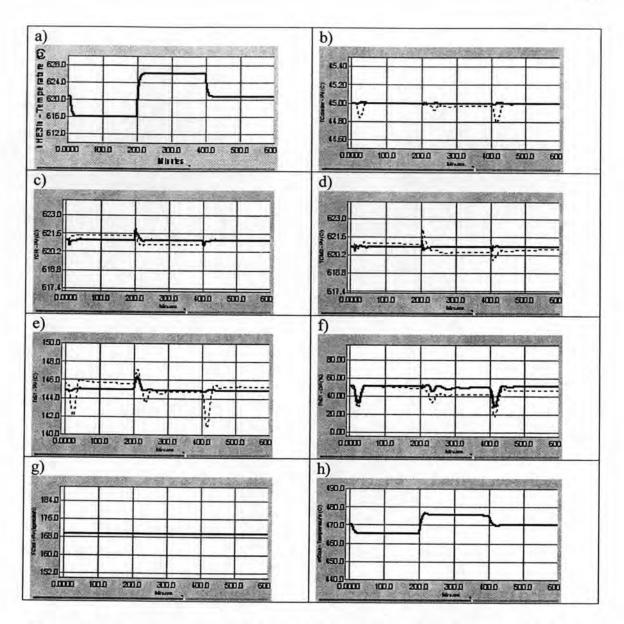
6.14.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.57 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS1 are similar to the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.57.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.57.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.57.p).

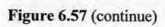
6.14.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.58 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN2 with CS1 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.58.n and o).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure 6.58.c,d and p).

6.14.3 Change in the Total Toluene Feed Flow rate


Figure 6.59 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

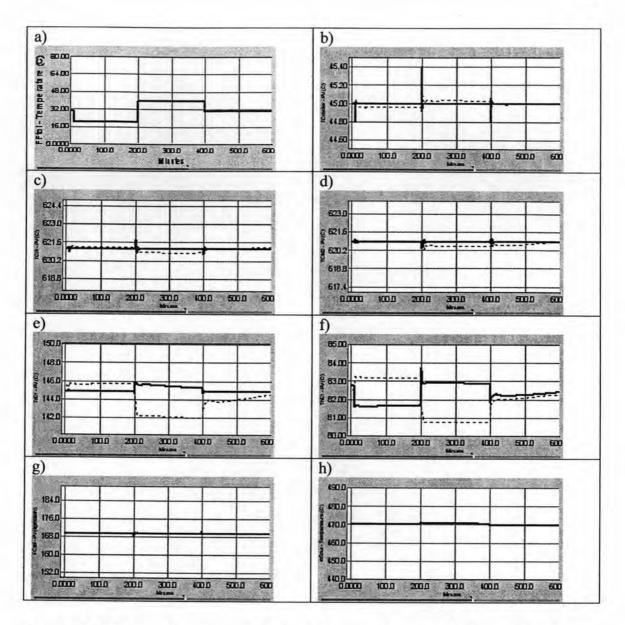

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.59.d).A small oscillation of 3°C happens in the product column (Figure6.59.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.59.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure6.59.p).

Figure 6.57 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS1, where: (a)the variation hot outlet temperature of reactor, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j) ·
	2400
0.02	E 232.0
	2240
00	8.2160
00	F 208.0
0,000 100,0 200,0 300,0 400,0 500,0 500	
0.0000 100.0 200.0 300.0 600.0 600.0 Mintes	0.0000 100.0 200.0 300.0 400.0 500.0 600 Wintes
	1)
	6000
0.0	£ 5300
	5500
	\$ 5400
	÷ 5200
<u></u>	sool
00000 100.0 200.0 300.0 400.0 500.0 600 Wintes	0.0000 100.0 200.0 300.0 400.0 500.0 600 Witthes
	n)
	The rest of the second se
	168.0
	g 167 2
	8 155 I
	165.5
	164.8
2000 100,0 200,0 300,0 400,0 500,0 600 Minits	0,0000 1000 200,0 3000 400,0 500,0 600
	p)
0, , , , , , , ,	
2	293.5
4	8 200 B
	and a second sec
	2912
1000 1000 2000 3000 4000 5000 600	250.(1) 0.0000 100.0 200.0 300.0 400.0 500.0 600 No.000
	r)
0	
0	E 09999
	P 09998
	8 09997
1000 1000 2000 3000 4000 5000 500	0,09996 0,0000 1000 2000 3000 4000 5000 600 1 0,0000 1000 2000 3000 4000 5000 600

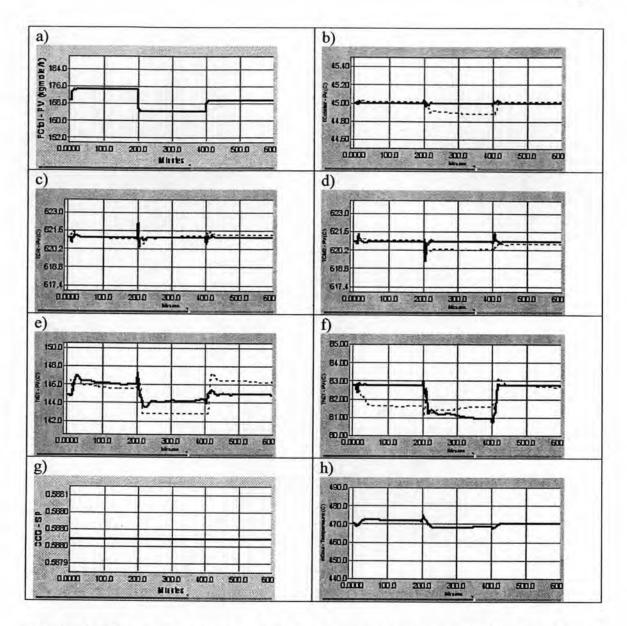


Figure 6.58 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS1, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

)	j)
240.0	240.0
20.0	232.0
200	\$ 224.0
180.0	216.0
150.0	2 206.0
	2000
Manual Andrews	0.0000 100.0 200.0 300.0 400.0 500.0 600
	1)
	6000 I I I I I I
300	500
360.0	5500
40.046	5400
300	S200
00000 1000 2000 3000 4000 5000 500	5000 1000 2000 3000 4000 5000 500
Mana	Minus
)	n)
1760	
1600	165.0
330	
120	165.5
0.0000 100.0 200.0 300.0 400.0 500.0 600	164.8 <u>1 </u>
	interes ;
32.0,	p)
312	283.5
30.4	2 ^{20.8}
29.6	2320
28.8	² 2912
36.0	250.4
0.0000 100.0 200.0 300.0 400.0 500.0 600 Minute	0.0000 100.0 200.0 300.0 400.0 500.0 500 Minus
	r)
60.0	
44.0	Î 0.9999
28.0	¥ 0.9998
12.0	0.9997
5.00	0.9996
	9 09995
0.0000 100.0 200.0 300.0 400.0 500.0 600 Minute	0,0000 1000 200,0 300,0 400,0 500,0 500

Figure 6.58 (continue)

Figure 6.59 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS1, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. ---- Process variable (PV), Manipulated variable)

i)	j)
240.0	240.0
220.0	§ 222.B
160.0	216.0 ZEE.0
140.0	200
0.0000 100.0 200.0 300.0 400.0 500.0 500 Minute	0,0000 100,0 200,0 300,0 400,0 500,0 600
k)	1)
380.0	500 5300
3000	§ 500
340.0	SUT Annual and a second
⁸ 3000	500 F
0,0000 100,0 200,0 300,0 400,0 500,0 500	50000 100 0 200 300 100 500 500
m)	n)
1760	
§ 1600	168.0
	16.1
	165.5
	164.8
Minute .	0,0000 100,0 200,0 300,0 400,0 500,0 600
o)	p)
1312	293.6
1236 martin Victoria	320
128.0	2912
0,0000 100,0 200,0 300,0 400,0 500,0 500	0,000 1000 2000 3000 4000 5000 600
q)	r)
160.0	
§ 144.D	09999
	0.9997
9600	0.9996
	0.9995 0.0000 1000 2000 3000 4000 500
Bross (UD 2000 Bloss (UD 2000 BD	

Figure 6.59 (continue)

6.15 Dynamic Simulation Results for HDA Process Alternative6 (RHEN2) with minimum Auxiliary Utility Units: CS2

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.60 to 6.62. Results for individual disturbance load changes are as follows

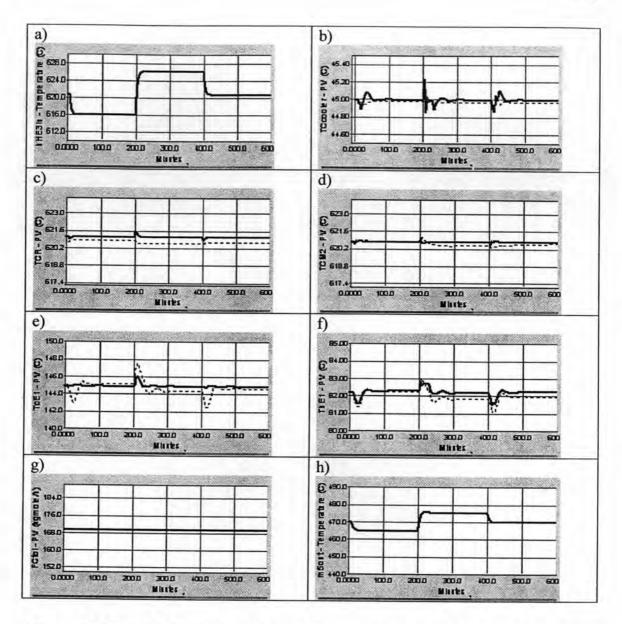
6.15.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.60 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS2 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.60.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.60.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.60.p). The oscillations occur in the molar flow of the benzene (Figure 6.60.q).

6.15.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.61 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS2 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.61.d and c). A deviation of 5°C happens in the tray temperature of the recycle column and it takes over 500 minutes to return to its nominal value of 290.3°C (Figure 6.61.p) and the oscillations occur in the molar flow of the benzene (Figure 6.61.q).

6.15.3 Change in the Total Toluene Feed Flow rate

Figure 6.62 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

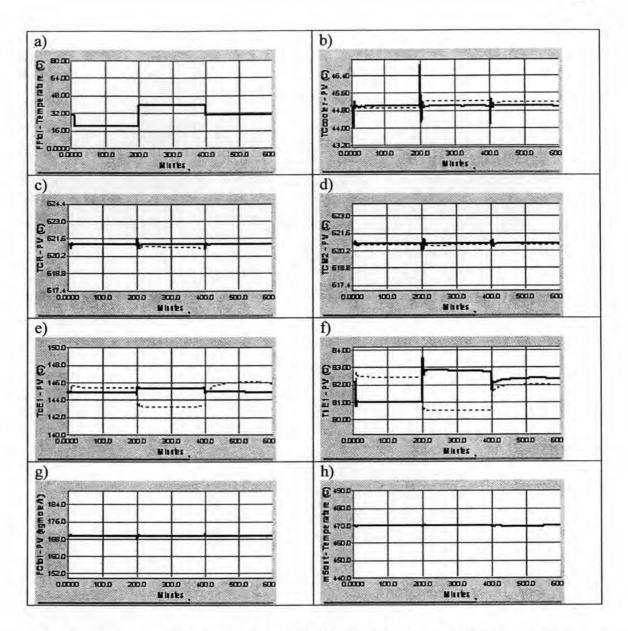

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.62.d).A small oscillation of 3°C happens in the product column (Figure6.62.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.62.n). The tray temperature of the recycle column has a small deviation about 2°C and it takes over 500 minutes to return to its nominal value (Figure6.62.p). The oscillations occur in the molar flow of the benzene (Figure 6.62.q).

Figure 6.60 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS2, where: (a)the variation hot outlet temperature of reactor, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j)
24001	240.0
200	© 2200
	2
2000	E 224.0
180.0	E 216.0
160.0	F 286.0
1400 0.0000 100.0 200.0 300.0 400.0 500.0 600	2000 1000 2000 3000 4000 5000 600
Mhits ,	Mintes
	1)
400.07	5000
300	8 900
	8
3800	
340.0	2 5400
320.0	6 S20
30001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5000 HOLD 2000 3000 HOLD 5000 600
Blerter ,	Whites
)	n)
1260	165.0;
1760	101
1600	> 165.8
	The second strain and second strain and second strain second strain strain second stra
1280	P 1652
1120	E 165.5
0,0000 1000 2000 3000 4000 5000 600	165 D 100.0 200.0 300.0 400.0 500.0 600
Whites ,	Marks ,
	p)
	296.0
131.2	6.244
130.4	2000
1295	- Manual Vinster
125.8	F 2912
	289.6
0.0000 100.0 200.0 300.0 400.0 500.0 600	0,000 1000 2000 3000 4000 5000 500
Minies ,	Mittes .
	r)
	N 10000
	8,0,9999
144.0	
	0 E 09996
	C 0.9996
	0.9956
	C 0.9996

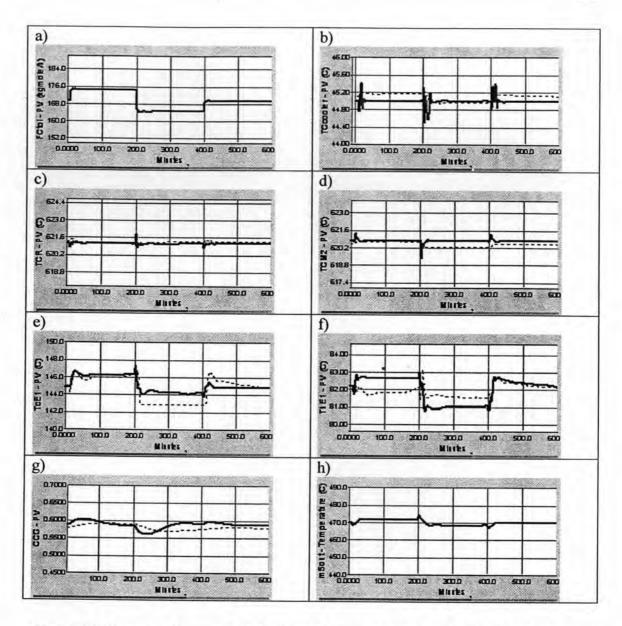
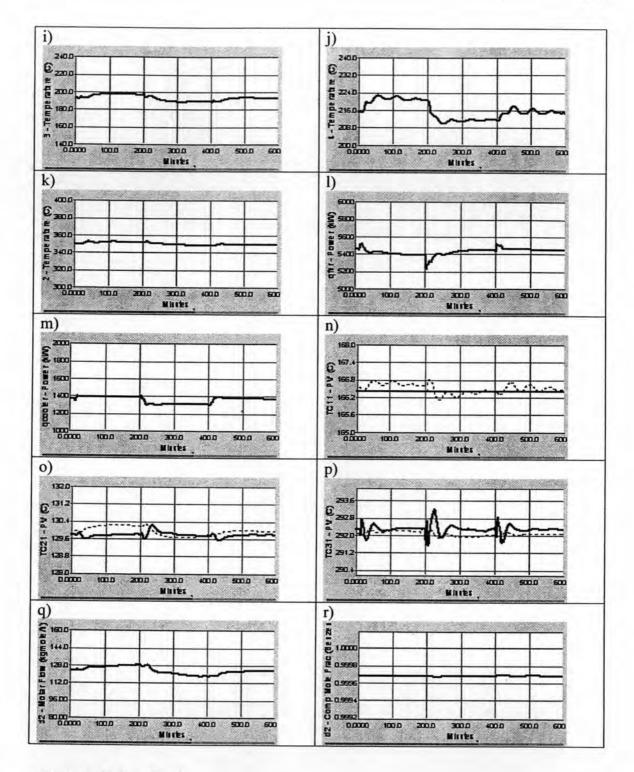

Figure 6.60 (continue)

Figure 6.61 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS2, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)


i)	j)
240.07	240.0
2200	6 2320
2000	
	E 2240
190.0	P 216.0
F 160.0	F 208.0
1400 1000 1000 2000 3000 4000 5000 600	2000 1000 2000 3000 4000 5000 600
Wintes _	Wirths
x)	1)
1000	5000
3800	§ 500
3600	Č
3400	
	2 5400
320.0	6 500
30000 1000 2000 2000 4000 5000 500	0.0000 1000 200.0 3000 400.0 5000 500
Wartes	Births .
1)	n)
1760	168.0
1600	6 ^{157,4}
1440	> 166.8
	- 165.2
	2 1662 1
1120	
0.0000 100,0 200,0 300,0 400,0 500,0 600 Wintes	1650 0,0000 1000 2000 2000 2000 2000 600 Militer
)	p)
13201	and the second
1312	2016
130.4	E 2928
her and her an	1 2320
	<u>8</u> 2912
128.8	20.4
0,0000 100,0 200,0 300,0 400,0 500,0 600	0,0000 100,0 200,0 300,0 400,0 500,0 600
Nortes ,	Whites
	<u>r</u>)
	<u><u>R</u> 1.0000</u>
144.0	ë 0.9998
128.0	2 0.9996
1120	0 0 9994
95.00	B. 09992
	50990
80,000 100,0 200,0 300,0 400,0 500,0 600	N 0.0000 1000 200.0 300.0 400.0 500.0 600
Wirres	Whites,

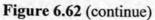

Figure 6.61 (continue)

Figure 6.62 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS2, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. — Process variable (PV), … Manipulated variable)

6.16 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN2) with minimum Auxiliary Utility Units: CS3

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.63 to 6.65. Results for individual disturbance load changes are as follows:

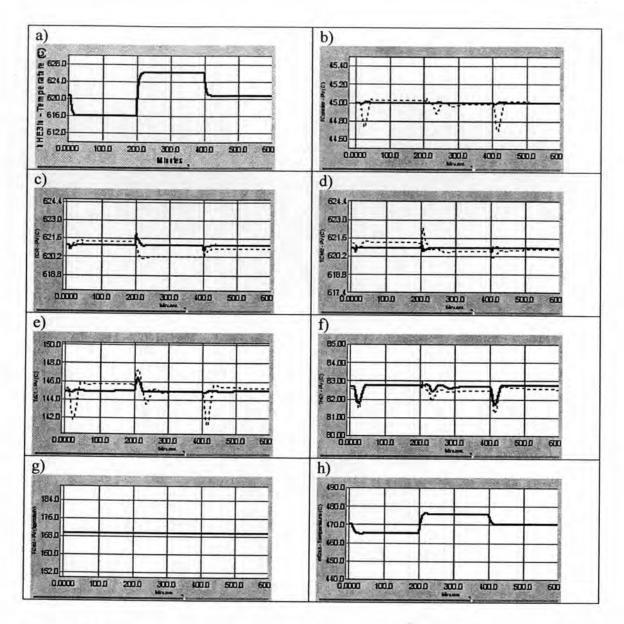
6.16.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.63 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS3 are better than the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.63.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.63.n, o and p). Its advantages is that it provides higher performance of the tray temperature control in the product column, since there are two point controls in the product column. The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.63.q).

6.16.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.64 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh


toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN1 with CS3 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.64.n, o and p), since there are two tray temperature controls in the product column (One is the tray-12 temperature control and the other is tray-18 temperature control).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure6.64.c,d and q).

6.16.3 Change in the Total Toluene Feed Flow rate

Figure 6.65 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.65.d).A small oscillation of 3°C happens in the product column (Figure 6.65.o and p) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure 6.65.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure 6.65.q).

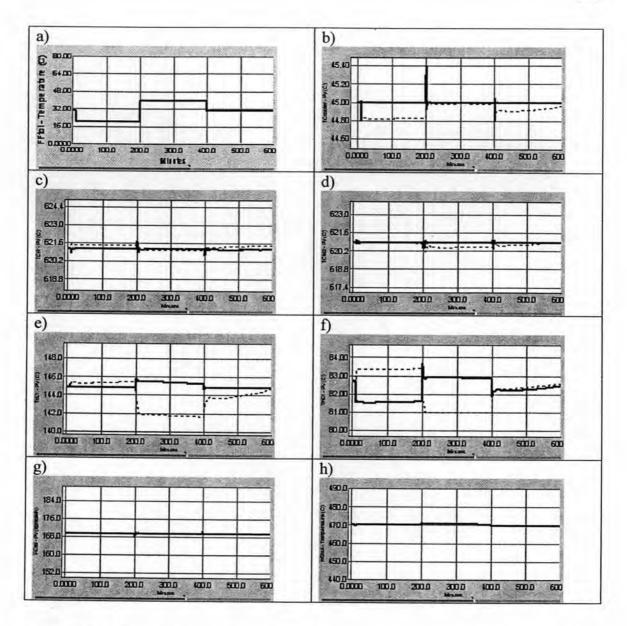


Figure 6.63 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS3, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene of product column (Note. — Process variable (PV), … Manipulated variable)

i)	j)
2400	240.0
g 220.0	232.0
2000	221.0
180.0	216.0
160.0	208.0
14000 1000 2000 3000 4000 5000 500	200.0 0.0000 1000 2000 3000 4000 5000 600
k)	1)
	6000 T T T T T T T
§ 3000	\$
\$ 300	5000
300.0	500
0,0000 100.0 200.0 300.0 400.0 500.0 600	
m)	<u>n)</u>
1760	168.0
§ 1600	167.5
	166.8
1280	§ 165.5
	165.0
0,0000 100,0 200,0 300,0 400,0 500,0 500 Mirana	0,0000 100,0 200,0 300,0 400,0 500,0 600
o)	p)
132.0	110.0
1312	109.5
130.4 - Human Ning	
	¥ 103.8
128.0	108.4
0,0000 1000 2000 3000 4000 5000 600	0,0000 100,0 200,0 300,0 400,0 500,0 600
q)	r)
	163.0
2936	§ 144.D
200 00000000000000000000000000000000000	128.0
1000000000	1120
(astal)	
2912	⁶ 95.00

Figure 6.63 (continue)

.

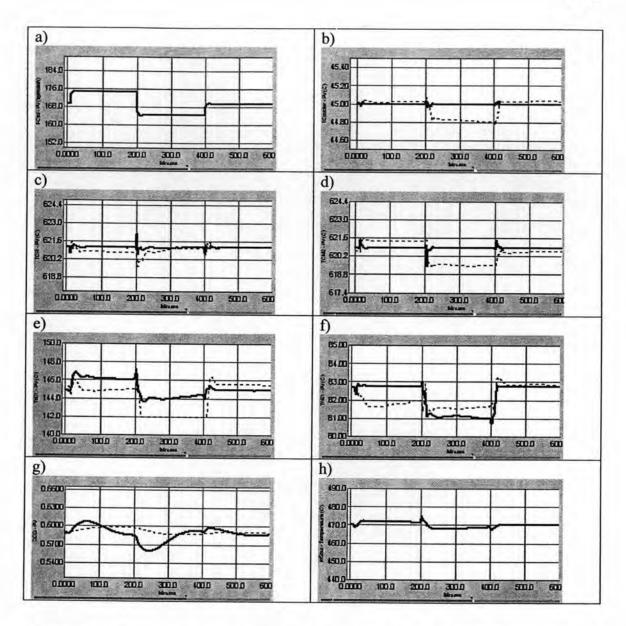


Figure 6.64 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS3, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. — Process variable (PV), … Manipulated variable)

	j)
200	240.0
	232.0
200.0	3 224.0
180.0	216.0
160.0	2060
140.0	2000
0.0000 100.0 200.0 300.0 400.0 500.0 500. Minutes	0,0000 100.0 200.0 300.0 400.0 500.0 600
)	1)
	5000,1
0.08	5000
300	5600
340.0	5400
330.0	\$ 5200
	5000
0.0000 100.0 200.0 300.0 400.0 500.0 600	0,0000 100.0 200.0 300.0 400.0 500.0 600
)	n)
760	168.D ₍₁
600	167.4
440	§ 166.8
	a 1662
120	165.6
	165.0
0,0000 100.0 200.0 300.0 400.0 500.0 600.	0.0000 100.0 200.0 300.0 400.0 500.0 600 Minutes
	p)
320	
312	110.0
30.4	g 109.5
25	1092
88	103.8
	103.4
0.0000 100.0 200.0 300.0 400.0 500.0 500.	00000 1000 2000 3000 4000 5000 500
	r)
35	§ 144.D
28	128.0
20	112.0
12	95m
0.	BOM
0,0000 100,0 200,0 300,0 400,0 500,0 600	0,0000 100.0 200.0 300.0 400.0 500.0 600

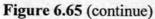

Figure 6.64 (continue)

Figure 6.65 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS3, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. Process variable (PV), Manipulated variable)

6.17 Dynamic Simulation Results for HDA Process Alternative6 (RHEN2) with minimum Auxiliary Utility Units: CS4

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.66 to 6.68. Results for individual disturbance load changes are as follows

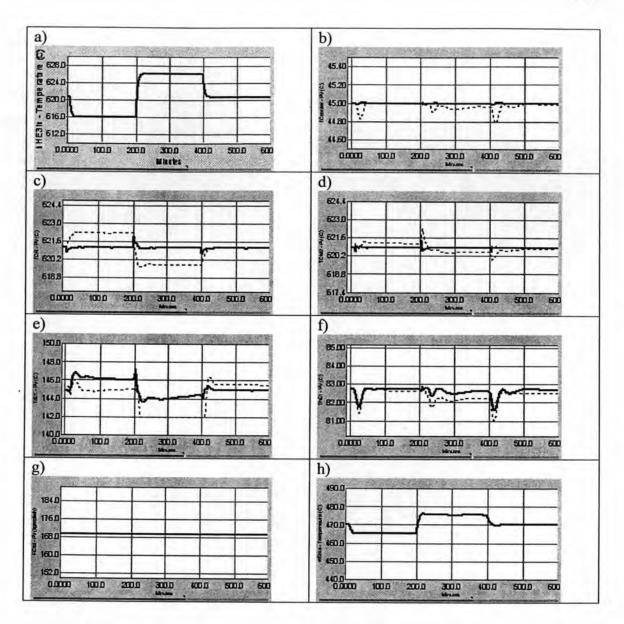
6.17.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.66 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS4 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.66.c and d), the oscillations occur about 5°C in the tray temperature of the stabilizer and the product column (Figure 6.66.n and o). The tray temperature in the recycle column has a large oscillation and it takes more than 800 minutes to come back to setpoint (Figure 6.66.p). The oscillations occur in the molar flow of the benzene (Figure 6.66.q).

6.17.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.67 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,


and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.67.d and c). A deviation of 6°C happens in the tray temperature of the recycle column and it takes over 800 minutes to return to its nominal value of 290.3°C (Figure 6.67.p) and the oscillations occur in the molar flow of the benzene (Figure 6.67.q).

6.17.3 Change in the Total Toluene Feed Flow rate

Figure 6.68 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.68.d).A small oscillation of 3°C happens in the product column (Figure6.68.o), Also a slightly worse controlled occurs in the tray temperature of the stabilizer column (Figure6.68.n). The tray temperature of the recycle column has a large deviation about 20°C and it takes over 900 minutes to return to its nominal value (Figure6.68.p). The oscillations occur in the molar flow of the benzene (Figure 6.68.q).

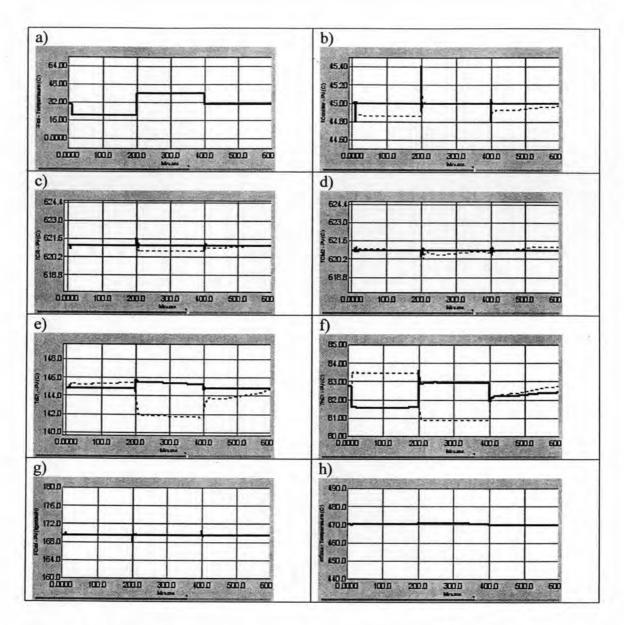


Figure 6.66 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS4, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column

(Note. — Process variable (PV), … Manipulated variable)

i)	j)
240.0	
g 220.0	2400
	180.0
1400 1400 1400 1400 1400 1400 1400 1400	160.00 00000 100.0 200.0 300.0 400.0 500.0 600
Brant .	and the second
k)	l)
3300	500
300	
340.0	5400
3000	
00000 100,0 200,0 300,0 400,0 500,0 500	00000 1000 2000 3000 4000 5000 600
m)	n)
1760	168.D
§ 1600	§ 167.2
	§ 165.5
1120	154.8
0.0000 100.0 200.0 300.0 100.0 500.0 500	0,0000 100,0 200,0 300,0 400,0 500,0 600
0)	p)
1312	
g. 130.4	233.5 8 292.8
1295	200 particular
128.8	2912
128.0 100.0 200.0 300.0 400.0 500.0 600	250.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a)	Влая. _у Г)
	. 09999
§ 144.0	0.9998
	19997
4 96,00	309990 J
80.00	* 0.9995
0,0000 100,0 200,0 300,0 400,0 500,0 600	0,0000 100,0 200,0 300,0 400,0 500,0 600

Figure 6.66 (continue)

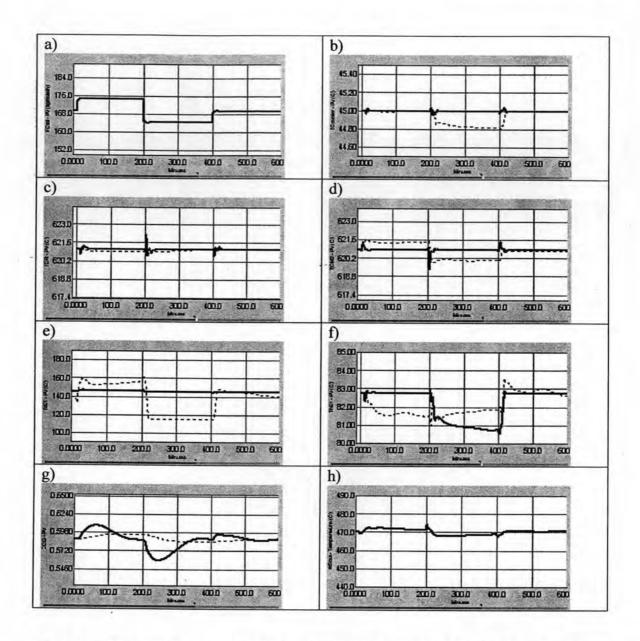


Figure 6.67 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS4, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

i)	j)
240.0	260.0
8 2000	5 240.D
2000	20.0
1 180.0	§ 2000
140.0	180.0
14000 1000 2000 3000 4000 5000 600	160.0000 100.0 200.0 300.0 400.0 500.0 600
k)	1)
3300	\$300 \$ 5500
340.0	5400
⁴ 3000	500
30000 1000 2000 3000 4000 5000 600	5000 1000 2000 3000 4000 5000 500
m)	n)
1760	
\$ 1600	168.0
1140	§ 167.2
	165.6
1120	164.8
0,0000 100.0 200.0 200.0 400.0 500.0 600	0,0000 100.0 200.0 300.0 400.0 500.0 600
0)	p)
1312 § 130.4	233.6 \$ 292.8
129.6	5 2220
128.8	2912
125.0	250.4 0.0000 100.0 200.0 300.0 400.0 500.0 500
Mann.	Minute 2
q) 1000	r)
§ 111.D	10000
128.0	0.9998
112.0	09997
9500	§ 0.9996
0,000 1000 2000 3000 4000 5000 600	0.9995 0.0000 100.0 200.0 300.0 400.0 500.0 600 Minute

Figure 6.67 (continue)

Figure 6.68 Dynamic Responses of the HDA Process Alternative 6:RHEN2 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS4, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

i)	j)
240.0	260.0
g 220.0	£ 240.D
2 1800	£ 2000
160.0	160.0
140000 1000 2000 3000 4000 5000 600	0,000 100,0 200,0 300,0 400,0 500,0 600
k)	1)
	6000
380.0	\$
3 3000	\$ 5400 5000
3000	500
0,0000 100,0 200,0 300,0 400,0 500,0 600	00000 100.0 200.0 300.0 400.0 500.0 600 Minute
n)	n)
1760	163.0
1600	£ 167.2
	100 1 million
	165.5
0.0000 100.0 200.0 300.0 400.0 500.0 500	
Mrune	Minute
o)	p)
1312	293.6
2 130.4	8 2228 1
1205 Martin	2220
126.8	2912
1280	290.0
Mana ,	Minute
4) 	r)
	1.0000
	¥ 0.9998
1120	0.9997
95.00	0.9996
eono 1000 2003 3003 4005 5003 600	0.9995 0.0000 1000 2000 3000 4000 5000 600
the sub sub sub the	when the and the test of

Figure 6.68 (continue)

6.18 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN3) with minimum Auxiliary Utility Units: CS1

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.69 to 6.71. Results for individual disturbance load changes are as follows:

6.18.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.69 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS1 are similar to the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.69.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.69.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.69.p).

6.18.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.70 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,

and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN2 with CS1 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.70.n and o).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure6.70.c,d and p).

6.18.3 Change in the Total Toluene Feed Flow rate

Figure 6.71 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.71.d).A small oscillation of 3°C happens in the product column (Figure6.71.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.71.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure6.71.p).

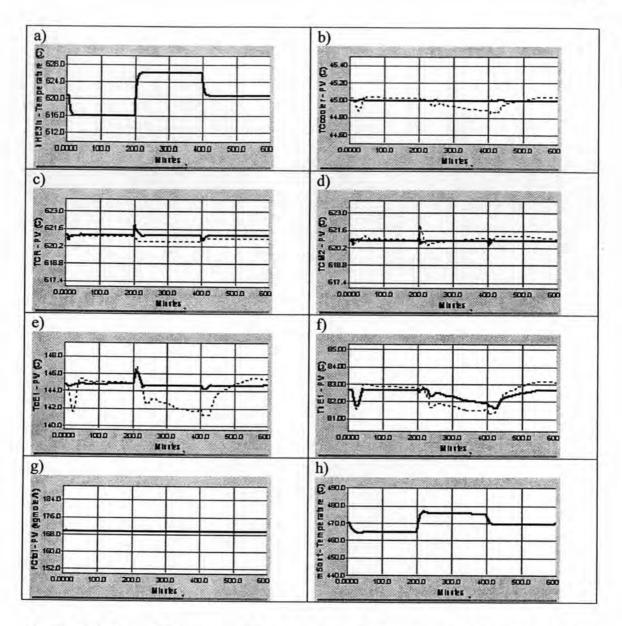


Figure 6.69 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS1, where: (a)the variation hot outlet temperature of reactor, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature,(p) recycle column tray temperature,(q) molar flow benzene,(r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

252

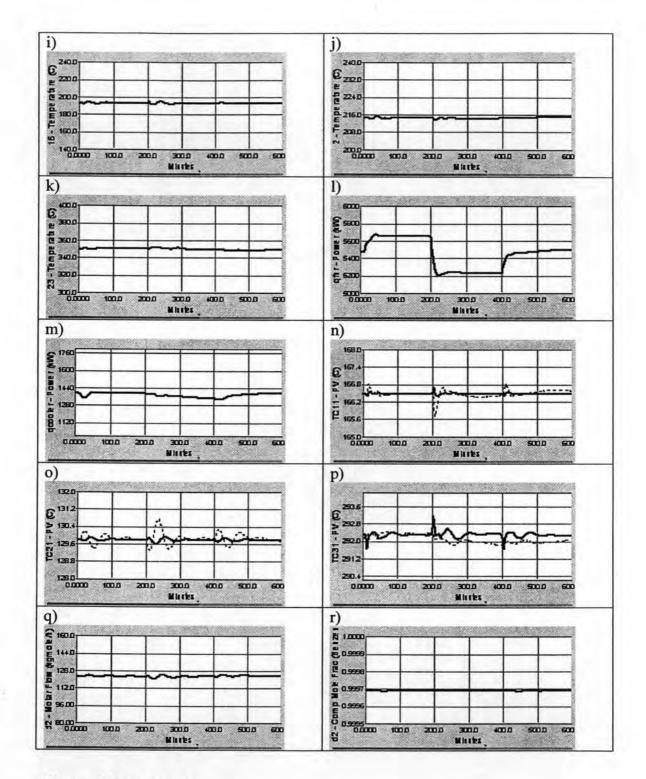
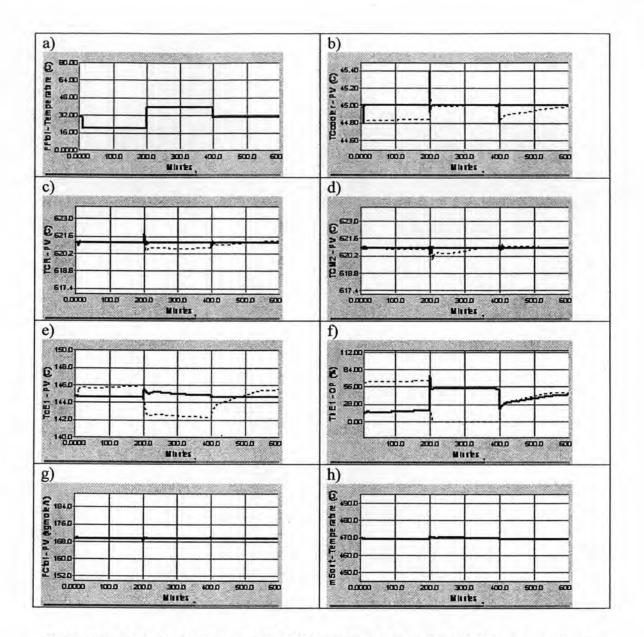



Figure 6.69 (continue)

253

Figure 6.70 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS1, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature,(p) recycle column tray temperature,(q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
2400	2400
220.0	C 2220
2000	
	2 2000,000
180.0	E 216.0
160,0	F 2000
140.00 0.0000 100.0 200.0 300.0 400.0 500.0 500	2000 1000 2000 3000 4000 S000 600
Whites	0.000 1002 2003 2004 000 000 600 Mintes
1	The second se
	1)
4000	
380.0	§ 5500
300	12-1020020
340.0	5.00
330.0	
	£ 500
0000 1000 2000 2000 2000 2000 5000 500	0,000 100,0 200,0 300,0 400,0 500,0 600
Blutts .	Wintes .
)	n)
1600	163.0
50 DE 100 DE	£ ^{167,4}
1440	2 166.B
	1662
1120	P 165.6
	165.0
0.0000 100,0 200,0 200,0 400,0 500,0 500 Mintes	1650 00000 1000 2000 3000 4000 5000 600 Blitts
	p)
	2016
1312	
130.4	
129.5	1 2920
128.8	g 2912
	20.1
0,0000 100,0 200,0 300,0 400,0 500,0 600	0,000 1000 2000 3000 4000 5000 600
Whites ,	Whites
	r)
60.0	
	e.0.999
128.0	0.9998
	800000000000000000000000000000000000000
	0 9997
(120 600	
120	0 0 9997 0 0 9996 0 0 9996 0 0 9996 0 0 0 9996 0 0 0 9996 0 0 0 9997 0 0 0 9997 0 0 0 9997 0 0 9996 0 0 0 9996 0 0 0 9996 0 0 0 9996 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 6.70 (continue)

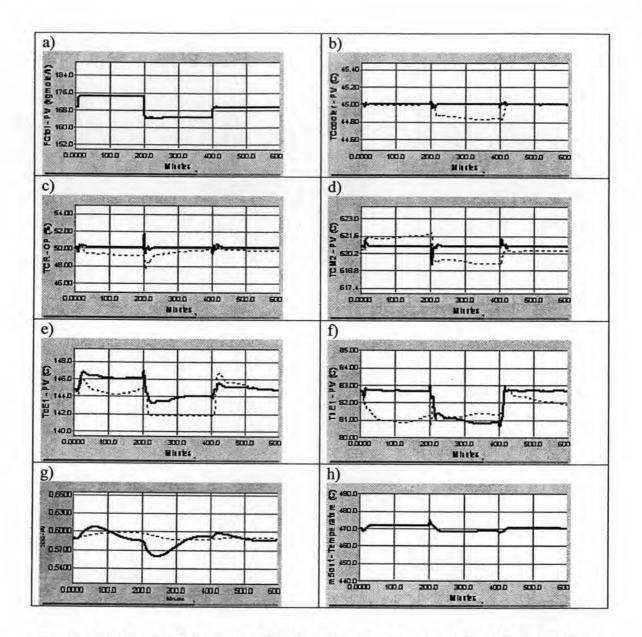


Figure 6.71 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS1, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

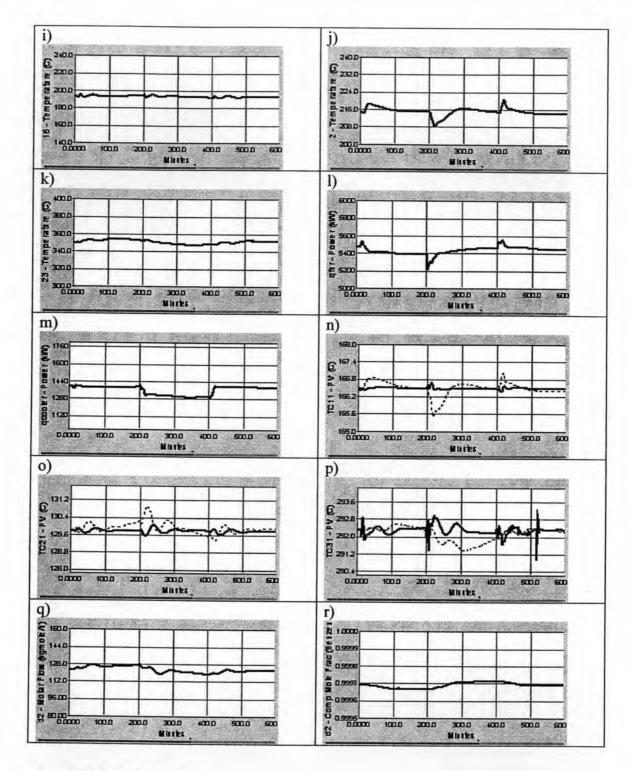


Figure 6.71 (continue)

6.19 Dynamic Simulation Results for HDA Process Alternative6 (RHEN3) with minimum Auxiliary Utility Units: CS2

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.72 to 6.74. Results for individual disturbance load changes are as follows

6.19.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.72 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS2 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.72.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.72.n and o). The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure6.72.p). The oscillations occur in the molar flow of the benzene (Figure 6.72.q).

6.19.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.73 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,

and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS2 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.73.d and c). A deviation of 5°C happens in the tray temperature of the recycle column and it takes over 500 minutes to return to its nominal value of 290.3°C (Figure 6.73.p) and the oscillations occur in the molar flow of the benzene (Figure 6.73.q).

6.19.3 Change in the Total Toluene Feed Flow rate

Figure 6.74 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.74.d).A small oscillation of 3°C happens in the product column (Figure6.74.o) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.74.n). The tray temperature of the recycle column has a small deviation about 2°C and it takes over 500 minutes to return to its nominal value (Figure6.74.p). The oscillations occur in the molar flow of the benzene (Figure 6.74.q).

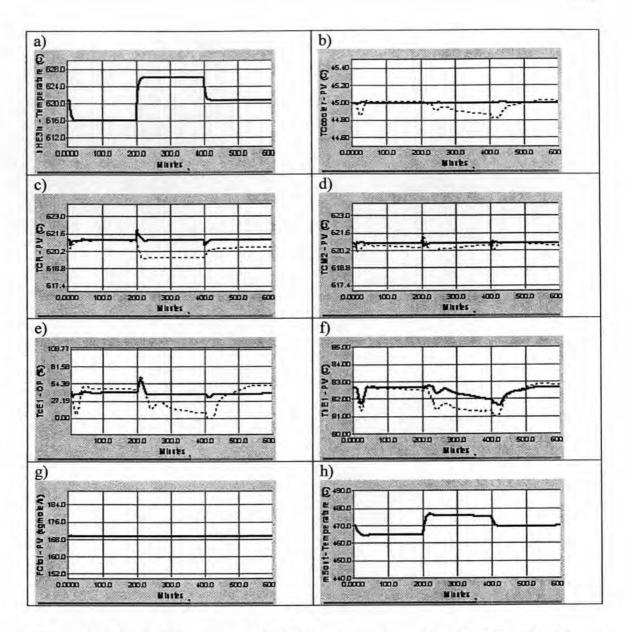
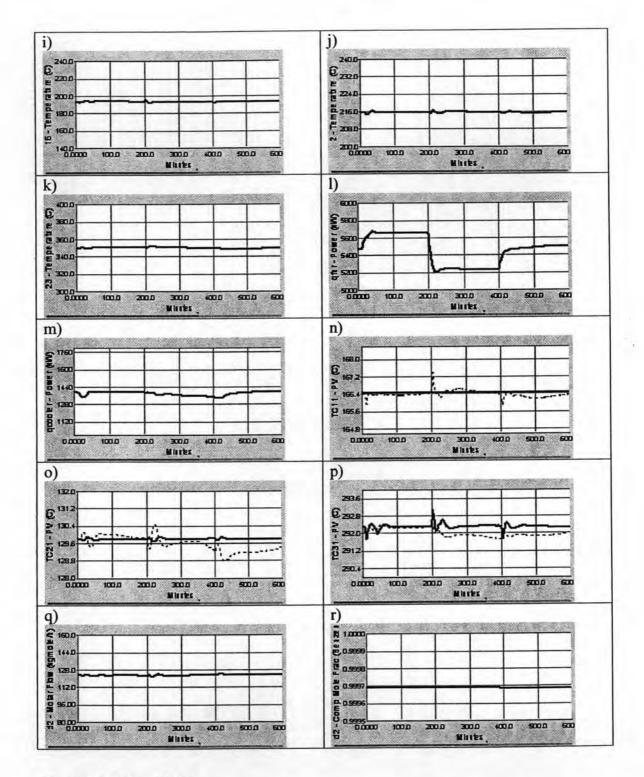
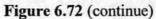
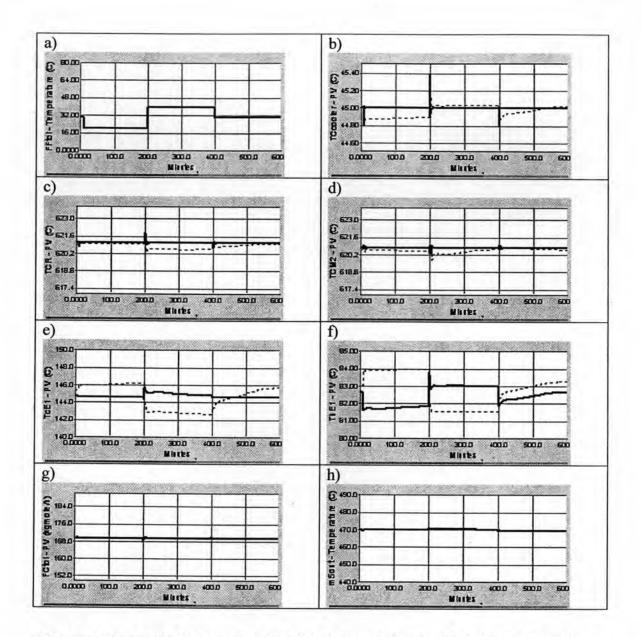





Figure 6.72 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS2, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

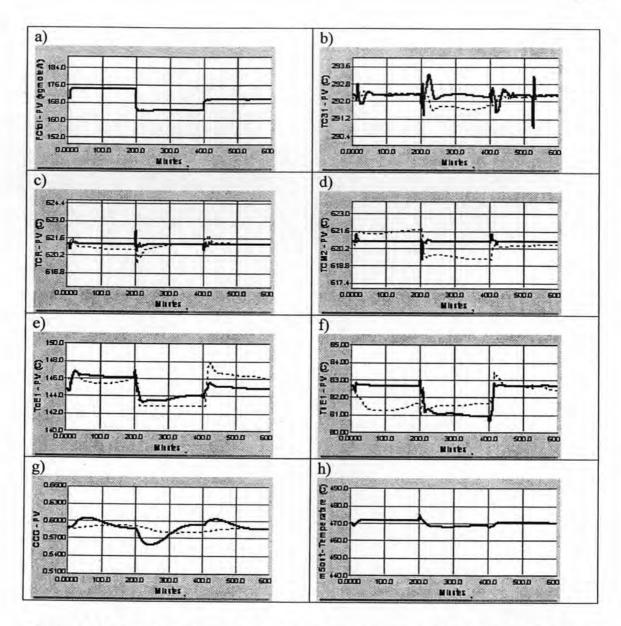


Figure 6.73 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS2, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column (Note. — Process variable (PV), …… Manipulated variable)

	j)
240.0	240.0
200	C 2220
2000	e
180.0	
	5
160.0	7280
1400 00000 1000 2000 3000 4000 5000 500	0.0000 100.0 200.0 300.0 400.0 500.0 600
Martes .	Whites .
	1)
400.01 T T T T T T T T T T T T T T T T T T T	6000
800	8 900
3600	500 S00
340.0	
300	
	§200
00000 1000 2000 3000 4000 5000 500	5000 0,000 1000 2000 3000 4000 5000 500
Mhites ,	Winetes
)	<u>n)</u>
1760	
	168.0
1440	> 167 2
	165.4
1120	P 1656
	164.8
0.0000 100.0 200.0 300.0 400.0 500.0 500 Mintes	0,0000 100,0 200,0 300,0 100,0 500,0 500 Mitchs
	p)
312	
30.4	C ²³⁵
295	2228
288	220
	P 2912
1280	250.4 0.0000 100.0 200.0 300.0 400.0 500.0 600
Whites ,	Whites ,
	r)
800,	B 1000
	R 10000
	R 1000
	E 13000
	E 0.9998
	E 13000

Figure 6.73 (continue)

263

Figure 6.74 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS2, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

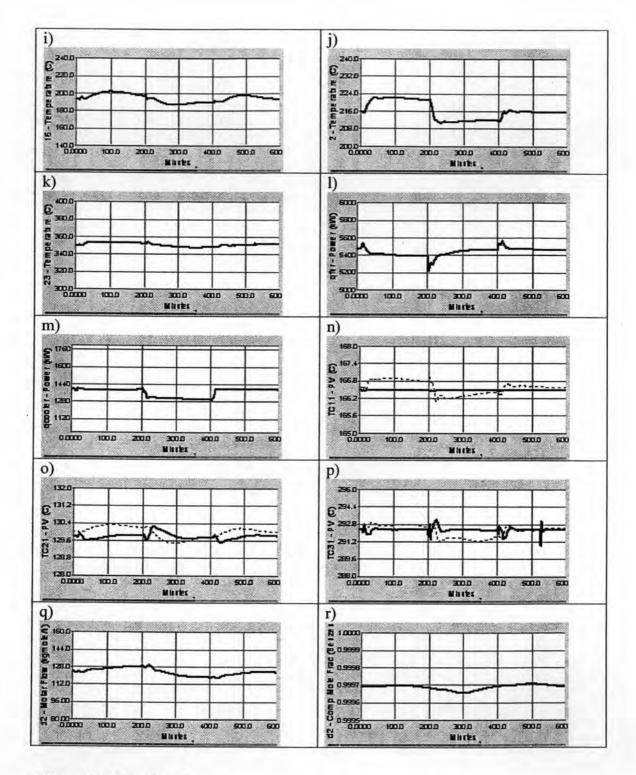


Figure 6.74 (continue)

6.20 Dynamic Simulation Results for HDA Process Alternative 6 (RHEN3) with minimum Auxiliary Utility Units: CS3

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.75 to 6.77. Results for individual disturbance load changes are as follows:

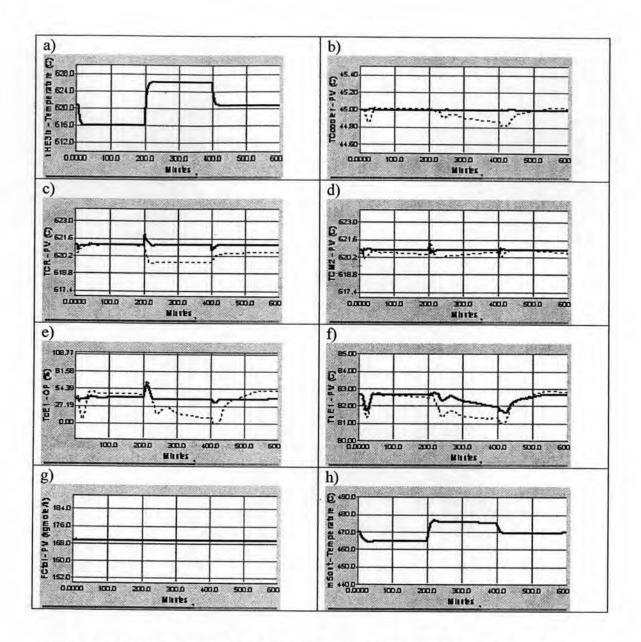
6.20.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.75 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

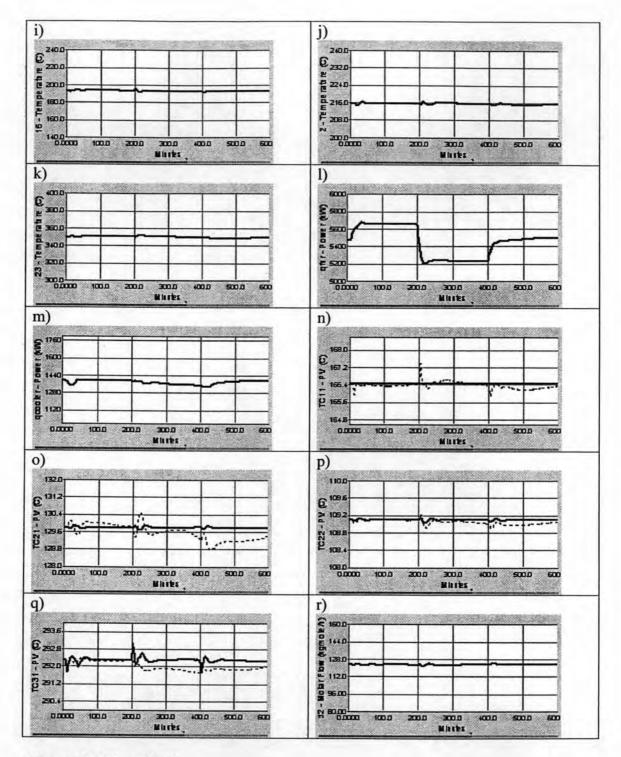
As can be seen, the most dynamic responses of the CS3 are better than the previous CS1of Basecase i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.75.c and d), the oscillations occur in the tray temperature of the stabilizer and the product column (Figure 6.75n, o and p). Its advantages is that it provides higher performance of the tray temperature control in the product column, since there are two point controls in the product column. The tray temperature in the recycle column has a small oscillation and it takes more than 500 minutes to come back to setpoint (Figure 6.75.q).

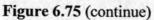
6.20.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.76 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh


toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes, and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

As can be seen, the dynamic responses of the RHEN1 with CS3 are similar that of the basecase with CS1. Particularly, the tray temperature in the product column and the stabilizer column are well controlled (Figure 6.76.n, o and p), since there are two tray temperature controls in the product column (One is the tray-12 temperature control and the other is tray-18 temperature control).For the other dynamic responses, they are similar to the previous basecase.The small oscillations occur in the reactor inlet temperature, the separator temperature and the tray temperature of recycle column (Figure6.76.c,d and q).


6.20.3 Change in the Total Toluene Feed Flow rate


Figure 6.77 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

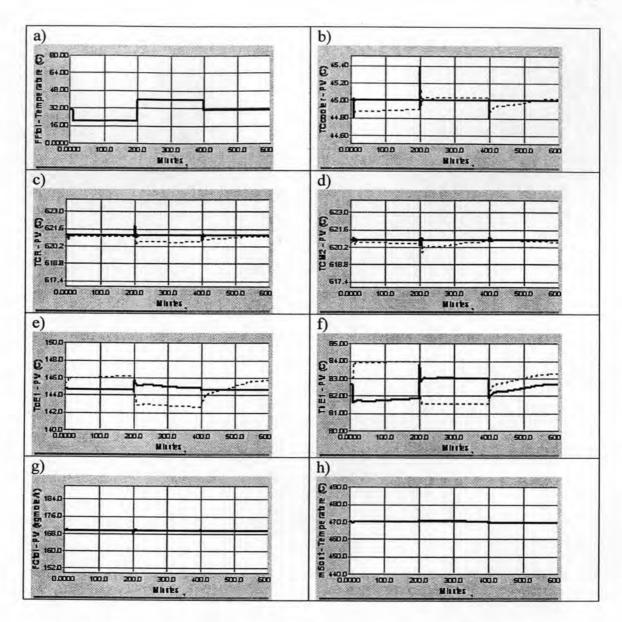

The dynamic responses of this control structure are better than that of the Basecase. As can be seen, the separator temperature is quite well controlled (Figure 6.77.d).A small oscillation of 3°C happens in the product column (Figure6.77.o and p) but a slightly well controlled occurs in the tray temperature of the stabilizer column (Figure6.77.n). The tray temperature of the recycle column has a small deviation about 4°C and it takes over 550 minutes to return to its nominal value (Figure6.77.q).

Figure 6.75 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS3, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene of product column

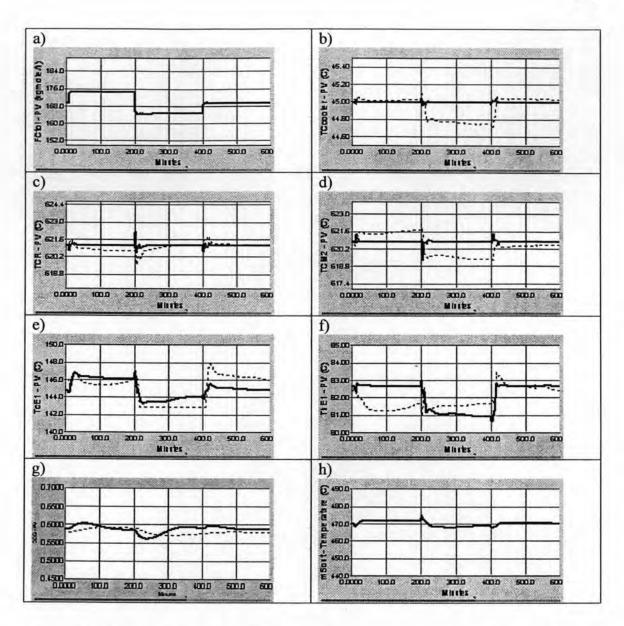
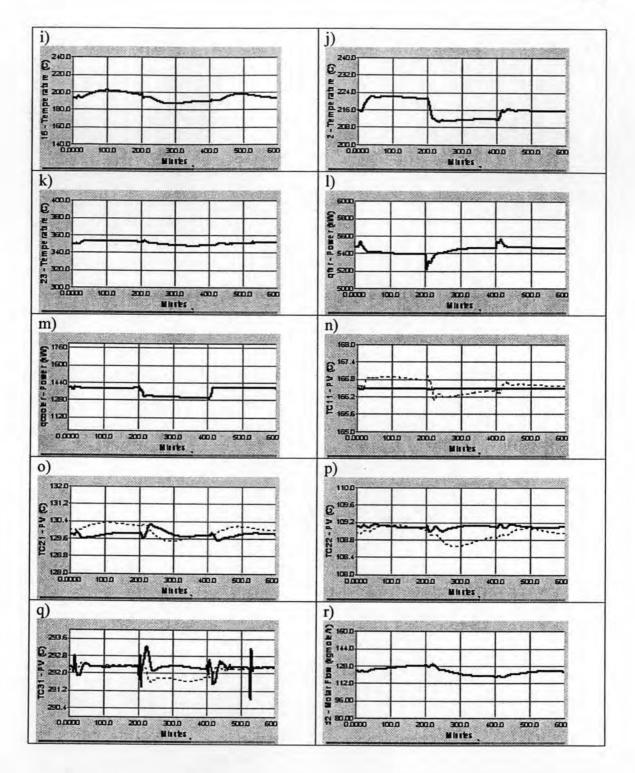


Figure 6.76 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS3, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature1,(p) product column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. — Process variable (PV), •••••• Manipulated variable)


)	j)
2 ²⁴⁰⁰	2400
	2220 e
1600	F 2080
140.0	× 200
0.0000 100.0 200.0 200.0 400.0 500.0 600 Mints	0,0000 100,0 200,0 200,0 400,0 500,0 600 Militiks
)	1)
300	
3600	\$ 5500
340.0	5400
3000	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
30000 1000 2000 3000 4000 5000 600	5000 1000 2000 3000 4000 5000 600
Whites ,	Lines
n)	n)
1760	
	167.2
1280	Ë 165.6
	1648
00000 1000 2000 3000 4000 500 500 Wintes	0,0000 100,0 200,0 300,0 400,0 500,0 600 Wintes
)	p)
1312	110.0
130.4	6 1055
1286	N 1092
128.8	
0.0000 100.0 200.0 300.0 400.0 500.0 500	0,0000 100,0 200,0 300,0 400,0 500,0 500
Whites,	Mucles
	r)
23.6	
2928	1280
200	
2912	g 95.00
200.4 100.0 200.0	N 80.000 100.0 200.0 200.0 400.0 500.0 500
Mines,	Mhrtes

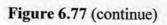

Figure 6.76 (continue)

Figure 6.77 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS3, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature2,(q) recycle column tray temperature,(r) molar flow benzene

(Note. — Process variable (PV), •••••• Manipulated variable)

6.21 Dynamic Simulation Results for HDA Process Alternative6 (RHEN3) with minimum Auxiliary Utility Units: CS4

In order to illustrate the dynamic behavior of the control structure in HDA process, several disturbance loads are made. The dynamic responses of the control system are shown in Figures 6.78 to 6.80. Results for individual disturbance load changes are as follows

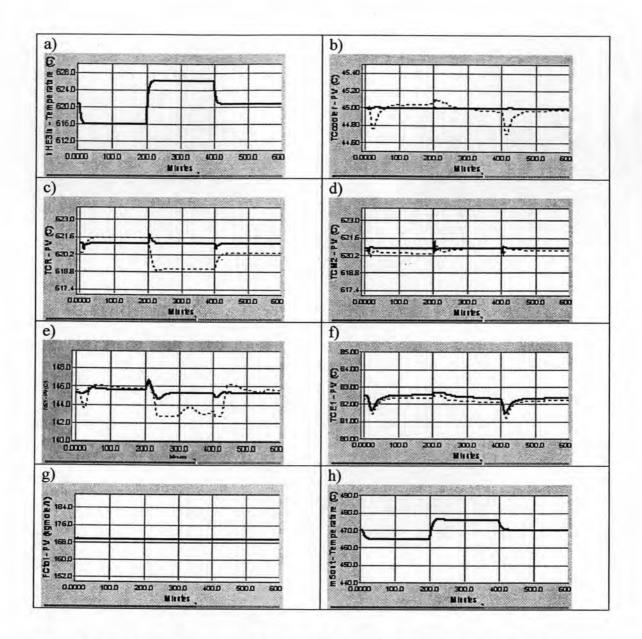
6.21.1 Change in the Disturbance Load of Hot Stream (Reactor Product)

Figure 6.78 shows the dynamic responses of HDA process to a change in the disturbance load of hot stream from reactor, by changing its temperature from 620.8°C to 616°C at time equals 10 minutes, and the its temperature is increased from 616°C to 626°C at time equals 200 minutes, then its temperature is returned to its nominal value of 620.8°C at time equals 400 minutes.

As can be seen, the most dynamic responses of the CS4 are worse than the previous CS1 i.e. the separator temperature and the reactor inlet temperature are well controlled (Figure 6.78.c and d), the oscillations occur about 5°C in the tray temperature of the stabilizer and the product column (Figure 6.78.n and o). The tray temperature in the recycle column has a large oscillation and it takes more than 800 minutes to come back to setpoint (Figure 6.78.p). The oscillations occur in the molar flow of the benzene (Figure 6.78.q).

6.21.2 Change in the Disturbance Load of Cold Stream (Reactor Feed Stream)

Figure 6.79 shows the dynamic responses to a change in the disturbance load of cold stream (reactor feed stream). This disturbance is made as follows: first the fresh toluene feed temperature is decreased from 30°C to 20°C at time equals 10 minutes,

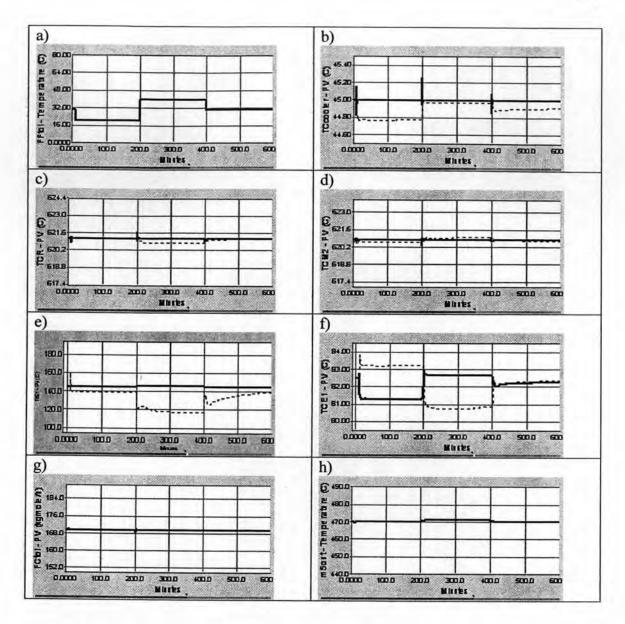

and the temperature is increased from 20°C to 40°C at time equals 200 minutes, then its temperature is returned to its nominal value of 30°C at time equals 400 minutes.

The dynamic responses of the CS4 are worse than CS1 during the change in the disturbance load of the cold stream occurs. The separator temperature, the reactor inlet temperature are quite well controlled (Figure 6.79.d and c). A deviation of 6°C happens in the tray temperature of the recycle column and it takes over 800 minutes to return to its nominal value of 290.3°C (Figure 6.79.p) and the oscillations occur in the molar flow of the benzene (Figure 6.79.q).

6.21.3 Change in the Total Toluene Feed Flow rate

Figure 6.80 shows the dynamic responses of HDA process to a change in the total toluene feed flowrates from 169.3 kgmole/hr to 174.3 kgmole/hr at time equals 10 minutes, and the its feed flowrate is decreased from 174.3 kgmole/hr to 164.3 kgmole/hr at time equals 200 minutes, then its flowrates is returned to its nominal value of 169.3 kgmole/hr at time equals 400 minutes.

The dynamic responses of this control structure are worse than that of the CS1. As can be seen, the separator temperature is quite well controlled (Figure 6.80.d).A small oscillation of 3°C happens in the product column (Figure6.80.o), Also a slightly worse controlled occurs in the tray temperature of the stabilizer column (Figure6.80.n). The tray temperature of the recycle column has a large deviation about 20°C and it takes over 900 minutes to return to its nominal value (Figure6.80.p). The oscillations occur in the molar flow of the benzene (Figure 6.80.q).

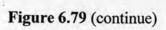


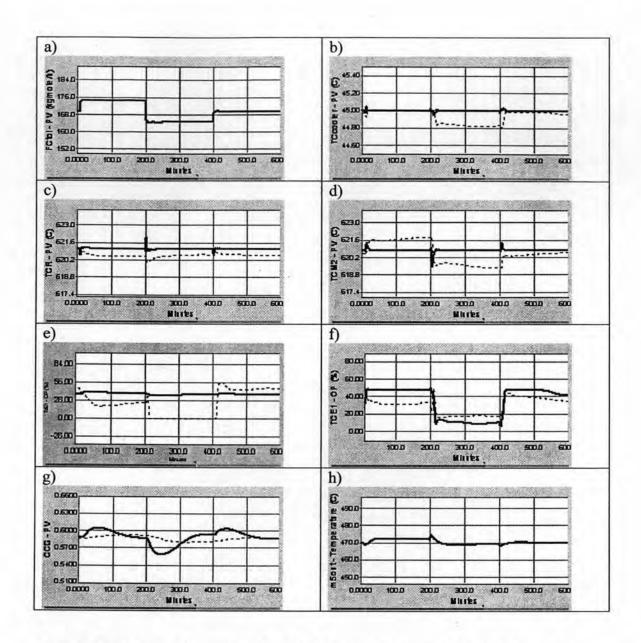
276

Figure 6.78 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Hot Stream (Reactor Product Stream):CS4, where: (a)the variation hot outlet temperature of reactor , (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator , (e) the cold outlet temperature of FEHE1 , (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature,(p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column (Note. — Process variable (PV), … Manipulated variable)

	j)
2400	E ²³²⁰
220.0	2 224.0
2000	E 2160
180.0	ă la
160.0	E 2080
1400	A 2000
0,0000 100,0 200,0 200,0 400,0 500,0 600 Mintes	0,0000 100,0 200,0 200,0 400,0 500,0 600 Minites ,
	1)
****	S000 1 1 1 1 1
0.066	§ 500
360.0	ã 5500
340.0	2 Suco
300	
3000	500
0.0000 100.0 200.0 300.0 400.0 500.0 600 White:	00000 1000 2000 3000 4000 500 500
)	n)
1260	
1160	C 168.0
	£ 1672
	166.4
1280	Ê 165,6
1120	164.B
0.0000 100.0 200.0 300.0 400.0 500.0 500 Minites	0000 0001 2002 2004 000 000 600 Mitter
	p)
132/01	
131.2	2935
130.4	222B
	2220
128.8	P 2912
138.0	20.4
00000 1000 2000 3000 4000 5000 500 Mintes	0,000 100,0 200,0 300,0 400,0 500,0 600 Wittes
	r)
	N 10000
1440	809999
128,0	0.5556
1120	8 09997
500	
0.0000 100.0 200.0 200.0 200.0 500	5 03995 0 09955 0 00000 1000 2000 3000 4000 5000 600

Figure 6.78 (continue)




Figure 6.79 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the Heat Load Disturbance of Cold Stream (Reactor Feed Stream):CS4, where: (a)the variation temperature of fresh feed toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g) molar flow of total toluene, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene,(r) composition benzene of product column

(Note. — Process variable (PV), … Manipulated variable)

278

	j)
240.0	240.0
220.0	E 2220
200.0	E 224.0
180.0	8 216D
160.0	E
140.0	2000
0000 1000 2000 2000 4000 5000 600 Wints	0,0000 100,0 200,0 200,0 400,0 500,0 600 Mintes
)	1)
4000	·····
380.0	§ 900
360.0	§ 5500
340,0	2 sto
3000	Ê SAD
30000 1000 2000 3000 4000 9000 600	500
00000 10000 2000 3000 4000 9000 600 Winter	0.0000 100.0 20.0 300.0 400.0 500.0 600 Mintes
)	n)
1160	168.D
1600	£ 167.2
1440	Pier
1280	· · · · · · · · · · · · · · · · · · ·
1120	<u>p</u> 165.5
0,0000 1000 2000 3000 3000 5000 500	164.8
Whites	0.0000 100.0 200.0 200.0 400.0 500.0 600 Mintes
	p)
132.0	293.6
1312	£ 2525
130 4 Hartin a watter a gala Angel and alter an angel and an	2 2320
129.5	<u> </u>
129.9	
1280	220.4
Whites	Whites
	<u>r)</u>
160.0	
1410	E
1280	0.9998
1120	2 0 9996

80,00 100,0 200,0 300,0 400,0 500,0 500	l o l l l l l l l
Wirter	1 0.000 100,0 200,0 300,0 400,0 500,0 600 10 Mintes

Figure 6.80 Dynamic Responses of the HDA Process Alternative 6:RHEN3 with minimum Auxiliary Utility Units to a Change in the total toluene feed flowrate:CS4, where: (a)the molar flow of total toluene, (b) the outlet cooler temperature, (c) the reactor inlet temperature, (d) the temperature of product reactor and separator, (e) the cold outlet temperature of FEHE1, (f) the hot outlet temperature of FEHE1, (g)composition methane of gas recycle, (h) the cold inlet temperature of Furnace, (i) the bottom temperature of product column, (j) the bottom temperature of stabilizer column, (k) the bottom temperature of recycle column, (l) furnace duty, (m)cooler duty, (n) stabilizer column tray temperature, (o) product column tray temperature, (p) recycle column tray temperature, (q) molar flow benzene, (r) composition benzene of product column

(Note. Process variable (PV), Manipulated variable)

6.22 Evaluation of the Dynamic Performance

The estimation of the achievable variance of SISO controller variable from 'normal' closed-loop data compared that minimum variance control has been widely used as a benchmark for assessing control loop performance. However, minimum variance control based performance assessment methods cannot adequately evaluate the performance for controller with constraints explicitly incorporated or for controllers where transient response and deterministic disturbance regulation are concerned. For assessing constraints control loop performance the proposed dynamic performance index is focused on time related characteristics of the controller's response to set-point changes or deterministic disturbances. There exist several candidate performance measures such as settling time and integral absolute error (IAE). Integral absolute error is well known and widely used. For the formulation of a dynamic performance as written below:

$$IAE = \int |\varepsilon(t)| \, dt \tag{6.1}$$

Note that $\varepsilon(t) = y_{sp}(t) - y(t)$ is the deviation (error) of the response from the desired setpoint.

In this work, IAE method is used to evaluate the dynamic performance of the designed control system. Table 6.21a to 6.24a shows the IAE results for the change in the disturbance loads of hot steam in HDA process alternative 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure to CS4 control structure respectively, table 6.21b to 6.24b shows the IAE results for the change in the disturbance loads of cold steam in HDA process alternative 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure to CS4 control structure respectively, table 6.21c to 6.24c shows the IAE results for the change in the total toluene feed flowrates in HDA process alternative 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure to CS4 control structure respectively, table 6.21c to 6.24c shows the IAE results for the change in the total toluene feed flowrates in HDA process alternative 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure to CS4 control structure to CS4 control structure to CS4 control structure to CS4 control structure feed flowrates in HDA process alternative 6 with different resilient heat exchanger networks (BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3) for CS1 control structure to CS4 control structure to CS4 control structure to CS4 control structure to CS4 control structure respectively.

6.22.1 Evaluation of the Dynamic Performance for CS1 Control Structure Case

Table 6.21a to 6.21c show the IAE results for the change in the disturbance loads of hot steam in HDA process, the IAE results for the change in the disturbance loads of cold steam in HDA process and the IAE results for the change in the total toluene feed flowrates in HDA process respectively.

For the change in the disturbance loads of the hot steam on HDA process case the control system (CS1) compared with those in HDA process BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3, i.e. the value of IAE in HDA process RHEN3 is smaller than those in RHEN1, BC 3 aux, BC min aux and RHEN 2 respectively.

As can be seen the similarity result the change in the disturbance loads of the cold steam and the change in the disturbance loads of the total toluene feed flowrates, the value of IAE in HDA process RHEN3 is smaller than another alternatives.

6.22.2 Evaluation of the Dynamic Performance for CS2 Control Structure Case

Table 6.22a to 6.22c show the IAE results for the change in the disturbance loads of hot steam in HDA process, the IAE results for the change in the disturbance loads of cold steam in HDA process and the IAE results for the change in the total toluene feed flowrates in HDA process respectively.

For the change in the disturbance loads of the hot steam on HDA process case the control system (CS2) compared with those in HDA process BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3, i.e. the value of IAE in HDA process RHEN3 is smaller than those in RHEN2, BC 3 aux, RHEN1 and BC min aux respectively. As can be seen the similarity result the change in the disturbance loads of the cold steam and the change in the disturbance loads of the total toluene feed

flowrates, the value of IAE in HDA process RHEN3 is smaller than another alternatives.

As can be seen that the IAE results for CS2 control structure is smaller than CS1 control structure results, but the IAE value of the disturbance loads of the total toluene feed flowrates is larger than CS1.

6.22.3 Evaluation of the Dynamic Performance for CS3 Control Structure Case

Table 6.23a to 6.23c show the IAE results for the change in the disturbance loads of hot steam in HDA process, the IAE results for the change in the disturbance loads of cold steam in HDA process and the IAE results for the change in the total toluene feed flowrates in HDA process respectively.

For the change in the disturbance loads of the hot steam on HDA process case the control system (CS3) compared with those in HDA process BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3, i.e. the value of IAE in HDA process RHEN3 is smaller than those in BC 3 aux, BC min aux, RHEN1 and RHEN2 respectively. As can be seen the similarity result the change in the disturbance loads of the cold steam and the change in the disturbance loads of the total toluene feed flowrates, the value of IAE in HDA process RHEN3 is smaller than another alternatives.

As can be seen that the IAE results for CS3 control structure is smaller than CS1 and CS2 control structure results, but the IAE value of BC 3 aux and BC min aux to change in the disturbance loads of cold steam is larger than CS1 and CS2.

6.22.4 Evaluation of the Dynamic Performance for CS4 Control Structure Case

Table 6.24a to 6.24c show the IAE results for the change in the disturbance loads of hot steam in HDA process, the IAE results for the change in the disturbance loads of cold steam in HDA process and the IAE results for the change in the total toluene feed flowrates in HDA process respectively. For the change in the disturbance loads of the hot steam on HDA process case the control system (CS4) compared with those in HDA process BC 3 aux, BC min aux, RHEN1, RHEN2 and RHEN3, i.e. the value of IAE in HDA process RHEN3 is smaller than those in RHEN1, BC 3 aux, BC min aux and RHEN2 respectively. As can be seen the similarity result the change in the disturbance loads of the cold steam and the change in the disturbance loads of the total toluene feed flowrates, the value of IAE in HDA process RHEN3 is smaller than another alternatives.

As can be seen that the IAE results for CS4 look just the same as CS1 control structure results, but IAE results for CS1 control structure are larger than CS2 and CS3 control structure. The performance of these control structures can be arranged from the best to lowest performance (error of controllability point of view) as the following sequences: CS3, CS2, CS1 and CS4.

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	1.134316761	1.143456902	0.863232615	0.977166684	0.956546
TC2	0.705089248	0.73624989	0.964797168	1.04196287	0.809433757
TC3	1.259710779	1.304215127	0.888956309	1.514981798	0.8156156
TCR	1.528503799	1.539687395	1.38112727	1.676626876	1.487778024
TCS	0.7156595	0.78126562	0.584579758	0.717475771	0.62005146
TCQ	0.817936484	0.819831039	0.858433194	0.915734291	0.881723438
ThE2	1.382017754	1.394764497	1.498899552	1.091626567	1.025969835
sum	7.543234325	7.719470472	7.040025866	7.935574857	6.597118115

 Table 6.21a The IAE results of the CS1 control structure to the change in the disturbance load of hot steam

Table 6.21b The IAE results of the CS1 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.449525675	0.44970548	0.448628229	0.543070458	0.322831623
TC2	0.178382797	0.179517736	0.178764141	0.178212454	0.108788201
TC3	0.226308596	0.226798327	0.241260396	0.454546349	0.243497773
TCR	0.438554922	0.439878936	0.442441576	0.442625745	0.370473245
TCS	0.769357869	0.799618878	0.770073204	0.802434989	0.801494387
TCQ	0.399493726	0.399185242	0.384120932	0.489786173	0.419308438
ThE2	0.228992024	0.230560476	0.261221901	0.198634834	0.116840554
sum	2.690615609	2.725265077	2.726510379	3.109311003	2.383234221

disturbance load of cold steam

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	1.808886965	1.867362206	2.56142362	2.469950975	1.439631908
TC2	2.436756635	2.497768263	1.510648619	1.545240751	1.564933021
TC3	2.155645	2.21689756	1.808072339	1.561390719	1.455585673
TCR	1.038120362	1.132093171	1.400523644	1.446632934	1.548160434
TCS	1.383904829	1.51245011	1.080209095	0.956752995	0.956312353
TCQ	1.019298367	1.243689334	1.952813182	1.891319093	2.027539938
ThE2	1.5789516	1.579235565	1.492268649	1.514445859	1.349063737
sum	11.42156376	12.04949621	11.80595915	11.38573333	10.34122706

Table 6.21c The IAE results of the CS1 control structure to the change in the

disturbance load of total toluene feed flowrates

Table 6.22a The IAE results of the CS2 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.808797978	0.828233668	0.869937934	0.68209618	0.655544882
TC2	0.690177199	0.690417662	0.669149804	0.672275145	0.649228207
TC3	0.730326757	0.738406108	0.742102229	0.707500149	0.701117114
TCR	1.566974799	1.573135763	1.577012058	1.661790748	1.531814908
TCS	0.948084477	0.992994296	0.9123568	0.8821266	0.769252918
TCQ	0.772468063	0.774640342	0.782789163	0.802345729	0.76566253
ThE2	1.2671596	1.27982321	1.282096535	1.292348172	1.175267526
sum	6.783988872	6.87765105	6.835444523	6.700482724	6.247888084

disturbance load of hot steam

Table 6.22b The IAE results of the CS2 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.428352097	0.430246063	0.296621574	0.314236448	0.3075216
TC2	0.220264566	0.220248983	0.225807762	0.239471477	0.213208703
TC3	0.180568005	0.180655993	0.191921791	0.174097835	0.17801478
TCR	0.428538235	0.434662473	0.421480912	0.487372584	0.405108638
TCS	0.869610835	0.874450104	0.871406113	0.839567811	0.737735316
TCQ	0.671860955	0.675237723	0.623389729	0.607028536	0.574428668
ThE2	0.230644315	0.230518692	0.247008242	0.208868248	0.2158766
sum	3.029839008	3.046020031	2.877636124	2.87064294	2.631894305

disturbance load of cold steam

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	2.487371221	2.515215861	2.404540923	2.461512304	2.38777818
TC2	1.822983934	1.847502731	1.906325922	1.822989621	1.712226587
TC3	1.569876309	1.628805856	1.597244432	1.689993342	1.561498877
TCR	1.51975771	1.530641713	1.429071877	1.472093834	1.432147518
TCS	1.002612331	1.002760613	1.013324005	1.015700423	1.015050137
TCQ	2.035970663	2.071751409	2.034894575	1.981538438	1.90393105
ThE2	2.082264427	2.090186993	1.504853611	1.486582428	1.425688562
sum	12.5208366	12.68686518	11.89025535	11.93041039	11.43832091

Table 6.22c The IAE results of the CS2 control structure to the change in the

disturbance load of total toluene feed flowrates

Table 6.23a The IAE results of the CS3 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.565861671	0.581825392	0.59364815	0.527116845	0.518065934
TC2	0.532764821	0.538173684	0.493183711	0.496155711	0.499955974
TC3	1.271172471	1.280079128	1.230522378	1.124607345	0.85156165
TCR	0.93119188	1.027029306	1.2564954	1.692850515	0.891226
TCS	0.795552123	0.811694842	0.89456516	0.700553413	0.71855723
TCQ	0.770473756	0.775644329	0.663230319	0.887457283	0.895226923
ThE2	1.121882473	1.135271035	1.318932	1.098946915	1.011649602
sum	5.988899196	6.149717717	6.450577118	6.527688028	5.386243313

disturbance load of hot steam

Table 6.23b The IAE results of the CS3 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.38229765	0.385912491	0.230632377	0.248386695	0.101329135
TC2	0.195905249	0.197120689	0.162156165	0.244370721	0.207279722
TC3	0.437586509	0.451011339	0.425263634	0.513797754	0.297909729
TCR	0.438978021	0.447885311	0.488107185	0.424526928	0.374064546
TCS	0.8315655	0.866697512	0.832008864	0.800358886	0.781256465
TCQ	0.57156156	0.581235757	0.551971311	0.466664022	0.442029033
ThE2	0.248445734	0.25034149	0.285661802	0.194625878	0.124109286
sum	3.106340224	3.180204589	2.975801339	2.892730884	2.327977915

disturbance load of cold steam

Table 6.23c The IAE results of the CS3 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	1.167545234	1.224451448	1.872385503	1.154125421	1.114731054
TC2	2.444087844	2.504821922	3.028108442	3.053076822	2.012083949
TC3	1.926398033	1.986669047	2.329647364	2.038142958	1.253671845
TCR	1.275665847	1.293824972	1.433358012	1.367632685	1.126584
TCS	1.015460036	1.022859063	1.226100123	0.962506766	0.946745331
TCQ	1.933799226	1.972228665	1.99362247	1.876648294	1.971120023
ThE2	1.912264126	1.940521164	1.482924722	1.484408697	1.340485597
sum	11.67522035	11.94537628	13.36614664	11.93654164	9.765421799

disturbance load of total toluene feed flowrates

Table 6.24a The IAE results of the CS4 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	1.142676142	1.144676902	0.864576262	0.977343484	0.95365786
TC2	0.704669248	0.725674989	0.965536168	1.053248701	0.808465735
TC3	1.258677793	1.315621513	0.872646275	1.514981798	0.817875156
TCR	1.536837987	1.53587774	1.384562727	1.674567606	1.486436525
TCS	0.71356595	0.78578562	0.585547976	0.715230608	0.654655056
TCQ	0.817078984	0.831039459	0.857243755	0.915733391	0.883456771
ThE2	1.383561775	1.395465497	1.498534552	1.091246672	1.046456456
sum	7.557067879	7.73414172	7.028647715	7.942352259	6.65100356

disturbance load of hot steam

Table 6.24b The IAE results of the CS4 control structure to the change in the

disturbance load of cold steam

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	0.451522375	0.44596348	0.452357657	0.536547705	0.3354567
TC2	0.169862797	0.178457674	0.176546875	0.185578526	0.115578201
TC3	0.23124086	0.246747681	0.254357613	0.447584918	0.236747698
TCR	0.443214922	0.445659365	0.437645766	0.457968745	0.365378963
TCS	0.76734669	0.789756879	0.78454672	0.818679166	0.816474387
TCQ	0.397209373	0.398366524	0.395769321	0.482658657	0.41778988
ThE2	0.227458992	0.243450476	0.256471901	0.196457645	0.135675841
sum	2.687856008	2.748402079	2.757695853	3.125475361	2.42310167

Table 6.24c The IAE results of the CS4 control structure to the change in the

	BC 3 Aux	BC min Aux	RHEN1	RHEN2	RHEN3
TC1	1.812938523	1.824875231	2.459305948	2.432649435	1.798246453
TC2	2.447553567	2.49897895	1.53656788	1.564587986	1.575687479
TC3	2.254247645	2.313567798	1.879467875	1.643678954	1.447654737
TCR	1.026745678	1.095876537	1.413152364	1.445375769	1.539676547
TCS	1.385747856	1.513764769	1.081210953	0.955534995	0.956235353
TCQ	1.019234837	1.243334705	1.952434357	1.875676293	2.025325671
ThE2	1.568324566	1.568334657	1.49455104	1.521545673	1.35185466
sum	11.51479267	12.05873265	11.81669042	11.43904911	10.6946809

disturbance load of total toluene feed flowrates

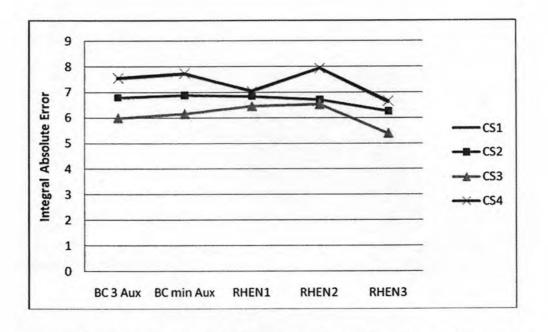


Figure 6.81: The IAE results of a change in the disturbance load of hot stream

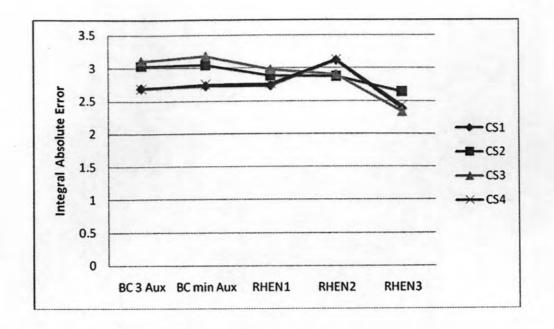
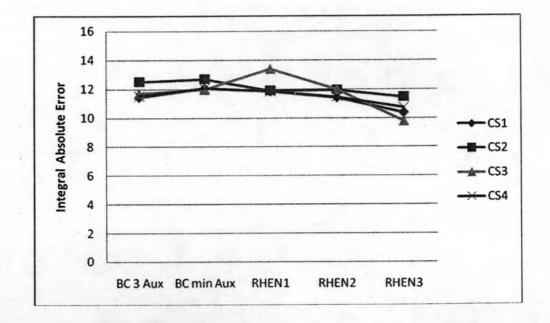
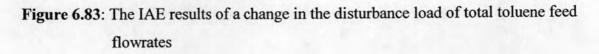




Figure 6.82: The IAE results of a change in the disturbance load of cold stream

