CHAPTER II

7

A NEW METHOD TO OBTAIN SUPER VERTEX-MAGIC TOTAL LABELINGS OF GRAPHS

The studies described in this chapter are partly rewritten from the published literature[5] because it is considered to be one of the most useful selected papers regarding to super vertex-magic total labeling. Our purpose is to construct a new super vertex-magic graph from an existing one. From a super vertex-magic graph G with some characteristics, we construct the disjoint union of k copies of G, kG which is a super vertex-magic graph.

Theorem 2.1. ([5]) Let G be an r-regular super vertex-magic graph with the magic constant h. If the graph kG is super vertex-magic then the magic constant is $h' = kh - \frac{(k-1)(r+1)}{2}$.

Proof.

Assume that kG is a super vertex-magic graph with the magic constant h'.

By Theorem 1.2.1,

$$\begin{aligned} h' &= \frac{(vk + ek)(vk + ek + 1)}{vk} - \frac{vk + 1}{2} \\ &= \frac{(vk + ek)[(vk + ek + k) - (k - 1)]}{vk} - \frac{(vk + ek)(k - 1)}{2} \\ &= \frac{(vk + ek)(vk + ek + k)}{vk} - \frac{(vk + ek)(k - 1)}{vk} - \frac{vk + k}{2} + \frac{k - 1}{2} \\ &= \frac{k(v + e)(v + e + 1)}{v} - \frac{(v + e)(k - 1)}{v} - \frac{k(v + 1)}{2} + \frac{k - 1}{2} \\ &= \left[\frac{k(v + e)(v + e + 1)}{v} - \frac{k(v + 1)}{2}\right] - \left[\frac{(v + e)(k - 1)}{v} - \frac{k - 1}{2}\right] \\ &= k\left[\frac{(v + e)(v + e + 1)}{v} - \frac{(v + 1)}{2}\right] - \left[\frac{2(v + e)(k - 1) - v(k - 1)}{2v}\right] \\ &= k\left[\frac{(v + e)(v + e + 1)}{v} - \frac{(v + 1)}{2}\right] - \left[\frac{(v + 2e)(k - 1) - v(k - 1)}{2v}\right] \end{aligned}$$

Since G is r-regular, 2e = rv, and G is a super vertex-magic graph with

$$h = \frac{(v+e)(v+e+1)}{v} - \frac{v+1}{2}, \text{ then}$$

$$= k \left[\frac{(v+e)(v+e+1)}{v} - \frac{(v+1)}{2} \right] - \left[\frac{(v+rv)(k-1)}{2v} \right]$$

$$= k \left[\frac{(v+e)(v+e+1)}{v} - \frac{(v+1)}{2} \right] - \left[\frac{(r+1)(k-1)}{2} \right].$$
Hence $h' = kh - \frac{(k-1)(r+1)}{2}.$

From now on, we will assume that the order of the generic graph G is greater than one. Let k be a positive integer and

$$M(k) = \left\{ -\frac{k-1}{2}, -\frac{k-1}{2} + 1, \dots, -\frac{k-1}{2} + (k-2), -\frac{k-1}{2} + (k-1) \right\}$$
$$= \left\{ -\frac{k}{2} + \frac{1}{2}, -\frac{k}{2} + \frac{3}{2}, \dots, \frac{k}{2} - \frac{3}{2}, \frac{k}{2} - \frac{1}{2} \right\}.$$

Definition 2.2. A neutral labeling of a graph G with the elements of M(k) is a map β satisfying

$$\beta: V(G) \cup E(G) \to M(k)$$

and for each $v_i \in V(G)$, $w_{\lambda}(v_i) = 0$.

Example 2.3. Two neutral labelings of the graph $C_3 + C_6$ with the elements of $M(3) = \{-1, 0, 1\}$ and $M(5) = \{-2, -1, 0, 1, 2\}$ are shown in Figure 2.1 and Figure 2.2, respectively.

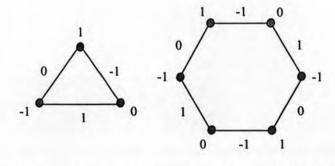


Figure 2.1 : A neutral labeling of the graph $C_3 + C_6$ with the elements of $M(3) = \{-1, 0, 1\}$

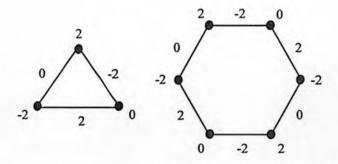


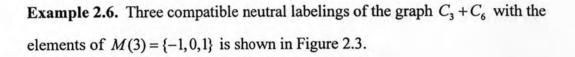
Figure 2.2 : A neutral labeling of the graph $C_3 + C_6$ with the elements of $M(5) = \{-2, -1, 0, 1, 2\}$

Theorem 2.4. ([5]) Let r be even and G be an r-regular graph. There is no neutral labeling of G with the elements of M(k) for even k.

Proof. Assume that k is even and $M(k) = \left\{-\frac{k}{2} + \frac{1}{2}, -\frac{k}{2} + \frac{3}{2}, ..., \frac{k}{2} - \frac{3}{2}, \frac{k}{2} - \frac{1}{2}\right\}$. Therefore, the sum of any odd elements of M(k) is different from 0. Since r+1 is odd, there is no neutral labeling of G with the elements of M(k).

Definition 2.5. Two neutral labelings of a graph G, β_1 and β_2 , are compatible iff $\beta_1(v) \neq \beta_2(w)$ for each $v, w \in V(G)$ and $\beta_1(vw) \neq \beta_2(vw)$ for each $vw \in E(G)$. A set of $q (\leq k)$ neutral labelings of G with the elements of M(k) are compatible iff they are pairwise compatible.

Note that the maximum number of compatible neutral labelings of a graph G with the elements of M(k) is k.



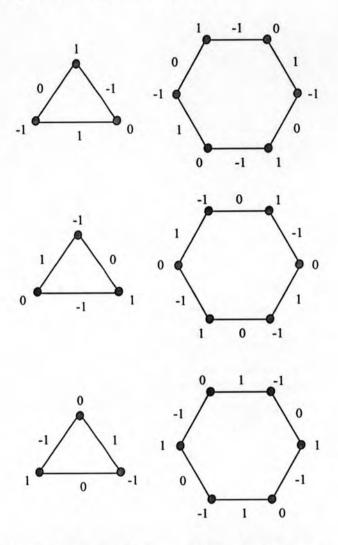


Figure 2.3 : Three compatible neutral labelings of the graph $C_3 + C_6$ with the elements of $M(3) = \{-1, 0, 1\}$

Definition 2.7. A graph is *edge-colorable* if there is a labeling from the edge set of the graph to a finite set such that incident edges have different labels. The labels are called colors, the edges of one color form a *color class*.

Theorem 2.8. ([8]) (Vizing's Theorem) If G is a graph, then G can be edge-colored in $\Delta(G) + 1$ where $\Delta(G)$ is the maximum degree of G.

Remark 2.9. For any graph G, by Vizing's Theorem, there are color classes $S_1, S_2, ..., S_{\Delta(G)+1}$ of E(G) such that each incident edge of any vertex is in different color classes.

If G is an r-regular graph, there are color classes $S_1, S_2, ..., S_{r+1}$ of the edge set of G such that each incident edge of any vertex is in different color classes. We can also use these color classes to label the vertex set of G such that for each vertex v in G, there is $m \in \{1, 2, ..., r+1\}$ and $v \in S_m$ and incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m .

To see this, Since G is r-regular, r incident edges with any vertex v belong to r different color classes from $S_1, S_2, ..., S_{r+1}$, Thus there is exactly one color class, say S_m , so we label v with S_m .

Example 2.10. The graph $C_3 + C_6$ has the maximum degree 2. There are 3 color classes S_1, S_2, S_3 of $E(C_3 + C_6)$ as shown in Figure 2.4 and by Remark 2.9, since 2 incident edges with a belong to color classes S_1 and S_2 , $a \in S_3$. Similarly to b, c, ..., i. The labeling of $V(C_3 + C_6) \cup E(C_3 + C_6)$ with S_1, S_2, S_3 as shown in Figure 2.5.

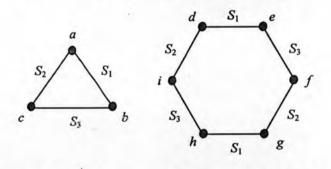


Figure 2.4 : Color classes S_1, S_2, S_3 of $E(C_3 + C_6)$

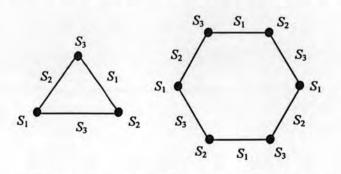


Figure 2.5 : Color classes S_1, S_2, S_3 of $V(C_3 + C_6) \cup E(C_3 + C_6)$

Theorem 2.11. ([5]) Let k be a positive integer and G be an r-regular graph. If $\frac{(k-1)(r+1)}{2}$ is an integer, then the graph G has k compatible neutral labelings with the elements of M(k).

Proof. Assume that $\frac{(k-1)(r+1)}{2}$ is an integer. By Vizing's Theorem and Remark 2.9, there are color classes $S_1, S_2, ..., S_{r+1}$ of $V(G) \cup E(G)$, for every vertex $v \in V(G)$, there is $m \in \{1, 2, ..., r+1\}, v \in S_m$, the incident edges with v belong to color classes

 $S_1, S_2, ..., S_{r+1}$ but not S_m . Let $M(k) = \left\{-\frac{k}{2} + \frac{1}{2}, -\frac{k}{2} + \frac{3}{2}, ..., \frac{k}{2} - \frac{3}{2}, \frac{k}{2} - \frac{1}{2}\right\}$.

We will construct a compatible neutral labeling of the graph kG with the elements of M(k) by distinguishing into 2 cases.

Case 1: r+1 is even.

For each l = 1, 2, ..., k, let $\beta_l : V(G) \cup E(G) \to M(k)$ be a labeling defined by

$$\beta_l(x) = \begin{cases} l - \frac{k+1}{2} & \text{if } x \in S_m, \ m \text{ is odd,} \\ \frac{k+1}{2} - l & \text{if } x \in S_m, \ m \text{ is even.} \end{cases}$$

When *m* is odd, we have

$$\{\beta_{l}(x) \mid l = 1, 2, ..., k\} = \left\{1 - \frac{k+1}{2}, 2 - \frac{k+1}{2}, ..., k - \frac{k+1}{2}\right\}$$
$$= \left\{\frac{-k+1}{2}, \frac{-k+3}{2}, ..., \frac{k-1}{2}\right\}$$
$$= \left\{-\frac{k-1}{2}, -\frac{k-3}{2}, ..., \frac{k-1}{2}\right\} = M(k)$$

When m is even, we have

$$\{\beta_l(x) \mid l = 1, 2, ..., k\} = \left\{\frac{k+1}{2} - 1, \frac{k+1}{2} - 2, ..., \frac{k+1}{2} - k\right\}$$
$$= \left\{\frac{k-1}{2}, \frac{k-3}{2}, ..., -\frac{k-1}{2}\right\} = M(k)$$

Thus $\{\beta_l(x) | l = 1, 2, ..., k\} = M(k)$ for all m = 1, 2, ..., r+1.

Claim that $w_{\beta_i}(v) = 0$ for all vertices v in G.

Case 1.1 : $v \in S_m$, *m* is odd. Thus *v* is labeled with $l - \frac{k+1}{2}$. The *r* incident edges with *v* belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are $\frac{r+1}{2} - 1$ incident edges with *v* belong to color classes $S_1, S_3, ..., S_r$ and are labeled with $l - \frac{k+1}{2}$. Another $\frac{r+1}{2}$ incident edges incident with *v* belong to color classes $S_2, S_4, ..., S_{r+1}$ and are labeled with $\frac{k+1}{2} - l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= \left(l - \frac{k+1}{2}\right) + \left(\frac{r+1}{2} - 1\right) \left(l - \frac{k+1}{2}\right) + \left(\frac{r+1}{2}\right) \left(\frac{k+1}{2} - l\right) = 0.$

Case 1.2 : $v \in S_m$, *m* is even. Thus *v* is labeled with $\frac{k+1}{2} - l$. The *r* incident edges with *v* belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are $\frac{r+1}{2} - 1$ incident edges with *v* belong to color classes $S_2, S_4, ..., S_{r+1}$ and are labeled with $\frac{k+1}{2} - l$. Another $\frac{r+1}{2}$ incident edges with *v* belong to color classes $S_1, S_3, ..., S_r$ and are labeled with $l - \frac{k+1}{2}$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= \left(\frac{k+1}{2} - l\right) + \left(\frac{r+1}{2} - 1\right) \left(\frac{k+1}{2} - l\right) + \left(\frac{r+1}{2}\right) \left(l - \frac{k+1}{2}\right) = 0.$

Hence G has k compatible neutral labelings with the elements of M(k).

Case 2 : r+1 is odd.

By Theorem 2.4, there is no neutral labeling of G with the elements of M(k) for even k. Thus k is odd.

For each l = 1, 2, ..., k, let $\beta_l : V(G) \cup E(G) \to M(k)$ be the labeling defined by

$$\beta_{l}(x) = \begin{cases} l - \frac{k+1}{2} & \text{if } x \in S_{m}, m \text{ is odd, } m < r, \\ \frac{k+1}{2} - l & \text{if } x \in S_{m}, m \text{ is even, } m < r, \\ l - 1 & \text{if } x \in S_{r}, \ l \le \frac{k+1}{2}, \\ l - k - 1 & \text{if } x \in S_{r}, \ l > \frac{k+1}{2}, \\ \frac{k+3}{2} - 2l & \text{if } x \in S_{r+1}, \ l \le \frac{k+1}{2}, \\ \frac{3k+3}{2} - 2l & \text{if } x \in S_{r+1}, \ l > \frac{k+1}{2}. \end{cases}$$

For m < r, similarly in case 1, we have $\{\beta_l(x) | l = 1, 2, ..., k\} = M(k)$. For m = r, we have $\{\beta_l(x) | l \le \frac{k+1}{2}\} = \{0, 1, ..., \frac{k-1}{2}\}$ and $\{\beta_l(x) | l > \frac{k+1}{2}\} = \{-\frac{(k-1)}{2}, -\frac{(k-3)}{2}, ..., -1\}$. Thus $\{\beta_l(x) | l = 1, 2, ..., k\} = M(k)$. For m = r+1, we have $\{\beta_l(x) | l \le \frac{k+1}{2}\} = \{\frac{k-1}{2}, \frac{k-5}{2}, ..., -\frac{(k-1)}{2}\}$ and $\{\beta_l(x) | l > \frac{k+1}{2}\} = \{\frac{k-3}{2}, \frac{k-7}{2}, ..., -\frac{(k-3)}{2}\}$. Thus $\{\beta_l(x) | l = 1, 2, ..., k\} = M(k)$. Hence $\{\beta_l(x) | l = 1, 2, ..., k\} = M(k)$ for all m = 1, 2, ..., r+1.

Claim that $w_{\beta_i}(v) = 0$ for all vertex v in G.

Case 2.1: $v \in S_m$, m < r, m is odd, and $l \le \frac{k+1}{2}$.

Thus v is labeled with $l - \frac{k+1}{2}$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are 2 incident edges with v belong to color classes S_r and S_{r+1} and they are labeled with l-1 and $\frac{k+3}{2}-2l$, respectively.

The $\frac{r-2}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2} - l$.

Thus
$$w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$$

= $\left(l - \frac{k+1}{2}\right) + (l-1) + \left(\frac{k+3}{2} - 2l\right) + \left(\frac{r-2}{2}\right) \left(l - \frac{k+1}{2}\right)$
+ $\left(\frac{r-2}{2}\right) \left(\frac{k+1}{2} - l\right) = 0$

Case 2.2: $v_i \in S_m$, m < r, *m* is even, and $l \le \frac{k+1}{2}$.

Thus v is labeled with $\frac{k+1}{2} - l$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are 2 incident edges with v belong to color classes S_r and S_{r+1} and they are labeled with l-1 and $\frac{k+3}{2} - 2l$, respectively.

The $\frac{r}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2} - 1$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2} - l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= \left(\frac{k+1}{2} - l\right) + (l-1) + \left(\frac{k+3}{2} - 2l\right) + \left(\frac{r}{2}\right) \left(l - \frac{k+1}{2}\right)$ $+ \left(\frac{r-2}{2} - 1\right) \left(\frac{k+1}{2} - l\right) = 0$

Case 2.3: $v \in S_m$, m < r, m is odd, and $l > \frac{k+1}{2}$.

Thus v is labeled with $l - \frac{k+1}{2}$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are 2 incident edges with v belong to color classes S_r and S_{r+1} and they are labeled with l-k-1 and $\frac{3k+3}{2}-2l$, respectively. The $\frac{r-2}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2}-l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$

$$= \left(l - \frac{k+1}{2}\right) + (l-k-1) + \left(\frac{3k+3}{2} - 2l\right) + \left(\frac{r-2}{2}\right) \left(l - \frac{k+1}{2}\right) + \left(\frac{r-2}{2}\right) \left(\frac{k+1}{2} - l\right) = 0$$

Case 2.4: $v \in S_m$, m < r, m is even, and $l > \frac{k+1}{2}$.

Thus v is labeled with $\frac{k+1}{2} - l$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_m . There are 2 incident edges with v belong to color classes S_r and S_{r+1} and they are labeled with l-k-1 and $\frac{3k+3}{2} - 2l$, respectively.

The $\frac{r}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2} - 1$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2} - l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= \left(\frac{k+1}{2} - l\right) + (l-k-1) + \left(\frac{3k+3}{2} - 2l\right) + \left(\frac{r}{2}\right) \left(l - \frac{k+1}{2}\right)$ $+ \left(\frac{r-2}{2} - l\right) \left(\frac{k+1}{2} - l\right) = 0$

Case 2.5 : $v \in S_r$ and $l \le \frac{k+1}{2}$. Thus v is labeled with l-1.

The *r* incident edges with *v* belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_r . There is 1 incident edge with *v* belong to color class S_{r+1} labeled with $\frac{k+3}{2}-2l$. The $\frac{r}{2}$ incident edges with *v* belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with *v* belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2}-l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= (l-1) + (\frac{k+3}{2}-2l) + (\frac{r}{2})(l-\frac{k+1}{2}) + (\frac{r-2}{2})(\frac{k+1}{2}-l) = 0$ Case 2.6 : $v_i \in S_r$ and $l > \frac{k+1}{2}$. Thus v is labeled with l-k-1. The r incident edges with v belong to color classes $S_1, S_2, ..., S_{r+1}$ but not S_r . There is 1 incident edge with v belong to color class S_{r+1} labeled with $\frac{3k+3}{2}-2l$. The $\frac{r}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2}-l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= (l-k-1) + (\frac{3k+3}{2}-2l) + (\frac{r}{2})(l-\frac{k+1}{2}) + (\frac{r-2}{2})(\frac{k+1}{2}-l) = 0$

Case 2.7: $v \in S_{r+1}$ and $l \leq \frac{k+1}{2}$. Thus v labeled with $\frac{k+3}{2} - 2l$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_r$.

There is 1 incident edge with v belong to color class S_r labeled with l-1.

The $\frac{r}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with v belong to color classes $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2} - l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ $= \left(\frac{k+3}{2} - 2l\right) + (l-1) + \left(\frac{r}{2}\right) \left(i - \frac{k+1}{2}\right) + \left(\frac{r-2}{2}\right) \left(\frac{k+1}{2} - l\right) = 0$

Case 2.8 : $v \in S_{r+1}(m_1 = r+1)$ and $l > \frac{k+1}{2}$. Thus v labeled with $\frac{3k+3}{2} - 2l$. The r incident edges with v belong to color classes $S_1, S_2, ..., S_r$. There is 1 incident edge with v belong to color class S_r labeled with l - k - 1. The $\frac{r}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled with $l - \frac{k+1}{2}$. The last one, $\frac{r-2}{2}$ incident edges with v belong to color classes $S_1, S_3, ..., S_{r-1}$ and are labeled $S_2, S_4, ..., S_{r-2}$ and are labeled with $\frac{k+1}{2} - l$. Thus $w_{\beta_l}(v) = \beta_l(v) + \sum_{w \in N(v)} \beta_l(vw)$ = $\left(\frac{3k+3}{2} - 2l\right) + (l-k-1) + \left(\frac{r}{2}\right) \left(l - \frac{k+1}{2}\right) + \left(\frac{r-2}{2}\right) \left(\frac{k+1}{2} - l\right) = 0$

Therefore for each $v_i \in V(G)$ and for each l = 1, 2, ..., k; $w_{\lambda}(v_i) = 0$. Hence G has the k compatible neutral labelings with the element of M(k).

In fact, three compatible neutral labelings of the graph $C_3 + C_6$ in Example 2.6 are constructed by the method in Theorem 2.11.

Theorem 2.12. ([5]) Let k be a positive integer. If G is an r-regular super vertexmagic graph and $\frac{(k-1)(r+1)}{2}$ is an integer, then the graph kG is super vertex-magic.

Proof. Let $M(k) = \left\{-\frac{k}{2} + \frac{1}{2}, -\frac{k}{2} + \frac{3}{2}, ..., \frac{k}{2} - \frac{3}{2}, \frac{k}{2} - \frac{1}{2}\right\},\$

G be an r-regular super vertex-magic graph with a super vertex-magic total labeling λ and the magic constant $h = \frac{(v+e)(v+e+1)}{v} - \frac{v+1}{2}$.

Assume that $\frac{(k-1)(r+1)}{2}$ is an integer, by Theorem 2.9, G has k compatible neutral labelings $\beta_1, \beta_2, ..., \beta_k$ with the elements of M(k). Let $\alpha: V(G) \cup E(G) \to A$ where $A = \left\{\frac{a}{2} \mid a \in \mathbb{Z}^+\right\}$ be a labeling defined by $\alpha(x) = k\lambda(x) - \frac{k-1}{2}$.

Let the graph kG consist of $G_1, G_2, ..., G_k$.

We will construct a super vertex-magic total labeling λ' of the graph kG as follows.

Let $\lambda': V(kG) \cup E(kG) \rightarrow \{1, 2, ..., kv, kv+1, ..., kv+ke\}$ be a labeling defined by

$$\lambda'(v_c) = \alpha(v) + \beta_c(v),$$

 $\lambda'(v_c w_c) = \alpha(vw) + \beta_c(vw).$

where v_c is a vertex in G_c corresponding to v in G and $v_c w_c$ is an edge in G_c corresponding to vw in G, c = 1, 2, ..., k.

From the labeling λ' , every $x \in V(G) \cup E(G)$, $k\lambda(x) - \frac{k-1}{2}$ $(\lambda(x) = 1, 2, ..., v+e)$ must be summed individually with each element of M(k). For $\lambda(x) = 1$: $k\lambda(x) - \frac{k-1}{2} = k - \frac{k-1}{2}$. Sum of $k - \frac{k-1}{2}$ and each of k elements of M(k) is $\{1, 2, ..., k\}$. For $\lambda(x) = 2$: $k\lambda(x) - \frac{k-1}{2} = 2k - \frac{k-1}{2}$. Sum of $2k - \frac{k-1}{2}$ and each of k elements of M(k) is $\{k+1, k+2, ..., 2k\}$. For $\lambda(x) = v$: $k\lambda(x) - \frac{k-1}{2} = kv - \frac{k-1}{2}$. Sum of $kv - \frac{k-1}{2}$ and each of k elements of M(k) is $\{kv - k + 1, kv - k + 2, ..., kv\}$. For $\lambda(x) = v+1$: $k\lambda(x) - \frac{k-1}{2} = kv + k - \frac{k-1}{2}$. Sum of $vk + k - \frac{k-1}{2}$ and each of k elements of M(k) is $\{kv+1, kv+2, ..., kv+k\}$. For $\lambda(x) = v + e$: $k\lambda(x) - \frac{k-1}{2} = kv + ke - \frac{k-1}{2}$. Sum of $kv + ke - \frac{k-1}{2}$ and each of k elements of M(k) is $\{kv + ke - k + 1, kv + ke - k + 2, ..., kv + ke\}.$ Therefore $\lambda': V(kG) \cup E(kG) \rightarrow \{1, 2, ..., kv, kv+1, ..., kv+ke\}$ is an bijective map. Claim that $w_{\lambda}(v_c) = kh - \frac{(k-1)(r+1)}{2}$ for each vertex v_c in G_c .

Let $w_{i}(v_{c})$ be the weight of the vertex $v_{i} \in G_{c}$.

We have

$$w_{\lambda'}(v_c) = \lambda'(v_c) + \sum_{(w_c)\in N(v_c)} \lambda'(v_c w_c)$$

= $\alpha(v) + \beta_c(v) + \sum_{(w_c)\in N(v_c)} [\alpha(vw) + \beta_c(vw)]$
= $k\lambda(v) - \frac{k-1}{2} + \beta_c(v) + \sum_{(w_c)\in N(v_c)} [k\lambda(vw) - \frac{k-1}{2} + \beta_c(vw)]$

$$= k\lambda(v) - \frac{k-1}{2} + \beta_{c}(v) + \sum_{(w_{c})\in N(v_{c})} k\lambda(vw) - \sum_{(w_{c})\in N(v_{c})} \left(\frac{k-1}{2}\right) + \sum_{(w_{c})\in N(v_{c})} \beta_{c}(vw)$$

$$= \left[k\lambda(v) + \sum_{(w_{c})\in N(v_{c})} k\lambda(vw) \right] - \left[\frac{k-1}{2} + \sum_{(w_{c})\in N(v_{c})} \left(\frac{k-1}{2}\right) \right]$$

$$+ \left[\beta_{c}(v) + \sum_{(w_{c})\in N(v_{c})} \beta_{c}(vw) \right]$$

$$= k \left[\lambda(v) + \sum_{(w_{c})\in N(v_{c})} \lambda(vw) \right] - \left[\frac{k-1}{2} + \frac{r(k-1)}{2} \right] + 0$$

$$= kh - \frac{(k-1)(r+1)}{2}.$$

Hence the graph kG is a super vertex-magic graph.

20

Example 2.13. Since the graph $2K_4$ is a super vertex-magic graph with super vertex-magic total labeling λ and $2K_4$ is 3-regular as shown in Figure 2.6, there are color classes S_1, S_2, S_3, S_4 of $V(C_3 + C_6) \cup E(C_3 + C_6)$ as shown in Figure 2.7, and two compatible neutral labelings β_1, β_2 of $2K_4$ with the elements of $M(2) = \{-0.5, 0.5\}$ are obtained as shown in Figure 2.8.

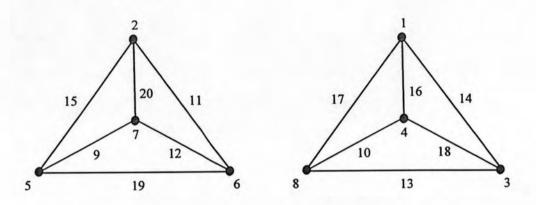


Figure 2.6 : The super vertex-magic total labeling λ of $2K_4$

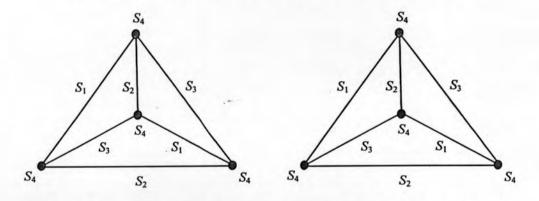


Figure 2.7 : Color classes S_1, S_2, S_3, S_4 of $V(C_3 + C_6) \cup E(C_3 + C_6)$

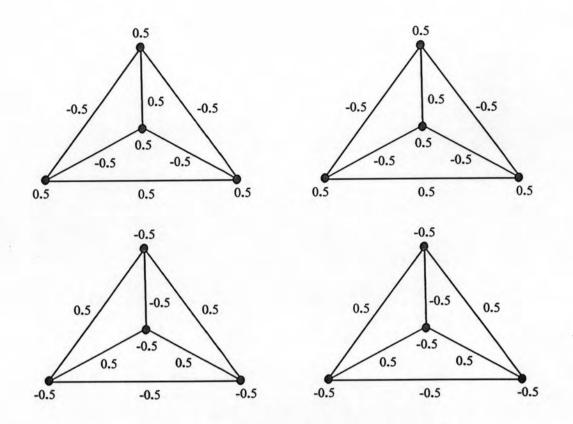


Figure 2.8 : Two compatible neutral labelings β_1, β_2 of $2K_4$ with the elements of $M(2) = \{-0.5, 0.5\}$

By Theorem 2.11, the labeling α of $2K_4$ and the super vertex-magic total labeling λ' of $4K_4$ are shown in Figure 2.9 and Figure 2.10, respectively.

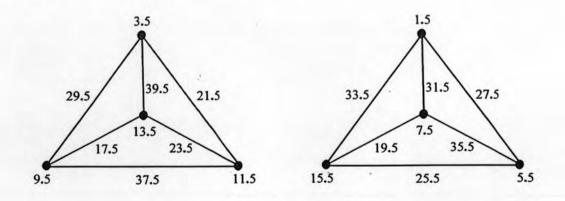


Figure 2.9 : The labeling α of $2K_4$

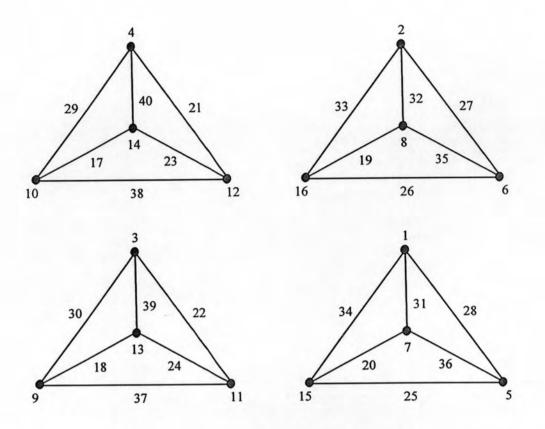


Figure 2.10 : The super vertex-magic total labeling λ' of $4K_4$

Example 2.14. The graph $C_3 + C_6$ is a super vertex-magic graph as shown in Figure 2.11 and a super vertex-magic graph $3(C_3 + C_6)$ is shown in Figure 2.12.

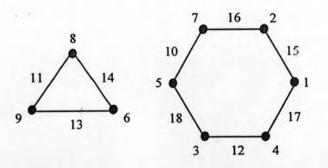


Figure 2.11 : Super vertex-magic graph $C_3 + C_6$

