CHAPTER IV

RESULTS AND DISCUSSION

4.1 Synthesis of Cassiarin A (4)

Synthesis of 4 was performed following two synthetic approaches starting from Scheme 4-9. The first one was stepwise synthesis via the formation of 5-acetonyl-7-hydroxy-2-methyl chromone (27). The second one was direct synthesis of 4 from 1.

conditions: i) TEA, MeOH/ H_2O , rt, 12 h, 32%, ii) NH₄OAc, glac. AcOH, reflux, 4-5 h, 58%, iii) NH₄OAc or NH₄CI, MeOH, reflux, 4-5 h, 57-67%.

Scheme 4-9. Synthesis of 4 from the reaction of 1 and 27 with ammonium acetate.

In the first approach, compound 1 was reacted with triethylamine in the aqueous methanol at room temperature for 12 h to give 27 in 32% yield. Chromone 27 was then converted to 4 by a reaction with ammonium acetate in glacial acetic acid under reflux for 4–5 h, affording 4 in 58% yield. In the second approach, compound 4 was directly synthesized by a reaction of 1 and ammonium acetate in methanol under reflux for 4–5 h, leading to 4 in 57% yield. When ammonium chloride was used instead of ammonium acetate, the yield of the desirable product 4 was increased to 67%. To obtain a practical

synthesis procedure applicable for the preparation of both 4 and 5 [13], another synthesis approach was pursued and schematically shown in Scheme 4-10. Compound 1 was reacted with concentrated hydrochloric acid in methanol or ethanol to produce compound 3 in 58% isolated yield. Compound 3 served as a key precursor for the preparation of 4 and 5. In term of color change, compound 3 exhibited higher stability than 1 and 2 under ambient condition. A two-step reaction of 3 with excess 25% aqueous ammonium hydroxide and subsequently with concentrated hydrochloric acid gave cassiarin A hydrochloride 4a in excellent yield (99%). The latter was further treated with 5% aqueous sodium carbonate solution to obtain compound 4 in quantitative yield (90%).

Scheme 4-10. Transformation of 1 into 4.

It was proposed that recyclization of pyrylium ring of 3 was occurred via ring-opening and subsequent ring-closing mechanism [20] (Scheme 4-11). Firstly, the lone pair electron of ammonia attacks C-4 position of 3 to generate intermediate A. Then, the opening of dihydropyran ring in A leads to imine-enolate B, which exists in equilibrium with keto-enamine C. After that, the intramolecular recyclization of C is

performed by nucleophilic attack of amino group at carbonyl carbon to obtain intermediate **D**, which undergoes acid-catalyzed dehydration to give **4a**. Upon treatment of **4a** with Na₂CO₃, compound **4** was obtained.

Scheme 4-11. A possible mechanism for synthesis of 4.

The formation of synthetic **4** and **4a** was confirmed by ¹H- and ¹³C-NMR spectroscopy and compared with the previously reported spectral data of natural **4** as shown in Table 4-1.

Table 4-1. Chemical shift of $^{1}\text{H-}$ (δ_{H} , ppm) and $^{13}\text{C-NMR}$ (δ_{C} , ppm) data of **4** and **4a** compared with those of natural **4**.

Carbon No.	natural 4 ^a		$\mathbf{4a}^b$		synthetic 4 ^c	
	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}
2		161.5		168.1		159.1
3	6.03 (s, 1H)	103.7	6.50 (s, 1H)	98.0	6.06 (s, 1H)	106.1
4		150.6		148.3		153.4
4a		111.5		109.4		111.7
5		138.8		138.1		138.4
6	6.46 (s, 1H)	102.9	6.85 (d, J = 1.6 Hz, 1H)	104.4	6.42 (s, 1H)	100.9
7		164.6	,	166.1		160.9
8	6.48 (s, 1H)	100.7	6.89 (d, J = 1.6 Hz, 1H)	101.1	6.45 (s, 1H)	99.1
8a		156.4		156.4		155.3
9	2.20 (s, 3H)	20.1	2.45 (s, 3H)	19.1	2.13 (s, 3H)	19.8
10	6.70 (s, 1H)	113.7	7.06 (s, 1H)	114.2	6.80 (s, 1H)	112.8
11		149.5		140.6		150.5
12	2.34 (s, 3H)	22.7	2.46 (s, 3H)	17.5	2.28 (s, 3H)	24.5

^a obtained in CDCl₃/CD₃OD (1:1) [12].

^b obtained in CD₃OD.

^c obtained in DMSO-d₆.

From Table 4-1, ¹H-NMR patterns of synthetic 4 and natural 4 are almost identical. Four singlet signals at $\delta_{\rm H}$ 6.06 (1H), 6.42 (1H), 6.45 (1H) and 6.80 (1H) were assigned to the conjugated sp²-methine protons (=CH-), while two singlet signals at $\delta_{\rm H}$ 2.45 (3H) and 2.46 (3H) for methyl protons. H-NMR signal of hydroxyl group (-OH) was not observed (Figure A-10). Compared to 4, H-6 and H-7 of 4a had shown two doublet signals at $\delta_{\rm H}$ 6.89 (1H) and 6.85 (1H) with the same coupling constant (J=1.6Hz). This is attributed the present of meta-coupled phenolic protons, which was proved by HMBC correlation (Figure A-9). From the HMBC experiment, the proton H-6 (δ_H 6.89) and H-8 ($\delta_{\rm H}$ 6.85) were correlated with $\delta_{\rm C}$ 166.1 of C-7, whereas the proton H-3 ($\delta_{\rm H}$ 6.50) and H-10 ($\delta_{\rm H}$ 7.06) were correlated with $\delta_{\rm C}$ 19.1 and 17.5 which were assigned to methyl carbons of C-9 and C-12, respectively. ¹³C-NMR spectra of both synthetic 4a (Figure A-7) and 4 (Figure A-11) contains 13 carbon signals due to seven quaternary sp² carbons, four sp² methine carbons and two methyl carbons, and consistent with those of natural 4. Moreover, the formation of synthetic 4a and 4 were further confirmed by the presence of strong molecular ion base peaks in HR-ESI-MS spectra at m/z 214.0882 ([M-Cl]⁺ for **4a**, Figure B-1) and 214.0868 ([M+H]⁺ for synthetic **4**, Figure B-2).

4.2 Synthesis of Cassiarin B (5)

In a similar manner to 4, compound 5 was prepared from key precursor 3 via the formation of 5a (Scheme 4-12). The use of N-methyl-4-aminobutyrate as an amine reagent to react with 3 afforded N-methoxy-4-oxobutyl cassiarin A chloride 5a in 87% yield. The latter was further reacted with 5% aqueous sodium carbonate solution or triethylamine to give 5 in 60% yield.

Scheme 4-12. Transformation of 3 into 5

The correct structures of synthetic 5 and 5a were verified by 1 H-NMR, 13 C-NMR, 2D-NMR (HSQC and HMBC) and MS experiments. Table 4-2 summarized the 1 H- and 13 C-NMR data of 5 and 5a compared with natural 5. In case of 5, signals of three methylene proton groups were observed at $\delta_{\rm H}$ 1.89–1.96 (m, 2H), 2.56 (t, J = 6.4 Hz, 2H) and 3.99 (t, J = 8.4 Hz, 2H). A singlet signal appeared at $\delta_{\rm H}$ 3.71 (3H) indicating the present of methoxy proton group of ester. Four singlet signals at $\delta_{\rm H}$ 6.22 (s, 1H), 6.35 (s, 1H), 6.59 (s, 1H) and 6.64 (s, 1H) were assigned to the conjugated sp 2 methine protons and two singlet signals at $\delta_{\rm H}$ 2.37 (s, 3H) and 2.44 (s, 3H) for methyl protons (Figure A-16). For compound 5a, 1 H-NMR spectrum was similar to that of 5 and 1 H-NMR signal of hydroxyl group was not observed (Figure A-12). The 13 C-NMR spectra of synthetic 5 and 5a are similar and both revealed 18 carbon signals as expected.

Table 4-2. Chemical shift of $^{1}\text{H-}$ (δ_{H} , ppm) and $^{13}\text{C-NMR}$ (δ_{C} , ppm) data of **5** and **5a** compared with those of natural **5**

Carbon	natural 5 ^a		5a ^b		synthetic 5 ^c	
No.	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	$\delta_{\rm C}$
2		168.0		169.1		166.0
3	6.74 (s, 1H)	97.3	6.54 (s, 1H)	97.1	6.59 (s, 1H)	95.7
4		148.6		148.7		146.8
4a		109.3		110.1		107.7
5		136.5		135.6		135.4
6	6.48 (s, 1H)	107.9	6.38	103.8	6.22 (s, 1H)	106.9
			(d, J = 1.6 Hz, 1H)			
7		174.6		163.5		177.7
8	6.60 (s, 1H)	105.1	6.48			
			(d, J = 2.0 Hz, 1H)	101.1	6.35 (s, 1H)	104.9
8a		156.7		155.0		155.8
9	2.43 (s, 3H)	21.0	2.28 (s, 3H)	20.1	2.37 (s, 3H)	19.3
10	6.78 (s, 1H)	117.1	6.76 (s, 1H)	116.7	6.64 (s, 1H)	115.1
11		141.4		142.6		140.1
12	2.50 (s, 3H)	20.2	2.36 (s, 3H)	19.2	2.44 (s, 3H)	18.6
13	4.10	48.0	3.98	47.7	3.99	46.6
	(t, J = 8.5 Hz, 2H)		(t, J = 8.0 Hz, 2H)		(t, J = 8.4 Hz, 2H)	
14	1.98 (m, 2H)	23.8	1.83-1.91 (m, 2H)	22.1	1.89-1.96 (m, 2H)	22.8
15	2.57	30.3	2.47	29.7	2.56	29.1
	(t, J = 6.3 Hz, 2H)		(t, J = 6.6 Hz, 2H)		(t, J = 6.4 Hz, 2H)	

Carbon	natural 5 ^a		5a ^b		synthetic 5 ^c	
No.	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}
15	2.57	30.3	2.47	29.7	2.56	29.1
	(t, J = 6.3 Hz, 2H)		(t, J = 6.6 Hz, 2H)		(t, J = 6.4 Hz, 2H)	
16		174.4		175.4		173.5
17	3.72 (s, 3H)	52.3	3.55 (s, 3H)	52.2	3.71 (s, 3H)	50.9

^a obtained in CDCl₃/CD₃OD (1:1) [12].

The presence of conjugated carbonyl group in synthetic compound 5 was proved by HMBC correlation. From the HMBC data of compound 5a (Figure A-12), the proton H-6 ($\delta_{\rm H}$ 6.38) and H-8 ($\delta_{\rm H}$ 6.48) were correlated with $\delta_{\rm C}$ 163.5 of the phenolic carbon C-7. In case of 5, proton H-6 ($\delta_{\rm H}$ 6.22) and H-8 ($\delta_{\rm H}$ 6.35) were correlated with the C-7 at $\delta_{\rm C}$ 177.7, which was designated to the conjugated carbonyl carbon. Regards the formation mechanism of 5 from 5a, it is likely that base firstly liberated hydroxyl proton of 5a to generate phenolate ion **F** which subsequently underwent electron delocalization to form 5 (Scheme 4-13).

Scheme 4-13. Transformation mechanism from 5a to 5.

HR-ESI-MS spectra of **5** and **5a** exhibited strong molecular ion base peaks at m/z 314.1387 [M+H]⁺ (Figure B-4) and 314.1382 [M-Cl]⁺ (Figure B-3), respectively. In case of **5**, mass spectrum exhibited weak molecular ion peak at m/z 627.2751 [2M-H]⁺.

^b obtained in D₂O/DMSO-d₆ (9.5:0.5).

^c obtained in CD₃OD.

A possible mechanistic pathway for 4 and 5 is proposed. Compound 4 and 5 could be derived from anhydrobarakol salt (3) or 5-acetonyl-7-hydroxy-2-methyl chromone (27), both of which were generate from barakol (1) and followed by cyclization of corresponding alkaloid chromone (Scheme 4-14).

Scheme 4-14. A possible mechanistic pathway of 4 and 5

4.3 Syntheses of N-Substituted Cassiarin Derivatives

The above-mentioned synthesis of **5a** from **3** proved itself as a key route for the synthesis of new cassiarin derivatives bearing a different *N*-substituent. In this part, the preparation of derivatives containing straight-chain alkyl (i.e. *n*-butyl), bulky alkyl (i.e. cyclohexyl), phenyl or benzyl group is demonstrated.

Firstly, compound 3 was reacted with an appropriate amine to give the corresponding N-substituted cassiarins 28a-31a in 76 89% yield (Table 4-3). The lower yield of compound 30a compared to that of other derivatives is attributed to reduced basicity and nucleophilicity of aniline (entry 5, Table 4-3) [17]. Subsequently, treatment of compound 28a-31a with triethylamine in aqueous solution leaded to transformation to their neutral forms 28b-31b in good yield (65 87%) without chromatographic purification.

Table 4-3. Syntheses of *N*-substituted cassiarin derivatives.

Entry	R	Compound	yield (%)	
1	n-Butyl	28a		
2	n-Butyl	28b	67	
3	Cyclohexyl	29a	87	
4	Cyclohexyl	29b	67	
5	Phenyl	30a	76	
6	Phenyl	30b	65	
7	Benzyl	31a	89	
8	Benzyl	31b	87	

The formation of all cassiarin derivatives were confirmed by ¹H-NMR, ¹³C-NMR, HSQC, HMBC and MS techniques. Structural elucidation of each compounds are described below.

Compound 28a and 28b: ¹H-NMR spectra (Figure A-20 for 28a and Figure A-36 for 28b) showed a triplet signal of methylene proton adjacent to the nitrogen atom at $\delta_{\rm H}$ 4.20 (J = 8.0 Hz) and 3.96 (J = 8.0 Hz), respectively. Multiplet signals of two residual methylene proton groups were appeared at $\delta_{\rm H}$ 1.44-1.53, 1.67-1.75 for 28a and 1.43-1.53, 1.61-1.68 for 28b. Then, the terminal methyl proton group was shown the triplet signal at $\delta_{\rm H}$ 0.98 ($J=8.0~{\rm Hz}$) for 28a and 1.02 ($J=4.0~{\rm Hz}$) for 28b. Compared to 28b, the alkyl protons of 28a gave more downfielded signals due to inductive effect. This is affected from the positive charge of nitrogen atom in 28a. ¹³C-NMR spectra of 28a (Figure A-21) and 28b (Figure A-37) revealed 17 carbon signals, and a signal of hydroxylic carbon on phenol ring of 28a was shown at δ_C 165.4, while that of a conjugated carbonyl carbon of 28b appeared at $\delta_{\rm C}$ 177.7, which were proved by HSQC and HMBC correlation (Figure A-22 and A-23 for 28a, and Figure A-38 and A-39 for 28b, respectively). A molecular ion base peak in HR-ESI-MS spectra was observed at m/z 270.1531 [M-Cl]⁺ for **28a** (Figure B-5) and 270.1538 [M+H]⁺ for **28b** (Figure B-9). In case of 28b, mass spectrum exhibited a weak fragment peak at m/z 214.0919, which was consistent with the loss of a *n*-butyl group.

Compound 29a and 29b: their ¹H-NMR spectra (Figure A-24 for 29a and Figure A-40 for 29b) showed multiplet signals in range of $\delta_{\rm H}$ 1.21 to 2.41 (10H), which were assigned to methylene protons of cyclohexyl ring. A signal of sp³-methine proton was indicated at $\delta_{\rm H}$ 4.61 for 29a and 4.36 for 29b. Similarly, to the above-mentional data, deshielding effect was observed in 29b due to the inductive ammonium group. ¹³C-NMR spectra of 29a (Figure A-25) and 29b (Figure A-41) revealed 19 carbon signals. From HSQC and HMBC correlations (Figure A-26 and A-27 for 29a, and Figure A-42 and A-43 for 29b, respectively), a signal of hydroxylic carbon on phenol ring of 29a was observed at $\delta_{\rm C}$ 165.9 and that of a conjugated carbonyl carbon of 29b was appeared at $\delta_{\rm C}$ 178.4. These compounds showed a molecular ion base in the HR-ESI-MS peak at m/z

296.1674 $[M-Cl]^+$ for **29a** (Figure B-6) and 296.1676 $[M+H]^+$ for **29b** (Figure B-9). Mass spectra of both **29a** and **29b** exhibited a fragment peak at m/z 214.0913 and 214.0912, respectively, which were consistent with the loss of cyclohexyl group. In case of **29b**, mass spectrum also exhibited a weak molecular ion peak at m/z 591.3263 $[2M-H]^+$.

Compound **30a** and **30b**: their ¹H-NMR spectra (Figure A-28 for **30a** and Figure A-44 for **30b**) showed multiplet signal assigned to a phenyl ring in the rage of $\delta_{\rm H}$ 7.45 to 7.77 (5H). H-3 signal of **30a** appeared at more downfielded region than **30b**, which indicates that the phenyl ring of **30a** is affected by the anisotropic effect to H-3. ¹³C-NMR spectra (Figure A-29 for **30a** and Figure A-45 for **30b**) revealed 19 carbon signals. A signal of hydroxylic carbon on phenol ring of **30a** was observed at $\delta_{\rm C}$ 166.3 and that of a conjugated carbonyl carbon of **30b** was observed at $\delta_{\rm C}$ 178.4, which were proved by HSQC and HMBC correlation (Figure A-30 and A-31 for **30a**, and Figure A-46 and A-47 for **30b**, respectively). These compounds showed a molecular ion base in the HR-ESI-MS peak at m/z 290.1110 [M-Cl]⁺ for **30a** (Figure B-7) and 290.1137 [M+H]⁺ for **30b** (Figure B-11).

Compound 31a and 31b: ¹H-NMR spectrum of 31a (Figure A-32) showed multiplet proton signal in the rage of $\delta_{\rm H}$ 7.35 to 7.43 (3H) and doublet signals at $\delta_{\rm H}$ 7.15 (J=7.2 Hz, 2H), which were assigned to the phenyl protons. Singlet signal at $\delta_{\rm H}$ 5.64 (2H) was indicated to the methylene proton in benzyl side chain on nitrogen atom. Similarly, ¹H-NMR spectrum of 31b (Figure A-48) appeared multiplet signal in the rage of $\delta_{\rm H}$ 7.30 to 7.40 (3H) and a doublet signal at $\delta_{\rm H}$ 7.10 (J=7.6 Hz, 2H) for phenyl protons. A singlet proton at $\delta_{\rm H}$ 5.38 (2H) was assigned to the methylene protons of benzyl group. For ¹³C-NMR, HSQC and HMBC data, each ¹³C-NMR spectrum (Figure A-33 for 31a and Figure A-49 for 31b) revealed 19 carbon signals. A signal of hydroxylic carbon on phenol ring of 31a was observed at $\delta_{\rm C}$ 166.0 and that of a conjugated carbonyl carbon of 31b was observed at $\delta_{\rm C}$ 178.3, which were proved by HSQC and HMBC correlation (Figure A-34 and A-35 for 31a, and Figure A-50 and A-51 for 31b, respectively). These compounds showed a molecular ion base in the HR-ESI-

MS peak at m/z 304.1365 [M-Cl]⁺ for **31a** (Figure B-8) and 304.1365 [M+H]⁺ for **30b** (Figure B-12). Mass spectra of both **31a** and **31b** exhibited a fragment peak at m/z 213.0869 and 213.0869, respectively, which was consistent with the loss of benzyl group. In case of **31b**, mass spectrum exhibited a weak molecular ion peak at m/z 607.2601 [2M-H]⁺.

4.4 Biological Activities

4.4.1 Antiplasmodial Activity

Antiplasmodial activity of all synthetic compounds was evaluated against a *Plasmodium falciparum* (K1, multi drug resistant strain). All synthetic cassiarin derivatives **5a**, **28a**–**31a** and **28b**–**31b** were inactive (%inhibition < 50%). These results suggest that side chain, which had bulky and/or hydrophobic substituents on nitrogen atom affect to the structural activity relationship (SAR) by reduced an activity. In case of analog **5a** compared with natural **5**, antiplasmodial activity may be decreased by induced inductive property of core structure.

4.4.2 Cytotoxic Activity

The *in vitro* cytotoxic activity of all synthetic cassiarin derivatives against 6 cell lines, including SW620 (colon), BT474 (breast), KATO-III (gastric), Hep-G2 (hapatoma), Chago (lung) and CH-Liver (liver) cancer, which were determined in percentage of survival (PS) was reported in Table 4-4. The results from Table 4-4 showed that all synthetic cassiarin derivatives 4, 4a, 5, 5a, 28a-31a and 28b-31b were inactive (PS > 50%).

Table 4-4. Cytotoxic activity against cell line of all synthetic cassiarin derivatives

		Percentage of Survival (PS, %) ^a						
entry	compound	SW620 (colon)	BT474 (breast)	KATO-III (gastric)	Hep-G2	Chago (lung)	CH-Liver	
					(hepatoma)			
1	4	79	100	72	84	101	96	
2	5	100	94	92	103	103	92	
3	4a	86	102	106	120	101	90	
4	5a	98	94	73	82	102	92	
5	28a	97	97	80	85	103	91	
6	29a	90	104	71	83	104	81	
7	30a	93	81	99	111	103	80	
8	31a	97	95	76	89	102	88	
9	28b	100	106	103	104	105	106	
10	29b	98	97	136	152	104	100	
11	30b	99	103	137	150	104	111	
12	31b	96	90	138	134	104	90	

^a average value