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By means of the Factor Analysis (FA), a multivariate technique for studying matrices
of data, the Program MTFA version 1.0 was developed to resolve the UV/visible absorption
spectra. The MTFA contains three files: MTFA1.FOR, Matrix.FOR, énd Print..F OR implemented
in fortran language using Microsoft FORTRAN 3.1 on personal computer. At first, the
efﬁcienéy and validation of the program were tested by the simulated spectra which generated by
four artificial components and plus/minus by two levels of random error: 0.0005, and 0.0015
absorbance units. The simulated spectra were able to be resolved by the program with high
accuracy.  The program was later used to discriminate the experimental spectra of the
complexes formed between Cu(Il) and glycine (GlyH), and between Cu(Il) and alanine (AlaH)
during the pH titration in the acid region ranging from 1 to 7. The program results strongly
establish that there are “four” components associated the both systems. In such system of Cu-
 GlyH, the four components are cu”, CuGlszo, CuGly  and CuGly,; and Cu”, CuAlaH"™",
CuAla and CuAla, for the system of Cu-AlaH, respectively. In addition, by the use of
concentration profiles and molar absorptivities obtained from the program, the complex

formation constants of Cu-GlyH and Cu-AlaH were obtained.
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CHAPTER 1 (e V3

INTRODUCTION

In recent yéars, the use of computers to solve chemical problems has increased
tremendously.  Chemometrics is one of those areas where mathematical and statistical
methods are used to handle, interprete, and predict chemical data.[1-2] Powerful
methodologies have opened new vistas for chemist and provided useful solutions for many
complex chemical problems. Factor analysis has proved to be one of the most potent

techniques in the chemometric arsenal.

1.1 Definition of Factor Analysis

Factor analysis (FA) was founded by the behavioral scientists in 1901 but the first real
development was accomplished in 1933. Although an idea tool for solving chemical problem,
the method went unnoticed by the chemical profession until the birth of chemometrics in 1970s

and the arrival of the computer era.

Today, chemists and scientists in general are familiar with computers, mathematics,
aﬁd statistics, the prerequisites for factor analysis. The field has grown so large that it is
impossible to examine all the methodologies. So, the definition of factor analysis has changed
over the years, encompassing a much wider selection of techniques than originally intended.
The global definition of factor analysis is given as “a multivariate technique for reducing
matrices of data to their lowest dimensionality by the use of orthogonal factor space and

transformations that yield predictions and/or recognizable factors.”[1]



1.2 Generalizations

This section concerns notation and terminology, which can be used in

a general
manner. Data matrix D | consisting of r rows and ¢ columns, is writen as
column designee

[0
ﬁc) dn d12 "'dlc

_ &b

= ' d, dy ...d,, (1.1).

o % ;
2
p= drl dr2 "'drc

The row and column headings of the matrix are called designee. Each measured data point in
D is specified by a subscript denoting its row and column position in the matrix. The symbol

d, represents the data point associated with the ith row and kth column of the matrix.

Along the way of factor analysis, we assume that each point in the data matrix must be
a linear sum of product terms. The number of terms in the sum, »n. is called the number of

Jactors. Specifically, we seek solutions of the form
n
d"/f - er/ C,/'/c (1-2)
/=1
where 7; and C are called factors. ~For the jth factor in the sum, the row factor F; is

associated with the ith row of data matrix and the corresponding column factor C, is

associated with the kth column of the mafrix.

For data modeled by (1.2), the data matrix can be decomposed into two matrices

D = R abstract ¢ C abstract (1 3)

data matrix  row matrix column matrix



where
Jactor
Q) pa
%Jo r,r,..r,
Rabstract - g To1 Tz -+ T
“@ . - .
3
> rrI rr.Z rm
column designee
CII Cf.? o c/c
3
Cabstract &L Ca1 € €2
Q‘G\ -
cnI Crr_" cnc

Since this solution is purely mathematical thus it devoids physical meaning, these matrices are

called abstract matrices. The column of R, are called abstract factors. Row matrix

R ... CoOntains a row for each of the r row designees and a column for each of the n factors,
while column matrix C 4, has a column for each of the ¢ column designees and a row for

each factor. Explicitly, the factor analytical solution isolates the row-designee factors from

the column-designee factors.

The following step of the factor analysis is the development of a complete, physically
meaningful model for the data. To do this, the abstract factors are mathematically
“transformed” into physically significant, “real” factors. Transforming the abstract solution

into a real solution is a difficult but realizable goal of factor analysis.

To carry out the transformations, an appropriate information matrix, T, is required.

Postmultiplying R by T and premultiplying C by the inverse of the

abstract abstract

transformation T, the data matrix in (1.3) can be expressed as

D = {R abstmctT}{T-IC abstract }

= R C (1.4).

transformed ~ transforme d

If the transformed solution can be shown to have physical significance, a real solution to the

problem will have been found so that



D = Xreaereal (1 5)

where X el = Clransformed - This equation summarizes the ultimate

= Rtra.nsformed and Y

real

objective of factor analysis.

1.3 Chemical Application

Factor analysis has been applied to several chemical problems such as chemical kinetic
study from overlapped fluorescence emission spectra [3], overlapped chromatograms of binary
and ternary mixtures from gas chromatography/mass spectrometry (GC/MS) [4], overapped
chromatographic peaks of eight-components mixtures from liquid chromatography with
photodiode-array ultraviolet detecter (LC/UV) [5], quantitative analysis of overlapped Raman
spectra [6], impurities monitoring using high performance liquid chromatography (HPLC) [7],
- acid-base equilibria of monoprotic organic acid-base pairs from UV/VIS spectrophotometric

titration [8] and so on.

Let us consider the simple case of UV/VIS spectrophotometry. Suppose a data matrix,
A, involving the ultraviolet absorbance of five different mixtures of the same absorbing
components measured at six wavelengths:
mixture
wavelength 1 2 3 4 5
278nm [ 0.005 0.031 0.063 0.091 0.046 |
274nm | 0.040 0.172 0.356 0.444 0.218
270nm | 0.103 0.283 0.484 0.471 0.208
266nm | 0.116 0.323 0.562 0.548 0.241
262nm | 0.125 0.318 0.516 0.450 0.185
258nm | 0.104 0.267 0.430 0.376 0.154 | (1.6).

The main problem here is to determine the number of components, to identify the chemical

constituents, and to ascertain their concentrations.



According to (1.2), factor analysis will automatically furnish an abstract solution for

each absorbance datum, A, , in the form
A, = Y wm, a.mn.
j=I

Here w, and m jk' are the jth abstract row and column factors associated with the ith
wavelength and the Ath mixture, respectively. To account for the absorbance within
experimental ervor, n factors are included in the sum. According to (1.7), the absorbance data
matrix has an abstract factor analytical solution expressed by

A T \Vabstmct M abstract (1 . 8)

where W and M are wavelength-factor and mixture-factor matrices, respectively.

abstract abstract

The most important feature of the abstract solution is that it reveals the number of
factors responsible for the absorbance data.  Ultimately, we search for an appropriate
transformation matrix that will convert the abstract solution into a physically significant real

solution

A

wW_M (1.9).

real
Going from (1.8) to (1.9) is not automatic. ~On the contrary, this step presents the most
difficult challenge to chemists, requiring a great deal of effort, knowledge, and intuition. If

theoretical speculations can be invoked, the transformation has a better chance of being

successful.

In this case, the absorbance data obeys the Beer’s law, therefore, the factor can be
interpreted chemically. For a mixture containing n absorbing components, Beer’s law models

each absorbance datum by the equation
A, = Y g,y (1.10).
j=1

Here ¢ is the molar absorptivity per unit pathlength of component j at wavelength £, and C

is the molar concentration of component j in the Ath mixture. Equation (1.10) involves a



linear sum of products analogous to (1.7); therefore, data that obey Beer’s law should have
meaningful factor analytical solution. To solve the problem completely, we must find the
transformation matrix that will convert the abstract solution into the real solution. When this
is done correctly, (1.9) will take the form

A = E_.C.. (1.11).

Each column of the molar absorptivity matrix, E corresponds to the absorbance of one of

real 2

the pure components -at the five wavelengths, essentially tracing out the spectrum of the pure

component. Each row of the molar concentration matrix, C corresponds to the

real »

concentrations of one of the n components in each of the five mixtures.

In summary, the ultimate payoff from factor analysis in this type of problem is to
determine:

1. The number of absorbing components.

2. The concentration of each component in each mixture.

3. The spectrum of each component.
The factor analysis approach is far more useful than the popular determinant method for
finding the concentrations of components in multicomponent mixtures, since the spectra of all
components must be specified initially in the latter approach. By contrast, factor analysis can
furnish the number of components, the concentrations, and the spectral information via a

purely mathematical route.



1.4 Scope of this Study

In this study, the Program MTFA version 1.0 was developed to execute the factor
analysis. The program was written in fortran language using Microsoft FORTRAN V5.1
compiler for personal computer.  The main application here is to resolve the UV/VIS
absorption spectra for the acid-base equilibria of the polyprotic organic acid-base pairs and
also the formation of metal-ligand complexes. The disposition of the program should be
interactive to user, and provided the manual and automatic selections. At first, the efficiency
and validation of the program are tested by simulated spectra and the experimental spectra of
the complexes formed between Cu(Il) and glycine (GlyH), and between Cu(Il) and alanine

(AlaH) during the pH titration in acid region ranging from 1 to 7.



CHAPTER 2

THEORETICAL CONSIDERATION

This chapter summarizes methodologies of the factor analysis, focusing on

spectrochemical problems with details of mathematical formulation.

2.1 Factor Analysis Programing

Factor analysis involves five main steps; preparation, reproduction, transformation,

combination, and prediction. Figure 2.1 shows the sequencing of the steps and the most

important information resulting from each step.

Data

]

Preparation

Data matrix 1

Reproduction

v
Principal factors,
number of factors

Transfonmation

Targer testing Special methods Abstracrt rotations
: ~ .

Individual Factor Cluster

real factors ‘} identification analysis

Combination

of real factors

|

‘ Predictions ‘

( Complete models ‘

Figure 2.1 Block diagram of the main steps in factor analysis



2.1.1 Preparation

The objective of the data preparation step is to obtain a data matrix best suited for
factor analysis.  .This step involves formulating the problem, selecting the data, and
mathematically pretreating the data to conform with appropriate theoretical or statistical

criteria.

2.1.2 Reproduction

The abstract reproduction step is the mathematical underpinning of factor analysis.
Reproduction involves two procedures: obtaining the “principal” factor solution and

determining the correct number of factors.

Principal Factor Solution

The procedure for calculating the abstract solution are called eigenanalysis, yielding
eigenvalues and associated eigenvectors. Several commonly used methods are listed below:

- Power method [2;9]

- Jacobi method [2;9]

- Singular Value Decomposition (SVD) [2;8-9]

- Nonlinear Iterative Partial Least Squares (NIPALS) [2;9-10]

- Principal Factor (or Component) Analysis (PFA or PCA) [2;11]

Number of Factors

After following the eigenanalysis, we seek to discover how many of the ¢ factors are
physically important. The abstract factors can be divided into two sets; a primary set of n
factors which account for the real measurable features of the data, and a secondary set of c-n

factors called the null set, which are associated entirely with experimental error.  To eliminate



10

the secondary factors from the initial solution, various techniques were developed. In general
we classify these into three classes:
1. Methods based on experimental error
- Residual Standard Deviation (RSD)
- Root-Mean-Square (RMS) Error
- Average Error
- Chi-Squared [2;12]
- Standard Error in the Eigenvalue [2;13]
2. Empirical methods
- Imbedded Error Function (IE) [2;14]
- Factor Indicator Function (IND) [2;14]
- Cumulative Percent Variance [2]
3. Statistical methods
- Reduced Eigenvalue and Statistical F-Test (or Percentage of Significant Level,

%SL) [2;9;15-17]

When the correct number of factors is employed, the reproduced data matrix should be
reconstructed. This means that the reproduced data matrix is more accurate than the original

data matrix.
2.1.3 Transformation

Transformation of principal factors into recognizable parameters is the most important
dividend of factor analysis. As explained in Section 1.2, a transformation matrix is employed
to carry out a transformation.  Three distinct methods are introduced to transform the

eigenanalysis solution:
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1. Abstract Factor Analysis (AFA); involving mathematical rotations.
2. Target Factor Analysis (TFA); involving target testing.
3. Special methods; involving known chemical constraints e.g. Key Set Factor
Analysis (KSFA), Partial Least Squares (PLS), Evolving Factor Analysis (EFA),
Rank Annihilation Factor Analysis (RAFA), Iterative Factor Analysis (IFA),
Evolutionary Factor Analysis (EVOLU), Variance Diagram (VARDIA), and so on.
By transforming the principal factors, the real factors, which describe the properties of the

designees in the data matrix, are obtained.
2.1.4 Combination and Predictions

In the combination step, real factors are combined to complete models and tested by
principal component regression (PCR). Finally, the models are used to predict the missing

data and/or the unknown samples in multivariate calibration.
2.2 Spectrochemical Problems of Copper-Glycine and Copper-Alanine Complexations

As described in Section 1.3, the data obtained by the UV/VIS spectrophotometry are
applicable to the factor analysis. In this study, the absorption of copper(Il)-glycine (GlyH),
and copper(Il)-alanine (AlaH) complexes were used to test our own-written factor analysis

program.

Glycine, HNCH,COOH, is the simplest amino acid. It is a zwitterion, containing an
amino group and a carboxylic acid group, exhibiting properties of both acid and base. The

equilibria of glycine are known as [18;34-35]

+ =Z. + - 2= 77 -
HN'CH,COH =220 gN'CH,c0, =222~ [ NCH,CO, @)

(GlyHZ+) zwitterion (GlyH) (Gly)
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Alanine, HNCH(CH,)COOH, is a simple amino acid.  Similar to glycine, the

equilibria of alanine are known as [34-35]

pK,=236 pK,=9.78

H,N"CH(CH,)CO,H H,N'CH(CH,)CO, H,NCH(CH,)CO, (2.2).

(AlaH;) ’ zwitterion (AlaH) (Ala)

Both glycine and alanine are known to complex with copper(Il) forming different
species. Deciphering the nature of the complexes formed between cation and complexing
agents (such as copper-glycine, and copper-alanine) is not an easy task when the complexes
exist in dynamic equilibrium and cannot be isolated chemically. In practice, it depends on the
model suggestion and sensitivity of the analytical techniques. Spectroscopic methods are in
general highly sensitive and suitable for studying chemical equilibria in solution but the
spectra are often complicated and difficult to interprete owing to high spectral overlapping.
Thus the spectroscopic methods were overlooked until the advent of chemometrics and the

factor analysis.

Darj and Malinowski [18] used the window factor analysis (WFA), a self-modeling
chemometric method, to evaluate the visible spectra of Cu(Il) and glycine complexes, and

expressed the complex formation as;

Cu’” + GlyH s CuGlyH”
CuGlyH” === CuGly + H
CuGly’ + GlyH === CuGly, + I’ 23)

where K|, K, and K, represent the stepwise equilibrium constants. These constants can be

expressed in terms of activity coefficients, f, , and concentrations;
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o Jey [CUGHH™ ]
l fCuu [Cu™ ]fGlyH [GlyH ]
v - Seua [CUGY 11, [H]
’ ey [CUGIYH ™ ]
K, = Jeuan, [CUG, 11, [H7] Q.4).

/, CuGly* [CuGly™ 1/, GiyH [GlyH |

Analogous to the system of glycine, the complex formation of Cu(II) and alanine ought

to be
cu” + AlaH P CuAlaH”
CuAlaH® === CuAla’ + H'
CuAla’ + AlaH === CuAla, + H' @.5)

where K|, K, ,and K, represent the stepwise equilibrium constants and express as

fcmzaH’* [CUA[aH 2+]

Kl F . v 2+
./C,(Z* [Cu ]fA‘/aH [A[aH]
v JewelCutla)f [H']
’ Fo e [CuAlaH ™ |
' CuAl JHT
K3 _ fCuAZaz[ U a2]fH [ ] (26)

f‘CuA[a' [CUA[a+]fA!aH [A[CZH]

Here the modeling method, a subdivision of evolutionary factor analysis (EVOLU),
was selected since they tend to be more force fitting and are called “hard” models, whereas
self-modeling methods tend to be more revealing but more ambiguous (in some cases) and are
called “soft” models such as window factor analysis (WFA), rank annihilation factor analysis
(RAFA), and so on. Along this way, the number of components comes out first and makes a
clue to propose the chemical models. If the models are well-established, the equilibrium
constants, concentration profiles and spectral absorptivities of the Cu(Il)-glycine, and Cu(II)-

alanine complexs can be obtained successively.
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2.3 Fundamental Concept of Chemical Equilibria

This section concerned about the fundamental concept of chemical equilibria that
underlying the problem of Cu(Il)-glycine and Cu(Il)-alanine complexes, and the system of acid

deprotonation.

There are two particular equilibrium constants that are commonly given special names.

[19] Thus when the Lewis acid is a proton, the inverse of the equilibrium constant for the

reaction
a0 e
CTHE X
k0 - Lo LelIV X 0
[\EX fHX[HX |

is known as the acid dissociation constant (K f) of the acid HX. The second special case is

when the Lewis acid is a metal ion (M) and the Lewis base is a ligand (L), then for the reaction

TG ML
ML
K1€[L = Jouw [ML] 2.8)

JulM17, L]

the equilibrium constant KJQML is known as a stability (or formation) constant of the complex
ML. The activity coefficients are in general tedious and difficult to measure. They also
depend very significantly on the nature and concentrations of the other species present in
solution. To avoid this problem, the background electrolyte (or sometimes called ionic-
strength adjustor) is used to maintain the activity coefficients effectively constant. Hence we

can incorporate the f, terms into K f or K ,@L and obtain the practical forms as

K, = w 2.9
[HX]
_ ML] 2.10)

KML
[M][L]
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. o . N g
where K (no superscript) are known as stoichiometric equilibrium constants whereas K~ are

known as thermodynamic equilibrium constants.

2.3.1 Acid-Base Equilibria

Consider a system of k steps of dissociation of an acid denoted as H A. The equilibria

present are:

[(H71[H, A7

HA ==""Hl4 H_A rowk o =

k al [HkA]
+ 2
HoA ‘KL Bt HHA}; B s L ][Hk_z,A ]
[H A
+ -
HASY Kak o+ Ak—; E0 5 L}L’jl_] .
ak [HA(A ) ]

To express the distribution of each component, we introduce the concept of degree of

formation, ¢ , the mole ratio of one component with respect to all components. Then

S [H,.4]
' [H A]+[H A+ +[A]
. [H,,47]
¥ [H Al +[H, _ A ]+...+[4"]
Ay = [Ak_] (2.12).

[H Al +[H _ A ]+.. +[4]
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Substituting in (2.12) for (2.11) and rearranging, we obtain:

1
a =
1 Kl K 2K1 KakKa(k 1 Kl
1+ T+ R —
(7] [H7] [H*]
a, = - - L
[H ] Aal Ka3 al KakKa(k—l)“'Ka2
Pl + + +172 +1k-1
al [H] [H] [H]
0 - 1
3 [H+]2 +[H+]+1+ Ka3 +Ka4 a3 KakKa(k—l)"‘Ka:;
KalKa2 Ka2 [H+] [H+]2 [ltfﬂL]k_2
@ : (2.13)
kel + +7k-1 + 13-
L] e Lild +[£]J—+1
K K K S K,

The general form of the equation (2.13) may be written as

i+m=1

1 m=1 [ ] ;;_m+1HK0(/')
— = D Y (2.14).

o - B H+ i
m ; H a(m—J) ml<kl+l [ ]
j=1

2.3.2 Metal-Ligand Complex Equilibria

Regarding to a svstem of p steps of formation of metal (M) and protonated ligand (HL)

that are expressed by the equation



M + HL

ML + HL

ML . + HL

p-1

I

ML + H; K,
ML, + H'; K,
MLP+H; Kp

17

[ML][H"]

[M][HL]

[ML,1[H"]

[ML][HL]

In many literature, the concept of overall or curmulative stability constants, usually denoted by

B, were introduced as

where po=

o
Il

M + 2HL

Kl

M + HL

M + pHL
[ML][H"]
[M][HL]

- [M][HL]

KK, .K

p

[ML,)[H")

ML + H’
ML, + 2H"

ML, + pH

[ML,JH")?

(2.16).
[M][HL]?

To make it more general, we applied the variable-chemical model as

(x)M + (y)HL
x)M + (y,)HL

(x)M + (y)HL

MLY + (z)H'

+ (22)H+

ML® + (z)H'
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[MLPI[H ]

where b =
[M]*[HL]”
PR 17705
T MTALY
p, - LT 01
[M]™[HL]”

By the principle of mass balance and the assumption of mononuclear complex, we

obtain
M, = [M]+[MLO]+[ML®]+ . +[ML®]
Ml 3 [HL]" [A[;[[] [HL]" a1
Py e T

where M is the total concentration of metal (M). Since the protonated ligand may exist in

dynamic equilibrium with its conjugated acid and/or base as

H,L = e g = LA ILAL]
[H ]

HL Ka_—_—2 H +L; K, = w
[HL]

Similar as above, the mass balance of ligand can be expressed as

L, = [H,L1+[HL]+[L]+ y,[ML"] + y,[ML® ]+ . + yp[ML(”)]

tot

_ [H'] K, (AL} [HL” p HO”
[HZJ[K +1+ [H+J [M](Jlﬂl[ T yz/?z[ T ~-+Jpﬂp[H+]Zy}(2.19)

al
where L, is the total concentration of ligand. Substitute (2.18) into (2.19), and applying the

tot

binary search [9;20] for determining the concentration of HL. Consequently, evaluate the
concentration of M, and substitute successively into (2.17) then obtain the mole ratio of ML“),

ML?,... ML® as
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o - [M]
‘ [M]+[MLO]+ [MLP]+ ...+ [MLP]
- 1
) (AL ., [HL]” [HLY"
Bt P Py
0 - [ML™V]
: [M]+[MLD ]+ [MLP ]+ ...+ [MLP]
- 1
—[HJT[ +1+ & LT + -&[HL]WM + ..+ &7[[{]4]%_%
ALHLTY Bl A H 1™
[ML®]
a, =
[M]+[MLP]+[MLP ]+ ...+ [MLP]
1
—[H+]:: +ﬁ————[H+]::_:l +1+—’€3~—*[HL])WZ +&—[HL]”% +...+&7[HL]YP%
BlHLY= B, [HL}*™ i TEE 1% B [HT]™ By [H ]
[ML(P.)]
a,, = :
MY+ ML+ [MLP ] + L+ ML
- P = 1 — (2.20).
L] +~’BL[H ] +&[HL] +...+1

BIHLY” B, [HLP"™ B, [H ™
2.4 Mathematical Synopsis

In this section, the following convention will be used. Scalar quantities (i.e., numbers)
are represented by lowecase letters — a, b, ¢, X, y, and z. Bold, uppercase letters or enclosures
in square brackets [ ] signify matrices. Vectors (i.e., one-dimensional arrays of number) are
symbolized by bold, lowercase letters — s, t, u, X, y, and z.  (In particular, all vectors are
considered to be column vectors unless otherwise indicated.) Row vectors are denoted by a

. /A . . .. .
prime —s,t u and z. Matrix transposition, whereby rows and columns are interchanged, are
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denoted by a prime.  The %, called “hat,” above a quantity signifies an estimated (or

calculated) quantity.

In experiments, the absorbance data matrix, D. is constructed whose » rows
correspond to the number of wavelengths (channels) and ¢ columns corespond to the number
of measured solutions, i.e. the dimension of raw data matrix is #xc (assuming that ¢ <r). The

conditions to obtain the data are detailed in Chapter 5.

According to the Beer’s law, the total absorbance per unit cell pathlength, d,,, of the
kth solution at the ith wavelength is the sum of the absorbance of the n absorbing components

as described by
dy =" N By (1.10), (2.21)
J=1

where ;9,.] is the molar absorptivity of the jth component at wavelength i, and ¢ is the
concentration of the jth component of the solution £. Equation (2.21) can be rewritten in the
matrix form, where E is an rxn matrix with the pure absorption spectra of the n components
in its columns, and C is an nxc matrix with its rows representing the concentration profiles of

the n components:

D = EC (1.11), 2.22)
The problem to be solved by factor analysis here is the estimation of E and C.
2.4.1 Constructing the Covariance Matrix and Decomposition

The covariance matrix, 7., is obtained by premultiplying the data matrix by its

transpose;

Z = D'D (2.23).



The resulting covariance matrix is decomposed by use of principal factor analysis (PFA) to
determine the eigenvectors that span the factor space. The theory of factor analysis states that
the eigenvectors of the covariance matrix are the same vectors that span the space of the data
matrix. To obtain the eigenvectors, we employ the method of iteration. Initially, numerical
values for the elements of the first principal eigenvector, €,, were chosen at random, and
multiply this vector by the covariance matrix:
Le, = A, (2249

Here, A, is the corresponding eigenvalue. The product of Zc¢, is then normalized to obtain
the new ¢, and again multiply to Z to give a better approximation to ¢, and A,. This

process is repeated again and again, each time generating newer and better approximation to

¢, and A, , until (2.24) is satisfied.

To obtain the second principal eigenvector, we proceed by calculating the first-residual
matrix, R, as dictated by (2.25)
R, = Z - A, (2.25)
and continue an iteration procedure analogous to the method used to obtain the first
eigenvector, but evolving (2.26)

Rc, = A, (2.26).

In vice versa, the second-residual matrix, R, is calculated by means of (2.27)
/
R, = R, - 4,¢,0, (2.27).
Carry out this further computation to extract the remaining eigenvectors until the residual is
essentially zero or the number of principal factors is equal to the number of column or row in

the data matrix, whichever is smaller.



2.4.2 Identifying the Number of Real Factors

According to the Section 2.1.2, only n eigenvectors are correspondent to the significant
real factors.  To deduce the exact size of the factor space, various criteria have been
developed. However, no single “magic” criterion is applicable to all types of data. They are
limited to matrices which contain a relative uniform error throughout.[15] For the best result,
the various criteria ought to be mentioned together.  Normally, the methods based on
experimental error are preferred when the error is known. Often such information is lacking

and the empirical and statistical methods must be employed.

1. Methods Based on Experimetal Error

Several criteria have been introduced here for determining the size of the true factor

space when accurate estimations of the experimental error are known.

Residual Standard Deviation
The residual standard deviation (RSD) or real error (RE) is defined as
< 0
24

RSD = |- (2.28)

Ho—7)

1/2

where ﬂfj. is the eigenvalue associated with the residual error. The criterion of judgement is

met when the RSD approximately equals to the estimated error.



Root-Mean-Square Error

The root-mean-square (RMS) error is defined by the equation

c t/2
A
RMS S
rc

23

(2.292)

(2.29b).

Although RMS and RSD are closely related, they measure two entirely different errors.

The RMS measures the difference between raw data and factor analysis-regenerated data. The

RSD measures the difference between raw data and pure data possesing no experimental error.

Average Error

The average error, €, is simply the average of the absolute values of the differences

between the original and regenerated data, and directly proportional to the root-mean-square

CIror

Chi-Squared

Bartlett [12] defined the (calculated) chi-squared ( ¥ %Y as

o B2
P ,f (calculated) = Z Z M

2
i=1 k=1 Oy

(2.30).

(2.31)

where o, is the standard deviation associated with the measurable d ., d, is the value of

the corresponding point regenerated from factor analysis using the » largest eigenvalues, and

the sum is taken over all experimental points. For each set of eigenvectors, 2’3 is compared

to its expectation value given by the product
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){3 (expected) = (r - n)(c — n) (2.32).

The criterion of judgement is met when the calculated ){2 is less than its

corresponding expectation value.

Standard Error in the Eigenvalue
Hugus and El-Awady [13] showed that the standard error in an eigenvalue is related to

the standard deviations of the data points, and defined by the equation
2

: 1
e 3 (Z > cfy.cf,,p(Z )jk ] (2.33)

J=1 k=1
where o, is the standard error in the mth eigenvalue, €, and ¢, , are the jth and Ath

components of the mth eigenvector, and
3 2 2 )
Z<dia_/2‘k +d, UU’) for j=k
¥ i=1
o) =
7% .
Z4dij Oy for ]= k
i=1

where o is the errorin d .
This criterion are allowed when the o, is less than its eigenvalue.
2. Empirical Methods

Since the information of error may be either not available or is highly suspected, the

empirical methods have to be developed to solve this challenging problem.
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Imbedded Error Function
The imbedded error (IE) function is defined by the equation:
S 0
ny xr
J=ntl

E = | 2™ ,
E o) (2.342)

n
RSD\/: (2.34b)
c

Because the information of secondary eigenvalues, the number of rows and columns in the

1/2

data matrix, and the number of factors is always available to us when perform factor analysis.
So, we can calculate IE as a function of n, as n goes from 1 to ¢. The IE function should
decrease as more and more primary eigenvector sets are used, and increase when the
secondary eigenvectors in the reproduction are included. If the errors are distributed

uniformly, the dimensionality of the true factor space should be evaluated.

Factor Indicator Function

Malinowski [2;14] discovered an empirical function, called factor indicatior function,
which appears to be much more sensitive than the IE function in its ability to pick out the
proper number of factors and seems to be the best choice in general cases.[14;21] The factor

indicator function (IND) is defined as

RSD
IND = —— (2.35).

(c-nf

The IND function, similar to the IE function, reaches a minimum when the correct number of

factors are employed.

Cumulative Percent Variance
The cumulative percent variance is a measure of the percentage of the total variance in

the data which is accounted for by abstract reproduction. It is defined as follow;
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100

Cumulative percent variance (2.36a)

Il
i N~
T
N
&J&
e F H
s

= 100 Z (2.36b).

Here d; is the value of a data point reproduced by AFA, and d, is the raw, experimental

data point.

The percent variance criterion accepts the set of largest eigenvalues required to account

for the variance within a chosen specification.

3. Statistical Methods

Reduced Eigenvalue and Statistical F-Test

Malinowski [2;15] defined the reduced eigenvalue (REV) as

A,
REV, = x (2.37).

- (r—j+1)c—j+1)

Because the reduced error eigenvalues are equally proportional to the standard deviation, a

statistical F-test was invoked:

Z(r—j+1)(c—j+1)
F 1 _ _ J=n+l n 238
(s =n) (r-n+1)c—n+1) Zs:/l(j 239

J=n+l1

Here s is equal to » or ¢, whichever is smaller. This is designed to test the null hypothesis

H,, REV, = REV’

pool

against the alternative hypothesis (a one-tail-test)

H: REV, > REV'

a pool

where REV;)OO[ is the weighted average of the pool of reduced error eigenvalues.
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The percent significance level (%SL) for F-distribution are defined as the probability
that " would be as large as it is if the first sample’s underlying distribution actually has smaller
variance than the second’s denoted by Q(F / V1>V2) where v, and v, are the number of

degree of freedom in the first and second samples, respectively.[9]

%SL = 100xQ(F/v,,v,)
D(vy +v2) T oo _ o)
= 100 2L (Y1~ F)VdF (2.39)
)
| 2
where x = —2r
v, +v 54

and F(V) = (Gamma function of argument v = IF(V_I)Q_FQ'F.

0

The number of significant factors is determined when the significant level for n
eigenvalues is less than some desired value (such as 5% or 10%) ie. the null hypothesis is

rejected and the alternative is accepted.[16]

By carrying out the above methods, we have already obtained the correct factor size,

and then the reduced column matrix, C. is constructed by the complete set of n primary

eigenvectors as

ol

I

I

(¢}

(gr]
[
g
—

(2.40).

The reduced row matrix, ﬁ, is yielded by premultiplication of the inverse of the C by

data matrix as

R = DC = DC (2.41).



28

Then multiply C by R to generate the reproduced data matrix, D , as
D = RC (2.42).

At the end of this stage, we have already compressed the factor model by deleting the
error factors, and obtained the more accurate reproduced data. However, from the standpoint
of a theoretical chemist, the analysis should not terminate here. The main objective is to gain
insight into the nature of the factors, and the abstract solution must be transformed to a more

meaningful solution as described in the next section.
2.4.3 Transformation by Modeling Methods

Kankare [22] was the first investigator to use models with adjustable parameters in
factor analytical studies. Models, based on well-established scientific knowledge and theory,
are formulated to express the evolutionary profile, ¢,. of component j as a function of

instrumental and phenomenological parameters, g, and P, . respectively;

¢, = flgubyu) (2.43).

In the case of spectrometric titration of Cu(Il)-glycine, and Cu(Il)-alanine complexes,
the g, and p, parameters are correspondent to the pH of each solution and equilibrium
constants respectively.  To overcome this transformation problem, a unique function of
f (gijk , pijk) is created by utilizing of the information of chemical equilibrium (as described

in the Section 2.2) and the principle of mass balance (as described in the Section 2.3).

As a starting point, values are assigned to each of these parameters and assembled into

a profile matrix, C The loading matrix, L, is then computed by the pseudoinverse;

model *

L = DC . (2.44).
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These matrices are multiplied to regenerate the estimated data,
D = LC_, (2.45).

The fit is evaluated by examining ¥ 2, the sum of squares of the differences between the raw

data and the estimated data

7P = (a’,k —d, )2 (2.46).

i=l k=1

The parameters are varied by the optimization methods until ¥ ? reaches minimum.

2.4.4 Optimization Methods

As stated in the previous section, the modeling transformation depends on the
optimization methods. On the realm of numerical methods, the optimization methods can be
classified into derivative and non-derivative. Simplex method [9;23;26], a derivative-free
strategy, is the most commonly used in chemical problems and may be improved by merging
with the Gauss-Newton method, Fibonacci Unidirectional search and Stochastic Initialization

algorithm.
Simplex Method

The original non-adaptive simplex method, proposed by Spendley et al. [24] is rarely
used today. The first useful modification, by Nelder and Mead [25], led to a simple and

widely applicable algorithm.

The simplex is a (flexible) polyhedron, having (m+1) vertices constructed in m-
dimensional parameter space. For m = 2, the simplex is a triangle and for m = 3, a

tetrahedron.
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The process of minimization by a simplex method involves three steps:
(1) Construction of initial simplex body
(2) Tterative search for minimum
(3) Identification of a search termination
In the minimization procedure at each cycle, step (2) and (3) are repeated. Step (1) affects the

speed of convergence.

&
(d) B
Al
C’
C
e) B B’
VR 7 J
Vv
C E o

Figure 2.2 The simplex operations: (a) reflection, (b) expansion, (c) contraction,

(d) reduction, and (e) transfer.

Construction of the initial simplex body

The co-ordinates of the vertices of a simplex create rows of the matrix V of dimension
[(m+1)xm]. When an initial guess [ @ s proposed, the initial simplex is constructed such
that the first row of the matrix V contains this initial guess as the co-ordinates of the

component. The jth row (j=2,...,m+1), is given by
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0.55
(ﬂi(0)+i(m_1+«/m+l)f0rl'¢j
m-2

V, = 1 2.47).

0.58©
B+ i(«/m +1 —1) for i=j
\ m~2

Iterative search for minimum

The procedure calculates the functional value U (,B j) for all vertices of the simplex
and then discriminates the worst point (VU) corresponding to the maximum v U) and the
best point (V| ) corresponding to the minimum (U} ).

First, a reflection of the vertex V; is made through the centre of gravity (P) of the

other vertices as

V, = P+a(P-V,) (2.48)
i+l
2.V,
=l
where p = = (2.49a)
m
or P, = weighted centre of gravity

m+l1

Z (Ui 3 UU )Vi

= = (2.49b)

m

Z(Ui _UU)

r=1

and o is called reflection parameter. When, for at least one vertex V, (i =L+ U),

U, >U, >U, ,thevertex V. isreplaced by the vertex V} and the kth cycle is finished.

If, however, U; > U7, , an expansion is made, to obtain point Vy:
V. = P+y(V,-P) (2.50)
where ¥ is called expansion parameter. 1f U, <Uy , then V; or V; may be replaced by

V: . Sometimes additional expansion to the point V| is performed, that is

vV, = (J+1)V,-JP @2.51)
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where J =2,3,4, ..., until U,,, >U,. Then Vy is replaced by V, and a transfer of
another vertex V, into a new position V,.N is performed in order to keep the original form of
the simplex

V¥ = V. 4+J(V,-P)i#U (2.52)

until the kth cycle is once again completed.

When Uy >U, forall i# U after a reflection, a contraction is performed by using

the point V,, given by

(2.53)

C

| P+ B(V,-P) for U, <U,
P+ B(V, —-P) for U, >U,
where [ is called contraction parameter. 1f U, <U,, V,; is replaced by V., completing

the kth iteration.

If, despite the contraction, { . = U\., the simplex is reduced around V, with the
smallest criterion value. Reduction involves replacement of vertices V, (i #* L) with the new
vertices V. such that

Vi = V. +MV.-V) (2.54)

where A is called reduction parameter. This reduction procedure completes the kth cycle.

Identification of termination criteria

Nelder and Mead [25] recommend that at the end of each cycle, an examinatioﬁ of the
magnitude of the decrease of the criterion function and of the relative changes of the simplex
vertices be made by use of

U -U| < ¢ (2.552)

1 m+l

- +1§d[V,~(k)>Vf(k_l)]z < g (2.55b).

and
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The constant &, and &, should have the value less than 10" and 10'8, respectively. The term
d [Vi(k),Vi(k_l)] denoted the distance between vertices Vi(k) and Vi(k_l) of the cycle k and

(k-1), respectively.
Gauss-Newton Method

Spendley [24] proposed a simple procedure which combines the simplex with the
Gauss-Newton method, a derivative optimization. The procedure starts from a linearized
objective function f(x,,/) for f =V, or f# =V . Itcan be shown that

eV )-e (V) ~ J(V,-V,) (2.56).
where J is the ith row of the Jacobian J and the symbol e, (Vj) =y, — f(x,,V,) denotes
the ith residual for the estimate Vj. Similarly e, (VL) denotes the ith residual for the
estimate, V; . In matrix notation, (2.56) can be written as |

T = JA 2.57)

where T is the (nxm) matrix with elements

T, = e(V)-e(V.) i=l..n j=1.m (2.58).
and A is the (mxm) matrix with elements

4, = Vy-Vu j=L..m(j#L) k=1,...,m (2.59).
If the simplex vertices in the kth iteration are known, the matrix J may be estimated from
(2.57). Let us assume that the criterion for the least-square method is valid. The increment
vector, L, of the Gauss-Newton [23] for this criterion may be calculated from the approximate
expression

L = A-D'w (2.60)

where elements of the matrix D are given by

D, _ Sle, (V)= e, (Ve (V) - e, (V)] k=1, m(=L) 6D,

i=1

and those of vector w by
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n

W, = [e,. (Vj)_ € (VL)]ei (VL ): J#L (2.62).

i=1

In the kth iteration of a given simplex optimization, the procedure determines L , from
(2.60) and calculates the criterion value, U (VL + L). This value then determines whether
the procedure continues according to the original s_implex method or replaces vertex V. of the
maximum value U (VU) by a vertex (VL + L), and then uses an approximate Gauss-Newton

method.
Fibonacci Unidirectional Search

Marsili-Libelli and Castelli [27] improved convergent speed of the simplex by
combining with Fibonacci unidirectional search. Along this context, the distinction between
the two operations of reflection and expansion are unified into a single outward search
procedure, namely a unidirectional optimization, based on the Fibonacci interval elimination

method.

According to the modified simplex algorithm, the reflection parameter ¢ is retained, it
is now only an initial estimate. In addition an incremental reflection parameter, O , is defined,

and the interval selection for the Fibonacci search is determined iteratively as follows.

First, the primary and secondary reflection are defined as
primary: X, (0)
secondary: X, (0)

P+a(P-V,) (2.48),(2.63)
P+(a-5)KP-V,) (2.64)

The incremental reflection parameter is selected in order to determine the search descent
direction; therefore it should be such that U (X2 (0)) <U (XI(O)). If this condition is not

satisfied, in other words if the local minimum is already bracketed in the initial search interval,
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then the incremental parameter ¢ is halved and equation (2.63) and (2.64) are recomputed.

This procedure is repeated until
U(X,(0) < UX(0).

Then the initial search step is computed as

d = X,000-X,(0) (2.65)
and the first point of the forward interval determination is set as
X,(0) = X,(0)+dFib(1) (2.66)

where Fib (1) is the first Fibonacci number.[28]

The initial search interval is then enlarged by computing the sucessive triplets

Xi(g) = X,(g-1 (2.672)
X,(g) = X;(g-1) (2.67b)
X3 (g) 2 Xz(g) 1 [Xz(g) Y Xl(g)]%(}i)l) (2.67¢)

where g is the forward iteration counter. New triplets are determined through (2.67) until
URXs(2) > URX.(2).
Then the forward expression is terminated and the interval [Xl( g),X3(g)] is taken as the

starting Fibonacci interval, as it does contain the required minimum in the search direction.

Within the initial search interval [Xl(g),X3 (g)] a new point is located at

B Fib(g) 3
Xp = X&)+ Fz’b(g—l)[XZ(g) X1<g)] (2.63).

If g = 2, a comparison is made between U (Xz(g)) and U (Xp), and the interval containing
the minimum is retained. If g > 2, the interval elimination procedure requires as many

iterations as the predetermined number g of the Fibonacci sequence.
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Defining the ratio
Fib(g)
the new boundary [P,Q], with U (P) <U (Q), are located through the following backward

(2.69),

iteration. Starting with / = g and an initial search interval with boundaries

P = X,(g)and Q = X,(g)

at each step determine

X,() = P+R( Q-P) (2.70)
X,() = Q-R(Q-P) Q.71).
1If U(X, (1) < U(X, (7)) then
) = X (2.72a)
X@-0 = X0 (2.72b)
X,(-1) = P+R({}Q-P) (2.72¢).
if U(X, () > U(X, (7)) then
P = X, (2.73a)
X, (- = X, () (2.73b)
X,(i-1) = Q-R(fQ-P) (2.73¢).

This procedure is repeat until i = 2.

In some cases [27], the combination of Fibonacci unidirectional search and simplex

method shows less “wobbling” in the search direction and improves the speed of convergence.

Stoichastic Initialization Algorithm

A weak point common to all search algorithms is their inherent inability to avoid the
local minima. In fact it is well-known that search algorithms tend to converge to the optimum

in whose domain of attraction the starting point is located, regardless of whether it is a local or
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a global optimum. Hence careful selection of the starting point helps to circumvent the
problem, but this implies a lengthy trial and error procedure without general guarantees.
Marsili-Libelli and Castelli [27] proposed a stochastic initialization algorithm for selecting the

starting point in such a way that convergence to the global minimum is assured.

Let U (X), with X € R"™, be the function whose minimum is to be found within the
search interval [A,B]. The algorithm considers a stochastic search based on a random
variable w with uniform distribution in [0,1]. As the search goes on, more points in [A,B]
are selected according to the equation

X(@i+1) = X(@)-wW()2w-1) 2.74)
for eéch component (j = 1,2,...,m), where i is the iteration counter, & is a desired integer, and
W(i) is the search interval at the ith iteration, defined as

W) = max[X(i)- A,B-X(/)] 2.75).
After checking that the new point X(i+1) is inside the search interval W(i) the

corresponding function is evaluated, and if it represents an improvement, it is retained in place

of X(i).

The iterations are terminated by use of
(1) a maximum number of iterations, i_

ax”

(2) an uncertainty reduction criterion, i.e. an algorithm for increasing £.

The merits and liabilities of this method are those typical of stochastic search
algorithms. They are little sensitive to function irregularities and can tackle multimodal
functions.[27] On the other hand, convergence is assured only in probabilistic terms and

depends on the law for increasing £.



CHAPTER 3

PROGRAM IMPLEMENTATION

The factor analysis program, “MTFA” version 1.0, was developed. The source code
was written in FORTRAN using Microsoft FORTRAN V5.1 (Microsoft Corp. version of
FORTRAN-77) [29-30] for personal computer (PC). Here, main application is to resolve the
UV/VIS absorption spectra for the acid-base equilibria of the polyprotic organic acid-base
pairs and the formation of metal-ligand complexes. However, the program can also be

adapted to resolve other problems.

In particular, the program should be interactive, provided both manual and automatic

selections, and generalized enough for further development.

MTFA version 1.0 contains three files:

1) MTFA1.FOR, consisting of main program and all of necessary functions and
subroutines that involved the operations of factor analysis

2) Matrix.FOR, consisting of all subroutines that involved the general operations of
matrix such as addition, subtraction, multiplication, transpose, inverse, pseudoinverse, etc [37]

3) Print.FOR, consisting of only two subroutines for all output printings
The program manual and examples wére given in Appendix.

3.1 Program Strategies
For easy understanding, the program was separated into nine parts:

1. Input Elementary Data.

2. Constructing Covariance Matrix.
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3. Decomposition of the Covariance Matrix.

4. Error Treatment.

5. Abstract Column and Row Matrices.

Input Additional Data.

Stochastic Initialization Algorithm and Optimization Methods.

Data Manipulation and Predictions.

A S

Print Results.

Nonetheless, the programmer intended to separate part 2, 3 and 5 from each other, to
enable the implementation of NIPALS and SVD algorithms in the future version. The

flowchart of MTFA program were shown in Figure 3.1.

( BEGIN )

L 3

L Part 1 Input Elementary Data

f
v

( Part 2 Constructing Covariance Matrix

-

Part 3 Decomposition of the Covariance Matrix

L 2

‘ Part 4 Error Treatment

-

FPart 5 Abstract Column and Row NMatrices

!
-

Part 6 Input Additional Data J

1
|
v

Part 7 Stochastic nitialization Algorithm and
Optimization Methods

'
|
L 2

Part 8 Data Manipulation and Predictions

-

‘ Part 9 Print Results
l

Figure 3.1 The sequence of MTFA program version 1.0
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3.1.1 Input Elementary Data

This part was designed for user to input elementary data and select appropriate

methodologies, which are:

Data filename, i.e., spectra filename
Dimension of data matrix, i.e., number of rows and columns
Type of chemical problems:

(1) Acid-Base Equilibrium,
or (2) Metal-Ligand Complex Equilibrium
Type of optimization methods:

(1) Simplex Method,

(2) Simplex Method with Approximate Gradient,

(3) Combination of Simplex and Approximate Gauss-Newton Methods,
or (4) Modified Simplex Method with Fibonacci Unidirectional Search
pH of each solution
Total concentration in mol/L of acid or ligand and metal
Dissociation of ligand
Gradient for the procedure of principal factor analysis
Tolerance and Convergence in the procedure of optimizations

Simplex parameters

The sequence of input was shown in Figure 3.2.
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( Part1 )

/ Input data filename of absorbance matrix | /

y

/ Specify the dimension of absorbance matrix /

/ Select a chemical problem /

Select an optimization method /
/' Input the pH of each solution /
e A ! o
In case of acid-base equilibria | (In case of metal-ligand equilibria |
| ¢
Input total conc. of

Input total conc.
of acid
|

7/ ligand and metal

Input the dissociation
| constants of ligand
| . |

h 4

Set Gradient, Tolerance and Convergence

/ Set the simplex parameters /

( END )

Figure 3.2 The flowchart of Part 1; Input 'Elementary Data
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3.1.2 Constructing Covariance Matrix

This part was designed to compute the covariance matrix 7., and may be extended to
calculate the correlation matrix Z. The procedure of this part began with reading the
absorbance matrix (D) which was specified the filename in Part 1, transposed D to obtain

D', and premultiplied D’ to D vyield Z as given in Figure 3.3.

( Part2 )

Read absorbance
matrix (D)

h 4

Transpose D to obtain D’

Y

Calculate Z=DD
equation (2.23)

END

Figure 3.3 The flowchart of Part 2; Constructing Covariance Matrix

3.1.3 Decomposition of the Covariance Matrix

This part was designed for user to select the automatic or rﬁanual setting for the initial
guess eigenvectors. Then decompose the covariance matrix to obtain the complete set of
abstract eigenvectors (C_, matrix) and eigenvalues (A). The procedure of this part is to

perform the principal factor analysis (PFA) which described in Section 2.4.1 and illustrated in

Figure 3.4.



( Part3 )

Select an option for setling
the initial guess eigenvector

4
| Initial guess eigenvector c.

' T

Calculate Zc, = Ac,
equation (2.24) |

Generate R =Z-\cc/
equation (2.25)

No

i=ncolorR =0

Collect each ¢, into Ccol | |

( END )

Figure 3.4 The flowchart of Part 3; Decomposition of the Covariance Matrix
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3.1.4 Error Treatment

This part was designed to calculate all error indicators. These are RSD, RMS, IE,
IND, cumulative percent variance and %SL. At the end of this part the program will suggest
automatically the plausible number of primary eigenvectors. If the user does not agree with
the suggestion, he/she could input the number of primary eigenvectors manually as wishes.

The algorithm for this is shown in Figure 3.5.

Calculate RSD(i)
equation (2.28)

Calculate RMS(j)
equation (2.29b)

Calculate IE(i)
equation (2.34b)

"I Calculate IND()
equation (2.35)

Calculate Cumvar()
equation (2.36b) |

Calculate %SL(i)
equation (2.38) and (2.39)

|

b

/ Suggest a possible number of primary
eigenvector by computer program

Dictate the number of
primary eigenvector by user

END

Figure 3.5 The flowchart of Part 4; Error Treatment
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3.1.5 Abstract Column and Row Matrices
This part was designed to determine the reduced column (C_,), reduced row (R _,)
and reproduced data (Dmp) matrices from the matrix of abstract eigenvectors obtained in

Section 3.1.3. The procedure was listed in Figure 3.6.

. Transpose Ccol to obtain Ccolt
\ equation (2.40)

Calculate Rcol =D * Ccolt ‘
equation (2.41)

4

Reduce Rcol to Rred

Y

Reduce Ccol to Cred

v
Calculate Drep = Rred * Cred !
| equation (2.42) |

END

Figure 3.6 The flowchart of Part 5; Abstract Column and Row Matrices

3.1.6 Input Additional Data

This part was designed for user to confirm the number of acid-dissociation or complex
formation steps. In case of complex formation, the user should carefully propose the
formation model. If the mistake model was introduced, the following procedures would lead

to unreliable results. Then the user should desire to do the stochastic initialization algorithm.



46

( Parte )

Comfirm the number of dissociation
or formation step

y

Propose the model of formation /

y

/ Specify the order of ligand /

l

Desire to do the stochastic
initialization algorithm

( END

Figure 3.7 The flowchart of Part 6; Input Additional Data

3.1.7 Stochastic Initialization Algorithm and Optimization

This part was designed to perform the stochastic initialization algorithm and the
optimization methods such as simplex or the combination of simplex and Gauss-Newton or
Fibonacci unidirectional searches. In this study, the simplex method as described in Section

2.4.4 is the default in which its algorithm showed in Figure 3.8



Construct an initial simplex body
equation (2.47)

|

Discriminate V, (U )and V, (U))

!

Reflection (V; Up)
equation (2.48)

47

Yes
Contraction (V; Uo)
\UL U , equation (2.5%)
o / ' |
Yes l/
Expansion (V; Up) |
equation (2.50) |
-~
No Yes
=V - U.<u U.<Uu
R E R = C ]
Q b \\////
Yes No
Addition expansion (V;U) |
equation (2.51)
Reduction (V4)
equation (2.54)
No
EV U, < U,
i o
Vy=Ve

~ Transfer (VN

equation (2.52)
£ dentify the termination criteria

equation (2.55)

Yes
END

Figure 3.8 The flowchart of Part 7; Simplex Method
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3.1.8 Data Manipulation and Predictions
This part was designed to process the output data from previous part and carried out

calculations.

( Part8 )

y

L Show the equilibrium constants /

/ Show the estimated concentration matrix

Show the estimated matrix
of molar absorptivities

( ENDL\)

Figure 3.9 The flowchart of Part 8; Data Manipulation and Predictions

3.1.9 Print Results
This part was designed to enable user to select the output unit, i.e. printer, computer-
saved file (log), display, or none.
( Part9 )

Choose an output unit /

y

Select an option for printing /

Print the results [

( EI\'JD )

Figure 3.10 The flowchart of Part 9; Print Results
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3.2 Summary of Input Requirements

a)
b)
c)
d)
e)
f)

h)

i)

k)

D

m)

n)
0)
p)
9
s)

Prepare a data file (.txt) of spectra and give 8-letter name.

Determine the dimension of data matrix.

Select a type of chemical problem.

Select an optimization method.

Specify the pH of each solution.

Input the total concentration (mol/L) of acid or ligand and metal, respectively.
Input the number of dissociation step of ligand.

In case of complex formation, specify the dissociation constants of ligand.
Set the Gradient, Tolerance and Convergence. The default values

are recommended.

Set the simplex parameters. The default values are recommended.

Choose an option for setting the initial guess of eigenvector. The automatic
setting is recommended.

Dictate the number of primary eigenvectors. The program suggestion is
recommended. |

Give the number of dissociation or formation step of acid or complex, respectively.
The program estimation is recommended.

In case of complex formation, propose the chemical model.

Desire to do the stochastic initialization algorithm.

Make an initial guess for equilibrium constants.

Select a choice of output unit.

Select an option for printing.



CHAPTER 4

VALIDATION OF PROGRAM

The mission-of this chapter is to validate the MTFA program using simulated spectral
data. The program works very well in solving the simulated spectra with very good accuracy.
However, in the instance where the spectra of different components are (nearly) identical, the

failure of the program is expected.

4.1 Validation Appreach

According to the program, there are two facets to be examined. These are
() Validation of program calculations and sensible logic,

and  (II) Validation of whole program.

The first facet involves the calculations of matrix operation (such as addition,
subtraction, multiplication, transpose, inverse, pseudoinverse and capture of submatrix), the
principal factor analysis, the error indicators and the simplex methods. Calculations and logic
of all subprograms mentioned above were verified and tested individually and/or in group.

Their results were not discussed here.

Only whole-program testing were reported. Two chemical applications i.e. acid-base
equilibria and metal-ligand complex equilibria were used to validate the performance of the

whole program.

The detail of which was given below:
1) Simulated system of acid-base equilibria. In this case, an acid, namely H,A, is

dissociated as
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K,,=1.23x10*

H3A —_— H+ + H2A'
 K,=2.34x107 . N
. Ky=345x10° ..
HA® =——= H + A 4.1)

where K, K,, and K ; are represented the dissociation (or depfotonation) constants.

Evidently, there are 3 steps of dissociation, and 4 principal components: H,A, H,A,

HA” and A”

2) Simulated system of metal-ligand complex equilibria. In this case, a metal

(M2+) and protonated ligand (HL) are in the equilibria as

K,=4.467x104 . K,=1.867x10-1%
HZL s HIT =3 = L (4-2)
. 3 3,=7.59 .
M™ + HL ‘ M(HL)
” ; R,=5.37x102 .
M +HL =——= ML+ H
4 . R.=3.39x10-* . +
MY+ 2HL =—=——= ML’ + 2H 4.3)

where K, and K, are the acid-dissociation constants of ligand, and B, B, and {3, are the overall

stability constants of complexation, respectively. In the other hand, the chemical equilibria in

M HI. H*
. . 1 1 0
(4.3) can be expressed in the matrix form as
1 1 1
1 2, 2

Here, we assign 3 steps of complexation, and 4 principal components: M2+, M(HL) ,

ML and ML,

Along the above approach, if the final output from the program agrees with the former

settings (simulated data), the program has been validated.
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4.2 Building up the Simulated Spectra

Since we were interested in two chemical problems as stated in Section 4.1, the
simulated spectral data were produced separately for each problem. In case of acid-base
equilibria, the simulated spectra were generated by imaginating as there are ten solutions of
acid (H;A) with constant-total concentration (A_) of 0.2000 M and pH varying from 3 to 12.
The another case of metal-ligand complex equilibria, the simulated spectra were generated by
imaginating as there are twelve solutions of metal (M) and ligand (HL) with constant-total
concentration of metal (M, ) 0.0020 M and ligand (L, ) 0.1000 M, and pH varying from 1.5 to
7. Ten solutions of H,A were recorded from 300 to 700 nm at 2-nm intervals, while the

twelve solutions of M-HL were from 450 to 850 nm at 3-nm intervals (totally 201 intervals).

Hence the matrix of simulated spectra for both cases, denoted by A, were created by
the multiplication product of the matrix of artificial molar absorptivities, denoted by E , and
the matrix of artificial concentration, denoted by C, as

A = EC (1.11), (4.4).

The dimensions of each matrix are shown in Table 4.1.

Table 4.1 Dimensions of each matrix

Cases of Equilibria Dimensions
Data Matrix A Matrix of Matrix of
Absorptivities E Concentrations C
Acid protonation (201x10) (201x4) (4%x10)
Metal-ligand complex (201x12) (201x4) (4x12)

We remarked that the number “4” were used since we have assigned 4 principal components as

stated in Section 4.1.
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It is well-known that experimental uncertainty does exist and blends into the pure data.
Therefore, the error matrix (S) should be added to the equation (4.4). Thus,
A = EC+S 4.5).
The elements S;; are generated using pseudo-random number. Since the standard deviation in
absorbance was estimated to vary between 0.0005 and 0.0015 absorbance unit [2], therefore,

two levels of error i.e. £0.0005 and +0.0015 were introduced respectively.

The molar absorptivity matrix, E , were generated by arbitrary drawing and shown in

Figure 4.1 and 4.2.

The concentration matrix, C, for the case of acid-base equilibria were formulated by

the equation (2.13) or (2.14) where k= 3

S A L Atol
C1 F al p 3 Kl K2K1 K3K ZKI
[ Rt R e
Fe i W A (7]
A
c2 - aZAtoz‘ g H+ 1{"7“ K K
[ ]+1+ a+2 + z13+ 22
al [H7] [H7]
A
c3 T a3Alot = H+ 2 Hrir
[ ] +[ ]+1+ aj
KalKa2 Ka2 [H ]
A
c, = ad, = — —— - (4.6)
(H'F_HT _[H],,

H
a3

+
KalKaZKa3 Ka2K Ka3

where ¢, ¢,, €, and €, are row vectors of the matrix C.
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Figure 4.1 Artificial molar absorptivity spectra of 4 components for the acid-base equilibria.

S

Molar Absorptivity
B & 8 &

— M2+

— M(HL}+

— M)22-

o

I

450 550

|

650
Wavelength (nm)

750

Figure 4.2 Artificial molar absorptivity spectra of 4 components for the complex equilibria.
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In case of metal-ligand complex equilibria, the matrix C were formulated by the
110
equation (2.20) where p = 3, and using the model |11 1

122
¢, = aM, = My
1+ﬂl[HL1+ﬂ2{gﬂ+ﬂ3{§ﬂz
Mtot
e Y AR W A ]
BIHL] B IH BLHT
c. = aM, = M,
T T, By AL
g 1HL " B, p, [H
¢, = aM, = 12 Mtitz (4.7).
UH'T, AH'T B IHLT

B HLT ~ B, [HL] B, [H']

The concentration profiles (matrix C) in both cases were given in Figure 4.3 and 4.4.

0.2 —
_ ] -
< H3A
©
E — H2A-
5 .,
g 0.1 HA2-
|
o — A3-
Q
o

0

Figure 4.3 Artificial concentration profiles of 4 components computed by equation (4.6).
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0.002
- — M2+
©
£ — M(HL)+
&
£0.001 - ML
c
8 — ML22-
o e —
O
0 == l | T i
1.5 2.5 -3 4.5 5.5 6.5
pH

Figure 4.4 Artificial concentration profiles of 4 components computed by equation (4.7).

Consequently, the simulated spectra were computed by (4.5) at different levels of error
yielding absorbance matrices with dimensions of (201x10) and (201x12), respectively. Then
the simulated spectra were shown in Figure 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

2 — pH3
— pH4

pH5
—pH®6

Absorbance
|

A |

— pH8

AN
— pH9
0 ; - A , — pH 10

— pH 11
300 400 500 600 700
Wavelength (nm) pH 12

Figure 4.5 Ten simulated spectra of H,A dissociation without added error.
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Absorbance

L

1

300 400 500 600 700
Wavelength (nm)

—pH3
—pH4

pH5
——pHB6
— pH7
— pHS8
— pH9
— pH10
e oH 11

pH 12

| Figure 4.6 Ten simulated spectra of H,A dissociation with +0.0005-added error.
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Figure 4.7 Ten simulated spectra of H,A dissociation with +0.0015-added error.
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Figure 4.8 Twelve simulated spectra of M-HL complexation without added error.
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Figure 4.9 Twelve simulated spectra of M-HL complexation with +0.0005-added error.
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0.2 — pH15
—pH 2.0
pH 2.5
— pH 3.0
— pH 3.5
— pH4.0
— pH 4.5
— pH 5.0
— pH55
pH 6.0
pH 6.5
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Absorbance
o
]
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Wavelength (nm)

Figure 4.10 Twelve simulated spectra of M-HL complexation with +0.0015-added error.

4.3 Program Testing by Simulated Spectra

The simulated absorbance matrices as detailed in Section 4.2 were created as text files
(.txt) using text editor, and then input to the Program MTFA. Afier resolving the absorbance
data, the testing results of the systems of H,A dissociaion and M-HL complexation were
tabulated in Table 4.2 and 4.3, respectively. Further details of testing were reported in
Appendix. In the tables, RMS and Norm were signified the root mean squars and Euclidean

norm of a matrix X (rxc) [36-37], and defined as

RMS

(4.8)

Norm = (4.9).

And the “Diff.” was an abbreviation of difference.
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From the results by Program MTFA, the followings are concluded:

- The number of components is distinctly “4”, and consistent to the former settings.

- The output constants of dissociation and stability are in very good agreement with
the beforehand settings, albeit the errors were added.

- The concentration matrix differences between the program output and the original
settings are small, /.e. the fifth digit (or more than) after the decimal point of the concentration
in mol/L, and quite acceptable in the range of error.

- The differences of molar absorptivities showed similar behavior with the differences
of concentration matrix, but more deviation was observed.

- ‘The extractable error is approximately 77% of the added error. This showed the
prominent feature of factor analysis in reducing the error from the raw data.

- Explicitly, the system of acid-base equilibria showed highly accurate results with
respect to the complex equilibria.  Undoubtedly, these were caused by the simplicity and

uniqueness of the model function as stated in Section 2.4.3.



Table 4.2 Testing results of H,A dissociation by program MTFA

Results Beforehand Pure data Pure data Pure data
settings (#0.0000 error)  (+0.0005 error)  (20.0015 error)
No. of components - 4 4 4
Added Error: RMS - : 2.904x10™ 8.712x10™
Norm - . 1.302x10" 3.906x10”
Extractable Error: RMS g 2.144x107 2208x10" 6.356x10™
Norm - 9.611x10° 9.897x10> 2.849x10”
K, - 1.230%10” 1.230% 10" 1.230x10" 1.232x10™
K, 2.340x10” 2.340x10” 2.340x10” 2.340x10”
K., 3.450x10" 3.450%x10” 3.451x10” 3.450x10"
2*-value - 9.801x10 ™" 6.765x10° 7.760x10°
Diff. of matrix C: RMS - 1.589x10™ 5.106x10° 2.822x10° .
Norm - 1.005%10” 3.229%10” 1.444x10™
Diff, of matrix E: RMS - 5.802x10" 1.124x10” 3.544%10"
Norm - 1.645x10” 3.188x10™ 0.101

L9



Table 4.3 Testing results of M-HL complexation by program MTFA

Results Beforehand Pure data Pure data Pure data
settings (+£0.0000 error)  (+0.0005 error) (+0.0015 err(_)r)
No. of components 4 4 4 4
Added Error: RMS - - 2.878x10" 8.568x10"
Norm - - 1.414x10° 4208x10”
Extractable Error: RMS - 2.175x10" 2.126x10™ 6.274x10™
Norm - 1.068x10” 1.044x10° 3.081x10”
B, 7.590 7.590 7.678 7.883
B, 5.370x10” 5.370x10” 5.356x10” 5.282x10”
B, 3.390x10° 3.390x10” 3.395x10” 3.366x10”
7 -value - 4.061x10™ 2.582x10° 1.894x10™
DI, of matrix C:  RMS - 2.041x10" 8.484x 10" 2.963x10”
Norm - 1.414x10” 5.878x10” 2.053x10”
Diff. of matrix E:  RMS - 1.132x10° 0.832 2.817
Norm - 3.209x 10”7 23.582 79.877

29



CHAPTER 5

EXPERIMENTAL

5.1 Chemicals and Instruments

5.1.1 Chemicals

All used chemicals were tabulated in Table 5.1.

Table 5.1 List of used chemicals

Chemicals Purity and Source
Glycine 99.7% from Riedel-deHaen (Germany).
Alanine 99% from Fluka (Switzerland).

Cupric chloride anhydrous 97% from Fluka (Switzerland).

Sodium chloride Analytical reagent grade from Mallinckrodt (USA).
Sodium hydroxide 98% (pellet) from Eka Nobel Industries (Sweden).
Hydrochloric acid Concentrated acid from BDH Laboratory (England).

5.1.2 Instruments

1. Ultraviolet-visible spectrophotometer: Spectronic Genesys 5 from Spectronic
Instruments, Inc. (USA).

2. Analog pH meter coupled with combined glass electrode: Scholar 425 from
Corning, Inc. (USA).

3. Temperature-controlled shaker: Maxi-Shake from Heto Lab Equipment A/S
(Denmark).
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5.2 Preparation of Solutions

1. Stock solution of 0.01 M cupric chloride.  Prepare by dissolution of accurate

quantity of anhydrous cupric chloride in 0.6 M sodium chloride.

2. Stock solution of 0.5 M glycine. Prepare by dissolution of accurate quantity of

glycine in 0.6 M sodium chloride.

3. Stock solution of 0.5 M alanine. Prepare by dissolution of accurate quantity of

alanine in 0.6 M sodium chloride.

4. 2 M hydrochloric acid.  Prepare by dilution of approximate volume of conc.

hydrochloric acid in 0.6 M sodium chloride.

5.2, 0.2 and 0.002 M sodium hydroxide solution.  Prepare by -dissolution of

approximate quantities of sodium hydroxide in 0.6 M sodium chloride.

6. 0.6 M sodium chloride solution. Prepare by dissolution of approximate quantity of

sodium chloride in doubly distilled water.

7. 18 solutions of copper-glycine. Prepare by pipetting appropriate amount from stock

solutions of cupric chloride, glycine, and sodium hydroxide or hydrochloric acid into 50-mL
volumetric flasks, and then diluting the mixture with 0.6 M sodium chloride. Each solution
contained 0.002 M copper(ll) and 0.10 M glycine but different pH ranging from 1 to 7.

8. 13 solutions of copper-glycine. Prepare by pipetting appropriate amount from stock
solutions of cupric chloride, alanine, and sodium hydroxide or hydrochloric acid into 50-mL
volumetric flasks, and then diluting the mixture with 0.6 M sodium chloride. Each solution

contained 0.002 M copper(lI) and 0.10 M alanine but different pH ranging from 1 to 7.

5.3 Measurements

The visible absorption spectra of all sample solutions were recorded with a UV/vis

spectrophotometer.  The baseline was recorded using 0.6 M sodium chloride and the
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“baseline” option from the instrument’s program menu. Absorbances of copper-glycine
samples were recorded at 3-nm intervals from 450 to 850 nm yielding 134 points for each |
solution, while each copper-alanine sample was at 2-nm intervals yielding 201 points. All

solutions also were temperature-controlled at 33°C before measuring.

The pH of each solution was measured by an analog pH meter which was calibrated by

standard buffer of pH 4.0 and 7.0 supplied by Corning, Inc.



CHAPTER 6
RESULTS AND DISCUSSION

From the experiment, eighteen solutions of copper-glycine, and thirteen solutions of
copper-alanine were prepared with pHs varying from 1 to 7. The pH of greater than 7 can not
be used since copper would be precipitated.  The visible spectra of the copper-glycine
solutions were recorded from 450 to 850 nm at 3-nm interval (Figure 6.1), yielding a 134x18
absorbance matrix, while the solutions of copper-alanine were recorded at the same range but
2-nm intervals (Figure 6.2) yielding a 201x13 absorbance matrix. Then the text file (.txt) of
absorbance matrices were created using text editor such as Microsoft Editor, Microsoft
FORTRAN or a word processor program, and input to the Program MTFA.

Along the program, the filename of text file (absorbance matrix) and dimension of
matrix should be specified, and then the program would read the data automatically as
described in Section 3.1.1 and 3.1.2. All input and settings were detailed in the reports in

Appendix.

Spectra of Cu(ll) and GlyH Complexes

0120 =7~ =& ——
0.100 |
0.080
0.060
0.040

Absorbance

0.020 v
0.000 T T ] T T ]

450 500 550 600 650 700 750 800 850
Wavelength (nm)

Figure 6.1 Visible spectra of 18 copper-glycine solutions with pH ranging from 1 to 7.
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o Spectra of Cu(ll) and AlaH Complexes
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Figure 6.2 Visible spectra of 13 copper-alanine solutions with pH ranging from 1 to 7.

After analyzing the absorbance data by MTFA program, the results were reported and

collected in Appendeix.
Interpreting the Results

Explicitly, the output results of the both systems of copper-glycine and copper-alanine

were closed together, and possessed a similar trend in the properties.

Determination of the Numbef of Copper Species. For both systems of copper-
glycine and copper-alanine, three important error indicators, i.e., IND, IE and %SL, given the
consensus of “4” primary eigenvectors which corresponding to 4 absorbing species in the
equilibria.  Since glycine has no absorption in the region of measurement, the absorption
ought to be contributed by copper and copper complexes, i.e. Cu”’, Cu(GlyH)”", Cu(Gly)", and
Cu(Gly),. These species given were taken from suggestions of previous literature.[18]

Analogous to copper-glycine system, the 4 absorbing species for the system of copper-alanine
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would be Cu2+, Cu(AlaH)2+, Cu(Ala)", and Cu(Ala),. It should be noted that the fourth
component has very small eigenvalue with respect to the first three components. This means

that the fourth component exists in very small amount in the equilibria.

Determination of the Equilibrium Constants, Concentration Profiles and
Absorptivities. By the program suggestion, there are “3” steps of copper-glycine

complexation. From Darj and Malinowski [18], the corresponding model should be
Cu” + GlyH === Cu(GlyH)”
Cu” + GlyH === CuGly)' +H'

[

Cu” + 2(GlyH) === Cu(Gly), + 2H" 6.1).

Incorporating this to the input, the factor analysis program yielded 3 overall stability

constants (B);

B, = 4147
B, = 3.446x10”
B, = 4415x10" 6.2).

In the same way, the complexation model of copper-alanine would be

Cu¥ + AlaH ===  Cu(AlaH)”

Cu” + AlaH =2= Cu(Ald)" + H'
Cu” + 2(AlaH) === Cu(Ala), + 2H" (6.3).

Then the program yielded 3 overall stability constants as
fgris=4 MLOE
B
B3

4.605x10”
3.753%10™ (6.4).
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However, the other complexation models expressed in term of the matrix form such as

Cu® GlyH; H'

Cu® Gly” H*
1 1 0
and | 1 1 0 | also were introduced to fit the data, but the output
1 1 2
1 2 0
1 2 4

results were unreasonable or impossible in real conditions such as negative concentrations,

negetive stability constants, high noise in molar absorptivities, and so on. Moreover, some

Cu®* AlaH; H*

Cu* Ala” H*
1 1 1
models such as and | 1 1 0 | fail to converge with acceptable
1 1 2
1 Z 9
1 - 4

12 as defined by equation (2.46) in Section 2.4.3.

The output matrices of concentration and absorptivities were exported to create the

charts as shown in Figure 6.3, 6.4, 6.5 and 6.6.

— Cu2+
— Cu(GlyH)2+

Cu(Gly)+

— Cu(Gly)2

Concentration (mol/L)

1.50 2.50 3.50 4.50 5.50 6.50
pH

Figure 6.3 Estimated concentration profiles for the system of copper-glycine.
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Molar Absorptivities

450 550 650 750 850
Wavelength (nm)

Figure 6.4 Estimated molar absorptivity spectra for the system of copper-glycine.

0.003 e .
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0002 A | | — cuaH)2+
=
8 Cu(Ala)+
= 0.002 -
g — CuAla)2
s
‘g 0.001
8
0.001 /—
0.000 i T T
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Figure 6.5 Estimated concentration profiles for the system of copper-alanine.
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70 - _
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Figure 6.6 Estimated molar absorptivity spectra for the system of copper-alanine.

Evidently, the concentrations of Cu(GlyH)2+ and Cu(AlaH)"" are smaller than the other
copper forms, and exist in a narrow region of the pH range. These conform the results of
eigenvalues as stated above. However, most of errors were accumulated in the molar
absorptivities especially the species which contained small amount such as Cu(GlyH)"" and

Cu(AlaH)" as seen in Figure 6.3 t0 6.6.

It should be noted that the concentration of Cu(GlyH)"" is less than those of Cu(Gly)'
and Cu(Gly), as shown in Figure 6.3, even if the value of B, is greater than those of B, and B,,

respectively. The reason is that the concentrations of each component are comparable as

[CuGly,|[H"]
[GyH ]

This implied that the concentration of Cu(GlyH)2+ is less than those of Cu(Gly)" and Cu(Gly),,

[CuGly, )[H"]
[GhH ]

for copper-glycine, the comparison of concentrations of copper-alanine system should be

[Cudla,|[H*]
[AlaH |

[CuGlyH®] > [CuGl*[H"] (6.5).

but larger than the products of [CuGly” |[H "] and , respectively. Similar

[CudlaH*'] > [Cudla®][H"] (6.6)
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Discussion with Other Results Our results seem to contradict to the literature.
[34-35] Irving and Pettit [35] used the potentiometric method to study the complexation of
copper and glycine in 0.10 M KCl at 20°C, and proposed two complexation steps as

R,=1.32x10¢

Cu’ + Gly Cu(Gly)"

R,=1.08x10'5

Cu” + 2(Gly) =————= Cu(Gly), (6.7).

The sensitivity of spectrophotometry may be considered as higher than that of
potentiometry because the chemical species contribute the total absorption directly, while the
potentiometry they must impact on the hydrogen concentration gradient which consider as
indirected to electrical potential. So, the potentiometric technique may unable to discriminate
Cu(GlyH)2+ species from Cu(Gly)", and then concluded these two-step to one-step
complexation because Cu(GlyH)P exist only in small amount as seen in Figure 6.3. In
addition, the above results of copper-glycine complexes, i.e. number of components, number
of complexation steps, and complexation model, were corresponding to Darj and Malinowski’s
study [18] where the window factor analysis (WFA), a self-modeling method, was used to
evaluate the visible spectra of copper-glycine. Nonetheless, their report of overall stability

constants was (compared to equation (6.2))

B, = 759
B, = 537x10°
B, = 3.39x10" (6.8).

Their results are in the same order of magnitude as ours. In addition, the stability constants of
copper-glycine system are quite closer to that of copper-alanine one. They are also expected
because the molecular structure and acid dissociation constants of glycine are similar to the
alanine. The deviations may be caused by

- Temperature difference. Regrettably that the study of Darj and Malinowski [18]

has no report about the experimental temperature, and made a suspect to compare the results.
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- Variation of base-line. When long-time experiment was performed, the base-line
may be changed significantly from the beginning until ceasing, and these may cause by the
electric fluctuation.

- Nature of components. Along the way of principal factor analysis, the chemical
species which existed in the system with a little amount would be hardly discriminated with
the error or noise, and then given a more deviated results.

- Limitation of factor analysis and modeling transformation.  According to the
modeling transformation in Section 2.4.3, the method tried to evaluate the concentrations at the
first, and then used the results to calculate the molar absorptivities. If the concentration values
contained error were used to calculate, more error would be accumulated in the molar

absorptivities.



CHAPTER 7

CONCLUSIONS

Program War version 1.0 was developed to execute the factor analysis and modeling
transformation. = The program was validated and utilized to determine the equilibrium
constants and the concentration and spectral profiles of the components in chemical
equilibrium from UV/VIS spectroscopic titrations. As demonstrated in Chapter 4 and 6, the
program works well on the data that are obtained by simulation and experiment. However,

some comments should be noted here.

Number of Components. A common problem to the methods of chemometrics and
factor analysis is to determine the number of principal components. The possible
complications due to the mistake might be base-line variations, contribution from solvents,
formation of unexpected species, and so on. Fortunately, this is rarely a problem for the

~ system considered here.

Stability of the Program. The stability of the program or the method of factor
analysis depends on several factors such as the number of spectra analyzed, the number of data
points in each spectrum, the degree of spectral overlap between the components, the signal to
noise ratios of the spectra, and how close to the titration end points one can reach. The effect
of these féctors causes the errors in calculations of concentrations, absorptivities and
equilibrium constants. For example in Section 4.3, when the level of error in simulated
spectra was increased, the accuracy of calculation was decreased.

Application of the Program. Essentially any equilibrium systems could be analyzed
by the program. Especially, the systems of acid-base equilibria would be analyzed with high

accuracy albeit existing the high level of noise. When the equilibrium expression is not
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known, the program can be used to test different models. The only requirement is that the
spectral response is linear, and the program is therefore applicable to most UV/VIS
spectroscopic techniques. The analysis could be completed in a few minutes on a standard

personal computer.
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APPENDIX



*************************:k*******************************************
* MTFA v.1l - The Factor Analysis Programme for Chemical Analysis *
* *
* Created by Arunchai Tangcharoenbumrungsuk *

* Conducted by Dr.vVudhichai Parasuk *
khkhkkhkkhkhkhkkkkhkhhhkhhhhkhkhkhkhhdhhkhhhhhdhkhkhkhkhkhkdhhdhhkhkhhkkdhrdrddhdhrhhhhkhkhkhkhhhtkhhdk

1. Elementary Data

- Data file name Acid0015

- Dimension of data matrix 201 x 10

- Type of problem Acid-Base Equilibrium
- Optimization method Simplex Method

- Set the initial guess eigenvector Automatic

- Stochastic Initialization Algor. No

2. Optlmlzatlon Method
Number of steps of dissociaton of the acid = 3
- The starting guess
Value of parameter no. 1 = 1.000E-04
Value of parameter no. 2 1.000E-07
Value of parameter no. 3 = 1.000E-09

It

- The convergence are obtained
Value of parameter no. 1 = 1.232E-04
Value of parameter no. 2 = 2.340E-07
Value of parameter no. 3 = 3.450E-09

- The chi-squared value = 7.760E-05
- Total optimization time = 8 s 84 cs
- Number of iteration cycle = 74

3. Value Setting

- Gradient (determine the pricipal factor) = 1.000E-12
- Tolerance (simplex method) = 1.000E-20
- Convergence (simplex method) = 1.000E-16
- Simplex parameters
Reflection parameter = 1.000 (default)
Contraction parameter = .550 (default)
Expansion parameter = 2.900 (default)
Reduction parameter = .500 (default)
4. Value Input
- Number of solutions = 10
- pH of solutions
The pH of solution no. 1 = 3.000
The pH of solution no. 2 = 4.000
The pH of solution no. 3 = 5.000
The pH of solution no. 4 = 6.000
The pH of solution no. 5 = 7.000
The pH of solution no. 6 = 8.000
The pH of solution no. 7 = 9.000
The pH of solution no. 8 = 10.000
The pH of solution no. 9 = 11.000
The pH of solution no.10 = 12.000

- Total concentration of acid = .2000 mol/L



5. Eigenvectors and Error Functions

Results of Error Treatment

n Eigenvalue RSD RMS

1 443.214753 .326 .309

2 161.058484 .138 .124 6
3 22.643744 7.554E-02 6.320E-02 4
4 8.028203 8.206E-04 6.356E-04 5
5 .000167 8.014E-04 5.667E-04 5
6 .000149 7.856E-04 4.968E-04 6
7 .000137 7.717E-04 4.227E-04 6
8 .000129 7.570E-04 3.385E-04 6
2] .000122 7.334E-04 2.319E-04 6
10 .000108 - =

By following methods, the number of primary
- Imbedded Error Function (IE) = 4
- Factor Indicator Function (IND) = 4
- Percent Significant Level (%SL) = 4

By automatic discrimination

The most possible number of primary eigenvectors

After judgement by user
The number of primary eigenvectors

RMS of extractable error matrix

Norm of extractable error matrix

IE

.103

.177E-02
.138E-02
.190E-04
.667E-04
.085E-04
.457E-04
.771E-04
.957E-04

NSHOSWNHDNP

IND

.019E-03
.158E-03
.542E-03
.279E-~-05
.206E-05
.910E-05
.574E-05
.893E-04
.334E-04

%SL
1.09
.189
1.69
2.694E-1
46.
48.
50.
53.
59.

o oW

elgenvectors are obtained

6.35633E-04

2.84973E-02
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* MTFA v.1l - The Factor Analysis Programme for Chemical Analysis *

*

*

* Created by Arunchai Tangcharoenbumrungsuk *

* Conducted by Dr.Vudhichai Parasuk
khkkhkhkhkhkhkhkhkhkhhkkhkhkhhhkhkhkhkhkhkhkhkhhkhhkhkhhhdhhhhkhkdhhhhhhkhkhhhkhkhhkhkhkhkhkhkhkdhhhkkhhkkdhk

1. Elementary Data

Data file name

Dimension of data matrix
Type of problem
Optimization method

*

Comp0015

201 x 12

Metal-Ligand Complex Equilibrium
Simplex Method

- Set the initial guess eigenvector Automatic
- Stochastic Imitialization Algor. No
2. Optimization Method
- Number of steps of complex formation = 3
- The starting guess
Value of parameter no. 1 = 1.00
Value of parameter no. 2 = 1.000E-02
Value of parameter no. 3 = 1.000E-05
- The convergence are obtained
Value of parameter no. 1 = 7.883
Value of parameter no. 2 = 5.282E-02
Value of parameter no. 3 = 3.366E-05
- The chi-squared value = 1.894E-04
- Total optimization time = 51 s 19 cs
- Number of iteration cycle = 149

3. Value Setting

- Gradient (determine the pricipal factor) = 1.000E-12
- Tolerance (simplex method) = 1.000E-20
- Convergence (simplex method) = 1.000E-16
- Simplex parameters
Reflection parameter = 1.000 (default)
Contraction parameter = .550 (default)
Expansion parameter 2.900 (default)
Reduction parameter = .500 (default)
4. Value Input
- Number of solutions = 12
- pH of solutions
The pH of solution no. 1 = 1.500
The pH of solution no. 2 = 2.000
The pH of solution no. 3 = 2.500
The pH of solution no. 4 = 3.000
The pH of solution no. 5 = 3.500
The pH of solution no. 6 = 4.000
The pH of solution no. 7 = 4.500
The pH of solution no. 8 = 5.000
The pH of solution no. 9 = 5.500
The pH of solution no.10 = 6.000
The pH of solution no.ll = 6.500
The pH of solution no.l12 = 7.000
- Total concentration of ligand = .1000 mol/L
- Total concentration of metal = 2.0000E-03 mol/L



5.

- Number of dissociation step

- Model of complex formation

Dissociation constant no.
Dissociation constant no.

step
step
step

1
o2
3

1
1
1

1 0
1 1
2 2

1
2

of the ligand =
4.467E-04
1.667E-10

- Oxrder of ligand that form complex with metal =

Results of Error Treatment

WoJaud whRErd

Eig

envalue

4.,361018

2.568931
.738950
.001482
.000169
.000155
.000131
.000121
.000115
.000094
.000086
.000078

(e RN Mo ) WEN RN BEN REN IR i o O8]

By following methods,

Imbedded Error Function
Factor Indicator Function
- Percent Significant Level

RSD

.869E-02
.921E-02
~A59E=03
.684E-04
.445E-04
.200E-04
.013E-04
.811E-04
.542E-04
.379E-04
.231E-04

Eigenvectors and Error Functions

RPNMNWWwkhbUOUOE R W

RMS

.705E-02
S753E-082
.004E-03
.274E-04
.686E-04
.091E-04
.527E-04
.932E-04
.271E-04
.604E-04
.799E-04

Uk

the number of primary

By automatic discrimination

The most possible number of primary eigenvectors

After judgement by user
The number of primary eigenvectors

RMS of

Norm of extractable error matrix

(IE)

(IND) =
(¥8L) =

extractable error matrix

IS

IE

.117E-02
.841E-03
.797E-04
.436E-04
.806E-04
.091E-04
.356E-04
.561E-04
.665E-04
.823E-04
.966E-04

AR NP REE R W

IND

.198E-04
.921E-04
.431E-05
.201E-05
.519E-05
.000E-05
.805E-05
.257E-05
.269E-05
.595E-04
.231E=04

%SL
2.21
.208
4.163E-0
3.83
41.
42.
45.
46 .
£
52 .
59.

U1 o Ul 30 U1 &y

eigenvectors are obtained

= 6.27389E-04

= 3.08124E-02
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* MTFA v.1 - The Factor Analysis Programme for Chemical Analysis *
* *
* Created by Arunchai Tangcharoenbumrungsuk *
* Conducted by Dr.Vudhichai Parasuk *

khkkkhkkkhkhkhkhkhhkkhkkhkhkhkkhhkhkhkkhkkhkkhkhhkhhhhkhhkhkrhhdhdhkhkhhkhhhhhdhhkdbhkhkhhhkhkhhkiktkhkkkdi

1. Elementary Data

- Data file name CuGlyH

- Dimension of data matrix 134 x 18

- Type of problem Metal-Ligand Complex Equilibrium
- Optimization method Simplex Method

- Set the initial guess eigenvector Automatic

- Stochastic Initialization Algor. No

2. Optimization Method
- Number of steps of complex formation = 3
- The starting guess

Value of parameter no. 1 = 1.00
Value of parameter no. 2 = 1.000E-02
Value of parameter no. 3 1.000E-05

- The convergence are obtained
Value of parameter no. 1 = 4.147
Value of parameter no. 2 = 3.446E-02
Value of parameter no. 3 = 4.415E-05

- The chi-squared value 8.718E-04

- Total optimization time 1 min. 17 s 44 cs

- Number of iteration cycle = 180

3. Value Setting

- Gradient (determine the pricipal factor) = 1.000E-12
- Tolerance (simplex method) = 1.000E-20
- Convergence (simplex method) = 1.000E-16
- Simplex parameters
Reflection parameter = 1.000 (default:
Contraction parameter = .550 (default;
Expansion parameter = 2.900 (default:
Reduction parameter = .500 (default)
4. Value Input
- Number of solutions = 18
- pH of solutions
The pH of solution no. 1 = 1.470
The pH of solution no. 2 = 1.700
The pH of solution no. 3 = 1.980
The pH of solution no. 4 = Z.250
The pH of solution no. 5 = 2570
The pH of solution no. 6 = 2.3E0
The pH of solution no. 7 = 3.240
The pH of solution no. 8 = 3.990
The pH of solution no. 9 = 4.080
The pH of solution no.10 = 4.360
The pH of solution no.11 = 4.480
The pH of solution no.12 = 4.600
The pH of solution no.13 = 4.770
The pH of solution no.14 = 5.040
The pH of solution no.15 = £.560
The pH of solution no.l6é = 6.040
The pH of solution no.17 = 6.600
The pH of solution no.18 = 6.960



5.

!

Total concentration of ligand

Total concentration of metal

Number of dissociation step

Dissocliation constant no.
Dissociation constant no.

Model of complex formation

step
step
step

1
2
3

1

1

1

1 0
1 1
2 2

1
2

.10011
= 2.0440E-03

mol /L
mol/L

of the ligand =
4 .467E-03
1.667E-10

Order of ligand that form complex with metal =

Results of Error Treatment
Eigenvalue

Wo-JaudkwNpRE B

8.000366
.415320
.012884
.000190
.000019
.000017
.000016
.000014
.000014
.000012
.000012
.000011
.000010
.000008
.000007
.000007
.000006
.000005

EFRPNMNNDNNNMNDDNDNDNDNONNDNDNDADNDE

By following methods,

Imbedded Error Function
Factor Indicator Function
- Perxrcent Significant Level

RSD

« 37 DE=02
.484E-03
.170E-04
OT3E-04
.840E-04
.766E-04
.695E-04
.629E-04
.548E-04
.482E-04
.399E-04
.310E-04
.205E-04
.138E-04
.063E-04
.979E-04
.899E-04

Eigenvectors and Error Functions

PO ORRERERPERPEEDDNDDDNDWNE

the number

By automatic discrimination

The most possible number of primary

After judgement by user
The number of primary eigenvectors

RMS of extractable error matrix

Norm of extractable error matrix

(IE)

RMS

.333E-02
.342E-03
.807E-04
.569E-04
.414E-04
.259E-04
.107E-04
.959E-04
.802E-04
.655E-04
.496E-04
.333E-04
.162E-04
.008E-04
.424E-05
.597E-05
.476E-05

RPRRPRPRRPERPRPRRERRBPRBR®W

of primary

(IND)
(%SL)

4
4
4

eigenvectors

IE

.233E-03
.281E-04
.702E-04
.373E-04
.497E-04
.597E-04
.681E-04
.752E-04
.802E-04
.850E-04
.875E-04
.886E-04
.874E-04
.885E-04
.884E-04
.866E-04
.845E-04

RPRANHOOAD WWONREHRER WD

IND

.746E-05
.705E-06
.853E-06
.486E-06
.681E-06
.921E-06
.228E-06
.629E-06
.145E-06
.878E-06
.895E-06
.415E-06
.821E-06
.336E-05
.293E-05
.948E-05
.899E-04

%SL
6.929E-0
4.743E-0
6.154E-0

1.33

37.
38.
39.
40.
39.
42.
41.
45
41.
46.
48.
Bl
o8 .

UUNDWOHRWOWIHEOUTENWD

eigenvectors are obtained

Il

= 2.56942E-04

= - 1.26190E-02
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* MTFA v.1 - The Factor Analysis Programme for Chemical Analysis *

*
* Created by Arunchai Tangcharoenbumrungsuk *

* Conducted by Dr.vVudhichai Parasuk *
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*

1. Elementary Data

- Data file name CulAlaH

- Dimension of data matrix 201 x 13

- Type of problem Metal-Ligand Complex Equilibrium
- Optimigation .method Simplex Method

- Set the initial guess eigenvector Automatic

- Stochastic Initialization Algor. No

2. Optimization Method
- Number of steps of complex formation = 3
- The starting guess

Value of parameter no. 1 = 1.00
Value of parameter no. 2 = 1.000E-02
Value of parameter no. 3 1.000E-05

- The convergence are obtained
Value of parameter no. 1 = 11.68
Value of parameter no. 2 4 .605E-02
Value of parameter no. 3 = 3.753E-05

]

- The chi-squared value

il

9.418E-04

- Total optimization time 1 min. 5 s 74 cs

i

- Number of iteration cycle = 184

3. Value Setting

- Gradient (determine the pricipal factor) = 1.000E-12
- Tolerance (simplex method) = 1.000E-20
- Convergence (simplex method) = 1.000E-16
- Simplex parameters
Reflection parameter = 1.000 (default)
Contraction parameter = .550 (default)
Expansion parameter = 2.900 (default)
Reduction parameter = .500 (default)
4. Value Input
- Number of solutions = 13
- pH of solutions
The pH of solution no. 1 = 1.500
The pH of solution no. 2 = 1.980
The pH ©f solution mo. 3 = 2.610
The pH of solution no. 4 = 2.990
The pH of solution no. 5 = 3.540
The pH of solution no. 6 = 4.020
The pH of solution no. 7 = 4.590
The pH of solution no. 8 = 4.840
The pH of soluticn no. 9 = 5.510
The pH of solution no.10 = 6.470
The pH of sglution o.1ll = 6.130
The pH ¢f sglution no.12 = 6.510
The pBE of soldtion A5.13 = 7= B30



- Total concentration of ligand = .10324 mol /L
- Total concentration of metal = 2.0202E-03 mol/L
- Number of dissociation step of the ligand = 2
Dissociation constant no. 1 = 4.365E-03
Dissociation constant no. 2 = 1.659E-10
- Model of complex formation
step 1 1 1 0
step 2 1 1 1
step 3 1 2 2
- Order of ligand that form complex with metal = 2
5. Eigenvectors and Error Functions
Results of Error Treatment
n Eigenvalue RSD RMS IE IND %SL
1 11.874195 1.697E-02 1.630E-02 4.706E-03 1.178E-04 3.539E-0
2 .675174 2.948E-03 2.712E-03 1.156E-03 2.436E-05 2.836E-0
3 .018828 4.377E-04 3.839E-04 2.103E-04 4.377E-06 2.587E-0
4 .000229 2.934FE-04 2.441E-04 1.628E-04 3.623E-06 3.12
5 .000024 2.861E-04 2.244E-04 1.774E-04 4.470E-06 42 .0
6 .000021 2.803E-04 2.057E-04 1.904E-04 5.720E-06 44 .4
7 .000020 2.738E-04 1.860E-04 2.009E-04 7.604E-06 44 .8
8 .000019 2.670E-04 1.656E-04 2.095E-04 1.068E-05 45.8
9 .000017 2.606E-04 1.445E-04 2.168E-04 1.629E-05 47 .6
10 .000015 2.561E-04 1.230E-04 2.246E-04 2.846E-05 50.7
11 .000014 2.499E-04 9.802E-05 2.299E-04 6.248E-05 52.9
12 .000014 2.382E-04 ©6.607E-05 2.289E-04 2.382E-04 58.1
13 .000011 = = = =

By following methods,

- Imbedded Error Function
- Factor Indicator Function

the number

- Percent Signifitent Level

By automatic discrimination

The mcst possible number of primary eigenvectors

After judgement by user
The number of primary eigenvectors

RMS of extractable error matrix

(IE)

of primary

(IND) =
(%SL) =

Norm cf extractable error matrix

4
4
4

eigenvectors are obtained

It

2.44145E-04

1.24801E-02



MTFA version 1.0

Program Manual

Program MTFA version 1.0 was developed to execute the factor analysis and modeling
transformation. The source: codes were written in fortran language using Microsoft
FORTRAN V5.1 for personal computer. The main application here is to resotve the UV/VIS
absorption spectra for the acid-base equilibria of the polyprotic organic acid-base pairs and
also the formation of metal-ligand complexes. This compact manual provided step-by-step
instructions, and demonstration with an example of input and/or output in an easy

understanding.

Running the MTFA Program

1) If you have the source code of MTFA program, you should first compile the MTFA
program by Microsoft FORTRAN V5.1, (see the compile procedures in the manual of
Microsoft FORTRAN) In the other hand, if you have in form of execute file, i.e. MTFA EXE,

you can run the program by typing MTFA in the DOS promt as:

C:\MTFA

After pressing the ENTER key, the program should clear the screen and start to run the

following factor analysis as:

* MTFA v.1 — The Factor Analysis Program for Chemical Analysis *
* Created by Arunchai Tangcharoenbumrungsuk *
* Conducted by Dr. Vudhichai Parasuk *




.

Total concentration of ligand

Total concentration of metal

Number of dissociation step

Dissociation constant no.
Dissociation constant no.

Mocdel of complex formation

step 1
step 2
step 3

1
1
1

1 0
1 1
2 2

1
2

O

.10324
2.0202E-03

mol /L
mol/L

f the ligand =
4.365E-03
1.659E-10

Order of ligand that form complex with metal =

Results of Error Treatment

wo-JouddwNES

Eigenvalue
11.874195
.675174
.018828
.000229
.000024
.000021
.000020
.000019
.000017
.000015
.000014
.000014
.000011

NDNDNONDNDNDNDDNDNSDNDRF

By following methods,

Imbedded Error Function
Factor Indicator Function

RSD

.697E-02
.948E-03
.377E-04
.934E-04
.861E-04
.803E-04
.738E-04
.670E-04
.606E-04
.561E-04
.499E-04
.382E-04

Eigenvectors and Error Functions

DN WN

OO R

RMS

.630E-02
.712E-03
.839E-04
.441E-04
.244E-04
.057E-04
.860E-04
.656E-04
.445E-04
.230E-04
.802E-05
.607E-05

NP RENDRE P

the number of primary

- Percent Significant Level

By automatic discrimination

The mcst possible number of primary eigenvectors

After judgement by user
The number of primary eigenvectors

RMS of extractable error matrix

Norm cf extractable error matrix

(IE)

(IND) =
(%$8L)

IE

.706E-03
.156E-03
.103E-04
.628E-04
.774E-04
.904E-04
.009E-04
.095E-04
.168E-04
.246E-04
.299E-04
.289E-04

NONRPRE P U Wk

IND

.178E-04
.436E-05
.377E-06
.623E-06
.470E-06
.720E-06
.604E-06
.068E-05
.629E-05
.846E-05
.248E-05
.382E-04

%SL
3.539E-0
2.836E-0
2.587E-0

3.12
42.0
44 .4
44,
45.
47.
50.
52.
58.

HWw 3o o

eigenvectors are obtained

= 2.44145E-04

= 1.24801E-02



MTFA version 1.0

Program Manual

Program MTFA version 1.0 was developed to execute the factor analysis and modeling
transformation. The source codes were written in fortran language using Microsoft
FORTRAN V5.1 for personal computer. The main application here is to resolve the UV/VIS
absorption spectra for the acid-base equilibria of the polyprotic organic acid-base pairs and
also the formation of metal-ligand complexes. This compact manual provided step-by-step
instructions, and demonstration with an example of input and/or output in an easy

understanding.

Running the MTFA Program

1) If you have the source code of MTFA program, you should first compile the MTFA
program by Microsoft FORTRAN V5.1. (see the compile procedures in the manual of
Microsoft FORTRAN) In the other hand, if you have in form of execute file, i.e. MTFA.EXE,

you can run the program by typing MTFA in the DOS promt as:

C:\MTFA

After pressing the ENTER key, the program should clear the screen and start to run the

following factor analysis as:

* MTFA v.1 — The Factor Analysis Program for Chemical Analysis  *
* Created by Arunchai Tangcharoenbumrungsuk *
* Conducted by Dr. Vudhichai Parasuk *
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2) Begin to input the data filename by typing 8-character name or less than such as:

Input Elementary Data:
- Please type the data filename: CuAlaH01

3) Input the dimension, i.e. the number of row and column, of data matrix.

| - Please specify the dimension of data matrix (nrow,ncol): 201 13

If you don’t known the dimension, you can count them by opening the data file by a text editor
such as Microsoft Editor, Microsoft FORTRAN, or a word processing. [t should be noted that
the data file was created by a text editor such as Microsoft Editor, Microsoft FORTRAN or a
word processing program.  The format of data matrix is very simple where each row
associated to the ith wavelength, and each column associated to the jth mixture. The example

for data file was shown below.

0.012 0.013 0.013 0.012 0.013 0.012 0013 0.014 0.015 0.013
0.011 0.012 0.013 0.012 0.013 0.012 0.014 0.015 0.016 0.014
0.011 0.012 0.013 0.012 0.014 0.018 0.018 0.021 0.023 0.021
0.011 0.012 0.013 0.013 0.015 0.018 0.023 0.0256 0.028 0.027
0.011 0.012 0.013 0.014 0.018 0.024 0.032 0.035 0.039 0.038

0.012 0.012 0.015 0.017 0.025 0.036 0.050 0.054 0.060 0.060

4) Select a chemical problem from the list by pressing a number such as:

List of problem types:

(1) Acid-Base Equilibrium

(2) Metal-Ligand Complex Equilibrium
Please select one of the problem: 2

Noted that the program should protect you to input unreasonable choise such as “3”, “4”, etc.



5) Select an optimization method from the list by pressing a number such as:

List of the optimization methods:
(1) Simplex Method _
(2) Simplex Method with Approximate Gradient (Weighted
.Centroid Method)
(3) Combination of Simplex and Approximate Gauss-Newton
Methods v.1
(4) Modified Simplex Method with Unidirectional Fibonacci
Search
Please select one of the list: 1

Noted that the program should protect you to input unreasonable choise such as “5”, “6”, etc.

6) Input the pH of each solution. Here there are 13 solutions.

- Hence the number of solutions = 13
Then specify the pH of solution:
The pH of solutionno. 1 = 1.50
The pH of solutionno. 2 = 1.98
The pH of solution no. 3 = 2.61
The pH of solution no. 4 = 2.99
The pH of solutionno. 5 = 3.54
The pH of solution no. 6 = 4.02
The pH of solution no. 7 = 4.59
The pH of solution no. 8 = 4.84
The pH of solutionno. 8 = 5.51
The pH of solutionno. 10 = 6.13
The pH of solution no. 11 = 6.47
The pH of solution no. 12 = 6.51
The pH of solution no. 13 = 7.53

The user should know the pH of each solution along the experiment.

7) Since we chose the metal-ligand complex equilibrium, now we must input the total

concentrations (in mol/L) of ligand and metal, and the dissociation constants (known from

literatures) of ligand such as:
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- Please input the total concentration of ligand = 0.10324
- Please input the total concentration of metal = 0.0020202

- Please input the number of step of dissociation of the Ligand = 2
Then specify the dissociation constants for each step.
Dissociation constant no. 1 = 4.365E-3
Dissociation constant no. 2 = 1.659E-10

Noted that the format descriptor “E” in FORTRAN are signified as an exponent e.g. 4.365E-3
means that 4.365x10°.

8) Arrive here you should specify three constants of “Gradient”, “Tolerance” and
“Convergence” as stated in Section 2.4.1,2.4.4 and 3.1.1. For this example, we would like to
use the default values such that Gradient = 1.0x 10'8, Tolerance = 1.0x 10'16, and Convergence =

1.0x10™.

In the process of determination of principal factor
- Do you want to set the Gradient?
If “yes”, please input the value.
If “no”, please press <ENTER> to use the default value:

In the process of optimization method
- Do you want to set the Tolerance?

If “yes”, please input the value.

If “no”, please press <ENTER> to use the default value:
- Do you want to set the Convergence?

If “yes”, please input the value.

If “no”, please press <ENTER> to use the default value:

9) Set the simplex parameters. (see detail in Section 2.4.4 Simplex Method) Here we
would like to use the default values such that Reflection, Contraction, Expansion and

Reduction parameters are set to default as 1.0, 0.55, 2.9 and 0.5, respectively.

If “yes”, please input the value.
If “no”, please press <ENTER> to use the default value:

- Would you like to set the Simplex parameters? —\
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10) Choose an option of setting the initial guess eigenvector. Here the automatics are

reccommended.

Log into Factor Analysis Programme:
Eigenvectors and Eigenvalues:
Please select the option for setting the initial guess eigenvector
(1) Automatic setting
(2) Manual setting
Enter the selection 1

At this stage, the program should calculate all eigenvectors and eigenvalues by the method of

principal component analysis (PCA). The examples of output were shown below.

Number of Eigenvector = 13

Eigenvalues:
11.874195
0.675174
0.018828
0.000229
0.000024
0.000021
0.000020
0.000019
0.000017
0.000015
0.000014
0.000014
0.000011

11) In this stage, the program should calculate all error indicators, and automatically
suggest the possible number of primary eigenvectors. On this example, the number of

primary eigenvectors are equal to “4”.

Results of Error Treatment:

n Eigenvalue RSD RMS IE IND %SL

1 11.874198 1.697E-02 1.630E-02 4.706E-03 1.178E-04 3.539E-05
2 0.675174 2.948E-03 2.712E-03 1.156E-03 2.436E-05 2.836E-06
3 0.018828 4.377E-04 3.839E-04 2.103E-04 4.377E-06 2.587E-06
4 0.000229 2.934E-04 2.441E-04 1.628E-04 3.623E-06 3.12

5 0.000024 2.861E-04 2.244E-04 1.774E-04 4.470E-06 42.0

6 0.000021 2.803E-04 2.057E-04 1.904E-04 5.720E-06 44 4

7  0.000020 2.738E-04 1.860E-04 2.009E-04 7.604E-06 448

8 0.000019 2.670E-04 1.656E-04 2.095E-04 1.068E-05 45.8




9 0.000017 2.606E-04 1.445E-04 2.168E-04 1.629E-05 47.6
10 0.000015 2.561E-04 1.230E-04 2.246E-04 2.846E-05 50.7
11 0.000014 2.499E-04 9.802E-05 2.299E-04 6.248E-05 52.9
12 0.000014 2.382E-04 6.607E-05 2.289E-04 2.382E-04 581
13 0.000011 - - - - -
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- By computation, the estimated number of primary eigenvector = 4

Note: If the estimation = 0, it means that the data matrix may consist of
unsufficient data or contain only pure error. The data, therefore, are
not factor analyzable.

- Do you agree with this estimation?
If “yes”, please prees <y>.
If “no”, please input your estimation: Y

12) In this stage, you should input additional data, i.e. the number of complex
formation (recommend to agree with the program estimation), the formation model, and the

initial guess of equilibrium constants sucha as:

Given the Further Information:
- By computation, the estimated number of steps of complex
formation = 3

- Do you agree with the estimation?
If “yes”, please press <y> or <Enter>.
If “no”, please input your estimation:

- Please propose the model of formation: (M L H)
step1:. 110
step2: 1 1 1
step3: 1 2 2

Then make the initial guess for all overall stability constants.

- Do you like to use the Stochastic Initialization Algorithm or ordinary
initial guess?
If “yes”, please prees <y>.
If “no”, please press <N> or <Enter>.

Value of parameterno. 1 = 1.0
Value of parameter no. 2 = 1.0E-02
Value of parameter no. 3 = 1.0E-05
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13) In this step, you must wait for the program optimization. ~When the program

finish, the convergence equilibrium constants were obtained such as:

Data Manipulation and Predictions:
- The equilibrium constants are:
11.68 ~ 4.605E-02 3.753E-05

- Estimated column matrix;:
0.001928 0.001846 0.001672 0.001405 0.000987

- Estimated row matrix:
5649 18103 4559 7.098

14) Finally, the user must select the options for output unit and printing by selecting a

number from the list such as:

Results Printing:

- Would you like to print the summary of results”?

(1) Printer o
(2) File (LOg) /’:;_.j‘\f‘“i:\
(3) Monitor (& g\
(4) None (£ s )2
Please select one from the list: 3 \r\ 2= g

- Option for printing
(1) Full information
(2) Only necessary information
Please select one from the list. 2
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