

DEVELOPMENT OF DENSITY BASED CLUSTERING ALGORITHMS FOR STREAMING DATA

Mr. Sirisup Laohakiat

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science and

Information Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2016
Copyright of Chulalongkorn University

การพัฒนาขั้นตอนวิธีจัดกลุ่มบนพื้นฐานความหนาแน่นส าหรับข้อมูลที่มีการไหลเข้าอย่างต่อเนื่อง

นายศิริสรรพ เหล่าหะเกียรติ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2559
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title DEVELOPMENT OF DENSITY BASED CLUSTERING
ALGORITHMS FOR STREAMING DATA

By Mr. Sirisup Laohakiat
Field of Study Computer Science and Information Technology
Thesis Advisor Professor Chidchanok Lursinsap, Ph.D.
Thesis Co-Advisor Assistant Professor Suphakant Phimoltares, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Professor Thanaruk Theeramunkong, Ph.D.)

 Thesis Advisor

(Professor Chidchanok Lursinsap, Ph.D.)

 Thesis Co-Advisor

(Assistant Professor Suphakant Phimoltares, Ph.D.)

 Examiner

(Assistant Professor Saranya Maneeroj, Ph.D.)

 Examiner

(Associate Professor Chatchawit Aporntewan, Ph.D.)

 External Examiner

(Associate Professor Ekkarat Boonchieng, Ph.D.)

 iv

THAI ABSTRACT

ศิริสรรพ เหล่าหะเกียรติ : การพัฒนาขั้นตอนวิธีจัดกลุ่มบนพ้ืนฐานความหนาแน่นส าหรับ
ข้อมูลที่มีการไหลเข้าอย่างต่อเนื่อง (DEVELOPMENT OF DENSITY BASED CLUSTERING
ALGORITHMS FOR STREAMING DATA) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร. ชิดชนก
เหลือสินทรัพย์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร. ศุภกานต ์พิมลธเรศ{, 81 หน้า.

ข้อมูลที่มีการไหลเข้าอย่างต่อเนื่องได้มีบทบาทมากขึ้นในการท าเหมืองข้อมูล ทั้งนี้ข้อมูล
ชนิดนี้แตกต่างจาก ชุดข้อมูลทั่วไปตรงที่ ข้อมูลที่มีการไหลเข้าอย่างต่อเนื่อง จะค่อยๆสะสมตามเวลา
มิใช่มีข้อมูลทั้งชุดที่สมบูรณ์เลย ตั้งแต่ต้น อีกทั้งข้อมูลที่มีการไหลเข้าอย่างต่อเนื่องมักมีขนาดใหญ่
ด้วยลักษณะเฉพาะเหล่านี้ ท าให้ต้องออกแบบขั้นตอนวิธีจัดกลุ่มแบบใหม่ขึ้น เพ่ือใช้กับข้อมูลชนิดนี้
วิทยานิพนธ์ฉบับนี้ น าเสนอขั้นตอนวิธีจัดกลุ่มส าหรับข้อมูลที่มีการไหลเข้าอย่างต่อเนื่องบนพ้ืนฐาน
ความหนาแน่น โดยขั้นตอนวิธีจัดกลุ่มที่น าเสนอนี้ ได้น ามาทดสอบกับขั้นตอนวิธีจัดกลุ่มอ่ืนๆที่ได้รับ
การใช้งานอย่างแพร่หลาย เพ่ือแสดงให้เห็นถึงประสิทธิภาพของขั้นตอนวิธีจัดกลุ่มที่น าเสนอนี้

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2559

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

ลายมือชื่อ อ.ที่ปรึกษาร่วม

 v

ENGLISH ABSTRACT

5673104623 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: DENSITY-BASED CLUSTERING / HYPER-CYLINDRICAL MICRO-CLUSTER /
STREAMING DATA / UNSCHEDULED DATA REMOVAL / DIMENSION REDUCTION / LINEAR
DISCRIMINANT ANALYSIS

SIRISUP LAOHAKIAT: DEVELOPMENT OF DENSITY BASED CLUSTERING
ALGORITHMS FOR STREAMING DATA. ADVISOR: PROF. CHIDCHANOK
LURSINSAP, Ph.D., CO-ADVISOR: ASST. PROF. SUPHAKANT PHIMOLTARES, Ph.D. {,
81 pp.

Streaming data has played important role in many data mining applications.
Different from traditional data sets which the whole data records are available at the
beginning, streaming data accumulate over time, and usually due to its continuous
flow of data records, the volume of this kind of data set is usually large. Several
algorithms for clustering streaming data have been designed in accordance with these
restrictions. In this study, some further constraints on the characteristics of the data
set are considered; in order to design density based clustering algorithms which can
cluster these data sets efficiently. The designed algorithms have been tested against
some state-of-the-art algorithms to determine the effectiveness of the proposed
algorithms.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2016

Student's Signature

Advisor's Signature

Co-Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Professor Chidchanok
Lursinsap for the continuous support and guidance though out the course of my
study. I would also like to thank my co-advisor Associate Professor Suphakant
Phimoltares for the helpful suggestion on the research. Also, the dissertation
committee: Professor Thanaruk Theeramunkong, Associate Professor Ekkarat
Boonchieng, Associate Professor Chatchawit Aporntewan, and Assistant Professor
Saranya Maneeroj whose useful suggestions and penetrating analysis help shape
this study.

Finally, I would like to thank the Thailand Research Fund (TRF) for financial
support of this research under the Royal Jubilee (RGJ) Scholarship.

CONTENTS
 Page

THAI ABSTRACT .. iv

ENGLISH ABSTRACT .. v

ACKNOWLEDGEMENTS .. vi

CONTENTS .. vii

List of Figures ... 1

List of Tables ... 4

INTRODUCTION .. 5

1.1 Objectives ... 6

1.2 Problem statement .. 6

1.3 Contribution ... 6

1.4 Scopes of work .. 7

1.5 Dissertation outline .. 7

LITERATURE REVIEWS AND BACKGROUND ... 8

2.1 Literature reviews ... 8

2.2 Clustering algorithms ..11

2.3 Density based clustering algorithm ...12

2.4 Definition of stream data ..13

2.5 Algorithms for clustering stream data ..13

2.6 Linear discriminant analysis (LDA) ...16

2.7 Performance Indices ...17

Proposed algorithm 1: HCMstream ...20

3.1 Definitions ...22

 viii

 Page

3.2 Overview of HCMstream Operation and Structure ..25

3.3 Algorithm ..33

3.4 The complexity of HCMstream ..43

3.5 Experimental results...43

Proposed algorithm 2: LLDstream ...58

4.1 Unsupervised localized linear discriminant analysis (ULLDA)58

4.2 The complexity of ULLDA ...59

4.3 LLDstream ..60

4.4 The complexity of LLDstream ..63

4.5 Experimental results...64

CONCLUSION ...75

REFERENCES ...77

VITA ..81

List of Figures

Figure 1 Example of data points in two dimensional data sets.11

Figure 2 Example of clustering the data points in Figure 1. ..12

Figure 3 Operations of DBSCAN. ..13

Figure 4 Online phase of DenStream. The figure shows four time stamps t1, t2, t3,
and t4 where new data points occur in the feature space. DenStream would
generate micro-clusters to cover all data points. ..14

Figure 5 Offline phase of DenStream. DenStream define each overlapping micro-
clusters as each cluster. Cluster 1 consists of four overlapping micro-clusters
while Cluster 2 consists of two micro-clusters. ..15

Figure 6 Two shapes of hyper-cylinder in different dimensions. The top shape is
the hyper-cylinder in a 2-dimensional space. The bottom shape is the hyper-
cylinder in a 3-dimensional space ..23

Figure 7 An example of a cylindrical micro-cluster in a 3-dimensional space..24

Figure 8 An Example of how clusters are formed by connected micro-clusters26

Figure 9 Two merging types of micro-clusters. The left image shows the first
merging type and the right image shows the second merging type.27

Figure 10 Merging micro-clusters into a larger spherical micro-cluster causes
incorrect clusters. ...28

Figure 11 Illustration of covering two connected micro-clusters by a sphere and a
cylinder. ..29

Figure 12 Illustration of the operations of HCstream when an incoming datum is a
constructor. ..30

Figure 13 An example of removing destructors which results in the separation of
original cluster into two clusters. ..31

2

Figure 14 Illustration of the operations of HCstream when an incoming datum is a
destructor. ..32

Figure 15 Merging boundary of cylindrical micro-cluster 𝒞ℳ𝐽.36

Figure 16 Two cases of merging 𝒮ℳ𝐾 into 𝒞ℳ𝐽. ..37

Figure 17 Null micro-cluster 𝑛𝑢𝑙𝑙1𝐽 defined on 𝒞ℳ𝐽. ..39

Figure 18 The result of removing a null micro-cluster at one end of a cylindrical
micro-cluster and calculating parameters of 𝒞ℳ𝐽. The left image is the situation
before removing the null micro-cluster shown in shaded area. The right image is
the result of removal and new parameters of both micro-clusters.40

Figure 19 The result of removing a null micro-cluster inside a cylindrical micro-
cluster and calculating parameters of 𝒞ℳ𝐽. The upper image is the situation
before removing the null micro-cluster shown in shaded area. The lower image is
the result of removal and new parameters of both micro-clusters.42

Figure 20 Two-dimensional raw data. ..45

Figure 21 Synthetic data set with non-convex clusters and noise.............................45

Figure 22 Clustering results of three algorithms with parameters 𝑟 = 0.35 and
𝑛𝑝 = 5. ...47

Figure 23 Clustering results of three algorithms with parameters 𝑟 = 0.5 and
𝑛𝑝 = 10. ..47

Figure 24 Synthetic data set with more complicated clusters.49

Figure 25 Number of micro-clusters and number of clusters produced by
HCMstream and D-stream. ...50

Figure 26 Removing data records. ...50

Figure 27 Testing removal of data with Iris data set. ..56

Figure 28 Comparison of clustering performance indices for KDD cup 99 data set
with the time horizon of 10,000. ...67

3

Figure 29 Comparison of clustering performance indices for NSL-KDD data set with
the time horizon of 10,000. ..69

Figure 30 Comparison of clustering performance indices for Forest cover type
data set with the time horizon of 2,000. ...71

4

List of Tables

Table 1 The comparison of clustering results of 2-dimensional synthetic data
obtained from HCMstream, DenStream,and D-Stream. ..47

Table 2 Clustering results of HCMstream with varying 𝑛𝑝, when 𝑟 = 0.35 and
0.5. ...47

Table 3 Clustering results of HCMstream with varying 𝑟..48

Table 4 KDD cup 99 data set. ..54

Table 5 KDD cup 99 data set varying 𝑛𝑝. ..54

Table 6 Forest cover type data set. ...54

Table 7 Forest cover type data set varying 𝑛𝑝. ...54

Table 8 Hopkins 155 data set ..54

Table 9 Comparison of performance indices from the three algorithms on Iris data
set after removing destructors. ..57

Table 10 Comparative average performance indices with KDD cup 99 data set. ...66

Table 11 Comparative average performance indices with NSL-KDD data set.68

Table 12 Comparative average performance indices with Forest cover type data
set. ...70

Table 13 Comparative performance indices with Image segmentation data set....73

Table 14 Comparative performance indices with Multiple features data set.73

Table 15 Comparative performance indices with Pen digits data set.73

5

Chapter 1
INTRODUCTION

Nowadays, the applications of streaming data are found in various domains of
data acquisition systems, such as real-time monitoring, web site analysis, and
electronic business. Researches on mining streaming data have been widely
conducted in the recent years. Among researches regarding mining streaming data,
clustering algorithms for steaming data have been one of the topics attracting much
interest from researchers in the past ten years [1] [2].

Algorithms for clustering streaming data differ from the traditional clustering
algorithms in two respects. First, streaming data are generated continuously over a
relatively long period of time. The volume of data set is so vast that it usually
exceeds the size of the main memory. As a result, these algorithms must store data
in some mathematical and statistical forms rather than the whole raw data to make
it possible to practically cluster the data. Second, since streaming data are often
found in real-time monitoring systems, online clustering algorithms that can process
the past and present data promptly are more preferable.

Clustering algorithms for streaming data extend clustering approaches based
on well-known clustering algorithms for traditional data sets, including K-mean
clustering and density based clustering. The requirement of K-mean clustering
algorithms for the number of clusters limits the potential of this algorithm in many
applications which the number of clusters is unknown. On the other hand, density
based clustering algorithm does not require the knowledge of the number of
clusters, resulting in more flexibility in clustering. Due to this advantage, the designed
algorithms are based on density based clustering in this study.

Existing algorithms which adopt density based clustering, such as DenStream
[5], deal with the requirements of streaming data by using online-and-offline-phases
clustering scheme,. The online component maps each incoming data sample into a
spherical micro-cluster, whose process called micro-clustering. Data assigned to
micro-clusters are discarded from the system to save memory storage. Keeping the

6

statistics of data inside, including mean, variance, and the number of data, each
micro-cluster represents a local cluster of data. To determine the final clusters, the
offline component derives each cluster from a set of overlapping micro-clusters. As a
result, the shape of each final cluster can be arbitrary because it consists of a set of
several connected small spheres. Moreover, the clustering process can be performed
without the restriction over the number of clusters.

Extending idea of micro-clustering in density based clustering, this study
imposes various constraints in accordance with data sets found in real application.
Algorithms for clustering streaming data under the imposed constrains are designed
and tested.

1.1 Objectives

The main objectives of this study are as follows:

 To develop a new density based clustering algorithm for streaming data in
a high dimensional space with more efficient usage of main memory.

 To develop a new mathematical object for clustering the streaming data.

1.2 Problem statement

Given a stream data set in which data instances arrive continually, how data
instances are grouped into clusters using density based clustering method efficiently.
For the first algorithm, we focus on minimizing memory storage used during the
computation. The second algorithm is designed to account for streaming data sets
with high dimensionality.

1.3 Contribution

This dissertation proposes two density based clustering algorithms for
streaming data. The first algorithm, named as HCMstream, has the following
highlighted features:

First, we propose the use of a new mathematical object, hyper-cylindrical
micro-clusters, as local cluster for grouping data instance. This shape has more

7

compactness than the traditional spherical micro-clusters. Second, the algorithm
allows the user to removal each data record at any arbitrary time while the existing
algorithms require all data records to have the same pre-specified lifetime. Finally,
the clustering process is performed online phase without the need of offline phase
as in other existing algorithms.

For the second algorithm, named as LLDstream, the novel features includes
the following aspects. First, we integrate dimension reduction technique on LDA
subspace into a density based clustering algorithm for streaming data. This technique
allows more flexibility than the conventional methods which use feature selection
technique based on the variance of each feature. Moreover, we propose
unsupervised localized linear discriminant analysis. This technique allows us to use
LDA projection technique with unlabeled data sets which traditional LDA method is
not applicable to this kind of data sets.

1.4 Scopes of work

In this dissertation, the scope of work is constrained as follows:

 Data instances are assumed but not restricted to appear one instance at a time.
If data instances come in batch, the algorithms process one data instance at a
time.

 Each feature of streaming data set is either numerical or binary-value
categorical.

The probability distribution of data is unknown.
1.5 Dissertation outline

The rest of this dissertation is organized as follow. Chapter 2 describes the
related backgrounds. Chapter 3 provides the detail of HCMstream and the
experimental result. Chapter 4 presents LLDstream and its experimental
performances. Chapter 5 concludes the study.

8

Chapter 2
LITERATURE REVIEWS AND BACKGROUND

In this chapter, the background of clustering streaming data sets is presented.
Existing state-of-the-art algorithms are reviewed and discussed. Then, some
background concepts used in this study are presented.

2.1 Literature reviews

The existing algorithms for clustering streaming data can be divided into two
groups based on the assumption of the nature of clusters. In the first group, the
clusters are assumed to be static. Each datum has no expiration date. The topology
of data distribution is fixed as long as the clustering process is concerned. All past
clustered data and the new incoming data have the same contribution to cluster
formation. For the second group, the aim of algorithms is to reveal the pattern of
clusters for the most recently existing data. As a result, the more recent data have
more contribution to cluster formation, whereas the influence of the past data
would be deteriorated.

For algorithms concerning only static clusters, there were several interesting
works in this aspect, some of which are based on K-means clustering and its
derivatives. For streaming data, K-means algorithm have been adopted in several
algorithms as follow. Guha et al. [3] proposed STREAM which used the one-pass k-
median algorithm in a divide-and-conquer fashion to cluster stream data. They also
proposed a facility location algorithm for relaxing the number of clusters during the
intermediate steps to reduce the running time as well as to increase the stability of
the algorithm.

Another algorithms are based on density-based clustering such as
CompactStream [4]. Instead of using conventional spherical micro-clusters, it used
elliptical micro-clusters in primary clustering. Tu et al. [5] extended hierarchical
agglomerative clustering (HAC) to work with streaming data.

9

For algorithms tracking cluster evolvement, Clustream [6] was among the
earliest algorithms. The clustering process is divided into two phases, namely online
and offline component. In the online phase, data points are primarily clustered into
micro-clusters which store the statistics of the data points inside. In offline phase,
micro-clusters are used as representative points for k-means clustering to produce
the predefined number of clusters which is the parameter provided by users.

Two recently published papers proposed a more flexible assumption
regarding the shape of clusters by using ellipsoidal shape instead of spherical shape
as in Clustream. HECES [7] uses grid-cells to calculate the statistical summary of
streaming data. The grid-cells are replaced by a hyper-ellipsoidal shape from the
covariance of grid-cells. Finally, overlapping ellipsoids are merged to form the final
clusters. Lughofer et al. [8] also proposed evolving vector quantization (eVQ) which
similarly uses ellipsoidal clusters. It includes incremental split-and-merge techniques
to merge overlapping clusters together and split a cluster into disjoint clusters.
Although these two algorithms allow more flexible shape of clusters, they still do
not allow any arbitrary shape cluster.

DenStream [9] is a density-based clustering algorithm based on DBSCAN [10]
with no constraint on the shape of cluster. In contrast to Clustream, DenStream does
not require the number of clusters as its input parameter. Rather it uses the
difference in the density of data points to distinguish clusters. Similar to Clustream, it
adopts the online-offline two phases clustering scheme. In online phase, the primary
clustering with micro-cluster is performed as in the case of Clustream. The micro-
clusters are categorized into two groups as dense and sparse micro-clusters, called p-
micro-clusters and o-micro-clusters, respectively.

In offline phase, differing from Clustream which uses K-mean clustering,
DenStream uses the clustering process of DBSCAN. Intersected p-micro-clusters are
grouped together to form a new cluster while o-micro-clusters are excluded from the
clustering process. Denstream uses fading window model where micro-clusters not
updated for some period of time would be gradually faded away. Zhou et al. [11]
proposed SWClustering algorithm which adopted the clustering process of

10

DenStream. Unlike DenStream which uses fading scheme, it uses the exponential
histogram of cluster features for dealing with evolving clusters.

D-Stream [12] is a grid-based clustering algorithm. Instead of using micro-
clusters in online phase, data points are assigned into fixed grids in the feature space.
The clustering process is essentially similar to DenStream. It groups dense
consecutive grids into a cluster. Tu et al. [12] improved D-Stream by introducing the
concept of attraction of grids which provides the information of how data points
distribute inside a grid to refine the boundary of the clusters. Like D-Stream, ExCC
[13] is a grid-based algorithm. It can process mixed attribute data as well as data with
both numerical and categorical features. The clustering process is also divided into
two phases as its predecessor. Dense cells are determined by a threshold computed
adaptively from the number of total points in the cells and the size of each cell.

HPStream [14] is proposed to deal with high-dimensional data. The algorithm
uses the subset of particular dimensions varying over different clusters to calculate
the projected distance in clustering process.

While the aforementioned algorithms required two-phase clustering process,
FlockStream [15] and MR-Stream [16], adopted a single phase clustering. The
clustering results can be drawn promptly without the need to perform clustering in
offline phase. Considering micro-clusters and incoming data points as agents in
flocking model, FlockStream generates clusters based on the swarms formed by
agents. It does not requires the exhaustive search of the nearest neighbor of a point
when assigning micro-cluster to an incoming points. However, this benefit is traded
off by the computation required in virtual space to simulate the movement of the
agents. MR-Stream partitions feature space into grids similar to the process of D-
Stream. Then, it employs tree structure to allow clustering with multiple resolutions.

Other algorithms employed different clustering methods. For example,
SVStream [17] extended support vector machine clustering method to deal with
stream data. RepStream [18] adopted graph-based clustering method with stream
data.

The idea of removing data records can be traced back to IncrementalDBSCAN
[19] designed for mining a large collection of data from different sources. Unlike

11

algorithms for streaming data, this algorithm can access to the whole data set at any
time. The clustering process is based on DBSCAN with the ability to incrementally
process insertion and deletion of new data records. By virtue of storing the whole
data set, the cluster of a removed data record as well as its neighboring data points
can be determined. As a result, the incremental update of the possessive cluster can
be performed accordingly.

2.2 Clustering algorithms

The aim of clustering algorithms is to group data instances into clusters. Data
instances which are closed together are grouped into the same cluster while data
instances that are far from each other are assigned into different clusters. From
Figure 1, we have data points shown in blue. From inspection, we can see that these
data points consist of two clusters. We want to group these data points into clusters.

Figure 1 Example of data points in two dimensional data sets.

The resulting clusters are shown in Figure 2 where the members of one

cluster are depicted in black while those of another cluster are depicted in red. The
aim of clustering algorithm is to classify data points into group as shown in Figure 2.

12

Figure 2 Example of clustering the data points in Figure 1.

2.3 Density based clustering algorithm

Density based clustering is one of the highly used clustering methods. From
the pioneer algorithm-DBSCAN , several derivatives of this algorithm have been
proposed and studied for these recent years. The brief idea of DBSCAN is presented
as follow.

DBSCAN uses the concept of density connectivity to form clusters. The
algorithm requires two parameter Eps and MinPts. Eps neighborhood of point p is
defined as data points whose distance from p is less than Eps. Two points p and q

are connected when 1) q is in the Eps neighborhood of point p and p is in the Eps
neighborhood of point q and 2) Both Eps neighborhood of point p and q are more
than MinPts. Each cluster is formed from a set of connected points.

13

Figure 3 Operations of DBSCAN.

2.4 Definition of stream data

Let a data stream consists of a set of data instances , , ,iX 1x x ,
where ix indicates a data instance arriving at time stamp it . Each data instance ix is a
d -dimensional records, namely 1, , d

i i ix xx .

Unlike traditional data set, stream data accumulates over time. The data set
can grow indefinitely. In many cases, the whole data set might not be available at
the beginning. Data instances can come individually or come in batch. We do not
pose any constraint on the arrival of time it for each instance ix .

The set of stream data can grow indefinitely. As a result, traditional clustering
algorithms which require the whole data set being available at the beginning cannot
be applied to this kind of data set. Clustering algorithm for stream data need some
features to deal with this kind of data set.

2.5 Algorithms for clustering stream data

As stream data can appear continually and indefinitely, the main storage
might not be sufficient to store the whole data set. Moreover, since most of stream
data are generated in monitoring tasks, real time processing is preferable for these
data sets. In this section, some examples of well-known algorithms for stream data
are presented and discussed.

14

2.5.1 DenStream

DenStream is an algorithms for clustering stream data extending the idea of
density based clustering from DBSCAN. DenStream [9] is the density-based two-phase
clustering scheme is adopted in this study. The so called two phase consists of
online and offline clustering. Online clustering is performed online whenever a data
instance arrive. Offline phase occurs when the user request the final clustering result.
The algorithm would report the final cluster to the user. The outline of online
clustering process of DenStream is shown in Figure 4.

Figure 4 Online phase of DenStream. The figure shows four time stamps t1, t2, t3, and
t4 where new data points occur in the feature space. DenStream would generate
micro-clusters to cover all data points.

At time t1, the incoming datum is shown in red. DenStream generates a micro-
cluster to cover this datum as shown in t2. If the subsequent new data appear inside
the micro-cluster new micro-cluster would not be generated. At times t3, a new
datum occur outside the existing micro-cluster, we generate a new micro-cluster to
cover this new datum as shown in t4.

15

Figure 5 Offline phase of DenStream. DenStream define each overlapping micro-
clusters as each cluster. Cluster 1 consists of four overlapping micro-clusters while
Cluster 2 consists of two micro-clusters.

Figure 5 shows the operation of DenStream in offline phase. When the user
requests the final clusters, DenStream forms clusters from sets of connected micro-
clusters. From Figure, four micro-clusters are connected forming Cluster1 and two
micro-clusters connected, forming Cluster2.

In DenSteam, the user is required to provide the upper bound of the radius
designated as the parameter . Each micro-cluster mc is defined by 1, 2,CF CF w

where w is the weight of the data points assigned to mc , 1CF and 2CF are the
linear sum and the square sum of the data points assigned to mc respectively. We
find that for high dimensional data sets, this definition of micro-cluster has to store
both 1CF and 2CF which requires two times more storage than that of LLDstream
which stores only the linear sum of the data points inside. The radius of micro-

cluster mc is calculated by
2

1

2 1D
j j

j

CF CF
r

w w

 where 1jCF and 2 jCF are

the linear sum and the square sum of mc on attribute j and D is the number of
attributes of the data. In the online phase, an incoming datum x is assigned to its

16

nearest micro-cluster mc when after adding x into mc , the radius of mc is less
than . In the offline phase, the algorithm adopts the variant of DBSCAN to cluster
micro-clusters by using the centers of each micro-clusters as data points in DBSCAN.
Micro-clusters with weight higher than the density threshold are used to generate
the final clusters. Two micro-clusters

pmc and
qmc are connected when

(,)p q p qD r r c c where
pc and

qc are the centers of
pmc and

qmc respectively,
(,)p qD c c is the distance between

pc and
qc . The algorithm requires the radius

threshold and the density threshold as an input.

2.6 Linear discriminant analysis (LDA)

The objective of LDA is to find a set of projection vectors whose directions
maximize class separability. Let the between-class scatter matrix bS and the with-in
class scatter matrix wS be defined as [20]

()

() () ()

1

() () () ()

1 1

1
()()

1
()()

j

C
j j j T

b o o

j

C N
j j j j T

w i i

j i

N m m m m
M

x m x m
M

S

S

where ()j

ix is the data instance i in class j , ()jm is the mean of data in class j , om
is the global mean of the whole data set, C is the number of classes, ()jN is the

number of data in class j , and ()

1

C
j

j

M N

 is the total number of data. However, if

we consider all classes equally important, i.e., we want to determine the projected
vectors that maximally separate all classes apart without concern over the number
of data in each class, the coefficients ()jN in determining bS can be dropped. Also,

in determining the direction of the projected vectors, the term 1

M
 can be dropped,

leading to the equation becoming

()

() ()

1

() () () ()

1 1

()()

()()

j

C
j j T

b o o

j

C N
j j j j T

w i i

j i

m m m m

x m x m

S

S

17

In classical LDA, the projection matrix V is determined by maximizing Fisher

criterion 1

() T T

w bJ trace

V V S V V S V subject to the orthogonality constraint

of V . This optimization problem can be solved easily by finding the eigenvectors of
1

w b

S S

2.7 Performance Indices

In comparing the performances among the compared algorithms,
performance indices with respect to class labels are adopted. The clustering results
were compared with the class labels provided in the data sets.

In this study, normalized mutual information matric (NMI) [21], Rand index (RI)
[21, 22], Adjusted Rand index (AR) [23] and Hubert's index (HI) [23] were chosen as
the performance indices. These indices consider both the homogeneity of clusters as
well as the number of clusters obtained from the clustering algorithms. The values
of these indices generally range from 0 to 1, excepting AR and HI which can be
negative value. The larger value indicates that the obtained clusters are more similar
to the class label.
Let Ω be the set of clusters obtained from the clustering algorithm and ℂ be the set
of clusters obtained from the class label. The mutual information of these two sets
𝐼(Ω, ℂ) can be calculated by

𝐼(Ω, ℂ) = ∑ ∑ 𝑝(𝑤𝑘 ∩ 𝑐𝑗)log (
𝑝(𝑤𝑘 ∩ 𝑐𝑗)

𝑝(𝑤𝑘)𝑝(𝑐𝑗)
)

𝑗𝑘

where 𝑝(𝑤𝑘), 𝑝(𝑐𝑗), and 𝑝(𝑤𝑘 ∩ 𝑐𝑗) are probabilities of a datum inside cluster 𝑤𝑘,
class 𝑐𝑗 , and the intersection between cluster 𝑤𝑘 and class 𝑐𝑗 , respectively;.NMI is
obtained from

𝑁𝑀𝐼 =
2𝐼(Ω, ℂ)

𝐻(Ω)𝐻(ℂ)

where 𝐻(Ω) = − ∑ 𝑝(𝑤𝑘)k log(𝑝(𝑤𝑘)) and 𝐻(ℂ) = − ∑ 𝑝(𝑐𝑗)k log (𝑝(𝑐𝑗)). Rand
index views clustering as a series of decisions in choosing (𝑁

2
) pairs of data in the set.

18

Let a true positive (TP) be a decision of assigning two data from the same class into
the same cluster, a true negative (TN) be a decision of assigning two data from
different classes into different clusters, a false positive (FP) be a decision of assigning
two data from different classes into the same cluster and a false negative (FN) be a
decision of assigning two data from the same class into different clusters. Rand index
can be calculated by

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Adjusted Rand index is the derivative of Rand index derived from

𝑅𝐼−𝐸[𝑅𝐼]

max(𝑅𝐼)−𝐸[𝑅𝐼]
, where 𝐸[𝑅𝐼] is the expected value of 𝑅𝐼, and max(𝑅𝐼) is its maximum

value. 𝐴𝑅 is calculated by

𝐴𝑅 =
∑ ∑ (|𝑤𝑘∩𝑐𝑗|

2
) − 𝑆3𝑗𝑘

𝑆1 + 𝑆2

2 − 𝑆3

where 𝑆1 = (|𝑤𝑘|
2

), 𝑆2 = (|𝑐𝑗|

2
), and 𝑆3 =

2𝑆1𝑆2

𝑁(𝑁−1)
.

Hubert's index is defined by the difference of the probability of agreement

and the probability of disagreement. It is calculated as

𝐻𝐼 =
(𝑇𝑃 + 𝑇𝑁) − (𝐹𝑃 + 𝐹𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

NMI uses the concept of mutual information in information theory to reflect the
similarity between the resulting clusters and the class labels. The similarity is
captured in terms of joint probability density of data items in the two comparing sets
of clusters. The dependence between the two sets reflects their similarity. More
value of NMI indicates more dependence of Ω and ℂ, and thus more similarity. On
the other hand, the other indices, namely RI, AR, and HI capture the similarity based
on counting the agreement between all pairs of data items. Rand index
straightforwardly counts the number of agreeing pairs while Hubert's index includes

19

the penalty of disagreeing pairs in the calculation by subtracting disagreeing pairs
(𝐹𝑃 + 𝐹𝑁) from the agreeing pairs (𝑇𝑃 + 𝑇𝑁). As a result, HI is always less than RI.
Since RI usually has value between 0.5 to 1, AR is proposed with the inclusion of
correction for chance in the calculation. By subtracting RI with its expectation by
assuming the hypergeometric distribution, where items are drawn randomly from
clusters without replacement, AR equals 0 when RI equals its expected value,
indicating that the clustering result is not better than that from the random process.

20

Chapter 3
Proposed algorithm 1: HCMstream

In this dissertation, two algorithms for clustering stream data are proposed.
The first algorithm, named HCMstream [24], is designed to improve two respects of
the existing algorithms.

First, existing clustering algorithms for stream data such as DenStream,
DStream, and CluStream require two phase operations, that are online and offline
phases. When operating in offline phase, the algorithm cannot process the incoming
data in real time, thus some memory buffer is required to solve this problem. On the
other hand, an algorithm that does not require offline phase can operate without
requirement for buffer memory, leading to more efficient use of the resources.

Second, the density-based algorithms might generate too many micro-clusters
leading to inefficiency in computation and memory usage. Some algorithms, for
example, CluStream, and E-stream [25], reduce the number of clusters by introducing
the merging operation. Yet all these algorithms use an enlarged spherical-shape
cluster to cover the merged micro-clusters. With the radial enlargement of a sphere,
the resulting enlarged cluster will cover too much unwanted space, possibly leading
to false clustering results, which is the drawback of using a larger spherical micro-
cluster to cover the merged micro-cluster.

Finally, the existing stream data clustering algorithms aim at capturing the
dynamic of clusters by treating the impact of new data points more significantly than
those of the old ones. Several approaches have been proposed, including Landmark
Window Model, Sliding Window Model, and Fading Window Model [2]. Essentially,
these approaches allow the weight of each data point to last over a predefined
period of time before being excluded from the clustering. Since the old data records
are removed from the system in a predefined time, this removal scheme can be
considered as scheduled removals of data.

However, the objective of clustering streaming data is not necessarily limited
to observing evolving clusters. For example, when data are the online processing of

21

bank accounts via a web site, we would not treat the old accounts less importantly
than the new ones. Moreover, some customers might close their accounts at any
time they prefer, leading to unscheduled removal of data records from the system
at any arbitrary time. In this situation, we want an algorithm that considers clusters as
the result of all data points in the time horizon with the capacity of allowing
removals of data records at any arbitrary time.

To address the issue regarding the merging of micro-clusters and the
unscheduled removals of data records, we introduced a new method based on our
proposed concept of hyper-cylindrical micro-clustering called HCMstream. The
enlargement of a hyper-cylinder is restricted in one direction, leading to the resulting
micro-cluster able to maintain the compactness of the original volume before the
merging. The final clusters are obtained from sets of connected micro-clusters.
Therefore, the algorithm can recognize non-convex clusters.

HCMstream allows the removals of data records at arbitrary time, in contrast
to existing algorithms which fix the lifetime of each data record at constant, and
nullify the impact of the expired record. The lifetime of each data record in
HCMstream is not predefined. Without the whole data set stored in memory, we
cannot determine which data record belong to which micro-cluster. In removing a
data record, we use the reverse clustering process by mapping a removed record
into a different kind of data point called a destructor. When destructors appear in
any area considerably, indicating that there are many records corresponding to data
points in the vicinity being removed, the cluster in that area would be dissociated.
The space at which the cluster of destructors formerly occupied would become
vacant, indicating that there are not enough data points forming cluster in that area.
By treating the removed records and the added records as data points with different
labels, we can use the clustering process to process both operations without keeping
the whole data set.

In addition, unlike existing algorithms which require online and offline phases
in clustering, HCMstream performs clustering in online fashion by incrementally
updating adjacency matrix whenever there is a change in the configuration of the
micro-clusters. As a result, no offline phase is required in this algorithm.

22

In summary, HCMstream includes the following features:

 HCMstream uses hyper-cylindrical micro-clusters generated by merging
traditional spherical micro-clusters, resulting in less micro-clusters while their
compactness is maintained.

 The algorithm allows the removals of data at any arbitrary time which is a new
feature not addressed in other existing algorithms for streaming data.

 The clustering process is performed online. No offline phase is required.

3.1 Definitions

In this section, definitions of a hyper-sphere and a hyper-cylinder are
presented. Then, we will present the concepts of a spherical micro-cluster and a
cylindrical micro-cluster for capturing data points into local clusters.

Definition 1: A hyper-sphere 𝑆(c, 𝑟) in an 𝑛-dimensional space with a fixed center c
and radius r is a set of data points x𝑖 = (x𝑖

1, … x𝑖
𝑑) defined as follows

𝑆(c, 𝑟) = {x𝑖|‖x𝑖 − c‖ ≤ 𝑟}

Definition 2: A hyper-cylinder 𝐶𝑦𝑙(c, 𝑟,l, 𝐿) in 𝑛-dimensional space with center
c and radius r , and length 𝐿 extending in the direction of a unit directional vector
l, is a set of data points x𝑖 = (x𝑖

1, … x𝑖
𝑑) defined as follows

𝐶𝑦𝑙(c, 𝑟,l, 𝐿) = {x𝑖|‖(x𝑖 − c).l‖ ≤ 𝐿, and ‖x𝑖 − c-((x𝑖 − c).l)‖ ≤ 𝑟}.

Note that length 𝐿 is defined as the distance from center c to either end of the
hyper-cylinder. From the definition, a two-dimensional cylinder is a rectangle with
the width equal to 2𝑟 and the length of 2𝐿 while a three-dimensional cylinder is a
cylinder with circular cross section of radius 𝑟 with the length of 2𝐿 as shown in
Figure 6. In 𝑛 dimensional space, a hyper-cylinder is defined with cross section of
𝑛 − 1 dimensional hyper-sphere and one dimensional axial length. Regardless of 𝑛

23

dimensions, the terms hyper-sphere and hyper-cylinder will be shortened and
renamed as sphere and cylinder in this study for ease.

Figure 6 Two shapes of hyper-cylinder in different dimensions. The top shape is the
hyper-cylinder in a 2-dimensional space. The bottom shape is the hyper-cylinder in
a 3-dimensional space

Definition 3: A spherical micro-cluster, denoted as 𝒮ℳ, is a cluster of data points
represented by a sphere 𝑆(c, 𝑟) centered at c with a radius 𝑟.
A spherical micro-cluster is defined by two parameters as 𝒮ℳ = {c, 𝑁}, where c is
the center of 𝒮ℳ and 𝑁 is the number of data points inside. Note that 𝑟 is not a
parameter of a spherical micro-cluster because in this algorithm the radius of all
micro-cluster is fixed at a constant provided from users.

Definition 4: A cylindrical micro-cluster, denoted as 𝒞ℳ, is a cluster of data points
represented by a cylinder 𝐶𝑦𝑙(c, 𝑟,l, 𝐿) centered at c with a constant radius 𝑟, an
axial unit vector l, and length 𝐿.

24

Figure 7 An example of a cylindrical micro-cluster in a 3-dimensional space..

A cylindrical micro-cluster is defined using four parameters as 𝒞ℳ =

{c, 𝑁,l, 𝐿}, where c is the center of 𝒞ℳ and 𝑁 is the number of data points inside,
l is the axial unit vector, and 𝐿 is the length from one end to its center. Figure 7
shows an example of a 3-dimensional cylindrical micro-cluster. There are six data
points depicted as red crosses. The axial unit vector is l = [0,1,0]𝑇 and the length of
cylinder is 4. The cluster is represented by 𝒞ℳ = {[0,0,0]𝑇 , 6, [0,1,0]𝑇 , 4}. From the
definitions of spherical and cylindrical micro-cluster, we define the following sets.
Let 𝓒 = {𝒞ℳ1,…,𝒞ℳ|𝓒|} be a set of cylindrical micro-clusters where 𝒞ℳ𝑖 denotes
the 𝑖 th cylindrical micro-cluster and 𝒞ℳ𝑖 = {c𝑖 ,𝑁𝑖,l𝑖,𝐿𝒊}. Let 𝓢 = {𝒮ℳ1,…,𝒮ℳ|𝓢|}
be a set of spherical micro-clusters where 𝒮ℳ𝑖 denotes the 𝑖 th spherical micro-
cluster and 𝒮ℳ𝑖 = {c𝑖 ,𝑁𝑖}. Let 𝓜 = 𝓒 ∩ 𝓢 = {ℳ1, … , ℳ|𝓜|} be a set of micro-
clusters where ℳ𝑖 can be either spherical or cylindrical micro-cluster.

To allow the unscheduled removals of existing data in streaming
environment, we define two types of data points as a constructor and a destructor as
follow.

Definition 5: A constructor is a data point contributing to the formation of clusters.

25

Definition 6: A destructor is a data point contributing to the dissociation of clusters.
In this algorithm, an incoming data point is labeled as either a constructor or

a destructor. A constructor is generated in response to the arrival of a new data
record by mapping the record into a point in the feature space. It functions as an
ordinary data point in other clustering algorithms. When constructors appear densely
in a specific area, a cluster is formed in that area. On the other hand, a destructor is
generated in response to the request for removing an existed data record by re-
mapping that record into a data point. As a result, a destructor is a data point that
re-appear in the same location as its counterpart constructor. When destructors
appear densely in a specific area, indicating that significant amount of data records
corresponding to data points in that area no longer exist, clusters in that area are
consequently nullified.

3.2 Overview of HCMstream Operation and Structure

A new data point arrives in response to either adding a new data record or
removing an existing data record. Adding a data record generates a constructor, while
deleting one produces a destructor. Clusters are formed in the area where
constructors appear densely and dissolved in the area where destructors appear
densely. To process incoming data only once without keeping the raw data set,
HCMstream uses micro-clusters to keep the statistics of local data.

There are two types of micro-clusters in HCMstream, i.e., spherical and
cylindrical micro-clusters. A spherical micro-cluster is used as a fundamental unit to
represent a local cluster. A new micro-cluster is first generated as a spherical micro-
cluster. Then, several overlapping spherical micro-clusters will form a cylindrical
micro-cluster. A set of overlapping micro-clusters forms a single cluster. Figure 8
shows clusters formed by overlapping micro-clusters. Micro-clusters 1, 2, and 4 are
spherical while micro-cluster 3 is cylindrical. Micro-clusters 1 and 2 overlap with each
other, forming one cluster denoted as Cluster 1 whereas micro-clusters 3 and 4 form
another cluster denoted as Cluster 2.

26

Figure 8 An Example of how clusters are formed by connected micro-clusters

3.2.1 Micro-clustering constructors

When an incoming datum is a constructor, the algorithm would assign it to a
micro-cluster, a process called micro-clustering. HCMstream uses the distance
between the new data point and the micro-clusters as the criterion for the
assignment. If the point falls into any micro-cluster, it is assigned to that micro-
cluster. Otherwise, a new spherical micro-cluster is created with the center at that
data point.

3.2.2 Merging micro-clusters

After micro-clustering, if the incoming datum is assigned to a spherical micro-
cluster, the algorithm would determine whether this micro-cluster can be merged
with other micro-clusters. HCMstream allows two types of merging, namely merging a
spherical micro-cluster into a cylindrical micro-cluster and merging several spherical
micro-clusters into a new cylindrical micro-cluster as shown in Figure 9a and Figure
9b, respectively. The criteria and details of the merging will be explained in detail
later.

27

Figure 9 Two merging types of micro-clusters. The left image shows the first merging
type and the right image shows the second merging type.

As briefly introduced before, the use of a larger spherical micro-cluster as the
result of the merging can lead to incorrect clustering results, due to the over
expansion of the sphere. This problem is illustrated in Figure 10a and Figure 10b. In
Figure 10a, micro-clusters 1 and 2 overlap with each other forming cluster 1 denoted
by elliptic dash line, while micro-clusters 3 and 4 forming cluster 2. If the overlapping
micro-clusters are merged into a larger spherical micro-cluster, micro-clusters 1 and 2
are merged into micro-cluster A, while micro-clusters 3 and 4 are replaced by micro-
cluster B as shown in Figure 10b. The newly created micro-clusters A and B are so
large that they overlap with each other, incorrectly forming only one cluster as
cluster 1 as shown in Figure 10b. As a result, replacing merged micro-clusters by a
larger spherical micro-cluster leads to the incorrect clustering result of one cluster as
shown in Figure 10b while the correct clustering result should be two clusters as in
Figure 10a before the merging.

28

Figure 10 Merging micro-clusters into a larger spherical micro-cluster causes incorrect
clusters.

HCMstream uses a cylindrical micro-cluster as the result of the merging. An 𝑛
dimensional cylindrical micro-cluster has a fixed cross section of an 𝑛 − 1
dimensional sphere while its length can be extended due to the merging of a
spherical micro-cluster. The advantage of using a cylindrical micro-cluster over a
spherical micro-cluster can be intuitively illustrated in Figure 11. Micro-cluster A and
B are connected with each other. Two lower images show the scenarios when using a
sphere and a cylinder to cover the two micro-clusters. Irrelevant space denoted by
shaded area caused by using a sphere is much larger than that using a cylinder. In
contrast to the expansion in all dimension of a sphere due to the enlarging radius,
the expansion of a cylindrical micro-cluster is restricted to a single dimension of the

29

axial direction. As a result, the cylindrical micro-cluster can be enlarged in the most
compact fashion.

Figure 11 Illustration of covering two connected micro-clusters by a sphere and a
cylinder.

Figure 12 illustrates the operations when a constructor, depicted as a red
cross, arrives. Figure 12a shows the micro-clustering step when the constructor is
assigned to 𝒮ℳ1. Note that although we depict several constructors in 𝒮ℳ1 and
𝒮ℳ2 to show that these two micro-clusters have dense constructors, actually the
previous constructors are not retained in the memoryFigure 12b shows the merging
step when 𝒮ℳ1 is merged with 𝒮ℳ2 forming a new cylindrical micro-cluster
denoted as 𝒞ℳ2.

30

Figure 12 Illustration of the operations of HCstream when an incoming datum is a
constructor.

3.2.3 Micro-clustering destructors and removing micro-clusters

When a destructor arrives, HCMstream assigns it to the nearest micro-cluster.
When destructors occur densely in any area, the cluster in that area is dissociated by
removing the part of the micro-cluster with dense destructors. Each time when
dissolving a cluster, HCMstream removes a part of the cluster equivalent to one
spherical micro-cluster.

The removal of a spherical micro-cluster is illustrated in Figure 13. There are
three spherical micro-clusters denoted by 𝒮ℳ1, 𝒮ℳ2, and 𝒮ℳ3 forming one cluster
denoted as Cluster 1. When adding a new destructor to 𝒮ℳ2 causes the number of
destructors in 𝒮ℳ2 to go beyond the threshold, 𝒮ℳ2 is removed from the feature
space, leaving only 𝒮ℳ1 and 𝒮ℳ3 forming two separated clusters denoted as
Cluster 1 and Cluster 2.

31

Figure 13 An example of removing destructors which results in the separation of
original cluster into two clusters.

On the other hand, since a cylindrical micro-cluster consists of several micro-
cluster being merged together, we cannot simply remove the whole cylindrical
micro-cluster. Only the part of it with dense destructors should be removed while
other parts without dense destructors must be preserved. To locate destructors
inside a cylindrical micro-cluster, we introduce another type of a micro-cluster called
a null micro-cluster. When a null micro-cluster has sufficient destructors, it is
removed together with the part of the cylindrical micro-cluster superimposed by that
null micro-cluster, leading to breaking the cylindrical micro-cluster into parts.

Figure 14 depicts the operations when a destructor, depicted as a red circle,
arrives. Figure 14a shows the micro-clustering step when the destructor is assigned to
𝒞ℳ2, where a null micro-cluster 𝑛𝑢𝑙𝑙2

1 is used to locate the destructors. Figure 14b
shows the breaking of 𝒞ℳ2 by removing 𝑛𝑢𝑙𝑙2

1 together with the part of 𝒞ℳ2
superimposed by 𝑛𝑢𝑙𝑙2

1, leading to 𝒞ℳ2 being shortened.

32

Figure 14 Illustration of the operations of HCstream when an incoming datum is a
destructor.

The algorithm requires two input parameters from user, namely 𝑛𝑝, and 𝑟.
Parameter 𝑛𝑝 is the threshold for determining outliers. When the number of
constructors in any spherical micro-cluster goes beyond this value, it is considered
that data points in that micro-cluster are real data, not outliers or noise. Thus, the
micro-cluster is taken into consideration in clustering. On the other hand, micro-
clusters whose data points inside are less than 𝑛𝑝 are not used in clustering. 𝑟 is
the fixed radius of spherical and cylindrical micro-clusters. The radius of all micro-
clusters is set at constant for the whole process.

The clustering result is reported in the form of adjacency matrix 𝐴 =

[𝐴𝑖𝑗
|𝓜|×|𝓜|] such that 𝐴𝑖𝑗 = 1, when ℳ𝑖and ℳ𝑗are connected, and 𝐴𝑖𝑗 = 0,

otherwise. Where ℳ𝑖and ℳ𝑗 are micro-clusters 𝑖 and 𝑗 which can be either spherical
or cylindrical micro-clusters. Connected components of the graph induced by A
define the resulting clusters.

 HCMstream updates A in an incremental fashion. When there are changes in
the configuration of micro-clusters resulting from either creating, merging, or
removing micro-clusters, the algorithm would recheck the connection of the micro-
clusters being modified and other micro-clusters connected to the modified micro-

33

clusters for updating the adjacency matrix. As a result, the algorithm does not require
the offline phase.

3.3 Algorithm

Clustering incoming constructors
Algorithm 1: Clustering incoming datum

1 Calculate the distances between x to 𝒞ℳj, ∀𝒞ℳj ∈ 𝓒 using equation
(1).

2 If x satisfies the conditions in equation (2) with respect to the nearest
micro-cluster 𝒞ℳj

3 Update the parameters of 𝒞ℳj using equation (3)
4 Return
5 EndIf
6 Calculate d(x, 𝒮ℳk), ∀𝒮ℳj ∈ 𝓢 using equation (4)
7 If x satisfies the condition in equation (5) with respect to the nearest

micro-cluster 𝒮ℳK
8 Update the parameter of 𝒮ℳK using equation (6)
9 If NK > np
10 Go to line 16
11 EndIf
12 Return
13 EndIf
14 Let 𝒮ℳnew(cnew, Nnew) = (x, 1), 𝓢 = 𝓢 ∪ 𝒮ℳnew
15 Return
16 Calculate distances from 𝒮ℳK to 𝒞ℳj, ∀𝒞ℳj ∈ 𝓒, using equation (7)
17 If 𝒮ℳK can be merged into cylindrical micro-cluster 𝒞ℳJ, according to

condition (8)
18 Update 𝒞ℳJ, using equation (9) and (10)
19 Update adjacency matrix A by transferring all connected

components of 𝒮ℳK to 𝒞ℳJ

34

20 Remove 𝒮ℳK from the feature space
21 Return
22 EndIf
23 Calculate d(𝒮ℳk, 𝒮ℳi), ∀𝒮ℳi ∈ 𝓢 and Ni > np
24 If New cylindrical micro-cluster 𝒞ℳnew can be created from 𝒮ℳK
25 Create 𝒞ℳnew using equation (11)
26 Update A by transferring all connected components of micro-

clusters in 𝓢merge to 𝒞ℳnew
27 𝓢 = 𝓢 − 𝓢merge and 𝓒 = 𝓒 ∪ 𝒞ℳnew
28 EndIf
29 Return

3.3.1 Micro-clustering constructors

HCMstream tries to merge an incoming constructor with existing cylindrical

micro-clusters first (lines 1-5). Let x be an incoming constructor and 𝒞ℳ𝑗 be a
cylindrical micro-cluster defined by 𝒞ℳ𝑗 = {c𝑗, 𝑁𝑗 , l𝑗, 𝐿𝑗}. 𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) and
𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) are the parallel and perpendicular distances from c𝑗 to x with
respect to the directional vector l𝑗 and 𝛿xj = x-c𝑗.
The distances are determined from

𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) = |𝛿xj. l𝑗|

𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) = ‖𝛿xj−(𝛿xj. l𝑗)l𝑗‖ (1)
Point x is inside 𝒞ℳ𝑗 when

𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) ≤ 𝐿𝑗 , and

𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) ≤ 𝑟 (2)
We assign x to 𝒞ℳ𝑗 such that among 𝑗 that satisfy condition (2)
𝐽 = argmin

𝑗
 𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) If x can be assigned to 𝒞ℳ𝐽 , the parameters of 𝒞ℳ𝐽 are

updated as

𝑁𝐽
𝑛𝑒𝑤 = 𝑁𝐽 + 1 (3)

35

If x cannot be assigned to any cylindrical micro-clusters, it is checked with

spherical micro-clusters (lines 6-8).The distance between point x and micro-cluster
𝒮ℳ𝑘 defined by 𝒮ℳ𝑘 = {c𝑘, 𝑁𝑘} is calculated by

𝑑(x,𝒮ℳ𝑘) = ‖x − c𝑘‖ (4)
Let 𝐾 = argmin

𝑘
 𝑑(x, 𝒮ℳ𝑘), point x is inside 𝒮ℳ𝑘 when

𝑑(x,𝒮ℳ𝐾) ≤ 𝑟, (5)

where 𝑟 is the radius of 𝒮ℳ𝐾 . If x is in 𝒮ℳ𝐾 , its parameters are updated as

c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾 + x

𝑁𝐾 + 1

𝑁𝐾
𝑛𝑒𝑤 = 𝑁𝐾 + 1. (6)

If x is not inside any existing micro-clusters, a new micro-cluster 𝒮ℳ𝑛𝑒𝑤 is
created to cover x (lines 14).

3.3.2 Merging micro-clusters

When 𝒮ℳ𝐾 is updated through adding a new data point, if the population in
the micro-cluster is dense (line 10), we would try to merge it with existing cylindrical
micro-cluster first (lines 16-20). Let 𝛥jK = c𝑗 − c𝐾, the distance between 𝒮ℳ𝐾 and
𝒞ℳ𝑗 is calculated by

𝑑𝑝𝑎𝑟𝑎(𝒮ℳ𝐾, 𝒞ℳ𝑗) = |𝛥jK. l𝑗|

𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾, 𝒞ℳ𝑗) = ‖𝛥jK − (𝛥jK. l𝑗)l𝑗‖ (7)

𝒮ℳ𝐾 and 𝒞ℳ𝑗 overlap when

𝑑𝑝𝑎𝑟𝑎(𝒮ℳ𝐾 , 𝒞ℳ𝑗) ≤ 𝐿𝑗 + 𝑟, and

𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾, 𝒞ℳ𝑗) ≤ 2𝑟 (8)

36

We merge 𝒮ℳ𝐾 with 𝒞ℳ𝐽 such that among 𝑗 that satisfy condition (8), 𝐽 =

argmin
𝑗

 𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾 , 𝒞ℳ𝑗). Condition (8) indicates that 𝒮ℳ𝐾 can be merged with 𝒞ℳ𝐽
when its center lies inside the shaded area shown in Figure 15.

Figure 15 Merging boundary of cylindrical micro-cluster 𝒞ℳ𝐽 .

After 𝒮ℳ𝐾 is merged into 𝒞ℳ𝐽 , 𝒮ℳ𝐾 is removed from the feature space.

The number of data in 𝒞ℳ𝐽 , 𝑁𝐽
𝑛𝑒𝑤, is updated as

𝑁𝐽

𝑛𝑒𝑤 = 𝑁𝐽 + 𝑁𝐾 (9)

If 𝑑𝑝𝑎𝑟𝑎 + 𝑟 ≤ 𝐿𝐽, 𝒞ℳ𝐽 can cover 𝒮ℳ𝐾 as shown in.Figure 16 a. The
configuration of 𝒞ℳ𝐽 remains the same, as a result, other parameters are not
updated. On the contrary, when 𝑑𝑝𝑎𝑟𝑎 + 𝑟 > 𝐿𝐽 , 𝒞ℳ𝐽 cannot cover 𝒮ℳ𝐾 as shown
in Figure 16b. The length of 𝒞ℳ𝐽 must be extended so that 𝒞ℳ𝐽can cover 𝒮ℳ𝐾 .
As a result, the new center c𝐽

𝑛𝑒𝑤 and the length 𝐿𝐽
𝑛𝑒𝑤 of 𝒞ℳ𝐽 become

𝐿𝐽
𝑛𝑒𝑤 =

𝑑𝑝𝑎𝑟𝑎 + 𝐿𝐽 + 𝑟

2

c𝐽
𝑛𝑒𝑤 = c𝐽 +

𝑑𝑝𝑎𝑟𝑎+𝐿𝐽+𝑟

2
.sign(𝛥KJ. l𝐽)l𝐽 (10)

where 𝛥𝐾𝐽 = c𝐾 − c𝐽 and sign(𝛥KJ. l𝐽) is the sign of the dot product between 𝛥KJ
and l𝐽.

37

Figure 16 Two cases of merging 𝒮ℳ𝐾 into 𝒞ℳ𝐽 .

If 𝒮ℳ𝐾 cannot be merged with other cylindrical micro-cluster, it is

subsequently determined if it overlaps other spherical micro-clusters. The
overlapping spherical micro-clusters are merged together and replaced by a new
cylindrical micro-cluster (lines 23-28). Two spherical micro-clusters 𝒮ℳ𝐾 and 𝒮ℳ𝑖
overlaps if c𝐾 − c𝑖 ≤ 2𝑟. Let 𝓢𝑚𝑒𝑟𝑔𝑒 = {𝒮ℳ1, … , 𝒮ℳ𝑚} be a set of overlapping
micro-clusters for creating a new cylindrical micro-cluster 𝒞ℳ𝑛𝑒𝑤 whose parameters
{c𝑛𝑒𝑤,𝑁𝑛𝑒𝑤,l𝑛𝑒𝑤,𝐿𝑛𝑒𝑤}are determined as follows. Let c̅ is the mean of all centers in
𝓢𝑚𝑒𝑟𝑔𝑒, 𝛿𝑖 = c𝑖 − c̅, and C = {𝛿1, … , 𝛿𝑚}.

c𝑛𝑒𝑤 = c̅

𝑁𝑛𝑒𝑤 = ∑ 𝑁𝑖

𝑚

𝑖

l𝑛𝑒𝑤 = the largest principal component of C

𝐿𝑛𝑒𝑤 = |𝛿𝐼 . l𝑛𝑒𝑤| + 𝑟 (11)

where 𝐼 = argmax

𝑗
 |𝛿𝑖. l𝑛𝑒𝑤|.

The number of points 𝑁𝑛𝑒𝑤 inside 𝒞ℳ𝑛𝑒𝑤 is the total number of data in all
of the spherical micro-clusters in 𝓢𝑚𝑒𝑟𝑔𝑒. The center c𝑛𝑒𝑤 is the mean of the
spherical micro-clusters. The axial direction l𝑛𝑒𝑤 is set along the alignment direction
of the spherical micro-clusters.

38

3.3.3 Micro-clustering destructors and removing micro-clusters

Algorithm 2: Removing destructors from a micro-cluster

1 Determine d(x, 𝒮ℳK) using equation (4).
2 If x is inside its nearest micro-cluster 𝒮ℳK according to condition (5)
3 NK = NK − 1

4 If NK = 0
5 Remove 𝒮ℳK from the feature space.
6 Update the connection information of relevant micro-

clusters in A.
7 EndIf 𝒮ℳK
8 Else
9 Determine d(x, 𝒞ℳJ), by using equation (1)
10 If x is inside a null micro-cluster nulli

Jin 𝒞ℳJ
11 Ni

J = Ni
J + 1

12 If Ni
J > NJ LJ⁄

13 Remove nulli
J and update 𝒞ℳJ using either (12) or

(13).
14 Update the connection information of relevant

micro-clusters in A.
15 EndIf
16 Else
17 Create a new null micro-cluster for x in 𝒞ℳJ.
18 EndIf
19 EndIf

Algorithm 2 shows the process for clustering and removing destructors.

Assume that the incoming datum x is a destructor. We try to assign it to a spherical
micro-cluster first by determining the distance between x and all spherical micro-

39

cluster according to equation (4). If none of spherical micro-cluster can cover x, we
determine if it is covered by any cylindrical micro-cluster using condition (2).

In the case that a destructor is located outside all micro-clusters, it is
assigned to the closest micro-cluster by comparing 𝑑(x, 𝒮ℳ𝐾) and 𝑑(x, 𝒞ℳ𝐽). x is
assigned to 𝒮ℳ𝐾 if

𝑑(x, 𝒮ℳ𝐾) − 𝑟 < (𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝐽) − 𝑟). √
𝑛

𝑛 − 1

Otherwise, it is assigned to 𝒞ℳ𝐽 . Note that since 𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝐽) is the

projected distance in 𝑛 − 1 dimensions, the coefficient √ 𝑛

𝑛−1
 is added so that it can

be compared with 𝑑(x, 𝒮ℳ𝐾) which is in 𝑛 dimensions.
If x is assigned to a spherical micro-cluster, we reduce the number of data

points in that micro-cluster by one (Line 3). On the other hand, if a destructor is
assigned to a cylindrical micro-cluster, a null micro-cluster is introduced to capture
the destructors. Each null micro-cluster has the same shape as the cylindrical micro-
cluster with a constant length of 2𝑟 as shown in.Figure 17

Let 𝑛𝑢𝑙𝑙𝑖
𝐽 be the 𝑖-th null micro-cluster centered at c𝑛𝑢𝑙𝑙𝒊

 in 𝒞ℳ𝐽 with two
parameters 𝑁𝑖

𝐽 and 𝑑𝑖
𝐽. 𝑁𝑖

𝐽 is the number of destructors inside null micro-cluster
𝑛𝑢𝑙𝑙𝑖

𝐽 and 𝑑𝑖
𝐽 is the signed distance between the center of 𝑛𝑢𝑙𝑙𝑖

𝐽 and 𝒞ℳ𝐽 . The
signed distance 𝑑𝑖

𝐽 is calculated as follows.

𝑑1
𝐽 = (c𝑛𝑢𝑙𝑙𝒊

− c𝐽). l𝐽

Figure 17 shows a null micro-cluster 𝑛𝑢𝑙𝑙1

𝐽 inside 𝒞ℳ𝐽 with 𝑁1
𝐽 = 4 and

signed distance 𝑑1
𝐽 = −𝑑. The destructors inside 𝑛𝑢𝑙𝑙1

𝐽 are depicted as red circles.

Figure 17 Null micro-cluster 𝑛𝑢𝑙𝑙1

𝐽 defined on 𝒞ℳ𝐽 .

40

When the number of destructors inside a null micro-cluster exceeds the

predefined threshold, the null micro-cluster is removed. In this study, the threshold
value is set to 𝑁𝐽 𝐿𝐽⁄ which is equal to the average density of data inside 𝒞ℳ𝐽 .
There are two scenarios of removing a null micro-cluster 𝑛𝑢𝑙𝑙𝑖

𝐽 from 𝒞ℳ𝐽 . Let 𝑑𝑖
𝐽 =

𝑑. The first scenario occurs when 𝑛𝑢𝑙𝑙𝑖
𝐽 is at either end of 𝒞ℳ𝐽 , which implies that

|𝑑| ≥ 𝐿𝐽 − 𝑟.
Removing 𝑛𝑢𝑙𝑙𝑖

𝐽 only shortens the length of 𝒞ℳ𝐽 . The parameters of 𝒞ℳ𝐽
are updated as follows.

𝐿𝐽
𝑛𝑒𝑤 =

𝐿𝐽 + |𝑑| − 𝑟

2

c𝐽
𝑛𝑒𝑤 = c𝐽 −

𝐿𝐽 + |𝑑| − 𝑟

2
sign(𝑑). l𝐽

𝑁𝐽
𝑛𝑒𝑤 = 𝑁𝐽 − 𝑁𝑖

𝐽 (12)

After updating the length of 𝒞ℳ𝐽 , the structure of 𝒞ℳ𝐽 must be redefined
according to the new length. The shortened micro-cluster can be either cylindrical or
spherical depending on the length of the remaining part.

Figure 18 The result of removing a null micro-cluster at one end of a cylindrical
micro-cluster and calculating parameters of 𝒞ℳ𝐽 . The left image is the situation
before removing the null micro-cluster shown in shaded area. The right image is the
result of removal and new parameters of both micro-clusters.

If 𝐿𝐽

𝑛𝑒𝑤 ≥ 𝑟, 𝒞ℳ𝐽 remains to be a cylindrical micro-cluster. Otherwise, it is replaced
by a spherical micro-cluster 𝒮ℳ𝑛𝑒𝑤 with parameters {𝑁𝐽

𝑛𝑒𝑤, c𝐽
𝑛𝑒𝑤}.

41

Figure 18 illustrates the diagram for calculating the updated parameters
when no new micro-cluster is generated. The shaded area denotes the null micro-
cluster to be removed.

In the second scenario, when |𝑑| < 𝐿𝐽 − 𝑟, removing 𝑛𝑢𝑙𝑙𝑖
𝐽 causes 𝒞ℳ𝐽 to

be broken into two parts. The length of each part is 𝐿𝐽 + |𝑑| − 𝑟 and 𝐿𝐽 − |𝑑| − 𝑟.
The longer part remains to be 𝒞ℳ𝐽 while the shorter part becomes a new micro-
cluster. The parameters of 𝒞ℳ𝐽 are updated according to equation (12).
The new micro-cluster can be either a spherical or cylindrical micro-cluster by the
same criterion. If 𝐿𝐽 − |𝑑| − 𝑟 > 𝑟, then the new micro-cluster is a cylindrical micro-
cluster 𝒞ℳ𝑛𝑒𝑤 with a set of parameters {c𝑛𝑒𝑤, 𝑁𝑛𝑒𝑤, l𝑛𝑒𝑤, 𝐿𝑛𝑒𝑤} calculated as
follow.

𝐿𝑛𝑒𝑤 =
𝐿𝐽 − |𝑑| − 𝑟

2

c𝑛𝑒𝑤 = c𝐽 +
𝐿𝐽 + |𝑑| + 𝑟

2
sign(𝑑). l𝐽

𝑁𝑛𝑒𝑤 = 0

l𝑛𝑒𝑤 = l𝐽 (13)

On the other hand, if 𝐿𝐽 − |𝑑| − 𝑟 < 𝑟, then the new micro-cluster is 𝒮ℳ𝑛𝑒𝑤

with parameters {c𝑛𝑒𝑤, 𝑁𝑛𝑒𝑤} from equation (13). Figure 20 shows the result of
removing a null micro-cluster and the diagram for calculating the new parameters.
The null micro-cluster is depicted as shaded area. When the null micro-cluster is
removed, 𝒞ℳ𝐽 is broken into two parts. The longer part is 𝒞ℳ𝐽 while the shorter
part is 𝒞ℳ𝑛𝑒𝑤. We set 𝒞ℳ𝑛𝑒𝑤 as a blank cylindrical micro-cluster with 𝑁𝑛𝑒𝑤 = 0. If
no data point is added into this micro-cluster, it will be excluded from determining
the final clusters.

The process for clustering and removing destructors in a cylindrical micro-
cluster is summarized in lines 9-18 in Algorithm 2.

42

Figure 19 The result of removing a null micro-cluster inside a cylindrical micro-
cluster and calculating parameters of 𝒞ℳ𝐽 . The upper image is the situation before
removing the null micro-cluster shown in shaded area. The lower image is the result
of removal and new parameters of both micro-clusters.

Note that during micro-clustering process, the centers of spherical micro-

clusters can move from their original positions through parameters update. As a
result, some data points might lie outside their possessive micro-clusters. If these
data points are constructors, there would not be a problem because our micro-
clustering method, which is based on the coverage of micro-cluster, would not assign
very far apart points into the same micro-cluster. As a result, micro-clusters would
not move too far from their original locations. Moreover, since clustering reflects the
collective behavior of data points, it can tolerate individual slight inaccuracies. Small
samples of data outside micro-clusters do not have significant impact on the
configuration of the resulting clusters.

43

For the case of destructor, due to changes in the configuration of micro-
clusters, some destructors might not necessarily be assigned to the same micro-
cluster to which their counterpart constructors belong. However, this would not be a
problem as well because we can ensure that at least it must be assigned to the
nearby micro-cluster. When there are significant number of destructors, the collective
behavior would be reflected by the relevant micro-clusters despite some small
inaccuracies during the micro-clustering.

3.4 The complexity of HCMstream

In this section, the computational complexity of the algorithm is analyzed.
Let |𝓒| be the number of cylindrical micro-clusters, and |𝓢| be the number of
spherical micro-clusters. During micro-clustering process, when a datum is assigned to
a micro-cluster, computing the distances from the datum to all micro-clusters takes
the following time complexity.

O(|C|)+O(|S|)

After micro-clustering during the merging process the algorithm, the time
complexity of computing the distances from 𝒮ℳ𝐾 to all other micro-clusters is equal
to

O(|C|)+O(|S|)

Thus the total time complexity is

O(|C|)+O(|S|) <O(|M|)

where |M| is the total number of micro-clusters. This algorithm operates in linear
scale of the number of micro.

3.5 Experimental results

Two sets of experiments were conducted to evaluate the performance of the

proposed algorithm with respect to the other state-of-the-art algorithms. The first set
of the experiments was performed with synthetic data sets in 2-dimensional featured
spaces. The aim of this set of experiments is to illustrate how micro-clusters and

44

clusters are formed in HCMstream, compared with other algorithms. Furthermore, we
varied the parameters of the algorithms to show the resulting clusters of each
algorithms.

The second set of experiments used real data sets in a high dimensional
featured space. Since these data sets are too complicated to visualize, we used
many well-known similarity measures often used in evaluating clustering results,
including normalized mutual information matric (NMI) [21], Rand index (RI) [21, 22],
Adjusted Rand index (AR) [23] and Hubert's index (HI) [23].

When comparing the clustering performance of HCMstream with other
algorithms, all incoming data must be a constructor, because the function of
unscheduled record removal is not available in other algorithms. In algorithms which
allow fading weight of old records such as DenStream and D-Stream, we disabled this
feature, so that their clustering performance can be compared with that of
HCMstream. Moreover, to make the comparison clearer, we slightly modify the
parameters of DenStream and D-Stream so that they used the same parameters as
those of HCMstream. 𝑛𝑝 was used as the threshold for determining dense local
clusters. 𝑟 was the parameter for determining the size of the micro-cluster. For D-
Stream, since it uses hyper-cubical grids for primary clustering, to make 𝑟 equivalent
to that used in HCMstream, each edge of the grids in D-Stream was set at 2𝑟.

3.5.1 Experiments with synthetic data

We used two synthetic data sets in this set of experiments. The first data set
consists of 5300 two-dimensional data points with three clusters as shown in Figure
20. This data set was used to illustrated the influence of the parameters on the
clustering results as well as how micro-clusters and clusters were formed. The
clustering results of HCMstream were compared with those of DenStream and D-
Stream.

45

Figure 20 Two-dimensional raw data.

The second data set consisted of two-dimensional data points forming six
clusters including convex and non-convex ones with varying densities. Moreover,
some 7% additional amount of data were uniformly and randomly generated as
noise to the original data set as shown in Figure 21.

Figure 21 Synthetic data set with non-convex clusters and noise.

3.5.2 Synthetic Data Sets without Noise

46

The numbers of micro-clusters and the numbers of clusters were compared
among the three algorithms as shown in Table 1. The parameters (𝑟, 𝑛𝑝) were set at
(0.35,5) and (0.5,10) respectively. The clustering results with different values of 𝑟 are
illustrated in and, respectively.

DenStream uses the variance of data points assigned to each micro-cluster as
the effective radius of that micro-cluster. The effective radius is usually less than the
actual radius for a micro-cluster to cover all data points assigned to it. As a result,
compared to the micro-clusters in HCMstream which cover all data points assigned
to them, micro-clusters in DenStream can be considered as being shrunk. Due to this
shrinkage, micro-clusters that are closed together are less likely to connect with each
other, leading to more fragments of clusters in DenStream as shown in Figure 22b
and Figure 23b. From Table 1 although micro-clusters produced by DenStream in
both cases were not more than those of HCMstream, DenStream could not recognize
the three clusters correctly.

When 𝑟 = 0.35, D-Stream also failed to recognize the three clusters as well.
Since grids in D-Stream are not allowed to move, each grid cannot re-adjust its
position according to actual data inside. In some unfortunate situations, they can
incorrectly join two separated clusters. In contrast, HCMstream allows the adjustment
of the centroids of micro-clusters. Micro-clusters obtained from HCMstream can re-
adjust their original positions toward the area where data points are more
concentrated, leading to less incorrectly joining separated clusters.

HCMstream can recognize the three clusters correctly. Table \ref{tab:vary_np}
shows the clustering results when 𝑛𝑝 is varied. When 𝑛𝑝 was larger than 30,
HCMstream failed to recognize the three clusters. This results from the fact that
when the threshold for dense micro-cluster 𝑛𝑝 is larger, more micro-clusters are
excluded from the clustering process, leading to more fragments of clusters. When
𝑟 = 0.5 and 𝑛𝑝 = 5, HCMstream could find only two clusters because micro-
clusters around the border of different clusters became connected with each other.
However, when 𝑛𝑝 was larger, these micro-clusters were excluded from the
clustering process. Consequently, HCMstream could correctly recognize the three
clusters when 𝑛𝑝 was between 10 to 30.

47

Figure 22 Clustering results of three algorithms with parameters 𝑟 = 0.35 and 𝑛𝑝 =

5.

Figure 23 Clustering results of three algorithms with parameters 𝑟 = 0.5 and 𝑛𝑝 =

10.

Table 1 The comparison of clustering results of 2-dimensional synthetic data
obtained from HCMstream, DenStream,and D-Stream.

Table 2 Clustering results of HCMstream with varying 𝑛𝑝, when 𝑟 = 0.35 and 0.5.

48

Table 3 Clustering results of HCMstream with varying 𝑟.

Table 3 shows the influence of 𝑟. At 𝑟 =0.65, micro-clusters at the border of different
clusters were so large that they become connected with each other, forming a single
cluster as discussed before. As a result, HCMstream found only 2 clusters.

3.5.3 Synthetic Data Sets With Noise

The clustering result of HCMstream is shown in Figure 24a with parameters 𝑟 = 0.5
and 𝑛𝑝 = 8. As micro-clusters of DenStream generated more than ninety final
clusters, we do not present the result of DenStream here. Figure 24Figure 24
Synthetic data set with more complicated clusters.

b shows the clustering results from D-stream. For D-stream, 𝑟 and 𝑛𝑝 were set at
0.35 and 8 respectively from trial-and-error process so that the resulting clusters are
as closed to the correct clusters as possible.

Figure 25 shows the numbers of micro-clusters and number of clusters
produced from HCMstream and D-Stream. HCMstream yielded micro-clusters three
times less than D-Stream. Moreover, while HCMstream correctly detected seven
clusters, D-stream failed to combine the cluster represented by blue asterisks and
the cluster represented by red circles into one cluster.

49

Figure 24 Synthetic data set with more complicated clusters.

50

Figure 25 Number of micro-clusters and number of clusters produced by HCMstream
and D-stream.

The process of removing destructors in HCMstream was tested with this data
set. The clustering result prior to the removal of destructors is shown in Figure 24.
After removing the destructors, the resulting final clusters are shown in Figure 24b.
Note that the possessive cluster of destructors was split into two clusters, one in
blue and another one in magenta.

Figure 26 Removing data records.

3.5.4 Experiments with Real Data Sets

Four public real data sets were used as benchmarks for comparing the
clustering results of HCMstream with other algorithms, two of which were KDD cup
99 and Forest cover type from UCI Machine Learning Repository [26] which have
been widely used as standard validating data sets for clustering streaming data. The
descriptions of the four data sets are shown below.

 KDD cup 99 is a series of TCP connections categorized as normal or other
22 attack connections. There are 23 classes, out of which three classes

51

represent more than ninety percent of all records. Each record consists of
42 features, of which 34 are continuous and 8 are categorical.

 Forest cover type data set is the observations of actual forest cover types
in 30×30 square meter cell with independent 54 cartographic variables
including 44 qualitative binary variables and 10 quantitative variables. The
cover type consists of 7 classes.

 Hopkins 155 data set is a benchmark for motion segmentation [27]. The
data set consists of the coordinates of tracked points of the moving objects
in video frames. The tracked points of the same object are labeled as the
same class. We used the sequence in the file 2T3RCTP_truth.mat which is
the sequence of three objects where one object is fixed, another is
translating, and the other object and the camera are rotating. There are
totally 24 frames in the data set with 470 tracked points. The coordinates
are recorded in X-, Y-, and Z- axes. As a result, the data set consists of 470
records with 3×24=72 variables in each record.

 Iris data set contains 150 instances with 4 independent variables. The
records are categorized into three classes of 50 points each. One class is
clearly separated from the other two classes which are connected together
to form a single cluster. As a result, though there are three classes in the
data set, it contains only two clusters. This data set will be used in testing
the function of data records removal, so that it is easy to visualize the result
of the algorithm.

All features of the data sets were normalized to have value between 0 to 1.

For each data set, the order of data was randomly shuffled and tested with the
algorithms. The average results from ten repetitions were reported. For KDD 99 cup
and Forest cover type data sets, 100,000 first records were used in the experiments.
For Hopkins 155 data set, all 470 records were used.

3.5.5 Experiments on Clustering Performances

52

The clustering results of five algorithms, namely DenStream [9], D-Stream [12],

ExCC [13], hierarchical agglomerative clustering for streaming data proposed by Tu et
al. [5] which will be shortened as HAC, and K-mean clustering, were used to
compared with HCMstream. HCMstream is most similar to DenStream in terms of
density-based clustering concept. Furthermore, the idea of spherical micro-clustering
in HCMstream was adopted from DenStream. As a result, DenStream was chosen to
comparewith our algorithm to show the improvement on clustering results of our
algorithm.

D-Stream was chosen because its clustering process is very similar to that of
DenStream excepting that instead of using micro-clusters, D-Stream uses grids in
primary local clustering. ExCC is the derivative of D-Stream. These two algorithms are
essentially the same in clustering process, excepting that ExCC automatically
calculates the threshold of dense grid rather than requires users to provide it as a
parameter. Other algorithms that use idea totally different from HCMstream were
also used for comparison. HAC uses hierarchical clustering which requires the number
of clusters as an input parameter. We set it equal to the number of classes in each
data set. The classic K-mean method was used as a benchmark algorithm. The
number of clusters for K-mean method was set as the number of classes, same as
that of HAC. The clustering results of KDD, Forest cover and Hopkins 155 are shown
in Table 4 KDD cup 99 data set., Table 6, and Table 8, respectively. Note that
excepting K-mean clustering, all algorithms chosen here can process arbitrary-shape
clusters. Some recent algorithms such as HECES or eVQ-AMS were not used in
benchmarking here because they cannot recognize non-convex clusters.

For KDD cup 99 data set in Table 4, HCMstream outperformed all compared
algorithms in all four performance indices. In terms of the number of micro-clusters,
it produced less micro-clusters than DenStream and D-stream. The fact that K-mean
did not perform well indicated that the clusters of this data set were not in spherical
shape. This implies that any clustering algorithm allowing clusters with arbitrary
shape may produce better results. Note that the number of micro-clusters and the

53

number of clusters were not integer because the average results of ten repetitions
were showed in the table.

For Forest cover type data set, HCMstream did not show obvious
improvement over other algorithms in terms of performance indices. HCMstream
produced less micro-clusters than D-Stream and ExCC, but almost equal to
DenStream. Note that the overall performances of this data set were comparatively
lower than those of the other two data sets. This indicated that the data in the same
class did not form very homogeneous clusters. Rather, they scattered over several
clusters leading to less degree of homogeneity.

For Hopkins 155 data set in Table 8, HCMstream outperformed other
algorithms in terms of NMI, AR, RI, and HI. The number of micro-clusters of
HCMstream was not obviously smaller than that of D-steam as in the two previous
data sets because we set the parameter 𝑟 of D-Stream at 0.35 while 𝑟 in HCMstream
was 0.25.

The clustering results of varying 𝑛𝑝 were shown in Table 5 and Table 7. For
KDD cup 99 data set, when 𝑛𝑝 increased, the number of clusters did not increase,
indicating that in this range, there was no cluster fragments resulting from micro-
clusters in the same cluster being excluded from the clustering process as discussed
earlier. For Forest cover type data set, that the numbers of micro-clusters were
approximately the same as those of final clusters indicated that micro-clusters were
quite separated from each other. Many clusters were formed by a single micro-
cluster as seen from the fact that when 𝑛𝑝 increased, the number of micro-clusters
and the number of clusters went down together. As the dimensionality of Forest
cover type is larger than that of KDD cup 99, its data points are more sparse, resulting
in micro-clusters being more separated.

Note that although DenStream did not perform well with 2-dimensional
synthetic data sets, its performances were acceptable with high dimensional data
sets. This indicates that the micro-clustering method based on the variance of micro-
cluster is not efficient in low-dimensional space. However, in high dimensional space,
data are so sparse that the micro-clusters are not highly connected with each other

54

as in the case of low dimensional space. Therefore, the issue of fragmented clusters
in DenStream did not cause significant drawback here.

Table 4 KDD cup 99 data set.

Table 5 KDD cup 99 data set varying 𝑛𝑝.

Table 6 Forest cover type data set.

Table 7 Forest cover type data set varying 𝑛𝑝.

Table 8 Hopkins 155 data set

55

3.5.6 Experiments on Removing Destructors

Although Iris data set contains three classes, two of which, namely Iris
Versicolour and Iris Virginica, are connected to each other, usually leading to
incorrect clustered points between these two classes. In this experiment, full data
set was clustered first to determine how many clusters HCMstream could find. Then,
we removed data points located between these two classes that caused difficulty in
clustering and determined if the algorithm could discover three clusters correctly.

In removing points between the two classes, we used K-mean algorithm with
𝑘 = 3. Mistaken points between these two classes, which were points belonging to
class 2, but being mistaken as belonging to class 3 and vice versa, were marked as
destructors. As a result, our data set consisted of 150 original data, with order
randomly reshuffled, being set as constructors and 18 destructors obtained from this
process, totally 168 points.

After clustering 150 constructors, HCMstream discovered two clusters as
shown in Figure 27a which shows the resulting clusters of 150 original data points as
two dimensional plot projected on the second and the fourth attributes of Iris data.
The algorithm yielded two clusters shown in blue and red. When the destructors
were processed, the original blue cluster was split into two clusters depicted in blue
and black as shown in b.

56

Figure 27 Testing removal of data with Iris data set.

When orders of constructors and destructors were randomly rearranged, at

which constructors appeared before destructors, the average performance indices of
ten repetitions are shown in Table 9 in comparison with those of D-Stream and K-
means. Note that the order of incoming data can affect the clustering results in
HCMstream which uses micro-clusters to capture the local statistics of data. When
the size of data set is small, with different orders of incoming data, the pattern of
micro-clusters can vary, leading to different clustering results. The effect of different
orders of data set is mitigated when the volume of data set is large because local
statistics of data set become more stable due to the law of large numbers, leading
to similar pattern of micro-clusters from the same stream in different orders.

In this case, since the size of data is relatively low (150), the clustering results
varied with different orders of the incoming data. Even though the algorithm could
not correctly find 3 clusters in all repetitions, the performance indices of HCMstream
were slightly higher than those of K-means algorithm. Note that due to small data
size, K-means algorithm could not yield consistent clustering results as well, as seen
from the fact that despite removing the incorrectly clustered points based on K-
means, the algorithm still could not yield one hundred percent correct results. For
D-Stream, although the performance indices were highest, it incorrectly found 4

57

clusters due to the fragments of the cluster representing data points in class Iris
Virginica.
Table 9 Comparison of performance indices from the three algorithms on Iris data
set after removing destructors.

58

Chapter 4
Proposed algorithm 2: LLDstream

4.1 Unsupervised localized linear discriminant analysis (ULLDA)

The process of ULLDA is summarized in Algorithm 3. ULLDA requires three
inputs, namely a reference point x, a set of the centers of all clusters ℭ, and the
number of nearest clusters 𝑛𝑐. It returns the projection matrix V.
At Line 1, we initialize an empty set 𝒩𝒞 and let V be an identity matrix. As a result,
for the first iteration, at Line 3 we calculate the distances of x and the centers of the
clusters in the full-dimensional space.

The set of nearest clusters 𝒩𝑛(𝑛𝑐) is determined in Line 4. As initially 𝒩𝒞 is
an empty set, the algorithm would proceeds to Lines 6 and 7, resulting in the center
matrix M̃ and a nonempty set 𝒩𝒞 for the second iteration. Next, the algorithm starts
at Line 2 finding the projection matrix V. From the second iteration onward, the
distances calculated in Line 3 would be the projected distances on V. The steps
from Lines 2 to 8 are repeated until 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 is the subset of 𝒩𝒞.

59

Algorithm 3: ULLDA
1 Initialize an empty set 𝒩𝒞 = ∅. Let V be an identity matrix. Go to Line 3.
2 Perform the SVD of M̃ as M̃ = VSU𝑇.
3 Compute the projected distance between x and all centers of clusters c𝑖

as x'=V𝑇x and c𝒊
′=V𝑇c𝑖.

4 Create 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 = {𝑖𝑑(1), … , 𝑖𝑑(𝑛𝑐)}, where 𝑖𝑑(𝑖) is the index of the
𝑖𝑡ℎ nearest cluster of x.

5 If 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 is not a subset of 𝒩𝒞
6 𝒩𝒞 = 𝒩𝒞 ∪ 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤

7 Obtain M̃ from 𝒩𝒞.
8 Go back to Line 2
9 EndIf
10 Return

ULLDA chooses relevant dimensions that maximally separate nearby clusters

with respect to reference point x . However, in a new projected subspace, the set of
𝑛𝑐 nearest clusters does not necessarily remain the same. As a result, in each
iteration, the new nearest clusters are added into 𝒩𝒞, leading to new center vectors
being added into M̃. In the last iteration, when no new neighboring clusters are
added into 𝒩𝒞, the center vectors of all relevant nearby clusters are included in M̃.
The subspace spanned by the columns of M̃ is the resulting projected subspace.

4.2 The complexity of ULLDA

 ULLDA consists of the iteration of two steps, namely finding 𝑛𝑐 nearest

clusters in Line 4 and performing SVD of M̃ in Line 2. Let |ℭ| be the number of
clusters, finding distance between x and all clusters and choose the 𝑛𝑐 nearest
clusters take O(𝑛𝑐|ℭ|). The size of M̃ is at most 𝑑 × |ℭ| where 𝑑 is the number of

60

features. Usually for high dimensional data 𝑑 > |𝐶|, leading to O(|ℭ|2𝑑) for
calculating SVD of M̃ [28]. As a result, in each iteration, the algorithm takes

O(|ℭ|2𝑑 + 𝑛𝑐|ℭ|)

Since the term 𝑛𝑐|ℭ| ≪ |ℭ|2𝑑, equation O(|ℭ|2𝑑 + 𝑛𝑐|ℭ|) becomes O(|ℭ|2𝑑) With
𝑖 iterations (which is usually unknown), the computation complexity of ULLDA for
one point is

O(𝑖|ℭ|2𝑑)

4.3 LLDstream

In this study, we use a spherical micro-cluster defined by two attributes,
namely the center of a micro-cluster and the number of points assigned to that
micro-cluster as described in Definition 1 as follow.

Definition 1: A micro-cluster denoted by ℳ = (c,𝑁) is a cluster formed by a sphere
with fixed radius 𝑟 whose center is at c. 𝑁 is the number of data points assigned to
the micro-cluster.

The radius of micro-clusters, 𝑟, is provided as an input parameter by the user.

LLDstream uses a fixed radius sphere as a local model for grouping data points. Note
that our objective is to assign an incoming datum to a micro-cluster defined by a
sphere with fixed boundary, not to a cluster of data points whose boundary cannot
be defined clearly. This allows us to disregard the actual distribution of data points
inside the micro-clusters and treat each micro-cluster as a spherical cluster. In
performing ULLDA, we can neglect 𝑆𝑤 and determine the projection matrix V directly
from M̃.

The algorithm of LLDstream [29] in online phase is shown in Algorithm 4.
When a new datum x arrives, ULLDA is performed at the location of x with micro-
clusters being regarded as local clusters. Since ULLDA requires the convergence of
𝒩n, the obtained projection vectors do not depend much on the initial value of

61

nearest neighbors 𝑛𝑐. As a result, 𝑛𝑐 is set constant at 10 in this study. If the total
number of clusters is less than 10, no dimension reduction is performed. The datum
will be assigned to a micro-cluster in the original feature space.

Let ℭ = {ℳ1, … ℳ|ℭ|} be a set of micro-cluster where ℳ𝑖 denotes the 𝑖𝑡ℎ
micro-cluster defined by (c𝑖,𝑁𝒊) The projection matrix V is obtained from ULLDA.
Then, the projected distance between x and ℳ𝑖 on V, denoted by 𝑑V(x,ℳ𝑖), is
calculated by

𝑑V(x,ℳ𝑖) = ||V𝑇(c𝑖 − x)||

We determine whether point x is assigned to an existing micro-cluster from

the following condition. Let 𝐾 = argmin
𝑖

 𝑑V(x, ℳ𝑖), then the closest micro-cluster of
point x is denoted by ℳ𝐾 . Point x is assigned to ℳ𝐾 when the projected distance
between
point x and the center of ℳ𝐾 is less than 𝑟, as

𝑑V(x,ℳ𝐾) ≤ 𝑟

where 𝑟 is the radius of the micro-cluster.

If x is assigned to ℳ𝐾 , the parameters of ℳ𝐾 are updated in Line 8 as

c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾 + x

𝑁𝐾 + 1

𝑁𝐾
𝑛𝑒𝑤 = 𝑁𝐾 + 1.

If x cannot be assigned to ℳ𝐾 , a new micro-cluster ℳ|ℭ|+1 is created with

c|ℭ|+1 = x
𝑁|ℭ|+1 = 1

62

Initially, there is no micro-cluster in the feature space; in other words, the set
of micro-clusters ℭ is empty. When a new data point x arrives, there is no nearest
micro-clusters, hence, the algorithm performs the assignment in the original space by
setting V as an identity matrix. A new micro-cluster is generated in Line 10.
The algorithm would keep generating new micro-clusters until there are sufficient
micro-clusters to perform ULLDA. Then, the algorithm would start performing ULLDA
at Line 2 on the next incoming datum. On the other hand, the user can choose to
pre-generate initial micro-clusters using DenStream by setting aside some data points
for generating the initial micro-clusters.

63

Algorithm 4: LLDstream Algorithm: online phase

1 If |ℭ| ≥ 10
2 Perform ULLDA at x as V =ULLDA(x, ℭ, 10)
3 Else
4 Assign x to a micro-cluster in the full dimensional space by setting

V as identity matrix.
5 EndIf
6 Calculate the projected distance between x and all micro-clusters in the

subspace spanned by V using Equation 𝑑V(x,ℳ𝑖) = ||V𝑇(c𝑖 − x)||.
7 If 𝑑V(x,ℳ𝐾) ≤ 𝑟
8 Assign x to ℳ𝐾 and update the parameters of ℳ𝐾 according to

Equations c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾+x

𝑁𝐾+1
 and 𝑁𝐾

𝑛𝑒𝑤 = 𝑁𝐾 + 1.

9 Else
10 Create a new micro-cluster ℳ|ℭ|+1 by c|ℭ|+1 = x, and 𝑁|ℭ|+1 = N
11 ℭ = ℭ ∪ ℳ|ℭ|+1

12 End

When the request of final clusters from the user arrives, the algorithm
operates in the offline phase. The density threshold 𝑛𝑝 is provided by the user.
Micro-clusters with the number of assigned data greater than 𝑛𝑝 are taken into
consideration in the offline phase while those with the number of data inside less
than 𝑛𝑝 are regarded as outliers.

LLDstream generates a cluster from a set of connected micro-clusters. Two
micro-clusters ℳ𝑖 and ℳ𝑗 are connected if

||c𝑖 − c𝑗|| ≤ 2𝑟

4.4 The complexity of LLDstream

64

In the online phase, the bottleneck of LLDstream is in ULLDA which requires
O(𝑖|ℭ|2𝑑) for one data point. In the offline phase, determining pairwise distances
among micro-clusters takes O(|ℭ|2). For large data set with the numbers of other
features much less than the number of incoming data 𝑛, the complexity of
LLDstream becomes O(𝑛).

4.5 Experimental results

All data sets used in this study were obtained from UCI Machine Learning
Repository [26]. Two sets of experiments were conducted to evaluate the
performance of LLDstream in comparison with other algorithms.

The first set consisted of experiments with benchmark data sets for streaming
data, including KDD cup 99, NSL-KDD, and Forest cover type data sets which have
been widely used for evaluating stream data clustering algorithms in many previous
studies such as [9], [30], and [14]. For KDD cup 99 data set, we used data from the
file kddcup.data_10_.gz, which consists of 494,021 data instances with 41 features.
Among 7 symbolic features out of all 41 features, we kept three binary-value
symbolic features while the other four symbolic features which cannot be
represented by binary data were removed. As a result, there are 38 features in this
data set. NSL-KDD data set [31], which can be obtained from [31], is the refined
subset of KDD cup 99, in which redundant records are removed. Moreover, the
number of selected records from each difficulty level group is inversely proportional
to the percentage of records in the original KDD data set, resulting in a more
proportionately distributed data set. NSL-KDD consists of 125,973 instances with the
same features as those in KDD data set. Each instance is labeled as either normal or
anomaly. The preprocessing of NSL-KDD is performed in the same way as that of KDD
cup 99. 38 out of 41 features were used in the experiments. For Forest cover type
data set, out of 54 features, 10 quantitative features were used in the clustering
while other 44 symbolic features were removed from the data set. In this set of
experiments, state-of-the-art algorithms for clustering stream data, including

65

DenStream [9], HDDStream [30] and HPStream [14], were used to compare their
clustering performances with the proposed algorithm.

In the second set of experiments, we evaluated the performance of
LLDstream in comparison with other clustering algorithms for non-streaming data,
which used the whole data sets in clustering process, in contrast to the one-pass-
and-throw-away clustering of LLDstream.

4.5.1 Comparison with algorithms for streaming data

In this set of experiments, to compare the clustering performance of the
algorithms without the effect of fading data, the fading function of the micro-clusters
was excluded from the algorithms. To determine the dynamic performance in
clustering evolving stream, the sliding window model was adopted as in [7]. In this
set of experiments, the parameters of LLDstream were set at r=0.1, np=15 for all
data sets.

In KDD cup 99 data set, the parameters of DenStream were set by trial-and-
error, then we chose the parameters yielding the best indices which were 휀 = 0.5
and 𝛽𝜇 = 20; those of HDDStream were set at (휀, 𝛽, 𝜇, 𝜋) = (0.2,5,30) according to
[30], while HPStream used k=23, equal to the number of classes of the data set. In
NSL-KDD data set, all parameters were set at the same values as those in KDD cup
99 data set, excepting the number of clusters in HPStream which was set at 2
according to the number of classes in the data set. In the experiments with Forest
cover type data set, the parameters of HDDStream were (휀, 𝛽, 𝜇, 𝜋) = (0.2,5,8)
according to [30] and the number of clusters in HPStream was 7. The parameters of
DenStream were set at 휀 = 0.1 and 𝛽𝜇 = 10.

Figure 28, Figure 29, and Figure 30 show the plots of four performance
indices, namely NMI, AR, RI and HI for KDD cup 99, NSL-KDD, and Forest cover type
data sets respectively. The time horizon for KDD cup 99 and NSL-KDD data sets was
at 10,000 data instances, while that of Forest cover type data set was at 2,000. The
reason we used the smaller window size in Forest cover type is that the pattern of
clusters in this data set change over time more rapidly than that of KDD cup 99. If

66

the window size is too large, the performance indices of the algorithms would be
very low. The performance indices were computed when the last datum of each
window arrived. Table 10, Table 11 and Table 12 show the average clustering
performances over the whole length of KDD cup 99, NSL-KDD, and Forest cover type
data sets respectively.

KDD cup 99 data set The comparison plots of performance indices are shown in
Figure 28. The window size was set at 10,000 points. LLDstream outperforms other
algorithms in all indices. Data during the 200,000 th to 350,000 instances belong to a
single class. To avoid division by zero in NMI and AR, we set the indices to be 1 when
the clustering result is identical to the class label. LLDstream and other algorithms
which adopt density-based clustering can detect the number of cluster correctly as
1, leading to all indices reaching the value of 1. The number of clusters in HPStream
was predefined at the number of classes, leading to the relatively low clustering
performance during this period of time.

For the comparative average performance indices shown in Table 10,
LLDstream outperforms the comparing algorithms. Moreover, the performance
indices of the density-based clustering algorithms, namely, LLDstream, DenStream,
and HDDStream, are better than those of HPStream due to the fact that the number
of clusters in HPStream was set at constant for the whole clustering process, while
the actual number of clusters can vary during each time horizon. Since the density-
based clustering algorithms do not assume a fixed number of clusters, they can
respond to the varying number of clusters in different intervals more accurately.

Table 10 Comparative average performance indices with KDD cup 99 data set.

67

Figure 28 Comparison of clustering performance indices for KDD cup 99 data set with
the time horizon of 10,000.

NSL-KDD data set For NSL-KDD data set, LLDstream clearly outperforms the
compared algorithms. Without the over-representative of some classes as discussed
in [31], the average performance indices of NSL-KDD are lower than those of the

68

original KDD cup 99. This results from the fact that the performance indices of all
algorithms in NSL-KDD were relatively consistent for the whole time horizons, unlike
the performance indices from KDD cup 99 which become 1 during the 200,000 th to
350,000 th instances. Compared to Figure 28, the plots in Figure 29 show more
uniform performance indices over the whole stream due to the removal of the
redundant records and the re-arrangement of the point order.

Note that in Table 10, LLDstream slightly outperforms DenStream. However,
in Table 11, LLDstream outperforms DenStream by more than 10 percent
improvement on RI, while on NMI, AR, and HI, LLDstream makes almost 30 percent
improvement. This results from the fact that in KDD cup 99 data set, during the
200,000 th to 350,000 th instances, both DenStream and LLDstream can correctly
detect one cluster, leading to the same value of all performance indices as 1 for this
interval. Since this interval covers almost half of the clustering, the improvement of
LLDstream becomes less distinct in the average performance indices. On the other
hand, in NSL-KDD data set, there is no such an interval. As a result, the average
performance indices can more clearly reflect the improvement that LLDstream
made.

Table 11 Comparative average performance indices with NSL-KDD data set.

69

Figure 29 Comparison of clustering performance indices for NSL-KDD data set with
the time horizon of 10,000.

70

Forest cover type data set LLDstream did not outperform the compared algorithms
much. The relatively low performance indices of all algorithms indicate that data in
the same class of this data set do not form very clean clusters. Rather, each cluster
consists of data from several class, leading to the low performance indices of all
algorithms. Moreover, since the number of attributes in this data set is not very high,
the benefit of dimension reduction in this data set might not be very obvious, as
seen from the fact that the performance indices of LLDstream and DenStream are
not significantly different.

Table 12 Comparative average performance indices with Forest cover type data set.

71

Figure 30 Comparison of clustering performance indices for Forest cover type data
set with the time horizon of 2,000.

4.5.2 Comparison with algorithms for non-streaming data

72

The performance of LLDstream was compared with state-of-the-art algorithms

for non-streaming data including DBSCAN [19], SNN [32], and PreDeCon [33]. In this
set of experiments, we compared both clustering indices as well as computation
time among these algorithms.

As all algorithms are based on DBSCAN, DBSCAN was chosen as a based-line
algorithm. Two parameters of DBSCAN are required from the user, including the
neighborhood radius 휀 and the minimum number of points in 휀 -neighborhood
𝑀𝑖𝑛𝑃𝑡𝑠.

SNN is designed to handle high dimensional data by using share nearest
neighbor for measuring similarity rather than some primary distance, such as
Euclidean distance. Using secondary similarity measures based on share nearest
neighbor improves the robustness of the algorithm, thus reducing the effect of
irrelevant attributes [34]. The algorithm requires three parameters, neighborhood list
size 𝑘, SNN radius 𝐸𝑝𝑠, and SNN density 𝑀𝑖𝑛𝑃𝑡𝑠.

PreDeCon is a subspace clustering algorithm designed to cope with high
dimensional data by using weighted similarity measure. In calculating distance,
weighting coefficient of each feature is determined by the variance of 휀 -
neighborhood. Four parameters are required from the user including the number of
preference dimension 𝜆, the variance threshold δ, as well as the two parameters of
DBSCAN, 휀 and 𝑀𝑖𝑛𝑃𝑡𝑠.

The parameters in these algorithms were set by trial-and-error process, then
the best results were reported. All features of the data sets were normalized to have
value between 0 to 1. For LLDstream, the orders of each data set were randomly
shuffled and tested with the algorithm. The average results of 10 repetitions were
reported. For other compared algorithms, since their clustering is not one-pass-and-
throw-away method, the clustering results would remain the same regardless of the
order of the incoming data. Table 13,

Table 14, and Table 15 show the comparison of clustering performance
indices from the compared algorithms. The parameters of LLDstream, SNN, DBSCAN,
and PreDeCon are represented as (𝑟, 𝑛𝑝), (𝑘, 𝐸𝑝𝑠, 𝑀𝑖𝑛𝑃𝑡𝑠), (휀, 𝑀𝑖𝑛𝑃𝑡𝑠), and

73

(𝜆, 𝛿, 휀, 𝑀𝑖𝑛𝑃𝑡𝑠) respectively. We used the modules of SNN, DBSCAN, and PreDecon
implemented in ELKI platform [35].

Table 13 Comparative performance indices with Image segmentation data set.

Table 14 Comparative performance indices with Multiple features data set.

Table 15 Comparative performance indices with Pen digits data set.

The comparative tables show that LLDstream outperformed other algorithms
in term of clustering performance indices, despite its one-pass-and-throw-away
clustering scheme. These results confirm that LLDstream can also perform well in
the non-streaming environment. In Landsat satellite data set, LLDstream, PreDeCon

74

and SNN achieved relatively higher performance than DBSCAN. This indicates that for
this data set, algorithms that can exclude irrelevant features can operate more
efficiently. Although PreDeCon and LLDstream both perform clustering in reduced
dimension subspace, LLDstream outperformed PreDeCon in all data sets, supporting
the argument that LDA subspace used in LLDstream is more efficient than the axis-
parallel subspace employed in PreDeCon.

Note that although the parameters 휀 and 𝑀𝑖𝑛𝑃𝑡𝑠 of DBSCAN might seem
similar to the parameters 𝑟 and 𝑛𝑝 of LLDstream, they are quite different. 휀 in
DBSCAN indicates the distance in the original feature space while 𝑟 in LLDstream
refers to the distance in the projected subspace. If we use the same values of
parameters, the clustering results from the two algorithms can be totally different.
Consequently, as seen from the comparison tables, the values of the parameters for
the best performance indices of the two algorithms are different for all data sets.

75

Chapter 5

CONCLUSION

This dissertation presents two algorithms for clustering streaming data,
namely HCMstream and LLDstream. The two algorithms adopt density-based
clustering as the method in clustering incoming data while including incremental
clustering to allow the algorithms to process the incoming data in one-pass fashion.
Basically, one-pass clustering collect some statistics of the incoming data while
discard the raw data in order to save memory space. The proposed two algorithms
address differing constraints in order to deal with some different situations found in
real applications.

 HCMstream is designed to optimize memory storage by merging micro-
clusters together to form larger cylindrical micro-clusters. With cylindrical shape
micro-cluster, the algorithm can maintain the compactness of the small micro-cluster
while reduce the number of the micro-cluster, thus reducing the memory storage
and the computation effort.

Moreover, HCMstream can process unscheduled record removal, the feature
of which most existing clustering algorithms for streaming data do not have.
Processing unscheduled record removals allows the user to deal with more variety of
data sets, such as the bank accounts which older data records are similarly important
as the new data records.

From the experimental results, we find that the algorithm generates less
micro-clusters compared with other clustering algorithm for stream data. However,
due to merging process, the algorithm requires longer computation time than
DenStream.

LLDstream is designed to deal with high-dimensional data sets. It incorporates
dimension reduction process into clustering framework. The clustering process is
performed in LDA subspace instead of the original feature space. Clustering data sets
in LDA space, instead of the original space, allows LLDstream to process data with

76

more efficiency in the sense that irrelevant features which are not parallel to axis can
be excluded from the computation.

We performed two sets of experiments. In the first set, the clustering
performance of LLDstream was compared with other clustering algorithms for
streaming data. The comparative experimental results show that the algorithm
outperformed other existing algorithms. In the second set of experiments, LLDstream
was compared with other traditional clustering algorithms that use conventional data
sets rather than streaming data sets. The results also confirm that LLDstream yields
good clustering results with less computation time.

However, in some data sets, LLDstream might not perform as efficient as
traditional clustering algorithms. For example, LLDstream is not very efficient when
process data sets having small data instances with large features. In this situation,
LLDstream would take longer computation time due to its bottle neck in performing
SVD.

REFERENCES

1. Yogita, Y. and D. Toshniwal, Clustering techniques for streaming data- a survey,
in IACC. 2013. p. 951-–956.

2. Amini, A., Y.W. Teh, and H. Saboohi, On density-based data streams clustering
algorithms: a survey. Journal of Computer Science and Technology, 2013. 29:
p. 116-141.

3. Guha, S., et al., Clustering Data Streams, in Proceedings of the 41st IEEE FOCS
Conference. 2000, IEEE Computer Society: Washington, DC, USA. p. 359-366.

4. Wattanakitrungroj, N. and C. Lursinsap, Memory-less unsupervised clustering for
data streaming by versatile ellipsoidal function, in CIKM'11. 2011. p. 967-–971.

5. Tu, Q., et al., Density-based Hierarchical Clustering for Streaming Data. Pattern
Recognition Letters, 2012. 33: p. 641-645.

6. Aggarwal, C.C., et al., A framework for clustering evolving data streams, in VLDB.
2003. p. 81-–92.

7. Rehman, M.Z., et al., Hyper-ellipsoidal clustering technique for evolving data
stream. Knowledge-Based Systems, 2014. 70: p. 3-14.

8. Lughofer, E. and M. Sayed-Mouchaweh, Autonomous data stream clustering
implementing split-and-merge concepts- Towards a plug-and-play approach.
Information Science, 2015. 304: p. 54-79.

9. Cao, F., et al., Density-based clustering over an evolving data stream with
noise, in Proceedings of the 6th SIAM International Conference on Data Mining
(SDM). 2006. p. 328-–339.

10. Ester, M., et al., A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise, in KDDM. 1996. p. 226-–231.

11. Zhou, A.Y., et al., Tracking cluster in evolving data streams over sliding
windows. Knowledge and Information Systems, 2008. 15: p. 181-214.

12. Tu, L. and Y. Chen, Stream Data Clustering Based on Grid Density and
Attraction. ACM Trans. Knowl. Discov. Data, 2009. 3(3): p. 12:1-12:27.

78

13. Bhatnagar, V., S. Kaur, and S. Chakravarthy, Clustering Data Streams Using Grid-
Based Synopsis. Knowledge Information System, 2013. 15: p. 1-–26.

14. Aggarwal, C.C., et al., A framework for projected clustering of high dimensional
data streams, in VLDB. 2004. p. 852-–863.

15. Forestiero, A., C. Pizzuti, and G. Spezzano, A single pass algorithm for clustering
evolving data streams based on swarm intelligence. Data Mining and
Knowledge Discovery, 2013. 26: p. 1-26.

16. Li, W., et al., Density-Based Clustering of Data Streams at Multiple Resolutions.
ACM Transaction on Knowledge discovery from Data, 2009. 3: p. 1-28.

17. Wang, C., et al., SVStream: A Support Vector-Based Algorithm for Clustering
Data Streams. IEEE Transaction on Knowledge and Data Engineering, 2013. 25:
p. 1410-1423.

18. Luhr, S. and M. Lasarescu, Incremental clustering of dynamic data streams
using connectivity based representative points. Data and Knowldege
Engineering, 2009. 68: p. 1-27.

19. Ester, M., et al., Incremental Clustering for Mining in a Data Warehousing
Environment, in VLDB. 1998. p. 967-–971.

20. Tang, H., T. Fang, and P.-F. Shi, Rapid and Brief Communication: Laplacian
Linear Discriminant Analysis. Pattern Recognition, 2006. 39(1): p. 136-139.

21. Manning, C.D., P. Raghavan, and H. Schutze, Introduction to Information
Retrieval (1st Ed.). 2008, New York: Cambridge University Press, Inc.

22. Rand, W., Objective Criteria for the Evaluation of Clustering Methods. Journal
of the American Statistical Association, 1971. 66: p. 846-850.

23. Hubert, L. and P. Arabie, Comparing Partitions. Journal of Classification, 1985.
2: p. 193-218.

24. Laohakiat, S., S. Phimoltares, and C. Lursinsap, Hyper-cylindrical micro-
clustering for streaming data with unscheduled data removals. Knowledge-
Based Systems, 2016. 99: p. 183-200.

25. Udommanetanakit, K., T. Rakthanmanon, and K. Waiyamai, E-stream: evolution-
based technique for stream clustering, in ADMA'07. 2007. p. 605-–615.

26. UCI Machine Learning Repository. 1999.

79

27. Tron, R. and R. Vidal, A Benchmark for the Comparison of 3-D Motion
Segmentation Algorithms, in CVPR. 2007. p. 951-–956.

28. Trefethen, L.N. and D. Bau, Numerical linear algebra. 1997, Philadelphia:
Society for Industrial and Applied Mathematics.

29. Laohakiat, S., S. Phimoltares, and C. Lursinsap, A clustering algorithm for stream
data with LDA-based unsupervised localized dimension reduction. Information
Sciences, 2017. 381: p. 104-123.

30. Ntoutsi, I., et al., Density-based projected clustering over high dimensional data
streams, in Proceedings of the 12th SIAM International Conference on Data
Mining (SDM). 2012. p. 987-998.

31. Information Security Centre of Excellence (ISCX). 2015.
32. Ertoz, L., M. Steinbach, and V. Kumar, Finding clusters of different sizes, shapes,

and densities in noisy, high dimensional data, in Proceedings of the 3rd SIAM
International Conference on Data Mining. 2003. p. 47-58.

33. Bohm, C., et al., Density connected clustering with local subspace preferences,
in Proceedings of the Fourth IEEE International Conference on Data Mining.
2004, IEEE Computer Society: Washington, DC, USA. p. 27-34.

34. Houle, M.E., et al., Can Shared-neighbor Distances Defeat the Curse of
Dimensionality?, in Proceedings of the 22nd International Conference on
Scientific and Statistical Database Management. 2010, Springer-Verlag:
Heidelberg, Germany. p. 482-500.

35. Schubert, E., et al., A Framework for Clustering Uncertain Data. PVLDB, 2015.
8(12): p. 1976-1987.

APPENDIX

81

VITA

VITA

Sirisup Laohakiat was born in Bangkok. He received B.Eng and M.Eng from
Faculty of Engineering, Chulalongkorn unversity in 1996 and 1999 respectively. He
received a grant from the Thailand Research Fund through the Royal Golden Jubilee
Ph.D. program in 2015.

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	List of Figures
	List of Tables
	INTRODUCTION
	1.1 Objectives
	1.2 Problem statement
	1.3 Contribution
	1.4 Scopes of work
	1.5 Dissertation outline

	LITERATURE REVIEWS AND BACKGROUND
	2.1 Literature reviews
	2.2 Clustering algorithms
	2.3 Density based clustering algorithm
	2.4 Definition of stream data
	2.5 Algorithms for clustering stream data
	2.6 Linear discriminant analysis (LDA)
	2.7 Performance Indices

	Proposed algorithm 1: HCMstream
	3.1 Definitions
	3.2 Overview of HCMstream Operation and Structure
	3.3 Algorithm
	3.4 The complexity of HCMstream
	3.5 Experimental results

	Proposed algorithm 2: LLDstream
	4.1 Unsupervised localized linear discriminant analysis (ULLDA)
	4.2 The complexity of ULLDA
	4.3 LLDstream
	4.4 The complexity of LLDstream
	4.5 Experimental results

	CONCLUSION
	REFERENCES
	VITA

