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Chapter 1 
INTRODUCTION 

Nowadays, the applications of streaming data are found in various domains of 
data acquisition systems, such as real-time monitoring, web site analysis, and 
electronic business. Researches on mining streaming data have been widely 
conducted in the recent years. Among researches regarding mining streaming data, 
clustering algorithms for steaming data have been one of the topics attracting much 
interest from researchers in the past ten years [1] [2]. 

Algorithms for clustering streaming data differ from the traditional clustering 
algorithms in two respects. First, streaming data are generated continuously over a 
relatively long period of time. The volume of data set is so vast that it usually 
exceeds the size of the main memory. As a result, these algorithms must store data 
in some mathematical and statistical forms rather than the whole raw data to make 
it possible to practically cluster the data. Second, since streaming data are often 
found in real-time monitoring systems, online clustering algorithms that can process 
the past and present data promptly are more preferable. 

Clustering algorithms for streaming data extend clustering approaches based 
on well-known clustering algorithms for traditional data sets, including K-mean 
clustering and density based clustering. The requirement of K-mean clustering 
algorithms for the number of clusters limits the potential of this algorithm in many 
applications which the number of clusters is unknown. On the other hand, density 
based clustering algorithm does not require the knowledge of the number of 
clusters, resulting in more flexibility in clustering. Due to this advantage, the designed 
algorithms are based on density based clustering in this study. 

Existing algorithms which adopt density based clustering, such as DenStream 
[5], deal with the requirements of streaming data by using online-and-offline-phases 
clustering scheme,. The online component maps each incoming data sample into a 
spherical micro-cluster, whose process called micro-clustering. Data assigned to 
micro-clusters are discarded from the system to save memory storage. Keeping the 
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statistics of data inside, including mean, variance, and the number of data, each 
micro-cluster represents a local cluster of data. To determine the final clusters, the 
offline component derives each cluster from a set of overlapping micro-clusters. As a 
result, the shape of each final cluster can be arbitrary because it consists of a set of 
several connected small spheres. Moreover, the clustering process can be performed 
without the restriction over the number of clusters.  

Extending idea of micro-clustering in density based clustering, this study 
imposes various constraints in accordance with data sets found in real application. 
Algorithms for clustering streaming data under the imposed constrains are designed 
and tested. 
 
1.1 Objectives 

The main objectives of this study are as follows: 

 To develop a new density based clustering algorithm for streaming data in 
a high dimensional space with more efficient usage of main memory. 

 To develop a new mathematical object for clustering the streaming data. 
 
1.2 Problem statement 

Given a stream data set in which data instances arrive continually, how data 
instances are grouped into clusters using density based clustering method efficiently. 
For the first algorithm, we focus on minimizing memory storage used during the 
computation. The second algorithm is designed to account for streaming data sets 
with high dimensionality. 
 
1.3 Contribution 

This dissertation proposes two density based clustering algorithms for 
streaming data. The first algorithm, named as HCMstream, has the following 
highlighted features: 

First, we propose the use of a new mathematical object, hyper-cylindrical 
micro-clusters, as local cluster for grouping data instance. This shape has more 
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compactness than the traditional spherical micro-clusters. Second, the algorithm 
allows the user to removal each data record at any arbitrary time while the existing 
algorithms require all data records to have the same pre-specified lifetime. Finally, 
the clustering process is performed online phase without the need of offline phase 
as in other existing algorithms. 

For the second algorithm, named as LLDstream, the novel features includes 
the following aspects. First, we integrate dimension reduction technique on LDA 
subspace into a density based clustering algorithm for streaming data. This technique 
allows more flexibility than the conventional methods which use feature selection 
technique based on the variance of each feature. Moreover, we propose 
unsupervised localized linear discriminant analysis. This technique allows us to use 
LDA projection technique with unlabeled data sets which traditional LDA method is 
not applicable to this kind of data sets. 
 
1.4 Scopes of work 

In this dissertation, the scope of work is constrained as follows: 

 Data instances are assumed but not restricted to appear one instance at a time. 
If data instances come in batch, the algorithms process one data instance at a 
time. 

 Each feature of streaming data set is either numerical or binary-value 
categorical. 

The probability distribution of data is unknown. 
1.5 Dissertation outline 

The rest of this dissertation is organized as follow. Chapter 2 describes the 
related backgrounds. Chapter 3 provides the detail of HCMstream and the 
experimental result. Chapter 4 presents LLDstream and its experimental 
performances. Chapter 5 concludes the study. 
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Chapter 2 
LITERATURE REVIEWS AND BACKGROUND  

In this chapter, the background of clustering streaming data sets is presented. 
Existing state-of-the-art algorithms are reviewed and discussed. Then, some 
background concepts used in this study are presented. 

 
2.1 Literature reviews 

The existing algorithms for clustering streaming data can be divided into two 
groups based on the assumption of the nature of clusters. In the first group, the 
clusters are assumed to be static. Each datum has no expiration date. The topology 
of data distribution is fixed as long as the clustering process is concerned. All past 
clustered data and the new incoming data have the same contribution to cluster 
formation. For the second group, the aim of algorithms is to reveal the pattern of 
clusters for the most recently existing data. As a result, the more recent data have 
more contribution to cluster formation, whereas the influence of the past data 
would be deteriorated. 

For algorithms concerning only static clusters, there were several interesting 
works in this aspect, some of which are based on K-means clustering and its 
derivatives. For streaming data, K-means algorithm have been adopted in several 
algorithms as follow. Guha et al.  [3] proposed STREAM which used the one-pass k-
median algorithm in a divide-and-conquer fashion to cluster stream data. They also 
proposed a facility location algorithm for relaxing the number of clusters during the 
intermediate steps to reduce the running time as well as to increase the stability of 
the algorithm.  

Another algorithms are based on density-based clustering such as 
CompactStream  [4]. Instead of using conventional spherical micro-clusters, it used 
elliptical micro-clusters in primary clustering. Tu et al.  [5] extended hierarchical 
agglomerative clustering (HAC) to work with streaming data.  
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For algorithms tracking cluster evolvement, Clustream  [6] was among the 
earliest algorithms. The clustering process is divided into two phases, namely online 
and offline component. In the online phase, data points are primarily clustered into 
micro-clusters which store the statistics of the data points inside. In offline phase, 
micro-clusters are used as representative points for k-means clustering to produce 
the predefined number of clusters which is the parameter provided by users.  

Two recently published papers proposed a more flexible assumption 
regarding the shape of clusters by using ellipsoidal shape instead of spherical shape 
as in Clustream. HECES  [7] uses grid-cells to calculate the statistical summary of 
streaming data. The grid-cells are replaced by a hyper-ellipsoidal shape from the 
covariance of grid-cells. Finally, overlapping ellipsoids are merged to form the final 
clusters. Lughofer et al.  [8] also proposed evolving vector quantization (eVQ) which 
similarly uses ellipsoidal clusters. It includes incremental split-and-merge techniques 
to merge overlapping clusters together and split a cluster into disjoint clusters. 
Although these two algorithms allow more flexible shape of clusters, they still do 
not allow any arbitrary shape cluster.  

DenStream  [9] is a density-based clustering algorithm based on DBSCAN  [10] 
with no constraint on the shape of cluster. In contrast to Clustream, DenStream does 
not require the number of clusters as its input parameter. Rather it uses the 
difference in the density of data points to distinguish clusters. Similar to Clustream, it 
adopts the online-offline two phases clustering scheme. In online phase, the primary 
clustering with micro-cluster is performed as in the case of Clustream. The micro-
clusters are categorized into two groups as dense and sparse micro-clusters, called p-
micro-clusters and o-micro-clusters, respectively.  

In offline phase, differing from Clustream which uses K-mean clustering, 
DenStream uses the clustering process of DBSCAN. Intersected $p$-micro-clusters are 
grouped together to form a new cluster while o-micro-clusters are excluded from the 
clustering process. Denstream uses fading window model where micro-clusters not 
updated for some period of time would be gradually faded away. Zhou et al.  [11] 
proposed SWClustering algorithm which adopted the clustering process of 
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DenStream. Unlike DenStream which uses fading scheme, it uses the exponential 
histogram of cluster features for dealing with evolving clusters.  

D-Stream  [12] is a grid-based clustering algorithm. Instead of using micro-
clusters in online phase, data points are assigned into fixed grids in the feature space. 
The clustering process is essentially similar to DenStream. It groups dense 
consecutive grids into a cluster. Tu et al.  [12] improved D-Stream by introducing the 
concept of attraction of grids which provides the information of how data points 
distribute inside a grid to refine the boundary of the clusters. Like D-Stream, ExCC  
[13] is a grid-based algorithm. It can process mixed attribute data as well as data with 
both numerical and categorical features. The clustering process is also divided into 
two phases as its predecessor. Dense cells are determined by a threshold computed 
adaptively from the number of total points in the cells and the size of each cell.  

HPStream  [14] is proposed to deal with high-dimensional data. The algorithm 
uses the subset of particular dimensions varying over different clusters to calculate 
the projected distance in clustering process.  

While the aforementioned algorithms required two-phase clustering process, 
FlockStream  [15] and MR-Stream  [16], adopted a single phase clustering. The 
clustering results can be drawn promptly without the need to perform clustering in 
offline phase. Considering micro-clusters and incoming data points as agents in 
flocking model, FlockStream generates clusters based on the swarms formed by 
agents. It does not requires the exhaustive search of the nearest neighbor of a point 
when assigning micro-cluster to an incoming points. However, this benefit is traded 
off by the computation required in virtual space to simulate the movement of the 
agents. MR-Stream partitions feature space into grids similar to the process of D-
Stream. Then, it employs tree structure to allow clustering with multiple resolutions.  

Other algorithms employed different clustering methods. For example, 
SVStream  [17] extended support vector machine clustering method to deal with 
stream data. RepStream  [18] adopted graph-based clustering method with stream 
data. 

The idea of removing data records can be traced back to IncrementalDBSCAN  
[19] designed for mining a large collection of data from different sources. Unlike 
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algorithms for streaming data, this algorithm can access to the whole data set at any 
time. The clustering process is based on DBSCAN with the ability to incrementally 
process insertion and deletion of new data records. By virtue of storing the whole 
data set, the cluster of a removed data record as well as its neighboring data points 
can be determined. As a result, the incremental update of the possessive cluster can 
be performed accordingly.  
 

 
2.2 Clustering algorithms 

The aim of clustering algorithms is to group data instances into clusters. Data 
instances which are closed together are grouped into the same cluster while data 
instances that are far from each other are assigned into different clusters. From 
Figure 1, we have data points shown in blue. From inspection, we can see that these 
data points consist of two clusters. We want to group these data points into clusters. 

 
Figure 1 Example of data points in two dimensional data sets. 

 
The resulting clusters are shown in Figure 2 where the members of one 

cluster are depicted in black while those of another cluster are depicted in red. The 
aim of clustering algorithm is to classify data points into group as shown in Figure 2. 
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Figure 2 Example of clustering the data points in Figure 1. 

 
2.3 Density based clustering algorithm 

Density based clustering is one of the highly used clustering methods. From 
the pioneer algorithm-DBSCAN , several derivatives of this algorithm have been 
proposed and studied for these recent years.  The brief idea of DBSCAN is presented 
as follow. 

DBSCAN uses the concept of density connectivity to form clusters. The 
algorithm requires two parameter Eps and MinPts. Eps neighborhood of point p is 
defined as data points whose distance from p is less than Eps. Two points p and q

are connected when 1) q is in the Eps neighborhood of point p and p is in the Eps 
neighborhood of point q  and 2) Both Eps neighborhood of point p and q are more 
than MinPts. Each cluster is formed from a set of connected points.  
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Figure 3 Operations of DBSCAN. 
 
2.4 Definition of stream data 

Let a data stream consists of a set of data instances  , , ,iX  1x x , 
where ix indicates a data instance arriving at time stamp it . Each data instance ix is a 
d -dimensional records, namely  1, , d

i i ix xx . 

Unlike traditional data set, stream data accumulates over time. The data set 
can grow indefinitely. In many cases, the whole data set might not be available at 
the beginning. Data instances can come individually or come in batch. We do not 
pose any constraint on the arrival of time it for each instance ix . 

The set of stream data can grow indefinitely. As a result, traditional clustering 
algorithms which require the whole data set being available at the beginning cannot 
be applied to this kind of data set. Clustering algorithm for stream data need some 
features to deal with this kind of data set. 
 
2.5 Algorithms for clustering stream data 

As stream data can appear continually and indefinitely, the main storage 
might not be sufficient to store the whole data set. Moreover, since most of stream 
data are generated in monitoring tasks, real time processing is preferable for these 
data sets. In this section, some examples of well-known algorithms for stream data 
are presented and discussed.  
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2.5.1 DenStream 
 

DenStream is an algorithms for clustering stream data extending the idea of 
density based clustering from DBSCAN. DenStream [9] is the density-based two-phase 
clustering scheme is adopted in this study. The so called two phase consists of 
online and offline clustering. Online clustering is performed online whenever a data 
instance arrive. Offline phase occurs when the user request the final clustering result. 
The algorithm would report the final cluster to the user. The outline of online 
clustering process of DenStream is shown in Figure 4. 

 
Figure 4 Online phase of DenStream. The figure shows four time stamps t1, t2, t3, and 
t4 where new data points occur in the feature space. DenStream would generate 
micro-clusters to cover all data points. 
 

At time t1, the incoming datum is shown in red. DenStream generates a micro-
cluster to cover this datum as shown in t2. If the subsequent new data appear inside 
the micro-cluster new micro-cluster would not be generated. At times t3, a new 
datum occur outside the existing micro-cluster, we generate a new micro-cluster to 
cover this new datum as shown in t4. 
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Figure 5 Offline phase of DenStream. DenStream define each overlapping micro-
clusters as each cluster. Cluster 1 consists of four overlapping micro-clusters while 
Cluster 2 consists of two micro-clusters. 
 

Figure 5 shows the operation of DenStream in offline phase. When the user 
requests the final clusters, DenStream forms clusters from sets of connected micro-
clusters. From Figure, four micro-clusters are connected forming Cluster1 and two 
micro-clusters connected, forming Cluster2.   

In DenSteam, the user is required to provide the upper bound of the radius 
designated as the parameter  . Each micro-cluster mc  is defined by  1, 2,CF CF w

where w  is the weight of the data points assigned to mc , 1CF  and 2CF  are the 
linear sum and the square sum of the data points assigned to mc  respectively. We 
find that for high dimensional data sets, this definition of micro-cluster has to store 
both 1CF and 2CF  which requires two times more storage than that of LLDstream 
which stores only the linear sum of the data points inside. The radius of micro-

cluster mc  is calculated by
2

1

2 1D
j j

j

CF CF
r

w w

  
      

 where 1jCF  and 2 jCF are 

the linear sum and the square sum of mc  on attribute j  and D  is the number of 
attributes of the data. In the online phase, an incoming datum x  is assigned to its 



 

 

16 

nearest micro-cluster mc  when after adding x  into mc , the radius of mc  is less 
than  . In the offline phase, the algorithm adopts the variant of DBSCAN to cluster 
micro-clusters by using the centers of each micro-clusters as data points in DBSCAN. 
Micro-clusters with weight higher than the density threshold   are used to generate 
the final clusters. Two micro-clusters 

pmc  and 
qmc  are connected when 

( , )p q p qD r r c c  where 
pc  and 

qc  are the centers of 
pmc  and 

qmc  respectively, 
( , )p qD c c is the distance between 

pc  and 
qc . The algorithm requires the radius 

threshold   and the density threshold   as an input. 
 
2.6 Linear discriminant analysis (LDA) 

The objective of LDA is to find a set of projection vectors whose directions 
maximize class separability. Let the between-class scatter matrix bS  and the with-in 
class scatter matrix wS  be defined as [20] 
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where ( )j

ix  is the data instance i in class j , ( )jm  is the mean of data in class j , om  
is the global mean of the whole data set, C  is the number of classes, ( )jN  is the 

number of data in class j , and ( )

1

C
j

j

M N


  is the total number of data. However, if 

we consider all classes equally important, i.e., we want to determine the projected 
vectors that maximally separate all classes apart without concern over the number 
of data in each class, the coefficients ( )jN  in determining bS  can be dropped. Also, 

in determining the direction of the projected vectors, the term 1

M
 can be dropped, 

leading to the equation becoming 
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In classical LDA, the projection matrix V  is determined by maximizing Fisher 

criterion     1

( ) T T

w bJ trace


V V S V V S V  subject to the orthogonality constraint 

of V . This optimization problem can be solved easily by finding the eigenvectors of 
1

w b

S S   
 
2.7 Performance Indices 

In comparing the performances among the compared algorithms, 
performance indices with respect to class labels are adopted. The clustering results 
were compared with the class labels provided in the data sets.  

In this study, normalized mutual information matric (NMI) [21], Rand index (RI) 
[21, 22], Adjusted Rand index (AR) [23] and Hubert's index (HI) [23] were chosen as 
the performance indices. These indices consider both the homogeneity of clusters as 
well as the number of clusters obtained from the clustering algorithms. The values 
of these indices generally range from 0 to 1, excepting AR and HI which can be 
negative value. The larger value indicates that the obtained clusters are more similar 
to the class label. 
Let Ω be the set of clusters obtained from the clustering algorithm and ℂ be the set 
of clusters obtained from the class label. The mutual information of these two sets 
𝐼(Ω, ℂ) can be calculated by 
 

𝐼(Ω, ℂ) = ∑ ∑ 𝑝(𝑤𝑘 ∩ 𝑐𝑗)log (
𝑝(𝑤𝑘 ∩ 𝑐𝑗)

𝑝(𝑤𝑘)𝑝(𝑐𝑗)
)

𝑗𝑘

 

where 𝑝(𝑤𝑘), 𝑝(𝑐𝑗), and 𝑝(𝑤𝑘 ∩ 𝑐𝑗) are probabilities of a datum inside cluster 𝑤𝑘, 
class 𝑐𝑗 , and the intersection between cluster 𝑤𝑘 and class 𝑐𝑗 , respectively;.NMI is 
obtained from 
 

𝑁𝑀𝐼 =
2𝐼(Ω, ℂ)

𝐻(Ω)𝐻(ℂ)
 

where 𝐻(Ω) = − ∑ 𝑝(𝑤𝑘)k log(𝑝(𝑤𝑘)) and 𝐻(ℂ) = − ∑ 𝑝(𝑐𝑗)k log (𝑝(𝑐𝑗)). Rand 
index views clustering as a series of decisions in choosing (𝑁

2
) pairs of data in the set. 
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Let a true positive (TP) be a decision of assigning two data from the same class into 
the same cluster, a true negative (TN) be a decision of assigning two data from 
different classes into different clusters, a false positive (FP) be a decision of assigning 
two data from different classes into the same cluster and a false negative (FN) be a 
decision of assigning two data from the same class into different clusters. Rand index 
can be calculated by 
 

𝑅𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
Adjusted Rand index is the derivative of Rand index derived from 

𝑅𝐼−𝐸[𝑅𝐼]

max(𝑅𝐼)−𝐸[𝑅𝐼]
, where 𝐸[𝑅𝐼] is the expected value of 𝑅𝐼, and max(𝑅𝐼) is its maximum 

value. 𝐴𝑅 is calculated by 
 

𝐴𝑅 =
∑ ∑ (|𝑤𝑘∩𝑐𝑗|

2
) − 𝑆3𝑗𝑘

𝑆1 + 𝑆2

2 − 𝑆3

 

where 𝑆1 = (|𝑤𝑘|
2

), 𝑆2 = (|𝑐𝑗|

2
), and 𝑆3 =

2𝑆1𝑆2

𝑁(𝑁−1)
. 

 
Hubert's index is defined by the difference of the probability of agreement 

and the probability of disagreement. It is calculated as 
 

𝐻𝐼 =
(𝑇𝑃 + 𝑇𝑁) − (𝐹𝑃 + 𝐹𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 
NMI uses the concept of mutual information in information theory to reflect the 
similarity between the resulting clusters and the class labels. The similarity is 
captured in terms of joint probability density of data items in the two comparing sets 
of clusters. The dependence between the two sets reflects their similarity. More 
value of NMI indicates more dependence of Ω and ℂ, and thus more similarity. On 
the other hand, the other indices, namely RI, AR, and HI capture the similarity based 
on counting the agreement between all pairs of data items. Rand index 
straightforwardly counts the number of agreeing pairs while Hubert's index includes 
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the penalty of disagreeing pairs in the calculation by subtracting disagreeing pairs 
(𝐹𝑃 + 𝐹𝑁) from the agreeing pairs (𝑇𝑃 + 𝑇𝑁). As a result, HI is always less than RI. 
Since RI usually has value between 0.5 to 1, AR is proposed with the inclusion of 
correction for chance in the calculation. By subtracting RI with its expectation by 
assuming the hypergeometric distribution, where  items are drawn randomly from 
clusters without replacement, AR equals 0 when RI equals its expected value, 
indicating that the clustering result is not better than that from the random process. 
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Chapter 3 
Proposed algorithm 1: HCMstream 

In this dissertation, two algorithms for clustering stream data are proposed. 
The first algorithm, named HCMstream [24], is designed to improve two respects of 
the existing algorithms. 

First, existing clustering algorithms for stream data such as DenStream, 
DStream, and CluStream require two phase operations, that are online and offline 
phases. When operating in offline phase, the algorithm cannot process the incoming 
data in real time, thus some memory buffer is required to solve this problem. On the 
other hand, an algorithm that does not require offline phase can operate without 
requirement for buffer memory, leading to more efficient use of the resources. 

Second, the density-based algorithms might generate too many micro-clusters 
leading to inefficiency in computation and memory usage. Some algorithms, for 
example, CluStream, and E-stream [25], reduce the number of clusters by introducing 
the merging operation. Yet all these algorithms use an enlarged spherical-shape 
cluster to cover the merged micro-clusters. With the radial enlargement of a sphere, 
the resulting enlarged cluster will cover too much unwanted space, possibly leading 
to false clustering results, which is the drawback of using a larger spherical micro-
cluster to cover the merged micro-cluster. 

Finally, the existing stream data clustering algorithms aim at capturing the 
dynamic of clusters by treating the impact of new data points more significantly than 
those of the old ones. Several approaches have been proposed, including Landmark 
Window Model, Sliding Window Model, and Fading Window Model [2]. Essentially, 
these approaches allow the weight of each data point to last over a predefined 
period of time before being excluded from the clustering. Since the old data records 
are removed from the system in a predefined time, this removal scheme can be 
considered as scheduled removals of data.  

However, the objective of clustering streaming data is not necessarily limited 
to observing evolving clusters. For example, when data are the online processing of 
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bank accounts via a web site, we would not treat the old accounts less importantly 
than the new ones. Moreover, some customers might close their accounts at any 
time they prefer, leading to unscheduled removal of data records from the system 
at any arbitrary time. In this situation, we want an algorithm that considers clusters as 
the result of all data points in the time horizon with the capacity of allowing 
removals of data records at any arbitrary time. 

To address the issue regarding the merging of micro-clusters and the 
unscheduled removals of data records, we introduced a new method based on our 
proposed concept of hyper-cylindrical micro-clustering called HCMstream. The 
enlargement of a hyper-cylinder is restricted in one direction, leading to the resulting 
micro-cluster able to maintain the compactness of the original volume before the 
merging. The final clusters are obtained from sets of connected micro-clusters. 
Therefore, the algorithm can recognize non-convex clusters. 

HCMstream allows the removals of data records at arbitrary time, in contrast 
to existing algorithms which fix the lifetime of each data record at constant, and 
nullify the impact of the expired record. The lifetime of each data record in 
HCMstream is not predefined. Without the whole data set stored in memory, we 
cannot determine which data record belong to which micro-cluster. In removing a 
data record, we use the reverse clustering process by mapping a removed record 
into a different kind of data point called a destructor.  When destructors appear in 
any area considerably, indicating that there are many records corresponding to data 
points in the vicinity being removed, the cluster in that area would be dissociated. 
The space at which the cluster of destructors formerly occupied would become 
vacant, indicating that there are not enough data points forming cluster in that area. 
By treating the removed records and the added records as data points with different 
labels, we can use the clustering process to process both operations without keeping 
the whole data set. 

In addition, unlike existing algorithms which require online and offline phases 
in clustering, HCMstream performs clustering in online fashion by incrementally 
updating adjacency matrix whenever there is a change in the configuration of the 
micro-clusters. As a result, no offline phase is required in this algorithm.  



 

 

22 

In summary, HCMstream includes the following features: 

 HCMstream uses hyper-cylindrical micro-clusters generated by merging 
traditional spherical micro-clusters, resulting in less micro-clusters while their 
compactness is maintained. 

 The algorithm allows the removals of data at any arbitrary time which is a new 
feature not addressed in other existing algorithms for streaming data. 

 The clustering process is performed online. No offline phase is required. 
 
3.1 Definitions 

In this section, definitions of a hyper-sphere and a hyper-cylinder are 
presented. Then, we will present the concepts of a spherical micro-cluster and a 
cylindrical micro-cluster for capturing data points into local clusters.    
 
Definition 1: A hyper-sphere 𝑆(c, 𝑟) in an 𝑛-dimensional space with a fixed center c  
and radius r  is a set of data points x𝑖 = (x𝑖

1, … x𝑖
𝑑) defined as follows 

 
𝑆(c, 𝑟) = {x𝑖|‖x𝑖 − c‖ ≤ 𝑟} 

 
Definition 2: A hyper-cylinder 𝐶𝑦𝑙(c, 𝑟,l, 𝐿) in 𝑛-dimensional space with center  
c  and radius r  , and length 𝐿  extending in the direction of a unit directional vector 
l,  is a set of data points x𝑖 = (x𝑖

1, … x𝑖
𝑑) defined as follows 

 
𝐶𝑦𝑙(c, 𝑟,l, 𝐿) = {x𝑖|‖(x𝑖 − c).l‖ ≤ 𝐿,  and ‖x𝑖 − c-((x𝑖 − c).l)‖ ≤ 𝑟}.  

    
Note that length 𝐿  is defined as the distance from center c  to either end of the 
hyper-cylinder. From the definition, a two-dimensional cylinder is a rectangle with 
the width equal to 2𝑟  and the length of  2𝐿  while a three-dimensional cylinder is a 
cylinder with circular cross section of radius 𝑟  with the length of 2𝐿  as shown in 
Figure 6. In 𝑛  dimensional space, a hyper-cylinder is defined with cross section of 
𝑛 − 1 dimensional hyper-sphere and one dimensional axial length. Regardless of 𝑛  
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dimensions, the terms hyper-sphere and hyper-cylinder will be shortened and 
renamed as sphere and cylinder in this study for ease. 

 
Figure 6 Two shapes of hyper-cylinder in different dimensions. The top shape is the 
hyper-cylinder in a 2-dimensional space. The bottom shape is the hyper-cylinder in 
a 3-dimensional space 
 
Definition 3: A spherical micro-cluster, denoted as 𝒮ℳ, is a cluster of data points 
represented by a sphere 𝑆(c, 𝑟) centered at c  with a radius 𝑟. 
A spherical micro-cluster is defined by two parameters as 𝒮ℳ = {c, 𝑁}, where c  is 
the center of 𝒮ℳ  and 𝑁 is the number of data points inside. Note that 𝑟  is not a 
parameter of a spherical micro-cluster because in this algorithm the radius of all 
micro-cluster is fixed at a constant provided from users. 
 
Definition 4: A cylindrical micro-cluster, denoted as 𝒞ℳ, is a cluster of data points 
represented by a cylinder 𝐶𝑦𝑙(c, 𝑟,l, 𝐿) centered at c  with a constant radius 𝑟, an 
axial unit vector l, and length 𝐿.    
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Figure 7 An example of a cylindrical micro-cluster in a 3-dimensional space.. 

 
A cylindrical micro-cluster is defined using four parameters as  𝒞ℳ =

{c, 𝑁,l, 𝐿}, where c  is the center of 𝒞ℳ  and 𝑁  is the number of data points inside, 
l  is the axial unit vector, and 𝐿  is the length from one end to its center. Figure 7 
shows an example of a 3-dimensional cylindrical micro-cluster. There are six data 
points depicted as red crosses. The axial unit vector is l = [0,1,0]𝑇 and the length of 
cylinder is 4. The cluster is represented by 𝒞ℳ = {[0,0,0]𝑇 , 6, [0,1,0]𝑇 , 4}. From the 
definitions of spherical and cylindrical micro-cluster, we define the following sets. 
Let 𝓒 = {𝒞ℳ1,…,𝒞ℳ|𝓒|} be a set of cylindrical micro-clusters where 𝒞ℳ𝑖 denotes 
the 𝑖 th  cylindrical micro-cluster  and 𝒞ℳ𝑖 = {c𝑖 ,𝑁𝑖,l𝑖,𝐿𝒊}. Let 𝓢 = {𝒮ℳ1,…,𝒮ℳ|𝓢|} 
be a set of spherical micro-clusters where 𝒮ℳ𝑖 denotes the 𝑖  th spherical micro-
cluster and 𝒮ℳ𝑖 = {c𝑖 ,𝑁𝑖}. Let 𝓜 =  𝓒 ∩ 𝓢 = {ℳ1, … , ℳ|𝓜|} be a set of micro-
clusters where ℳ𝑖 can be either spherical or cylindrical micro-cluster.  

To allow the unscheduled removals of existing data in streaming 
environment, we define two types of data points as a constructor and a destructor as 
follow. 
 
Definition 5: A constructor is a data point contributing to the formation of clusters. 
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Definition 6: A destructor is a data point contributing to the dissociation of clusters. 
In this algorithm, an incoming data point is labeled as either a constructor or 

a destructor. A constructor is generated in response to the arrival of a new data 
record by mapping the record into a point in the feature space. It functions as an 
ordinary data point in other clustering algorithms. When constructors appear densely 
in a specific area, a cluster is formed in that area. On the other hand, a destructor is 
generated in response to the request for removing an existed data record by re-
mapping that record into a data point. As a result, a destructor is a data point that 
re-appear in the same location as its counterpart constructor. When destructors 
appear densely in a specific area, indicating that significant amount of data records 
corresponding to data points in that area no longer exist, clusters in that area are 
consequently nullified.   
 
3.2 Overview of HCMstream Operation and Structure 

A new data point arrives in response to either adding a new data record or 
removing an existing data record. Adding a data record generates a constructor, while 
deleting one produces a destructor. Clusters are formed in the area where 
constructors appear densely and dissolved in the area where destructors appear 
densely. To process incoming data only once without keeping the raw data set, 
HCMstream uses micro-clusters to keep the statistics of local data. 

There are two types of micro-clusters in HCMstream, i.e., spherical and 
cylindrical micro-clusters. A spherical micro-cluster is used as a fundamental unit to 
represent a local cluster.  A new micro-cluster is first generated as a spherical micro-
cluster. Then, several overlapping spherical micro-clusters will form a cylindrical 
micro-cluster. A set of overlapping micro-clusters forms a single cluster. Figure 8 
shows clusters formed by overlapping micro-clusters. Micro-clusters 1, 2, and 4 are 
spherical while micro-cluster 3 is cylindrical. Micro-clusters 1 and 2 overlap with each 
other, forming one cluster denoted as Cluster 1 whereas micro-clusters 3 and 4 form 
another cluster denoted as Cluster 2. 



 

 

26 

 
Figure 8 An Example of how clusters are formed by connected micro-clusters 

 
3.2.1 Micro-clustering constructors 
 

When an incoming datum is a constructor, the algorithm would assign it to a 
micro-cluster, a process called micro-clustering. HCMstream uses the distance 
between the new data point and the micro-clusters as the criterion for the 
assignment.  If the point falls into any micro-cluster, it is assigned to that micro-
cluster. Otherwise, a new spherical micro-cluster is created with the center at that 
data point. 
 
3.2.2 Merging micro-clusters 
 

After micro-clustering, if the incoming datum is assigned to a spherical micro-
cluster, the algorithm would determine whether this micro-cluster can be merged 
with other micro-clusters. HCMstream allows two types of merging, namely merging a 
spherical micro-cluster into a cylindrical micro-cluster and merging several spherical 
micro-clusters into a new cylindrical micro-cluster as shown in Figure 9a and  Figure 
9b, respectively. The criteria and details of the merging will be explained in detail 
later. 
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Figure 9 Two merging types of micro-clusters. The left image shows the first merging 
type and the right image shows the second merging type. 
 

As briefly introduced before, the  use of a larger spherical micro-cluster as the 
result of the merging can lead to incorrect clustering results, due to the over 
expansion of the sphere. This problem is illustrated in Figure 10a and Figure 10b. In 
Figure 10a, micro-clusters 1 and 2 overlap with each other forming cluster 1 denoted 
by elliptic dash line, while micro-clusters 3 and 4 forming cluster 2. If the overlapping 
micro-clusters are merged into a larger spherical micro-cluster, micro-clusters 1 and 2 
are merged into micro-cluster A, while micro-clusters 3 and 4 are replaced by micro-
cluster B as shown in Figure 10b. The newly created micro-clusters A and B are so 
large that they overlap with each other, incorrectly forming only one cluster as 
cluster 1 as shown in Figure 10b. As a result, replacing merged micro-clusters by a 
larger spherical micro-cluster leads to the incorrect clustering result of one cluster as 
shown in Figure 10b while the correct clustering result should be two clusters as in 
Figure 10a before the merging. 
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Figure 10 Merging micro-clusters into a larger spherical micro-cluster causes incorrect 
clusters. 
 

HCMstream uses a cylindrical micro-cluster as the result of the merging. An 𝑛 
dimensional cylindrical micro-cluster has a fixed cross section of an 𝑛 − 1 
dimensional sphere while its length can be extended due to the merging of a 
spherical micro-cluster. The advantage of using a cylindrical micro-cluster over a 
spherical micro-cluster can be intuitively illustrated in Figure 11. Micro-cluster A and 
B are connected with each other. Two lower images show the scenarios when using a 
sphere and a cylinder to cover the two micro-clusters. Irrelevant space denoted by 
shaded area caused by using a sphere is much larger than that using a cylinder. In 
contrast to the expansion in all dimension of a sphere due to the enlarging radius, 
the expansion of a cylindrical micro-cluster is restricted to a single dimension of the 
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axial direction. As a result, the cylindrical micro-cluster can be enlarged in the most 
compact fashion. 

 
Figure 11 Illustration of covering two connected micro-clusters by a sphere and a 
cylinder. 
 

Figure 12 illustrates the operations when a constructor, depicted as a red 
cross, arrives. Figure 12a shows the micro-clustering step when the constructor is 
assigned to 𝒮ℳ1.  Note that although we depict several constructors in 𝒮ℳ1 and  
𝒮ℳ2 to show that these two micro-clusters have dense constructors, actually the 
previous constructors are not retained in the memoryFigure 12b shows the merging 
step when  𝒮ℳ1 is merged with  𝒮ℳ2 forming a new cylindrical micro-cluster 
denoted as 𝒞ℳ2. 
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Figure 12 Illustration of the operations of HCstream when an incoming datum is a 
constructor. 
 
3.2.3 Micro-clustering destructors and removing micro-clusters 

When a destructor arrives, HCMstream assigns it to the nearest micro-cluster. 
When destructors occur densely in any area, the cluster in that area is dissociated by 
removing the part of the micro-cluster with dense destructors. Each time when 
dissolving a cluster, HCMstream removes a part of the cluster equivalent to one 
spherical micro-cluster. 

The removal of a spherical micro-cluster is illustrated in Figure 13.  There are 
three spherical micro-clusters denoted by 𝒮ℳ1, 𝒮ℳ2, and 𝒮ℳ3 forming one cluster 
denoted as Cluster 1.  When adding a new destructor to 𝒮ℳ2 causes the number of 
destructors in 𝒮ℳ2 to go beyond the threshold, 𝒮ℳ2 is removed from the feature 
space, leaving only 𝒮ℳ1 and 𝒮ℳ3 forming two separated clusters denoted as 
Cluster 1 and Cluster 2. 
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Figure 13 An example of removing destructors which results in the separation of 
original cluster into two clusters. 
 

On the other hand, since a cylindrical micro-cluster consists of several micro-
cluster being merged together, we cannot simply remove the whole cylindrical 
micro-cluster. Only the part of it with dense destructors should be removed while 
other parts without dense destructors must be preserved. To locate destructors 
inside a cylindrical micro-cluster, we introduce another type of a micro-cluster called 
a null micro-cluster. When a null micro-cluster has sufficient destructors, it is 
removed together with the part of the cylindrical micro-cluster superimposed by that 
null micro-cluster, leading to breaking the cylindrical micro-cluster into parts.  

Figure 14 depicts the operations when a destructor, depicted as a red circle, 
arrives. Figure 14a shows the micro-clustering step when the destructor is assigned to 
𝒞ℳ2, where a null micro-cluster 𝑛𝑢𝑙𝑙2

1 is used to locate the destructors.  Figure 14b 
shows the breaking of 𝒞ℳ2 by removing  𝑛𝑢𝑙𝑙2

1 together with the part of 𝒞ℳ2 
superimposed by  𝑛𝑢𝑙𝑙2

1, leading to 𝒞ℳ2 being shortened. 
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Figure 14 Illustration of the operations of HCstream when an incoming datum is a 
destructor. 
 

The algorithm requires two input parameters from user, namely 𝑛𝑝, and 𝑟. 
Parameter 𝑛𝑝 is the threshold for determining outliers. When the number of 
constructors in any spherical micro-cluster goes beyond this value, it is considered 
that data points in that micro-cluster are real data, not outliers or noise. Thus, the 
micro-cluster is taken into consideration in clustering. On the other hand, micro-
clusters whose data points inside are less than 𝑛𝑝  are not used in clustering. 𝑟  is 
the fixed radius of spherical and cylindrical micro-clusters. The radius of all micro-
clusters is set at constant for the whole process.  

The clustering result is reported in the form of adjacency matrix 𝐴 =

[𝐴𝑖𝑗
|𝓜|×|𝓜|] such that 𝐴𝑖𝑗 = 1, when ℳ𝑖and ℳ𝑗are connected, and 𝐴𝑖𝑗 = 0, 

otherwise. Where ℳ𝑖and ℳ𝑗 are micro-clusters 𝑖 and 𝑗 which can be either spherical 
or cylindrical micro-clusters. Connected components of the graph induced by A 
define the resulting clusters. 

 HCMstream updates A in an incremental fashion. When there are changes in 
the configuration of micro-clusters resulting from either creating, merging, or 
removing micro-clusters, the algorithm would recheck the connection of the micro-
clusters being modified and other micro-clusters connected to the modified micro-
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clusters for updating the adjacency matrix. As a result, the algorithm does not require 
the offline phase. 

 
3.3 Algorithm 

Clustering incoming constructors 
Algorithm 1: Clustering incoming datum 

1 Calculate the distances between x to 𝒞ℳj, ∀𝒞ℳj ∈ 𝓒  using equation 
(1). 

2 If x  satisfies the conditions in equation (2) with respect to the nearest 
micro-cluster 𝒞ℳj 

3  Update the parameters of 𝒞ℳj using equation (3) 
4  Return 
5 EndIf 
6 Calculate d(x, 𝒮ℳk), ∀𝒮ℳj ∈ 𝓢  using equation (4) 
7 If x satisfies the condition in equation (5) with respect to the nearest 

micro-cluster 𝒮ℳK 
8  Update the parameter of 𝒮ℳK using equation (6) 
9  If NK > np   
10     Go to line 16 
11  EndIf 
12  Return 
13 EndIf 
14 Let 𝒮ℳnew(cnew, Nnew) = (x, 1),  𝓢 = 𝓢 ∪ 𝒮ℳnew 
15 Return 
16 Calculate distances from 𝒮ℳK to 𝒞ℳj, ∀𝒞ℳj ∈ 𝓒, using equation (7)  
17 If 𝒮ℳK can be merged into cylindrical micro-cluster 𝒞ℳJ, according to 

condition (8) 
18  Update 𝒞ℳJ, using equation (9) and  (10) 
19  Update adjacency matrix A by transferring all connected 

components of   𝒮ℳK to 𝒞ℳJ 
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20  Remove 𝒮ℳK  from the feature space  
21  Return 
22 EndIf 
23 Calculate d(𝒮ℳk, 𝒮ℳi), ∀𝒮ℳi ∈ 𝓢 and Ni > np  
24 If New cylindrical micro-cluster 𝒞ℳnew can be created from 𝒮ℳK  
25  Create 𝒞ℳnew  using equation (11) 
26  Update A  by transferring all connected components of micro-

clusters in  𝓢merge to 𝒞ℳnew  
27  𝓢 = 𝓢 − 𝓢merge and 𝓒 = 𝓒 ∪ 𝒞ℳnew 
28 EndIf 
29 Return 

 
3.3.1 Micro-clustering constructors 

 
HCMstream tries to merge an incoming constructor with existing cylindrical 

micro-clusters first (lines 1-5). Let x be an incoming constructor and 𝒞ℳ𝑗 be a 
cylindrical micro-cluster defined by 𝒞ℳ𝑗 = {c𝑗, 𝑁𝑗 , l𝑗, 𝐿𝑗}. 𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) and 
𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) are the parallel and perpendicular distances from c𝑗 to x  with 
respect to the directional vector l𝑗 and 𝛿xj = x-c𝑗.  
The distances are determined from 

 
𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) = |𝛿xj. l𝑗| 

𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) = ‖𝛿xj−(𝛿xj. l𝑗)l𝑗‖    (1) 
Point x  is inside 𝒞ℳ𝑗 when  

𝑑𝑝𝑎𝑟𝑎(x, 𝒞ℳ𝑗) ≤ 𝐿𝑗 , and 

𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗) ≤ 𝑟     (2) 
We assign x to 𝒞ℳ𝑗 such that among 𝑗 that satisfy condition (2)  
𝐽 = argmin

𝑗
 𝑑𝑝𝑒𝑟𝑝(x, 𝒞ℳ𝑗)  If x can be assigned to 𝒞ℳ𝐽 , the parameters of  𝒞ℳ𝐽 are 

updated as 
 

𝑁𝐽
𝑛𝑒𝑤 = 𝑁𝐽 + 1       (3) 



 

 

35 

 
If x  cannot be assigned to any cylindrical micro-clusters, it is checked with 

spherical micro-clusters (lines 6-8).The distance between point x  and micro-cluster 
𝒮ℳ𝑘 defined by 𝒮ℳ𝑘 = {c𝑘, 𝑁𝑘} is calculated by 
 

𝑑(x,𝒮ℳ𝑘) = ‖x − c𝑘‖    (4) 
Let  𝐾 = argmin

𝑘
 𝑑(x, 𝒮ℳ𝑘), point x  is inside 𝒮ℳ𝑘 when 

 
𝑑(x,𝒮ℳ𝐾) ≤ 𝑟,     (5) 

where 𝑟  is the radius of 𝒮ℳ𝐾 . If x is in 𝒮ℳ𝐾 , its parameters are updated as 

c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾 + x

𝑁𝐾 + 1
 

𝑁𝐾
𝑛𝑒𝑤 = 𝑁𝐾 + 1.    (6) 

If x is not inside any existing micro-clusters, a new micro-cluster 𝒮ℳ𝑛𝑒𝑤 is 
created to cover  x (lines 14). 

 
3.3.2 Merging micro-clusters 
 

When 𝒮ℳ𝐾 is updated through adding a new data point, if the population in 
the micro-cluster is dense (line 10), we would try to merge it with existing cylindrical 
micro-cluster first (lines 16-20). Let 𝛥jK = c𝑗 − c𝐾, the distance between 𝒮ℳ𝐾 and 
𝒞ℳ𝑗 is calculated by 
 

𝑑𝑝𝑎𝑟𝑎(𝒮ℳ𝐾, 𝒞ℳ𝑗) = |𝛥jK. l𝑗| 

𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾, 𝒞ℳ𝑗) = ‖𝛥jK − (𝛥jK. l𝑗)l𝑗‖    (7) 
 
 
𝒮ℳ𝐾 and 𝒞ℳ𝑗 overlap when  

  
𝑑𝑝𝑎𝑟𝑎(𝒮ℳ𝐾 , 𝒞ℳ𝑗) ≤ 𝐿𝑗 + 𝑟, and 

𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾, 𝒞ℳ𝑗) ≤ 2𝑟     (8) 
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We merge 𝒮ℳ𝐾 with 𝒞ℳ𝐽 such that among 𝑗 that satisfy condition (8), 𝐽 =

argmin
𝑗

 𝑑𝑝𝑒𝑟𝑝(𝒮ℳ𝐾 , 𝒞ℳ𝑗). Condition (8) indicates that 𝒮ℳ𝐾 can be merged with 𝒞ℳ𝐽  
when its center lies inside the shaded area shown in Figure 15.  

 
Figure 15 Merging boundary of cylindrical micro-cluster 𝒞ℳ𝐽 . 

 
After 𝒮ℳ𝐾  is merged into 𝒞ℳ𝐽 , 𝒮ℳ𝐾 is removed from the feature space. 

The number of data in 𝒞ℳ𝐽 , 𝑁𝐽
𝑛𝑒𝑤, is updated as   

 
𝑁𝐽

𝑛𝑒𝑤 = 𝑁𝐽 + 𝑁𝐾     (9) 
 

If 𝑑𝑝𝑎𝑟𝑎 + 𝑟 ≤ 𝐿𝐽, 𝒞ℳ𝐽 can cover 𝒮ℳ𝐾  as shown in.Figure 16 a. The 
configuration of 𝒞ℳ𝐽 remains the same, as a result, other parameters are not 
updated. On the contrary, when 𝑑𝑝𝑎𝑟𝑎 + 𝑟 > 𝐿𝐽 , 𝒞ℳ𝐽 cannot cover  𝒮ℳ𝐾 as shown 
in Figure 16b. The length of  𝒞ℳ𝐽 must be extended so that  𝒞ℳ𝐽can cover 𝒮ℳ𝐾 . 
As a result, the new center c𝐽

𝑛𝑒𝑤 and the length 𝐿𝐽
𝑛𝑒𝑤 of 𝒞ℳ𝐽 become 

 

𝐿𝐽
𝑛𝑒𝑤 =

𝑑𝑝𝑎𝑟𝑎 + 𝐿𝐽 + 𝑟

2
 

c𝐽
𝑛𝑒𝑤 = c𝐽 +

𝑑𝑝𝑎𝑟𝑎+𝐿𝐽+𝑟

2
.sign(𝛥KJ. l𝐽)l𝐽   (10) 

 
where 𝛥𝐾𝐽 = c𝐾 − c𝐽 and sign(𝛥KJ. l𝐽) is the sign of the dot product between 𝛥KJ 
and l𝐽. 
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Figure 16 Two cases of merging 𝒮ℳ𝐾 into 𝒞ℳ𝐽 . 

 
If 𝒮ℳ𝐾 cannot be merged with other cylindrical micro-cluster, it is 

subsequently determined if it overlaps other spherical micro-clusters. The 
overlapping spherical micro-clusters are merged together and replaced by a  new 
cylindrical micro-cluster (lines 23-28). Two spherical micro-clusters 𝒮ℳ𝐾 and 𝒮ℳ𝑖 
overlaps if c𝐾 − c𝑖 ≤ 2𝑟. Let 𝓢𝑚𝑒𝑟𝑔𝑒 = {𝒮ℳ1, … , 𝒮ℳ𝑚} be a set of overlapping 
micro-clusters for creating a new cylindrical micro-cluster 𝒞ℳ𝑛𝑒𝑤 whose parameters 
{c𝑛𝑒𝑤,𝑁𝑛𝑒𝑤,l𝑛𝑒𝑤,𝐿𝑛𝑒𝑤}are determined as follows. Let c̅ is the mean of all centers in 
𝓢𝑚𝑒𝑟𝑔𝑒, 𝛿𝑖 = c𝑖 − c̅, and C = {𝛿1, … , 𝛿𝑚}.  

 
c𝑛𝑒𝑤 = c̅ 

𝑁𝑛𝑒𝑤 = ∑ 𝑁𝑖

𝑚

𝑖

 

l𝑛𝑒𝑤 = the largest principal component of C 

𝐿𝑛𝑒𝑤 = |𝛿𝐼 . l𝑛𝑒𝑤| + 𝑟      (11) 
 
where  𝐼 = argmax

𝑗
 |𝛿𝑖. l𝑛𝑒𝑤|. 

The number of points 𝑁𝑛𝑒𝑤 inside 𝒞ℳ𝑛𝑒𝑤 is the total number of data in all 
of the spherical micro-clusters in 𝓢𝑚𝑒𝑟𝑔𝑒. The center c𝑛𝑒𝑤 is the mean of the 
spherical micro-clusters. The axial direction l𝑛𝑒𝑤 is set along the alignment direction 
of the spherical micro-clusters. 
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3.3.3 Micro-clustering destructors and removing micro-clusters 
 
Algorithm 2: Removing destructors from a micro-cluster 

1 Determine d( x, 𝒮ℳK) using equation (4). 
2 If  x  is inside its nearest micro-cluster 𝒮ℳK according to condition (5)  
3  NK = NK − 1 

4  If  NK = 0 
5    Remove 𝒮ℳK  from the feature space. 
6   Update the connection information of relevant micro-

clusters in A. 
7  EndIf 𝒮ℳK 
8 Else 
9  Determine d( x, 𝒞ℳJ),  by using equation (1)  
10  If x  is inside a null micro-cluster nulli

Jin 𝒞ℳJ    
11   Ni

J = Ni
J + 1  

12   If Ni
J > NJ LJ⁄  

13    Remove nulli
J and update 𝒞ℳJ using either (12) or 

(13). 
14    Update the connection information of relevant 

micro-clusters in A. 
15   EndIf  
16  Else  
17   Create a new null micro-cluster for x  in 𝒞ℳJ.  
18  EndIf   
19 EndIf 

 
Algorithm 2 shows the process for clustering and removing destructors. 

Assume that the incoming datum x is a destructor. We try to assign it to a spherical 
micro-cluster first by determining the distance between x and all spherical micro-
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cluster according to equation (4). If none of spherical micro-cluster can cover x, we 
determine if it is covered by any cylindrical micro-cluster using condition (2).  

In the case that a destructor is located outside all micro-clusters, it is 
assigned to the closest micro-cluster by comparing 𝑑( x, 𝒮ℳ𝐾) and 𝑑( x, 𝒞ℳ𝐽). x is 
assigned to 𝒮ℳ𝐾 if  

 

𝑑( x, 𝒮ℳ𝐾) − 𝑟 < (𝑑𝑝𝑒𝑟𝑝( x, 𝒞ℳ𝐽) − 𝑟). √
𝑛

𝑛 − 1
 

 
Otherwise, it is assigned to 𝒞ℳ𝐽 . Note that since 𝑑𝑝𝑒𝑟𝑝( x, 𝒞ℳ𝐽) is the 

projected distance in 𝑛 − 1 dimensions, the coefficient √ 𝑛

𝑛−1
 is added so that it can 

be compared with 𝑑( x, 𝒮ℳ𝐾) which is in 𝑛  dimensions. 
If x is assigned to a spherical micro-cluster, we reduce the number of data 

points in that micro-cluster by one (Line 3). On the other hand, if a destructor is 
assigned to a cylindrical micro-cluster, a null micro-cluster is introduced to capture 
the destructors. Each null micro-cluster has the same shape as the cylindrical micro-
cluster with a constant length of 2𝑟 as shown in.Figure 17 

Let 𝑛𝑢𝑙𝑙𝑖
𝐽  be the 𝑖-th null micro-cluster centered at c𝑛𝑢𝑙𝑙𝒊

 in 𝒞ℳ𝐽 with two 
parameters 𝑁𝑖

𝐽 and 𝑑𝑖
𝐽. 𝑁𝑖

𝐽 is the number of destructors inside null micro-cluster 
𝑛𝑢𝑙𝑙𝑖

𝐽 and 𝑑𝑖
𝐽 is the signed distance between the center of 𝑛𝑢𝑙𝑙𝑖

𝐽 and 𝒞ℳ𝐽 . The 
signed distance 𝑑𝑖

𝐽 is calculated as follows. 
 

𝑑1
𝐽 = (c𝑛𝑢𝑙𝑙𝒊

− c𝐽). l𝐽 

 
Figure 17 shows a null micro-cluster 𝑛𝑢𝑙𝑙1

𝐽 inside 𝒞ℳ𝐽 with 𝑁1
𝐽 = 4 and 

signed distance 𝑑1
𝐽 = −𝑑. The destructors inside 𝑛𝑢𝑙𝑙1

𝐽  are depicted as red circles. 

 
Figure 17 Null micro-cluster 𝑛𝑢𝑙𝑙1

𝐽 defined on 𝒞ℳ𝐽 . 
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When the number of destructors inside a null micro-cluster exceeds the 

predefined threshold, the null micro-cluster is removed. In this study, the threshold 
value is set to 𝑁𝐽 𝐿𝐽⁄  which is equal to the average density of data inside 𝒞ℳ𝐽 . 
There are two scenarios of removing a null micro-cluster 𝑛𝑢𝑙𝑙𝑖

𝐽 from 𝒞ℳ𝐽 . Let 𝑑𝑖
𝐽 =

𝑑. The first scenario occurs when 𝑛𝑢𝑙𝑙𝑖
𝐽 is at either end of 𝒞ℳ𝐽 , which implies that 

|𝑑| ≥ 𝐿𝐽 − 𝑟. 
Removing 𝑛𝑢𝑙𝑙𝑖

𝐽 only shortens the length of 𝒞ℳ𝐽 . The parameters of 𝒞ℳ𝐽 
are updated as follows. 

𝐿𝐽
𝑛𝑒𝑤 =

𝐿𝐽 + |𝑑| − 𝑟

2
 

c𝐽
𝑛𝑒𝑤 = c𝐽 −

𝐿𝐽 + |𝑑| − 𝑟

2
sign(𝑑). l𝐽 

𝑁𝐽
𝑛𝑒𝑤 = 𝑁𝐽 − 𝑁𝑖

𝐽      (12) 
 

After updating the length of 𝒞ℳ𝐽 , the structure of 𝒞ℳ𝐽 must be redefined 
according to the new length. The shortened micro-cluster can be either cylindrical or 
spherical depending on the length of the remaining part. 

 

 
Figure 18 The result of removing a null micro-cluster at one end of a cylindrical 
micro-cluster and calculating parameters of 𝒞ℳ𝐽 . The left image is the situation 
before removing the null micro-cluster shown in shaded area. The right image is the 
result of removal and new parameters of both micro-clusters. 
 
If  𝐿𝐽

𝑛𝑒𝑤 ≥ 𝑟, 𝒞ℳ𝐽 remains to be a cylindrical micro-cluster. Otherwise, it is replaced 
by a spherical micro-cluster 𝒮ℳ𝑛𝑒𝑤  with parameters {𝑁𝐽

𝑛𝑒𝑤, c𝐽
𝑛𝑒𝑤}.  
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Figure 18 illustrates the diagram for calculating the updated parameters 
when no new micro-cluster is generated. The shaded area denotes the null micro-
cluster to be removed. 

In the second scenario, when |𝑑| < 𝐿𝐽 − 𝑟, removing 𝑛𝑢𝑙𝑙𝑖
𝐽 causes 𝒞ℳ𝐽 to 

be broken into two parts. The length of each part is 𝐿𝐽 + |𝑑| − 𝑟   and 𝐿𝐽 − |𝑑| − 𝑟. 
The longer part remains to be 𝒞ℳ𝐽 while the shorter part becomes a new micro-
cluster. The parameters of 𝒞ℳ𝐽 are updated according to equation (12).  
The new micro-cluster can be either a spherical or cylindrical micro-cluster by the 
same criterion. If 𝐿𝐽 − |𝑑| − 𝑟 > 𝑟, then the new micro-cluster is a cylindrical micro-
cluster 𝒞ℳ𝑛𝑒𝑤 with a set of parameters {c𝑛𝑒𝑤, 𝑁𝑛𝑒𝑤, l𝑛𝑒𝑤, 𝐿𝑛𝑒𝑤} calculated as 
follow. 

𝐿𝑛𝑒𝑤 =
𝐿𝐽 − |𝑑| − 𝑟

2
 

c𝑛𝑒𝑤 = c𝐽 +
𝐿𝐽 + |𝑑| + 𝑟

2
sign(𝑑). l𝐽 

𝑁𝑛𝑒𝑤 = 0 

l𝑛𝑒𝑤 = l𝐽       (13) 
 
On the other hand, if 𝐿𝐽 − |𝑑| − 𝑟 < 𝑟, then the new micro-cluster is 𝒮ℳ𝑛𝑒𝑤 

with parameters {c𝑛𝑒𝑤, 𝑁𝑛𝑒𝑤} from equation (13). Figure 20 shows the result of 
removing a null micro-cluster and the diagram for calculating the new parameters. 
The null micro-cluster is depicted as shaded area. When the null micro-cluster is 
removed, 𝒞ℳ𝐽 is broken into two parts. The longer part is 𝒞ℳ𝐽 while the shorter 
part is 𝒞ℳ𝑛𝑒𝑤. We set 𝒞ℳ𝑛𝑒𝑤 as a blank cylindrical micro-cluster with 𝑁𝑛𝑒𝑤 = 0. If 
no data point is added into this micro-cluster, it will be excluded from determining 
the final clusters.   

The process for clustering and removing destructors in a cylindrical micro-
cluster is summarized in lines 9-18 in Algorithm 2. 
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Figure 19 The result of removing a null micro-cluster inside a cylindrical micro-
cluster and calculating parameters of 𝒞ℳ𝐽 . The upper image is the situation before 
removing the null micro-cluster shown in shaded area. The lower image is the result 
of removal and new parameters of both micro-clusters. 

 
Note that during micro-clustering process, the centers of spherical micro-

clusters can move from their original positions through parameters update. As a 
result, some data points might lie outside their possessive micro-clusters. If these 
data points are constructors, there would not be a problem because our micro-
clustering method, which is based on the coverage of micro-cluster, would not assign 
very far apart points into the same micro-cluster. As a result, micro-clusters would 
not move too far from their original locations. Moreover, since clustering reflects the 
collective behavior of data points, it can tolerate individual slight inaccuracies. Small 
samples of data outside micro-clusters do not have significant impact on the 
configuration of the resulting clusters.  
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For the case of destructor, due to changes in the configuration of micro-
clusters, some destructors might not necessarily be assigned to the same micro-
cluster to which their counterpart constructors belong. However, this would not be a 
problem as well because we can ensure that at least it must be assigned to the 
nearby micro-cluster. When there are significant number of destructors, the collective 
behavior would be reflected by the relevant micro-clusters despite some small 
inaccuracies during the micro-clustering. 
 
3.4 The complexity of HCMstream 

In this section, the computational complexity of the algorithm is analyzed. 
Let |𝓒| be the number of cylindrical micro-clusters, and |𝓢| be the number of 
spherical micro-clusters. During micro-clustering process, when a datum is assigned to 
a micro-cluster, computing the distances from the datum to all micro-clusters takes 
the following time complexity.  

O(|C|)+O(|S|)  

After micro-clustering during the merging process the algorithm, the time 
complexity of computing the distances from 𝒮ℳ𝐾 to all other micro-clusters is equal 
to 

O(|C|)+O(|S|)  

 
Thus the total time complexity is  

O(|C|)+O(|S|) <O(|M|) 

where |M| is the total number of micro-clusters. This algorithm operates in linear 
scale of the number of micro. 
 
3.5 Experimental results 

 
Two sets of experiments were conducted to evaluate the performance of the 

proposed algorithm with respect to the other state-of-the-art algorithms. The first set 
of the experiments was performed with synthetic data sets in 2-dimensional featured 
spaces. The aim of this set of experiments is to illustrate how micro-clusters and 
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clusters are formed in HCMstream, compared with other algorithms. Furthermore, we 
varied the parameters of the algorithms to show the resulting clusters of each 
algorithms. 

The second set of experiments used real data sets in a high dimensional 
featured space. Since these data sets are too complicated to visualize, we used 
many well-known similarity measures often used in evaluating clustering results, 
including normalized mutual information matric (NMI) [21], Rand index (RI) [21, 22], 
Adjusted Rand index (AR) [23] and Hubert's index (HI) [23].    

When comparing the clustering performance of HCMstream with other 
algorithms, all incoming data must be a constructor, because the function of 
unscheduled record removal is not available in other algorithms. In algorithms which 
allow fading weight of old records such as DenStream and D-Stream, we disabled this 
feature, so that their clustering performance can be compared with that of 
HCMstream. Moreover, to make the comparison clearer, we slightly modify the 
parameters of DenStream and D-Stream so that they used the same parameters as 
those of HCMstream. 𝑛𝑝 was used as the threshold for determining dense local 
clusters. 𝑟 was the parameter for determining the size of the micro-cluster. For D-
Stream, since it uses hyper-cubical grids for primary clustering, to make 𝑟 equivalent 
to that used in HCMstream, each edge of the grids in D-Stream was set at 2𝑟. 
 
3.5.1 Experiments with synthetic data 
 

We used two synthetic data sets in this set of experiments. The first data set 
consists of 5300 two-dimensional data points with three clusters as shown in Figure 
20. This data set was used to illustrated the influence of the parameters on the 
clustering results as well as how micro-clusters and clusters were formed. The 
clustering results of HCMstream were compared with those of DenStream and D-
Stream. 
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Figure 20 Two-dimensional raw data. 
 

The second data set consisted of two-dimensional data points forming six 
clusters including convex and non-convex ones with varying densities. Moreover, 
some 7% additional amount of data were uniformly and randomly generated as 
noise to the original data set as shown in Figure 21. 

 
Figure 21 Synthetic data set with non-convex clusters and noise. 
 
 
3.5.2 Synthetic Data Sets without Noise 
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The numbers of micro-clusters and the numbers of clusters were compared 
among the three algorithms as shown in Table 1. The parameters (𝑟, 𝑛𝑝) were set at 
(0.35,5) and (0.5,10) respectively. The clustering results with different values of 𝑟 are 
illustrated in and, respectively.  

DenStream uses the variance of data points assigned to each micro-cluster as 
the effective radius of that micro-cluster. The effective radius is usually less than the 
actual radius for a micro-cluster to cover all data points assigned to it. As a result, 
compared to the micro-clusters in HCMstream which cover all data points assigned 
to them, micro-clusters in DenStream can be considered as being shrunk. Due to this 
shrinkage, micro-clusters that are closed together are less likely to connect with each 
other, leading to more fragments of clusters in DenStream as shown in Figure 22b 
and Figure 23b. From Table 1 although micro-clusters produced by DenStream in 
both cases were not more than those of HCMstream, DenStream could not recognize 
the three clusters correctly.  

When 𝑟 = 0.35, D-Stream also failed to recognize the three clusters as well. 
Since grids in D-Stream are not allowed to move, each grid cannot re-adjust its 
position according to actual data inside. In some unfortunate situations, they can 
incorrectly join two separated clusters. In contrast, HCMstream allows the adjustment 
of the centroids of micro-clusters. Micro-clusters obtained from HCMstream can re-
adjust their original positions toward the area where data points are more 
concentrated, leading to less incorrectly joining separated clusters. 

HCMstream can recognize the three clusters correctly. Table \ref{tab:vary_np} 
shows the clustering results when 𝑛𝑝 is varied. When 𝑛𝑝 was larger than 30, 
HCMstream failed to recognize the three clusters. This results from the fact that 
when the threshold for dense micro-cluster 𝑛𝑝 is larger, more micro-clusters are 
excluded from the clustering process, leading to more fragments of clusters. When 
𝑟 = 0.5 and 𝑛𝑝 = 5, HCMstream  could find only two clusters because micro-
clusters around the border of different clusters  became connected with each other. 
However, when 𝑛𝑝 was larger, these micro-clusters were excluded from the 
clustering process. Consequently, HCMstream could correctly recognize the three 
clusters when 𝑛𝑝 was between 10 to 30.  
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Figure 22 Clustering results of three algorithms with parameters 𝑟 = 0.35 and 𝑛𝑝 =

5.  
 

 
Figure 23 Clustering results of three algorithms with parameters 𝑟 = 0.5 and 𝑛𝑝 =

10. 
 
Table 1 The comparison of clustering results of 2-dimensional synthetic data 
obtained from HCMstream, DenStream,and D-Stream. 

 
 
Table 2 Clustering results of HCMstream with varying 𝑛𝑝, when 𝑟 = 0.35 and 0.5. 
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Table 3 Clustering results of HCMstream with varying 𝑟. 

 
Table 3 shows the influence of 𝑟. At 𝑟 =0.65, micro-clusters at the border of different 
clusters were so large that they become connected with each other, forming a single 
cluster as discussed before. As a result, HCMstream found only 2 clusters. 
 
3.5.3 Synthetic Data Sets With Noise 
 
The clustering result of HCMstream is shown in Figure 24a with parameters 𝑟 = 0.5 
and 𝑛𝑝 = 8. As micro-clusters of DenStream generated more than ninety final 
clusters, we do not present the result of DenStream here. Figure 24Figure 24 
Synthetic data set with more complicated clusters. 
 
b shows the clustering results from D-stream. For D-stream,  𝑟 and 𝑛𝑝 were set at 
0.35 and 8 respectively from trial-and-error process so that the resulting clusters are 
as closed to the correct clusters as possible. 

Figure 25 shows the numbers of micro-clusters and number of clusters 
produced from HCMstream and D-Stream. HCMstream yielded micro-clusters three 
times less than D-Stream. Moreover, while HCMstream correctly detected seven 
clusters, D-stream failed to combine the cluster represented by blue asterisks and 
the cluster represented by red circles into one cluster.  
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Figure 24 Synthetic data set with more complicated clusters. 
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Figure 25 Number of micro-clusters and number of clusters produced by HCMstream 
and D-stream. 

The process of removing destructors in HCMstream was tested with this data 
set. The clustering result prior to the removal of destructors is shown in Figure 24. 
After removing the destructors, the resulting final clusters are shown in Figure 24b. 
Note that the possessive cluster of destructors was split into two clusters, one in 
blue and another one in magenta.  

  
Figure 26 Removing data records. 
 
3.5.4 Experiments with Real Data Sets  
 

Four public real data sets were used as benchmarks for comparing the 
clustering results of HCMstream with other algorithms, two of which were KDD cup 
99 and Forest cover type from UCI Machine Learning Repository [26] which have 
been widely used  as standard validating data sets for clustering streaming data. The 
descriptions of the four data sets are shown below. 
 

 KDD cup 99 is a series of TCP connections categorized as normal or other 
22 attack connections. There are 23 classes, out of which three classes 
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represent more than ninety percent of all records. Each record consists of 
42 features, of which 34 are continuous and 8 are categorical.  

 Forest cover type data set is the observations of actual forest cover types 
in 30×30 square meter cell with independent 54 cartographic variables 
including 44 qualitative binary variables and 10 quantitative variables. The 
cover type consists of 7 classes. 

 Hopkins 155 data set is a benchmark for motion segmentation [27]. The 
data set consists of the coordinates of tracked points of the moving objects 
in video frames.  The tracked points of the same object are labeled as the 
same class. We used the sequence in the file 2T3RCTP_truth.mat which is 
the sequence of three objects where one object is fixed, another is 
translating, and the other object and the camera are rotating. There are 
totally 24 frames in the data set with 470 tracked points. The coordinates 
are recorded in X-, Y-, and Z- axes. As a result, the data set consists of 470 
records with 3×24=72 variables in each record.  

 Iris data set contains 150 instances with 4 independent variables. The 
records are categorized into three classes of 50 points each. One class is 
clearly separated from the other two classes which are connected together 
to form a single cluster. As a result, though there are three classes in the 
data set, it contains only two clusters.  This data set will be used in testing 
the function of data records removal, so that it is easy to visualize the result 
of the algorithm.  

 
All features of the data sets were normalized to have value between 0 to 1. 

For each data set, the order of data was randomly shuffled and tested with the 
algorithms. The average results from ten repetitions were reported. For KDD 99 cup 
and Forest cover type data sets, 100,000 first records were used in the experiments. 
For Hopkins 155 data set, all 470 records were used. 
 
3.5.5 Experiments on Clustering Performances 
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The clustering results of five algorithms, namely DenStream [9], D-Stream [12], 

ExCC [13], hierarchical agglomerative clustering for streaming data proposed by Tu et 
al. [5] which will be shortened as HAC, and K-mean clustering, were used to 
compared with HCMstream. HCMstream is most similar to DenStream in terms of 
density-based clustering concept. Furthermore, the idea of spherical micro-clustering 
in HCMstream was adopted from DenStream. As a result, DenStream was chosen to 
comparewith our algorithm to show the improvement on clustering results of our 
algorithm.  

D-Stream was chosen because its clustering process is very similar to that of 
DenStream excepting that instead of using micro-clusters, D-Stream uses grids in 
primary local clustering. ExCC is the derivative of D-Stream. These two algorithms are 
essentially the same in clustering process, excepting that ExCC automatically 
calculates the threshold of dense grid rather than requires users to provide it as a 
parameter. Other algorithms that use idea totally different from HCMstream were 
also used for comparison. HAC uses hierarchical clustering which requires the number 
of clusters as an input parameter. We set it equal to the number of classes in each 
data set. The classic K-mean method was used as a benchmark algorithm. The 
number of clusters for K-mean method was set as the number of classes, same as 
that of HAC. The clustering results of KDD, Forest cover and Hopkins 155 are shown 
in Table 4 KDD cup 99 data set., Table 6, and Table 8, respectively. Note that 
excepting K-mean clustering, all algorithms chosen here can process arbitrary-shape 
clusters. Some recent algorithms such as HECES or eVQ-AMS were not used in 
benchmarking here because they cannot recognize non-convex clusters. 

For KDD cup 99 data set in Table 4, HCMstream outperformed all compared 
algorithms in all four performance indices.  In terms of the number of micro-clusters, 
it produced less micro-clusters than DenStream and D-stream. The fact that K-mean 
did not perform well indicated that the clusters of this data set were not in spherical 
shape. This implies that any clustering algorithm allowing clusters with arbitrary 
shape may produce better results. Note that the number of micro-clusters and the 
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number of clusters were not integer because the average results of ten repetitions 
were showed in the table.  

For Forest cover type data set, HCMstream did not show obvious 
improvement over other algorithms in terms of performance indices. HCMstream 
produced less micro-clusters than D-Stream and ExCC, but almost equal to 
DenStream. Note that the overall performances of this data set were comparatively 
lower than those of the other two data sets. This indicated that the data in the same 
class did not form very homogeneous clusters. Rather, they scattered over several 
clusters leading to less degree of homogeneity.  

For Hopkins 155 data set in Table 8, HCMstream outperformed other 
algorithms in terms of NMI, AR, RI, and HI. The number of micro-clusters of 
HCMstream was not obviously smaller than that of  D-steam as in the two previous 
data sets because we set the parameter 𝑟 of D-Stream at 0.35 while 𝑟 in HCMstream 
was 0.25.     

The clustering results of varying 𝑛𝑝 were shown in Table 5 and Table 7. For 
KDD cup 99 data set, when 𝑛𝑝 increased, the number of clusters did not increase, 
indicating that in this range, there was no cluster fragments resulting from micro-
clusters in the same cluster being excluded from the clustering process as discussed 
earlier. For Forest cover type data set, that the numbers of micro-clusters were 
approximately the same as those of final clusters indicated that micro-clusters were 
quite separated from each other. Many clusters were formed by a single micro-
cluster as seen from the fact that when 𝑛𝑝 increased, the number of micro-clusters 
and the number of clusters went down together. As the dimensionality of Forest 
cover type is larger than that of KDD cup 99, its data points are more sparse, resulting 
in micro-clusters being more separated. 

Note that although DenStream did not perform well with 2-dimensional 
synthetic data sets, its performances were acceptable with high dimensional data 
sets. This indicates that the micro-clustering method based on the variance of micro-
cluster is not efficient in low-dimensional space. However, in high dimensional space, 
data are so sparse that the micro-clusters are not highly connected with each other 
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as in the case of low dimensional space. Therefore, the issue of fragmented clusters 
in DenStream did not cause significant drawback here. 
 
Table 4 KDD cup 99 data set. 

 
 
Table 5 KDD cup 99 data set varying 𝑛𝑝. 

 
 
Table 6 Forest cover type data set. 

 
 
Table 7 Forest cover type data set varying 𝑛𝑝. 

 
 
Table 8 Hopkins 155 data set 
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3.5.6 Experiments on Removing Destructors 
 

Although Iris data set contains three classes, two of which, namely Iris 
Versicolour and Iris Virginica, are connected to each other, usually leading to 
incorrect clustered points between these two classes. In this experiment, full data 
set was clustered first to determine how many clusters HCMstream could find. Then, 
we removed data points located between these two classes that caused difficulty in 
clustering and determined if the algorithm could discover three clusters correctly. 

In removing points between the two classes, we used K-mean algorithm with 
𝑘 = 3. Mistaken points between these two classes, which were points belonging to 
class 2, but being mistaken as belonging to class 3 and vice versa, were marked as 
destructors. As a result, our data set consisted of 150 original data, with order 
randomly reshuffled, being set as constructors and 18 destructors obtained from this 
process, totally 168 points. 

After clustering 150 constructors, HCMstream discovered two clusters as 
shown in Figure 27a which shows the resulting clusters of 150 original data points as 
two dimensional plot projected on the second and the fourth attributes of Iris data. 
The algorithm yielded two clusters shown in blue and red. When the destructors 
were processed, the original blue cluster was split into two clusters depicted in blue 
and black as shown in b. 
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Figure 27 Testing removal of data with Iris data set. 

 
When orders of constructors and destructors were randomly rearranged, at 

which constructors appeared before destructors, the average performance indices of 
ten repetitions are shown in Table 9 in comparison with those of D-Stream and K-
means. Note that the order of incoming data can affect the clustering results in 
HCMstream which uses micro-clusters to capture the local statistics of data. When 
the size of data set is small, with different orders of incoming data, the pattern of 
micro-clusters can vary, leading to different clustering results. The effect of different 
orders of data set is mitigated when the volume of data set is large because local 
statistics of data set become more stable due to the law of large numbers, leading 
to similar pattern of micro-clusters from the same stream in different orders. 

In this case, since the size of data is relatively low (150), the clustering results 
varied with different orders of the incoming data. Even though the algorithm could 
not correctly find 3 clusters in all repetitions, the performance indices of HCMstream 
were slightly higher than those of K-means algorithm. Note that due to small data 
size, K-means algorithm could not yield consistent clustering results as well, as seen 
from the fact that despite removing the incorrectly clustered points based on K-
means, the algorithm still could not yield one hundred percent correct results. For 
D-Stream, although the performance indices were highest, it incorrectly found 4 
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clusters due to the fragments of the cluster representing data points in class Iris 
Virginica. 
Table 9 Comparison of performance indices from the three algorithms on Iris data 
set after removing destructors. 
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Chapter 4 
Proposed algorithm 2: LLDstream 

 
4.1 Unsupervised localized linear discriminant analysis (ULLDA) 

The process of ULLDA is summarized in Algorithm 3. ULLDA requires three 
inputs, namely a reference point x, a set of the centers of all clusters ℭ, and the  
number of nearest clusters 𝑛𝑐. It returns the projection matrix V.  
At Line 1, we initialize an empty set 𝒩𝒞  and let V  be an identity matrix. As a result, 
for the first iteration, at Line 3 we calculate the distances of x and the centers of the 
clusters in the full-dimensional space.    

The set of nearest clusters 𝒩𝑛(𝑛𝑐) is determined in Line 4. As initially 𝒩𝒞 is 
an empty set, the algorithm would proceeds to Lines 6 and 7, resulting in the center 
matrix M̃ and a nonempty set 𝒩𝒞 for the second iteration. Next, the algorithm starts 
at Line 2 finding the projection matrix V. From the second iteration onward, the 
distances calculated in Line 3 would be the projected distances on V. The steps 
from Lines 2 to 8 are repeated until 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 is the subset of 𝒩𝒞. 
  



 

 

59 

 

Algorithm 3: ULLDA 
1 Initialize an empty set 𝒩𝒞 = ∅. Let V be an identity matrix. Go to Line 3. 
2 Perform the SVD of M̃  as M̃ = VSU𝑇. 
3 Compute the projected distance between x and all centers of clusters c𝑖 

as x'=V𝑇x and c𝒊
′=V𝑇c𝑖. 

4 Create 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 = {𝑖𝑑(1), … , 𝑖𝑑(𝑛𝑐)}, where 𝑖𝑑(𝑖) is the index of the 
𝑖𝑡ℎ nearest cluster of x. 

5 If 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 is not a subset of 𝒩𝒞  
6  𝒩𝒞 = 𝒩𝒞 ∪ 𝒩𝑛(𝑛𝑐)𝑛𝑒𝑤 

7  Obtain M̃ from 𝒩𝒞. 
8  Go back to Line 2   
9 EndIf   
10 Return  

 
ULLDA chooses relevant dimensions that maximally separate nearby clusters 

with respect to reference point x . However, in a new projected subspace, the set of 
𝑛𝑐 nearest clusters does not necessarily remain the same. As a result, in each 
iteration, the new nearest clusters are added into 𝒩𝒞, leading to new center vectors 
being added into M̃. In the last iteration, when no new neighboring clusters are 
added into 𝒩𝒞, the center vectors of all relevant nearby clusters are included in M̃. 
The subspace spanned by the columns of M̃  is the resulting projected subspace. 
 
4.2 The complexity of ULLDA 

 
 ULLDA consists of the iteration of two steps, namely finding 𝑛𝑐 nearest 

clusters in Line 4 and performing SVD of M̃ in Line 2. Let |ℭ| be the number of 
clusters, finding distance between x and all clusters and choose the 𝑛𝑐 nearest 
clusters take O(𝑛𝑐|ℭ|). The size of M̃ is at most 𝑑 × |ℭ| where 𝑑 is the number of 
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features. Usually for high dimensional data 𝑑 > |𝐶|, leading to O(|ℭ|2𝑑) for 
calculating SVD of  M̃ [28]. As a result, in each iteration, the algorithm takes 
 

O(|ℭ|2𝑑 + 𝑛𝑐|ℭ|) 

 
Since the term 𝑛𝑐|ℭ| ≪ |ℭ|2𝑑, equation O(|ℭ|2𝑑 + 𝑛𝑐|ℭ|) becomes O(|ℭ|2𝑑) With 
𝑖 iterations (which is usually unknown), the computation complexity of ULLDA for 
one point is  

O(𝑖|ℭ|2𝑑) 

 
4.3 LLDstream 

In this study, we use a spherical micro-cluster defined by two attributes, 
namely the center of a micro-cluster and the number of points assigned to that 
micro-cluster as  described in Definition 1 as follow. 
 
Definition 1: A micro-cluster denoted by ℳ = (c,𝑁) is  a cluster formed by a sphere  
with fixed radius 𝑟 whose center is at c. 𝑁 is the number of data points assigned to 
the micro-cluster. 

 
The radius of micro-clusters, 𝑟, is provided as an input parameter by the user. 

LLDstream uses a fixed radius sphere as a local model for grouping data points. Note 
that our objective is to assign an incoming datum to a micro-cluster defined by a 
sphere with fixed boundary, not to a cluster of data points whose boundary cannot 
be defined clearly. This allows us to disregard the actual distribution of data points 
inside the micro-clusters and treat each micro-cluster as a spherical cluster. In 
performing ULLDA, we can neglect 𝑆𝑤 and determine the projection matrix V directly 
from M̃.  

The algorithm of LLDstream [29] in online phase is shown in Algorithm 4. 
When a new datum x arrives,  ULLDA is performed at the location of x with micro-
clusters being regarded as local clusters.  Since  ULLDA requires the convergence of 
𝒩n, the obtained projection vectors do not depend much on the initial value of 
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nearest neighbors 𝑛𝑐. As a result, 𝑛𝑐 is set constant at 10 in this study. If the total 
number of clusters is less than 10, no dimension reduction is performed. The datum 
will be assigned to a micro-cluster in the original feature space. 

Let ℭ = {ℳ1, … ℳ|ℭ|}  be a set of micro-cluster where ℳ𝑖 denotes the 𝑖𝑡ℎ 
micro-cluster defined by (c𝑖,𝑁𝒊) The projection matrix V is obtained from ULLDA. 
Then, the projected distance between x and ℳ𝑖 on V, denoted by 𝑑V(x,ℳ𝑖), is 
calculated by 
 

𝑑V(x,ℳ𝑖) = ||V𝑇(c𝑖 − x)|| 

 
We determine whether point  x is assigned to an existing micro-cluster from 

the following condition. Let 𝐾 = argmin
𝑖

 𝑑V(x, ℳ𝑖), then the closest micro-cluster of 
point x is denoted by ℳ𝐾 . Point x is assigned to  ℳ𝐾 when the projected distance 
between  
point x and the center of  ℳ𝐾 is less than 𝑟, as 
 

𝑑V(x,ℳ𝐾) ≤ 𝑟 

 
where 𝑟 is the radius of the micro-cluster. 

If x is assigned to  ℳ𝐾 , the parameters of  ℳ𝐾 are updated in Line 8 as 
 

c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾 + x

𝑁𝐾 + 1
 

𝑁𝐾
𝑛𝑒𝑤 = 𝑁𝐾 + 1. 

 
 

If x cannot be assigned to ℳ𝐾 , a new micro-cluster ℳ|ℭ|+1 is created with 
 

c|ℭ|+1 =  x 
𝑁|ℭ|+1 =  1 

 



 

 

62 

Initially, there is no micro-cluster in the feature space; in other words, the set 
of micro-clusters ℭ  is empty. When a new data point x arrives, there is no nearest 
micro-clusters, hence, the algorithm performs the assignment in the original space by 
setting V  as an identity matrix. A new micro-cluster is generated in Line 10. 
The algorithm would keep generating new micro-clusters until there are sufficient 
micro-clusters to perform ULLDA. Then, the algorithm would start performing ULLDA 
at Line 2 on the next incoming datum. On the other hand, the user can choose to 
pre-generate initial micro-clusters using DenStream by setting aside some data points 
for generating the initial micro-clusters. 
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Algorithm 4: LLDstream Algorithm: online phase 

1 If |ℭ| ≥ 10 
2  Perform ULLDA at x as V =ULLDA(x, ℭ, 10) 
3 Else 
4  Assign x to a micro-cluster in the full dimensional space by setting 

V as  identity matrix. 
5 EndIf  
6 Calculate the projected distance between x and all micro-clusters in the 

subspace spanned by V using Equation 𝑑V(x,ℳ𝑖) = ||V𝑇(c𝑖 − x)||. 
7 If  𝑑V(x,ℳ𝐾) ≤ 𝑟 
8  Assign x to  ℳ𝐾 and update the parameters of  ℳ𝐾 according to 

Equations   c𝐾
𝑛𝑒𝑤 =

c𝐾𝑁𝐾+x

𝑁𝐾+1
  and 𝑁𝐾

𝑛𝑒𝑤 = 𝑁𝐾 + 1.   

9 Else   
10 Create a new micro-cluster ℳ|ℭ|+1 by c|ℭ|+1 =  x, and 𝑁|ℭ|+1 =  N 
11 ℭ = ℭ ∪ ℳ|ℭ|+1 

12 End 
 

When the request of final clusters from the user arrives, the algorithm 
operates in the offline phase. The density threshold 𝑛𝑝 is provided by the user. 
Micro-clusters with the number of assigned data greater than 𝑛𝑝 are taken into 
consideration in the offline phase while those with the number of data inside less 
than 𝑛𝑝 are regarded as outliers.  

LLDstream generates a cluster from a set of connected micro-clusters. Two 
micro-clusters ℳ𝑖 and ℳ𝑗 are connected if 
 

||c𝑖 − c𝑗|| ≤ 2𝑟 

 
4.4 The complexity of LLDstream 
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In the online phase, the bottleneck of LLDstream is in ULLDA which requires 
O(𝑖|ℭ|2𝑑)  for one data point. In the offline phase, determining pairwise distances 
among micro-clusters takes O(|ℭ|2). For large data set with the numbers of other 
features much less than the number of incoming data 𝑛, the complexity of 
LLDstream becomes O(𝑛). 
 
4.5 Experimental results 

All data sets used in this study were obtained from UCI Machine Learning 
Repository [26]. Two sets of experiments were conducted to evaluate the 
performance of LLDstream in comparison with other algorithms.  

The first set consisted of experiments with benchmark data sets for streaming 
data, including KDD cup 99, NSL-KDD, and Forest cover type data sets which have 
been widely used for evaluating stream data clustering algorithms in many previous 
studies such as [9], [30], and [14]. For KDD cup 99 data set, we used data from the 
file kddcup.data_10_.gz, which consists of 494,021 data instances with 41 features. 
Among 7 symbolic features out of all 41 features, we kept three binary-value 
symbolic features while the other four symbolic features which cannot be 
represented by binary data were removed. As a result, there are 38 features in this 
data set. NSL-KDD data set [31], which can be obtained from [31], is the refined 
subset of KDD cup 99, in which redundant records are removed. Moreover, the 
number of selected records from each difficulty level group is inversely proportional 
to the percentage of records in the original KDD data set, resulting in a more 
proportionately distributed data set. NSL-KDD consists of 125,973 instances with the 
same features as those in KDD data set. Each instance is labeled as either normal or 
anomaly. The preprocessing of NSL-KDD is performed in the same way as that of KDD 
cup 99. 38 out of 41 features were used in the experiments. For Forest cover type 
data set, out of 54 features, 10 quantitative features were used in the clustering 
while other 44 symbolic features were removed from the data set. In this set of 
experiments, state-of-the-art algorithms for clustering stream data, including 
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DenStream [9], HDDStream [30] and HPStream [14], were used to compare their 
clustering performances with the proposed algorithm.  

In the second set of experiments, we evaluated the performance of 
LLDstream in comparison with other clustering algorithms for non-streaming data, 
which used the whole data sets in clustering process, in contrast to  the one-pass-
and-throw-away clustering of LLDstream. 
 
4.5.1 Comparison with algorithms for streaming data 
 

In this set of experiments, to compare the clustering performance of the 
algorithms without the effect of fading data, the fading function of the micro-clusters 
was excluded from the algorithms. To determine the dynamic performance in 
clustering evolving stream, the sliding window model was adopted as in [7]. In this 
set of experiments, the parameters of LLDstream were set at r=0.1, np=15 for all 
data sets.  

In KDD cup 99 data set, the parameters of DenStream were set by trial-and-
error, then we chose the parameters yielding the best indices which were 휀 = 0.5 
and 𝛽𝜇 = 20;  those of HDDStream were set at (휀, 𝛽, 𝜇, 𝜋) = (0.2,5,30) according to 
[30], while HPStream used k=23, equal to the number of classes of the data set. In 
NSL-KDD data set, all parameters were set at the same values as those in KDD cup 
99 data set, excepting the number of clusters in HPStream which was set at 2 
according to the number of classes in the data set. In the experiments with Forest 
cover type data set, the parameters of HDDStream were (휀, 𝛽, 𝜇, 𝜋) = (0.2,5,8) 
according to [30] and the number of clusters in HPStream was 7. The parameters of 
DenStream were set at 휀 = 0.1 and 𝛽𝜇 = 10.     

Figure 28, Figure 29, and Figure 30 show the plots of four performance 
indices, namely NMI, AR, RI and HI for KDD cup 99, NSL-KDD, and Forest cover type 
data sets respectively. The time horizon for KDD cup 99 and NSL-KDD data sets was 
at 10,000 data instances, while that of Forest cover type data set was at 2,000. The 
reason we used the smaller window size in Forest cover type is that the pattern of 
clusters in this data set change over time more rapidly than that of KDD cup 99. If 
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the window size is too large, the performance indices of the algorithms would be 
very low. The performance indices were computed when the last datum of each 
window arrived. Table 10, Table 11 and Table 12 show the average clustering 
performances over the whole length of KDD cup 99, NSL-KDD, and Forest cover type 
data sets respectively.  
 
KDD cup 99 data set The comparison plots of performance indices are shown in 
Figure 28. The window size was set at 10,000 points. LLDstream outperforms other 
algorithms in all indices. Data during the 200,000 th  to 350,000 instances belong to a 
single class. To avoid division by zero in NMI and AR, we set the indices to be 1 when 
the clustering result is identical to the class label. LLDstream and other algorithms 
which adopt density-based clustering can detect the number of cluster correctly as 
1, leading to all indices reaching the value of 1. The number of clusters in HPStream 
was predefined at the number of classes, leading to the relatively low clustering 
performance during this period of time.  

For the comparative average performance indices shown in Table 10, 
LLDstream outperforms the comparing algorithms. Moreover, the performance 
indices of the density-based clustering algorithms, namely, LLDstream, DenStream, 
and HDDStream, are better than those of HPStream due to the fact that the number 
of clusters in HPStream was set at constant for the whole clustering process, while 
the actual number of clusters can vary during each time horizon. Since the density-
based clustering algorithms do not assume a fixed number of clusters, they can 
respond to the varying number of clusters in different intervals more accurately.  
 
Table 10 Comparative average performance indices with KDD cup 99 data set. 
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Figure 28 Comparison of clustering performance indices for KDD cup 99 data set with 
the time horizon of 10,000. 
 
NSL-KDD data set For NSL-KDD data set, LLDstream clearly outperforms the 
compared algorithms. Without the over-representative of some classes as discussed 
in [31], the average performance indices of NSL-KDD are lower than those of the 
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original KDD cup 99. This results from the fact that the performance indices of all 
algorithms in NSL-KDD were relatively consistent for the whole time horizons, unlike  
the performance indices from KDD cup 99 which become 1 during the 200,000 th to 
350,000 th instances.  Compared to Figure 28, the plots in Figure 29 show more 
uniform performance indices over the whole stream due to the removal of the 
redundant records and the re-arrangement of the point order.  

Note that in Table 10,  LLDstream slightly outperforms DenStream. However, 
in Table 11, LLDstream outperforms DenStream by more than 10 percent 
improvement on RI, while on NMI, AR, and HI, LLDstream makes almost 30 percent 
improvement. This results from the fact that in KDD cup 99 data set, during the 
200,000 th  to 350,000 th instances, both DenStream and LLDstream can correctly 
detect one cluster, leading to the same value of all performance indices as 1 for  this 
interval. Since this interval covers almost half of the clustering, the improvement of 
LLDstream becomes less distinct in the average performance indices. On the other 
hand, in NSL-KDD data set, there is no such an interval. As a result, the average 
performance indices can more clearly reflect the improvement that LLDstream 
made. 
 
Table 11 Comparative average performance indices with NSL-KDD data set. 
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Figure 29 Comparison of clustering performance indices for NSL-KDD data set with 
the time horizon of 10,000. 
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Forest cover type data set LLDstream did not outperform the compared algorithms 
much. The relatively low performance indices of all algorithms indicate that data in 
the same class of this data set do not form very clean clusters. Rather, each cluster 
consists of data from several class, leading to the low performance indices of all 
algorithms. Moreover, since the number of attributes in this data set is not very high, 
the benefit of dimension reduction in this data set might not be very obvious, as 
seen from the fact that the performance indices of LLDstream and DenStream are 
not significantly different. 
 
Table 12 Comparative average performance indices with Forest cover type data set. 
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Figure 30 Comparison of clustering performance indices for Forest cover type data 
set with the time horizon of 2,000. 
 

4.5.2 Comparison with algorithms for non-streaming data 
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The performance of LLDstream was compared with state-of-the-art algorithms 

for non-streaming data including DBSCAN [19], SNN [32], and PreDeCon [33]. In this 
set of experiments, we compared both clustering indices as well as computation 
time among these algorithms.  

As all algorithms are based on DBSCAN, DBSCAN was chosen as a based-line 
algorithm. Two parameters of DBSCAN are required from the user, including the 
neighborhood radius 휀 and the minimum number of points in 휀 -neighborhood 
𝑀𝑖𝑛𝑃𝑡𝑠.  

SNN is designed to handle high dimensional data by using share nearest 
neighbor for measuring similarity rather than some primary distance, such as 
Euclidean distance. Using secondary similarity measures based on share nearest 
neighbor improves the robustness of the algorithm, thus reducing the effect of 
irrelevant attributes [34]. The algorithm requires three parameters, neighborhood list 
size 𝑘, SNN radius 𝐸𝑝𝑠, and SNN density 𝑀𝑖𝑛𝑃𝑡𝑠.   

PreDeCon is a subspace clustering algorithm designed to cope with high 
dimensional data by using weighted similarity measure. In calculating distance, 
weighting coefficient of each feature is determined by the variance of 휀 -
neighborhood. Four parameters are required from the user including the number of 
preference dimension 𝜆, the variance threshold  δ, as well as the two parameters of 
DBSCAN, 휀 and 𝑀𝑖𝑛𝑃𝑡𝑠.  

The parameters in these algorithms were set by trial-and-error process, then 
the best results were reported. All features of the data sets were normalized to have 
value between 0 to 1. For LLDstream, the orders of each data set were randomly 
shuffled and tested with the algorithm. The average results of 10 repetitions were 
reported. For other compared algorithms, since their clustering is not one-pass-and-
throw-away method, the clustering results would remain the same regardless of the 
order of the incoming data. Table 13,  

Table 14, and Table 15 show the comparison of clustering performance 
indices from the compared algorithms. The parameters of LLDstream, SNN, DBSCAN, 
and PreDeCon are represented as (𝑟, 𝑛𝑝), (𝑘, 𝐸𝑝𝑠, 𝑀𝑖𝑛𝑃𝑡𝑠), (휀, 𝑀𝑖𝑛𝑃𝑡𝑠), and 
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(𝜆, 𝛿, 휀, 𝑀𝑖𝑛𝑃𝑡𝑠) respectively. We used the modules of SNN, DBSCAN, and PreDecon  
implemented in ELKI platform [35]. 
 
Table 13 Comparative performance indices with Image segmentation data set. 

 
 
Table 14 Comparative performance indices with Multiple features data set. 

 
Table 15 Comparative performance indices with Pen digits data set. 

 
 

The comparative tables show that LLDstream outperformed other algorithms 
in term of clustering performance indices, despite its one-pass-and-throw-away 
clustering scheme. These results confirm that LLDstream can also perform well in 
the non-streaming environment. In Landsat satellite data set, LLDstream, PreDeCon 
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and SNN achieved relatively higher performance than DBSCAN. This indicates that for 
this data set, algorithms that can exclude irrelevant features can operate more 
efficiently. Although PreDeCon and LLDstream both perform clustering in reduced 
dimension subspace, LLDstream outperformed PreDeCon in all data sets, supporting 
the argument that LDA subspace used in LLDstream is more efficient than the axis-
parallel subspace employed in PreDeCon.  

Note that although the parameters 휀 and 𝑀𝑖𝑛𝑃𝑡𝑠 of DBSCAN might seem 
similar to the parameters 𝑟 and 𝑛𝑝 of LLDstream, they are quite different. 휀 in 
DBSCAN indicates the distance in the original feature space while 𝑟 in LLDstream 
refers to the distance in the projected subspace. If we use the same values of 
parameters, the clustering results from the two algorithms can be totally different. 
Consequently, as seen from the comparison tables, the values of the parameters for 
the best performance indices of the two algorithms are different for all data sets. 
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Chapter 5 

CONCLUSION 

This dissertation presents two algorithms for clustering streaming data, 
namely HCMstream and LLDstream. The two algorithms adopt density-based 
clustering as the method in clustering incoming data while including incremental 
clustering to allow the algorithms to process the incoming data in one-pass fashion. 
Basically, one-pass clustering collect some statistics of the incoming data while 
discard the raw data in order to save memory space. The proposed two algorithms 
address differing constraints in order to deal with some different situations found in 
real applications.   

 HCMstream is designed to optimize memory storage by merging micro-
clusters together to form larger cylindrical micro-clusters. With cylindrical shape 
micro-cluster, the algorithm can maintain the compactness of the small micro-cluster 
while reduce the number of the micro-cluster, thus reducing the memory storage 
and the computation effort.  

Moreover, HCMstream can process unscheduled record removal, the feature 
of which most existing clustering algorithms for streaming data do not have. 
Processing unscheduled record removals allows the user to deal with more variety of 
data sets, such as the bank accounts which older data records are similarly important 
as the new data records. 

From the experimental results, we find that the algorithm generates less 
micro-clusters compared with other clustering algorithm for stream data. However, 
due to merging process, the algorithm requires longer computation time than 
DenStream. 

LLDstream is designed to deal with high-dimensional data sets. It incorporates 
dimension reduction process into clustering framework. The clustering process is 
performed in LDA subspace instead of the original feature space. Clustering data sets 
in LDA space, instead of the original space, allows LLDstream to process data with 
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more efficiency in the sense that irrelevant features which are not parallel to axis can 
be excluded from the computation.  

We performed two sets of experiments. In the first set, the clustering 
performance of LLDstream was compared with other clustering algorithms for 
streaming data. The comparative experimental results show that the algorithm 
outperformed other existing algorithms. In the second set of experiments, LLDstream 
was compared with other traditional clustering algorithms that use conventional data 
sets rather than streaming data sets. The results also confirm that LLDstream yields 
good clustering results with less computation time. 

However, in some data sets, LLDstream might not perform as efficient as 
traditional clustering algorithms. For example, LLDstream is not very efficient when 
process data sets having small data instances with large features. In this situation, 
LLDstream would take longer computation time due to its bottle neck in performing 
SVD. 
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