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Chapter 1  

INTRODUCTION 

1.1 General 

The study of dynamic interaction between foundations and supporting soil 

medium has important applications in various civil engineering problems such as in the 

analysis and design of pavement, shallow and deep foundations. In the past, studies 

related to this dynamic interaction problem usually considered the supporting soil 

medium as a homogeneous elastic solid. However, geomaterials are often two-phased 

materials consisting of a solid skeleton with voids filled with fluid. These types of 

materials are commonly known as poroelastic materials, and are considered to be more 

realistic representation of soils and rocks than ideal elastic materials. In addition, 

natural soil profiles are generally layered in character. It is then more appropriate to 

consider the supporting soli medium as a multi-layered poroelastic half-space for this 

interaction problem. A review of literature indicates that dynamic interaction between 

rectangular plate and multi-layered poroelastic half-space has never been considered in 

the past. 

Dynamic response of a rectangular plate embedded in multi-layered poroelastic 

media is investigated in this thesis. The plate is assumed to be massless and rigid, and 

subjected to time-harmonic vertical, horizontal, and moment loading. The poroelastic 

medium under consideration consists of N layers of different thicknesses and material 

properties, and is governed by Biot’s poroelastodynamics theory. To investigate this 

interaction problem, the contact area between a rectangular plate and a poroelastic half-

space is divided into a finite number of small rectangular elements with uniform traction 

distribution. Nodal points are selected at the center of each element. An equation system 

is set up to determine the magnitudes of unknown contact traction at different nodal 

points by applying appropriate rigid body displacement boundary conditions. The 

influence functions, required to establish the flexibility equation system, correspond to 

the displacements of a multi-layered half-space subjected to uniform vertical and 

horizontal loads, of unit intensity, applied over each discretized sub-region. These 

influence functions are obtained by employing the exact stiffness matrix method. In this 



 

 

2 

method, the stiffness matrix for each poroelastic layer is derived explicitly by applying 

the double-dimensional Fourier transformation with respect to the horizontal 

coordinates. The global stiffness equation of the layered system is then obtained by 

considering the continuity of traction and fluid flow at each layer interface. The 

solutions of the flexibility equation system and the equilibrium of forces result in the 

solutions for compliances of a rigid plate. A computer program based on the proposed 

scheme has been developed, and the accuracy of the present solution scheme has been 

confirmed by comparing with various existing solutions. Selected numerical results are 

presented to demonstrate the influence of various parameters such as poroelastic 

material parameters, embedded depth, foundation aspect ratio etc., on the compliances 

of a rectangular plate. 

1.2 Objectives of Present Study 

The main objectives of the present study are given as follows : 

1. To develop an efficient numerial scheme to investigate the dynamic interaction 

between a rigid plate and a multi-layered poroelastic medium 

2. To investigate the influence of various parameters such as poroelastic material 

properties, frequency of excitation, embedded depths, length to width ratio of the plate 

on the compliances of rigid rectangular plate. 

1.3 Basic Assumptions 

This study is based on the following assumptions. 

1. Each layer of a multi-layered poroelastic medium is homogenous, and governed by 

Biot’s poroelastodynamics theory. All layer interfaces are assumed to be perfectly 

bonded, i.e. no separation occurs. 

2. The plate under consideration is assumed to be massless and rigid.  

3. The contact surface between a rigid plate and a poroelastic medium is assumed to be 

fully bonded and permeable. 
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Chapter 2  

Literature Reviews 

In the past, majority of previous researches considered the dynamic interaction 

between a rectangular plate and a supporting soil medium by modeling the soil domain 

as a single-phased elastic material. For example, Thomson and  Kobori (1963) 

determined the ground compliance of rectangular slab subjected to the horizontal shear 

and rocking motions. Luco and  Westmann (1972) studied the case of a rectangular strip 

bonded to the homogenous elastic medium. The coupled rocking and sliding responses 

of a rectangular plate is considered by Urlich and  Kuhlemeyer (1973), by employing 

the finite element method with the energy absorbing boundary. Wong and  Luco (1976) 

presented the harmonic response of rectangular foundation on elastic half-space by 

considering the vertical, rocking and horizontal motions. Luco and  Wong (1977) and 

Rüucker (1982) considered vibrations of rectangular foundations bonded to an elastic 

medium subjected to the horizontal excitation wave. Triantafyllidis (1986) studied the 

dynamic response of rigid rectangular foundation perfectly bonded to the soil medium 

by using the Bubnov-Galerkin method, in which the soil medium is modeled as a 

homogenous isotropic elastic half-space. The three dimensional response between a 

flexible plate and an elastic half-space was also investigated by Whittaker and  

Christiano (1982). Recently, the coupled finite element-boundary element (FE-BE) was 

employed to solve the dynamic response of rectangular raft foundations on an elastic 

half-space by Mandal and  Roychowdhury (2008). In addition, Amiri-Hezaveh et al 

(2013) investigated dynamic response of a rectangular plate resting on a multi-layered 

transversely isotropic elastic medium. 

Geomaterials often consists of two phases, i.e. solid and voids filled with water, 

and commonly known as poroelastic materials, and they are considered to be more 

suitable to represent soils and rocks than ideal elastic materials. Biot (1956 a,b) 

presented the classical theory of propagation of elastic wave in a poroelastic medium 

by adding the inertia terms to his quasi-static theory (1941). In the case of layered 

poroelastic media, Rajapakse and Senjuntichai (1995) developed an exact stiffness 

matrix method to study dynamic response of a multi-layered pororelastic medium under 
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a plane strain condition. The elements of a layer stiffness matrix are obtained 

analytically from the general solution of a homogenous poroelastic medium derived 

earlier by Senjuntichai and  Rajapakse (1994). A propagator matrix method was also 

employed by several researchers to study dynamic response of a multi-layered 

poroelastic medium (for example, Pan, 1999 and Zheng et al, 2013). In addition, 

dynamic response of a multi-layered poroelastic half-space under axisymmetric loading 

was also investigated by using transmission reflection matrix approach (Lu and Hanya, 

2005). 

The study of dynamic soil-structure interaction involving a poroelastic medium 

has also been considered by many researchers. Philippacopoulos (1989) studied the 

dynamic response of interaction between circular rigid disk and saturated multi-layered 

half-space. Veklich (1992) considered the resulting of the potential flow due to a plate 

on a half-space by using the virtual mass and virtual moment of inertia coefficient. The 

interaction problem was formulated by using a finite difference energy method, and the 

obtained results are compared with testing data. The impedance of rigid strip bonded to 

a layered medium was presented by Senjuntichai and  Rajapakse (1996) under time-

harmonic vertical, horizontal and moment loading. The analysis of a rigid disk 

embedded in a homogeneous poroelastic half-space under axisymmetric vertical 

loading can be found in the work of Zeng and  Rajapakse (1999), who employed the 

Hankle integral transform and a discretization technique. Dynamic interaction between 

a flexible circular plate and a multi-layered poroelastic half-space was later considered 

by Senjuntichai and  Sapsathiarn (2003). In the context of a rectangular plate, Halpern 

and  Christiano (1986) presented the vertical and rocking compliances of a rigid 

rectangular plate on a homogenous poroelastic half-space by using a discretization 

technique and Green’s functions. A review of literature indicates that dynamic 

interaction between a rectangular plate and a multi-layered poroelastic medium has 

never reported in the past. 
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Chapter 3  

Theoretical Consideration 

3.1 Basic Equation 

Consider a poroelastic medium with a Cartesian coordinate system  , ,x y z  

defined such that the z -axis is a perpendicular to the free surface as shown in Figure 1. 

Following Biot’s theory of a two-phased material (Biot, 1941), the constitutive relations 

for a homogenous poroelastic material can be written by using the indicial notation as 

2 , , , ,ij ij ij ije p i j x y z        (3.1) 

p Me M     (3.2) 

In addition the above equations, ij  is the total stress component of the bulk material; 

ij  and e  are the strain component and the dilatation of the solid matrix respectively; 

p  is the excess pore fluid pressure (suction is considered negative);  is the variation 

of fluid content per unit reference volume; ij  is the Kronecker delta;    and   are 

Lame’constants of the bulk material. In addition,   and M  are Biot’s parameters 

accounting for compressibility of a two-phased material. It is written that 0 1   and 

0 M   for all poroelastic materials. For a completely dry material, 0   and 

0M  . 

Let  , ,iu x y z  and  , ,iw x y z  be the average displacement of the solid matrix 

and the fluid displacement relative to the solid matrix, in the i  direction  , ,x y z , 

respectively. The equations of motion of a poroelastic material in the absence of body 

force (solid and fluid) and a fluid source can be written in terms of displacements iu  

and iw  as  (Biot, 1962) 

2

, , ,( )i jj i ji j ji i f iu M u Mw u w             (3.3) 

, ,j ji j ji f i i iMu Mw u mw bw      (3.4) 

where the superscript dot is used to represent the derivative with respect to the time 

parameter (t);   and f  are the mass densities of the bulk material and the pore fluid 
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respectively; m  is a density-like parameter that depends on f and the geometry of the 

pores. In addition, b  is parameter accounting for the internal friction due to  the relative 

motion between the solid matrix and the pore fluid. If the internal friction is neglected, 

then 0b  . 

 The motion under consideration is assumed to be time-harmonic with the factor 

of i te  ,where   is the frequency of the excitation and 1i   .The term i te   is 

henceforth omitted from all expressions for brevity. 

 The double Fourier integral transform of a function ( , , )f x y z  with respect to 

the horizontal coordinates x and y can be expressed as (Sneddon, 1951) 

( , , ) ( , , ) x yik x ik y

x yf k k z f x y z e dxdy

 
 

 

    (3.5) 

and the inverse relationship is given by 

2

1
( , , ) ( , , )

(2 )

x yik x ik y

x y x yf x y z f k k z e dk dk


 


 

    (3.6) 

In addition, the symbol 


 denotes the triple-dimensional Fourier transform. 

 The equation of motions, equations (3.3) and (3.4), can be solved by using a 

Helmholtz representation for a displacement vector and applying the double Fourier 

integral transform, given by equation (3.5). The general solutions for the solid and fluid 

displacements, pore pressure and  stresses can be expressed  as, 

1 1 2 2z z z z
p Ae Be Ce De

    
     (3.7) 

   

 

3 31 1 2 2

3 3

3
1 1 2 2

i
i

i

z zz z z z

x x

x

y z z

x

u k a Ae a Be a Ce a De Ee Fe
k

k
Ge He

k

    

 

  



      

 

 (3.8) 

  3 31 1 2 2

1 1 2 2i i i
z zz z z z

y yu k a Ae a Be a Ce a De Ge He
      

        (3.9) 

    3 31 1 2 2

1 1 2 2

z zz z z z

zu a Ae Be a Ce De Ee Fe
       

       (3.10) 

     3 31 1 2 2

1 2

z zz z z z

zw h Ae Be h Ce De Ee Fe
       

        (3.11) 
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   

 
   

1 1 2 2

3 3 3 3

1 2

2 2

3 3

i i

i i

z z z z

xz x x

x yz z z z

x x

g k Ae Be g k Ce De

k k
Ee Fe Ge He

k k

   

   

  

  

 

 

   


   

 (3.12) 

   

   

1 1 2 2

3 3 3 3

1 2

3

i i

i i

z z z z

yz y y

z z z z

y

g k Ae Be g k Ce De

k Ee Fe Ge He

   

   

  

  

 

 

   

   
 (3.13) 

     3 31 1 2 2

3 4 32
z zz z z z

zz g Ae Be g Ce De Ee Fe
       

       (3.14) 

where 

2 2 2 2 , 1,2i x y ik k L i      (3.15) 

2

1 1 22

1

4

2
L

   
  (3.16) 

2

1 1 22

2

4

2
L

   
  (3.17) 

2 2

2
, 1,2

( )

i f

f

ML
i i

M

  


   


 


 (3.18) 

2 2 2 2

1

( i )( 2 ) 2

( 2 )

fm b M M M

M

         


 

    



 (3.19) 

2 2 2 4

2

( i )

( 2 )

fm b

M

    


 

 



 (3.20) 

2 2 2 2

3 x yk k S     (3.21) 

 2

2 t fk
S

  




  (3.22) 

 2 2
, 1,2i i

i

i

a i
S L

   



  
 


 (3.23) 

2

1
, 1,2i i i

f t

h a i
k

 


 
    
 

 (3.24) 

2 , 1,2i i ig a i   (3.25) 

2

3 1 1 12g a       (3.26) 
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2

4 2 2 22g a       (3.27) 

In addition, (k , )x yA k  , (k , )x yB k   ,  ….  , (k , )x yH k  are the arbitrary functions to be 

established by using appropriate boundary and continuity conditions.  

3.2 Influence Functions 

An exact stiffness matrix describing the relationship between generalized 

displacement and force vectors of a finite layer and a half-space are derived explicitly 

in the Fourier transform space. The global stiffness matrix of a layered system is 

assembled by considering the continuity of traction and fluid flow at each layer 

interface. In this section, the method is extended from the technique successfully 

employed to investigate the dynamic response of a multi-layered poroelastic half-plane 

(Rajapakse and Senjuntichai, 1995). 

The general solutions in equation (3.7) - (3.14) can be expressed in the Fourier-

transform domain in the following matrix form as 

( , , ) ( , , ) ( , )x y x y x yk k z k k z k kv R c  (3.28) 

 ( , , ) ( , , ) ( , )x y x y x yk k z k k z k kf S c  (3.29) 

where 

( , , ) i i
T

x y x y zk k z u u u p   v  (3.30) 

( , , ) i i
T

x y xz yz zz zk k z w     f  (3.31) 

 ( , )
T

x yk k A B C D E F G Hc  (3.32) 

1 2( , , ) ( , , ) ( , , )x y x y x yk k z k k z k k z   R R R  (3.33) 

1 2( , , ) ( , , ) ( , , )x y x y x yk k z k k z k k z   S S S  (3.34) 

In addition, the superscript T  indicates the transpose of a vector or matrix. The arbitrary 

functions ( , )i x yA k k  to ( , )i x yH k k  appearing in ( , )x yk kc  can be obtained by employing 

appropriate boundary and continuity conditions. The matrices ( , , )i x yk k zR  and 

( , , )i x yk k zS , where 1,2i  , are given by  
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1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1

1 1 1 1 2 2 2 2

( , , , )

z z z z

x x x x

z z z z

y y y y

x y z z z z

z z z z

a k e a k e a k e a k e

a k e a k e a k e a k e
k k z

a re a re a r e a r e

e e e e

   

   

   

   



 

 

 

 

 
 
 

  
  

 
 

R  (3.35) 

3 3 3 3

3 3

3 3

3 3

2 ( , , , ) 0 0

0 0

0 0 0 0

y yz z z z

x x x x

z z

x y

z z

k kr r
e e e e

k k k k

k k z e e

e e

   

 

 



 





 
 

 
   
 
 
 
 

R  (3.36) 

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

1

3 3 4 4

1 1 2 2

( , , , )

z z z z

x x x x

z z z z

y y y y

x y z z z z

z z z z

g k e g k e g k e g k e

g k e g k e g k e g k e
k k z

g e g e g e g e

h e h e h e h e

   

   

   

   

   

   


 

 

 

 

  
 
  

  
 
   

S  (3.37)

   
3 3 3 3

3 3 3 3

3 3

3 3

2 2 2 2

3 3 3 3

2 3 3

3 3

( , , , )

2 2 0 0

0 0

x x y yz z z z

x x x x

z z z z

x y y y

z z

z z

k k k k
e e e e

k k k k

k k z k e k e e e

e e

e e

   

   

 

 

       

    

 

 

 

 





  
   
 
 

    
 
 
   

S   (3.38) 

Consider a multi-layered poroelastic medium consisting of N poroelastic layers 

overlying a poroelastic half-space as shown in Figure 1.The stress and displacement 

relationship at the top and the bottom surfaces of an n layer (n=1,2,3..,N) can be 

obtained as 

( )

( ) ( )

( )

( 1)

( , , )

.........................

( , , )

n

x y n

n n

n

x y n

k k z

k k z 

 
 

  
 
 

R

u c

R

 (3.39) 

( )

( ) ( )

( )

( 1)

( , , )

.........................

( , , )

 
 

  
 
 

- S

σ c

S

n

x y n

n n

n

x y n

k k z

k k z

 (3.40) 

where 
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( ) ( ) ( )

1( , , ) ( , , )
T

n n n

x y n x y nk k z k k z 
   u v v  (3.41) 

( ) ( ) ( )

1( , , ) ( , , )
T

n n n

x y n x y nk k z k k z 
   σ - f f  (3.42) 

In the above equation, ( )n
u denotes a column vector of generalized 

displacements for the thn  layer whose elements are the Fourier transforms of 

displacements and pore pressure at the top and bottom surfaces of the thn  layer. 

Similarly, ( )n
σ denotes a column vector of generalized forces whose elements are the 

Fourier transforms of traction and fluid displacements of the top and bottom surfaces 

of the thn  layer. 

The matrices 
( )n

R and ( )n
S  are identical to R  and S  defined in equation (3.33) 

to (3.38) except that the material properties of the thn  layer being used in the definition 

and nz z  or 1nz . The vector ( )n
c  is the arbitrary coefficient vector corresponding to 

the thn  layer. 

The equation (3.39) can be inverted to express ( )n
c  in terms of ( )n

u , and the 

substitution into equation (3.40) results in the following matrix equation. 

   ( ) n nn
σ =K u  (3.43) 

where  n
K  is an exact stiffness matrix in the Fourier transform space describing the 

relationship between the generalized displacement vector 
 n

u and the force vector ( )n
σ

for the thn  layer.The explicit expressions of all elements in 
 n

K  are given elsewhere 

(Yooyao, 2008). 

For the underlying half-space, the following relationship can be established, 

   1 1( 1) N NN  
σ =K u  (3.44) 

where 

( 1) ( 1)

1( , , )
T

N N

x y Nk k z 


   u v  (3.45) 

( 1) ( 1)

1( , , ) 


   σ f

T
N N

x y Nk k z  (3.46) 

 1

4 4.[k ]
N

ij xsymm


K =  (3.47) 
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It is noted that exponential terms of xk and 
yk  are not involved in the expression of 

 1n
K , and its elements depend on the material properties of the underlying half-

space and the Fourier transform parameters xk and yk . The elements of the stiffness 

matrix  1n
K  were also given explicitly by Yooyao (2008). 

The global stiffness matrix of a multi-layered half-space is assembled by using 

the layer and half-space stiffness matrices together with the continuity conditions of 

traction and fluid flow at the layer interfaces. For instance, the continuity conditions at 

the thn  interface can be written as 

( 1) ( ) ( )( , , ) ( , , )n n n

x y x yk k z k k z  f f t  (3.48) 

where ( )
f

n  is identical to f  in equation (3.31) with a superscript n denoting the layer 

number and 

( )
( ) ( ) ( ) ( )

T
n

n n n n z
x y z

Q
T T T

i

 
  
 

t  (3.49) 

In equation (3.49), ( ) ( , , )n

iT i x y z  is the Fourier transform of the loading in the i   

direction ( , , )i x y z applied at the thn interface. In addition, ( )n

zQ  is the Fourier 

transform of the fluid source applied at the thn  interface. If the thn  interface is not 

subjected to any external loading or fluid source then ( )n
t is a null vector. 

The consideration of equation (3.48) at each layer interface together with 

equations (3.43) and (3.44) result in the following global equation system. 

 

 

 

 

 (3.50) 

 

 

 

The global stiffness matrix shown in equation (3.50) is a well-conditioned 

symmetric matrix with a size equal to eight. The number of unknowns in the final global 

equation system is equal to 4( 1)N  . The solution of the equation (3.50) yields the 

 
 
 
 
 
 
 
 
 
 
 

(1)K

(2)K

( )K N

(1) (1)

(2) (2)

( ) ( )

( 1) ( 1)

u t

u t

u t

u t 

   
   
   
   

   
   
   
      

N N

N N
( 1)K N 
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Fourier transforms of the influence functions for analysis of interaction between a rigid 

plate and a multi-layered poroelastic medium. 

The influence functions, expressed in term of a semi-infinite integral, can be 

obtained by using the discretization technique [see Figure 2 (b)]. First, the contact 

surface under the plate is divided into a finite number of small rectangular areas. Nodal 

points are selected at the center of each discretized region. Each region is then subjected 

to uniform traction of unit intensity applied at the i  direction  , ,i x y z . The 

influence functions, which are required to establish the flexibility equation system for 

analysis of this interaction problem, are obtained from the displacements computed at 

each nodal point of discretized regions. The applied traction over a sub-region with the 

size of 2 2l w  and its nodal point located at a point  ,i jx y can be expressed as [see 

Figure 2 (b)], 

( , ) [ ( ) - ( - )][ ( ) - ( - )]i j i i j jT x y H x l H x l H y w H y w    (3.51) 

By applying the Fourier transform, equation (3.5), to the above equation, 

4sin( )sin( )
( , )

x y

x y

x y

k l k w
T k k

k k
  (3.52) 

where H  denotes the Heaviside function. 

3.3 Formulation of Interaction Problem 

Consider a rigid rectangular plate of size 2 2a A  bonded to a multi-layered 

poroelastic half-space illustrated in Figure 1. The plate is subjected to time-harmonic 

vertical, horizontal and rocking loading, respectively as shown in Figure 2 (a). The 

contact surface between a plate and a multi-layered medium is assumed to be fully 

permeable and the surface traction between the plate and the supporting medium is 

unknown. The displacements of the rigid plate can be expressed in terms of three 

translation components and three rotation components as, 

x x zu y    (3.53) 

y y zu x    (3.54) 

z z x yu y x      (3.55) 
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on ,x a y A  . In addition, ( , , )i i = x y z  corresponds to the displacement 

amplitudes at the center of area, i(i = x, y,z)  corresponds to the amplitudes of the 

rotation about the ,x y  and z -axes, respectively. These equations can be expressed in 

the matrix form as 

U    (3.56) 

where U  
T

, ,x y zu u u ,   
T

, , , , ,x y z x y z       and   is a 3 6 matrix, which 

can be expressed as, 

1 0 0 0 0

0 1 0 0 0

0 0 1 0

y

x

y x

 
 

 
 
  

 (3.57) 

The contact traction between the foundation and the supporting medium can be 

expressed in terms of the translations and the rotations of the rigid plate. The contact 

traction in the i  direction  , ,i x y z  at the contact interface between the plate and 

the supporting medium due to the applied loading are denoted by ,x yT T and zT  

respectively. The equations of equilibrium of forces applied to the rigid plate shown in 

Figure 2 (a) can then be expressed as,  

i i

A

F T dA (i = x, y,z)   (3.58) 

x z

A

M T ydA   (3.59) 

y z

A

M T xdA   (3.60) 

[ y]z y x

A

M T x T dA    (3.61) 

Consequently, the following relationship can be established 

TF T  (3.62) 

where F  
T

, , , , , x y z x y zF F F M M M  and T  
T

, , x y zT T T . In addition, the matrix   

is given by equation (3.57). 
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By using the discretizing technique outlined in the previous chapter, the 

influence Green’s functions, for determining the unknown traction, can be represented 

as 

 GT U  (3.63) 

where  

xx xy xz

ij yx yy yz

zx zy zz

G G G

G G G G

G G G

 
 

  
 
 

 (3.64) 

In view of equations (3.56), (3.62) and (3.63), the following relationship can be 

established 

 F K  (3.65) 

where K is a non-dimensional impedance matrix defined as 

K

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0



 
 


 
 
 

 
 
 
  

hh hm

hh hm

vv

mh mm

mh mm

tt

K K

K K

K
a

K K

K K

K

 (3.66) 

Finally, the response of rigid rectangular plate is characterized by the following 

non-dimensional compliance matrix,  

CF  (3.67) 

where 

C 

0 0 0 0

0 0 0 0

0 0 0 0 01

0 0 0 0

0 0 0 0

0 0 0 0 0



 
 


 
 
 

 
 
 
  

hh hm

hh hm

vv

mh mm

mh mm

tt

C C

C C

C

C Ca

C C

C

 (3.68) 

The matrix C  shown in the above equation is a 6 6 symmetric complex 

frequency-dependent compliance matrix. The methodology outlined in this chapter 

does not discuss an issue regarding the singularities of the contact traction along the 
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edge of the plate. Nevertheless, the evaluation of the compliance matrix should be 

accurate enough for practical applications. 
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Chapter 4  

Numerical Solution 

This chapter is concerned with the numerical results obtained from the solution 

scheme described in chapter 3. A computer program has been developed to investigate 

the dynamic interaction between a rigid rectangular plate and a multi-layered 

poroelastic medium. Both homogenous and multi-layered poroelastic media are 

considered. In addition, the vertical, horizontal, rocking, coupling and torsion 

compliances are determined by employing the numerical solution scheme outlined in 

the previous chapter. The convergence is discussed and the accuracy of the present 

solution scheme is verified by comparing with existing solutions. Numerical results 

are presented in this chapter to demonstrate the applicability of the present 

solution scheme and to portray the influence of various parameters on the 

compliances of the rectangular plate.   

4.1 Numerical Solution Schemce 

A computer program has been developed based on the procedure described 

previously to investigate the dynamic interaction problem between rigid rectangular 

plate and multi-layered poroelastic media. The tasks performed by the computer code 

can be summarized as: 

1. The contact area under the rectangular plate is divided into x yN N  square 

discretized regions as shown in Figure 2 (b). 

2. The influence functions are determined to establish the equation (3.63) for the 

determination of the unknown contact traction. 

3. The corresponding vertical, horizontal, rocking, coupling and torsion compliances of 

the rectangular plate are obtained.  

4.2 Numerical Results and Discussion 

4.2.1 Convergence of present solution. 

The convergence and accuracy of the numerical solution scheme are first 

investigated with respect to the number of elements, x yN N , used to discretize the 
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contact area [see Figure 3 (a)]. Figure 4 presents the convergence and accuracy of non-

dimensional vertical compliance of a rigid rectangular plate resting on the surface of a 

homogenous elastic half-space (Poisson ratio=0.333) by Wong and  Luco (1976) , for 

different values of x yN N . It appears from Figure 4 (a) that converged and accurate 

numerical results are obtained when 8 8  x yN N .  

Figure 4 (b) shows the convergence and accuracy of non-dimensional vertical 

compliance of a rigid circular disk resting on the surface of a homogenous poroelastic 

half-space. All length parameters in the numerical study are non-dimensionalized with 

respect to a half-width of rectangular plate, a, i.e., /x x a  , /y y a  , /z z a  . The 

normalized frequency is defined as /    a . In addition, the non-dimensional 

material properties are defined as /    , /  M M , /f f    , /m m    

and /  b ab . Note that the shear modulus and the mass density of the top layer, 

denoted by (1) and (1) , respectively, are employed in the normalization in the 

numerical results involving a multi-layered medium. 

The properties of poroelastic materials considered in Figure 4 (b) are as follows: 

* 2.3b  , 
* 1.0  , 

* 12.2M  , 
* 0.53f  , 0.97   and 

* 1.1m . It appears from the 

Figure 4 (b) that converged and accurate numerical results are obtained when 

8 8  x yN N . Note that the total number of elements in this case are reduced from 64 

elements to 52 elements to simulate the geometry of a circular disk as shown in the 

Figure 3 (b). 

4.2.2 Comparison with existing solutions 

The accuracy of the present solution scheme of interaction problem is validated 

by comparing the numerical results obtained from the present scheme with various 

existing solutions. 

 Figure 5 presents the comparison of numerical solutions corresponding to the 

profiles of displacements along the z -axis in a homogenous poroelastic half-space 

between the present solutions and the solutions given by Zheng et al (2013). The 

material properties of the poroelastic medium are 
* 1.0b   * 1.0  , 

* 2.0M  , 
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* 0.5f  , 0.90   and 
* 2.0m  . Both vertical and horizontal displacements under 

the vertical and horizontal loads applied at the level *z 1 are presented. It is evident 

from Figure 5 that very good agreement between the two solutions is obtained.   

Figure 6 (a) presents the comparison of the compliances of rigid rectangular 

plate resting on a homogenous elastic half-space with the Poisson’s ratio of 0.333 given 

by Wong and Luco (1978) . The vertical, horizontal, rocking and coupling motions are 

investigated. Figure 6 (b) presents the vertical compliances of a circular disk with fully 

permeable contact surface buried in different depths in a homogenous poroelastic half-

space considered by Zeng and Rajapakse (1999). The properties of poroelastic materials 

are * 2.3b , 
* 1.0  , 

* 12.2M  , * 0.53f  , 0.97   and 
* 1.1m  .  

The non-dimensional vertical compliance of a rigid disk is defined by 

  */ F / vv z z vvC C  in which z  is the vertical displacement of a rigid disk , zF  is the 

magnitude of vertical loading and 
*

vvC  is the vertical compliance of a circular disk 

embedded in an ideal elastic half-space under static loading. Note that 

 * 1 / 4  vvC a . The accuracy of the present solution scheme is once again 

confirmed through the comparisons shown in Figure 6. 

Figure 7 presents the traction profile of a circular disk resting on a homogenous 

poroelastic half-space by Senjuntichai and Sapsathiarn (2003). The surface traction is 

defined by * /z z zT T a F  . The contact traction profiles are presented along the radius 

of the disk. The number of elements  x yN N  equal to 9 9  and 17 17 , and the 

frequencies of    0.5 and 3.0 are considered. It can be seen the Figure 7 that shows 

good agreement between the two solutions are obtained when 17 17x yN N   . 

4.2.3 Dynamic response of a multi-layered poroelastic medium. 

The dynamic response of a multi-layered poroelastic medium subjected to the 

surface loading is considered in this sub-section as shown in Figure 8. The thickness of 

the top layer is equal to ‘a’. The properties of the top layer are different for five systems 

as shown in Figure 9, and there are identified in Table 1. The properties of the 

underlying half-space are identical to those of ‘MB’. The rectangular vertical and 

horizontal loading of uniform intensities 0p  and 0q  respectively applied over a square 
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area of 2 2  at the top surface are considered. In addition, the numerical solutions at 

the frequencies of    0.5 and 3.0 are evaluated. 

Figure 10 shows the variations of non-dimensional vertical displacement

(1)

0/ zz zzu a u p  along the top surface of the multi-layered half-space under the 

surface vertical loading. The parameter b  represents the internal friction between the 

solid matrix and the pore fluid. It can be observed that when the parameter b  increases, 

the magnitude of vertical displacement decreases as shown in the real part of the 

displacement. From *x   0 to 2 the vertical displacement changes rapidly. In addition, 

the magnitude of vertical displacement at low frequency is larger than that at high 

frequency, in which the displacement profiles show oscillatory variations with the 

horizontal axis. 

Figure 11 shows the variations of non-dimensional vertical displacement

(1)

0/ zx zxu a u q  along the top surface under the square horizontal loading. Naturally, 

the magnitude of the vertical displacement due to the horizontal loading is less than that 

under the vertical loading. The magnitude of vertical displacement is equal to zero at 

the center of loading, and reaches its maximum value at *x  1.0, Thereafter, it 

decreases rapidly when 
*x is located further away from the center of loading. The 

magnitude of vertical displacement at low frequency is larger than that at high 

frequency similar to what observed in the case of vertical loading. In addition, the 

displacement profiles, once again, show oscillatory variations with the horizontal axis 

at higher frequency. 

4.2.4 Dynamic interaction between rectangular plate and multi-layered poroelastic 

media 

In this sub-section, the dynamic interaction between a rigid rectangular plate 

and a multi-layered poroelastic medium is considered. The geometry of problem under 

consideration is shown in Figure 12.  The accuracy of the present solution scheme of 

this interaction problem is first verified by comparing with existing solutions. 

Two kinds of multi-layered poroelastic media are considered, i.e. two-layered 

and three-layered systems. For a two-layered system, a multi-layered poroelastic half-

space consists of one layer and an underlying half-space as shown in Figure 12. There 

are five cases under consideration for this two-layered system as shown in Figure 9. 
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The thickness of the first layer is fixed at 1h a  for all cases, and the material properties 

for each system are given in Table 1.  

For convenience, the modification of the contact condition is considered. The 

friction beneath the plate is neglected for the vertical loading, whereas, it is taken into 

account for the horizontal and the rocking motions. The compliances are thus defined 

as: 

/vv z zC a F     for the vertical compliance 

/hh x xC a F      for the horizontal compliance in x -direction 

3 /mm x yC a M   for the rocking compliance 

3 /hm z yC a M  for the coupling compliance 

3 /tt z zC a M     for the torsion compliance 

Figure 13 to Figure 16 illustrate the influence of the parameter b on the dynamic 

interaction between the rectangular plate and the two-layered systems. Figure 13 and 

Figure 14 show the vertical and horizontal compliances of the rigid plate respectively. 

Similar behaviors are observed for the vertical and the horizontal compliances. The 

vertical and horizontal compliances decrease as the frequency increases for all values 

of b . The parameter b  has a significant influence on the compliances since higher 

compliances are obtained as b  decreases. At low frequency, the abrupt decrease of both 

vertical and horizontal compliances was observed. More significant differences among 

different layer systems are observed in the vertical compliances than that in the 

horizontal compliances. 

Figure 15 and Figure 16 show the rocking and torsion compliances of a 

rectangular plate. Similar behaviors are noted for both compliances, and more 

significant influence are observed on the rocking motion.  Both compliances gradually 

increase with frequency before reaching to the maximum values when   1. The 

coupling compliances for different two-layered systems are also shown in Figure 17. It 

can be found that the parameter b  shows more significant influence in the case of the 

coupling compliances when compared to other compliances. 



 

 

21 

Next, the influence of the plate embedded depth (h/a) on the compliances is 

investigated. In this study, MC is chosen for the top layer and MB for the bottom layer. 

The embedded depth is varied as /h a = 0, 1, 2, and 5.  

Figure 18 and Figure 19 present the vertical compliance and the horizontal 

compliance of a rigid rectangular plate. It can be observed that when the embedded 

depth increases, the magnitude of the both compliances are decreased. At low frequency 

range  0 2  , both compliances decrease rapidly. The variation of vertical and 

horizontal compliances of a surface plate  / 0h a  is smooth for both real and 

imaginary parts. As expected, for embedded plates  / 1,2,5h a  , both compliances 

show oscillatory variations with   in both real and imaginary parts due to the effect of 

the standing wave generated between the free surface and the embedded plate as also 

noted by Zeng and Rajapakse (1999) and Senjuntichai and Sapsathiarn (2003). 

Figure 20 and Figure 21 present the rocking and the torsion compliances of a 

rigid plate at different depths of embedment. Figure 22 shows the coupling compliance 

due to the coupling between the horizontal and rocking motions. The variation of all 

compliances of a surface plate  / 0h a   with the frequency is smooth for both real and 

imaginary parts. However, for embedded plates  / 1,2,5h a  , both real and imaginary 

parts show oscillatory variations with frequency.  

 The vertical compliances of surface plates  / a 0h 
 
with different geometries, 

i.e. the ratios of /A a  are varied from 0.25 to 4, are presented in Figure 23. For a square 

plate, i.e. when /A a  is equal to 1.0, the number of elements x yN N = 88 is used. 

When /A a is equal to 0.25 and 4.0, the number of elements x yN N  = 2  8 is 

employed. In addition, x yN N =48 is considered for /A a  equal to 0.5 and 2.0. The 

number of elements used in each case is similar to what employed by Luco and Wong 

(1976). It should be noted that the ratio of /A a  is directly related to the plate stiffness 

as a larger plate can resist higher force than a smaller one. Vertical, horizontal and 

rocking compliances of rigid plates of various shapes are also presented in the Figure 

24 to Figure 26 respectively. Four types of rigid plates are considered, i.e. circular, 

square, rectangular and triangular shapes. Note that the dimensions of plates are chosen 
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such that the contact area between the plate and the poroelastic medium is 

approximately equal to four in all plate types. 

 Figure 27 presents the vertical compliances of rectangular plate with an internal 

square hole as shown in Figure 3 (c). The size of the hole is equal to 2 2d d . The ratio 

/d a  is taken into account and is varied from 0.25 to 0.75. It can be seen that the vertical 

compliance decreases rapidly in the range 0 2  . In addition, the influence of the 

opening is significant on the vertical compliance when the ratio /d a  is greater than 

0.25.  

Figure 28 presents the traction profile along the center line of a rigid plate 

resting on a multi-layered poroelastic medium. Various shapes of plates are considered, 

i.e. square plate, rectangular plates with and without a square hole. The contact area 

between the plate and the half-space is approximately equal to four in all plate types. 

The frequencies of    0.5 and 3.0 are considered. The number of elements ( )x yN N  

employed in the calculation is 17 17 . It can be seen from the figure that the traction 

around the central area of the plate is flat. The traction increases and reaches its 

maximum value at the edge of the plate. The traction under the rectangular plate with a 

square hole, however, shows different behaviors due to the presence of an internal hole. 

Thus, higher values of contact traction in this type of plates are found along both 

internal and external edges. 

The case of three-layered poroelastic systems are considered next. Two 

poroelastic layers and an underlying poroelastichalf-space as shown in Figure 29 

constitute a three-layered system. Two poroelastic layers of this system are identified 

as system PA, system PB and system PC. The material properties of three-layered 

system are given in Table 2. In addition, the parameter b  for the first and the second 

layers and underlying half-space of all systems are given in Table 3. For the system PC, 

which is a dry material, the required parameters are only   ,  and   for each layer.  

Figure 30 to Figure 32  present the vertical, horizontal, and rocking compliances 

of a rigid rectangular plate embedded  / 1h a 
 
in a three-layered system as shown in 

Figure 29. In addition, the thicknesses of the first and second layers are set to be equal 

to a  for all cases, and the material properties for each layered system are given in Table 

2 and Table 3. It can be observed from Figure 30 to Figure 32 that all compliances show 
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oscillatory variations with frequency. It is also observed that all compliance 

components decrease as the parameter b  increases. 

Figure 33 to Figure 35 present the influence of layer thickness on the 

compliance. The system PB is used to investigate this effect. The thickness of the first 

layer  1h  is set to be 1 / 1h a  , whereas the thickness of second layer  2h is varied, 

i.e. 2 /h a  1, 2, 5, 10, 20 and 25. The case of a two-layered system, i.e. one layer 

overlying on a homogenous half-space, is also shown for comparison. The material 

properties of the first layer are given in Table 2 and Table 3, whereas the properties of 

the underlying half-space are obtained from the second layer given in those tables. It 

can be observed that the vertical and horizontal compliances show more oscillations 

when 2 / 5h a   . As the thickness of second layer increases, the compliances of a three-

layered system approach those of a two-layered system, and both solution are identical 

when 2 / 25h a   for the vertical compliances and 2 / 20h a   for the horizontal 

compliances. For rocking compliances, the influence of layering under the foundation 

is negligible when thickness of the second layer is at least five times greater than the 

foundation width. 
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Chapter 5  

Conclusion 

The dynamic interaction between a rigid rectangular plate and a multi-layered 

poroelastic medium is investigated in this thesis. The contact surface between the plate 

and the supporting medium is assumed to be bonded and fully permeable. The plate is 

subjected to the time-harmonic vertical, horizontal and moment loading.  The cases of 

rectangular plates resting on the top surface and embedded in a poroelastic stratum both 

are under consideration in this study. The poroelastodynamic principle given by Biot 

and the discretization technique are employed. In addition, the exact stiffness matrix 

scheme is adopted to determine the influence functions required for analysis of this 

dynamic interaction problem. 

The convergence and accuracy of the present solution scheme with respect to 

x yN N are first studied. The convergence is found to be stable when xN   8 and 

yN  8 for a square plate. In addition, the accuracy of this present solution is also 

verified and confirmed by comparing with various existing solutions. 

Numerical results presented in Chapter 4 indicate that the interaction between a 

rigid rectangular plate and a multi-layered poroelastic medium is governed by several 

parameters. The parameter b  shows significant influence on the compliances of the 

plate since it directly relates to the permeability of a poroelastic medium. The excess 

pore pressure increases as the value of b  increases. The influence of parameter b  is 

more obvious in the cases of vertical and rocking compliances. The frequency of 

excitation also show significant influence on the plate response. All compliance 

components show oscillatory variations with higher frequency. In addition, the plate 

compliances also depend significantly on the embedded depth and the plate aspect ratio. 

The numerical solution scheme developed in this thesis can be extended to 

study more practical problems by considering the condition of impermeability 

at the plate-poroelastic-medium contact surface,  and the flexural rigidity of 

plate.  
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Table 1 Material properties of a homogenous poroelastic medium 

 *  
*  

*M  
†  

†
f
 

†m    b  

MA 2.0 2.0 24.4 2.0 1.06 2.2 0.97 6.32×102 

MB 2.0 2.0 24.4 2.0 1.06 2.2 0.97 1.45×106 

MC 2.0 2.0 24.4 2.0 1.06 2.2 0.97 6.32×106 

MD 2.0 2.0 24.4 2.0 1.06 2.2 0.97 6.32×107 

ME 2.0 2.0 - 2.0 - - - - 

* 8 210 /N m † 3 310 /kg m 4/N s m
 

 

 

 

Table 2 Material properties of a three-layered poroelastic medium 

 
*  *  

*M  
†  

†
f
 

†m    

First layer 
2.5 5.0 25.0 2.0 1.0 3.0 0.95 

Second layer 
1.25 1.88 18.8 1.6 1.0 1.8 0.98 

Half-space 
10.0 10.0 20.0 2.4 1.0 4.8 0.9 

* 8 210 /N m  † 3 310 kg/ m  

 

 

 

Table 3 Parameter b employed for different poroelastic systems 

 First layer, (1)b  Second layer, (2)b  Half-space, (3)b  

System PA 6.32x102 6.32x102 6.32x102 

System PB 1.5x106 7.5x106 4.5x106 

4/N s m  
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Figure 1 A rigid plate embedded in a multi-layered poroelastic half-space 
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(a) 

 

 

(b) 

Figure 2 A rectangular plate under loading; and discretization of contact area 
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(a) 
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(c) 

 

Figure 3 Discretization of plates: (a) rectangular plate; (b) circular plate; (c) 

rectangular plate with square hole 
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(b) 

Figure 4 Convergence and accuracy of present solution: (a) elastic half-space;            

(b) poroelastic half-space 
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(b) 

Figure 5 Comparison of displacements along the z -axis of homogenous poroelastic 

half-space under (a) horizontal loading; (b) vertical loading 
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Figure 6 Comparison of compliances for (a) elastic half-space; (b) poroelastic half-

space 
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Figure 7 Comparison of traction profiles along the radius of circular plate  
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Figure 8 A layered poroelastic half-space under surface loading  
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Figure 9 Five cases of two-layered systems considered in the numerical study 

 

  



 

 

37 

x
*

-4 -2 0 2 4

u
*

zz

-0.2

0.0

0.2

0.4

0.6

0.8

MA

MB

MC

MD

Real Part

=0.5

x
*

-4 -2 0 2 4

u
*

zz

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Imaginary part

 
(a) 

=3.0

-4 -2 0 2 4

u
*

zz

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

MA

MB

MC

MDReal part

x
*

x
*

-4 -2 0 2 4

u
*

zz

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

Imaginary part

 

(b) 

Figure 10 The vertical displacement along the x -axis due to the vertical loading: 

(a) 0.5  ;     (b) 3.0   
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(b) 

Figure 11 The vertical displacement along the x -axis due to the horizontal loading:  

(a) 0.5  ;     (b) 3.0   
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Figure 12 A rigid rectangular plate on a two-layered poroelastic system  
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(b) 

Figure 13 The vertical compliances for different layered poroelastic media 
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Figure 14 The horizontal compliances for different layered poroelastic media 
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(b) 

Figure 15 The rocking compliances for different layered poroelastic media 
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Figure 16 The torsion compliances for different layered poroelastic media 
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Figure 17 The coupling compliances for different layered poroelastic media 
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(b) 

Figure 18 The vertical compliances for different embedded depths  /h a   
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(b) 

Figure 19 The horizontal compliances for different embedded depths  /h a  
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(b) 

Figure 20 The rocking compliances for different embedded depths  /h a  
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(b) 

Figure 21 The torsion compliances for different embedded depths  /h a  
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Figure 22 The coupling compliances for different embedded depths  /h a  
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(b) 

Figure 23 The vertical compliances for different aspect ratios of plate  /A a  
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(b) 

Figure 24 The vertical compliances for plates of various shapes  /A a  

  



 

 

52 



0 1 2 3 4

C
hh

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Circular

Square

Rectangular

Triangular

Real part

 

(a) 



0 1 2 3 4

C
hh

0.00

0.02

0.04

0.06

0.08

0.10

0.12

-Imaginary part

  

(b) 

Figure 25 The horizontal compliances for plates of various shapes  /A a  
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(b) 

Figure 26 The rocking compliances for plates of various shapes  /A a  
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(b) 

Figure 27 The vertical compliances for rectangular plate with square hole  /d a  
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Figure 28 The traction profiles along the center line of plates  
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Figure 29 A rigid rectangular plate on a three-layered poroelastic system  
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(b) 

Figure 30 The verical comliances for different three-layered systems  
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(b) 

Figure 31 The horizontal comliances for different three-layered systems 
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(b) 

Figure 32 The rocking comliances for different three-layered systems 
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(b) 

Figure 33 The vertical compliances for different thicknesses of the second layer 

 2 /h a    
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(b) 

Figure 34 The horizontal compliances for different thicknesses of the second layer 

 2 /h a    
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(b) 

Figure 35 The rocking compliances for different thicknesses of the second layer 

 2 /h a  
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