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This thesis is concerned with dynamic interaction between a rectangular plate
and a multi-layered poroelastic medium. The plate is assumed to be massless and rigid,
and subjected to time-harmonic vertical, horizontal, and moment loading. In addition,
the contact area between the plate and the supporting medium is assumed to be fully
permeable. The poroelastic medium under consideration consists of N poroelastic layers
of different thicknesses and material properties, and each layer is governed by Biot’s
poroelastodynamics theory. The interaction problem is formulated by dividing the
contact area into a finite number of small rectangular elements with uniform traction
distribution. Nodal points are selected at the center of each element. An equation system
is formed to determine the magnitude of contact traction at the nodal points by imposing
appropriate rigid body displacement boundary conditions. The influence functions
required to establish the flexibility equation system correspond to the displacement of
a multi-layered half-space under vertical and horizontal loads of unit intensity. These
influence functions are obtained by employing the exact stiffness matrix method. A
computer program based on the present numerical scheme has been developed, and the
accuracy of the solution scheme has been confirmed by comparing with existing
solutions. Selected numerical results are presented to demonstrate the influence of
various parameters such as poroelastic material parameters, frequency of excitation,
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Chapter 1
INTRODUCTION

1.1 General

The study of dynamic interaction between foundations and supporting soil
medium has important applications in various civil engineering problems such as in the
analysis and design of pavement, shallow and deep foundations. In the past, studies
related to this dynamic interaction problem usually considered the supporting soil
medium as a homogeneous elastic solid. However, geomaterials are often two-phased
materials consisting of a solid skeleton with voids filled with fluid. These types of
materials are commonly known as poroelastic materials, and are considered to be more
realistic representation of soils and rocks than ideal elastic materials. In addition,
natural soil profiles are generally layered in character. It is then more appropriate to
consider the supporting soli medium as a multi-layered poroelastic half-space for this
interaction problem. A review of literature indicates that dynamic interaction between
rectangular plate and multi-layered poroelastic half-space has never been considered in
the past.

Dynamic response of a rectangular plate embedded in multi-layered poroelastic
media is investigated in this thesis. The plate is assumed to be massless and rigid, and
subjected to time-harmonic vertical, horizontal, and moment loading. The poroelastic
medium under consideration consists of N layers of different thicknesses and material
properties, and is governed by Biot’s poroelastodynamics theory. To investigate this
interaction problem, the contact area between a rectangular plate and a poroelastic half-
space is divided into a finite number of small rectangular elements with uniform traction
distribution. Nodal points are selected at the center of each element. An equation system
is set up to determine the magnitudes of unknown contact traction at different nodal
points by applying appropriate rigid body displacement boundary conditions. The
influence functions, required to establish the flexibility equation system, correspond to
the displacements of a multi-layered half-space subjected to uniform vertical and
horizontal loads, of unit intensity, applied over each discretized sub-region. These

influence functions are obtained by employing the exact stiffness matrix method. In this



method, the stiffness matrix for each poroelastic layer is derived explicitly by applying
the double-dimensional Fourier transformation with respect to the horizontal
coordinates. The global stiffness equation of the layered system is then obtained by
considering the continuity of traction and fluid flow at each layer interface. The
solutions of the flexibility equation system and the equilibrium of forces result in the
solutions for compliances of a rigid plate. A computer program based on the proposed
scheme has been developed, and the accuracy of the present solution scheme has been
confirmed by comparing with various existing solutions. Selected numerical results are
presented to demonstrate the influence of various parameters such as poroelastic
material parameters, embedded depth, foundation aspect ratio etc., on the compliances
of a rectangular plate.

1.2 Objectives of Present Study

The main objectives of the present study are given as follows :

1. To develop an efficient numerial scheme to investigate the dynamic interaction
between a rigid plate and a multi-layered poroelastic medium

2. To investigate the influence of various parameters such as poroelastic material
properties, frequency of excitation, embedded depths, length to width ratio of the plate
on the compliances of rigid rectangular plate.

1.3 Basic Assumptions

This study is based on the following assumptions.

1. Each layer of a multi-layered poroelastic medium is homogenous, and governed by

Biot’s poroelastodynamics theory. All layer interfaces are assumed to be perfectly
bonded, i.e. no separation occurs.

2. The plate under consideration is assumed to be massless and rigid.

3. The contact surface between a rigid plate and a poroelastic medium is assumed to be

fully bonded and permeable.



Chapter 2

Literature Reviews

In the past, majority of previous researches considered the dynamic interaction
between a rectangular plate and a supporting soil medium by modeling the soil domain
as a single-phased elastic material. For example, Thomson and Kobori (1963)
determined the ground compliance of rectangular slab subjected to the horizontal shear
and rocking motions. Luco and Westmann (1972) studied the case of a rectangular strip
bonded to the homogenous elastic medium. The coupled rocking and sliding responses
of a rectangular plate is considered by Urlich and Kuhlemeyer (1973), by employing
the finite element method with the energy absorbing boundary. Wong and Luco (1976)
presented the harmonic response of rectangular foundation on elastic half-space by
considering the vertical, rocking and horizontal motions. Luco and Wong (1977) and
Ruucker (1982) considered vibrations of rectangular foundations bonded to an elastic
medium subjected to the horizontal excitation wave. Triantafyllidis (1986) studied the
dynamic response of rigid rectangular foundation perfectly bonded to the soil medium
by using the Bubnov-Galerkin method, in which the soil medium is modeled as a
homogenous isotropic elastic half-space. The three dimensional response between a
flexible plate and an elastic half-space was also investigated by Whittaker and
Christiano (1982). Recently, the coupled finite element-boundary element (FE-BE) was
employed to solve the dynamic response of rectangular raft foundations on an elastic
half-space by Mandal and Roychowdhury (2008). In addition, Amiri-Hezaveh et al
(2013) investigated dynamic response of a rectangular plate resting on a multi-layered
transversely isotropic elastic medium.

Geomaterials often consists of two phases, i.e. solid and voids filled with water,
and commonly known as poroelastic materials, and they are considered to be more
suitable to represent soils and rocks than ideal elastic materials. Biot (1956 a,b)
presented the classical theory of propagation of elastic wave in a poroelastic medium
by adding the inertia terms to his quasi-static theory (1941). In the case of layered
poroelastic media, Rajapakse and Senjuntichai (1995) developed an exact stiffness

matrix method to study dynamic response of a multi-layered pororelastic medium under



a plane strain condition. The elements of a layer stiffness matrix are obtained
analytically from the general solution of a homogenous poroelastic medium derived
earlier by Senjuntichai and Rajapakse (1994). A propagator matrix method was also
employed by several researchers to study dynamic response of a multi-layered
poroelastic medium (for example, Pan, 1999 and Zheng et al, 2013). In addition,
dynamic response of a multi-layered poroelastic half-space under axisymmetric loading
was also investigated by using transmission reflection matrix approach (Lu and Hanya,
2005).

The study of dynamic soil-structure interaction involving a poroelastic medium
has also been considered by many researchers. Philippacopoulos (1989) studied the
dynamic response of interaction between circular rigid disk and saturated multi-layered
half-space. Veklich (1992) considered the resulting of the potential flow due to a plate
on a half-space by using the virtual mass and virtual moment of inertia coefficient. The
interaction problem was formulated by using a finite difference energy method, and the
obtained results are compared with testing data. The impedance of rigid strip bonded to
a layered medium was presented by Senjuntichai and Rajapakse (1996) under time-
harmonic vertical, horizontal and moment loading. The analysis of a rigid disk
embedded in a homogeneous poroelastic half-space under axisymmetric vertical
loading can be found in the work of Zeng and Rajapakse (1999), who employed the
Hankle integral transform and a discretization technique. Dynamic interaction between
a flexible circular plate and a multi-layered poroelastic half-space was later considered
by Senjuntichai and Sapsathiarn (2003). In the context of a rectangular plate, Halpern
and Christiano (1986) presented the vertical and rocking compliances of a rigid
rectangular plate on a homogenous poroelastic half-space by using a discretization
technique and Green’s functions. A review of literature indicates that dynamic
interaction between a rectangular plate and a multi-layered poroelastic medium has

never reported in the past.



Chapter 3

Theoretical Consideration

3.1 Basic Equation

Consider a poroelastic medium with a Cartesian coordinate system(x, y,z)
defined such that the z -axis is a perpendicular to the free surface as shown in Figure 1.
Following Biot’s theory of a two-phased material (Biot, 1941), the constitutive relations
for a homogenous poroelastic material can be written by using the indicial notation as

oy =2pe; + Ao —aop , 1, j=XY,1Z (3.1)

p=—aMe+M¢ (3.2)
In addition the above equations, o;; is the total stress component of the bulk material;
g; and e are the strain component and the dilatation of the solid matrix respectively;
p is the excess pore fluid pressure (suction is considered negative);¢ is the variation
of fluid content per unit reference volume; ¢; is the Kronecker delta; « and A are
Lame’constants of the bulk material. In addition, « and M are Biot’s parameters
accounting for compressibility of a two-phased material. It is written that 0 <« <1 and
0<M <o for all poroelastic materials. For a completely dry material, & =0 and

M =0.

Let U (X, y,z) and w, (x, y,z) be the average displacement of the solid matrix
and the fluid displacement relative to the solid matrix, in the i- direction(x,y,z),
respectively. The equations of motion of a poroelastic material in the absence of body
force (solid and fluid) and a fluid source can be written in terms of displacements u;
and w; as (Biot, 1962)

pU, s+ (A+M + U, +aMw, = pl; + p, i (3.3)

aMu; ; +Mw, ; = p, U +mvi; + by (3.4)
where the superscript dot is used to represent the derivative with respect to the time

parameter (t); o and p, are the mass densities of the bulk material and the pore fluid



respectively; m is a density-like parameter that depends on p, and the geometry of the

pores. In addition, b is parameter accounting for the internal friction due to the relative
motion between the solid matrix and the pore fluid. If the internal friction is neglected,
then b=0.

The motion under consideration is assumed to be time-harmonic with the factor

of e* ,where » is the frequency of the excitation and i:\/—_l The term e"* is
henceforth omitted from all expressions for brevity.

The double Fourier integral transform of a function f(x,y,z) with respect to

the horizontal coordinates x and y can be expressed as (Sneddon, 1951)

f(k,k,,2)= j j f(x,y,z)e " dxdy (3.5)

—00 —00

and the inverse relationship is given by

1
(27)°

[ [ Tk, 2)e™ ™ dk,dk, (3.6)

—00 —00

f(X! y,Z)=

In addition, the symbol ~ denotes the triple-dimensional Fourier transform.

The equation of motions, equations (3.3) and (3.4), can be solved by using a
Helmholtz representation for a displacement vector and applying the double Fourier
integral transform, given by equation (3.5). The general solutions for the solid and fluid

displacements, pore pressure and stresses can be expressed as,

p=Ae ™ +Be™* +Ce ”** + De’* (3.7)

0, =—ik (a,Ae 7 +aBe’ +a,Ce* +a, De“z)—ikﬁ(Ee“Z ~Fe’*)

X

ik (3.8)
——(Ge 7 + He'™ )
kX
U, =ik, (a,Ae ™ +a,Be’ +a,Ce 7" +a,De’” ) +iGe 7 +iHe’™ (3.9)
U, =a, (Ae ™ —Be")+a,y, (Ce 7" —De’ )+ Ee 7 + Fe™” (3.10)

W, =—h, (Ae7* —Be™ )—h, (Ce " —De’* ) - 9(Ee " + Fe'™” (3.11)

z



where

&, = ug,ik, (Ae " —Be™ )+ ug, ik, (Ce 7 — De'” )

u(ki+r)

Ee ™" + Fe’* )+
— )

X X

—ik::% (Ge‘hZ - He“z)

&, = ug,ik, (A" —Be™ )+ ug, ik (Ce”” —De’* )

yz

+ik, (B + e ) =iy (Ge 7 — He™ )

5,=0, (Ae’ylZ + Be712)+ g, (Ce’yZZ + De”z)—zmg(Ee%Z - FeW)

y24

=ki+ki+L i=12

Lf _ ﬁ1+’\/ﬂ12 _4132

2
LZ _ ﬂ1 _’\/ﬂf _4152
? 2
i IML - p,
piM o’ (a - 9)

=12

_ (Me* —ibw)(A +a’M +2u)+ pM @’ - 2aM p, »*
- M (A +2.1)

B

_ (mo® —ibw)po’ - piw’*
? M (4 +2.)

7 =K+

Szzktz(p_pf"g)
U
ai:ﬂ“)(i-i_:u/{i_a-i_lg ’i:112
u(s'-13)
h, —[ k2+ai];/il9 , 1=1,2
fht
g, = 2ay, =12

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
(3.26)



9, = ﬂ'lz - Zﬂa27/22 - (3-27)

In addition, A(k,,k,) ,B(k,.,k,) , .... , H(k,,k,) are the arbitrary functions to be

X!y
established by using appropriate boundary and continuity conditions.
3.2 Influence Functions

An exact stiffness matrix describing the relationship between generalized
displacement and force vectors of a finite layer and a half-space are derived explicitly
in the Fourier transform space. The global stiffness matrix of a layered system is
assembled by considering the continuity of traction and fluid flow at each layer
interface. In this section, the method is extended from the technique successfully
employed to investigate the dynamic response of a multi-layered poroelastic half-plane
(Rajapakse and Senjuntichai, 1995).

The general solutions in equation (3.7) - (3.14) can be expressed in the Fourier-

transform domain in the following matrix form as

V(K K, 2) = RO, K, 2)e(k, K,) (3.28)
f(K,.k,12) = S(k,.k,,2)o(k, k) (3.29)
where
v(k,.k,,2) = [ig iT, @, p| (3.30)
f(k.k,.2) = [i5, i5, 5, W,| (3.31)
ck,k) =[ABCDEFGH] (3.32)
R(k,.k,,2) =[Ry(K,.k,,2) i R,(k,.k,,2)] (3.33)
S(K,. K, 2) = [S,(K,. K, 2) i S,(k.K,,2) | (3.34)

In addition, the superscript T indicates the transpose of a vector or matrix. The arbitrary

functions A (k,,k

X1ty

) to H;(k,,k,) appearing in c(k,,k,) can be obtained by employing

appropriate boundary and continuity conditions. The matrices R;(k, .k, ,z) and

X1 Ny

S,(k,.,k,,z), where i=1,2, are given by

X1 Ny
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(3.35)

(3.36)

(3.37)

(3.38)

Consider a multi-layered poroelastic medium consisting of N poroelastic layers

overlying a poroelastic half-space as shown in Figure 1.The stress and displacement

relationship at the top and the bottom surfaces of an n layer (n=1,2,3..,N) can be

obtained as
r R(n)(kx’ky’zn ]
U™ = e, c™
R™ (kx, ky, Z(nﬂ))
[-S™(k, k,,z,) ]
6" = e, ¢
I SV (K, Ky Z(pury) |

where

(3.39)

(3.40)
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U =[ VK, k,.z,) VO k2,0 ] (3.41)

n n n T
o =[ -fO(k,.k,.z,) Tk K2, ] (3.42)

In the above equation, u™ denotes a column vector of generalized
displacements for the nth layer whose elements are the Fourier transforms of
displacements and pore pressure at the top and bottom surfaces of the nth layer.
Similarly, 6™ denotes a column vector of generalized forces whose elements are the
Fourier transforms of traction and fluid displacements of the top and bottom surfaces

of thenth layer.

The matrices R™ and S™ are identical to R and S defined in equation (3.33)
to (3.38) except that the material properties of the nth layer being used in the definition

and z=1z, or z,,. The vector ¢ is the arbitrary coefficient vector corresponding to

n+l*
the nth layer.
The equation (3.39) can be inverted to express ¢ in terms of u™, and the

substitution into equation (3.40) results in the following matrix equation.

6™ = KMy™ (3.43)
where K™ is an exact stiffness matrix in the Fourier transform space describing the
relationship between the generalized displacement vector u™ and the force vector ¢™

for the nth layer.The explicit expressions of all elements in K™ are given elsewhere
(Yooyao, 2008).

For the underlying half-space, the following relationship can be established,

6(N+1) — K(N+l)u(N+1) (344)
where

gD :[ V(N+1)(kx’ky1ZN+l) :IT (3.45)

G(N+1) — [_f(N-HL) (kx, ky, ZNH-):'T (346)

K™ = symm.[K; 1., (3.47)
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It is noted that exponential terms of k, and k, are not involved in the expression of

K(”“), and its elements depend on the material properties of the underlying half-

space and the Fourier transform parameters k, and k, . The elements of the stiffness

matrix K™Y

were also given explicitly by Yooyao (2008).

The global stiffness matrix of a multi-layered half-space is assembled by using
the layer and half-space stiffness matrices together with the continuity conditions of
traction and fluid flow at the layer interfaces. For instance, the continuity conditions at

thenth interface can be written as

(n-1) (n) —_ 1
0 (ko k,, 2) -V (K, Ky, 2) =t (3.48)
where f™ is identical to f in equation (3.31) with a superscript n denoting the layer
number and
e = QM y
t = T™ 7O 70 xz (349)
A 12

In equation (3.49), T.™ (i = x,y,z) is the Fourier transform of the loading in the i-

direction (i = x,y, z) applied at the nth interface. In addition, Q'™ is the Fourier

transform of the fluid source applied at the nth interface. If the nth interface is not
subjected to any external loading or fluid source then t™ is a null vector.
The consideration of equation (3.48) at each layer interface together with

equations (3.43) and (3.44) result in the following global equation system.

TK® |
e t®
K(Z) u(z) t(z)
. {1 =
T (N) (N) (3:50)
K™ u t
K (N+1) u(N+1) t(N+1)

The global stiffness matrix shown in equation (3.50) is a well-conditioned
symmetric matrix with a size equal to eight. The number of unknowns in the final global

equation system is equal to 4(N +1). The solution of the equation (3.50) yields the
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Fourier transforms of the influence functions for analysis of interaction between a rigid
plate and a multi-layered poroelastic medium.

The influence functions, expressed in term of a semi-infinite integral, can be
obtained by using the discretization technique [see Figure 2 (b)]. First, the contact
surface under the plate is divided into a finite number of small rectangular areas. Nodal
points are selected at the center of each discretized region. Each region is then subjected

to uniform traction of unit intensity applied at the i— direction (i=X,y,z). The

influence functions, which are required to establish the flexibility equation system for
analysis of this interaction problem, are obtained from the displacements computed at
each nodal point of discretized regions. The applied traction over a sub-region with the

size of 2l x2w and its nodal point located at a point (xi,yj)can be expressed as [see
Figure 2 (b)],

Ty =[HG+1D)-H( -DIH(y; +w) - H(y; -w)] (3.51)
By applying the Fourier transform, equation (3.5), to the above equation,

4sin(k,l)sin(k,w)
kK,

T (k,.k,) = (3.52)

where H denotes the Heaviside function.

3.3 Formulation of Interaction Problem

Consider a rigid rectangular plate of size 2ax2A bonded to a multi-layered
poroelastic half-space illustrated in Figure 1. The plate is subjected to time-harmonic
vertical, horizontal and rocking loading, respectively as shown in Figure 2 (a). The
contact surface between a plate and a multi-layered medium is assumed to be fully
permeable and the surface traction between the plate and the supporting medium is
unknown. The displacements of the rigid plate can be expressed in terms of three
translation components and three rotation components as,

u,=A,-06y (3.53)
u,=A, +6,x (3.54)

u,=A,+yeo —x0, (3.55)
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on |[x<a|y|<A . In addition, A(i=x,y,z) corresponds to the displacement
amplitudes at the center of area, 8,(i=X,y,z) corresponds to the amplitudes of the
rotation about the x,y and z -axes, respectively. These equations can be expressed in
the matrix form as

U=0QA (3.56)
where U ={u,,u,u,} , A={A,A,A,,6,6,6,) and Q is a 3x6matrix, which

can be expressed as,

1000 0 -y
Q=0 1 0 0 0 x (3.57)
001y —-x O

The contact traction between the foundation and the supporting medium can be
expressed in terms of the translations and the rotations of the rigid plate. The contact
traction in the i- direction (i =X, y,z) at the contact interface between the plate and

the supporting medium due to the applied loading are denoted by T,,T, and T,

respectively. The equations of equilibrium of forces applied to the rigid plate shown in

Figure 2 (a) can then be expressed as,

Fo=-[TdA (i=xy.2) (3.58)
M, =—[T,ydA (3.59)
M, =—jTZdi (3.60)
M, =—[[T,x-T, yldA (3.61)

Consequently, the following relationship can be established

F=Q'T (3.62)
where F ={F F.F MX,My,MZ}T and T ={TX,Ty,TZ}T. In addition, the matrix Q

x1 L yr oz

is given by equation (3.57).
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By using the discretizing technique outlined in the previous chapter, the

influence Green’s functions, for determining the unknown traction, can be represented

as
GT=U (3.63)
where
Gyx G, G,
G, =|G, G, G, (3.64)
G, G, G

X zy 7z

In view of equations (3.56), (3.62) and (3.63), the following relationship can be
established

F=KA (3.65)

where K is a non-dimensional impedance matrix defined as

K, 0 0 0 K, O
0 K, 0 -K, 0 0
< ua o 0 K, 0 0 0 3.66)
0 K, 0 K, 0 0
K. 0 0 0 K, O
0 0 0 0 0 K

Finally, the response of rigid rectangular plate is characterized by the following

non-dimensional compliance matrix,

A=CF
where

'C, O 0
o C, O
110 0 C,
““ulo <, o
Chn O 0
0 0 0

o O O O o

t |

(3.67)

(3.68)

The matrix C shown in the above equation is a 6x6symmetric complex

frequency-dependent compliance matrix. The methodology outlined in this chapter

does not discuss an issue regarding the singularities of the contact traction along the
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edge of the plate. Nevertheless, the evaluation of the compliance matrix should be
accurate enough for practical applications.
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Chapter 4

Numerical Solution

This chapter is concerned with the numerical results obtained from the solution
scheme described in chapter 3. A computer program has been developed to investigate
the dynamic interaction between a rigid rectangular plate and a multi-layered
poroelastic medium. Both homogenous and multi-layered poroelastic media are
considered. In addition, the wertical, horizontal, rocking, coupling and torsion
compliances are determined by employing the numerical solution scheme outlined in
the previous chapter. The convergence is discussed and the accuracy of the present
solution scheme is verified by comparing with existing solutions. Numerical results
are presented in this chapter to demonstrate the applicability of the present
solution scheme and to portray the influence of various parameters on the
compliances of the rectangular plate.

4.1 Numerical Solution Schemce

A computer program has been developed based on the procedure described
previously to investigate the dynamic interaction problem between rigid rectangular
plate and multi-layered poroelastic media. The tasks performed by the computer code
can be summarized as:

1. The contact area under the rectangular plate is divided into N,xN,  square

discretized regions as shown in Figure 2 (b).

2. The influence functions are determined to establish the equation (3.63) for the
determination of the unknown contact traction.

3. The corresponding vertical, horizontal, rocking, coupling and torsion compliances of
the rectangular plate are obtained.

4.2 Numerical Results and Discussion

4.2.1 Convergence of present solution.

The convergence and accuracy of the numerical solution scheme are first

investigated with respect to the number of elements, N, x N, used to discretize the
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contact area [see Figure 3 (a)]. Figure 4 presents the convergence and accuracy of non-
dimensional vertical compliance of a rigid rectangular plate resting on the surface of a
homogenous elastic half-space (Poisson ratio=0.333) by Wong and Luco (1976) , for

different values of N, x N . It appears from Figure 4 (a) that converged and accurate
numerical results are obtained when N, xN, >8x8.

Figure 4 (b) shows the convergence and accuracy of non-dimensional vertical
compliance of a rigid circular disk resting on the surface of a homogenous poroelastic
half-space. All length parameters in the numerical study are non-dimensionalized with

respect to a half-width of rectangular plate, a, i.e., x" =x/a, y"'=y/a, z"=z/a.The
normalized frequency is defined as 5:a)a\/m. In addition, the non-dimensional
material properties are defined as A" =A/u, M* =M/ u, p;=p;lp, M =m/p
and b* = ab/\/ﬁ . Note that the shear modulus and the mass density of the top layer,

denoted by x®and p®, respectively, are employed in the normalization in the

numerical results involving a multi-layered medium.

The properties of poroelastic materials considered in Figure 4 (b) are as follows:
b'=23, 4 =10, M =122, p’, =0.53,¢=0.97 and m =1.1. It appears from the

Figure 4 (b) that converged and accurate numerical results are obtained when

N, xN, >8x8. Note that the total number of elements in this case are reduced from 64

elements to 52 elements to simulate the geometry of a circular disk as shown in the
Figure 3 (b).

4.2.2 Comparison with existing solutions

The accuracy of the present solution scheme of interaction problem is validated
by comparing the numerical results obtained from the present scheme with various
existing solutions.

Figure 5 presents the comparison of numerical solutions corresponding to the
profiles of displacements along the z -axis in a homogenous poroelastic half-space

between the present solutions and the solutions given by Zheng et al (2013). The

material properties of the poroelastic medium are b'=10 2"=10, M =2.0,
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p: =05, ¢=0.90 and m" =2.0. Both vertical and horizontal displacements under

the vertical and horizontal loads applied at the level z" =1 are presented. It is evident
from Figure 5 that very good agreement between the two solutions is obtained.

Figure 6 (a) presents the comparison of the compliances of rigid rectangular
plate resting on a homogenous elastic half-space with the Poisson’s ratio of 0.333 given
by Wong and Luco (1978) . The vertical, horizontal, rocking and coupling motions are
investigated. Figure 6 (b) presents the vertical compliances of a circular disk with fully
permeable contact surface buried in different depths in a homogenous poroelastic half-

space considered by Zeng and Rajapakse (1999). The properties of poroelastic materials
areb”=2.3, 1'=10, M" =122, p; =053, @=0.97 and m =11,

The non-dimensional vertical compliance of a rigid disk is defined by
C, =(A,/F,)/C,, in which A, is the vertical displacement of a rigid disk , F, is the

.
magnitude of vertical loading and C;v is the vertical compliance of a circular disk
embedded in an ideal elastic half-space under static loading. Note that
ijz(l—v)/ 4ua . The accuracy of the present solution scheme is once again

confirmed through the comparisons shown in Figure 6.
Figure 7 presents the traction profile of a circular disk resting on a homogenous
poroelastic half-space by Senjuntichai and Sapsathiarn (2003). The surface traction is

defined by T, =T,za/F, . The contact traction profiles are presented along the radius
of the disk. The number of elements (N, xN, ) equal to 9x9 and 17x17, and the

frequencies of 6 = 0.5 and 3.0 are considered. It can be seen the Figure 7 that shows

good agreement between the two solutions are obtained when N, x N, >17x17.

4.2.3 Dynamic response of a multi-layered poroelastic medium.

The dynamic response of a multi-layered poroelastic medium subjected to the
surface loading is considered in this sub-section as shown in Figure 8. The thickness of
the top layer is equal to ‘a’. The properties of the top layer are different for five systems
as shown in Figure 9, and there are identified in Table 1. The properties of the
underlying half-space are identical to those of ‘MB’. The rectangular vertical and

horizontal loading of uniform intensities p, and g, respectively applied over a square
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area of 2x 2 at the top surface are considered. In addition, the numerical solutions at
the frequencies of 6 = 0.5 and 3.0 are evaluated.

Figure 10 shows the variations of non-dimensional vertical displacement

u:, =au®u,, / p, along the top surface of the multi-layered half-space under the

surface vertical loading. The parameter b represents the internal friction between the
solid matrix and the pore fluid. It can be observed that when the parameter b increases,
the magnitude of vertical displacement decreases as shown in the real part of the
displacement. From x" = 0 to 2 the vertical displacement changes rapidly. In addition,
the magnitude of vertical displacement at low frequency is larger than that at high
frequency, in which the displacement profiles show oscillatory variations with the
horizontal axis.

Figure 11 shows the variations of non-dimensional vertical displacement

ur, =au®u_ /g, along the top surface under the square horizontal loading. Naturally,

the magnitude of the vertical displacement due to the horizontal loading is less than that

under the vertical loading. The magnitude of vertical displacement is equal to zero at
the center of loading, and reaches its maximum value at x" = 1.0, Thereafter, it

decreases rapidly when X" is located further away from the center of loading. The
magnitude of vertical displacement at low frequency is larger than that at high
frequency similar to what observed in the case of vertical loading. In addition, the
displacement profiles, once again, show oscillatory variations with the horizontal axis

at higher frequency.

4.2.4 Dynamic interaction between rectangular plate and multi-layered poroelastic

media

In this sub-section, the dynamic interaction between a rigid rectangular plate
and a multi-layered poroelastic medium is considered. The geometry of problem under
consideration is shown in Figure 12. The accuracy of the present solution scheme of
this interaction problem is first verified by comparing with existing solutions.

Two kinds of multi-layered poroelastic media are considered, i.e. two-layered
and three-layered systems. For a two-layered system, a multi-layered poroelastic half-
space consists of one layer and an underlying half-space as shown in Figure 12. There

are five cases under consideration for this two-layered system as shown in Figure 9.
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The thickness of the first layer is fixed at h,=a for all cases, and the material properties

for each system are given in Table 1.

For convenience, the modification of the contact condition is considered. The
friction beneath the plate is neglected for the vertical loading, whereas, it is taken into
account for the horizontal and the rocking motions. The compliances are thus defined
as:

C, =wuaA, I'F, for the vertical compliance

C,, =wuaA, [ F, for the horizontal compliance in x -direction
Com = 1’6, I M, for the rocking compliance

C., = ua’A, I M, for the coupling compliance

C,=wua’0, /M, for the torsion compliance

Figure 13 to Figure 16 illustrate the influence of the parameter b on the dynamic
interaction between the rectangular plate and the two-layered systems. Figure 13 and
Figure 14 show the vertical and horizontal compliances of the rigid plate respectively.
Similar behaviors are observed for the vertical and the horizontal compliances. The
vertical and horizontal compliances decrease as the frequency increases for all values
of b . The parameter b has a significant influence on the compliances since higher
compliances are obtained as b decreases. At low frequency, the abrupt decrease of both
vertical and horizontal compliances was observed. More significant differences among
different layer systems are observed in the vertical compliances than that in the
horizontal compliances.

Figure 15 and Figure 16 show the rocking and torsion compliances of a
rectangular plate. Similar behaviors are noted for both compliances, and more
significant influence are observed on the rocking motion. Both compliances gradually
increase with frequency before reaching to the maximum values when 6 >1. The
coupling compliances for different two-layered systems are also shown in Figure 17. It
can be found that the parameter b shows more significant influence in the case of the

coupling compliances when compared to other compliances.
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Next, the influence of the plate embedded depth (h/a) on the compliances is
investigated. In this study, MC is chosen for the top layer and MB for the bottom layer.
The embedded depth is varied as h/a=0, 1, 2, and 5.

Figure 18 and Figure 19 present the vertical compliance and the horizontal
compliance of a rigid rectangular plate. It can be observed that when the embedded

depth increases, the magnitude of the both compliances are decreased. At low frequency

range(0<5<2), both compliances decrease rapidly. The variation of vertical and
horizontal compliances of a surface plate (h/a=0) is smooth for both real and

imaginary parts. As expected, for embedded plates (h/a=1,2,5), both compliances

show oscillatory variations with ¢ in both real and imaginary parts due to the effect of
the standing wave generated between the free surface and the embedded plate as also
noted by Zeng and Rajapakse (1999) and Senjuntichai and Sapsathiarn (2003).

Figure 20 and Figure 21 present the rocking and the torsion compliances of a
rigid plate at different depths of embedment. Figure 22 shows the coupling compliance

due to the coupling between the horizontal and rocking motions. The variation of all

compliances of a surface plate (h la= O) with the frequency is smooth for both real and

imaginary parts. However, for embedded plates(h/ a =1,2,5), both real and imaginary

parts show oscillatory variations with frequency.

The vertical compliances of surface plates (h/ a= 0) with different geometries,

i.e. the ratios of A/a are varied from 0.25 to 4, are presented in Figure 23. For a square

plate, i.e. when A/a is equal to 1.0, the number of elementsN, xN = 8x8 is used.
When A/ais equal to 0.25 and 4.0, the number of elements N, xN = 2x8 is
employed. In addition, N, xN =4x8 is considered for A/a equal to 0.5 and 2.0. The

number of elements used in each case is similar to what employed by Luco and Wong
(1976). It should be noted that the ratio of A/a is directly related to the plate stiffness
as a larger plate can resist higher force than a smaller one. Vertical, horizontal and
rocking compliances of rigid plates of various shapes are also presented in the Figure
24 to Figure 26 respectively. Four types of rigid plates are considered, i.e. circular,

square, rectangular and triangular shapes. Note that the dimensions of plates are chosen
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such that the contact area between the plate and the poroelastic medium is
approximately equal to four in all plate types.

Figure 27 presents the vertical compliances of rectangular plate with an internal
square hole as shown in Figure 3 (c). The size of the hole is equal to 2d x2d . The ratio
d /a is taken into account and is varied from 0.25 to 0.75. It can be seen that the vertical
compliance decreases rapidly in the range 0< ¢ <2. In addition, the influence of the
opening is significant on the vertical compliance when the ratio d/a is greater than
0.25.

Figure 28 presents the traction profile along the center line of a rigid plate
resting on a multi-layered poroelastic medium. Various shapes of plates are considered,
i.e. square plate, rectangular plates with and without a square hole. The contact area
between the plate and the half-space is approximately equal to four in all plate types.

The frequencies of & = 0.5 and 3.0 are considered. The number of elements (N, xN )

employed in the calculation is 17x17. It can be seen from the figure that the traction
around the central area of the plate is flat. The traction increases and reaches its
maximum value at the edge of the plate. The traction under the rectangular plate with a
square hole, however, shows different behaviors due to the presence of an internal hole.
Thus, higher values of contact traction in this type of plates are found along both
internal and external edges.

The case of three-layered poroelastic systems are considered next. Two
poroelastic layers and an underlying poroelastichalf-space as shown in Figure 29
constitute a three-layered system. Two poroelastic layers of this system are identified
as system PA, system PB and system PC. The material properties of three-layered
system are given in Table 2. In addition, the parameter b for the first and the second
layers and underlying half-space of all systems are given in Table 3. For the system PC,

which is a dry material, the required parameters are only x ,A and p for each layer.
Figure 30 to Figure 32 present the vertical, horizontal, and rocking compliances
of a rigid rectangular plate embedded (h /a :1) in a three-layered system as shown in

Figure 29. In addition, the thicknesses of the first and second layers are set to be equal
to a for all cases, and the material properties for each layered system are given in Table

2 and Table 3. It can be observed from Figure 30 to Figure 32 that all compliances show
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oscillatory variations with frequency. It is also observed that all compliance
components decrease as the parameter b increases.
Figure 33 to Figure 35 present the influence of layer thickness on the

compliance. The system PB is used to investigate this effect. The thickness of the first
layer (h,) is set to be h;/a=1, whereas the thickness of second layer (h,)is varied,
le. hy/a=1, 2, 5, 10, 20 and 25. The case of a two-layered system, i.e. one layer

overlying on a homogenous half-space, is also shown for comparison. The material
properties of the first layer are given in Table 2 and Table 3, whereas the properties of
the underlying half-space are obtained from the second layer given in those tables. It
can be observed that the vertical and horizontal compliances show more oscillations
when h, /a<5 . As the thickness of second layer increases, the compliances of a three-
layered system approach those of a two-layered system, and both solution are identical
when h,/a>25 for the vertical compliances and h,/a>20 for the horizontal

compliances. For rocking compliances, the influence of layering under the foundation
is negligible when thickness of the second layer is at least five times greater than the

foundation width.
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Chapter 5

Conclusion

The dynamic interaction between a rigid rectangular plate and a multi-layered
poroelastic medium is investigated in this thesis. The contact surface between the plate
and the supporting medium is assumed to be bonded and fully permeable. The plate is
subjected to the time-harmonic vertical, horizontal and moment loading. The cases of
rectangular plates resting on the top surface and embedded in a poroelastic stratum both
are under consideration in this study. The poroelastodynamic principle given by Biot
and the discretization technique are employed. In addition, the exact stiffness matrix
scheme is adopted to determine the influence functions required for analysis of this
dynamic interaction problem.

The convergence and accuracy of the present solution scheme with respect to

N, x N are first studied. The convergence is found to be stable when N, = 8 and
N, =8 for a square plate. In addition, the accuracy of this present solution is also

verified and confirmed by comparing with various existing solutions.

Numerical results presented in Chapter 4 indicate that the interaction between a
rigid rectangular plate and a multi-layered poroelastic medium is governed by several
parameters. The parameter b shows significant influence on the compliances of the
plate since it directly relates to the permeability of a poroelastic medium. The excess
pore pressure increases as the value of b increases. The influence of parameter b is
more obvious in the cases of vertical and rocking compliances. The frequency of
excitation also show significant influence on the plate response. All compliance
components show oscillatory variations with higher frequency. In addition, the plate
compliances also depend significantly on the embedded depth and the plate aspect ratio.
The numerical solution scheme developed in this thesis can be extended to
study more practical problems by considering the condition of impermeability
at the plate-poroelastic-medium contact surface, and the flexural rigidity of

plate.
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Table 1 Material properties of a homogenous poroelastic medium

U A M™ pT ol m! a b*
MA 2.0 2.0 24.4 2.0 1.06 2.2 0.97 | 6.32x10?
MB 2.0 2.0 24.4 2.0 1.06 2.2 0.97 | 1.45x10°
MC 2.0 2.0 24.4 2.0 1.06 2.2 0.97 |6.32x10°
MD 2.0 2.0 24.4 2.0 1.06 2.2 0.97 | 6.32x10’
ME 2.0 2.0 - 2.0 - - - -
"x10° N /m?® 'x10°kg /m? *N's/m*
Table 2 Material properties of a three-layered poroelastic medium
i@ A M” o o} m' a
First layer 2.5 5.0 25.0 2.0 1.0 3.0 0.95
Second layer 125 1.88 18.8 1.6 1.0 1.8 0.98
10.0 10.0 20.0 2.4 1.0 4.8 0.9

Half-space

"x10° N /m? x10° kg/ m*®

Table 3 Parameter b employed for different poroelastic systems

First layer, b®

Second layer, b

Half-space, b®

System PA 6.32x10?

System PB 1.5x10°

6.32x10?

7.5x10°

6.32x10?

4.5x10°

Ns/m*
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Figure 1 A rigid plate embedded in a multi-layered poroelastic half-space
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(b)

Figure 2 A rectangular plate under loading; and discretization of contact area
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Figure 3 Discretization of plates: (a) rectangular plate; (b) circular plate; (c)
rectangular plate with square hole
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Figure 4 Convergence and accuracy of present solution: (a) elastic half-space;

(b) poroelastic half-space
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Figure 5 Comparison of displacements along the z -axis of homogenous poroelastic
half-space under (a) horizontal loading; (b) vertical loading
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Figure 6 Comparison of compliances for (a) elastic half-space; (b) poroelastic half-

space
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Figure 7 Comparison of traction profiles along the radius of circular plate
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Figure 8 A layered poroelastic half-space under surface loading
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Figure 11 The vertical displacement along the x -axis due to the horizontal loading:

@) 5=05;

(b) 5=3.0
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Figure 12 A rigid rectangular plate on a two-layered poroelastic system
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Figure 13 The vertical compliances for different layered poroelastic media
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Figure 15 The rocking compliances for different layered poroelastic media
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Figure 16 The torsion compliances for different layered poroelastic media
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Figure 19 The horizontal compliances for different embedded depths (h / a)
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Figure 23 The vertical compliances for different aspect ratios of plate (A/ a)



0.18
0.16 | —@— Circular
014 | —— Square
' —@— Rectangular
012 + —&— Triangular
0.10
CW
0.08
Real part
0.06
0.04
0.02
0.00
0 1 2 3 4
o
(a)
0.10
0.08
0.06
CVV
0.04
0.02 - -Imaginary part
000 1 1 1
0 1 2 3 4
)
(b)

Figure 24 The vertical compliances for plates of various shapes (A/ a)
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Figure 25 The horizontal compliances for plates of various shapes (A/ a)
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54



1.6

—@— rectangular
—&— square
—A— rectangular with hole

Imaginary part

Real part

12

10

(@)

9
r —— rectangular
—&— square 8r
3 —A— rectangular with hgle Imaginary part
- 7 I
Real part
T z
- 6
5 -
- 4 I
1 1 1 3 1 1 1
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X" X

(b)

Figure 28 The traction profiles along the center line of plates
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