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SANAE RUJIVAN : DRM SOLUTIONS TO TWO-DIMENSIONAL
LINEAR WAVE EQUATIONS. THESIS ADVISOR: ASSIST. PROF.
PORNCHAI SATRAVAHA, Ph.D. 88 pp. ISBN 974-333-909-4

In this thesis, two numerical methods called the Finite Difference Dual
Reciprocity Method (FDDRM) and the Laplace Transform Dual Reciprocity Method
(LTDRM) are developed for solving Linear Wave Equations (LWESs) in R% Both
proposed methods are based on the Dual Reciprocity Method (DRM) which is the
efficient method for solving Poisson equations. According to FDDRM, an LWE is
transformed into the Poisson equation in the time space using some finite difference
techniques. On the other hand, LTDRM uses the Laplace transform to transform an
LWE into the Poisson equation in the Laplace space. After transformation, the DRM
technique is then used to solve the transformed equation. With these methods,
boundary-only integral equations can be derived and the dimension of the problem is
reduced by two. Since FDDRM uses some finite difference techniques, a solution at
any specific time can be attained with a step-by-step calculation in time, while
LTDRM needs a numerical inversion of the Laplace transform to convert a solution
obtained in the Laplace space into a solution in the time space. In this research, a
numerical Laplace transform inversion called “ Stehfest’s algorithm” is chosen. The
numerical solutions obtained from FDDRM and LTDRM for several test examples are
presented herein. It will be seen that LTDRM is more efficient than FDDRM when a

solution at a large time is required.
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Chapter 1

Introduction

The Linear Wave Equation (LWE) is one type of partial differential equations (PDEs)

which is expressed as

2
Vzu()_c,t)——l-a )= Bh% g B8 | 20y, (1.1.1)
c? or? ot ox ay
with
b[)?t g” Z“ 2“)—2@ 0+ S+ ,6’2 /)’3 ,6’4 " (1.1.2)

where u(x,t) is the unknown function of spatial point X =(x,y) in a bounded

domain Q with an enclosing boundary I'=8Q in R? at time ¢, V?is the two-
dimensional Laplacian operator, a non-zero constant ¢ represents the velocity of
wave propagation, b is a function which describes the distribution of the source

intensity and its time dependence at each point in the domainQ), z is a known
function, and f,,i=1, 2,3,4 are constants. If b=0, Equation (1.1.1) is called

Homogeneous Linear Wave Equation (HLWE) and it is called Inhomogeneous Linear
Wave Equation (ILWE) when b is not a zero function.

LWEs play a significant role in engineering and applied science. There are
many problems that occur in engineering practice and applied science such as
vibrations of a membrane problems, propagation of acoustic waves problems,
propagation of electromagnetic waves problems, etc., can be modeled by this type of
equations in formulations. Efficiently and accurately solving LWEs are a usual task
faced by scientists and engineers.

Generally, the interpretation of the unknown function u# depends upon the
problem under consideration, which may be the displacement of a membrane from its
equilibrium position in the vibrations of a membrane problem, a velocity potential in

the propagation of acoustic waves or in electromagnetic waves problem.



Consider an LWE as in Equation (1.1.1). By the theory for linear partial
differential equations, we know that an LWE is well-posed if it equips with two types
of conditions. The fist type is initial conditions, also known as Cauchy conditions,

which are values of the unknown function # and its fist time-derivative at the initial

point , i.e.,

u(X,ty) =uy(x), xeQ (1.1.3)
and

g—j(f,to) =v(X), ¥eQ. (1.1.4)

Without loss of generality, we shall let 7, = 0.

The second type is boundary conditions which fall into the following three categories:

e Dirichlet conditions (also known as boundary conditions of the first kind or

essential boundary conditions) are the values of the unknown function u
prescribed at each point on the boundary I as

u(x,t)=u(x,t), xel|,t>0, (1.1.5)

e Neumann conditions (also known as boundary conditions of the second kind or

natural boundary conditions) are the values of the normal derivatives of the

unknown function u prescribed at each point on the boundary T, as
a% . | =
a—(x,t) =q(x,t), xel,,t>0, (1.1.6)
n

e Robin conditions (also known as boundary conditions of the third kind or mixed
boundary conditions) are the values of a linear combination of the unknown

function # and its normal derivative prescribed at each point on the boundary I’

as
- ou ,_ i g
u(x,t)+ /Za—(x,t) =7r(x,t), xel3,t>0, (1.1.7)
n

where I7;,i=1,2,3 are complementary segments of I', » is the unit outward normal

vector on the boundary I', A is a non-zero constant, and u, g, 7 are known

functions.



Usually in the vibrations of a membrane problem, the edges of a membrane
are fixed. Thus the only boundary condition imposed is the Dirichlet boundary
condition and it reads u =0 on the boundary for all . However, sometimes the
boundary (or part of it) is left “free” meaning that it can move in the vertical direction

and there is no external transverse force acting on it. This is equivalent to the

. ou . : . .
boundary condition I = (0. Moreover, an intermediate case is also possible; the
n

boundary may be elastically supported and capable of producing a transverse force

proportional to the displacement. This situation is equivalent to the boundary

condition ? + Au = 0 on the boundary for all #.
n

Since problems modeled by LWEs are very important problems in science and
engineering, many scientists and engineers try to find the solutions for these
problems. There are many analytical methods to solve LWEs. For instance, the
method of separation of variables, the method of fundamental solution, and weight
residual method are all well known. Unfortunately, these methods often work with
only some HLWEs on a regular domain. Therefore numerical approaches such as
Finite Difference Method (FDM), Lapalce Transform Method, Boundary Element
Method (BEM), Dual Reciprocity Method (DRM), which are described in Sections
1.1 — 1.4, are resorted to. As for this research, two numerical approaches called Finite
Difference Dual Reciprocity Method (FDDRM) and Laplace Transform Dual
Reciprocity Method (LTDRM), are employed to solve LWEs.

1.1 Finite Difference Method (FDM)

The development of high-speed digital and personal computer has made it possible to
effectively use different numerical techniques for solving boundary and initial value
problems involving partial differential equations. Among different methods available,
the Finite Difference Method (FDM) is widely used. It has a straightforward structure
which is derived from truncated Taylor’s series, also known as Taylor’s formula.
However, there are difficulties with the implementation of the FDM for problems with

complex geometrical shapes, and with some types of boundary conditions.



Nevertheless, FDM is still a well-established technique for the analysis of transient
problems and in computational fluid dynamics.
In this research, we shall only apply FDM with the time derivative terms in an

LWE by using the central difference formula as

2 — o —
)= ¢ )
ot At
and the forward difference formula as
xX,t. —u(x,t.
O 5,1y = HFolim) ZU(, D 4 o(an, (1.1.9)
ot At

where ¢, = iAt with a truncation error of O(At*) and O(At), respectively. With this
method, an LWE become the Poisson equation for each particular time ¢, and there

are many methods to solve it.

1.2 Laplace Transform Method

The technique of integral transforms is a powerful tool for the solution of linear
partial differential equations. As for this research, the Laplace transform technique is

employed for solving LWEs by using the formula
U(x, p) = L{u(x,0) | = [u(x,t)e P dt, (1.1.10)
0

where p is the Laplace parameter. Furthermore, some basic properties of the Laplace

transform are used such as
82u = 2 is = -
L g(x,t) = p U(%, p) — puy(X) — v, (%), (1.1.11)
and
ou ,_ _ _
L{E(x,t)} = pU(%, p) —uy(X). (1.1.12)

The main attraction of this method is the removal of the time variable so that the
hyperbolic equation (or the LWE) is transformed to an elliptic one which can then be

solved more easily in the transformed space with BEM, FEM or DRM.
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1.3 Boundary Element Method (BEM)

Boundary Element Method (BEM) is one of the most important development in
numerical mathematics occurred in this century for solving partial differential
equations (PDEs). This technique has been developed, within only a few decades, into
a widely used and richly varies computational approach for various scientific and
technological fields. There is a counting rapid expansion in a number of users, range
of applications for this method which covers the areas of solid mechanics, fluid
mechanics, coupled systems, chemical reactions, neutron flux, plasmas, acoustics,
electric and magnetic fields, and many other related specialized fields.

In this technique, the PDE is converted to an equivalent integral equation
whose discretized form yields the solution. For linear problem, the dimensionality is
reduced because only boundary integrals need to be discretized that differs from
“domain type” methods such as FDM or FEM. Besides, the computer implementation
of the BEM is simpler than domain type methods. Hence the technique has been
widely used in the solution of the Laplace equation, Helmholtz equation in domains of
irregular geometry and non-uniform boundary conditions.

The efficiency demonstrated in early applications of the BEM for steady
problems (time independent problems) [1, 2] has encouraged its further user in other
fields of science and engineering. However, applications of the BEM for linear wave
problems still remain to be done. The first work of solving this problem can be traced
to Rizzo and Cruse [3, 4] who solved the linear wave problem in the Lapace transform
domain and used a numerical algorithm due to Papoulis [5] to obtain time domain
solutions. Unfortunately, numerical results were accurate only for early times. As an
extension of Cruse’s work, Manolis et al. [6] compared Papoulis’ and Durbin’s
algorithms for the inversion of the Laplace transform. They found that Durbin’s
algorithm was more time consuming than Papoulis’ but its accuracy was very high
even for late times. Later, this method is called the Laplace Transform Boundary
Element Method (LTBEM).

However, the disadvantage of LTBEM which is in common with the time-
domain BEM is due to the domain integration of inhomogeneous terms in BEM
analysis. Such a disadvantage can be overcome by the use of a domain-integration-

free method, the Dual Reciprocity Method (DRM).



1.4 Dual Reciprocity Method (DRM)

In the literature, there have been several techniques such as Galerkin Vector Method
[7], Fourier Expansion Technique [8], Dual Reciprocity Method [9], Multiple
Reciprocity Method [10, 11], Particular Integral Approach [12], and Atkinson’s
Method [13], among others, proposed to deal with domain integrals that arise in the
BEM analysis. However, the best method so far is the so-called Dual Reciprocity
Method (DRM), proposed by Nardini and Brebbia [9], with which one is able to
convert domain integral in the BEM analysis into equivalent boundary integrals by
using a set of localized particular solutions and the reciprocity theorem twice. Thus, a
“purely” boundary-only integral formulation is obtained. The DRM was further
extended by many authors, e.g., Nardini and Brebbia [14], Partridge and Brebbia
[15], and Partridge and Wrobel [16], and its applications to a wide variety of problems
(especially, Poisson type problems) can be found in [17]. As for this research, the

method is used along with FDM and Laplace transform method to solve LWEs.

1.5 The Current Research Projects

[t can be obviously seen from the above literature review that there are two ways to
transform an LWE into a Poisson equation before using DRM to find approximate
solutions. The first way is FDM. With this method, the transformed equation is solved
for each particular time (depending on time-step). The method that combines FDM
and DRM proposed herein will be called the Finite Difference Dual Reciprocity
Method (FDDRM). Another way is to use Laplace transform. After the transformed
equation is solved in Laplace space, the numerical inversion of the Laplace transform
is employed to yield approximate solutions in the original domain. This method is
called the Laplace Transform Dual Reciprocity Method (LTDRM).

This thesis is organized into five chapters, with the background of the research
outlined in Chapter 1.

In Chapter 2, FDDRM formulations for Linear Wave Problems (LWPs) are
presented, begin with formulations for Homogeneous Linear Wave Problems

(HLWPs) and followed by Inhomogeneous Linear Wave Problems (ILWPs).

6



In Chapter 3, both HLWPs and ILWPs are solved by using the LTDRM
approach. Moreover, the numerical inversion of the Laplace transform known as
“Stehfest’s algorithm” with its applications are described.

In Chapter 4, several examples of LWPs, which illustrate the efficiency and
the accuracy of the FDDRM and LTDRM, are provided. Furthermore, a comparison
of these two formulations for solving LWPs is also made.

The major findings in these research projects are summarized in Chapter 5.



Chapter 2

FDDRM formulations for LWPs

The Finite Difference Method (FDM) is a simple approach which can be applied
directly to the governing ordinary or partial differential equations. The derivatives of
the unknown parameters are approximated by means of algebraic expression in terms
of the differences between the numerical values of the parameters at close points. The
problem domain is usually represented in terms of a grid of nodes, and the difference
equations result in a system of algebraic equations in terms of the values of the
parameters at the specified nodes.

In this research, FDM and DRM are applied to solve LWEs. Since LWEs

contain temporal derivative terms of the unknown function #, we can not use DRM

with LWEs directly. However, at a particular time, we can approximate temporal
derivatives by using FDM after which the LWE is transformed into a Poisson
equation. We can now apply the DRM technique to this transformed equation and the
solution is obtained for each particular time. This method is called Finite Difference
Dual Reciprocity Method (FDDRM) since it combines some finite difference
techniques and the DRM technique.

In this chapter, the FDDRM is developed for the solution of Linear Wave
Problems (LWPs) including Homogeneous Linear Wave Problems (HLWPs) and
Inhomogeneous Linear Wave Problems (ILWPs).

2.1 FDDRM formulations for HLWPs

Let Q be a bounded set in R* with an enclosing boundary I' = 0Q. We consider

solving the HLWP which is governed by

2
vzu(x,z)-izg—z‘(x,r):o, TeQ, >0, 2.1.1)
c t



with two initial conditions;

u(x,0)=uy(x), xeQ, (2.1.2)
Z—L;()?,O) =v,(X), ¥, (2.1.3)

and three types of boundary conditions;

the Dirichlet condition,

u(x,t)y=u(x,t), xel},t>0, (2.1.4)
the Neumann condition,

ou ,_ aa i o

—(x,0)=q(x,t), xel,t>0, (2.1.5)

on
the Robin condition,

=t ou ,_ 2 = =
u(x,t)+/ué—(x,t)=r(x,t), xely,t>0, (2.1.6)
n

where {F,.,z' = 1,2,3} is a set of complementary segments of I', 4 is a non-zero

constant, V> is the two-dimensional Laplacian operator,x = (x, y),and , g, 7 are
known functions. We are seeking for an approximate solution of this problem when ¢
is a non-zero constant interpreting as the velocity of wave propagation.

Let ¢, =iAt, i=1,2,...,m with t, =0. By fixing ¢=¢,, Equation (2.1.1) at

the particular time ¢ is in the form

]
v2u(x,t,.):iza—§’(z,t,.), TeQ. 2.1.7)
e g
Applying the centered finite difference approximation with RHS of Equation (2.1.7),
ie.,

aZu - u(f’tiﬂ)_zu(“?’ti)"'u()_csti—l)

—(%,1,) = +O(At?), 2.1.8
" ) v (A7) (2.1.8)

Equation (2.1.7) then becomes the Poisson equation, after dropping the error term,

u(f’tiﬂ)— 2“(291‘1') +u(f9ti—l)]
At? '

V2u(x,1,) :i[

02

(2.1.9)

BEM technique can now be applied. Multiplying Equation (2.1.9) with a weighting

function %" and integrating both sides of this equation over the considered domain Q

gives



1
(cAt

Applying Green-Guass theorem with LHS of the above equation leads to the integral

[VZu(x,t)u" (3)dQ = . [(u(x,t,0) = 2u(x, )+ w(Z,0.)) )u" (R)d2 . (2.1.10)
Q Q

formulation
[u(E, )V 0" (®)d2+ [(uE.0)q" (%) - q(®t)u’ (%) )dr
Q I
_ (cAlt)2 ({ (u(F, 1)~ 2u(Fot, ) + u(Eot ) )’ (F)d2,

(2.1.11)

*

. 0 . .
where ¢g(X,¢;) = Z—u(f, t), g (x)= aL(f), and » is the unit outward vector normal
n n

to I'.
It should be noted that the above equation contains two domain integrals (one

each on the LHS and RHS). Examination of the domain integral on the LHS suggests
that the weighting function %" which is the fundamental solution of the Laplace

equation should be chosen and " is given by

u' (%) :2—17;1n|f—§, (2.1.12)

where £ isa “ source point” in the domain Q. With this choice of »~, the domain

integral on the LHS of the Equation (2.1.11) reduces to a free term and Equation
(2.1.11) becomes

cu(@,t) - [q(x,6)u” (X)dl + [u(x,t,)q (X)dl
r r

2 Alt)Z [0 1)~ 26ty + (E 1)) (7).
Q

(2.1.13)

The value of ¢z in this equation depends upon the location of the source point & . It

can be shown [18] that

9(5)
27
¢z = , (2.1.14)

10



where (<) denotes the internal angle of the boundary at ¢ . It should be noticed that
the domain integral on the RHS of Equation (2.1.13) still remains and this integral is
very difficult to be evaluated because it contains the unknown function u.

The motivation behind DRM is to avoid evaluating such integral by
transforming it into an equivalent boundary integral. This is achieved by expanding
the RHS of Equation (2.1.9) in terms of Radial Basis Functions (RBFs) at some
chosen N boundary collocation points and L internal collocation points of the
domain Q. Thus the RHS of Equation (2.1.9) can be approximated by a finite sum of

interpolation functions f il = 1, 2, ..., N+ L and expressed as

L(u(fofiﬂ)_zu(f,ti) +u(3c_’ti-l)] gL
C

2 2 =Y aif;(x), ¥xeQ,  (2.1.15)
At j=1

where a/j. ,j=12,.., N+ L are coefficients to be determined by collocation method

with N + L collocation points at time ¢,. After replacing Equation (2.1.15) into

Equation (2.1.13), one obtains
czu(Z,1) = [q(E,1)u (X)dC + [u(%,t;)g (X)dl = Nifa} [f; GO (%)dQ. (2.1.16)
r r J= Q
The essential feature of DRM is to express f; as a Laplacian of another function 4; .
Thus #; is chosen as the solution of
Vi, (x) = f(X), TeQ (2.1.17)
Replacing f; in Equation (2.1.16) by V2 ; and applying the Green-Guass theorem

once again, Equation (2.1.16) reduces to a boundary-only integral equation
cau(St) = [q(Et)u ()T + [u(Z,6)q" (¥)dl
. T r
N+L ; . AT T e
= 3| 4| ¢, @)~ 4,0 (D + [i(D)g” ()l
Jj= r r
(2.1.18)
Lo oup o .
where g,(x) = a—’(x) is the normal derivative of #; .
i
As for the interpolation functions f,, Partridge and Berbbia [15] showed that

the RBF of the form f; =1+r; gives the best results. Here r, :|)?—Ej| is the

distance from the collocation point j, x;, to a filed point x . Hence for this research,

11



we only took the simplest form f; =1+#; in all of our numerical experiments so far

completed.

We now consider all boundary integral terms in Equation (2.1.18). We divide

[ into N complementary segments r', r2, ..., T so that ju(f,t,-) g (%) dr, for
r

example, becomes

[u(x,t,)q" (x)dl = [u(x,t;)q (X)dl + £u()_c,t,.)q*(f)dF tot [u(X,6)q" (X)dr.
r

rl r v
(2.1.19)

Next, we approximate ju(f,ti)q*()?)dl" for k=1,2,.., N with corresponding
rk

constant element . Then boundary point X, is selected to be a middle point of the
element k&, and we approximate u(X,f,) on I'*for all k=1,2,..,N by using the
value of « atpoint X, that is

u(x,6)=u(%,,t;), xel*, (2.1.20)

Hence Equation (2.1.19) now becomes

[u(x,t,)q" (x)dl = %u(fk,ti) [q" (x)dr. (2.1.21)
T k=1 rk

We approximate q(x,¢;), 4;(x), and g;(x) on I forall k=1,2,...N in the same

fashion as u(Xx,t,), i.e.,

q(%.t;)=q(x,,t), *xel¥, (2.1.22)
(%) =1,(%,), xeT*, (2.1.23)
g,(x)=4,(x), xel¥, (2.1.24)

where x, is the £’s boundary collocation point on I'* . Now, we can write Equation

(2.1.18) in the form
N N Nel( (N N
Cg”;(ti)'*'kz:luk(ti)hfk _kZIQk(’i)ggk = 2] a; {Cguj(§)+kzluj(xk)h§k _kZ:]q](xk)gEkJ}
= = j: = =
(2.1.25)

where wu;(t;) =u(g,1;), u, (t;) =u(x,,t;),and g, (¢;) = q(x, ,¢;) with

12



hy = |q (%,5)dr, (2.1.26)
Fk

gz =— Ju (x,5)dr. (2.1.27)
1-k

Applying Equation (2.1.25) to all collocation points, i.e., ¢ =X;,/ =1,2,.., N+ L, we
then obtain the linear system of order (N + L) as

N N Ner(C (N N
cu () + 2uy (8)hy ‘kZC]k(fi)gzk =2 |a; [C/”j(xl)Jr:Zluj(xk)hzk - qu‘(xk)glk] ,
k=1 = - k=1

J=1

(2.1.28)

which can be written in a matrix form as
Hu, - Gq; = (HU - GQ)a', (2.1.29)
where H and G are matrices with their elements being /%, and g respectively and the

coefficients ¢, have been incorporated into the principle diagonal elements of the
matrix H on both sides of the above equation. U and Q in the above equation are
matrices with the jth column being vectors @;and q;, respectively. u;, q;, and o
are vectors with their elements being u,(¢;), ¢,(¢;),and a/j- , respectively.

Now we return to Equation (2.1.15). We apply Equation (2.1.15) to all

collocation points in order to obtain the resulting matrix

1 2
(c_AtF(u‘“ —2u, +u,_, )=Fa', (2.1.30)
and thus get
. 1
ol = F! m(ui+1 —2u; +u ), (2.1.31)

where F is the matrix with its elements being f(x,). A remark should be made that

F! always exists for the interpolation chosen in this research [15]. After substituting
Equation (2.1.31) into Equation (2.1.29), we obtain a system of simultaneous

equations in matrix form as
Hu; - Gq; = @S(u;,; —2u; +u;_; ), (2.1.32)
where
w =1/ (cAt)? (2.1.33)

and

13



S =(HU-GQJF". (2.1.34)
Then after rearranging terms in Equation (2.1.32), a final (N + L)x (N + L) linear
system of equations at the particular time ¢ is obtained as
oSu;,q +Gq; = (H+2a)S)ui —oSu_y, (2.1.35)
for i=1,2,.., m where initial conditions u_, and uyare given as follows
u, = [Uo(f/)_m"o(f/) ], (2.1.36)
ug =[uy(x)] forli=12,...N+L. (2.1.37)
Upon imposing the appropriate boundary conditions, the linear system at the

particular time ¢, can be readily solved.

2.2 FDDRM formulations for ILWPs

In this section, we will seek for an approximate solution to a problem governed by an

ILWE of the form

3
V2u(x, r)—ia—(x Bl Eap 8 OE 0% ) 5. 045, 2.2.1)
or? 8 8x ay
where a function b is in the form
ou ou Ou ou ou
bl x,t,u,—,—,— |=z(X,t)+ Liu+ —+ B, —, 2.2.2
[ e ayj (t)+ B+ By 2t 22 4, 5 (2.2.2)

when z is a known function and f£;,i =1, 2, 3, 4 are constants. The initial conditions

and the boundary conditions for this equation are stated the same as for the case of an
HLWE in the previous section (Equations (2.1.2) - (2.1.6)). Since the form of & in
Equation (2.2.2) is complicated and it is not convenient for FDDRM formulation, it is

necessary to separate this problem into four cases as described below.

2.2.1 The b=z+p,u case
For this case, the governing equation at a particular time ¢, is

10

2
Viu(E,t,) = 6_25?()7’”) +z2(T) + Bu(Et), TeQ.  (2.2.3)

14



Following FDDRM formulation as described in the previous section, we arrive at
Equation (2.1.9). The same procedure used to get Equation (2.1.30) then gives for this

case

a)(ui+1 - 2u; +ui_1)+ z, + fu, = Fo!' (2.2.4)
and

o' =F (o(uy,y —2u; +u;)+2z; + fuiy). (2.2.5)
Substituting the above equation into Equation (2.1.29) gives the formulation for this

case as
wSu;; +Gq; =(H+Q2w- £)S)u; —@Su; ; —Sz;, (2.2.6)

fori=1,2,.., m.

2.2.2 The b=z+p5, % case

At a particular time ¢, we approximate the fist time derivative term by using forward

finite difference formula as

_)t'+ S _9t'
aa—‘;(x,t,)z U, ‘)At “E) | o, @2.2.7)
Then vector «' can be found as
(li E= F_l {a) (ui+1 = 2ui + lli_l )+ Zi + %ui+l —%ui]. (2-2.8)

Replacing o' in Equation (2.1.29) and rearranging terms give the formulation for this

case as
a)+& Su;, +Gq; =\ H+ 2a)+& S |u; —@Su;_; —Sz;, (2.2.9)
At At
fori=12,.., m.

2.2.3 The b=z+ﬂ3% or b=z+ﬂ4% case
ox oy

For t=t;, we have

15



2
Vzu()_c,t,):La—g(?c,ti)+z()_c,ti)+,6’3 %(f,t,.), YeQ. (22.10)
c* Bt Ox

After applying FDM and DRM technique with this equation, we get Equation (2.1.29)

and

. du.
al = F_I{Q) (ui+1 —2ui +ui_1)+ Zi +/ﬁ3 *gxl\], (2.2.11)

ou, . o . Ou,_
where a—' is a vector with its elements being a—(x, o).
X x

ou ,_ . -
Now, a—(x, ,¢;) are new unknowns and we have to rid them off by associating
x

them with the old unknowns u(X,,f;). To do this we approximate the unknown

function u at the particular time ¢, as

u; (%) = Nij}/j- £, xeQ, (2.2.12)
=

where %, j=1,2,.., N+L are constants different from «’s. We can write this
equation in matrix form as

u, = Fy' (2.2.13)
and inverting it gives

v =F'u;. (2.2.14)
From Equation (2.2.13) and the above equation, we have

ou; _OF i _OF gty 2.2.15)
ox Ox 0x

and then applying Equation (2.2.15) to Equation (2.2.11) gives

(li = F—l(a)<ui+1 _2ui +ui_1)+ Zi +/H3 ‘gEXF_lui]. (2.2.16)

Plugging @' into Equation (2.1.29) gives the complete formulation for this case as

wSu;,y +Gq; = (H+ 208 - 4R, Ju, — wSu; | —Sz;, (2.2.17)
where
R = sE g1 (2.2.18)
0x

16



0 : . :
[nthecase b=z+f, 8_u , wereplace R, in Equation (2.2.17) with
y

R, = sF (2.2.19)

oy
and the formulation becomes

a)Sui+1 +qu = (H‘f’ 208 _ﬁ4Ry)ui -—a)Sui_l _SZi’ (2,2,20)

2.2.4 The general case

Let us now consider the general case
ou ou ou
b=z+ fu+fy—+—+ 6, —.
P+ [ Y Y23 ox b dy

By using results from all previous cases, we immediately obtain the formulation for

the general case
kiSu; +Ga; = (H+ 0,8 - AR, — AR, Ju; - @Su, - Sz, (2.2.21)

for i=1, 2, ..., m, where

K=w+ —’Bi (2.2.22)
At
and
K, =20—- B+ % i (2.2.23)
{

Now, FDDRM formulations for LWPs are completed. The efficiency and accuracy of
the FDDRM will be demonstrated and discussed in Chapter 4. Although the computer
implem¢ntation of the FDDRM is not complicated and easy to apply with LWPs, this
method nmay be time consuming if the number of time-steps (m ) in the problem is too
large. Therefore the LTDRM is formulated for the solutions of LWPs in the next
chapter.
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Chapter 3

LTDRM formulations for LWPs

The Laplace transform method is one of a classical method for solving problems
governed by ordinary differential equations (ODEs) or partial differential equations
(PDEs), especially transient problems such as heat or wave problems which include at
least one time derivative term.

For this research, a numerical method, with Laplace Transform (LT) and Dual
Reciprocity Method (DRM) combined into the so-called Laplace Transform Dual
Reciprocity Method (LTDRM), is employed to solve LWPs. The basic idea of
LTDRM for solving LWPs is to firstly adopt the Laplace transform to convert a time
dependent hyperbolic differential system into a time independent elliptical boundary
value problem in the Laplace space. Secondly, the standard DRM is adopted to solve
the problem in the Laplace space. With this method, the domain integral in BEM
analysis is transformed into equivalent boundary integrals. Finally, a numerical
inversion of the Laplace transform called “Stehfest’s algorithm” is utilized to retrieve
the solution in the time domain.

This chapter is divided into three sections. In the first and the second sections,
the LTDRM is formulated for the solutions of HLWPs and ILWPs, respectively. In
the last section, Stehfest’s algorithm is reviewed and its applications to these problems

are also-discussed.

3.1 LTDRM formulations for HLWPs

Consider an HLWE to be solved on a bounded domain Q in R* with an enclosing

boundary " =0, i.e.,

Vi -5 -5 (50 =0, 5eQ,r>0, (3.1.1)



where ¢ # 0 represents velocity of wave propagation. Also consider the following
mixed boundary conditions imposed on the boundary I",

the Dirichlet condition,

u(x,t)y=u(x,t), xel,t>0, (3.1.2)
the Neumann condition,

ou _ — _

—(x,)=q(x,t), xel,,t>0, 3.1.3)

on
the Robin condition,

_ U o r
u(x,t)+ /Za—(x,t) =r(x,t), Xxelj,t>0, (3.1.4)
n

where {1",-,1' =1, 2,3} is a set of complementary segments of ', 4 is a non-zero
constant, and #, g, ¥ are known functions. In addition to these boundary conditions,

two initial conditions are prescribed,

u(x,0)=uy(x), xeQ, (3.1.5)
%Z—()‘C,O) =v,(X), XxeQ. (3.1.6)

In order to make use of the Laplace transform with respect to ¢, we must have the
following assumptions.

1. The Laplace transform of the unknown function u exists by
L{u(x,0) }=U(%, p) = [u(X,t)e " dt, (3.1.7)
0

where p is the Laplace parameter.

2. The Laplace transform of the normal derivative of « exists and

L{a—“(x, t)} = iL{u(f,z) }= ?E(E, p). (3.1.8)
on on on
3. The Laplace transform of V?u exists and
L{V2u(x, 1) }= V2 L{u(F,0) } = VU (F p). (3.1.9)
4. The Laplace transform of #, ¢, and 7 exist and
L{u(x,0)}=U (%, p), (3.1.10)
L{g(x,0}=0(%,p), 3.1.11)
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L{F(x,t) } = R(Z, p). (3.1.12)
First of all, we take the Laplace transform with respect to ¢ of Equations (3.1.1) -

(3.1.4) and use the above assumptions with the following property of the Laplace

transform
82u — 2 — — —
L y(x,t) = p U(X, p) — puy(X) — vy (%), (3.1.13)

then the time dependent hyperbolic differential system is transformed into a time
independent boundary value problem in the Laplace space as
2 — 1 2 =F — —
VAU, p) =5 ( p2U(E p) = g () - v (®) ) (3.1.14)
c

with three boundary conditions;

U,p)=U(x,p) on I, (3.1.15)
a—U(z, p)=0(,p) onlL, (3.1.16)
on

oL _ ) =N

E(x,p) +AU(x,p)=R(x,p) onIj. (3.1.17)

Note that Equation (3.1.14) is a Poisson equation and solving it with the traditional
BEM leads to an integral equation with a domain integral containing initial
conditions. Therefore, the most powerful and elegant approach so far in converting
domain integrals into equivalent boundary integrals being DRM is employed and its
application to the current formulation in the Laplace space is described as follows.
The RHS of Equation (3.1.14) is approximated by a finite sum of interpolation
functions fj,j =12,..., N+ L as

1 5 _ _ _ N+L _
—(PUGE ) - pue® -vy(®) )= Y, f, (), (3.1.18)
c j=1
where « sJ =1 2,..., N+ L are the coefficients to be determined by the collocation

method with N boundary collocation points and L internal collocation points.

After applying Equation (3.1.18) to all collocation points, the matrix form of

this equation is obtained as

1
a=F Y p2u-pu, -, ) (3.1.19)
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where @, U,Uy, and V, are vectors with their elements being «;, U(x;,p),
up(x;),and vy (x;), respectively. Replacing Equation (3.1.18) into Equation (3.1.14),

we have

N+L
VU, p)= Zla/ (3. (3.1.20)
J:

Following the DRM procedure as described in the previous chapter, we obtain the

value of unknown function U at a source point ¢ in a domain Q as
N N N+L X N N
czUz(p) + zUk(P)hgk _kZQk(P)gac =2 ayl Clz; + kzujkhﬁc —kijkggk
k=1 =1 Jj=1 =1 -1

(3.1.21)

where U, (p)=U(x;,p) and Q,(p) = Z—U()?k,p). Applying Equation (3.1.21) to all
n

collocation points gives the linear system of order (N + L) as
N N N+L i N N
cU(p)+ 2 U (p)hy _kZQk (P)gy = Zl aj[cfu[j +kzujkhlk —kij'kgzk] ’
k=1 =1 j= -1 -1

(3.1.22)

[=1,2,...,N + L which can be written in a matrix form as
HU - GQ = (HU-GQ) «, (3.1.23)
where Q is a vector with its elements being O, (p). Substituting @ from Equation

(3.1.19) into Equation (3.1.23) gives
HU—GQ:%S(sz—pUO -V,). (3.1.24)

c
Rearranging terms in the above equation leads to the LTDRM formulation for

HLWPs in the Laplace space as

2
p S R# 1
(H—C—ZSJU—GQ = —0—28U0 —C—ZSVO. (3.1.25)

After applying the boundary conditions, Equation (3.1.25) can be solved by using a
standard Guassian elimination to find values of (N+L) unknowns.

It should be noted that after these (NV+L) unknowns are found, we can find

Uz(p,) forall ¢ in the domain Q in the Laplace space by using Equation (3.1.21).

Finally, in order to obtain the solution for #(g,?)in the time domain, the numerical
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inversion of Laplace transform is needed. In this research, Stehfest’s algorithm is

employed after which u(g,#)1s obtained as

N
u(g,t)—lnTz zp W, U-(p,), (3.1.26)

forall & € Q and ¢>0,where N,, W, and p, are described in Section 3.3.

3.2 LTDRM formulations for ILWPs

In this section, the LTDRM is formulated for the solutions of ILWPs. Let us consider

1 0%u [ ou Ou Ou
x”" 7

V2u(%,f) - —a——(x A)=b = ay]’ XeQ, >0, (3.2.1)

where a function b is in the form

Ou Ou Ou ou ou ou
bl x,t,u,— — =z 0O+ pu+ fy—+ 5 —+ i —, 3.2.2
[ Py 6 '3 J z2(X,0)+ fu+ f, ot B Ox Yz 3y ( )

when z is a known function and f;,i =1, 2, 3, 4 are constants. The initial conditions

and the boundary conditions for this equation are as stated previously, i.e., Equations
(3.1.2) - (3.1.6). Similar to Section 2.2, these problems are separated into four cases as

explained below.

3.2.1 The s=z+p,u case
Let
Z(x,p) = L{z(%,) }, (3.2.3)

then in the Laplace space, we obtain the Poisson equation
VAU, p) =5 (PPUG, p) = puo(®) —vo (8) 4 BUG p)+ Z(%.p). - B2.4)
c

Similar to the previous section, approximating the RHS of the above equation with the

interpolation functions f;,j=1,2,..,N+L gives a as
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a:F-‘[ciz(sz—pUO -V, )+,6’1U+Zj, (3.2.5)

where Z is a vector with its elements being Z(X,, p). Replacing « into Equation

(3.1.23) and rearranging terms lead to the formulation for this case

(o4

2
1
[H—(f_z+ﬂlJS}U—GQ:—%SU0 -5 SV, +SZ (3.2.6)

3.2.2 The b-z+ ,322—’; case

By using the property of the Laplace transform, we get that
ou ,_ e —
L{ﬂz E(x,f)} = £, (PUE, p)—u, (%) ) (3.2.7)

Therefore in the Laplace space, we have

2
VU(x, p) = (f—z+ /J’zp]U(f, P) —(cﬁﬁ ﬂz)uo(f) —C%VO (x)+Z(x, p).

(3.2.8)

Then we obtain the vector a
-1 P2 P 1
a=F c—2+ﬂ2p U—[c—2+ﬁsz0—c—2V0+Z N (3.2.9)

Thus the formulation of this case is achieved, i.e.,

2
1
[H—(f—z+ﬂ2pJ s]U—GQ={C£2+ﬂ2JSU0 ~—5SVy +SZ.

(3.2.10)
ou Oou
3.23The b=z+p,— or b=z+p,— case
ox oy
Assume that the Laplace transform of Z_u exists and
X
ou ,_ ouU _
L{/’B _(X,f)} =3 — (&, p). (3.2.11)
Ox Ox
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Then in the Laplace space, we get that
_ 1 _ _ _ ouU _ -
VUG p) =PV P) - pio(®) -3 )+ B, 5= (5. p)+ 2o )

(3.2.12)
By approximating the RHS of Equation (3.2.12) with the interpolation functions
fiJ=12,.., N+ L, one gets a as

1
a=F‘l(—2(p2U—pU0 -V, )+ﬂ3a—U+Z], (3.2.13)
c ox
ou . s - il . .
where — is a vector with its elements being a—(x ;»p)- Similar to the procedure in

1554 X

Sub-section 2.2.3, we can show that

oU _oF

T o F'u. (3.2.14)
X X

Substituting Equation (3.2.13) and Equation (3.2.14) into Equation (3.1.23) makes the

complete formulation of this case as

2
[H _p_zs_ﬂng}U_GQ:—%—SUO —izsv0 +SZ. (3.2.15)
C € C

ou : : il )
For the case b=z+ f, 8— , we immediately obtain its formulation
y

2
p __p 1
(H _C_zs —ﬂ4Rij ~GQ-= —C—ZSUO —c—zsv0 +SZ. (3.2.16)

3.2.4 The general case

By using results from all previous cases, we easily obtain the formulation of the

general case as

(H -nS-L4R, - ,6’4Ry)U -GQ =7,SU, —LZSV0 +SZ, (3.2.17)
c
»?
where m=—+/+/p, (3.2.18)
c
and _ |2
Th==|5+b5| (3.2.19)
¢



3.3 Stehfest’s algorithm

After the solution U(Xx, p) in the Laplace space is found numerically, the inverse of
the Laplace transform is necessary in order to obtain the solution u(x,#) in the
original physical domain. There are many Laplace inverse transform algorithms
available in the literature and one of those is Stehfest’s algorithm. Stehfest [19]
showed that it gives a good accuracy on a fairly wide range of functions. Furthermore,
Moridis and Reddell [20] and Cheng et al. [21] also reported successful utilization of
Stehfest’s algorithm, which is therefore chosen for our numerical inversion. The
Stehfest’s algorithm is described as follows.

Let F' be the Laplace transform of f . Stehfest [19] showed that for any

observation time #, f(¢¥) can be approximated by a linear combination of
= In2
F(p,),v=12,.., N, and multiplied by — as
t

In2 ¥ ’
fO~== Zpl W, F(p,), (3.3.1)

where N , must be taken as an even number and p,, v=12,..,N , are parameters

corresponding to time ¢ as

_n2

Py==" (3.3.2)

and weight W, being defined as

M g
= (-] k° (k)!
e 121:( (6—k)! k! (k=D (v=k)! @k —w)! (3.3.3)

a N )
where o= TP’ K=[05(v+1)], and M =min{c,v }.
After applying Equation (3.3.1) with Equation (3.1.21) to find an approximate
solution at any internal point ¢ at any time ¢, we then obtain

In2

Np
w@N="= X, Ux(p,) (3.3.4)

It should be noted that in obtaining an approximate solution by LTDRM at any

particular time ¢, no matter how # is small or large, only N, linear systems of order

(N + L) such as Equation (3.1.25) are solved. On the contrary, we have to solve m
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linear systems of equations when using FDDRM. Since m becomes larger as ¢
increases, FDDRM will be more time consuming than LTDRM when solutions at
large times are required. Thus, this is the major advantage of the LTDRM over the

FDDRM.

As for the selection of the value of N, with which the algorithm yields best
results, Stehfest [19] suggested that the optimum value of N, be 10 for single

precision variables (8 significant figures) and 18 for double precision variables (16
significant figures). However, our experience showed that no significant difference

was noticed when using the algorithm for N, between 6 and 16. In fact, an accurate
solution may even be obtained for N, as small as 6. Thus the choice for the value of
N, in this research is 6.

Now, although all formulations of the LTDRM for LWPs are formulated, the
Laplace transform of boundary conditions and the known function z are not
convenient to implement for a computer program if they are too complicated. In 1994,

Zhu, S. P., Satravaha, P. and Lu, X. P. [22] solved this problem by approximating

them as
UG, p)=TGp) =~ LaGEm) =222 on 1 (3.3.5)
a—U(x p)=0@p,)~ L{g(%1)}= LICZUYR T, (3.3.6)
S & p)+ AU ) =R p) = LG} =" on 1y, 3a)
h by

In2 ) ) . _ _
where p, :t— v, v=1, 2, ...,Np, for a particular time #;. Since u, g, and 7 are
i

known exactly in the time domain at time ¢, thus U, Q, and R are easily evaluated
and implemented into the computer program. They used these approximations in
LTDRM procedure for solving linear diffusion problems and it gave a good accuracy.
However, they did not verify about the Laplace transform of z.
In Appendix A, we already show that Laplace transform of z such as in
Equation (3.2.3) can also be approximated as
z(x,t;)

Z(x%,p,) ~ L{z(%,1,)} = —p— (3.3.8)
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In2

where p,=— v,v=12, e Np, for a particular time ¢;,. Therefore in this
%

research, these approximations are employed in all computer implementations of the
LTDRM. In the next chapter, the efficiency and the accuracy of the LTDRM are

demonstrated via several numerical examples.
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Chapter 4

Numerical examples and Discussions

From Chapter 1, we know that there are a lot of problems in science and engineering
governed by LWEs. Vibrations of a membrane problems are one type of those
problems which can be mathematically modeled by two-dimensional linear wave
equations. The analytical solutions for some homogeneous problems can often be
found by using the method of separation of variables if the boundary of a membrane is
rectangular or circular. However, many practical problems are governed by ILWEs
which are defined on a membrane with irregular boundary, and analytical solutions
are either difficult or impossible to be obtained. Thus in this research, we illustrate the
usefulness of both numerical techniques, i.e., FDDRM and LTDRM, developed in
Chapter 2 and Chapter 3 for solving these problems.

In this chapter, thirteen numerical examples of vibrations of a membrane
problems are chosen to be solved by FDDRM and LTDRM. These examples include
various cases of vibrations of a membrane problems. In order to measure the accuracy
of numerical solutions obtained by these methods, an average absolute error at time ¢
denoted by A,(¢) and an average relative error at time ¢ denoted by E,(¢), defined in
Appendix B, will be used.

This chapter consists of two sections. In the first section, five problems
governed by HLWEs are used to investigate the accuracy and the efficiency of
FDDRM and LTDRM for HLWPs. In another section, eight problems which can be
modeled by ILWEs are utilized to investigate the accuracy and the efficiency of
FDDRM and LTDRM for ILWPs.



4.1 Numerical examples and Discussions for HLWPs

In this section, five examples (Examples | - 5) of HLWPs describing vibrations of a
membrane are presented and solved by FDDRM and LTDRM. A7 =0.1 and N, =6
are used in FDDRM and LTDRM procedures, respectively. It should be observed that

numerical results obtained from these problems are very accurate when ¢ <107 at

small observation times as well as large observation times while they are accurate

only at small observation times when ¢ > 107,
4.1.1 Example 1

The vibrations of a membrane problem without a source term is governed by the
HLWE (Equation (2.1.1)) with two initial conditions and three types of boundary
conditions (Equations (2.1.2) — (2.1.6)), where wu(x,t) is the displacement of a
membrane at a point ¥ from its equilibrium position at a time 7 and ¢ is a non-zero
constant depending on the properties of a membrane. If the boundary of a membrane
is rectangular such as Q =[0,a]x[0,b]and it is fixed (# =0 on I'") then the analytical

solution is obtained by using the method of separation of variables as

u(x, y,0)="3 3 (4, cos(w,,t)+B,, sin(@,,1)) sin( mﬂxJ sin[’my} (4.1.1)

m=| n=l a b
where
42  (mmx . [ nay
A, =— Huo(x,y) sin| —— |sin| —— | dxdly, 4.1.2)
\ ab 00 a b
a b
> [ [vo(x, y)sin[ﬂj sin[ﬂ] i dy (4.1.3)
aba)mn 00 a b
and
2 2
m n
a,,, =7 — . 4.1.4
ot (4.14)

As for this example, we let a = b =1 and two initial conditions are
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uy(x,y)=x(1-x)y(1-y) on Q (4.1.5)

and
vo(x,y)=0 on Q. (4.1.6)
The displacements of all points in the domain Q at # =0 are shown in Figure 4.1.1.
In applying the FDDRM and the LTDRM to this problem, the boundary I" is
discretized into 20 equal-size constant elements and 16 internal points in € are used
as shown in Figure 4.1.2. Average relative errors E,,(¢) obtained by using FDDRM
and LTDRM to solve this problem for ¢=10"*and 107> are illustrated in Figures
4.1.3 — 4.1.4. It can be seen that numerical solutions obtained from both methods
when ¢ =107 are more accurate than the ones obtained when ¢ =107, In fact, our
experiments have shown that they are in very good agreement with analytical
solutions for small observation times as well as large observation times when
¢ <1x107°. On the other hand, they are often accurate only at small observation times
when ¢>1x107. Figures 4.1.5 — 4.1.10 show displacements of all points in the

domain Q obtained from both methods and analytical solutions at ¢=5000 and

15000 when ¢ =107". It should be noted that although ¢ is large, numerical solutions

are still in good agreement with the analytical solution.

Figure 4.1.1: The displacements of all points in the domain € =[0,1]x[0,1]at 1 =0.
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Figure 4.1.2: The domain Q and all collocation points in Example 1.
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Figure 4.1.3: Average relative errors of the FDDRM.
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Figure 4.1.4: Average relative errors of the LTDRM.
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Figure 4.1.5: The displacements of all points obtained from the FDDRM at ¢ = 5000
with ¢ =107,

Figure 4.1.6: The displacements of all points obtained from the LTDRM at ¢ = 5000
with ¢ =107,

Figure 4.1.7: The displacements of all points obtained from the analytical solution
at ¢t = 5000 with ¢ =107,
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Figure 4.1.8: The displacements of all points obtained from the FDDRM at ¢ = 15000

with ¢ =107

Figure 4.1.9: The displacements of all points obtained from the LTDRM at ¢ = 15000

with ¢ =107",

=

Figure 4.1.10: The displacements of all points obtained from the analytical solution

=15000 with ¢ =107

at ¢
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4.1.2 Example 2

In this example, the vibrations of a membrane problem without a source term with
Q =[0,1]x[0,1]is solved. Unlike Example 1, two initial conditions are changed to
u(x,y,0)=0 4.1.7)

and

%(x, 2,0) = x (4.1.8)

and the free boundary condition 2—” =0 on I' is imposed. To solve this problem, all
n

collocation points in Example 1 are used in FDDRM and LTDRM procedure. The
analytical solution, which is obtained by using the method of separation of variables,

is of the form

u(x,y,t) = i i A4, cos(nmx)cos(may )h,, (), (4.1.9)
m=0n=0
where
t , m=0,n=0
P (1) = (4.1.10)
sin(@,,1) , otherwise
and

1
[ [xcos(nmx)cos(may)dx dy
00

A h (0)=

nm- "nm

0 . (4.1.11)
[ [cos® (nx)cos® (may) dx dy
00

Better than the previous example, numerical solutions obtained from both methods are
accurate when ¢ <1x107* as shown in Figures 4.1.11 — 4.1.12. The displacements of a
membrane obtained by using FDDRM and LTDRM at ¢ =2000 with ¢=10" are

shown in Figures 4.1.13 — 4.1.14 and also shown in Figure 4.1.15 are the

displacements of a membrane from the analytical solution.
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Figure 4.1.11: Average relative errors of the FDDRM with ¢ =107,
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Figure 4.1.12: Average relative errors of the LTDRM with ¢ =107*,
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Figure 4.1.13: The displacement of a membrane from the FDDRM with ¢ =107 at
t =2000.

Figure 4.1.14: The displacement of a membrane from the LTDRM with ¢ =107 at
¢t =2000.

Figure 4.1.15: The displacement of a membrane from the analytical solution with
c =107 at ¢ =2000.
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4.1.3 Example 3

In this example, we investigate vibrations of a circular membrane. The governing

equation of this problem is

2
%t—‘; = V2 —b, (4.1.12)

2
where V? = lﬁ[,,i ] + Lz g — is the Laplacian operator in polar coordinates. The
ror\ or) r-0d

domain in this case can be described as Q = { (r,0),where0 <r<rjand—-7z<@<rx }

for some #,>0, r=+x>+y* and ﬁztan_l[l) If a source term is neglected

X

(b =0),the boundary of the membrane is fixed (=0 on I'), and ou

ot

il

v =0

1=0

then the analytical solution is expressed as

w(r0,0)=3 SJ (4 14 cos(mb)+B, sin(mé))cos(, cf), (4.1.13)

m=0 n=1

where J,, is the Bessel function of the first kind of order m, ry4,,, is nth root of J,, and

mn

r

2 (R
A, = vy (Apa?) Uy (r,8)cos(mb) dOdr (4.1.149)
7[’”02J37+1 (ﬂmnrO) 6[ —.[r i
and
2 o #
= ; [ [ 7T (Aar) o (r,O)sin(m &) d@dr. (4.1.15)

2
h Jm+1 (/imnFO) 0 -z

To solve this problem, 56 collocation points as shown in Figure 4.1.16 are chosen
with #,=1 and the initial condition

uy(r,0) = (rf —r)sin(8). (4.1.16)
Figure 4.1.17 shows the displacements of a circular membrane at #=0. Average

relative errors E,(f) obtained by using FDDRM and LTDRM to solve this problem
for ¢ =107 and 107° are illustrated in Figures 4.1.18 — 4.1.19. From these Figures, it
should be noticed that average relative errors grow up with time when ¢ =107 while
they are small (less than 1%) and stable over a long time period when ¢ = 107°. In

fact, they are small when ¢ < 107>
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Figure 4.1.16: The domain € and 56 collocation points in Example 3.
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Figure 4.1.17: The displacement of a circular membrane at r =0 in Example 3.
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Figure 4.1.18: Average relative errors of the FDDRM.
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Figure 4.1.19: Average relative errors of the LTDRM.
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4.1.4 Example 4

Consider the HLWE (Equation (2.2.1)) on a domain Q as shown in Figure 4.1.20

with Robin condition on I'; and Dirichlet conditions on UT,,i = 2,3,4,5.

Figure 4.1.20: The domain Q in Example 4.

39 boundary collocation points and 23 internal collocation points are used in the
numerical procedures. Even though this problem includes two types of boundary

conditions, numerical solutions obtained from FDDRM and LTDRM when

c<1x107° show a very good agreement (as shown in Figures 4.1.21 — 4.1.22) with

the corresponding exact solution, 1.e.,

u(x,y,) =% +e77%, 4.1.17)
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Figure 4.1.21: Average relative errors of the FDDRM.

E (1) (%)

Figure 4.1.22: Average relative errors of the LTDRM.
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4.1.5 Example 5

Let

2 2
u(x,y,t)=%+y7+t2, (x,y) €, £ >0, (4.1.18)

2
where QQ = { (x,y) e R?/ %+y2 < 1} (see Figure 4.1.23). It can be easily verified

that u satisfies the HLWE (Equation (2.1.1)) with ¢ =1. For testing FDDRM and
LTDRM with this problem, 33 collocation points are chosen, and the Dirichlet
condition is imposed on I'. Average relative errors E,(f) from both methods are
displayed in Figures 4.1.24 — 4.1.25. From these figures we find that average relative

errors are very small for a long time period even though ¢ =1.

Figure 4.1.23: The domain Q in Example 5.
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Figure 4.1.24: Average relative errors of the FDDRM with ¢ =1.
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Figure 4.1.25: Average relative errors of the LTDRM with ¢ =1.
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4.1.6 Discussions for HLWPs

From five examples presented, FDDRM and LTDRM are applied to solve HLWPs
including vibrations of a rectangle membrane (Examples 1 — 2), a circular membrane
(Example 3), and an irregular membrane (Examples 4 — 5). These problems have three
types of boundary conditions, solutions of which are difficult to be found. From

Examples 1 — 4, we find that FDDRM and LTDRM give accurate numerical solutions

when ¢ <1x107 . Though the results have been shown for time up to 1000, it can be
seen that E,,(¢) is still small, i.e., less than 1%, for longer period. However, this time

period seems to be shorter when ¢ is increased. For example, in Example 1;
Ea(H) < 1% for ¢ €[0, 800] when ¢ = 1x10"* and Figures 4.1.26 — 4.1.27 show that

Ea(?) < 1% for ¢ [0, 0.8] when ¢ =1x10""and for # [0, 0.1] when ¢=1. On the
other hand, in Example 5, although ¢=1 FDDRM and LTDRM give very high
accuracy for very long time (¢ €[0, 10000]). This is because the exact solution is a
polynomial function of degree 2 in variable ¢.

In comparison between FDDRM and LTDRM for HLWPs, although both

methods are found to give accurate results when c¢<1x107and computer
implementations are very simple and straightforward, the execution time for LTDRM
is less than execution time for FDDRM when the unknown function value at a large
observation time needs to be calculated. Therefore LTDRM is more efficient than

FDDRM for HL. WPs.
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Figure 4.1.26:Average relative errors of the FDDRM in Example 1.

E,() (%)

Figure 4.1.27:Average relative errors of the LTDRM in Example 1.
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4.2 Numerical examples and Discussions for ILWPs

In this section, eight examples (Examples 6 — 13) of ILWPs describing vibrations of a
membrane are presented and solved by FDDRM and LTDRM. Similar to HLWPs,
At=0.1 and N, =6 are used in FDDRM and LTDRM procedures, respectively.
These examples include all cases of a function b which are explained in Chapter 2
and Chapter 3. Numerical results obtained after using these two approaches show that
FDDRM and LTDRM give a good accuracy when c¢ <107 which is similar to
HLWPs. However, for ¢ >107>, numerical results are often accurate only at small

observation times. In addition, it should be noted that FDDRM results are often more

accurate than LTDRM results.
4.2.1 Example 6

The vibrations of a membrane problem with a source term governed by

2 1 8211 — .
\Y U= xeQ,t>0, 4.2.1)
¢ ot
with two initial conditions
u(x,0) = —?, (4.2.2)

%(E,O) = c? + ¢(sin(x) + cos(»)), (4.2.3)

where the domain Q is an irregular domain as shown in Figure 4.2.1. This problem
has the exact solution u of the form

u(x,y,t) = (sin(x) + cos(y))sin(ct) — c*e™". (4.2.4)
To solve this problem with the Dirichlet boundary condition prescribed on I', we
choose 36 collocation points (as shown in Figure 4.2.1) for FDDRM and LTDRM.

Average relative errors obtained from these methods for ¢=10" and 10 °are
llustrated in Figures 4.2.2 — 4.2.3. Although the domain of this problem is an

irregular domain, numerical solutions obtained from FDDRM are very accurate when
¢ <1x107° while numerical solutions obtained from LTDRM are very accurate when

c <1078,
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Figure 4.2.1: The domain Q and all collocation points in Example 6.
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4.2.2 Example 7

In this example, we seek for numerical solutions of an ILWE of the form

2
Viu- %Z—Z = 2u —sin(x)cos(y)e™® on Q, (4.2.5)
c !

where Q is a triangular domain as shown in Figure 4.2.4.
Two initial conditions are

u(x,0) = sin(x) cos(y), (4.2.6)
Z—?(E,O) = —csin(x)cos(y). 4.2.7)

The Neumann boundary conditions are

sin(x)sin(y)e™™ on T
— (X0 = (4.2.8)

ct

—cos(x)cos(y)e ™™ on I;

and the Dirichlet boundary condition is

ct

u(x,t)y=sin(x)cos(y)e © on I,. (4.2.9)
66 collocation points (as shown in Figure 4.2.4) are chosen to find numerical solutions
in FDDRM and LTDRM procedures. Similar to previous examples, average relative

errors decrease when ¢ is decreased as illustrated in Figures 4.2.5 - 4.2.6.
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Figure 4.2.4: The domain Q and all collocation points in Example 7.
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Figure 4.2.6: Average relative errors of the LTDRM.
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4.2.3 Example 8

S : — ou .
The vibrations of a rectangular membrane problem with a friction term as ka— is
t

governed by an ILWE of the form

Pu_, o

c? Vu —_—
g ot

on {2, (4.2.10)

where Q =[0,1]x[0,1] and % > 0 is a constant, with two initial conditions

u(x,y,0)=x(1-x)y(l-y), 4.2.11)
ou
= (53,0 =0. (4.2.12)

If the boundary of the membrane is fixed (# =0 on I') then the analytical solution

obtained by using the method of separation of variables is
_E, ® o
u(x,y,t)=e % {3 > A, sin(nax)sin(mzy)cos(l,,,t)

m=1 n=1

+ 3 B, sin(nzx)sin(mm)sing, 1) }

m=1 n=1
(4.2.13)
where 4,,,B,, and l,, are shown in Appendix C. For this example, we choose

2
k= —2— and 36 collocation points in the domain Q (as shown in Figure 4.1.2). In

Figures 4.2.7 — 4.2.8, the displacements of a membrane at ¢ =1, 20000, and 50000
with ¢ =10"" obtained by FDDRM and LTDRM are shown. Average relative errors

Ea(f) for ¢ =107 and 107 are illustrated in Figures 4.2.9 — 4.2.10. Although the
governing equation of this problem (Equation (4.2.13)) contains a first time-derivative

of the unknown function u, numerical solutions obtained from both methods are still

accurate for a long time period when ¢ <1x 107,
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¢t =20000.

t = 50000.

Figure 4.2.7: The displacements of a membrane from the FDDRM with ¢ =107,
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t = 20000.

¢t =50000.

Figure 4.2.8: The displacements of a membrane from the LTDRM with ¢ =107,
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Figure 4.2.9: Average relative errors of the FDDRM.

E (0 (%)
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Figure 4.2.10: Average relative errors of the LTDRM.




4.2.4 Example 9

Consider an ILWE
2 1 8%u 2 2\ . ou
Viu————=(-2+cx")cos(ct) + (2 +cy”)sin(ct) +u — —, 4.2.14)
c? o1? ot

defined on a half circular domain Q2 (see Figure 4.2.11), with two initial conditions

u(%,0) = y?, (4.2.15)
%(E,O) = cx?, (4.2.16)

and the Dirichlet boundary condition
u(x,t) = x* sin(ct) — y* cos(ct) on I. 4.2.17)
To solve this problem, 70 collocation points (as shown in Figure 4.2.11) are used in

FDDRM and LTDRM procedures. Average relative errors obtained from these

methods for ¢ =10"and 107° are illustrated in Figures 4.2.12 — 4.2.13. It can be seen

again that E,,(f) reduces as ¢ decreases.
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Figure 4.2.11: The domain Q and all collocation points in Example 9.
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57




4.2.5 Example 10

Now, we consider the vibrations of a circular membrane problem with a source term

including the unknown function u and its spatial derivative — of the form

dy
2
5,
Vzu—%a—Z=Z+u—2—u on Q, (4.2.18)
c® ot oy
where
2%, 1) = —4 20 (L1 x? 54 p2) sin(en), (4.2.19)
with two initial conditions
u(x,0) =0, (4.2.20)
2,2
Z—t()‘c,O) =c (1 OISR +y >). (4.2.21)

For this problem, Q = { (x,y)e R? where x% + y2 <0.01} as shown in Figure 4.2.14

and the boundary of the membrane is fixed, i.e., # =0 on I'. Figure 4.2.15 shows the

displacements of the circular membrane at 7 =107z, 2007z, and 500z obtained by the

analytical solution when ¢ =107, After solving this problem by using FDDRM and

LTDRM, we find that numerical solutions are accurate when c¢<1x107 (as
illustrated in Figures 4.2.16 — 4.2.17). The exact solution of this problem is given in
Appendix C.

(0, 0.1)

(-0.1, 0) (0.1, 0)

(0, -0.1)

Figure 4.2.14: The domain Q in Example 10.
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Figure 4.2.15: The displacements of a membrane from the exact solution when
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4.2.6 Example 11

For this example, the vibrations of a rectangular membrane problem, with a source

. : . o . 0
term including a spatial derivative of the unknown function u as a—u, governed by
X

vy _La%{ B (— 2%+ (x* + %) In(x? +y2))sin(cz‘) +8_u

on Q, (4.2.22
c? 8¢? x? +y? Ox ( )

is solved by using the FDDRM and the LTDRM, where 2 ={1,2]x[1,2] which is

shown in Figure 4.2.18. The initial conditions of this problem are

u(%,0)=0, (4.2.23)
%(E,O) =clIn(x* + y*). (4.2.24)

The Dirichlet boundary condition is prescribed on I"as
u(x,1) = In(x* + p*)sin(cr). (4.2.25)
36 collocation points (as shown in Figure 4.2.18) are chosen to find the approximate

solutions. Average relative errors for ¢=10""and 10~° are illustrated in Figures
4.2.19 — 4.2.20. The displacements of a rectangular membrane at # =10, 102, and 10°
obtained from FDDRM, LTDRM, and the exact solution for ¢ =107* (as shown in
Figures 4.2.21 — 4.2.29) show that numerical solutions obtained from FDDRM seem

to be more accurate than numerical solutions obtained from LTDRM. However,

numerical solutions obtained from both methods are very accurate when ¢ <107,
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Figure 4.2.18: The domain Q and all collocation points in Example 11.
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Figure 4.2.19: Average relative errors of the FDDRM.
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Figure 4.2.20: Average relative errors of the LTDRM.
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Figure 4.2.21: The displacement from the FDDRM when ¢ = 10™*at ¢ =10.

Figure 4.2.22: The displacement from the LTDRM when ¢ = 107* at r =10.

=10.

Figure 4.2.23: The displacement from the exact solution when ¢ =10%at
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Figure 4.2.24: The displacement from the FDDRM when ¢ = 107* at + =100.

Figure 4.2.25: The displacement from the LTDRM when ¢ = 107* at 7 =100.

Figure 4.2.26: The displacement from the exact solution when ¢ = 107 at # =100.
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Figure 4.2.29: The displacement from the exact solution when ¢ = 107* at r =1000.
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4.2.7 Example 12

In this example, the FDDRM and the LTDRM are utilized to solve an ILWE in which

the source term is of general form as described in Chapter 2 and Chapter 3. The

problem is defined on a circular domain Q = {(x, y) € R? where x* + y* <1} as

2
vy LOu_ u 400 _g0u, ,0u (4.2.26)
cz 8[2 2 ot ox ay

where the known function z is shown in Appendix C, with two initial conditions

u(x,0) = sin(x)sin(y), (4.2.27)
Z—L;(J_C,O) = ¢sin(x)sin(y), (4.2.28)

and the Dirichlet boundary condition

u(%,t) = (cos(ct) + sin(ct) )sin(x) sin( y). (4.2.29)
The displacements of the circular membrane at =0 are shown in Figure 4.2.30.
Average absolute errors obtained from these methods for c¢=10"*and 107 are
illustrated in Figures 4.2.31 — 4.2.32. Similar to previous examples, numerical

solutions obtained are accurate when ¢ <1x107°,

Figure 4.2.230: The displacement of a circular membrane at ¢ = 0.
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Figure 4.2.31: Average absolute errors of the FDDRM.
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Figure 4.2.32: Average absolute errors of the LTDRM
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4.2.8 Example 13

As for the last example, we solve the vibrations of a membrane problem with a source

term of the form

2
Vzu—La—u:z—IOu—a—u—3a—u+ Ou

— on Q, 4.2.30
c2 81‘2 ot ox 6y ( )

where the domain Q is shown in Figure 4.2.33 and the known function z is shown in
Appendix C. The Neumann boundary conditions are imposed on I'; and I;. On I,
the Dirichlet boundary condition is prescribed. The exact solution of this problem is
u(x, y,t) = cos(x* + y?)e S, (4.2.31)
To test the accuracy of FDDRM and LTDRM for this problem, 50 collocation points

(as shown in Figure 4.2.33) are used. Average relative errors for ¢ =10~ and 10°°

(as illustrated in Figures 4.2.34 — 4.2.35) show that both methods give accurate results

when ¢ <1x107°,

® Internal point
Y A Boundary point

1.0 H

0.8 1

0.6 -

0.4 1

0.2 1

0.0

Figure 4.2.33: The domain Q and all collocation points in Example 13.
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Figure 4.2.34: Average relative errors of the FDDRM.

E (0 (%)

Figure 4.2.35: Average relative errors of the LTDRM.,
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4.2.9 Discussions for ILWPs

Eight ILWPs have been solved by using FDDRM and LTDRM. Four problems are
defined on regular domains and the other four problems are defined on irregular
domains with three types of boundary conditions, and their solutions are not easy to
be found. Examples 7 — 13 show that FDDRM and LTDRM give accurate results
when ¢ <1x107> which are similar to the HLWPs. For Example 6, the FDDRM gives
good results when c¢<1x10~> while the LTDRM gives good results when

¢ <1x107%. It should be noticed that numerical results obtained from FDDRM when

solving ILWPs are more accurate than the numerical results obtained from LTDRM

such as in Examples 6, 7, 10, and 11. However, for ¢> 1 x 10~ FDDRM and LTDRM
give accurate results only at small observation times.

As for the efficiency of FDDRM and LTDRM used in ILWPs, it should be
noted that although many source terms or the function b are included in the governing
equation of each problem, computer implementations of FDDRM and LTDRM are
not more complicate which differ from LTBEM, FEM and FDM. Similar to HLWPs
discussion, FDDRM is more time consuming when the solutions at a large

observation time needs to be evaluated.
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Chapter 5

Concluding Remarks

In this thesis, two numerical approaches called the Finite Difference Dual Reciprocity
Method (FDDRM) and the Laplace Transform Dual Reciprocity Method (LTDRM)
are proposed and applied to solve Linear Wave Equations (LWEs) in R?, including
Homogeneous Linear Wave Equations (HLWEs) and Inhomogeneous Linear Wave
Equations (ILWEs).

The highlights of these two methods are the transformation of an LWE into a
Poisson equation using some finite difference techniques or some Laplace transform
techniques, and utilization of the DRM to solve this transformed equation. With these
proposed methods, time-free and boundary-only integral equations are obtained.
Consequently, the dimension of the problem under consideration is virtually reduced
by two. Since FDDRM uses some finite difference techniques, a solution at any
specific time can be attained with a step-by-step calculation in the time domain. On
the other hand, LTDRM needs a numerical inversion of the Laplace transform to
retrieve a solution in the time domain.

Five examples of Homogeneous Linear Wave Problems (HLWPs) and eight
examples of Inhomogeneous Linear Wave Problems (ILWPs) are presented and
solved by these two methods. These problems are defined on regular domains or
irregular domains with three types of boundary conditions prescribed for which their
exact solutions are difficult to be found.

Numerical solutions obtained from these two methods show a very good

agreement with the corresponding analytical solutions for small observation times as
well as large observation times with the same accuracy when ¢ <107 . Unfortunately,

when ¢ >107> numerical solutions are often accurate only at small observation times.
However, our numerical experiments show that if the exact solutions are polynomial

functions of degree 2 or 1 of variable ¢, numerical solutions are very accurate for long

time period even though ¢>107>. In addition, it should be noted that numerical



solutions obtained by FDDRM are more accurate than the ones obtained by LTDRM
in [LWPs.

From the computational point of view, computer implementations of FDDRM
and LTDRM are easier than existing methods such as FDM, FEM, BEM, and
LTBEM.

From the efficiency point of view, since the numerical inversion of the
Laplace transform called “Stehfest’s algorithm” is utilized in this research with

N, =6, only 6 systems of linear equations are solved in order to obtain a value of the

unknown function at a large observation time. When comparing with FDDRM,
LTDRM is faster and more efficient. As far as the data storage is concerned, 6
LTDRM solutions are required in the Laplace transformed space for a single time
step. Such a disadvantage is however compensated by the fact that the LTDRM
allows unlimited time step size with no increase in computer storage and execution
time.

From all of those points of view and numerical results presented herein, we
may conclude that FDDRM and LTDRM are powerful methods for solving Linear
Wave Problems (LWPs) when the velocity of wave propagation denoted by c is less

than or equal to 1x10™>. LTDRM is better than FDDRM when the solutions at a large
time are needed. However, the FDDRM is suggested for solving ILWPs. As for

¢>107", numerical solutions obtained by these two methods are often not accurate
which is the limitation of FDDRM and LTDRM. Therefore, for the future works,
FDDRM and LTDRM may be improved so that they can be used to solve LWPs for

¢ >107>. Moreover, it is possible to extend these methods to solve nonlinear wave

equations.
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Appendices



Appendix A

Consider an ILWE in the form
2 l azu _ _ —
Vau(x,n)—-——(x,0)=z(x,1), X € Q,r>0. (A.1)
c” ot
After transforming this equation into Laplace space, we obtain that
- I - - - _
VUEP) =5 (PUEP - @ 0@ ) 2GEp). (A2
Approximating Z as described in Equation (3.3.8) gives the error E(Xx, p) of the form

_z(x 1)
P

Z(x,p) + E(X, p). (A.3)

Substituting this equation into Equation (A.2), we get
_ 1 . 3 5 X,t
V(% p) =[c—z(p"*U(x,p)—puo<x>—vo(x)) 0 )}E(x . (Ad)

Approximating the RHS of the above equation without the error term with the

interpolation functions f;, j =1, 2,..., N+ L leads to
” s N+L _ _
VUG, p) = Y., f,(®)+E( p). (A.5)
=

By using the DRM technique with this equation, we can show that

UG.P) =¥+ [EG P () e (A6)
z Q
where
N+L N N
¥(x,p)= o { ZUk(p)h;k 2 ZQ/c(P)gac + Z [ (C Uz +/;Zlﬁ,-kh5e "kz:léjkgac]}]
s = -
(A7)

which is the approximate solution in the LTDRM procedure. Now, we have to show

that this approximate solution ¥(x, p,), v=1,2,..., N, does give the exact solution

u(g,t;) in the time domain. By using Stehfest’s algorithm, we have

In2 Ve
u(g,t;)=— t > W, UE,p,), (A.8)

i oy=l



where p, = 1?—2 v,v=12,..,N,. Substituting Equation (A.6) into Equation (A.8),

i

we get that

N N
WG t)=T X HER) J[Zp WVE@py)] () doO.

y=I ,Cg Q \v=l
(A9)

If we can show that

Np

2. W, EX,p,)=0, (A.10)

v=1
then this proof is complete. Our computational experiments show that

Np W

2 ——=l+ey , (A.11)

vV P
for N, =2,4,..,16 where ‘ Ey ]< 107", In fact, for N = ‘ =0.
p P

Hence

N Np
S W, E(f,py)=—{z WVM] [Z W, Z(, p»}

v=l v=1 P v=l

N
:_t—i Z(T"t,’)[f WV]+[}§ WV Z()?>py)]
In2 v

v=I1

and thus complete the proof.
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Appendix B

Let u(x,t) be the exact solution at a point X at time 7 and u, (x,#) be the approximate

app
solution at a point x at time # which is obtained by a numerical method. An absolute

error at a point x at time ¢ denoted by A(x,¢) is defined as

A(%,1) = | u(F,1) =1, (%,1)

, (B.1)
if u(x,t) =0, arelative error at a point x at time ¢ denoted by E(X,?)is defined as

A(x,1)
|u()_c, t)’

E(x,t) = x 100. (B.2)

Let )?1,)?2,...,)?,\,5 be points in the considered domain Q which are called sample

points. An average absolute error at time # denoted by A,,(¢) is defined as

Ny
Aav(t) 5 NLZA(X—/( 7t)> (B.3)

s k=1

and an average relative error at time ¢ denoted by E,(?) is defined as

Ny
E, ()= FI—E]E()?,CJ). (B.4)

In this research, an average relative error at time ¢ or E,(¢) is used to measure the

accuracy of numerical solutions obtained from FDDRM and LTDRM when

‘u(fk,t)] >107* where X;, k=1,2,.., N, are sample points. On the other hand, an

average absolute error at time # or A,.(?) is used when ‘ u(xy,, t)‘ <107



Appendix C

From Example &,

16 m n m+n
A =5 5 (-7 = 1+ (=) (C.1)
kA

_ K C.2
"= (C.2)
L Jacta, —k €3

nm 2 ) .
A, =7 (n* +m?). (C.4)

From Example 10, the exact solution is
u(x, yt) = (1 - 00D sin(er), (C.5)

From Example 12,
z(x,y,t) = —% sin(ct)(4 cos(y)sin(x) + (=14 cos(x) + sin(x) — 20c sin{x)) sin( y))
- % cos(ct)(4 cos(y)sin(x) + (—14 cos(x) + sin(x) + 20¢ sin(x)) sin( y)).

(C.6)
From Example 13,
2(x, y,f) = —e™ ) (cos(x2 +y?) (=10 + 4x? + 4y? + ccos(cr) + cos? (ct) + sin(cz‘))+
2(2 +3x— y)sin(x? + y?).

(C.7)



Curriculum Vitae

Sanae Rujivan was born in February 27, 1976. He received a bachelor degree in
Mathematics from the Department of Mathematics, Faculty of Science,

Chulalongkorn University in 1997.




	Cover (Thai) 
	Cover (English) 
	Accepted 
	Abstract (Thai) 
	Abstract (English)
	 Acknowledgements 
	Content 
	Chapter 1 Introduction
	1.1 Finite Difference Method (FDM)
	1.2 Laplace Transform Method
	1.3 Boundary Element Method (BEM)
	1.4 Dual Reciprocity Method (DRM)
	1.5 The Current Research Projects

	Chapter 2 FDDRM formulations for L WPs
	2.1 FDDRM formulation for HL WPs
	2.2 FDDRM formulation for IL WPs

	Chapter 3 LTDRM formulations for L WPs
	3.1 LTDRM formulations for HL WPs
	3.2 LTDRM formulations for IL WPs
	3.3 Stehfest' s algorithm

	Chapter 4 Numerical examples and Discussions
	4.1 Numerical examples and Discussions for HL WPs
	4.2  Numerical examples and Discussions for IL WPs

	Chapter 5 Concluding Remarks
	References 
	Appendix  
	Vita



