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Horizontal wells have been drilled in the Gulf of Thailand since the late

1990’s to maximize oil recovery and prolong field life. Due to its complex geology,

most of oil reservoirs have thin oil columns and are difficult to map. Decision to drill

a horizontal well thus needs to compromise between pre-drill uncertainties and gain in

benefits over traditional vertical or deviated wells. This research presents an

application of experimental design methodology to optimize design method of a

horizontal well in a thin-oil-column reservoir in the Gulf of Thailand. Petrophysical

and engineering data from an existing horizontal well database was collated and

statistically analyzed. Series of reservoir simulations on simplified reservoir models

were conducted with respect to experimental designs to screen out significant factors

and construct two proxy models. One is for predicting an ultimate recovery factor of a

horizontal well. The other is for that of two vertical wells. By using the proxy models,

a simple method capable of identifying thin-oil-column reservoirs which have high

suitability for drilling a horizontal well is proposed. As a result, burden on reservoir

modeling and simulation could be reduced. In addition, statistical analysis results of

the designed experiments show that porosity, permeability, capillary effect, well

standoff to oil-water contact, vertical thickness of oil column, liquid rate production

control, a ratio of horizontal well length to reservoir length, and their interaction

effects significantly influence ultimate recovery of the horizontal well.
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CHAPTER I

INTRODUCTION

This chapter provides detail about background and objectives of this research.

Subsequently, scope of work and expected benefits are described. Finally,

methodology and presentation of the research are outlined.

1.1 Background

The Pattani basin is the major oil and gas producing basin in the Gulf of

Thailand. It is a pull-apart rift basin composed of a collection of Miocene stacked

channel sands interrupted by normal (i.e. extensional) faulting. The final result is a

450-km-long of north/south trending graben and horst structures bounded by terraced

fault blocks whose geological structures are difficult to predict and image [1].

To maximize the possibility of encountering trapped oil and gas,

vertical/deviated wells are typically drilled through the stacked channel sands in

parallel to the updip faults of the terraced fault blocks. Unfortunately, thin (< 40 ft) to

medium (< 100 ft) thicknesses of the channel sand reservoirs cause early water/gas

coning  problem  and  short  production  lifetime  of  the  wells.  Consequently,  extensive

infill drilling has been used as a solution to recover significant amount of remaining

hydrocarbons.

Owing to several advantages over vertical/deviated wells, horizontal wells

have been drilled in the Gulf of Thailand since the late 1990’s to maximize oil

recovery  and  prolong  field  life  [2  and  3].  However,  utilization  of  a  horizontal  well

may not yield a better economic result than a vertical/deviated well due to its higher

cost of drilling, marginal amount of oil in-place and geological uncertainties. To have

more  confidence,  a  decision  to  select  horizontal  well  drilling  is  usually  made  after

early batches of vertical/deviated wells were drilled and logged to collect geological

and petrophysical properties of the potential reservoir candidate. The challenge is that

the decision must be made within a short time span among uncertainties. A process of

geological study, reservoir simulation modeling, probabilistic analyses, well planning,
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etc., must be completed within a short time frame while a drilling rig is working on

wells of the second last batch.

Although technology in petroleum exploration and production has

significantly advanced, uncertainties are still a major problem in the industry. The

degree of the problem depends on knowledge of geological, petrophysical and

engineering data of the reservoir being considered. Therefore, a sensitivity study

using reservoir simulation is often performed to assess the uncertainties. One common

approach, called One-Variable-at-A-Time (OVAT), is to do simulation experiment on

3 levels per input model factor (P10, P50, and P90). In each set of experiment, one

factor is varied while the remaining factors are kept at a certain level. The major

disadvantage of this method is failure to consider any possible interaction or

interdependence between factors. Monte Carlo simulation is another widely used

technique which relates model input-output uncertainty. However, its major

disadvantage is the need to perform multiple model calculations. For large and/or

complex simulation models, the associated computational burden can be exhaustive

and prohibitive.

In  recent  years,  many applications  of  experimental  design  (ED)  in  oil  and  gas

industry have been increasingly published [4 and 5]. In brief, experimental design is a

statistical method whose basic idea is to vary multiple parameters at the same time so

that maximum inference can be attainted with minimum cost. It offers not only an

efficient way of assessing uncertainties by providing inference with minimum number

of simulations, but also identify key or significant factors which influence response

most early in the study.

By using response surface methodology (RSM), an interpolation model, so

called a “response surface”, “proxy”, “meta”, or “surrogate” model, can be

constructed. A proxy model is a mathematical model representing relationship

between significant factors and an output response of interest from a process system.

If the proxy model having an acceptable prediction tolerance is in hand, Monte Carlo

simulation could be easily performed. As another application, the model could be

used as a simple method for screening out reservoirs that could be economical for

horizontal well development from many reservoir candidates. Thus, exhaustive effort
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and time on reservoir simulation could be alleviated resulting in optimized design and

decision-making process to drill a horizontal well.

In conclusion, experimental design and response surface methodology could

be a cost effective and systematic approach for design optimization of a horizontal

well in the Gulf of Thailand.

1.2 Objectives

1) To propose an optimization method for designing a horizontal well in a

thin-oil-column reservoir in the Gulf of Thailand using experimental designs.

2) To develop a simple screening method for deciding whether a horizontal

well should be drilled into a particular thin-oil-column reservoir instead of traditional

vertical/deviated wells.

3) To obtain a ranking list of factors having significant influence on a

horizontal well performance.

1.3 Scope of Research

1) Only one horizontal well in a thin-oil-column (< 40 ft) or a medium-thick-

oil-column (< 110 ft) reservoir in the Gulf of Thailand is considered.

2) The presence of other vertical/deviated/horizontal wells in the same

reservoir is out of this scope.

3) The reservoir is produced under primary depletion with a booster

compressor. No other artificial lift or enhanced oil recovery methods are taken into

account.

4) Lateral section of the well is assumed to be perfectly horizontal.

5) Computer experiments are performed using reservoir simulation. Since

actual reservoir characteristics are very complex, simple hypothetical models

approximating the actual characteristics are used in the simulation.

6) The existing horizontal well database used for this research is updated

until June 2010.
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1.4 Expected Benefits

With respect to the outlined objectives, the following benefits are expected:

1) An optimization method for horizontal well design is proposed. The proxy

model approximating a horizontal well performance and the list of significant factors

could be used as a guide for optimizing factor settings in subsequent detailed design.

2) The developed screening method could be used to quickly screen out oil

reservoirs having high potential for horizontal well development from many probable

ones. The obtained high potential reservoirs can then be evaluated in more detail at a

later stage. Therefore, the amount of work for detailed reservoir simulation and

probabilistic analysis is reduced resulting in saved time and cost.

3) Probabilistic analysis of incremental oil reserve due to horizontal well over

traditional deviated wells can be easily performed with more confidence. Monte Carlo

simulations can be quickly performed because the obtained proxy models provide

deterministic solutions.

4) The  list  of  ranked  significant  factors  could  help  to  collect  the  most  useful

information in data surveillance and acquisition program. If the available budget is

limited, more resource and attention should be allocated on a factor having higher

ranking. Good quality of collected data improves quality of design and prediction.

1.5 Methodology Outline

1) Define  objectives  and  key  performance  factor  of  a  horizontal  well  to  be

response of proxy models to be constructed.

2) Define a large set of factors which could influence ultimate recovery factor

of a horizontal well by brainstorming. The factors are then grouped as controllable

and uncontrollable factors.

3) Qualitatively screen out tentative significant factors from the listed factors

by consulting with highly experienced geologists and reservoir engineers in the fields.

4) Collate  probability  distribution  and  range  of  the  tentative  significant

factors from the existing horizontal well database.
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5) Transform probability distribution of all factors to be or as much close to

normal distribution as possible. This is because theories of statistical inference

technique used in the subsequent steps require normality distribution of design

factors.

6) Statistically screen out significant factors from the tentative ones by

performing reservoir simulations based on 2-level screening experimental design.

Resolution IV fractional factorial design is used for the screening.

7) After the final set of significant factors is obtained, perform a response

surface design and corresponding reservoir simulations to fit a proxy model predicting

ultimate recovery factor of a horizontal well.

8) Validate the obtained proxy model against a different set of cross-

validation experiments. A hypothesis testing technique, called matched pairs t-test, is

used for validating whether predicted ultimate recovery factors and the actual ones

obtained from cross-validation experiments are statistically the same with 95%

confidence.

9) If the null hypothesis in Step 8 is rejected, repeat Steps 7 and 8 by running

more  experiments  or  changing  type  of  response  surface  design  until  the  null

hypothesis is accepted.

10) To develop the simple screening method, comparison in performance

between horizontal and vertical wells is required. Repeat Steps 7 to 9 to construct a

proxy model predicting ultimate recovery factors of vertical wells using the same set

of significant factors. It is assumed that if horizontal well drilling is rejected, two

vertical wells will be drilled instead. Each well is placed at targeted heel and toe

locations of the rejected horizontal well.

11) Develop the simple screening criteria for deciding whether drilling a

horizontal well is better from the proxy models obtained in Steps 9 and 10 using the

cross-validation experiments.

1.6 Thesis Outline

This thesis consists of six chapters and the outlines of each chapter are listed

below.
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Chapter II briefly reviews previous works related to horizontal wells and

application of experimental design methodology in oil and gas industry.

Chapter III introduces the concept of experimental design and response

surface methodology related to this research.

Chapter IV describes methodology of this research in more detail.

Chapter V presents the experimental  analyses and results of designed

experiments.

Chapter VI provides conclusions of the study and recommendations for the

further study.



CHAPTER II

LITERATURE REVIEW

This chapter reviews formerly published literature relevant to the scope of the

present study. It begins with an overview of horizontal wells and factors affecting

their performance. In the end, published applications of experimental design

methodology in petroleum industry are reviewed.

2.1 Horizontal Wells and Factors Affecting Their

Performance

2.1.1 Horizontal Well Overview

The first recorded true horizontal oil well, drilled near Texon, Texas, was

completed in 1929. Since then, the technology of horizontal well drilling and

completion had been developed and more horizontal wells were drilled. However,

horizontal drilling could not achieve its commercial success until 1980’s.

Subsequently, horizontal drilling technology has been increasingly developed and

used by operators, drilling and service companies [6].

The main purpose of a horizontal well is to increase exposure of the producing

wellbore for productivity improvement. Due to this advantage, horizontal wells have

been effectively used for the following applications [7 and 8]:

1) Horizontal wells have been used to intersect fractures, and drain them and

reservoir effectively.

2) In reservoirs with water and gas coning problems, horizontal wells have

been used to minimize coning problems, enhance oil production and increase oil

reserve.

3) In low-permeability gas reservoirs, horizontal wells can improve drainage

area and reduce number of wells while in high-permeability gas reservoirs, horizontal

wells can reduce near-wellbore gas velocities and improve well deliverability.
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4) In EOR applications, horizontal wells have been used with heavy oil

reservoir, especially for thermal oil recovery. A long horizontal well provides a large

reservoir contact area and therefore enhances injectivity of an injection well.

5) Reducing cost by using fewer wells because size of offshore platforms, no.

of well slots, water and/or gas separation and handling can be reduced.

There are generally 4 completion techniques for a horizontal well. Figure 2.1

shows a schematic of the four completion methods. Each type of completion is briefly

described as follows:

Figure 2.1: Various completion techniques for horizontal wells. (After Joshi [7])

1) Open hole or barefoot: This completion method is inexpensive. However,

its main problems are that production/injection along the well length cannot be

controlled, stimulation cannot be done on selective interval basis, production logging

and cased hole saturation monitoring are difficult, and it is only suitable for stable

formations.

2) Slotted liner completion: Slotted liners are usually used when sanding is a

common problem in the wellbore. They can also guard the hole against collapsing.
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They provide a convenient path to insert some tools but cause difficulty to selective

production/injection and well stimulation.

3) Liner with partial isolations: The completion method is actually slotted

liner installed with external casing packers (ECPs). The ECPs divide annulus between

the slotted liner and the wellbore along horizontal section into smaller sections. Zone

isolation, well stimulation and production control along the well length are thus

feasible.

4) Cemented and perforated liners: This completion type is the best to

effectively deal with water and/or gas entries. Well stimulation at desired intervals,

production logging and saturation monitoring are relatively easier than the first two

methods. However, cementing job of a horizontal well is usually difficult because the

hole is not straight and cutting transport is not effective.

2.1.2 Factors Affecting Horizontal Well Performance

Owing to several advantages of a horizontal well over a vertical well, many

researchers and practitioners have extensively studied its behavior and response

against various factors. Some of their works related to this research are reviewed and

summarized below.

Several theoretical solutions predicting single-phase flow with steady-state

flow rate in a horizontal well are presented in the literature. Borisov [9], Giger et al.

[10], and Joshi [11 and 12], and Renard and Dupuy [13] proposed similar solutions.

All of these solutions represent a sum of two mathematical solutions. One represents

horizontal flow while the other represents vertical flow. Besides, it is assumed that

reservoirs are isotropic and a horizontal well can be represented as a limiting case of

an infinite-conductivity fracture whose height equals to the wellbore diameter. This

implies that diameter of a horizontal wellbore has an influence on its performance.

From the solutions, influence of horizontal well length and reservoir height, h,

on well productivity is shown in Figure 2.2. For a given thickness of a reservoir, the

horizontal-to-vertical productivity ratio, Jh/Jv, increases as the horizontal well is

longer. Also, the incremental gain in productivity is much higher in a thinner reservoir

than a thicker reservoir. These are because incremental contact area is greater for a

longer horizontal well or a thinner reservoir.
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Figure 2.2: Effect of reservoir thickness and horizontal well length on productivity of

horizontal and vertical wells (After Joshi [7])

Figure 2.3: Effect of reservoir anisotropy and horizontal well length on productivity

of horizontal and vertical wells (After Joshi [7])

Joshi [11], and Renard and Dupuy [13] modified the vertical flow component

of their solutions to account for reservoir anisotropy. Calculations showing the

influence of reduced vertical permeability on horizontal well productivity are shown

in Figure 2.3. From the figure, it is indicated that, at a given horizontal length,

productivity of a horizontal well significantly reduced as vertical permeability

decreases.
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Joshi [11] proposed an analytical solution for calculating oil flow rate of a

horizontal well off-centered in a vertical plane. It is noted that no bottom water and

top gas are considered in the solution. Its calculation results showing the influence of

well eccentricity on well productivity are plotted and shown in Figure 2.4. The figure

illustrates that horizontal well productivity decreases as the horizontal well

eccentricity, δ, increases. The horizontal well eccentricity, δ, is defined as a vertical

distance between horizontal well and reservoir center. However, the well can be

placed anywhere without significant loss in productivity if it is long enough compared

with reservoir thickness. Note that this conclusion is valid only for the case that

bottom water and gas cap are absent in the reservoir.

Figure 2.4: Influence of well eccentricity on well productivity (After Joshi [7])

In a reservoir having gas cap, bottom water or both,  water and gas coning or

cresting is a serious problem because it can significantly reduce oil production.

Horizontal wells have been proven to handle water and gas cresting problem better

than  vertical  wells  in  many  fields  [14,  15,  16  and  17].  One  of  the  main  reasons  for

coning or cresting is near-wellbore pressure drawdown. Figure 2.5 compares profiles

of near-wellbore pressure drawdown between horizontal and vertical wells. It is
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clearly illustrated in the figure that much more pressure drawdown occurs close to

vertical wellbore region than that of horizontal well. This causes the vertical well to

have more coning tendency than the horizontal well. Several experiments and

theoretical analyses reveal that if production is produced below a certain rate, called a

critical rate, water and gas production can be avoided. With an appropriate control of

water and gas movement, the best possible sweep of the reservoir can be obtained [7].

Figure 2.5: Comparison of pressure drawdown near horizontal and vertical wellbores

(After Joshi [7])

Joshi [11], Chaperon [18], Giger and Karcher et al. [19 and 20], and Efros [21]

proposed correlations for estimating horizontal well critical rate. One common

conclusion from these correlations is that critical rates of horizontal wells are

significantly higher than those for vertical wells. Therefore, horizontal wells can be

produced at higher rates to obtain maximum recovery of oil in a shorter time span.

Ozkan and Raghavan [22] reported a theoretical correlation to calculate water

breakthrough time for a horizontal well in a bottom water drive reservoir. The

correlation yields a few conclusions that sweep efficiency of horizontal wells

increases with increasing well length at a given well spacing. This implies that

increasing well length at a fixed well spacing delays water breakthrough. At a given



13

well length, increasing well spacing up to a certain value can delay water

breakthrough. For a bottom water drive reservoir without gas cap, a horizontal well

placed at the top of oil column gives the highest value of sweep efficiency.

Papatzacos et al. [23] presented a solution to calculate breakthrough time for

an infinitely long horizontal well in a reservoir having both gas cap and bottom water.

The solution shows that the optimum well placement is closer to the oil-water contact

as a ratio of density contrasts between water, oil, and gas, ψ, increases. As ψ

increases, water and gas breakthrough time decreases. Beyond a certain flow rate,

regardless  of  the  value  of  ψ,  the  optimum  well  placement  is  at  the  center  of  oil

column.

Mutalik, Godbole, and Joshi [24] presented a solution to calculate

dimensionless pressure drop at a given dimensionless time of a horizontal well during

pseudo-steady state. They concluded that top and bottom reservoir boundaries also

affect horizontal well performance in addition to side boundaries.

Vo et al. [25] performed sensitivity analysis using reservoir simulation on

simple reservoir model to select a drilling and completion strategy for horizontal wells

in Attaka and Serang Fields, Indonesia. Horizontal well program in these two fields is

targeted to thin-oil-column reservoirs under influence of gas cap and water support.

They concluded that, for a reservoir having a small gas cap (m, free gas volume/oil

inplace volume, < 1.0), it is better to place the well horizontal as high as possible in

the oil column. This is because reserve loss due to gas-cap blowdown is small. For

large  gas  cap  (m >1),  it  is  prudent  to  place  the  horizontal  section  in  the  top  half  but

close to the middle of oil column.

Drilling-related skin damage can cause additional pressure drop to a horizontal

well resulting in reduction in productivity. However, for a given positive skin

damage, pressure drop in the skin region around a horizontal well is significantly

smaller than that of a vertical well. Thus, the detrimental effect of skin damage of a

horizontal well has less influence on well productivity than that of a vertical well for a

given skin factor [7].

In general, pressure drop along the horizontal well length is very small and can

be ignored. However, under certain circumstances such as production of light oils

with high flow rates, the pressure drop could cause overestimation of production and
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smaller breakthrough time of water and gas. In general, pressure drop along the

horizontal length becomes a concern for high-permeability reservoirs because high

flow rate can be produced at relatively low pressure drawdown [7].

From reservoir engineering point of view, most of aforementioned analytical

works on horizontal well productivity either assume that the well is infinitely

conductive  (no  pressure  loss)  or  the  flow  entering  the  wellbore  is  uniform  along  the

well length. As a result, it is sometimes incorrect to conclude that horizontal well

productivity improves as its horizontal length increases because of greater contact of

the wellbore to the reservoir.

Penmatcha, Arbabi, and Aziz [26] developed a semi-analytical well-model to

quantify  the  effects  of  pressure  loss  in  the  well  on  overall  well  performance  for  both

single-phase oil and two-phase oil/gas flow. It was concluded that the ratio of

wellbore pressure drop to reservoir drawdown gives a good indication of frictional

effects on well productivity. The pressure drop in the wellbore becomes significant

only when it is comparable to the drawdown at the heel of the wellbore. Errors in

productivity calculations due to ignoring frictional effects increase with increasing

well length, flow rates, wellbore roughness and reservoir permeability. However, they

decrease with higher drawdown or higher fluid viscosity.

2.2 Experimental Designs in Petroleum Industry

The initial concept of experimental designs was developed in the 1920’s for

agricultural production in the U.K. and the U.S. The concept was introduced after

Fisher [27] developed fractional factorial and analysis of variance (ANOVA) methods

in 1925. Box, Hunter, and Hunter [28] introduce the modern basic concept of

experimental designs to manufacturing sector in 1978. Further development by

Taguchi [29] and others result in establishment of many applications in chemistry,

chemical engineering and industrial engineering.

The first publication of experimental design application in petroleum industry

could be the one presented by Vogel [30]. The earliest application in reservoir work

was presented by Sawyer et al. [31] whereas early references to reservoir simulation

were reported by Chu [32] and Damsleth et al. [33]. All of these papers highlight the
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main advantage of experimental designs over one-variable-at-a-time method (OVAT)

on conducting fewer simulation runs with some understanding of possible interactions

among variables. Due to fast development in computational facilities and more ability

to deal with more complex reservoir models, many applications of experimental

designs on reservoir modeling were published. Most of them are about managing

uncertainties and finding optimal production scheme [34, 35, and 36].

Chewaroungroaj et al. [4] performed numerical simulation studies to compare

efficiency of several techniques for handling uncertainty problems. Their main goal is

to find the method which can evaluate uncertainty problems with fewer factors and

satisfactory accuracy. Various approaches such as scaling analysis, first-order and

second-order analyses, experimental design and response surface analysis were

compared. They concluded that the combination of scaling, experimental design and

response surface analysis provide a potential to predict uncertainty with less effort

while maintaining accuracy in comparison with Monte Carlo simulation.

Subsequently, several authors, such as White and Royer [37], Peng and Gupta

[38], Yeten et al. [39], and Zubarev [40], published papers to provide more detail

about  the  pros  and  cons  of  different  types  of  experimental  designs.  The  design  types

compared in their studies vary from

1) 2-level screening design: Plackett-Burman (suitable for identifying main

effects when interaction effects are negligible) and fractional factorial designs

2) 3-level design: D-Optimal and Central-Composite designs (suitable for

creating first- and second-order polynomial proxy models when interaction and

nonlinear effects are significant)

3) Latin Hypercube and other space-filling designs (suitable for kriging, thin-

plate splines and artificial neural networks)

Comparison on the results obtained from exhaustive simulation run by Yeten

et al. [39] show that space-filling experimental designs whose responses are fitted by

kriging, splines and quadratic polynomials give the greatest accuracy when compared

with those of traditional factorial designs fitted by associated response surfaces.

However, if the number of experiments is very small, the space-filling design used,

uniform design, is more likely to fail near the boundary of factor design space.
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Zubarev [40] performed several reservoir simulations to compare efficiency of

various proxy-modeling techniques for history matching, production optimization and

forecasting applications. Experimental design used in the study is Latin Hypercube

sampling. The types of proxy models compared are polynomial regression model,

multivariate kriging model, thin-plate splines model, and artificial neural network. It

was concluded that the appropriate choice of proxy-model type is problem specific.

Kriging models showed the best performance, but require more computational efforts

for  model  construction.  The  most  reasonable  solution  suggested  for  use  is  thin-plate

splines. However, it tends to have more error for small datasets. Artificial neural

networks and polynomial regression models have smoothing effect on the predicted

response surface. Therefore, precision of proxy prediction of computer experiments is

reduced. Different topologies of artificial neural networks yield different quality of

prediction.

From literature review, the objectives of applying experimental designs in

reservoir modeling can be categorized as follows:

1) Sensitivity analysis to quantify uncertainty and probabilistic forecasting:

This objective could be the first reason for adopting experimental design

methods to the petroleum industry. This is because the methods require fewer runs,

can identify interaction effects and provide more understanding for factor effects on

response. In addition, the generated proxy models can be used replace full reservoir

simulations so that Monte Carlo simulation can be performed with less effort [33],

[39], [41], [42], and [43].

2) History matching: In history matching, several optimization algorithms

have been proposed to help engineers calibrate simulation models to production data.

The process of history matching is frequently complex and require many simulation

runs to find acceptable solutions. Proxy models which can adequately produce key

output responses are thus an attractive tool. Cullick et al. [44] used an artificial neural

network as a proxy model in history matching process and obtained acceptable

results, provided that initial dataset is large enough. Similarly, Osterloh [45] used a

kriging model with Latin Hypercube experimental design for history matching and

achieved acceptable results. To obtain an adequate proxy model, one challenging

problem must be overcome. Since actual response surface in reservoir simulations are
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often highly non-linear, experimental designs which distribute design points

uniformly  over  hyperspace  of  input  factors  may  not  be  efficient  enough.  Jones  et  al.

[46], Queipo et al. [47], Wang [48], and Li et al. [49] proposed iterative improvement

methods to solve the problem. However, Zubarev [40] demonstrated that for

increasing complexity of actual response surface and number of design factors, using

a proxy model for history matching is not recommended.

3) Field development and production optimization: Experimental design

methodology also plays an important role in this area. Infill well placement can be

very complicated and exhaustive for running simulations if number, type, location and

scheduling need to be optimized. Proxy models can thus help reduce efforts in the

optimization process [39], [50], [51], [52], and [53].

It has been presented that experimental design methodology has been

increasingly used in petroleum industry for about two decades due to its many

advantages. Unfortunately, literature review reveals that none of its applications in

petroleum industry in Thailand can be found.

In Chapter 3, the concepts of some important experimental design methods

and response surface methodology used in this research are detailed.



CHAPTER III

EXPERIMENTAL DESIGN AND RESPONSE SURFACE
METHODOLOGY

This chapter presents basic concepts and methods of experimental design

which are relevant to the current research. Statistical analysis of experimental result is

then described. Response surface methodology used to construct an empirical model

for prediction and optimization purposes is finally overviewed.

3.1 Experimental Design Concepts

Experiment could be conceivably defined as a scientific procedure conducted

to make a discovery of something about a process or system. In general, a process or

system comprises inputs/variables/factors, process/system, and output/response as

illustrated in Figure 3.1. Experimentation is performed by varying input factors and

observing responses being interested to understand how the process system works and

make useful conclusions. Experimental Design (ED) or Design Of Experiments

(DOE) refers to the process of planning and conducting experiments so that valid,

useful and objective conclusions can be drawn from the resulting data. In addition, all

of this is done under the constraint of a minimum cost of engineering runs, time and

money. To obtain meaningful conclusions, especially when experimental errors exist,

statistical approach to experimental design is the only way of analysis which yields

objective conclusions [54].

3.1.1 Procedure for Designing an Experiment

To adopt statistical approach in analysis and design of an experiment,

understanding on the objectives of the experiment, data to be collected, how the data

is to be analyzed should be recognized among experimenters in advance to obtain

meaningful conclusions. Therefore, the below procedure is generally followed in

designing an experiment.
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Figure 3.1: General model of a process or system (After Montgomery [54])

3.1.1.1 Statement of the Problems and Objectives

When a problem occurs and requirement of experimentation is identified, a

clear and generally accepted statement of the problem and objectives should be

developed. In a process system, there are usually several parties involved such as

earth scientists, engineers, quality assurance personnel, construction crews, operators,

etc. The objectives of an experiment are best determined by a team discussion.

Objective prioritization during group discussion helps guide the direction to perform

experiment design and selection of factors. In general, experimental design

methodology can be applied to serve to following 4 objectives:

1) Comparative objective: assessing whether a change in a single factor has

significant change/improvement to the process system as a whole.

2) Screening/characterizing objective: screening out the few important main

effects from the many less important ones.

3) Modeling objective: functionally modeling the process with the output

being a good-fitting mathematical function and to have good estimates of the

coefficients in that function. The function can be used to find improved process

settings, troubleshoot process problems and weak points, and make a process more

robust against external and non-controllable influences.

4) Optimizing objective: determining optimal level of each factor that

optimizes a process response.
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3.1.1.2 Selection of Response Factors

Selection of response variables should be ascertained that they can provide

useful information about the process system to serve the objective of the experiment.

Issues  relating  to  how  to  define  and  measure  response  variables  should  be  identified

before performing the experiment.

3.1.1.3 Selection of Input Factors

Understanding types of input factors which could impact performance of the

process system could help the experimenter to plan, collect and analyze the input

information. Input factors could be classified as potential design factors and nuisance

factors. The potential design factors are the factors that the experimenter may wish to

vary in the experiment. They can be further classified as

1) Design factors: factors actually selected for study in the experiment

2) Held-constant factors: factors that may exert some effect on the response

but are out of interest in the study, so they are held constant at a certain level

3) Allowed-to-vary factors: factors whose effect may be caused by non-

homogeneity of materials or unit-to-unit variation. Randomization process is usually

adopted to balance out the effect of these factors.

4) Nuisance factors: factors are not interested in the present study, but their

effect may be large enough to be concerned. They can be subdivided into

 4.1) Controllable factors: factors that can be controlled by the experimenter

such as different batches of materials or different days of conducting experiment.

Blocking principle is usually used to deal with these factors

 4.2) Uncontrollable factors: factors that cannot be controlled in the

experiment but can be measured. Analysis of covariance is often used to compensate

for these factor effects.

 4.3) Noise factors: factors which vary naturally and uncontrollably in the

process system, but can be controlled for the purpose of the experiment. The settings

of the controllable design factors which minimize variability due to noise factors are

usually looked for.
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3.1.1.4 Selection of Experimental Design

Selection of experimental design involves determination of sample size,

selection of suitable order of the experiment runs, whether and how randomization

and blocking are applied, setting of each factor in each experimental run, etc.

Ultimately, the selected experimental design must be able to serve the experimental

objectives. Various methods of experimental designs involved in this research are

described later in this chapter. Several statistical software packages are commercially

available to aid in selection, design and analysis of experiments.

3.1.1.5 Performing the Experiment

When performing the experiment, it is essential to monitor and control it as

per the plan. Errors in the experimental procedure could cause invalidity of the

experiment. The experiment can be conducted on physical process system which

usually has run-to-run variation. Replication of each experimental setting is usually

performed to deal with this type of variation. However, this type of variation is not

present for experiment conducted using deterministic computer models of physical

systems. This is because output responses of the models are not random variables and

their values are determined from usually highly complex mathematical models.

3.1.1.6 Statistical Analysis of the Data

Statistical methods should be used in the analysis of data to obtain objective

conclusions. Hypothesis-testing, confidence interval determination, and analysis of

variance are very useful to analyze and draw conclusions from experimental results.

Representation of many experimental results in the form of an empirical, proxy or

surrogate model, which mathematically describes relationship between important

factors  and  response,  is  usually  useful  for  further  applications.  It  is  essential  to  note

that statistical methods do not allow us to experimentally prove that a factor has a
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particular effect. However, they allow us to quantify probability of error or a level of

confidence in a conclusion.

3.1.1.7 Conclusions and Recommendations

After the analysis of the data is completed, practical conclusions from the

results and recommendations are made. Follow-up runs and confirmation testing are

subsequently performed to validate the conclusions. In practice, experimentation can

be regarded as learning process because we do not perfectly know the answers of the

problems. Successful experiment requires good knowledge of important factors,

ranges of these factors and appropriate number levels for use in experimentation.

Some factors may be dropped out and ranges of some factors may be adjusted after

the first experiment. Therefore, the experimenter learns as the experimental program

proceeds. As a result, experiment is usually conducted in a sequential manner.

3.1.2 Experimental Design Methods

Several experimental design methods are available and presented in literature.

As described previously, selection of experimental design method depends on the

objectives of the experiment. This section describes concepts of some experimental

design methods used in this study.

3.1.2.1 One-Variable-at-A-Time Designs (OVAT)

One-Variable-at-A-Time (OVAT) or One-Factor-at-A-Time (OFAT)

experimentation refers to a common approach of varying one factor over different

levels while holding other factors constant at a specific level (usually at mid level).

After determining importance of a single factor effect, focus of interest moves to

another single factor. The effect of a factor is defined as a change in response

produced by a change in the level of the factor. This effect is usually called “main

effect” because it refers to the primary design factor in the experiment.
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In 2-level experimental designs, each factor is assigned two levels in this type

of designs. For computational purposes and avoiding a problem of different scale

units  of  design  factors,  the  factors  are  scaled  so  that  the  low and  high  levels  of  each

factor are assigned a value of -1 and +1, respectively. For 3-level experimental

designs, the mid level of a factor is assigned a value of 0.

Conventionally,  effect  of  a  factor  is  denoted  by  a  capital  Latin  letter.  For

example, “A” refers to the effect of Factor A and “AB” refers to the effect of AB

interaction. For notation of factor combinations of an experimental run, two different

methods are widely used. For the first method, a series of capital Latin letters denotes

names of factors varied in an experiment. Each factor name is followed by a

superscript  “-” or “+” referring to low or high level of the factor,  respectively.  As an

example, A-B+ refers to an experimental run at low level of Factor A and at high level

of Factor B. Alternatively, high level of a factor is represented by corresponding a

lower case letter while low level of a factor is represented by the absence of the

corresponding letter. For instance, “b” represents an experimental run at low level of

Factor A and at high level of Factor B.

Figure 3.2 shows the experimental plan or design of a 2-factor one-variable-at-

a-time experiment. From the figure, estimates of Factors A and B are A-B+ - A-B- and

A+B- -  A-B-, respectively. Since experimental error is present in physical experiment,

replication of experimental run at each design point is usually required. Effect

estimate of each factor is thus performed based on average responses. If 2 response

observations are required for each design point (2 replicates), a total number of six

experimental runs are required.

3.1.2.2 Full Factorial Designs (FD)

Full factorial designs are the most efficient way to study the effects of several

factors. This type of designs contains all possible combinations of low/high levels of

all factors. Thus, levels of several design factors are varied together from run to run. If

all design factors have the same number of levels, the total number of experiment can

be calculated as Lk, where L = the number of levels of each design factor and k = the
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number of design factors. A two-factor full factorial experiment conducted at two

factor levels is presented in Figure 3.3.

Figure 3.2: A two-factor one-variable-at-a-time experiment conducted at two levels

(Adapted from Montgomery [54])

Figure 3.3: A two-factor full factorial experiment conducted at two levels

(After Montgomery [54])

Full factorial designs have several advantages over one-variable-at-a-time

designs. From the figure, two estimates of Factor A main effect can be determined as

A+B+ -  A-B+ and  A+B- -  A-B-. Two estimates of Factor B main effect can also be

evaluated in a similar manner. It can be shown that average main effects calculated

from the two estimates of each main effect are as precise as those obtained from the

one-variable-at-a-time experiment. However, only 4 experiment runs are required
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meaning that FD is more efficient than OVAT. In general, the efficiency of full

factorial designs over one-variable-at-a-time designs increases as the number of

design factors increases.

In many process systems, effects due to interaction between factors can be

important. As shown in Figure 3.4, due to the absence of experimental run at A+B+,

one may conclude that the factor combination at A+B+ produces the highest response

since the responses at A-B+ and A+B- show response increment in a one-variable-at-a-

time experiment. If AB interaction effect exists, Figure 3.4(b) reveals that the

conclusion can be seriously erroneous.

In addition, conclusions from full factorial designs are valid over a range of

factor levels because the effects of a design factor are estimated over several levels of

the other factors.

(a) (b)

Figure 3.4: A 2-factor FD experiment (a) without AB interaction (b) with AB

interaction (After Montgomery [54])

3.1.2.3 Fractional Factorial Designs (FFD)

Although full factorial designs have many advantages, their required number

of runs become more impractical when the number of design factors is greater than

about 4 because of limited experimental resource and time. It can be shown that the

number of experimental runs of full factorial design can rapidly increase as “k”

increases although L is as low as 2. Fortunately, it is usually not necessary to run all

combinations of all factor levels. Fractional factorial designs (FFD) are variants of

full factorial design which only a carefully chosen fraction or a subset of full factorial
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combinations are experimented. A 2k full factorial design having 2k-p runs is called a

1/p fraction of the 2k design. This can be simply called 2k-p fractional factorial design.

Figure 3.5 compares cube plots of factor combinations between a 23 full factorial

design and a 23-1 fractional factorial design.

Although the number of experimental runs can be decreased as “p” increases,

the ability to differentiate response effects between factors decreases because more

factor effects are aliases. For example, if main effect of Factor A and AB interaction

effect are aliases (denoted by [A] = [AB]), it is impossible to differentiate between A

and AB. In fact, when either A or AB is estimated, A + AB is actually being estimated

(denoted by [A]à A + AB). The notation of capital Latin letters in [ ] refers to factor

effect evaluated from experimental design responses while the one without [ ] refers

to actual factor effect.

The ability to differentiate effects between factors can be indicated by

resolution of the experimental design. Depending on available resource and time, the

highest possible design resolution should be chosen. Table 3.1 shows available 2-level

factorial designs with resolution. The definitions of important and mostly used

resolution designs are described as follows:

1) Resolution III designs: no main effects are aliased with any other main

effect. However, main effects are aliased with two-factor interactions and two-factor

interactions may be aliased with each other.

2) Resolution IV designs: no main effects are aliased with any other main

effect or any other two-factor interaction. However, two-factor interactions are aliased

with each other.

3) Resolution V designs: no main effects or two-factor effects are aliased

with any other main effect or two-factor interaction. However, two-factor interactions

are aliased with any other three-factor interaction.

Plackett and Burman [56] developed and proposed a set of alternative 2-level

fractional factorial matrices available for studying k = N-1 factors in N runs where N

is a multiple of 4.  If  N is a power of 2,  these designs are the same as 2k full factorial

designs. Plackett-Burman Designs (PBD) are Resolution III designs and often used as

screening design because of their small number of experimental runs required. The

designs have several special characteristics. First of all, the designs cannot be plotted
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(a) (b)

Figure 3.5: Cube plot of (a) 23 full factorial design (b) 23-1 fractional factorial design

Table 3.1: Summary of available 2-level factorial designs with resolution (After

Minitab, Inc. [55])

as cubes. So, they are sometimes called nongeometric designs. Their alias structures

are very messy because every main effect is partially aliased with every two-factor

interactions not involving itself. So, they are classified as irregular fractional factorial

designs according to Box and Hunter [57 and 58]. As a result, they should be used as

screening designs only when prior knowledge of the process system indicates that

interaction effects are negligible.
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3.1.2.4 Response Surface Method Designs (RSM)

Response surface method (RSM) designs are 3-level factor designs which are

useful for modeling a curved quadratic surface to continuous design factors. The

surface can be used for factor optimization if a minimum or maximum response exists

inside the design factor region. The most popular type of response surface method

designs are central composite designs (CCD) and Box-Behnken designs. A brief

overview of these methods is presented as follows:

3.1.2.4.1 Central Composite Designs (CCD)

Central composite designs are matrices corresponding to at most five-level

experimental plans proposed by Box and Wilson [59]. A central composite design

contains an imbedded full factorial or fractional factorial design with center points

that is augmented with a group of star points that allow estimation of curvature. If the

ranges of each design factor are coded so that its factorial points have either +1 or -1

unit, the distance from the center of the design hyperspace to a star point is ±α with |α|

≥ 1. There are 3 types of central composite designs which are circumscribed central

composite designs (CCC) – α > 1, Inscribed central composite designs (CCI) – α =

±1, and face-centered central composite designs (CCF) - α = ±1. Figure 3.6 shows

comparison of the three types of central composite designs. Notice that star points of

CCI and CCF are circular, spherical, or hyperspherical symmetry.

3.1.2.4.2 Box-Behnken Designs (BBD)

A Box-Behnken design [61] is an independent quadratic designs that do not

contain an embedded full factorial or fractional factorial design. In this design, factor

combinations are at the midpoints of edges of the process design hyperspace and at

the center. Figure 3.7 shows comparison between 3-factor CCF and 3-factor BBD. As

illustrated in Fig. 3.7, the Box-Behnken design has no factor combinations or

experiment points at vertices of the cube. Accuracy of prediction near vertices of this

design is thus lower than CCF.
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Figure 3.6: Comparison of the three types of central composite designs

(Adapted from United States Department of Commerce, NIST/SEMATECH [60])

(a) (b)

Figure 3.7: Cube plot of (a) 3-factor CCF (b) 3-factor BBD
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3.1.2.4.3 Space-Filling Designs (SFD)

Space-filling designs (SFD) are useful for experiments whose run-to-run

variability or random error is small enough to be neglected. Replication is thus not

required because the same result will always be obtained when repeating the same

run. Computer simulation, which is a deterministic system, is one of such

experiments. In physical experiments where there is substantial random noise, the

goal of experimental design is to minimize variance of prediction. However, in

experiments on deterministic systems, there is no variance but bias. Bias is the

difference between the approximation model and the true mathematical function. The

goal of space-filling design is to bound the bias. There are two approaches to bound

the bias. One is to prevent replication of design points or factor combinations by

spreading out the distance between two points as maximum as possible. The other is

to distribute the points as uniformly as possible over design hyperspace.

Descriptions of several space-filling designs such as sphere-packing designs,

Latin Hypercube designs, uniform designs, maximum entropy designs, etc., are

available in literature. Only Maximum entropy design method is described in this

chapter because it is used in the current research. Note that maximum entropy design

method is a competitor to Latin Hypercube design method which is widely used for

computer experiments,

Maximum Entropy designs maximize a measure of the amount of information

or Shannon information contained in an experiment [62]. Computationally, these

designs maximize |R|, the determinant of the correlation matrix of the design points.

The matrix R is defined as

= R , = −∑ − (3.1)

where,

i and j = the number of experimental runs

k = the number of design factors

θ = a k-vector of exponential correlogram ranges

xi
k and xj

k = the kth components of sample points xi and xj
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This type of experimental designs is suitable for spatial correlation response

surface model such as Gaussian process models, alternatively called kriging models.

Figure 3.8 compares two-factor Maximum Entropy design with two-factor Latin

Hypercube design. The figure shows that Latin Hypercube design does not always fill

the design space well. Note that space-filling property improves as the number of runs

increases.

(a) (b)
Figure 3.8: Comparison between (a) 18-run two-factor Latin Hypercube design

(b) 18-run two-factor Maximum Entropy design

3.1.3 Selection of Experimental Design Method

As described in the previous sections, there are many experimental design

methods published in literature and available in several statistical software packages

for use. Different design methods have different advantages and limitations.

Therefore, the method to be chosen for designing an experiment should be able to

serve the objectives of the experiment and the number of factors to be investigated.

Depending on the experiment objective and total number of design factors, Table 3.2

can be used as a guide line for choosing an experimental design method.



32

3.2 Statistical Analysis of Result

After conducting the designed experiment and obtaining process or system

responses, it is usually required to identify and quantify sources of response variation,

which factors are important or significant, and how they influence the sources of

variation. To fulfill the requirement, statistical models and techniques are built and

used. There are several statistical models available such as Continuous Linear Model

(CLM), Analysis of Variance (ANOVA) model, and discrete model.

Table 3.2: Guideline for selecting experimental design method (Adapted from United

States Department of Commerce, NIST/SEMATECH [60])

Number of
Factors Comparative Objective Screening Objective Modeling or Optimizing

Objective

1 1-factor completely
randomized design - -

2 - 4 Randomized block
design Full or fractional factorial Central composite, Box-

Behnken or space-filling

5 or more Randomized block
design

Fractional factorial or
Plackett-Burman

Screen first to reduce
number of factors

To employ either one of the aforementioned models, the following

assumptions must be made. First, process system is sum of a systematic component

and a random component. The systematic component can be described by a

mathematical model while the random component represents error or noise present in

the system. It is further assumed that the systematic component is fixed over the

design range and the random component has a constant location, spread and

distributional form. Second, the data used to fit these models are representative of the

process system being modeled.

ANOVA models are commonly used in the data analysis because it can be

used to compare effects of multiple levels of multiple factors. The basic concept of

ANOVA  is  that  the  total  variability  in  the  process  or  system  response  can  be

partitioned into the variation due to factors (i.e. between factor levels) and the
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variation due to pure error (i.e. within each factor level). All of t4he variations are

assumed to be independently and normally distributed. After determining these total

and partitioned variations, statistical hypothesis testing of equal means of factor level

effects is performed. Consequently, factors whose change in their level can

significantly influence response of the process system can be identified. These factors

are called ‘significant factors’ herein. The detailed calculation method of ANOVA

and its theories behind can be found in many statistical textbooks [54], [60], etc.

It is essential to note that, in computer experiments, there is no random or pure

error to estimate mean square error in analysis of variance as usual because the

experiments are performed on a deterministic model. Daniel [63] suggests a simple

way to solve this problem. Daniel suggests that any effects which are negligible are

normally distributed with mean zero and variance σ2, and will tend to fall along a

straight line on a normal or half-normal probability plot of the estimates of the effects.

Significant effects will not have mean zero and will not lie along the straight line.

Figure 3.9: An example of normal probability plot of 2k factorial design [64]

As shown in Figure 3.9, a normal probability plot is a plot between effect

estimates on the vertical axis and normal quintiles on the horizontal axis. It is shown

in the figure that T, Ct, Cn, Ct*T and Cn*T are significant factor effects. Similarly, a

half-normal probability plot is a plot between the absolute values of the estimates
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against the normal quantiles for the absolute value normal distribution. Figure 3.10

shows the half-normal probability plot of the same factor effects plotted in Figure 3.9.

Figure 3.10: An example of half-normal probability plot of 2k factorial design [64]

Although normal or half-normal plot of factor effects are simple for use,

interpretation of the effect significance is rather subjective. Alternatively, Lenth [65]

proposed a good method to estimate standard error, called pseudo standard error

(PSE) to detect significant factorial effects. The Lenth’s PSE can be calculated as per

Equation 3.2.

= 1.5 × : < 2.5 (3.2)

and

= 1.5 × (3.3)

where,

 cj = contrast or effect estimate of jth factor effect

 j = 1 to m

 m = total number of contrasts or effect estimates of interest

=  2k-1 factor effect estimates for an unreplicated 2k factorial or

 2k-p fractional factorial designs

 k = total number of design factors
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In addition, there are two principles which play an important role in the

analysis and interpretation of data. The first principle, called “sparsity of effects

principle”, states that most systems are dominated by some of the main effects and

low-order interactions, and most high-order interactions are negligible [54]. Thus,

interaction effects of three or higher factors are usually assumed negligible and

sometimes regarded as pure error in unreplicated experiments. The other is “hierarchy

principle”. It states that if a model contains a high-order term (such as A2B), it should

also  contain  all  of  the  lower-order  terms  that  compose  it  (in  this  case  A2 and  A2B).

The objective of this principle is to promote a type of internal consistency in a model

and many statistical model builders strictly follow the principle.

3.3 Response Surface Methodology (RSM)

Response surface methodology or RSM is a collection of mathematical and

statistical techniques used for modeling and analysis relationship between a response

of interest and its influential factors. Therefore, response surface methodology is

implemented when the objective of the experiment is modeling or optimizing. In other

words, RSM is the method used to build a mathematical/statistical model mimicking

actual process system illustrated as a box in Figure 3.1. A mathematical function

relating process/system response to its independent influential factors and noise or

error observed in the response is called response surface.

In many cases, the form of true response surface of a process system is

unknown. Therefore, the first working step always starts with finding a suitable

approximation form of the response surface in some region of independent factors.

Least square techniques are then used to estimate parameters required for the model

form. Consequently, a fitted surface is obtained for response surface analysis. Figure

3.11 schematizes a general workflow for building a response surface model. It is

essential to note that the model parameters are effectively estimated when a proper

experimental design method is used to collect data. Experiments designed for fitting

response surface model are thus called response surface model designs.
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Figure 3.11: General workflow for building a response surface model (After United

States Department of Commerce, NIST/SEMATECH [60])

If the experiment objective is optimization, first-order polynomial model may

be firstly used to find the factor region which contains optimum (maximum or

minimum) response of the process. A second-order polynomial model is then used to

fit the response surface within a relatively small factor region. As a result, the RSM is

a sequential procedure. On the other hand, if the objective is process modeling, a
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more complex model form may be required to be able to imitate the process response

as close as possible. Some forms of response surface models used in this research are

briefly overviewed in the following sub-sections.

3.3.1 First-Order Polynomial or Linear Model

= + ∑ + (3.4)

where,

= predicted process or system response

 k = number of design factors

 i = integer from 1 to k

 = regression intercept

= regression coefficient of first-order term, xi

 ε = random error

Notice that  is the estimated main effect of ith design factor.

3.3.2 Second-Order Polynomial or Quadratic Model

This  model  is  used  in  lieu  of  linear  model  when  there  is  curvature  in  the

response.

= + ∑ + ∑ + ∑∑ +         (3.5)

where,

= predicted process or system response

 k = number of design factors

 i, j = integer from 1 to k

 = regression intercept

= regression coefficient of first-order term, xi

 = regression coefficient of second-order term, x2
i
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 = regression coefficient of interaction term, xij

 ε = random error

3.3.3 Gaussian Process Model

The Gaussian process models are powerful models for non-linear interpolation

and often used to fit the data from a deterministic computer experiment. By definition,

a Gaussian process is a stochastic process whose realizations consist of random values

associated with every point in a range of times or space such that each such random

variable has a normal distribution. Moreover, every finite collection of those random

variables has a multivariate normal distribution. Historically, it is previously known

as Gaussian process regression or Kriging [66]. Although this type of models can

provide an exact fit to the responses from the experiment, it is important to note that

there  is  no  guarantee  that  interpolation  is  done  well  at  locations  having  no  response

data.

The Gaussian process model used for this research has the following form:

= + ( ) (3.6)

where,

y = process or system response

µ = a normal distribution mean

z(x) = a random function with mean zero, variance σ2
z, and correlation

matrix R or R(xi, xj) between two z values at input vector xi and

xj; these are two k-dimensional vectors at distinct points i and j.

R = R(xi, xj) = See Equation 3.1

Note that µ, σ2
z and θk in Equation 3.1 are estimated using the optimization method of

maximum likelihood which is a measure of goodness-of-fit of model fitting like R2.

In this chapter, the basic principles of experimental designs and response

surface methodology relating to the current study have been presented. The next

chapter describes methodology of this research.



CHAPTER IV

RESEARCH METHODOLOGY

This chapter describes the work carried out for this research according to the

methodology outlined in Chapter 1. However, the scope of this chapter covers only

from Step  1  to  Step  5  of  Section  1.5.  The  work  performed in  the  remaining  steps  is

presented in Chapter V. In the end of this chapter, description of simplified reservoir

models for conducting designed experiments is provided.

4.1 Statement of Objectives and Response Factor

According to the problem and opportunity stated in Section 1.1, it is decided

to conduct designed experiments and response surface fitting to meet the objectives of

this researched defined in Section 1.2. From the research objectives, it can be clearly

identified that the main objectives of the designed experiments to be conducted are

modeling and optimizing. However, because behavior and performance of a

horizontal well can be influenced by several controllable and uncontrollable factors,

the requirement of screening design is also identified.

Ultimate oil recovery factor (URF) of a horizontal well is selected to be the

response factor of this study. This is due to the reason that horizontal wells are mainly

used to maximize oil recovery to prolong field life in the Gulf of Thailand besides

accelerating oil production. Intuitively, one can expect that horizontal well

productivities from the experimental results could be more or less greater or equal to a

equivalent vertical/deviated well. Therefore, defining well productivity as the

response factor could not be as good as the URF.

4.2 Selection of Input Factors

After the response factor was defined, potential significant factors that could

influence ultimate oil recovery factor of a horizontal well was listed out based on

literature review and consultation with subject matter experts (SMEs) of the oil fields.
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As a  result,  a  total  of  48  potential  significant  factors  could  be  listed  out  as  shown in

Table A1 of Appendix A. Table A1 presents potential significant factors grouped

according to their geological and engineering characteristics and other different types

of factor categorizations, i.e. controllable/uncontrollable and dependent/independent.

Subsequently, it is realized that the number of experimental runs is still

impractical for screening 48 factors although an experimental design approach is

used. For example, for Resolution III designs, 52 and 64 runs are required for

Plackett-Burman and fractional factorial designs. For Resolution IV designs, 104 and

128 runs are required for folded Plackett-Burman and fractional factorial designs.

Therefore, it is decided to conduct factor screening based on SMEs’

knowledge. To do so, each SME is independently requested for giving a score of

factor significance or influence to each factor. The score increases from 0 to 10 as

factor significance or influence on URF of horizontal well increases. Consequently,

an average significance score of each factor can be calculated and ranked. See Table

A1 for the detail.

In addition, the number of factors can be further reduced by grouping factors

which have mutual correlation together. Also shown in Table A1 are two columns of

additional categories of the potential significant factors. The symbol “I” in the first

column indicates whether the factor of interest must be independently obtained from

measurement/testing or can be calculated from physical relationship with other factors

(labeled by “D”). The other column labels “C” to a factor if the factor can be

calculated from available correlations, is fixed at a certain value as per SMEs’

recommendation,  or  may  be  significant  but  its  effect  is  beyond  the  objectives  of  this

research. The label “X” means that the factor could be a potential significant factor

and should be experimented.

By taking the factors which have a score of 4 or higher with labels “I” and

“X”, 13 significant factors can be screen out for screening experimental design. As

remarked in the table, the remaining factors are either kept constant or varied together

with other factors with respect to their known correlation. The screened out potential

significant factors are re-tabulated in Table 4.1 for the ease of reference.

Then, probability distribution and range of the 13 potential significant factors

are collated from the existing horizontal well database. The probability distributions
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and associated statistics of the factors are presented in Table 4.2 and Appendix B.

Note that transformed probability distributions of RESDIP, ANISO, and HO are also

included in the table and appendix. As aforementioned in Section 1.5, factor

transformation is performed so that the transformed distribution is as close to normal

distribution as possible.

4.3 Screening Experimental Design

In the previous section, 13 out of 48 factors could be screened out by SMEs’

experience and making use of known factor correlations. However, the number of

experimental runs of response surface designs is still prohibitive. Therefore, the 13

design factors are screened out further using Resolution IV 213-8 fractional factorial

design and reservoir simulation. By using screening experimental design, quantitative

and objective conclusion can be obtained. A statistical software, called “JMP

Statistical Discovery Software”, is used to perform experimental design and analysis

Table 4.1: Potential significant factors or design factors for experimental designs

1 Reservoir thickness HRES ft Uncontrollable

2
Ratio of horizontal-well-length to
reservoir-length LHRATIO

Fraction of reservoir
length Uncontrollable

3 Average reservoir dip angle RESDIP Degree Uncontrollable
4 Porosity PORO Fraction Uncontrollable
5 Anisotropy (kv/kh) ANISO Fraction Uncontrollable
6 Oil gravity API oAPI Uncontrollable
7 Initial oil column thickness HO ft TVD Uncontrollable
8 Initial oil-water contact depth OWC ft TVDSS Uncontrollable

9
Ratio of initial gas cap pore volume to
initial oil pore volume MRATIO Fraction of oil PV Uncontrollable

10
Ratio of initial aquifer pore volume to
initial oil pore volume AQFRATIO Multiplier of oil PV Uncontrollable

11 Horizontal well length LH ft Controllable

12
Ratio of well standoff to OWC to
initial oil column thickness WSTANDOFF Fraction of HO Controllable

13 Liquid production rate control LRAT STB/day Controllable

No. Potential Significant Factor Abbreviation
Controllable or
Uncontrollable?Unit
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for this research. Table C1 in Appendix C shows factor settings or design patterns of

213-8 fractional factorial design for conducting reservoir simulations. The symbols “+”

and “-” in Table C1 denote maximum and minimum values of a factor of interest as

shown  in  Table  4.2.  In  addition,  the  order  of  factor  level  in  each  design  pattern

follows  the  order  number  of  design  factor  shown in  Table  4.2.  It  is  essential  to  note

that a 20-run Resolution III Plackett-Burman design is purposely not selected for this

factor screening because some interaction effects of the 13 factors may be significant.

Table 4.2: Probability distribution of design factors for experimental designs

4.4 Response Surface Designs

After conducting screening experiment and analysis, the obtained significant

factors are further experimented according to a response surface design. Unlike the

1 OWC ft TVDSS 4119 8497 5294.29 6773.6 8116.77
2 HRES ft 11.0 92.0 25.3 43.4 68.6
3 HO ft TVD 25.0 159.0 35.6 65.0 109.2

HO# ft TVD 3.219 5.069 3.567 4.133 4.700
4 LH ft 180 3476 574 1235 2279

5 LHRATIO
Fraction of reservoir

length 0.10 1.00 0.10 0.55 1.00

6 RESDIP Degree 1 8 1.67 2.96 5.24
RESDIP# Degree 0 2.079 0.504 1.084 1.663

7 MRATIO Fraction of oil PV 0 1.65 0.00 0.08 0.155
8 AQFRATIO Multiplier of oil PV 38.44 92.16 0.00 50.00 100.00
9 WSTANDOFF Fraction of HO 0.11 0.95 0.46 0.46 0.76

10 PORO Fraction 0.14 0.28 0.16 0.20 0.25
11 API oAPI 34.74 47.75 36.2 38.9 41.6
12 ANISO Fraction 0.1 1 0.1 0.21 1.00

ANISO# Fraction -4.029 -0.086 -4.584 -2.057 -0.086
13 LRAT STB/day 55 6000 3027.5 3027.5 6000.0

Note: 1) RESDIP# = Transformed RESDIP = ln(RESDIP)
2) ANISO#  = Transformed ANISO   = ln(ANISO-0.0822)
3) HO#        = Transformed HO         = ln(HO)

No. Design Factor Min. P10 P90Max.Unit P50
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screening design, the low, mid, and high levels of a factor are set at P10, P50, and P90

values, respectively, so as to trim extreme and rarely encountered values out. The

popular face-centered central composite design (CCF) is firstly chosen to be

experimented to generate a quadratic proxy model. As described in Chapter 5, 6 out of

the 13 design factors can be screened out for performing subsequent response surface

designs. Level settings of the 6 designed factors are varied according to the design

patterns shown in Table C2 in Appendix C. For the other factors, their settings are

kept at their mid or P50 level.

Later on in Chapter 5, validation result of the quadratic proxy model shows

that quadratic models cannot adequately describe the URF response surface.

Therefore, 45-run maximum entropy designed experiments are performed. The

number  of  experimental  runs  is  selected  to  be  the  same  as  that  of  CCF  so  that  their

model fitting efficiencies could be compared. Refer to Table C3 for design patterns of

the 45-run maximum entropy design.

4.5 Designed Experiments for Proxy Cross-Validation

One approach to validate a fitted proxy model is comparing its predicted

responses with actual responses obtained from another different set of experiments.

For process systems that have random errors, the minimum number of sample

experiments, which can statistically represent its population, can be calculated from

sample variance. However, this type of calculation cannot be performed in this

research because computer experiments are deterministic and random-error free.

Thus, it is ideal to perform as many validation experiments as possible to better

represent actual response surface. However, conducting too many cross-validation

experiments could consume too much resource and omit the advantage of

experimental designs on requiring fewer numbers of runs.

Therefore, it is subjectively decided to conduct 2 sets of 18-run (40% of 45-

run CCF) maximum entropy designed experiments for the validation. Each set of the

designs is differently generated by changing the number of random starts in JMP

program. The first set of validation experiments is used for validating proxy models

obtained from the 45-run central composite design and 45-run maximum entropy
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design. The second set of validation experiment is combined with the first set to

validate the proxy model obtained from 45-run central composite design and 45-run

maximum entropy design points. See design patterns of the two cross-validation

experimental designs from Tables C4 and C5 in Appendix C.

4.6 Reservoir Simulation Modeling

To perform the computer experiments, a commercial black-oil simulator

“Schlumberger ECLIPSE E100” is used for simulating fluid flow in reservoirs. Due to

its modeling and visualization capabilities, a seismic-to-simulation software

“Schlumberger PETREL” is used for constructing an ECLIPSE model and exporting

it to ECLIPSE E100 for flow simulation. After the simulation is completed, the results

are imported to PETREL for better visualization.

During data collection stage, it is found that actual characteristics of the

reservoirs in the Gulf of Thailand are complex and have a lot of variations. To obtain

a proxy model that could represent all reservoirs as close as possible, all reservoir

simulations are performed based on simple hypothetical models. A simple model is

parallelogram-shaped and homogeneous reservoir having average reservoir and fluid

properties assigned with respect to designed factor settings. By assuming that

horizontal wellbore is placed at the middle of true reservoir thickness, HRES,

boundary of any reservoir model can be calculated from geometry-related factors such

as OWC, LH, LHRATIO, HO, HRES, RESDIP, MRATIO, and WSTANDOFF. A 3D

graphical view of a simple reservoir model can be seen in Figure 4.1.

Since reservoirs under this stud

y are relatively thin, reservoir grid cells are modeled using corner-points rather

than traditional block centers for better geometry and fluid flow modeling. Depending

on length-to-width and length-to-height ratios of the reservoir of interest, the total

number of grid cells in all models is limited not to exceed 100,000 grid cells to avoid

excessive run time. The length-to-width ratios of all models are controlled to vary

within a range of 0.8 to 1.2, except for the cases that the ratio is very high. The

number of grid cell layers varies from 10 to 20 depending on the total number of grid

cells. If feasible, the reservoir is divided into 15 grid layers as a base value.
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Figure 4.1: A 3-dimensional simple reservoir model showing fluid zones, horizontal

well modeling, and edge-drive aquifer

Figure 4.2: A 3-dimensional simple reservoir model showing an updip impermeable

fault, inactive cells modeling due to the fault, and a horizontal well

In an attempt to represent a simple model as close to an actual one as possible,

an updip fault is also simulated as shown in Figure 4.2. Since the fault is assumed to

be impermeable, any grid cells whose cell centers are higher than the fault are

modeled inactive for fluid flow. According to Table A1, fault dip angle is not



46

expected to significantly affect horizontal well URF for thin-oil-column reservoirs.

Therefore, an average dip angle of 55 degree is simulated for all models.

Initial reservoir pressure and temperature in a reservoir model at the mid depth

of oil column are calculated from generic correlation equations. The generic

correlation equations are fitted from raw data collected from the existing horizontal

well database. Refer to Figures D1 and D2 for regression of the correlation equations.

Based on initial reservoir pressure, temperature, oil & gas gravity and gas-oil

contact elevation, fluid properties in a reservoir model can be calculated using

correlations recommended by PETREL. Table 4.3 summarizes correlations used for

fluid  modeling  in  this  research.  Note  that  an  average  gas  gravity  of  0.77  is  kept

constant for all models as well as a water salinity of 1,000 ppm (fresh water).

For rock compaction, a constant rock compressibility of 8x10-6 psi-1 is used for

all models as per an SME’s recommendation. This is because reservoir rocks in the

Gulf of Thailand are generally consolidated. For relative permeability curves,

available core plug data is collected and analyzed. The obtained average residual

saturations, end points and Corey exponents are shown in Figure D5 and used for all

simulations.

Table 4.3: Fluid correlations used for fluid modeling

Description Correlation
Z Factor Hall & Yarborough [67]

Gas Pseudocritical Properties Piper, McCain & Corredor [68] from gas gravity
Gas Viscosity Lee, Gonzales & Eakin [69]
Oil Bubble Point Pressure Valko & McCain [70]
Gas-Oil Ratio Standing [71]
Oil Formation Volume Factor (p<=pb) Petrosky & Farshad [72]

Oil Formation Volume Factor (p>pb) McCain [73]
Oil Density (p<=pb) McCain [73] mass balance
Oil Density (p>pb) McCain [73] mass balance
Dead Oil Viscosity Beggs & Robinson [74]
Oil Viscosity (p<=pb) Beggs & Robinson [74]

Oil Viscosity (p>pb) Vasquez & Beggs [75]
Water Formation Volume Factor (p>pb) McCain [73]
Water Compressibility (p>pb) Osif [76] revised by Spivey, Valko & McCain [77]
Water Viscosity Meehan [78]
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The horizontal permeability of rocks used in this research is correlated from

extensive permeability tests of core plugs in the fields. The permeability-porosity

correlation plot and equation which are commonly used by engineers working in the

fields  are  shown  in  Figure  D3  of  Appendix  D.  In  this  research,  level  setting  of

horizontal permeability is directly varied in experimental design. Instead, it is

indirectly varied when the factor level of porosity changes using the permeability-

porosity correlation.

Initial water saturation in water-oil transition zone due to capillary effect is

taken into account in the modeling. A generic J-function obtained from the existing

database is plugged into PETREL to auto-generate oil-water capillary pressure curve

in ECLIPSE. The initial water saturation distribution due to capillary effect in a model

is generated during model equalization. Consequently, the initial saturations of water,

oil and gas distributed under gravity are ready for the production simulation. Figure

D4 presents a plot of Leverette J-function versus water saturation with correlation

equation. From the formulas in the figure, initial water saturation at a given depth in

oil-water transition zone can be calculated from permeability and porosity of the rock.

Since permeability is correlated with porosity in this research, varying factor setting

of porosity also changes thickness of the oil-water transition zone.

Horizontal well path is automatically generated by PETREL after specifying

coordinates of heel and toe of the horizontal section. Besides its horizontal section,

coordinates of horizontal well path are generated from the horizontal section up to

kick-off point of the well. By default, the kick-off point is specified at 1/3 of the

vertical depth from surface to the horizontal section. Above the kick-off point, the

well is horizontal. Below the kick-off point, the build-up radius of 1,500 ft (classified

as long radius [7]) is specified in PETREL for all horizontal wells. Examples of a

modeled horizontal well can be viewed in Figures 4.1 and 4.2. In terms of simulation

modeling, ECLIPSE will treat any grid cells intersected by perforated or open-hole

sections of the well path generated by PETREL as wellbore.

As mentioned in Table A1 of Appendix A, all horizontal sections are modeled

to be perfectly horizontal from heel to toe with open-hole completion. A wellbore size

of 6-1/8” with a roughness of 0.066” (average value of unlined concrete in Table 4.4)

is used for all models. By dividing the horizontal section into many segments, fluid
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flow inside the open-hole section of a horizontal well can be calculated by ECLIPSE.

Note that well segment size is set to be equal to the size of the grid cell that the

horizontal well path intersects with. In the calculation, the effects of pressure loss due

to friction, fluid acceleration and hydrostatic pressure are considered.

In all cases, the well section above the well heel is completed by a 5.000” API

J-55 casing. A 2.875” API J-55 tubing (OD = 2.875” and ID = 2.441”) with a

roughness of 0.0006” is installed from the well heel up to the surface. Fluid flow

calculation inside the tubing is performed by means of using vertical lift performance

(VLP) curves. The VLP curves are constructed using a software package, called

“PROSPER”, which is developed by Petroleum Experts Limited. After the VLP

curves are constructed, they are exported to ECLIPSE for well flow simulation. It is

essential to note that all simulations are performed for fluids flowing from reservoir to

horizontal wellbore and from horizontal wellbore to tubing head only.

Table 4.4: Roughness of different types of pipe [79]

To explore the effect of water drive, a numerical aquifer model is connected to

lower edge face of the reservoir model. See Figure 4.1 for connection between

reservoir and aquifer models. A numerical aquifer is modeled by a one-dimensional

row of cells. A cell or a set of cells in the simulation grid, usually inactive cell/cells, is

nominated to represent the aquifer. The petrophysical properties of the aquifer are

assigned to be the same as its corresponding reservoir model. The cross-sectional area

of the aquifer is set to be the same as that of the lower edge face of the reservoir

model. The length of the aquifer can be calculated from aquifer volume which

depends on AQFRATIO setting of each experiment. Volume calculation tool in
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PETREL is used to calculate reservoir volumes of in-place oil and gas cap by taking

capillary effect into account. The depth of the aquifer is defined at the centroid of the

aquifer volume. For gas cap modeling, a multiplier of pore volume keyword

(MULTPV) is used to multiply with porosity of gas-bearing rock so that the desired

MRATIO of the experiment is obtained.

After assigning all petrophysical properties to the reservoir model, a

development strategy is then specified to control production operation of the well.

Small simulation time steps are assigned during early production period and increased

gradually to minimize running time of the simulation. However, the rate of increasing

time  step  size  is  controlled  to  ensure  that  there  are  not  any  solving  problems  during

simulation run. Given by an SME in the surveyed oil fields, limiting economic

constraints shown in Table 4.5 are also specified.

Table 4.5: Economic limits and operational constraints of reservoir simulations

In practice, in a drilling program, a few vertical/deviated wells are usually

drilled at certain optimum distance apart passing through a reservoir candidate for

horizontal well drilling. See Wells KPWD-11, D-12, D-13 and D-29 in Figure 4.3 for

illustration. From the figure, it can be seen that the vertical wells are drilled parallel to

the updip trapping fault. The purpose is to obtain more geological condition,

petrophysical properties, and fluid contacts in the reservoir. After performing detailed

simulation and economic analysis, the final decision whether to drill a horizontal well

is made. If the analysis result indicates that production from a horizontal well is more

economically viable than from the vertical wells, the horizontal well path will be

designed to be parallel to the alignment of the vertical wells. However, a certain

tolerance distance is maintained from the vertical wells to the horizontal well and

from the horizontal well to the trapping fault to avoid collision.

Description Economic Limit
  Max. water cut 0.90
  Min. oil production rate (STB/day) 50
  Max. GOR (MSCF/STB) 5.0
  Min. tubing head pressure (psia) 114.7
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According to Step 10) in Section 1.5, another proxy model for predicting URF

of vertical wells is required to develop the simple screening method. Another set of

experiments is thus performed by replacing a horizontal well with two vertical wells.

Significant factors are varied in the same way as that of horizontal wells, i.e. same

experimental designs. Note that LH in the experiments of vertical wells denotes

distance between the two wells instead of horizontal length. Figure 4.4 shows the

locations of the vertical wells in reservoir modeling. For well completion, the same

casing and tubing sizes as those of horizontal well models are used. Perforated

interval of the well is at the middle one-third of reservoir thickness according to the

best practice of the fields for reservoirs having both gas cap and bottom water.

In this chapter, research methodology and reservoir simulation modeling to

conduct designed experiments have been described. Experimental results, proxy

model fittings and validations, and the development of a simple screening method for

deciding whether to drill a horizontal well are presented in Chapter V.

Figure 4.3: An example of typical placement of a horizontal well relative to existing

vertical/deviated wells and trapping fault (After Eric et al. [1])
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Figure 4.4: Locations of two vertical wells relative to a corresponding horizontal well



CHAPTER V

EXPERIMENTAL ANALYSES AND RESULTS

Analyses and results of designed experiments performed as described

previously chapter are presented in this chapter. According to the workflow outlined

in Section 1.5, the scope of this chapter covers from Step 6 to Step 11. In this chapter,

a group of significant factors influencing an ultimate recovery factor of a horizontal

well is identified. Proxy models predicting an ultimate recovery factor of a horizontal

and two vertical wells are built with provision of its limitations of use. In the end, an

application of the constructed proxy models to be used as a simple screening method

for horizontal well development program is developed.

5.1 Analysis and Result of Factor Screening Design

Factor screening experiments are performed to statistically screen out fewer

significant factors for conducting response surface designs in the later step. 13 of the

initial 48 design factors are screened out for screening experiments. According to the

selected Resolution IV 213-8 fractional factorial design, 32 runs of reservoir simulation

are carried out. The ultimate oil recovery factor obtained from each run is summarized

in Table 5.1. Subsequently, statistical analysis of the experimental results is

performed by using the screening platform of JMP software. The analysis result is

presented in Figure 5.1.

Figure 5.1 shows contrasts or estimates of main and two-factor interaction

effects. The factor effects are automatically sorted in descending order according to

their absolute value by the software for the ease of comparison. To perform analysis

of variance of the factor effects, Lenth’s Pseudo Standard Error (Lenth PSE) is

estimated. Lenth t-ratio is then calculated by dividing contrast by Lenth PSE.

Consequently, calculation of individual p-value and statistical inference can be

performed. As shown in Figure 5.1, the estimated Lenth PSE is 2.03684. JMP

highlights that the effects of PORO, LRAT and PORO*LRAT are statistically

significant. Note that, by the default of JMP, factor effects whose individual p-value is
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Table 5.1: Experimental results of Resolution IV 213-8 fractional factorial design for

horizontal well production

less than or equal to 0.10 are automatically highlighted. In addition, as recommended

by Montgomery [54], Lenth method should be used as a supplement to the usual

normal or half-normal probability plot, not a replacement. Thus, HO#, LHRATIO,

LRAT*WSTANDOFF, and WSTANDOFF should be regarded as significant effects

as well.

Since the 213-8 fractional factorial design has Resolution IV, the estimated

main effects are the actual main effects of the factors. Thus it can be concluded at this

point that the main effects of PORO, LRAT, HO#, LHRATIO, and WSTANDOFF

are significant. However, two-factor interaction effects of the design are aliased with

each other as shown in Table 5.2. The alias patterns shown in Table 5.2 imply that;

Run ID. Design Pattern URF (%) Run ID. Design Pattern URF (%)
1 −−−−−−−−−−−−− 0.000 17 +−−−−+−−+−++− 0.006
2 −−−−++++++++− 0.045 18 +−−−+−++−+−−− 0.011
3 −−−+−++++−−−+ 0.000 19 +−−+−−++−−+++ 0.000
4 −−−++−−−−++++ 10.181 20 +−−+++−−++−−+ 21.145
5 −−+−−++−−++−+ 16.141 21 +−+−−−+−++−++ 17.089
6 −−+−+−−++−−++ 3.192 22 +−+−++−+−−+−+ 0.000

7 −−++−−−++++−− 0.000 23 +−++−+−+−+−+− 0.000
8 −−+++++−−−−+− 0.000 24 +−+++−+−+−+−− 0.002
9 −+−−−+−+−+−++ 3.644 25 ++−−−−−++++−+ 18.386
10 −+−−+−+−+−+−+ 0.000 26 ++−−+++−−−−++ 0.000
11 −+−+−−+−++−+− 0.000 27 ++−+−++−−++−− 0.000
12 −+−+++−+−−+−− 0.000 28 ++−++−−++−−+− 0.004
13 −++−−−++−−++− 0.000 29 +++−−++++−−−− 0.001
14 −++−++−−++−−− 17.205 30 +++−+−−−−+++− 17.719
15 −+++−+−−+−+++ 1.986 31 ++++−−−−−−−−+ 0.000
16 −++++−++−+−−+ 10.669 32 +++++++++++++ 52.497

Note: 1) "+" = high-level value and "-" = low-level value

2) The order of design pattern is as follows: OWC, HRES, HO#, LH, LHRATIO,

     RESDIP#, MRATIO, AQFRATIO, WSTANDOFF, PORO, API, ANISO#,

     and LRAT.
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Figure 5.1: Factor screening result of the 213-8 fraction factorial experiments for

horizontal well production
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Table 5.2: Aliasing of two-factor effects of 213-8 fractional factorial design for

horizontal well production

Apparent PORO*LRAT = [PORO*LRAT] = 3.42515 (5.1)

= OWC*WSTANDOFF+HRES*AQFRATIO+

HO#*MRATIO+LH*LHRATIO+PORO*LRAT

Apparent WSTANDOFF*LRAT = [WSTANDOFF*LRAT] = 2.31645 (5.2)

= OWC*PORO+HRES*API+HO#*ANISO#+

LH*RESDIP#+WSTANDOFF*LRAT

To find out which actual interaction effect contributes most to the apparent

PORO*LRAT and WSTANDOFF*LRAT, hierarchy principle is applied. Since

PORO*LRAT is an interaction of two significant main effects whereas

OWC*WSTANDOFF, HRES*AQFRATIO, HO#*MRATIO, and LH*LHRATIO are

interactions of at least one insignificant main effect. Therefore, the actual

PORO*LRAT should contribute most to the apparent PORO*LRAT and be regarded

as significant interaction. Similarly, WSTANDOFF*LRAT is regarded as significant

interaction. It is essential to note that all three-factor or higher interaction effects are

assumed insignificant herein according to the principle of sparsity effects.

As a conclusion, PORO, LRAT, HO#, LHRATIO, and WSTANDOFF are the

significant factors for subsequent response surface designs. Since the screening
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experiments are conducted at only 2 levels of factors, the analysis of screening might

miss some significant factors out if the actual response surface is highly non-linear,

the sixth factor, i.e. OWC, is added into the list of significant factors to perform

response surface experiments. If subsequent analysis report of the fitted proxy model

confirms  that  the  effects  of  OWC  are  not  significant,  it  could  be  ensured  that  no

significant factors are missed out. Note that the drawback of introducing extra factors

is that too many response surface experiments are conducted. Therefore, the desire to

accurately screen factors and the extra efforts to conduct more experiments due to the

presence of insignificant factors in response surface designs should be compromised.

As a result, only one extra factor is added.

5.2 Analyses and Results of Response Surface Designs

5.2.1 Central Composite Design

5.2.1.1 Quadratic Proxy Fitting

After obtaining the list of significant factors, 45 runs of the popular center-

faced central composite design (CCF) are then performed and their results are

presented in Table 5.3. Afterwards, “Fit Model” platform of JMP is used to fit a

quadratic proxy model using least square regression technique. As a result, regression

coefficients  of  the  fitted  quadratic  proxy  model  can  be  obtained  as  shown  in  Figure

5.2. Also shown in the figure is the test statistics for the hypothesis that each factor

effect is zero. If the null hypothesis is true, it can be interpreted that the factor effect is

significantly different from zero with 95% confidence (“Prob>|t|” < 0.05). For

significant factor effect, JMP automatically marks “*” at the end of each row. The

quadratic proxy model can be expressed in a mathematical form as follows:

√ = + ∑ + ∑ + ∑ (5.3)

where,

URF = ultimate oil recovery due to a horizontal well

b0 = regression intercept in Table 5.4
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bi = regression coefficient of main effect xi in Table 5.4

bij = regression coefficient of interaction effect xij in Table 5.4

bii = regression coefficient of quadratic effect xi in Table 5.4

Table 5.3: Experimental results of 6-factor face-centered central composite design for

horizontal well production

Run ID. Design Pattern URF (%) Run ID. Design Pattern URF (%)
1 −−−−−+ 0.000 24 00000A 15.338
2 −−−−+− 0.001 25 0000A0 28.177
3 −−−+−− 0.001 26 000A00 20.860
4 −−−+++ 6.902 27 00A000 18.877
5 −−+−−− 0.000 28 0A0000 22.036
6 −−+−++ 10.905 29 +−−−−− 0.000
7 −−++−+ 0.000 30 +−−−++ 5.329
8 −−+++− 0.009 31 +−−+−+ 0.104
9 a00000 13.702 32 +−−++− 0.001

10 −+−−−− 0.000 33 +−+−−+ 0.001
11 −+−−++ 7.021 34 +−+−+− 0.006
12 −+−+−+ 3.086 35 +−++−− 0.006
13 −+−++− 39.904 36 +−++++ 26.179
14 −++−−+ 0.000 37 A00000 16.804
15 −++−+− 0.002 38 ++−−−+ 0.000
16 −+++−− 0.004 39 ++−−+− 0.000
17 −+++++ 42.026 40 ++−+−− 0.000
18 0a0000 7.495 41 ++−+++ 31.140
19 00a000 6.588 42 +++−−− 0.000
20 000a00 6.708 43 +++−++ 10.021
21 0000a0 0.830 44 ++++−+ 12.137
22 00000a 0.003 45 +++++− 47.912
23 000000 15.667

Note: 1) "+", "0", and "-" = high-, mid-, and low-level values, respectively.
2) "A" and "a" = high- and low-level of face-centered point.
3) The order of design pattern is as follows: OWC, HO#, LHRATIO,
    WSTANDOFF, PORO, and LRAT.
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Figure 5.2: Regression coefficient estimates of the quadratic proxy model for

horizontal well production
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Table 5.4: Regression coefficients of the fitted quadratic proxy model for horizontal

well production

Notice that the URF in Equation 5.3 is transformed so that the model has a better

goodness-of-fit.

Figure 5.3 shows statistical analysis results of the fitted model. In the figure,

actual by predicted plot graphically shows model goodness-of-fit. If the model can

perfectly fit to responses of the design points, all data points will align on the 45-

degree straight line. Therefore, it is clearly seen from the figure that the model can fit

the predicted URF well when the predicted URF < 20% and shows high variance at

the higher URF. This is the reason why R2
adj is only 0.754 in the summary of fit. The

analysis of variance shown confirms that the model can be used to significantly

explain variance of the URF over design hyperspace. Validity check of the fitted

model can be done by investigating residual by predicted plot in Figure 5.4. Figure

5.4 reveals that residual of the predicted URF randomly distribute at all values of

predicted URF. Thus, the proxy is properly fitted to the responses by complying with

a statistical assumption of random error.

The  optimum  factor  setting  of  the  quadratic  proxy  model  to  obtain  the

maximum URF can be found using an optimizer, called Prediction Profiler, of JMP.

To be able to show a response surface in hyperspace on 2D plane, the profiler presents
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Figure 5.3: Actual by predicted plot and statistical analyses of the quadratic proxy for

horizontal well production

Figure 5.4: Residual by predicted plot of the fitted quadratic proxy model for

horizontal well production
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Figure 5.6: 3D surface plot at the optimum setting of the quadratic proxy for

horizontal well production

the fitted surface in the form of plots between each factor level and the predicted

response. In other words, the profiler shows how the fitted surface looks like when it

is sliced along each factor axis at the location of a design point of interest in

hyperspace. Factor setting of the design point of interest is displayed above the name

of each design factor. The corresponding predicted response is displayed on the right

of response factor name.

Figure 5.5 shows prediction profiler of the fitted quadratic proxy model with

its optimum factor setting. From the figure, it can be seen that the predicted URF

increases as level of each factor increases except for LRAT which shows an optimum

setting at 4225.03 STB/day. At the optimum design point, the predicted maximum

URF of the proxy model is 83.94%. When compared with the actual URF of 52.5% of

Run ID 32 in Table 5.1 whose design point is close to the predicted optimum design

point, the proxy model seems to significantly over-predict the URF. This observation

is supported by the 3D response surface plot in Figure 5.6. From the figure, it is

clearly seen that the quadratic proxy predicts rapid increment in URF as PORO and
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WSTANDOFF increase. Moreover, the 3D surface shows low degree of non-linearity

of the fitted response surface inside the design space.

5.2.1.2 Cross-Validation of Quadratic Proxy Model

In the previous section, the proxy model is checked for goodness of model

fitting and it is shown that the fitting quality is reasonably acceptable. However, it

should be highlighted that the checking is performed between responses from design

points used to construct the model and the predicted responses from the model.

Therefore, a cross-validation of the model predictability at different locations in

design hyperspace is required.

The first cross-validation experiments are carried out as described in Section

4.5. The obtained experimental results are presented in Table 5.5. To have an

objective conclusion, a matched pairs t-test between predicted URF and actual URF

from the cross-validation experiments is performed. The analysis result of the t-test

can be seen in Figure 5.7. Figure 5.7 plots differences between predicted and actual

URFs on the vertical axis, and mean of the predicted and actual URFs on the

horizontal axis. The vertical cross-hair line represents mean mean of the predicted and

actual URFs. The horizontal cross-hair line represents mean difference between

predicted and actual URFs. The horizontal dotted lines next to the mean difference

line show 95% confidence interval boundary. Graphically, if the horizontal axis falls

into the 95% confidence interval boundary, it can be interpreted that means of

predicted and actual URFs are not statistically different with 95% confidence.

Interpretation of the plot in Figure 5.7 reveals that mean of URFs predicted by

the quadratic proxy is statistically different from the cross-validation ones. The

interpretation is confirmed by the t-test result, i.e. “Prob<t” < 0.05, at the bottom of

the figure. Furthermore, at a mean of mean value greater than about 15%, the proxy

model tends to yield significant under-prediction.

Thus, it can be concluded that the quadratic proxy cannot adequately fit the

actual surface response of ultimate oil recovery of a horizontal well in a thin-oil-

column reservoir in the Gulf of Thailand. Another response surface model which is

more capable of fitting higher degree of non-linearity is required.
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Table 5.5: Experimental results of the first 18-run maximum entropy design for

validating the proxy model for horizontal well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
101 7959.99 3.755 0.950 0.293 0.165 55.0 0.000
102 7332.77 4.259 0.100 0.160 0.185 5339.4 3.023
103 7803.19 4.322 0.800 0.493 0.180 5009.2 16.152
104 6548.74 4.700 0.450 0.160 0.210 4348.6 12.734
105 6705.55 3.692 0.650 0.660 0.230 1376.1 25.821
106 6548.74 4.133 0.200 0.627 0.180 3027.5 4.767
107 6548.74 4.259 0.900 0.160 0.225 2036.7 9.226
108 6391.94 3.567 0.350 0.393 0.235 4678.9 10.335
109 5451.11 3.944 0.100 0.360 0.200 2697.2 3.257
110 5294.30 4.385 0.150 0.493 0.170 5669.7 1.809
111 5764.72 4.196 0.450 0.327 0.245 2036.7 26.356
112 6078.33 3.755 0.900 0.727 0.160 3688.1 0.548
113 8116.80 4.574 0.250 0.293 0.230 3027.5 24.888
114 5294.30 4.511 0.850 0.527 0.235 2697.2 26.530
115 6862.36 4.385 0.400 0.693 0.220 1045.8 30.772
116 5294.30 3.692 0.650 0.260 0.185 385.3 0.000
117 6705.55 3.818 0.700 0.327 0.165 2366.9 0.000
118 6862.36 4.385 0.800 0.560 0.160 715.6 2.941
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Figure 5.7: Matched pairs t-test for validating the quadratic proxy for horizontal well

production
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5.2.2 Space-Filling Design: Maximum Entropy

5.2.2.1 Gaussian Process Proxy Fitting

The results of the maximum entropy designed experiments described in

Section 4.4 are tabulated in Table 5.6. JMP Gaussian Process platform is used for

analyzing and fitting Gaussian process proxy model of the experimental results. The

analysis results reported by JMP can be seen from Table 5.7 and Figures 5.8 to 5.11.

Table 5.7 presents report of Gaussian process model of the maximum entropy

experiments. In the table, the estimates of main and interaction effects are reported

together  with  total  sensitivity  and  model  parameter  estimates.  In  this  report,  the

reported factor effect is (Functional factor effect)/(Total variation). Functional factor

effect is the integrated total variation due to that effect alone while total variation is

the integrated variability over the entire experimental space. The amount of influence

a factor and its two-factor interactions have on the response, i.e. URF, is the total

sensitivity of that factor. Thus, it is shown in Table 5.7 that PORO has 70.6%

influence, the highest, on the URF followed by WSTANDOFF, LHRATIO, HO#, and

OWC, accordingly. However, LRAT is reported to have no influence on URF at all.

From  the  estimated  model  parameters,  θ,  µ,  σ2, the fitted Gaussian process

proxy model can be mathematically expressed as shown in Equations 5.4. Note that

the minimum allowable URF predicted by the proxy model is limited to zero in

Equation 5.4.

Table 5.6: Experimental results of 6-factor, 45-run maximum entropy design for

horizontal well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
301 7301.41 3.567 0.380 0.240 0.240 2697.2 13.779
302 6360.58 4.171 0.180 0.360 0.160 2565.1 0.001
303 7175.97 3.692 0.820 0.400 0.174 2697.2 2.289
304 5294.30 3.818 0.940 0.307 0.236 5735.8 14.922
305 5796.08 4.473 0.980 0.320 0.224 4414.7 15.999
306 7426.86 4.322 0.940 0.427 0.246 715.6 27.280
307 5294.30 3.995 0.640 0.387 0.160 55.0 0.000
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Table 5.6: Experimental results of 6-factor, 45-run maximum entropy design for

horizontal well production (Continued)

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
308 6276.04 3.793 0.687 0.360 0.190 55.0 0.003
309 7991.36 4.675 0.280 0.440 0.220 4578.4 25.925
310 5482.47 4.599 0.600 0.213 0.164 3225.7 0.000
311 7928.63 4.222 0.540 0.587 0.234 4150.4 26.682
312 5482.47 4.448 0.120 0.320 0.206 2036.7 8.454
313 6297.86 4.247 0.620 0.413 0.206 1993.6 24.263
314 5796.08 4.297 0.420 0.160 0.212 3754.1 11.562
315 7489.58 4.020 0.320 0.421 0.194 847.7 11.980
316 5984.24 4.574 0.420 0.400 0.160 847.7 1.048
317 5607.91 3.617 0.760 0.160 0.200 2036.7 0.000
318 7928.63 4.322 0.440 0.293 0.162 2433.0 1.194
319 7050.52 4.222 0.360 0.760 0.188 55.0 0.002
320 5294.30 4.133 0.160 0.613 0.204 3357.8 7.829
321 7238.69 3.894 0.740 0.173 0.164 4943.1 0.000
322 5921.52 4.675 0.100 0.520 0.188 3357.8 3.236
323 7113.24 4.010 0.220 0.693 0.160 4546.8 0.999
324 7748.65 4.549 0.300 0.160 0.198 55.0 0.000
325 7050.52 3.567 0.780 0.533 0.214 2168.8 16.347
326 7050.52 3.642 0.260 0.627 0.186 2697.2 3.660
327 6736.91 4.196 0.880 0.173 0.224 2961.4 12.035
328 6548.74 3.567 0.380 0.627 0.250 5867.9 20.574
329 7426.86 3.692 0.260 0.467 0.234 319.2 15.691
330 5294.30 3.692 0.520 0.320 0.228 4414.7 11.113
331 6705.55 4.257 0.433 0.160 0.178 55.0 0.000
332 5733.36 3.970 0.660 0.680 0.246 5339.4 27.898
333 6486.02 4.448 0.560 0.547 0.164 4150.4 4.358
334 7135.06 4.574 0.280 0.317 0.208 2565.1 17.997
335 7994.08 4.020 0.100 0.267 0.210 3225.7 5.988
336 6172.41 4.096 0.120 0.440 0.232 5867.9 10.859
337 7113.24 4.096 0.300 0.307 0.210 5471.6 13.563
338 7740.47 4.599 0.880 0.707 0.186 5735.8 18.809
339 6674.19 4.524 0.980 0.707 0.160 715.6 6.172
340 7865.91 4.574 0.960 0.653 0.214 583.4 33.355
341 6674.19 3.768 0.760 0.360 0.236 4018.3 17.492
342 5482.47 3.869 0.100 0.520 0.224 1244.0 8.332
343 5357.02 3.642 0.840 0.653 0.212 3489.9 15.507
344 6109.69 3.739 0.180 0.160 0.236 2300.9 8.020
345 5733.36 3.617 0.800 0.640 0.174 1508.2 2.174
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= [ ], [ ] ≥ 0 (5.4)

where,

URF = ultimate oil recovery due to a horizontal well

[URF] = µ + [ R ]1xj[ βj ]jx1

µ = 7.8527

[ R ]1xj = [ Exp(∑ ∑ − ) ]

k = total number of design factors = 6

xk =  kth design factor. See Table 5.8

xj
k = level setting of Design factor xk of the design point of Run ID.

(300+j) in Table 5.6

j = total number of design points = 45

θk = Fitted model parameter of Design factor xk. See Table 5.8

[ bj ]jx1 = regression coefficient corresponding to jth design point. See

Table 5.9

As a supplement to the model report, JMP marginal model plots graphically

show the average value of each factor across all other factors. A change in the average

values due to a change in one factor could be envisaged as the main effect of that

factor. Marginal model plots of the Gaussian process proxy in Figure 5.8 show some

conclusions similar to that of the quadratic proxy model. On average, URF increases

as OWC, HO#, or PORO increases whereas PORO has the greatest influence on the

URF because of its greatest increasing trend. However, the average of LHRATIO and

WSTANDOFF shows convex trend as the factor level increases. Moreover, LRAT

does not affect URF at all. The cause of these differences could be revealed by

investigating goodness-of-fit analysis and model validity check.

The actual by jackknife predicted plot shown in Figure 5.9 plots the actual

URFs on the vertical axis and the jackknife predicted values on the horizontal axis.

This type of plot is one useful measure of goodness-of-fit of a model which exactly

fits responses of design points. Similar to the plot in Figure 5.3, the objective of this

     0    , [ ] < 0
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Table 5.8: Theta regression coefficients of the Gaussian process proxy for horizontal

well production

Table 5.9: bj regression coefficients of the Gaussian process proxy for horizontal well

production

k 1 2 3 4 5 6
xk OWC HO# LHRATIO WSTANDOFF PORO LRAT
qk 1.267E-08 0.4220 1.6357 5.5541 1751.59 0.00

j b j j b j j bj j bj

1 14.67667 13 44.53645 24 -54.37531 35 -0.801296
2 -8.117091 14 37.69997 25 -4.01689 36 -33.48179
3 28.15762 15 86.79344 26 8.746887 37 -63.08974
4 24.09221 16 2.961039 27 -0.120426 38 25.50667
5 -25.18994 17 12.7904 28 -11.51445 39 -8.113582
6 20.94334 18 -5.110951 29 38.09013 40 17.37488
7 -7.254986 19 -35.57995 30 -3.11339 41 -40.88303
8 -88.46217 20 -18.04062 31 22.76275 42 -1.170111
9 23.51438 21 -9.333644 32 20.77859 43 -5.050839
10 -6.85406 22 -15.84103 33 14.64843 44 -7.695652
11 -2.075494 23 -3.871208 34 41.48849 45 -8.339818
12 -18.06491
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Figure 5.8: JMP marginal model plots of the Gaussian process proxy model for

horizontal well production



72

Figure 5.9: Actual by jackknife predicted plot of the Gaussian process proxy for

horizontal well production

method is determining how well the points lie along the 45 degree diagonal line [64].

So, it can be seen from Figure 5.9 that in general the proxy model fits the data points

well except for the actual URF at 0% which has relatively high variance.

The prediction profiler in Figure 5.10 shows that the predicted optimum factor

setting  of  the  Gaussian  process  proxy  shifts  closer  to  the  inner  side  of  the  design

hyperspace when compared with that of the quadratic proxy model. Besides, at a

significantly different design point, the predicted maximum URF of only 38.33% is

much  lower  than  that  of  the  quadratic  model  and  the  actual  URF  of  Run  ID  32  in

Table 5.1.

In contrast to the quadratic proxy, the 3D surface plot of the fitted Gaussian

process model in Figure 5.11 shows high non-linearity inside the design space. The

difference in the fitted response surface of the two proxy models can be explained by

observing Figure 5.12. An observation on Figure 5.12 shows that, with the same

number of runs, most of design points of central composite design are distributed at

the boundary of the design hyperspace while there is only one design point at the

center of design hyperspace. Besides, the capability of the quadratic proxy model on
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Figure 5.11: 3D surface plot at optimum factor setting of the Gaussian process proxy

model for horizontal well production

fitting non-linearity of the actual response surface is limited by the quadratic terms of

the model. Therefore, these reasons explain why the quadratic model highly over-

predicts URF at a certain design region, i.e. at the design point of Run ID 32 in Table

5.1, while it significantly under-predicts URF at a certain design region. See Figure

5.7.

For the maximum entropy design, its design points are intended to spread

inside the design region, so relatively fewer design points are at the boundary of the

design hyperspace. This explains why the Gaussian process proxy model can describe

non-linearity of the actual response surface inside the design hyperspace better than

the quadratic model. However, the prediction near to the space boundary seems to be

quite poor because Gaussian process interpolation method is poor in extrapolating

responses outside its data points.
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Figure 5.12: Scatter plots of design points of the 45-run central composite design

(square points) and the 45-run maximum entropy design (circular points)
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5.2.2.2 Cross-Validation of Gaussian Process Proxy

Model

The Gaussian process proxy is validated against the same cross-validating

experiments as the quadratic proxy model. See Section 5.2.1.2. JMP analysis result of

a matched pairs t-test of the Gaussian process proxy is presented in Figure 5.13. From

the  figure,  it  can  be  observed  that  the  horizontal  axis  of  the  plots  is  within  the  95%

confidence interval boundary. All of “Prob>|t|”, “Prob>t”, and Prob<t” are greater

than a p-value of 0.05. Thus, it can be concluded that on average URFs predicted by

the Gaussian process proxy model is not significantly different from the actual URF.

In other words, the difference will be within a range of -3.3576 to 0.71756 with 95%

confidence level. In addition, comparison between the plots in Figures 5.7 and 5.13

indicates that the Gaussian process proxy can predict URFs with significantly less

variance than the quadratic proxy model. As it can be seen in Figure 5.7, the standard

error (a variant of variance) and the maximum difference of 1.627 and -17.8 are much

greater than the ones of 0.966 and -9.1 of the Gaussian process proxy shown in Figure

5.13.

In conclusion, on average the Gaussian process proxy can predict the URF

without significant difference from the actual one. Its prediction variance is

significantly smaller than that of the quadratic model. These could be attributed to the

capability of Gaussian process method which can model non-linearity of the actual

response surface within design hyperspace better than quadratic model.
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Figure 5.13: Matched pairs t-test for validating the Gaussian process proxy model for

horizontal well production
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5.2.3 Combined Central Composite and Maximum

Entropy Design

5.2.3.1 Design-Combined Proxy Fitting

To improve predictability of the Gaussian process proxy, experimental results

of the central composite design are combined with those of the maximum entropy

design. This combination strategy stems from the finding that the Gaussian process

model fitted from the maximum entropy design is poor in predicting URF near the

boundary of the design hyperspace whereas majority of design points of the central

composite designs are at the boundary. Therefore, if design points and experimental

results of these two designs are combined and fitted using Gaussian process method, a

more efficient proxy model should be obtained.

Consequently, the experimental design points and their results in Table 5.3

and 5.6 are combined. Gaussian Process platform of JMP is used to perform statistical

analyses and fits a new Gaussian process proxy model. The obtained Gaussian

process proxy model is called herein “design-combined Gaussian process proxy”.

Table 5.10 presents estimates of factor effects and model parameters of the design-

combined proxy. The estimated total sensitivities reveal that PORO and

WSTANDOFF are still  the first  and second most influence factors.  HO# and LRAT

are ranked as the third and fourth places, but their values are quite close to

WSTANDOFF.  LHRATIO  and  OWC  are  ranked  as  the  fifth  and  the  last  places,

respectively.

It should be recalled that OWC is the extra design factor added to prevent

misinterpretation of factor screening result as discussed in Section 5.1. The estimated

total sensitivity of only about 2.067% of OWC confirms that all significant factors are

completely  screened  out.  Although  OWC  seems  to  be  insignificant,  its  terms  in  the

design-combined proxy are not removed because fewer degree of freedom of the

proxy model could cause less prediction accuracy. Based on the estimated model

parameters, the design-combined proxy model can be mathematically expressed as

shown in Equation 5.5.
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= [ ], [ ] ≥ 0 (5.5)

where,

URF = ultimate oil recovery due to a horizontal well

[URF] = µ + [ R ]1xi[ βj ]ix1 + [ R ]1xj[ βj ]jx1

µ = 5.4069

[ R ]1xi = [ Exp(∑ ∑ − ) ]

[ R ]1xj = [ Exp(∑ ∑ − ) ]

k = total number of design factors = 6

xk =  kth design factor. See Table 5.11

xi
k = level setting of Design factor xk of the design point of Run ID.

“i” in Table 5.6

xj
k = level setting of Design factor xk of the design point of Run ID.

“300+j” in Table 5.3

i = total number of design points of maximum entropy design = 45

j = total number of design points of central composite design = 45

θk = fitted model parameter of Design factor xk. See Table 5.11

[ bi ]ix1 = regression coefficient corresponding to ith design point. See

Table 5.12

[ bj ]jx1 = regression coefficient corresponding to jth design point. See

Table 5.13

Table 5.11: Theta regression coefficients of the design-combined Gaussian process

proxy for horizontal well production

k 1 2 3 4 5 6
xk OWC HO# LHRATIO WSTANDOFF PORO LRAT
qk 1.176E-08 0.8285 0.4335 5.8414 214.12 1.79E-07

     0    , [ ] < 0
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Table 5.12: bi regression coefficients of the design-combined Gaussian process proxy

for horizontal well production

Table 5.13: bj regression coefficients of the design-combined Gaussian process proxy

for horizontal well production

i b i i b i i b i i b i

1 9.204278 13 172.7847 24 10.65058 35 -52.865
2 74.9619 14 39.2372 25 -2.884248 36 -66.073
3 18.03561 15 70.48655 26 4.474735 37 54.2226
4 -4.330527 16 -16.54314 27 -48.07775 38 -16.671
5 -34.66287 17 -29.39563 28 78.93651 39 20.8075
6 -13.05811 18 -59.35606 29 117.4737 40 20.4946
7 22.57846 19 -7.251607 30 -33.33996 41 51.0991
8 4.246784 20 26.14089 31 16.40215 42 -84.253
9 54.5243 21 -0.589437 32 -6.485041 43 10.668

10 -3.772873 22 -66.87557 33 45.60985 44 21.1235
11 -23.67601 23 -14.56781 34 100.7172 45 -35.004
12 -120.3701

j b j j b j j b j j b j

1 -4.270754 13 36.33787 24 7.759279 35 3.97052
2 -17.85464 14 -4.007128 25 13.06272 36 0.43699
3 11.27446 15 3.486673 26 26.43336 37 -52.727
4 -55.27938 16 -19.68219 27 -27.64479 38 -15.398
5 0.094318 17 37.81114 28 -1.251913 39 -9.4633
6 7.803672 18 -3.530573 29 -20.90658 40 -1.6976
7 -9.828017 19 -7.0287 30 -10.16098 41 12.2171
8 -8.653845 20 22.65567 31 4.661682 42 -10.138
9 -6.122594 21 -41.50035 32 -33.66551 43 -0.3168

10 3.9379 22 -136.2446 33 -5.857823 44 15.0761
11 -3.503427 23 -12.35089 34 -13.08094 45 29.9323
12 -9.563717
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Figure 5.14 shows the optimum factor setting calculated by JMP prediction

profiler. It can be seen that the factor setting is quite similar to that of quadratic proxy

model except LRAT. It should be noticed that the predicted optimum URF is 52.29%,

which is much less than that of the quadratic proxy. This is evidenced by the 3D

surface plot in Figure 5.16. Although the shape of the surface in Figure 5.16 looks

similar to that of the quadratic model, it should be reminded that the actual model is

6-dimensional.  Comparison  of  the  models  in  other  different  2D  design  spaces  shows

some differences in their shapes. Figure 5.17 shows marginal model plots of the

design-combined proxy model. When compared with Figure 5.8, the average effect of

each factor across the other factors have similar trend to that of the Gaussian process

model except LRAT. The effects of each design factor on the URF are discussed later

in Section 5.3.
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Figure 5.15: Actual by jackknife predicted plot of the design-combined Gaussian

process proxy model for horizontal well production

Figure 5.16: 3D surface plot at optimum factor setting of the design-combined

Gaussian process proxy for horizontal well production
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Figure 5.17: JMP marginal model plots of the design-combined Gaussian process

proxy model for horizontal well production
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5.2.3.2 Cross-Validation of Design-Combined Proxy

Model

The cross-validation of the design-combined proxy model is performed as

described in Section 4.5. Results of the second cross-validating experiments are

shown in Table 5.14. The matched pairs t-test against the validating experiments is

then performed and its result is presented in Figure 5.18. Observation on Figure 5.18

reveals that on average URF predictions of the proxy model are not significantly

different from the ones of actual response surface. A mean difference and a standard

error of 0.433 and 0.739 are significantly smaller than -1.32 and 0.966 of the Gaussian

proxy of maximum entropy design, respectively. Most of the differences between

predicted and actual URF are within a range of -5% to + 5%. The maximum

difference in URFs is 11.6 in absolute value.

In conclusion, combining the existing central composite and maximum

entropy designed experiments could improve prediction accuracy of the proxy model.

Rather than re-running a new whole set of maximum entropy design, e.g. 90 runs, the

combination strategy can help reduce time and cost. In addition, the disadvantage of

maximum entropy design is diminished because most of design points of central

composite design are at boundary of design hyperspace. Therefore, the design-

combined proxy model is selected to be the best representative of the actual response

surface. Factor effects described by the proxy are thus discussed in the next section.
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Table 5.14: Experimental results of the second 18-run maximum entropy design for

validating the proxy model for horizontal well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
201 5607.91 3.818 0.150 0.427 0.205 2366.9 4.106
202 5294.30 3.755 0.650 0.627 0.220 5009.2 17.436
203 5921.52 3.567 0.250 0.727 0.190 4018.3 2.725
204 7175.97 3.818 0.250 0.493 0.160 5339.4 0.008
205 5294.30 4.637 0.150 0.593 0.195 1706.4 8.723
206 5294.30 4.700 0.900 0.460 0.180 2036.7 11.684
207 7803.19 4.511 0.400 0.727 0.205 3688.1 27.880
208 7959.99 4.133 0.800 0.327 0.160 4348.6 0.004
209 6862.36 4.574 0.600 0.527 0.170 4018.3 10.014
210 5607.91 4.259 0.100 0.327 0.185 5339.4 3.548
211 6391.94 3.692 0.950 0.427 0.225 385.3 16.043
212 6078.33 4.070 0.500 0.160 0.225 3688.1 10.644
213 6862.36 3.567 0.850 0.493 0.180 2697.2 3.241
214 7646.38 4.322 0.350 0.327 0.165 715.6 1.921
215 7175.97 3.567 1.000 0.227 0.180 55.0 0.000
216 5764.72 4.448 0.550 0.627 0.225 5669.7 24.922
217 5294.30 4.259 0.800 0.160 0.175 2366.9 0.000
218 5921.52 4.511 0.400 0.260 0.205 385.3 10.790
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Figure 5.18: Matched pairs t-test for validating the design-combined Gaussian process

proxy model for horizontal well production
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5.3 Influence of Significant Factor Effects

To investigate the influence of significant factors and their interactions on

URF, the model report in Table 5.10 is modified and re-represented in Table 5.15.

Table 5.15 presents estimates of main and interaction effects normalized by total

sensitivity. Factor effects whose influences are relatively significant are highlighted

and discussed in this section. As it can be seen, main effects contribute 80.91% of

total influence on URF. However, only 1.71% of the total main effects is attributed to

OWC. Besides, all of OWC interaction effects also show negligible influence. This

observation supports the discussion described in Section 5.2.3.1.

Table 5.15: Summary of factor effects normalized by total sensitivity

5.3.1 Influence of Main Effects

Influence of main effect is investigated by comparing two or more

experimental results whose level of the factor being interested is varied whereas the

others are kept the constant. This is essentially one-variable-at-a-time approach. Since

marginal plot shows a line of average response of the factor of interest across the

other factors, it is actually approximately representing main effect of the factor. Thus,

the existing experiments whose design points and responses are closest to the average

line are chosen for comparison. If none of the existing experiments can be a good

representative, a new experiment is the conducted. In the subsequent sub-sections,

only  main  effects  of  HO,  LHRATIO,  WSTANDOFF,  PORO,  and  LRAT  are

Column
Total

Sensitivity
Main
Effect

OWC
Interaction

HO#
Interaction

LHRATIO
Interaction

WSTANDOFF
Interaction

PORO
Interaction

LRAT
Interaction

OWC 1.96% 1.38% . 0.01% 0.02% 0.04% 0.17% 0.35%
HO# 14.31% 11.03% 0.01% . 0.12% 1.43% 1.14% 0.58%

LHRATIO 6.20% 4.39% 0.02% 0.12% . 0.98% 0.29% 0.40%
WSTANDOFF 15.05% 9.69% 0.04% 1.43% 0.98% . 2.11% 0.81%

PORO 51.00% 46.19% 0.17% 1.14% 0.29% 2.11% . 1.10%
LRAT 11.48% 8.24% 0.35% 0.58% 0.40% 0.81% 1.10% .
Sum = 100.00% 80.91% 0.58% 3.28% 1.81% 5.37% 4.81% 3.24%
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discussed. Discussion of OWC, whose total sensitivity in Table 5.15 is insignificant,

is omitted.

5.3.1.1 Main Effect of Initial Oil Column Thickness

The main effect of initial oil column thickness, HO# or ln(HO), can be

investigated by comparing the results of CCD Run ID 18 and 28 of Table 5.3. See

Table 5.16 and Figure 5.19 for more detail about the design points. Figures 5.20 and

5.21 compare production profiles and pressure profiles of the two experiments on the

same  time  scale.  Comparison  between  initial  water  saturation  in  3D  of  the  two

experiments is also shown in Figure 5.22.

As shown in Figure 5.20a, CCD Run ID 18 which has a thinner vertical oil

column  thickness  starts  production  with  an  oil  and  gas  rates  of  2,240  STB/day  and

0.64 MSCF/STB. The observed initial water cut is 0.26. As the well produce, oil

production rate sharply declines whereas water cut rapidly increases from the

beginning. Shortly afterwards, free gas from the gas cap breaks into the well as

signaled by the drastic increase in gas-oil ratio. Then, the well keeps on producing and

totally depletes within only 52 days with an URF of 7.50%.

In contrast, Figure 5.20b shows that the reservoir having a thicker vertical oil

thickness has much later water and gas breakthrough. A higher oil production rate can

be maintained at a rate of approximately 3000 STB/day for about 4.5 months before

declining at a slower rate. After 13 months, the well depletes with an URF of 22.04%.

The pressure profiles in Figure 5.21a reveal that, after free gas breakthrough,

total pressure drop in the reservoir increases. This could be attributed to the increase

in non-Darcy flow friction loss due to increasing gas flow rate. However, the higher

amount of gas in the well helps retard the decreasing rate of oil production as seen in

the zoom-in view of the figure. In addition, because of higher gas-oil ratio and lesser

hydrostatic pressure in the well, bottom hole pressure of the well significantly

decreases whereas tubing head pressure increases.

When compared with the profiles of Figure 5.21b, it is obviously seen that

reservoir pressure of CCD Run ID 18 decreases at faster rates and depletes at a higher

pressure than those of CCD Run ID 28. This could be attributed to higher water cut at
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a  given  time of  CCD Run ID 18  because  early  water  production  of  the  well  causes

higher hydrostatic pressure in the well, i.e. increase in bottom hole pressure. As a

result, greater pressure drop or pressure loss in the reservoir is required to produce the

well. In addition, it causes the well to reach its maximum water cut and depletes early.

The  reason  that  causes  the  well  in  CCD  Run  ID  18  produces  water  at  the

beginning and higher rate of water cut increment can be explained by comparing

Figure 5.22a with Figure 5.22b. It can be obviously seen that, at the same

WSTANDOFF, the horizontal well of CCD Run ID 18 is placed inside oil-water

transition zone while that of the other run is in oil zone. Consequently, water can be

immediately produced at the beginning. Since fluid and rock properties of the two

models are the same, the J-function correlation and capillary pressure formula in

Figure  D3  indicate  that  their  thickness  of  the  oil-water  transition  zone  must  be  the

same.

Thus,  it  can  be  concluded  that  as  vertical  thickness  of  oil  column,  HO,

increases, the horizontal well is farther away from oil-water and gas-oil contacts at a

given WSTANDOFF. As a result, bottom water and free gas from gas cap can enter

the well at later time resulting higher sweep of oil volume prior to well depletion.

Production  of  bottom  water  has  detrimental  effect  to  URF  because  it  causes  higher

hydrostatic pressure the well. Thus, higher pressure drop in reservoir is required to lift

reservoir fluids up to the surface besides decreasing oil holdup. If HO is so small

enough that the oil-water transition zone dominates the reservoir, the high initial

water saturation in the vicinity of the wellbore can cause the well  to produce higher

water cut, lower oil production rate, and earlier breakthrough of bottom water.
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Table 5.16: Experiments for determining HO main effect

Figure 5.19: Marginal plot of HO# showing design points of CCD Run ID 18 and 28

Run ID Reference
Table

OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%) Time to Reach
URF (days)

18 5.3 6705.55 3.5665 0.55 0.46 0.21 3027.5 7.50 52.20
28 5.3 6705.55 4.7002 0.55 0.46 0.21 3027.5 22.04 399.00
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Figure 5.20: Production profiles of CCD Run ID (a) 18 (b) 28
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Figure 5.21: Pressure profiles of CCD Run ID (a) 18 (b) 28
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(a)

Figure 5.22: 3D reservoir model showing initial water saturation and horizontal

wellbore of CCD Run ID (a) 18 (b) 28
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5.3.1.2 Main Effect of Horizontal Well Length to

Reservoir Length Ratio

Main effect of horizontal well length to reservoir length ratio or LHRATIO is

investigated by comparing the existing SFD Run ID 312 of maximum entropy design

and a new experiment SFD Run ID 305A. The new experiment is specifically

conducted to investigate the main effect of LHRATIO. Table 5.17 and Figure 5.23

present design points and URF of the two experiments. Figure 5.24 presents

comparison of production profiles between the two experiments. It can be obviously

seen from the figure that oil in the reservoir of SFD Run ID 305A can be produced so

fast that its URF is reached before free gas breaks into the well. No plateau period of

oil rate and strong aquifer influx can be observed for both experiments. Therefore,

bottom water drive does not play an important role in the responses of these two

experiments. This is evidenced by the absence of pressure maintenance sign in Figure

5.25. Figure 5.25 also shows that at any given time, pressure drop in the reservoir of

SFD Run ID 305A is smaller than that of SFD Run ID 312 although it has faster oil

recover rate. This could imply that the well of SFD Run ID 305A could have less

severity of water and gas cresting.

More evidences can be found from observations on Figures 5.26 and 5.27.

Figure 5.26 presents fluid saturation distribution within the reservoir just before the

end of production of both experiments. Figure 5.26a reveals that there is gas cresting

in inverted-bell shape on plan while there is still large amount of oil left in the

reservoir. An observation on water cresting which is not shown here also shows a

similar behavior. In contrast, Figure 5.26b shows that both gas and bottom water

approach the well uniformly along the horizontal section. At the end of production,

free gas from gas cap does not reach the well yet.

The difference in shapes of water and gas cresting can be explained using

reservoir pressure distributions in Figure 5.27. For the reservoir having smaller

LHRATIO, i.e. SFD Run ID 312, higher pressure drops are concentrated around the

wellbore in elliptical shape. Thus, farther fluids near the reservoir ends are less

susceptible to pressure drop from the well. Hence, fluids closer to the wellbore tend to

flow faster to the wellbore resulting water and gas cresting in inverted-bell shape. On
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the other hand, pressure drops in the SFD Run ID 305A are smaller and more evenly

distributed resulting in more uniform fronts of free gas and bottom water. Since every

fluid drop at a given elevation in the reservoir can perceive the same amount of

pressure drawdown, more volume of oil can thus be recovered from the reservoir. In

addition, the lesser required pressure drop can delay free gas breakthrough. In other

words, it could be claimed that the larger LHRATIO improves sweep efficiency of oil

volume.

Table 5.17: Experiments for determining LHRATIO main effect

Figure 5.23: Marginal plot of LHRATIO showing design points of SFD Run ID. 312

and 305A

Run ID Reference
Table

OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%) Time to Reach
URF (days)

305A New Run 5796.08 4.473 0.98 0.32 0.21 2036.67 15.08 230.00
312 5.6 5482.47 4.448 0.12 0.32 0.21 2036.67 8.45 1461.27
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Figure 5.24: Production profiles of SFD Run ID (a) 312 (b) 305A
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Figure 5.25: Pressure profiles of SFD Run ID (a) 312 (b) 305A



100

(a)

Figure 5.26: 3D reservoir model showing fluid saturation at the end of production and

horizontal wellbore of SFD Run ID (a) 312 (b) 305A
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(a)

Figure 5.27: 3D reservoir model showing fluid pressure at the end of production and

horizontal well of SFD Run ID (a) 312 (b) 305A
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5.3.1.3 Main Effect of Well Standoff to Oil-Water

Contact to Initial Oil Column Thickness Ratio

Table 5.18 shows factor settings of CCD Run ID 20 and CCD Run ID 26

experiments used to investigate main effect of WSTANDOFF, a ratio of well standoff

to oil-water contact to vertical thickness of oil. Responses of the two design points on

marginal plot of WSTANDOFF relative to the line of average URF across the other

factors are presented in Figure 5.28. From the table and the plot, it can be clearly seen

that WSTANDOFF has strong positive effect on the URF. In other words, the

horizontal  wellbore  is  moved  closer  to  gas-oil  contact,  more  volume  of  oil  can  be

significantly recovered from the reservoir.

Figure 5.29 presents comparison between production profiles of CCD Run ID

20 and CCD Run ID 26. From the figure, production of CCD Run ID 20 begins with a

very high initial water cut of 0.74 and a relatively low oil production rate of 840

STB/day. As the well produces, oil production rate rapidly increases where

corresponding water cut and gas-oil ratio decreases. After oil production rate reaches

its maximum value, the oil production rate and gas-oil ratio gradually decline whereas

water cut increases until the end of production. The presence of oil peak rate could be

attributed to the rapid increase in water production. Shortly after the beginning, the

solution drive mechanism is interfered by water produced from the bottom aquifer.

Since the horizontal well is placed inside oil-water transition zone and close to the oil-

water contact, flowing water can reach the well within a short time. See Figure 5.32a.

The influence of increasing of water in the well is that it tends to increase bottom hole

pressure and pressure loss of the well. As a result, liquid and oil flowing rates decline

as water cut increases. This is evidenced by the change in the slope of bottom hole

pressure after the production starts as shown in Figure 5.30a. Note that the weak

influence of aquifer influx can be observed as indicated by the slight increase in

declining rate of oil production rate after the aquifer influx reaches its maximum rate.

However, its influence on pressure support seems to be much weaker than that of

CCD Run ID 26. This could be because some of the influx water is produced by the

horizontal well.
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For CCD Run ID 26, the horizontal wells start its production with a high

initial oil production rate of about 3,000 STB/day without water production. However,

the well can maintain its constant oil rate for only about one month before water

cresting breaks into the well. A sudden change in declining rate of oil is observed

about 3 weeks afterwards after the influx from aquifer reaches its peak. Subsequently,

the oil production rate fluctuates as the reservoir is produced until the end of

production. For this run, it can be noticed that free gas enters into the well very early

and before water cresting. This is not a surprise because the horizontal well in this

experiment is located closer to gas-oil contact. See Figure 5.32.

However, it is interesting to notice that, as the oil and gas flow rates fluctuate,

their corresponding bottom hole pressure shows an opposite trend. For example, as oil

and gas flow rates reach their valley value on Mar 01, 2010, their bottom hole

pressure just reaches its peak. Since only produced gas has a lifting effect, i.e.

reducing hydrostatic pressure in the well, it could be deduced that the fluctuation in

production rates is caused by the free gas entering into the wellbore. This is evidenced

by observing Figure 5.32b. Figures 5.32a and 5.32b show distribution of reservoir

fluids at the end of production of CCD Run IDs 20 and 26, respectively. It is quite

obvious that almost all of gas cap in CCD Run ID 26 is produced by the horizontal

well. Figure 5.33 shows that, during the fluctuation period, there is free gas entrance

along the length of the horizontal wellbore. This implies that as liquid and gas flows

along the wellbore, the new gas at the locations closer to the well heel could enter into

the wellbore and causes more turbulence to the flow. In addition, the amount of

entering gas should be so much that the well can produce almost the entire gas cap. In

terms of oil recovery, Figure 5.32 also shows that placing the horizontal well farther

from the oil-water contact results in higher sweep of oil volume.

In conclusion, the main effect of WSTANDOFF has positive influence on the

URF of a horizontal well. As the well is placed farther away from oil-water contact, it

is less prone to the detrimental influence of oil-water transition zone on producing

high initial water cut. Besides, it also results in longer time for bottom water cresting

to reach the wellbore. As the well is moved closer to gas-oil contact, gas breakthrough

time is less and more volume of gas cap can be produced. Observations from the

experiments reveal that if the free gas is produced, it could help increase liquid
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production rate. However, if the gas production is higher than a certain rate,

fluctuation in production rates can occur due to turbulence from high gas flow rate.

Table 5.18: Experiments for determining WSTANDOFF main effect

Figure 5.28: Marginal plot of WSTANDOFF showing design points of CCD Run ID.

20 and 26

Run ID Reference
Table

OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%) Time to Reach
URF (days)

20 5.3 6705.55 4.133 0.55 0.16 0.21 3027.5 6.71 311.00
26 5.3 6705.55 4.133 0.55 0.76 0.21 3027.5 20.86 277.50
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Figure 5.29: Production profiles of CCD Run ID (a) 20 (b) 26
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Figure 5.30: Pressure profiles of CCD Run ID (a) 20 (b) 26
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(a)

Figure 5.31: 3D reservoir model showing initial water saturation with horizontal

wellbore of CCD Run ID (a) 20 (b) 26
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(a)

Figure 5.32: 3D reservoir model showing fluid saturations at the end of production

with horizontal wellbore of CCD Run ID (a) 20 (b) 26
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Figure 5.33: A slice of 3D reservoir model showing gas saturations around the

horizontal wellbore of CCD Run ID 26 on 01 May 2010

5.3.1.4 Main Effect of Porosity

Porosity or PORO is a design factor representing porosity and its correlated

factors which are horizontal permeability and initial water saturation in oil-water

transition zone. By increasing PORO, porosity and horizontal permeability of the

reservoir rock increases whereas thickness of oil-water transition zone is decreased.

Refer to Section 4.6 for more description. Similar to the previous section, CCD Run

IDs 21 and 25 are selected for determining main effect of PORO. Table 5.19 and

Figure 5.34 show setting of design point, URF, and marginal plot of the experiments.

Both of the table and figure obviously show that PORO has a very strong positive

effect on the URF. To find out the reasons,  production and pressure profiles of both

experiments are plotted and compared in Figures 5.35 and 5.36, respectively.

Figure 5.35a shows production profiles of CCD Run ID 21. From the figure, it

can be seen that the initial production has a very high water cut of 0.78 whereas the

initial  oil  flow rate  is  only  350  STB/day.  As  the  oil  flow rate  rapidly  declines  with

time,  its  corresponding  water  cut  still  roughly  remains  the  same.  Only  about  two
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weeks later, the horizontal well is completely depleted without free gas breakthrough

observed. Subsequently, the well is tried to be re-opened on weekly basis in a hope

that the approaching bottom water could help recover more significant amount of oil.

However,  production  from the  well  can  last  for  only  a  few days  for  each  time with

high water cut observed. The attempt of well re-production is ceased on Apr 01, 2010,

when an average rate of oil production of 50 STB/day is reached. Figure 5.36a

discloses pressure profiles of the experiment. It is shown that, shortly after the well is

opened, pressure loss or drawdown in the reservoir rapidly increases to produce

reservoir fluid as much as possible. However, because initial tubing head pressure is

already a minimum value of 114.7 psia, the pressure drawdown thus can no longer be

increased from Jan 03, 2010 onwards. Since the influx or pressure maintenance from

bottom water is quite small, the pressure drawdown then gradually decreases together

with oil production rate until the well is depleted. It is also shown in Figure 5.36 that

subsequent re-productions of the well are unsuccessful because the reservoir has not

enough pressure to lift well fluids.

On the other hand, CCD Run ID 25 shows much better well performance as

shown in Figure 5.35b. The well starts with a high initial oil flow rate of about 3,000

STB/day  without  water  production.  The  initial  oil  rate  can  sustain  at  a  constant  rate

for about 2.5 months before water breakthrough. The gas produced from the well

during this time period is the gas dissolved from solution gas as indicated by the

gentle declining trend of gas-oil ratio. Also shown is the rapid increase in aquifer

influx rate. Thus, a certain degree of pressure maintenance from the bottom water

could occur. After water breakthrough, oil production rate declines whereas water cut

continuously increases.

About 7 months after the beginning of the production, it can be noticed that

the profiles of oil flow rate and water cut in Figure 5.35b are less steep. Investigation

on fluid distribution in 3D model indicates that gas cresting almost reaches the

horizontal wellbore. Small amount of free gas enters into the wellbore and slightly

helps lift liquid in the well. However, the amount of gas is not great enough to

significantly alter the trend of gas-oil ratio. This is another example of lifting effect

from free gas cap. One month later, when free gas from gas cap almost fully enters
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along the length of the wellbore, gas-oil ratio significantly increases continuously

until the end of production.

Comparison of pressure profiles between CCD Run IDs 21 and 25 is shown in

Figure 5.36. Obviously, it is shown that CCD Run ID 25 requires far smaller pressure

drawdown  than  that  of  CCD  Run  21  at  a  given  time  to  produce  far  higher  oil

production rate. This observation implies that reservoir fluids lose less of its pressure

or energy to flow to the wellbore to achieve the specified oil flow rate. Inevitably, this

is attributed to higher rock permeability of the experiment. Comparison of initial

water saturation of the two experiments is  also shown in Figure 5.37. It  can be seen

that the horizontal well of CCD Run ID 21 is placed inside oil-water transition zone.

This is the reason why initial water cut of the experiment is high and causes the well

depleted very fast.

From  the  observations,  it  can  be  concluded  that  the  URF  significantly

increases as PORO increases. As porosity of the reservoir increases initial water

saturation around horizontal wellbore tends to decrease because of thinner oil-water

transition zone. As a result, smaller initial water cut or delay in water breakthrough

could be observed. Higher liquid production rate with smaller pressure drawdown

could also be expected because of greater reservoir permeability. As a by-product,

lesser degree of oil and gas cresting due to lesser pressure drawdown results in higher

oil sweep efficiency. See Figure 5.38 for fluid saturations at the end of production of

CCD run ID 21 and 25. Although gas cresting can be observed, Figure 5.38b reveals

that there is no water cresting at the end of production of CCD run ID 25.
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Table 5.19: Experiments for determining PORO main effect

Figure 5.34: Marginal plot of PORO showing design points of CCD Run ID 21

and 25

Run ID Reference
Table

OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%) Time to Reach
URF (days)

21 5.3 6705.55 4.133 0.55 0.46 0.16 3027.5 0.83 88.00
25 5.3 6705.55 4.133 0.55 0.46 0.25 3027.5 28.18 406.33
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Figure 5.35: Production profiles of CCD Run ID (a) 21 (b) 25
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Figure 5.36: Pressure profiles of CCD Run ID (a) 21 (b) 25
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(a)

Figure 5.37: 3D reservoir model showing initial water saturation and horizontal

wellbore of CCD Run ID (a) 21 and (b) 25
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(a)

Figure 5.38: 3D reservoir model showing fluid saturations at the end of production

and horizontal wellbore of CCD Run ID (a) 21 and (b) 25
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5.3.1.5 Main Effect of Liquid Production Rate Control

In this section, six experimental results are compared to investigate the main

effect of liquid production rate control or LRAT. Table 5.20 presents factor settings or

design points of the six experiments. As shown, 3 new experiments are specifically

performed to investigate the main effect in more detail. In fact, the 6 experiments

constitute a one-variable-at-a-time design. Figure 5.39 shows the marginal plot of

LRAT.  Also  shown in  the  figure  is  the  average  URF due  to  LRAT across  the  other

factors. In fact, the average URF line could be considered as the model fitting of

LRAT main effect. Joshi [7] mentions that, for a reservoir having potential gas or

water cresting, oil recovery can be improved if oil production is properly controlled

under a critical rate. This implies that if well production rate is higher, the tendency

for water and gas cresting to occur should be higher and lower URF as a result.

However, the average URF line at LRAT < 1,500 STB/day shows a different

conclusion as shown in Figure 5.39. Thus, the additional experiments are run for

validating the model prediction.

After conducting all 3 new experiments, their URF and Run ID are plotted on

LRAT marginal plot together with the other 3 existing points as shown in Figure 5.39.

A dash line of interpolated trend of LRAT main effect is drawn by connecting these

points. It can be seen from the dash line that main effect of LRAT decreases URF as

LRAT increases. This result complies with what Joshi [7] mentioned. However, the

maximum difference in URF over the factor range is only 5%. As LRAT is less than

1,500 STB/day, the proxy model tends to under-predict LRAT main effect.

Investigation on the experimental results show that the well of many experiments

having LRAT = 55 STB/day cannot produce from the beginning because they have an

initial oil flow rate less than a minimum economic limit of 50 STBO/day. This is the

reason why the average URF line in the marginal plot converges to URF = 0 as LRAT

is reduced. Note that a correction method of the model due to this error is presented

later in Section 5.4.

This is the reason why the average line shows a strange trend. Without the

economic limit, the average response at an LRAT of 55 STB/day could be about 20%,

which is an extrapolated value of the dash line shown in Figure 5.39. The importance
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of this observation will be highlighted again when limitations of the proxy model are

discussed.

Comparison of production and pressure profiles from Figures 5.40 to 5.45

shows  that  increasing  LRAT  can  result  in  shorter  gas  breakthrough  time  and

increasing water cut rate. This indicates that the problem of gas and water cresting is

more severe. The negative impacts of early gas breakthrough are that it can cause

sudden increase in gas flow rate, overload gas-handling facility on the surface, and

increase required pressure drawdown in the reservoir. However, if gas handling is not

an issue, it could help maintain oil flow rate due to its lifting effect. See Figure5.40b

for oil rate profile after free gas breakthrough. In addition, although oil production can

be accelerated as LRAT increases, the resulting faster water production rate could

cause the well be killed by liquid loadup faster as well. Consequently, less volume of

oil can be swept by rising bottom water into the wellbore. See Figures 5.46 to 5.48 for

unrecovered oil in the reservoir of all experiments except CCD Run ID 22.
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Table 5.20: Experiments for determining LRAT main effect

Figure 5.39: Marginal plot of HO# showing design points of CCD Run ID 22, 22A,

23, 23A, 24, and 24A

Run ID Reference
Table

OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%) Time to Reach
URF (days)

CCD22 5.3 6705.55 4.133 0.55 0.46 0.21 55 0.00 1.00
CCD22A New Run 6705.55 4.133 0.55 0.46 0.21 500 20.06 1669.00
CCD23A New Run 6705.55 4.133 0.55 0.46 0.21 1500 18.69 553.00
CCD23 5.3 6705.55 4.133 0.55 0.46 0.21 3027.5 15.67 171.33

CCD24A New Run 6705.55 4.133 0.55 0.46 0.21 5000 15.34 144.67
CCD24 5.3 6705.55 4.133 0.55 0.46 0.21 6000 15.34 144.67
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Figure 5.40: Production profiles of CCD Run ID (a) 22 (b) 22A
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Figure 5.41: Pressure profiles of CCD Run ID (a) 22 (b) 22A
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Figure 5.42: Production profiles of CCD Run ID (a) 23A (b) 23
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Figure 5.43: Pressure profiles of CCD Run ID (a) 23A (b) 23



124

Figure 5.44: Production profiles of CCD Run ID (a) 24A (b) 24
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Figure 5.45: Pressure profiles of CCD Run ID (a) 24A (b) 24
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Figure 5.46: Oil saturation distribution at the end of production of CCD Run ID 22A

Figure 5.47: Oil saturation distribution at the end of production of CCD Run ID 23A
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Figure 5.48: Oil saturation distribution at the end of production of CCD Run ID 23

Figure 5.49: Oil saturation distribution at the end of production of CCD Run ID 24A
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Figure 5.50: Oil saturation distribution at the end of production of CCD Run ID 24

5.3.2 Influence of Interaction Effects

This section discusses effects of factor interactions on the URF. As described

in Chapter 3, interaction effects cannot be identified by conducting one-variable-at-a-

time  experiments,  but  factorial  ones.  For  this  research,  summary  of  main  and

interaction effects of the six significant design factors calculated using Gaussian

process method is reported in Table 5.15. The factors effects are normalized by total

sensitivity of combined 45-run central composite and 45-run maximum entropy

designed experiments for the ease of understanding.

From the table, it can be seen that about 19% of total variation of URF in the

design hyperspace is contributed by two-factor interactions. Thus, neglecting factor

interaction in proxy fitting could cause significant prediction error. However, one

assumption based on the principle of sparsity effects is that three- or higher factor

effects are negligible and can be ignored. However, this assumption is not totally the

case in this research because it is found that two-factor interaction profiles generated

by JMP can slightly change as a factor level is varied. To be meaningful, only the

factor interactions whose effect is greater than 1% of total sensitivity are discussed.
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Figure 5.51 presents JMP two-factor interaction profiles of the design-

combined Gaussian proxy model at the optimum factor setting. Refer to Figure 5.14

for the optimum factor setting. In the plots, the evidence of interaction is nonparallel

lines. Relatively significant factor interactions highlighted in Table 5.15 are enclosed

by a red box. Each of two plotting aspects of the same factor interaction is assigned

by a numeric and an alphabetic characters which have the same sequential order for

each, e.g. 1 and A, 2 and B, etc.

Figure 5.51: JMP interaction profiles at optimum factor setting of design-combined

Gaussian proxy model for horizontal well production
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A careful observation on the interaction plots reveals that three of the four

relatively significant interactions are interactions of PORO. Three out of them, which

are WSTANDOFF*HO#, PORO*HO#, and PORO*WSTANDOFF, are interactions

of the top three most significant factors listed in Table 5.10. Besides, they also show

similar characteristic of interaction. For example, Interaction plot 1 shows that the

effect of WSTANDOFF on the URF is greater as the level of HO# increases. On the

other hand, as WSTANDOFF increases in Interaction plot A, the effect of HO# also

increases. In other words, the effect on URF of either one of PORO, WSTANDOFF,

and HO# can be amplified as the level of either one or two of the other factors

increases. As discussed in Section 5.3.1, vertical thickness of oil-water transition zone

can be decreased if PORO is increased. If only WSTANDOFF increases, the well will

be farther away from oil-water contact and transition zone resulting in delay in water

breakthrough. And, initial water saturation around a horizontal well can be decreased

as HO# increases at a constant WSTANDOFF. Since PORO, WSTANDOFF, and

HO#  interact  with  the  thickness  of  oil-water  transition  zone,  they  interact  with  one

another.

For PORO*LRAT interaction, Interaction plot 4 shows that, at the low level of

PORO, the lesser LRAT results in the smaller URF. However, it is discussed in

Section 5.3.1.5 that more oil can be recovered from a reservoir if LRAT is smaller

because of less severity of gas and water cresting problem. This is attributed to

prediction  error  of  the  proxy  model.  Later  in  Section  5.4,  it  is  shown  that  URF

prediction of the design-combined proxy model is not adequately accurate for some

regions of the design hyperspaces and some correction is required. Therefore, the

interaction profiles of LRAT*PORO in Figure 5.51 could be incorrect and not

discussed here.

5.4 Limitations of Design-Combined Gaussian Proxy

This section discusses limitations on using the design-combined Gaussian

proxy model. In Section 5.3.1.5, a discussion on prediction error of LRAT main effect

and its cause are described. It is found that on average, when LRAT < 1,500 STB/day,

the proxy model tends to under-predict the main effect of LRAT. Figure 5.52 re-
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presents marginal plots of the design-combined proxy model. In the figure, the design

points, whose LRAT setting is at the low level and URF equals to zero because of a

minimum required oil flow rate of 50 STB/day, are highlighted. It can be observed

from the figure that the highlighted design points are equally distributed over the

factor range of OWC, HO#, and LHRATIO. However, most of them tend to

flocculate when LRAT ≤ 1,500 STB/day, WSTANDOFF ≤ 0.46, and PORO ≤ 0.205.

Thus, it could be prudent to set predicted URF of a design point equal to zero when

LRAT ≤ 1,500 STB/day, WSTANDOFF ≤ 0.46, and PORO < 0.205.

To find out region in the design hyperspace which LRAT main effect is

dominant, the design points in the vicinity of the dash line in Figure 5.39 are bold and

re-presented in Figure 5.53. It should be noted again that the dash line is obtained

from one-variable-at-a-time experiments having LRAT varied, but the other factors

set at their mid value. Thus, it represents the effect of LRAT main effect. Figure 5.53

shows that LRAT main effect  plays an important role on URF when PORO ≥ 0.205

and WSTANDOFF ≤ 0.46. From the figure, it can be seen that the optimum URF

predicted by the proxy model is about 17% when LRAT equals to 1,500 STB/day. By

extrapolating to the dash line to the low level of LRAT, the obtained URF is

approximately 20% which is slightly larger than 17%. To obtain a more accurate URF

prediction, an LRAT of 1,500 STB/day should be input into the proxy model when a

design point has LRAT ≤ 1,500 STB/day, WSTANDOFF ≤ 0.46, and PORO ≥ 0.205.

By applying the above corrective actions on the prediction of proxy model, the

obtained result is cross-validated again against 36-run validating experiments as

described in Sections 4.5 and 5.2.3.2. Figure 5.54 presents the matched pairs t-test of

the corrected URF prediction. When compared with the original result shown in

Figure 5.18, the new result shows slight improvement on prediction precision as the

standard error of URF difference is reduced from 0.739 to 0.645. The correlation

between predicted URF and actual URF increases from 0.89 to 0.92. In addition, it

should be noticed that almost all differences in URFs fall within a range of ±5%.

In conclusion, the conditions and limitations of the design-combined proxy

model in Equation 5.5 are as follows:

1) The predicted URF is for a reservoir depleted by a horizontal well under

primary depletion.
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2) The horizontal well has open-hole completion with a wellbore diameter of

6-1/8”. A 2.875” API J-55 tubing is used and installed from the well heel

to the surface.

3) Generic correlations and petrophysical properties presented in Appendix D

are used in reservoir modeling. The proxy model should be used with

caution when lab test or field measurements show significant deviations

from the correlations.

4) Economic limits and operational constraints shown in Table 4.5 are used.

5) The reservoir rock is homogenous and consolidated sand having a constant

rock compressibility of 8x10-6 psi-1.

6) On average, gravity of free gas in gas cap is 0.77 and bottom water salinity

is 1,000 ppm

7) The proxy model is valid only within the design hyperspace used to

construct the model. In other words, Levels of design factors to be used in

the model must be within the P10 to P90 values as shown in Table 4.2.

8) If LRAT ≤ 1,500 STB/day, WSTANDOFF ≤ 0.46, and PORO < 0.205, the

predicted URF should be reset to zero.

9) If LRAT ≤ 1,500 STB/day, WSTANDOFF ≤ 0.46, and PORO ≥ 0.205, an

LRAT of 1,500 STB/day should be used to substitute in the proxy model

instead of that of the design point.
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Figure 5.52: Corrected matched pairs t-test for validating design-combined Gaussian

process proxy for horizontal well production
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Figure 5.53: Marginal plots of design-combined proxy model with design points

having URF = 0% and LRAT = 55 STB/day in bold



135

Figure 5.54: Marginal plots of design-combined proxy model showing design points

whose response is dominated by LRAT main effect
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5.5 A Simple Reservoir Screening Method

This section describes an application of experimental designs and proxy

models to be used as a simple method for screening out high potential reservoir

candidates for horizontal well development. Steps 10 and 11 as outlined in Section 1.6

are followed to develop the screening method. First of all, develop a design-combined

proxy model which predicts a URF due to production of two vertical wells equivalent

to a horizontal well. Refer to Figure 4.4 for a horizontal well and its equivalent

vertical wells. The basic strategy behind is that one horizontal well will be replaced

by two vertical wells if there is no improvement in economic result. Thus, the 45-run

central composite and 45-run maximum entropy designs described in earlier sections

are re-experimented as described in Section 4.6. Their results are shown in Tables E1

and E2 in Appendix E. JMP software is then used to analyze the data and fit a

Gaussian process proxy model. Table E3 presents estimates of factor effects and fitted

parameters of the proxy model. Equation 5.6 and Tables 5.21 to 5.23 show

mathematical expression of the proxy model and its corresponding fitted model

parameters.

= [ ], [ ] ≥ 0 (5.6)

where,

URF = ultimate oil recovery due to a horizontal well

[URF] = µ + [ R ]1xi[ βj ]ix1 + [ R ]1xj[ βj ]jx1

µ = -0.63118

[ R ]1xi = [ Exp(∑ ∑ − ) ]

[ R ]1xj = [ Exp(∑ ∑ − ) ]

k = total number of design factors = 6

xk =  kth design factor. See Table 5.21

xi
k = level setting of Design factor xk of the design point of Run ID.

“iV” in Table E1

  0  , [ ] < 0
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xj
k = level setting of Design factor xk of the design point of Run ID.

“300+jV” in Table E2

i = total number of design points of maximum entropy design = 45

j = total number of design points of central composite design = 45

θk = fitted model parameter of Design factor xk. See Table 5.21

[ bi ]ix1 = regression coefficient corresponding to ith design point. See

Table 5.22

[ bj ]jx1 = regression coefficient corresponding to jth design point. See

Table 5.23

Table 5.21: Theta regression coefficients of the design-combined Gaussian process

proxy model for vertical well production

Goodness-of-fit of the proxy model is checked by plotting actual and jackknife

URFs predicted by the proxy model in Figure E1. From the figure, it can be seen that

the proxy model can fit most of the experimental results reasonably well. The total

sensitivity report in Table E3 reveals that the effects of PORO, WSTANDOFF, and

HO# contribute approximately 93% of the total response variation. Out of 93%, 56%

is attributed to PORO. This is evidenced by the average URF lines shown in the

marginal plots in Figure E2. Similar to the marginal plots of the proxy model of

horizontal well, on average, the URF due to production of two vertical wells increases

as level of each design factor increases except for LRAT which is rather constant.

JMP prediction profiler with optimum factor setting, 3D surface plot, and interaction

profiles of the proxy model are presented in Figures E3 to E5. In general, these

figures show similar characteristics to those of the proxy for a horizontal well.

Cross-validation of the proxy model is performed in the same manner as that

of the proxy for a horizontal well. Validating experiments for vertical wells are

conducted by using the same validating experimental designs for a horizontal well.

k 1 2 3 4 5 6
xk OWC HO# LHRATIO WSTANDOFF PORO LRAT
qk 8.306E-09 0.1879 0.2333 6.5841 169.405 2.945E-08
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Table 5.22: bi regression coefficients of the design-combined Gaussian process proxy

model for vertical well production

Table 5.23: bj regression coefficients of the design-combined Gaussian process proxy

model for vertical well production

i b i i b i i b i i b i

1 58.34985 13 238.2109 24 162.7032 35 -97.672
2 16.28633 14 207.8171 25 -56.19676 36 -11.975
3 -145.3565 15 396.2389 26 -41.74342 37 141.277
4 -169.1814 16 58.32066 27 -79.75463 38 95.2761
5 -36.0924 17 93.39882 28 192.0911 39 -38.149
6 139.5931 18 -111.7942 29 129.327 40 100.244
7 -51.41102 19 47.94214 30 -234.4837 41 289.986
8 230.918 20 123.5254 31 -177.3766 42 26.7881
9 94.95335 21 149.3219 32 -14.28267 43 -3.0963

10 -4.639537 22 -87.60384 33 -137.0022 44 26.2764
11 -292.7149 23 29.49347 34 -173.1456 45 94.1614
12 24.06836

i b i i b i i b i i b i

1 -16.93389 13 48.16975 24 9.018896 35 2.83232
2 -20.85215 14 -24.69543 25 -53.32167 36 26.7774
3 -20.66776 15 -2.769955 26 -25.26214 37 -533.8
4 -123.3425 16 -4.693111 27 -345.7763 38 -5.8089
5 -6.496468 17 11.22516 28 101.5489 39 -20.382
6 91.91617 18 -103.1503 29 -4.15286 40 -9.7647
7 -1.700459 19 -469.1679 30 -31.31432 41 55.1079
8 -51.14677 20 -242.3355 31 2.099514 42 39.8515
9 -508.2705 21 141.3872 32 -31.4289 43 23.0523

10 21.72758 22 -774.8881 33 -40.45099 44 -52.797
11 -18.54855 23 1795.27 34 -66.67888 45 41.464
12 -3.751108
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Results of the two validating experiments are presented in Tables E4 and E5. The

experimental results are then analyzed using matched pairs t-test technique. Figure E6

presents JMP result of the matched pairs t-test. Compared to the result of the proxy

for horizontal well production, it can be seen that the proxy for vertical well

production can fit the experiment responses better as evidenced by a lower standard

error of 0.645 and a higher correlation of 0.92. As a result, it is validated that the

proxy model has adequate prediction accuracy for further use.

In  practice,  management  decision  to  invest  on  a  project  usually  relies  on

economic analysis result. To perform the analysis, revenue from oil production,

capital investment costs, and expense costs throughout the well life need to be

estimated to take into account time value of money. Because of many advantages over

other methods, oil production profiles are usually predicted using reservoir simulation

method. However, each detailed reservoir simulation requires significant effort and

time for a building reliable geological model, upscaling, simulation and optimization.

Within a limited timeframe, more extra effort is required for accomplishing all of

these steps for all reservoir candidates. Therefore, a proxy model which could

adequately represent the reservoir production system could be used to replace the

reservoir modeling and reservoir simulation. Since the proxy model is in a

mathematical form of continuous function, prediction and optimization of production

system response can be easily done.

Unfortunately, the two formulated proxy models cannot be directly used to

produce an oil production profile, but only an ultimate oil recovery factor. Moreover,

they are developed based on simplified reservoir models which are not specific to any

reservoir. Therefore, it could not be justifiable to use the proxy models alone without

detailed  reservoir  modeling  and  simulation.  However,  they  can  be  used  as  a  simple

screening tool to screen out high potential reservoir candidates for reservoir modeling

and simulation  in  the  next  step.  As  a  result,  burden  on  the  modeling  and  simulation

can be reduced.

A full economic analysis involves many factors ranging from production to

financial factors. Since URF is the response factor which is not related to time value

of money, an indirect economic comparison can thus be only done by comparing

whether one horizontal well can produce a certain amount of oil faster than two
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equivalent vertical wells or not. To be profitable, the amount of produced oil should

be at least able to pay back investment cost of the development. Appendix F presents

an estimation of oil production volume at break-even point of a horizontal well. It is

noted that, for conservatism, the total cost of development is estimated on the high

side. At the end of the estimation, it is concluded that the oil volume for economic

comparison is governed by the minimum required oil volume to develop a project,

which is 100,000 STBO.

Figure 5.55 presents a workflow of the simple method for screening out high

potential reservoirs for drilling a horizontal well using the proxy models. The method

starts with qualitative screening of reservoirs which have appropriate characteristics

for horizontal well drilling from a large portfolio. Unfortunately, because there might

be too many reservoir candidates to be screened out, performing reservoir simulation

on every reservoir could be impractical and prohibitive. Besides, some petrophysical

information of some reservoirs may not be available in pre-drill stage to make the

decision with high confidence. Therefore, when there is a drilling program in the

same proximity of these reservoir candidates, vertical or deviated wells should be

designed to be drilled pass through them so that well logging can be used to collect

the missing information.

Afterwards, the design-combined proxy models are used to predict URF due to

production of one horizontal well and two equivalent vertical wells of each reservoir,

respectively. If the predicted URF due to production of one horizontal well is greater,

the reservoir is screened out and classified as the reservoir having high potential for

horizontal well drilling. Otherwise, drop the reservoir from horizontal well

development program. After screening all reservoir candidates, perform Monte Carlo

analysis  on  the  high  potential  reservoirs.  As  a  result,  probabilistic  URFs  and

recoverable oil volumes of each reservoir are obtained. Figure 5.56 shows an example

or JMP Monte Carlo analysis result. Based on the result, a cumulative probability

density function of URFs can be plotted as shown in Figure 5.57. Subsequently,

prioritize the reservoirs based on the probabilistic recoverable oil volumes and

perform reservoir  simulation  on  the  reservoir  having  higher  priority  first.  It  may be

noticed that the simple method helps identify which reservoirs are worthy to spend

effort and time on reservoir simulation. Thus, the design process is optimized.
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Figure 5.58 presents the workflow for validating the simple reservoir

screening method. In brief, decision based on the simple reservoir screening method is

validated  against  that  of  reservoir  simulation  results.  For  this  research,  the  decision

made based on reservoir simulation results is regarded as the actual decision. For the

simple screening method, the reservoir being considered is suitable for horizontal well

drilling when

Predicted URFone HZ well > Predicted URFtwo equivalent vertical wells (5.7)

The decision criteria based on reservoir simulations are as follows;

Actual URFone HZ well > Actual URFtwo equivalent vertical wells (5.8)

Break-even Pointone HZ well < Break-even Pointtwo equivalent vertical wells (5.9)

Table 5.24 presents proxy prediction and reservoir simulation results of the

validating experiments. Decisions to drill a horizontal well based on each method are

then made according to the work flow in Figure 5.58 and presented in Table 5.25. To

investigate the effectiveness of the simple screening method, all analysis results in

Table 5.25 are sorted by Column (9) in descending order. Interestingly, the validation

results can be divided into 3 groups as follows;

1) D predicted URF > 5% - decision based on the simple screening method

and that of reservoir simulation results are the same. Thus, the simple method can be

effectively used without requiring subsequent reservoir simulations, provided

limitations of the proxy models are not violated.

2) 0% < D predicted URF ≤ 5% - the screening method sometimes wrongly

suggests that the reservoir being considered should be drilled by one horizontal well

rather  than  two  equivalent  vertical  wells.  This  type  of  error  is  defined  as  “Type  II

error” herein.

3) D predicted URF ≤ 0% - the screening method sometimes incorrectly

suggests that the reservoir being considered should be dropped out of horizontal well

development program. This type of error is defined as “Type I error” herein.
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For reservoir screening purpose, Type II error decision is considered

acceptable because the suitability of the reservoir for horizontal well drilling will be

confirmed again by a subsequent detailed reservoir simulation. In contrast, Type I

error decision is unacceptable because it will cause the decision-maker to miss the

development opportunity of the reservoir being considered out.

In conclusion, it has been proven that the simple screening method can be

effectively used to optimize horizontal well design process with acceptable accuracy.

Out of 36 validating cases, 26 cases are correctly predicted by the method while 9

cases have Type II error decision. Only one unacceptable decision is made with Type

I  error.  When D predicted URF > 5%, the simple method can be effectively used

without confirmation from subsequent reservoir simulations, provided limitations of

the proxy models are not violated. For the remaining cases, subsequent reservoir

simulations should be performed for final confirmation.
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Figure 5.55: Workflow for screening out high potential reservoirs for drilling a

horizontal well using the proxy models
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Figure 5.58: Workflow for cross-validating the simple method for screening reservoir

for drilling a horizontal well
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5.6 Design Optimization of a Horizontal Well using a

Proxy Model

Frequently, reservoir simulations are performed to optimize the design of a

horizontal well. The main goals are to maximize oil recovery and to accelerate oil

production. Since each reservoir simulation can provide only one set of desired

responses, several simulations must therefore be done until a set of maximum or

minimum responses is obtained within limited budget and time. In the previous

section, the design-combined proxy model is developed to relate input factors of a

reservoir simulation to output response or URF due to production of one horizontal

well. Therefore, it can be used as a substitute to the process system or reservoir

simulator in this research to approximate output response as illustrated in Figure 5.59.

Since the proxy model is modeled as a continuous function, maximum or minimum

response within the design hyperspace of the proxy model can be easily searched

using available mathematical optimization techniques.

Figure 5.59: Application of a proxy model as a substitute to reservoir simulator

(Adapted from Montgomery [54])

The design-combined proxy model presented in Equation 5.5 is a function of

five significant factors and one extra insignificant factor as described earlier. From the

equation, WSTANDOFF, LHRATIO, and LRAT are controllable factors which can

be optimized during the design. The remaining factors, i.e. PORO, HO#, and OWC,
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are uncontrollable factors which are usually in a form of probabilistic distribution due

to geological and measurement uncertainties. Conventionally, to optimize a horizontal

well design, one must perform Monte Carlo simulation runs on the proxy model by

varying the three controllable factors in each run until the optimum P50 value of URF

and an acceptable range between P10 and P90 are obtained. The knowledge of main

and interaction effects discussed in Section 5.3 could be used to guide the searching

of optimum setting. It is essential to note that limitations of the proxy model described

in Section 5.4 must not be violated. In addition, more practical limitations specific to

a particular reservoir should be taken into account. For example, if a reservoir is very

thin, the maximum possible WSTANDOFF that could be designed would be 0.65 in

order to maintain drilling tolerance.

Alternatively, JMP Profiler platform can be used for the design optimization.

As shown in Figure 5.56, the platform provides an approach to visualize the response

surface in hyperspace by seeing what would happen if one or two factor levels are

changed at a time. Basically, the platform plots interactive cross-sectional views of

the response surface across each design factor. Design optimization can be easily

done by adjusting settings of controllable factors, the URF corresponding to the

controllable factors and P50 value of uncontrollable factors are calculated and shown

in red on the left of the cross-sectional plots. Then, Monte Carlo simulation can be run

to evaluate probabilistic distribution of the URF.

5.7 Recommendations on Data Surveillance and

Acquisition

Data acquisition and surveillance program is usually put in place to collect

necessary information for characterizing geological conditions, assessing reservoir

and fluid properties, forecasting production performance, and etc. Unfortunately,

there are usually tens of factors involved in a problem. In many circumstances, oil and

gas companies need to compromise between limited budget and the cost of

surveillance and acquisition to obtain the most beneficial outcome. Thus, it would be

wise to spend the budget and effort on acquiring the information which has higher

influence on the desired outcome.
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In Section 5.2.3.1, it is confirmed that there are five factors having significant

influence on ultimate recovery efficiency of a horizontal well. The ranking list of

significant factors ordered in descending significance is as follows:

1) PORO - porosity and its correlated factors such as permeability and

thickness of oil-water transition zone

2) WSTANDOFF - ratio of well standoff to oil-water contact to initial oil

column thickness

3) HO or HO# - initial oil column thickness

4) LRAT - liquid production rate control

5) LHRATIO - ratio of horizontal well length to reservoir length

Thus, for a horizontal well development program, more budget should be

allocated to collect the high-quality information of significant uncontrollable factors

which are rock porosity, permeability, initial water saturation, capillary action in fluid

transition zone, initial oil column thickness, oil-water contact elevation, relative

permeability, and end point saturations. In addition, more effort should be spent on

drilling control to get well standoff to oil-water contact and horizontal well length as

per designed values.

Since experimental design methodology adopts statistical techniques for

making objective conclusions. The accuracy of the conclusions is therefore heavily

relied  on  the  quality  of  the  historical  data  used.  This  fact  points  out  that  proper

database management and maintenance is as important as the quality of data

collection. As there is more information in the database or new best practices, the

designed experiments may be revisited to update and improve the proxy models.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

This chapter concludes important findings from this research.

Recommendations for future work are also provided at the end of the chapter.

6.1 Conclusions

In this research, experimental design methodology is applied and proposed as

an optimization method for designing a horizontal well in a thin-oil-column reservoir

in the Gulf of Thailand. Ultimate recovery efficiency of the horizontal well under

primary  depletion  is  selected  as  the  response  factor  to  be  optimized.  First  of  all,  the

research begins with defining a large list of factors which could influence the ultimate

recovery factor by brainstorming. The listed factors are then screened out by subject

matter experts working in the oil fields in the Gulf of Thailand. To further reduce the

number of factors, factors having known mutual correlation are grouped together.

Only one factor is selected as a representative of each group. By product, it can also

be ensured that factor settings of all subsequent computer experiments are realistic.

Consequently, thirteen potential significant factors can be screened out. Petrophysical

and engineering data related to the screened factors are then collated from database of

the oil fields. As a result, probability and cumulative density functions of these factors

can be plotted.

The screened factors are then statistically screened again using a screening

experimental design. The objective is to obtain a small group of statistically

significant factors which could be used to construct an approximate proxy model for

prediction and optimization. In this research, 213-8 fractional factorial design is

employed to conduct screening designed experiment. To conduct the experiment, a

series of reservoir simulation runs are carried out by varying levels of the thirteen

design factors according to the experimental design. As a result, five statistically

significant factors can be screened out for subsequent response surface designs. The

five factors ordered in descending significance are porosity, well standoff to oil-water
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contact, thickness of oil column, liquid production rate control, and a ratio of

horizontal well length to reservoir length. Since the screening experiments are

conducted at only 2 levels of factors, the analysis of screening might miss some

significant factors out if the actual response surface is highly non-linear, the sixth

factor, i.e. oil-water contact elevation, is added into the list of significant factors to

perform response surface experiments.

The widely used face-centered central composite design is firstly performed to

create a quadratic proxy model. It is shown that the obtained quadratic proxy cannot

adequately fit and predict response or ultimate recovery factor of the simulated

production system. Therefore, another series of reservoir simulation runs are

performed according to a maximum entropy design. Maximum entropy designs are a

variant of space-filling designs which are suitable for computer experiments and

fitting a Gaussian process response surface. Unfortunately, it is found that the

obtained Gaussian process proxy can adequately predict the ultimate recovery factor

only within the region from where designed experimental points are sampled. Near

boundary of the design hyperspace, model prediction is found to be poor because only

few experiments are conducted.

Comparison between the two experimental designs reveals that most of central

composite  design  points  are  at  the  boundary  of  the  design  hyperspace  whereas  those

of  the  other  design  are  mainly  distributed  inside  the  boundary.  Due  to  this  fact,  the

design points and responses of both experimental designs are combined and fitted

using a Gaussian process model. The resulting design-combined proxy is thus built on

more number of design points which are more spread over the design hyperspace.

Cross-validation of the proxy model shows that the model can adequately predict the

ultimate recovery factor with improved prediction accuracy.

In summary, the following conclusions can be made;

1) Experimental design methodology can be used to optimize horizontal well

design in the Gulf of Thailand using the proxy models.

2) Five significant factors influencing URF can be screened out from tens of

factors. The ranking list of significant factors ordered in descending significance is as

follows:
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2.1) PORO -  porosity  and  its  correlated  factors  such  as  permeability  and

thickness of oil-water transition zone

2.2) WSTANDOFF - ratio of well standoff to oil-water contact to initial

oil column thickness

2.3) HO or HO# - initial oil column thickness

2.4) LRAT - liquid production rate control

2.5) LHRATIO - ratio of horizontal well length to reservoir length

3) To  ensure  that  no  significant  factors  are  missed  out,  the  sixth  most

influence factor on the URF according to the analysis of screening designed

experiments, i.e. oil-water contact elevation, is experimented in response surface

experiments. Analysis report of the obtained proxy model confirms that oil-water

contact elevation is insignificant. Thus, no significant factors are missed out during

factor screening.

4) To obtain high accuracy of well performance prediction, acquisition and

surveillance of the five significant factors and their correlated factors such as

permeability, initial water saturation, capillary pressure, oil-water contact elevation,

relative permeability and end point saturation should be performed and maintained

with high quality.

5) At a given ratio of well-standoff-to-oil-water-contact to oil-column-

thickness, a reservoir having thicker oil column thickness tends to have higher

ultimate oil recovery. This is because well standoff to oil-water contact also increases.

Therefore, the well is less prone to be within oil-water transition zone and far away

from bottom water. As a result, the well can produce oil at higher production rate with

less initial water cut and later water breakthrough. Gas cresting is not found to cause

negative effect to the production. Instead, its gas lifting effect helps accelerate oil

production. This could be because of the limited and small amount of the gas cap.

6) As horizontal well length increases, pressure drawdown required to

produce oil at a certain rate is reduced. Moreover, more reservoir fluid volume is

susceptible to the pressure drawdown. Thus, water and gas cresting is less

problematic. As a result, the longer horizontal well can recover more oil within less

period of time.
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7) As a ratio of well-standoff-to-oil-water-contact to oil-column-thickness

decreases, the influence of oil-water transition zone and oil-water contact dominates

performance of a horizontal well. High initial water cut can be observed due to higher

initial water saturation near the wellbore. Moreover, the higher initial relative

permeability to water and shorter distance between the well to oil-water contact cause

water breakthrough to occur much faster. As a result, relatively low amount of oil can

be recovered. On the other hand, as the ratio is approaching unity, gas cap has more

influence on the well performance. Higher initial oil flow rate and earlier gas

breakthrough can be observed as water breakthrough delays. Fluctuation in oil and

gas production rates occurs after tubing head pressure reaches its minimum value.

This could be attributed to high gas influx along horizontal length which could cause

high  turbulence  flow  in  the  well.  Due  to  the  delay  in  water  breakthrough  and  lifting

effect of breakthrough gas, the ultimate recovery factor significantly increases.

8) Porosity and its correlated factors are found to have most influence on the

ultimate recovery factor. As porosity increases, oil-water transition zone in the

reservoir decreases resulting in smaller initial water cut and delay in water

breakthrough. In the meantime, the corresponding increase in reservoir permeability

results in greater liquid production rate with smaller pressure drawdown required.

Thus, there is also less concern on oil and gas cresting problem. Ultimately, more oil

can be recovered from the reservoir

9) It  is  found that  liquid  rate  production  control  has  an  inverse  effect  on  the

ultimate recovery factor. As the liquid rate is increased, pressure drawdown in the

reservoir is also greater. Consequently, the resultant increase in gas and water cresting

tendency causes the horizontal well to shut-in earlier due to high water cut. Thus, less

oil can be recovered. However, beyond a certain control rate, no difference in well

performance can be observed due to limited deliverability of the well.

10) Interaction effects among porosity, well standoff to oil-water contact, and

oil column thickness are found significant. It is found that an increase in one of these

factors can amplify the main effect of the other two factors.

11) The developed proxy models can be effectively and quickly used to screen

out reservoirs which have high potential for horizontal well development. As a result,

workload on reservoir modeling and simulation could be reduced.
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6.2 Recommendations

1) Some factors such as tubing size, diameter of wellbore, completion type,

etc., are kept constant in this research to align with the current working practice.

Some are assumed based on the best guess of the subject matter experts due to

unavailability  of  lab  or  field  data,  for  example,  skin  factor,  wellbore  roughness,  etc.

These factors may be studied to optimize the current practice.

2) It is assumed that the lateral section of the wells in this study is perfectly

horizontal. In practice, many horizontal wells have snaking trajectory due to lack of

good geosteering. Some lateral sections are straight but slanting. Besides, geometry of

the well, multiphase flow along the lateral section and slippage between different

fluids  could  influence  the  well  performance.  It  is  thus  interesting  to  investigate  the

influence of these factors in the future.

3) Only primary depletion with an artificial lift by a booster compressor is

considered in this study. In practice, secondary recovery methods such as waterflood

and gas lift are applied to increase more oil recovery and accelerate more oil

production. Therefore, additional factor effects related to other artificial lift and EOR

methods can be systematically studied further using experimental designs.

4) The information from the horizontal well database used in this research is

updated until June 2010 only. As there is more information from ongoing drilling

projects, the proxy models constructed in this research should be regularly revisited

for update. This is because experimental design methodology is based on statistical

method and historical data.
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APPENDIX A

List of Potential Significant Factors Influencing Ultimate Recovery

Factor of a Horizontal Well
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APPENDIX B

Probability Distribution and Associated Statistical

Analysis of Design Factors
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Figure B1: Probability distribution and statistics of reservoir thicknesses
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Figure B2: Probability distribution and statistics of reservoir dip angles
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Figure B3: Probability distribution and statistics of transformed reservoir dip angles
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Figure B4: Probability distribution and statistics of porosities
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Figure B5: Probability distribution of anisotropies and transformed anisotropies
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Figure B6: Probability distribution and statistics of oil gravities
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Figure B7: Probability distribution and statistics of initial oil column thicknesses
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Figure B8: Probability distribution and statistics of transformed initial oil column thicknesses
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Figure B9: Probability distribution and statistics of oil-water contact elevations
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Figure B10: Probability distribution and statistics of gas-cap-volume-to-

oil-volume ratios
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Figure B11: Probability distribution and statistics of well-standoff-to-

OWC-to-oil-column-thickness ratios
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Figure B12: Probability distribution and statistics of horizontal well lengths
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APPENDIX C

Design Patterns of Experimental Designs Performed in This Research
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Table C1: Design patterns of Resolution IV 213-8 fractional factorial design

Run ID. Design Pattern Run ID. Design Pattern Run ID. Design Pattern
1 −−−−−−−−−−−−− 12 −+−+++−+−−+−− 23 +−++−+−+−+−+−

2 −−−−++++++++− 13 −++−−−++−−++− 24 +−+++−+−+−+−−

3 −−−+−++++−−−+ 14 −++−++−−++−−− 25 ++−−−−−++++−+

4 −−−++−−−−++++ 15 −+++−+−−+−+++ 26 ++−−+++−−−−++

5 −−+−−++−−++−+ 16 −++++−++−+−−+ 27 ++−+−++−−++−−

6 −−+−+−−++−−++ 17 +−−−−+−−+−++− 28 ++−++−−++−−+−

7 −−++−−−++++−− 18 +−−−+−++−+−−− 29 +++−−++++−−−−

8 −−+++++−−−−+− 19 +−−+−−++−−+++ 30 +++−+−−−−+++−

9 −+−−−+−+−+−++ 20 +−−+++−−++−−+ 31 ++++−−−−−−−−+

10 −+−−+−+−+−+−+ 21 +−+−−−+−++−++ 32 +++++++++++++

11 −+−+−−+−++−+− 22 +−+−++−+−−+−+

Note: 1) "+" = high-level value and "-" = low-level value

2) The order of design pattern is as follows: OWC, HRES, HO#, LH, LHRATIO, RESDIP#,

    MRATIO, AQFRATIO, WSTANDOFF, PORO, API, ANISO#, AND LRAT



190

Table C2: Design patterns of 6-factor faced-center central composite design

Run ID. Design Pattern Run ID. Design Pattern Run ID. Design Pattern
1 −−−−−+ 16 −+++−− 31 +−−+−+
2 −−−−+− 17 −+++++ 32 +−−++−
3 −−−+−− 18 0a0000 33 +−+−−+
4 −−−+++ 19 00a000 34 +−+−+−
5 −−+−−− 20 000a00 35 +−++−−
6 −−+−++ 21 0000a0 36 +−++++
7 −−++−+ 22 00000a 37 A00000
8 −−+++− 23 000000 38 ++−−−+
9 a00000 24 00000A 39 ++−−+−
10 −+−−−− 25 0000A0 40 ++−+−−
11 −+−−++ 26 000A00 41 ++−+++
12 −+−+−+ 27 00A000 42 +++−−−
13 −+−++− 28 0A0000 43 +++−++
14 −++−−+ 29 +−−−−− 44 ++++−+
15 −++−+− 30 +−−−++ 45 +++++−

Note: 1) "+", "0", and "-" = high-, mid-, and low-level values, respectively.
2) "A" and "a" = high- and low-level face-centered point.
3) The order of design pattern is as follows: OWC, HO#, LHRATIO, WSTANDOFF,
    PORO, and LRAT.
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Table C3: Design patterns of 6-factor, 45-run maximum entropy design

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT
301 7301.41 3.567 0.380 0.240 0.240 2697.2
302 6360.58 4.171 0.180 0.360 0.160 2565.1
303 7175.97 3.692 0.820 0.400 0.174 2697.2
304 5294.30 3.818 0.940 0.307 0.236 5735.8
305 5796.08 4.473 0.980 0.320 0.224 4414.7
306 7426.86 4.322 0.940 0.427 0.246 715.6
307 5294.30 3.995 0.640 0.387 0.160 55.0
308 6276.04 3.793 0.687 0.360 0.190 55.0
309 7991.36 4.675 0.280 0.440 0.220 4578.4
310 5482.47 4.599 0.600 0.213 0.164 3225.7
311 7928.63 4.222 0.540 0.587 0.234 4150.4
312 5482.47 4.448 0.120 0.320 0.206 2036.7
313 6297.86 4.247 0.620 0.413 0.206 1993.6
314 5796.08 4.297 0.420 0.160 0.212 3754.1
315 7489.58 4.020 0.320 0.421 0.194 847.7
316 5984.24 4.574 0.420 0.400 0.160 847.7
317 5607.91 3.617 0.760 0.160 0.200 2036.7
318 7928.63 4.322 0.440 0.293 0.162 2433.0
319 7050.52 4.222 0.360 0.760 0.188 55.0
320 5294.30 4.133 0.160 0.613 0.204 3357.8
321 7238.69 3.894 0.740 0.173 0.164 4943.1
322 5921.52 4.675 0.100 0.520 0.188 3357.8
323 7113.24 4.010 0.220 0.693 0.160 4546.8
324 7748.65 4.549 0.300 0.160 0.198 55.0
325 7050.52 3.567 0.780 0.533 0.214 2168.8
326 7050.52 3.642 0.260 0.627 0.186 2697.2
327 6736.91 4.196 0.880 0.173 0.224 2961.4
328 6548.74 3.567 0.380 0.627 0.250 5867.9
329 7426.86 3.692 0.260 0.467 0.234 319.2
330 5294.30 3.692 0.520 0.320 0.228 4414.7
331 6705.55 4.257 0.433 0.160 0.178 55.0
332 5733.36 3.970 0.660 0.680 0.246 5339.4
333 6486.02 4.448 0.560 0.547 0.164 4150.4
334 7135.06 4.574 0.280 0.317 0.208 2565.1
335 7994.08 4.020 0.100 0.267 0.210 3225.7
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Table C3: Design patterns of 6-factor, 45-run maximum entropy design (Continued)

Table C4: Design patterns of the first 18-run maximum entropy design for proxy

cross-validation

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT
336 6172.41 4.096 0.120 0.440 0.232 5867.9
337 7113.24 4.096 0.300 0.307 0.210 5471.6
338 7740.47 4.599 0.880 0.707 0.186 5735.8
339 6674.19 4.524 0.980 0.707 0.160 715.6
340 7865.91 4.574 0.960 0.653 0.214 583.4
341 6674.19 3.768 0.760 0.360 0.236 4018.3
342 5482.47 3.869 0.100 0.520 0.224 1244.0
343 5357.02 3.642 0.840 0.653 0.212 3489.9
344 6109.69 3.739 0.180 0.160 0.236 2300.9
345 5733.36 3.617 0.800 0.640 0.174 1508.2

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT
101 7959.99 3.755 0.950 0.293 0.165 55.0
102 7332.77 4.259 0.100 0.160 0.185 5339.4
103 7803.19 4.322 0.800 0.493 0.180 5009.2
104 6548.74 4.700 0.450 0.160 0.210 4348.6
105 6705.55 3.692 0.650 0.660 0.230 1376.1
106 6548.74 4.133 0.200 0.627 0.180 3027.5
107 6548.74 4.259 0.900 0.160 0.225 2036.7
108 6391.94 3.567 0.350 0.393 0.235 4678.9
109 5451.11 3.944 0.100 0.360 0.200 2697.2
110 5294.30 4.385 0.150 0.493 0.170 5669.7
111 5764.72 4.196 0.450 0.327 0.245 2036.7
112 6078.33 3.755 0.900 0.727 0.160 3688.1
113 8116.80 4.574 0.250 0.293 0.230 3027.5
114 5294.30 4.511 0.850 0.527 0.235 2697.2
115 6862.36 4.385 0.400 0.693 0.220 1045.8
116 5294.30 3.692 0.650 0.260 0.185 385.3
117 6705.55 3.818 0.700 0.327 0.165 2366.9
118 6862.36 4.385 0.800 0.560 0.160 715.6
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Table C5: Design patterns of the second 18-run maximum entropy design for proxy

cross-validation

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT
201 5607.91 3.818 0.150 0.427 0.205 2366.9
202 5294.30 3.755 0.650 0.627 0.220 5009.2
203 5921.52 3.567 0.250 0.727 0.190 4018.3
204 7175.97 3.818 0.250 0.493 0.160 5339.4
205 5294.30 4.637 0.150 0.593 0.195 1706.4
206 5294.30 4.700 0.900 0.460 0.180 2036.7
207 7803.19 4.511 0.400 0.727 0.205 3688.1
208 7959.99 4.133 0.800 0.327 0.160 4348.6
209 6862.36 4.574 0.600 0.527 0.170 4018.3
210 5607.91 4.259 0.100 0.327 0.185 5339.4
211 6391.94 3.692 0.950 0.427 0.225 385.3
212 6078.33 4.070 0.500 0.160 0.225 3688.1
213 6862.36 3.567 0.850 0.493 0.180 2697.2
214 7646.38 4.322 0.350 0.327 0.165 715.6
215 7175.97 3.567 1.000 0.227 0.180 55.0
216 5764.72 4.448 0.550 0.627 0.225 5669.7
217 5294.30 4.259 0.800 0.160 0.175 2366.9
218 5921.52 4.511 0.400 0.260 0.205 385.3
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APPENDIX D

Generic Correlation Equations of Petrophysical Properties of Thin-Oil-

Column Reservoirs in the Gulf of Thailand
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Figure D1: Correlation between initial reservoir pressure and horizontal well depth
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Figure D2: Correlation between initial reservoir temperature and depth

Figure D3: Correlation between porosity and horizontal permeability
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Figure D4: Correlation between Leverette J-function and Sw
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(a) Generic oil-water relative permeability curves

(a) Generic gas-oil relative permeability curves

Figure D5: Generic relative permeability curves



199

APPENDIX E

Experimental Analyses and Results for Building a Gaussian Process

Proxy used to Predict URF due to Two Vertical Wells
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Table E1: Experimental results of the central composite design for vertical well

production

Run ID. Design Pattern URF (%) Run ID. Design Pattern URF (%)
1V −−−−−+ 0.000 24V 00000A 9.318
2V −−−−+− 0.038 25V 0000A0 31.176
3V −−−+−− 0.000 26V 000A00 16.577
4V −−−+++ 4.359 27V 00A000 8.757
5V −−+−−− 0.000 28V 0A0000 16.350
6V −−+−++ 8.859 29V +−−−−− 0.000
7V −−++−+ 0.000 30V +−−−++ 6.369
8V −−+++− 1.312 31V +−−+−+ 0.000
9V a00000 6.667 32V +−−++− 2.106

10V −+−−−− 0.000 33V +−+−−+ 0.000
11V −+−−++ 3.787 34V +−+−+− 0.114
12V −+−+−+ 0.119 35V +−++−− 0.000
13V −+−++− 33.809 36V +−++++ 20.153
14V −++−−+ 0.000 37V A00000 10.459
15V −++−+− 0.993 38V ++−−−+ 0.000
16V −+++−− 0.071 39V ++−−+− 1.373
17V −+++++ 33.760 40V ++−+−− 0.377
18V 0a0000 2.682 41V ++−+++ 31.952
19V 00a000 3.589 42V +++−−− 0.000
20V 000a00 0.310 43V +++−++ 14.695
21V 0000a0 0.000 44V ++++−+ 0.316
22V 00000a 0.588 45V +++++− 44.228
23V 000000 9.318

Note: 1) "+", "0", and "-" = high-, mid-, and low-level values, respectively.
2) "A" and "a" = high- and low-level of face-centered point.
3) The order of design pattern is as follows: OWC, HO#, LHRATIO,
    WSTANDOFF, PORO, and LRAT.
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Table E2: Experimental results of the maximum entropy design for vertical well

production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
301V 7301.41 3.567 0.380 0.240 0.240 2697.2 11.975
302V 6360.58 4.171 0.180 0.360 0.160 2565.1 0.000
303V 7175.97 3.692 0.820 0.400 0.174 2697.2 0.000
304V 5294.30 3.818 0.940 0.307 0.236 5735.8 5.610
305V 5796.08 4.473 0.980 0.320 0.224 4414.7 11.364
306V 7426.86 4.322 0.940 0.427 0.246 715.6 32.324
307V 5294.30 3.995 0.640 0.387 0.160 55.0 0.000
308V 6276.04 3.793 0.687 0.360 0.190 55.0 0.005
309V 7991.36 4.675 0.280 0.440 0.220 4578.4 19.632
310V 5482.47 4.599 0.600 0.213 0.164 3225.7 0.000
311V 7928.63 4.222 0.540 0.587 0.234 4150.4 26.392
312V 5482.47 4.448 0.120 0.320 0.206 2036.7 2.580
313V 6297.86 4.247 0.620 0.413 0.206 1993.6 9.370
314V 5796.08 4.297 0.420 0.160 0.212 3754.1 0.595
315V 7489.58 4.020 0.320 0.421 0.194 847.7 2.173
316V 5984.24 4.574 0.420 0.400 0.160 847.7 0.000
317V 5607.91 3.617 0.760 0.160 0.200 2036.7 0.004
318V 7928.63 4.322 0.440 0.293 0.162 2433.0 0.000
319V 7050.52 4.222 0.360 0.760 0.188 55.0 6.961
320V 5294.30 4.133 0.160 0.613 0.204 3357.8 5.751
321V 7238.69 3.894 0.740 0.173 0.164 4943.1 0.000
322V 5921.52 4.675 0.100 0.520 0.188 3357.8 4.769
323V 7113.24 4.010 0.220 0.693 0.160 4546.8 0.000
324V 7748.65 4.549 0.300 0.160 0.198 55.0 0.001
325V 7050.52 3.567 0.780 0.533 0.214 2168.8 4.154
326V 7050.52 3.642 0.260 0.627 0.186 2697.2 0.042
327V 6736.91 4.196 0.880 0.173 0.224 2961.4 3.945
328V 6548.74 3.567 0.380 0.627 0.250 5867.9 16.950
329V 7426.86 3.692 0.260 0.467 0.234 319.2 12.312
330V 5294.30 3.692 0.520 0.320 0.228 4414.7 4.282
331V 6705.55 4.257 0.433 0.160 0.178 55.0 0.000
332V 5733.36 3.970 0.660 0.680 0.246 5339.4 20.977
333V 6486.02 4.448 0.560 0.547 0.164 4150.4 0.064
334V 7135.06 4.574 0.280 0.317 0.208 2565.1 7.776
335V 7994.08 4.020 0.100 0.267 0.210 3225.7 1.536
336V 6172.41 4.096 0.120 0.440 0.232 5867.9 10.185
337V 7113.24 4.096 0.300 0.307 0.210 5471.6 4.252
338V 7740.47 4.599 0.880 0.707 0.186 5735.8 17.154
339V 6674.19 4.524 0.980 0.707 0.160 715.6 0.100
340V 7865.91 4.574 0.960 0.653 0.214 583.4 22.998
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Table E2: Experimental Results of the maximum entropy design for vertical well

production (Continued)

Figure E1: Actual by jackknife predicted plot of the Gaussian process proxy model

for vertical well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
341V 6674.19 3.768 0.760 0.360 0.236 4018.3 16.050
342V 5482.47 3.869 0.100 0.520 0.224 1244.0 3.651
343V 5357.02 3.642 0.840 0.653 0.212 3489.9 3.304
344V 6109.69 3.739 0.180 0.160 0.236 2300.9 1.653
345V 5733.36 3.617 0.800 0.640 0.174 1508.2 0.000
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Figure E2: JMP marginal model plots of the Gaussian process proxy model for

vertical well production
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Figure E4: 3D surface plot at the optimum factor setting of the Gaussian process

proxy model for vertical well production
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Figure E5: JMP interaction profiles at the optimum factor setting of the Gaussian

process proxy model for vertical well production
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Table E4: Experimental results of the first 18-run maximum entropy design for

validating the proxy model for vertical well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
101V 7959.99 3.755 0.950 0.293 0.165 55.0 0.000
102V 7332.77 4.259 0.100 0.160 0.185 5339.4 0.000
103V 7803.19 4.322 0.800 0.493 0.180 5009.2 2.863
104V 6548.74 4.700 0.450 0.160 0.210 4348.6 2.410
105V 6705.55 3.692 0.650 0.660 0.230 1376.1 13.252
106V 6548.74 4.133 0.200 0.627 0.180 3027.5 1.874
107V 6548.74 4.259 0.900 0.160 0.225 2036.7 3.113
108V 6391.94 3.567 0.350 0.393 0.235 4678.9 8.364
109V 5451.11 3.944 0.100 0.360 0.200 2697.2 0.206
110V 5294.30 4.385 0.150 0.493 0.170 5669.7 0.002
111V 5764.72 4.196 0.450 0.327 0.245 2036.7 12.982
112V 6078.33 3.755 0.900 0.727 0.160 3688.1 0.000
113V 8116.80 4.574 0.250 0.293 0.230 3027.5 14.816
114V 5294.30 4.511 0.850 0.527 0.235 2697.2 21.158
115V 6862.36 4.385 0.400 0.693 0.220 1045.8 22.799
116V 5294.30 3.692 0.650 0.260 0.185 385.3 0.000
117V 6705.55 3.818 0.700 0.327 0.165 2366.9 0.000
118V 6862.36 4.385 0.800 0.560 0.160 715.6 0.003



209

Table E5: Experimental results of the second 18-run maximum entropy design for

validating the proxy model for vertical well production

Run ID. OWC HO# LHRATIO WSTANDOFF PORO LRAT URF (%)
201V 5607.91 3.818 0.150 0.427 0.205 2366.9 0.488
202V 5294.30 3.755 0.650 0.627 0.220 5009.2 8.130
203V 5921.52 3.567 0.250 0.727 0.190 4018.3 0.033
204V 7175.97 3.818 0.250 0.493 0.160 5339.4 0.000
205V 5294.30 4.637 0.150 0.593 0.195 1706.4 9.710
206V 5294.30 4.700 0.900 0.460 0.180 2036.7 0.569
207V 7803.19 4.511 0.400 0.727 0.205 3688.1 21.740
208V 7959.99 4.133 0.800 0.327 0.160 4348.6 0.000
209V 6862.36 4.574 0.600 0.527 0.170 4018.3 0.445
210V 5607.91 4.259 0.100 0.327 0.185 5339.4 0.001
211V 6391.94 3.692 0.950 0.427 0.225 385.3 8.707
212V 6078.33 4.070 0.500 0.160 0.225 3688.1 1.532
213V 6862.36 3.567 0.850 0.493 0.180 2697.2 0.001
214V 7646.38 4.322 0.350 0.327 0.165 715.6 0.000
215V 7175.97 3.567 1.000 0.227 0.180 55.0 0.000
216V 5764.72 4.448 0.550 0.627 0.225 5669.7 23.770
217V 5294.30 4.259 0.800 0.160 0.175 2366.9 0.000
218V 5921.52 4.511 0.400 0.260 0.205 385.3 3.345
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Figure E6: Matched pairs t-test for validating the Gaussian process proxy model for

vertical well production
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APPENDIX F

Estimation of Oil Production Volume at Break-Even Point of a

Horizontal Well
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1) Drilling and completion cost = 2.700 $MM/well (Conventional completion = $250/ft
  or $2.7MM/well)

2) Surface facility cost = 0.300 $MM/well (High case)
3) Operating cost = 0.052 $MM/well/year
4) Maintenance cost = 0.020 $MM/well/year
5) Escalation rate = 3% per year
6) Discount rate = 10% per year

0
1
2
3
4
5
6
7
8
9

10

If oil price = 70 $/bbl, equivalent barrels of oil to break-even point = 51,313 bbl

In practice, only a reservoir having OOIP > 1 MMSTB is considered for horizontal well execution.
If average URF = 10%, the minimum recovered oil is 100,000 STB.

Conclusion

Economics should be compared at the time that 100,000 STB of oil is produced.

Estimation of Oil Production Volume at Break-Even Point

Present Value
($MM) ($MM)

Total =

Year Description Escalating factor Escalated Cost Discounting
factor

Items 3-4 1.03 0.074 0.91 0.069
Items 1- 2 1.00 3.000 1.00 3.000

Items 3-4 1.09 0.079 0.75 0.064
Items 3-4 1.06 0.076 0.83 0.067

Items 3-4 1.16 0.083 0.62 0.060
Items 3-4 1.13 0.081 0.68 0.062

Items 3-4 1.23 0.088 0.51 0.056
Items 3-4 1.19 0.086 0.56 0.058

3.592

Items 3-4 1.27 0.091 0.47 0.054
Items 3-4 1.30 0.094 0.42 0.052
Items 3-4 1.34 0.097 0.39 0.050
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