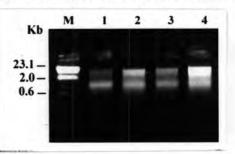

CHAPTER III

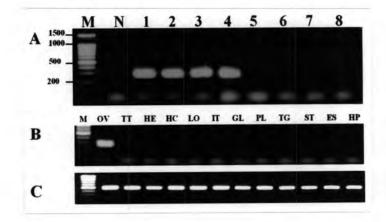

RESULTS

3.1 RT-PCR of functionally important genes

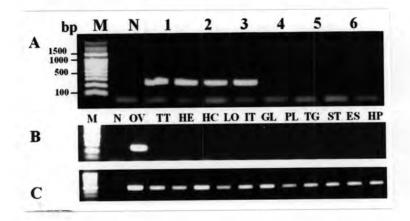
Total RNA from ovaries and testes revealed predominant discrete bands along with smeared high molecular weight RNA (Figure 3.1). The ratios of extracted RNA were 1.7 - 2.0. The first strand cDNA synthesized from those total RNA covered the large products indicating the acceptable quality of the synthesized first strand cDNA (Figure 3.2)

Figure 3.1 A 1.0% ethidium bromide-stained agarose gel showing the quality of total RNA extracted from ovaries of *P. monodon*. Lane $M = \lambda$ -*Hind* III. Lane 1 - 4 = Total RNA individually extracted from ovaries of each *P. monodon* broodstock.

Figure 3.2 A 1.0% ethidium bromide-stained agarose gel showing the synthesized first strand cDNA from ovaries of *P. monodon* and Lane $M = \lambda$ -*Hind* III. Lane 1 - 4 = the first strand cDNA from ovaries of each *P. monodon* broodstock.


A total of 158 primer pairs were designed from EST libraries of ovaries (71 primers pairs) and testes (2 primer pairs) of normal shrimp and hemocytes of temperature-stressed *P. monodon*, (85 primer pairs). RT-PCR was carried out using an identical amplification condition for all primer pairs.

Initially, the first strand cDNA synthesized from ovaries and testes of 2 individuals of each sex were subjected to RT-PCR and electrophoretically analyzed. A total of 111 primer pairs generated the positive amplification products. Of these, 9 gene homologues were expressed only in ovaries. This included homologues of *female sterile*, *ATP/GTP binding protein*, *adipose differentiation related protein*, *broad complex Z4 isoform*, *ovarian lipoprotein receptor*, *carbonic anhydrate*, *aminopeptidase*, *Wolf hirschorn syndrome candidate 1 protein*, and *proactivator polypeptide precursor* (Figures 3.3 - 3.11; Table 3.1)


Sixty-four gene homologues were preferentially expressed in ovaries than testes of *P. monodon* broodstock. Examples of these genes were *Y-box protein p-50, 3oxoacid CoA transferase, ferritin signal crayfish, small androgen receptor interacting protein, NADP- dependent leukotriene B4 12 hydroxy dehydrogenase, dolichyl diphosphooligocharide protein glycotransferase, asparaginyl tRNA synthetase, aspartate amino transferase,* and *nuclear autoantigenic sperm protein* (Figures 3.14 – 3.20; Table 3.2).

Nevertheless, 38 gene homologue (e.g. *dendritic cell protein* and *calponin I*) did not revealed differential expression between ovaries and testes of female and male *P. monodon* broodstock (Figure 3.21; Table 3.3). In addition, 5 primer pairs generated non-specific amplification products (Table 3.4) and 42 primer pair did not provide the positive amplification product (Table.3.5).

Seventy-three gene homologues that exhibited specific or preferential expression in ovaries of *P. monodon* were further screened with a larger sample size (N = 4 for each sex). Results from the secondary screening agree with those of the primary screening.

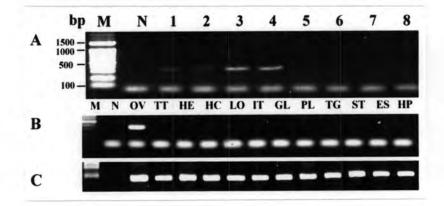


Figure 3.3 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *female sterile* using the first strand cDNA of ovaries (lanes 1 - 4, A) and testes (lane 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B (C). Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

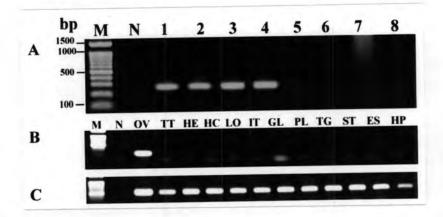
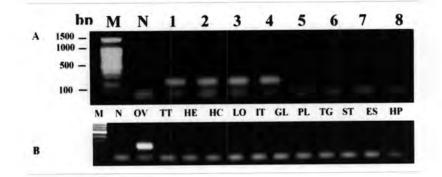
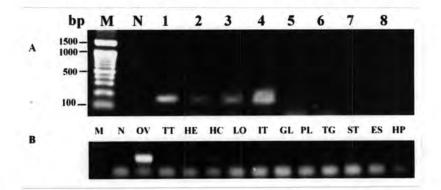


Figure 3.4 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *ovarian lipoprotein receptor* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B (C).Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

60

Figure 3.5 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *ATP/GTP binding protein* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B (C).Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.6 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *adipose differentiation related protein* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B (C).Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

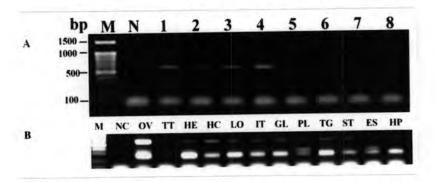

Figure 3.7 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *Wolf hirschorn* syndrome candidate 1 protein using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT =intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalkand HP = hepatopancreas.

Figure 3.8 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *broad complex Z4 isoform* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF*-*Ia* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp DNA marker and the the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

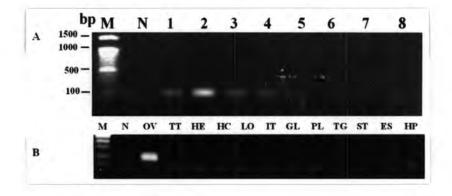
Figure 3.9 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *aminopeptidase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon*. The positive product of *EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp DNA marker and the the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas..

Figure 3.10 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *proactivator polypeptide precursor* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B Lanes M and N are a 100 bp DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.11 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR of a homologue of *carbonic anhydrate* using the first strand cDNA of ovaries (lanes 1 - 4) and testes (lanes 5 - 8) of broodstock-sized *P. monodon*. Lanes M and N were a 100 bp DNA marker and the negative control, respectively

Gene homologues	Expected size.(bp.)	Tissue			
1. Female sterile	296	0			
2. Ovarian lipoprotein receptor	354	0			
3. ATP/GTP binding protein	360	O, HE, HC, LO, IT, GL, PL, TG, ST			
4. Wolf hirschorn syndrome candidate 1 protein	208	O,IT,LO,HE			
5. Adipose differentiation related protein	267	O, HE, HC, LO, TG, ST			
6. Aminopeptidase	174	O, HE, HC,LO, IT, GL,ST			
7. Proactivator polypeptide precursor	266	O, HE, HC, LO, IT, GL, PL, TG, ST, ES, HP			
8. Broad complex Z4 isoform	192	O, HC, LO, IT, GL, PL, TG, ST, ES, HP,			
9. Carbonic anhydrase	332	Not determined			

Table 3.1 Gene specifically expressed in ovaries but not testes of P. monodon


Tissue distribution analysis was carried out to examine the expression of 26 gene homologues in ovaries, heart, hemocytes, lymphoid organs, intestine, gills, pleopods, thoracic ganglion, stomach, eyestalk and hepatopancreas of a single female broodstock and testes of a single male broodstock of *P. monodon*.

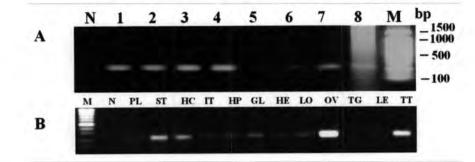
For gene homologues expressed only in ovaries but not testes, female sterile and ovarian lipoprotein receptor were specifically expressed in ovaries but not other examined tissues (Figures 3.3 and 3.4; Table 3.1) suggesting that these genes play an important role in ovaries of *P. monodon*.


Four gene homologues of this group; *ATP/GTP binding protein* (Figure 3.5), adipose differentiation related protein (Figure 3.6), Wolf hirschorn syndrome candidate 1 protein (Fig. 3.7) and aminopeptidase (Figure 3.9) were abundantly expressed in ovaries whereas low expression levels were observed in other tissues (Table 3.6). Broad complex Z4 isoform exhibited the highest expression level in ovaries and showed a moderate expression level in hemocytes. Low expression levels of this gene were found in other tissues (Figure 3.8). Proactivator polypeptide precursor was highly expressed in ovaries but moderately expressed in most of the remaining tissues (Figure 3.10).

Tissue distribution analysis further confirmed the preferential expression of 16 genes in ovaries than testes of *P. monodon* broodstock. *Y-box protein* (Figure 3.14), *NADP dependent leucotrience B4 12 hydroxy dehydrogenase* (Figure 3.15), *dolichyl diphosphooligocharide protein glycotransferase* (Figure 3.16) and *nuclear autoantigenic sperm protein* (Figure 3.17) were highly expressed in ovaries than other tissues and lower in testes and intestine but not in other tissue.

On the other hand, expression of asparaginyl tRNA synthetase (Figure 3.18) in stomach was greater than that in ovaries, hemocytes and other tissues. Likewise, a homologue of 3-oxoacid CoA transferase, was expressed in stomach and ovaries are comparable and higher than other tissues. (Figure 3.19). O-methyl transferase gene was highly expression in hemocyte and hepatopancrease. Moderate expression was observed in ovaries and low expression was found in the remaining tissues (Figure 3.20)


Figure 3.12 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *zonadhesin isoform 4* using the first strand cDNA of ovaries (lanes 1 - 4) and testes (lanes 5 - 8) and various tissues of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.


Figure 3.13 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *TATA binding protein associated factor9* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

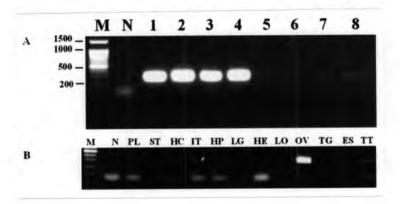
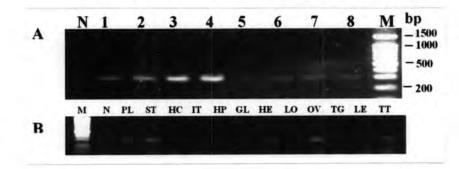

Figure 3.14 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *Y*-box protein using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.15 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *NADP dependent leucotrience B4 12 hydroxy dehydrogenase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = evestalk and HP = hepatopancreas.


Figure 3.16 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *dolichyl diphosphooligocharide protein glycotransferase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstocksized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT =intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES =eyestalk and HP = hepatopancreas.

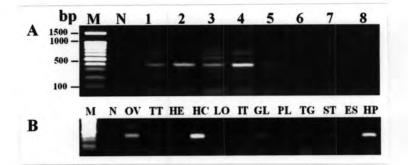

Figure 3.17 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *nuclear autoantigenic sperm protein* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.18 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *asparaginyl tRNA synthetase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.19 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *3-oxoacid CoA transferase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp. DNA marker and the negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

Figure 3.20 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR (A) and tissue distribution analysis (B) of a homologue of *O-methyl transferase* using the first strand cDNA of ovaries (lanes 1 - 4, A), testes (lanes 5 - 8, A) and various tissues (B) of broodstock-sized *P. monodon. EF-1a* was successfully amplified from the same template in A and B. Lanes M and N are a 100 bp DNA marker and negative control, respectively. OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

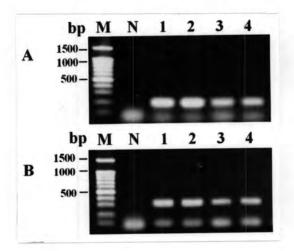


Figure 3.21 A 1.5% ethidium bromide-stained agarose gel showing results from RT-PCR of a homologue of *dendritic cell protein* (A) and *calponin I* (B) using the first strand cDNA of ovaries (lanes 1 - 2), testes (lanes 3 - 4) of broodstock-sized *P*. *monodon*. Lanes M and N are a 100 bp DNA marker and the negative control, respectively.

Gene homologues	Expected	Tissue distribution
	size.(bp.)	
1. NADH dehydrogenase subunit 5	250	Not determined
2. Phenylalanine-tRNA synthesis-B-subunit	221	Not determined
3. 3-oxoacid CoA transferase	303	Not determined
4. Prefold in subunit 2	208	Not determined
5. CalcineurinB	319	Not determined
6. Phosphatidyl inosital 4 kinase	335	Not determined
7. Carboxyl esterase precursor	282	Not determined
8. US small nuclear ribonucleoprotein	277	Not determined
9. Stromal membrane associated protein	306	Not determined
10. Phosphopyruvate hydratase	233	Not determined
11. Ferritin	280	Not determined
12. Postsynaptic density protein (citron)	212	Not determined
13. Kin protein	188	Not determined
14. USO1	314	Not determined
15. Small androgen receptor interacting protein	345	Not determined
16. Proteosome (proteosome subunit alpha type3)	283	Not determined
17. Signal recognition particle 72 kDa	291	Not determined
18. RUVB like protein2	257	OV, TT, HE, HC, LO, IT,
		GL, PL, TG, ST, ES, HP
19. Dynectin 4	300	Not determined
20. Contractile ring component anillin	199	Not determined
21. Chromobox protein	330	OV, TT, HE, HC, LO, IT,
and the second of the second se		GL, PL, TG, ST
22. Rho protein	238	Not determined
23. Nm2 protein	365	Not determined
24. Cardiomyopathy associated 4 sterile muscle	294	Not determined
25. Cytoplasmic actin depolymerizing factor	253	Not determined

 Table 3.2 Gene homologues exhibiting preferential expression patterns in ovaries

 than testes of *P. monodon*

Table 3.2 (cont.)

Gene homologues	Expected	Tissue distribution		
	size (bp.)			
26. Semaphorin 2A precursor	256	Not determined		
27. Heterogeneous nuclear RNA protein clone	350	Not determined		
28. Poliferating cell nucleolar antigen p120	235	Not determined		
29. Thiolase	231	Not determined		
30. Profilin	229	Not determined		
31. Ribophorin I	190	Not determined		
32. AgCP13148	212	Not determined		
33. Glycogen phospholipase	188	Not determined		
34. Mapre 1 protein	205	Not determined		
35. Calcium independent phospholipase	164	Not determined		
A2isoform1				
36. Zeta 1 cop	191	Not determined		
37. Calcium regulated heat stable protein	263	Not determined		
38. Dynein heavy chain	192	Not determined		
39. L-3-hydroxyacyl-Coenzyme A	221	Not determined		
dehydrogenase, short chain				
40. Dolichyl diphosphooligocharide protein	233	OV, TT, HE, HC, LO, IT,		
glycotransferase		GL, PL, TG, ST, ES, HP		
41. Asparaginyl tRNA synthetase	330	OV, TT, HC, IT, ST, ES,		
		LO, PL, GL		
42. Myosin regulatory light chain polypeptide 91	300	Not determined		
43. ESO 3 protein	349	Not determined		
44. Rasputin CG 9412	248	Not determined		
45. Hepatocarcinogenesis related transcription	185	Not determined		
factor (x box protein)18. RuvB like protein2				
46. Carnitine palmitoyl transferase II 19	334	Not determined		
47. Y-box protein p-5020	433	OV, TT, HE, HC, IT, GL,		
		PL, LO, TG, ST, ES, HP		
48. RAB protein 10 CG 17060-PA 21.	177	OV, TT, HE, HC, LO, IT,		
		GL, PL, TG, ST, ES		

Table 3.2 (cont.)

Gene homologues	Expected	Tissue distribution
	size.(bp.)	
49. Tissue specific transplantation antigen p35B	352	Not determined
like protein		
50. Fus prove protein	353	Not determined
51. Methyl cytosine	380	Not determined
52. CG-1681-PA	243	OV, TT, HE, HC, LO, IT,
		GL, PL, TG, ST, ES, HP
53. Nuclear autoantigenic sperm protein	301	OV, TT, IT
54. Phosphatidyl serine receptor short form	300	OV, TT, HE, HC, LO, IT,
		GL, PL, TG, ST, ES
55. Singed protein	214	Not determined
56. Survival motor neuron	245	Not determined
57. Hypothetical protein XP 207715 cyclin	270	Not determined
nucleotide (cyclic nucleotide gated channel beta		
subunit 1)		
58. Solute carrier family 25, member	239	Not determined
5;2F1:adenine nucleptide transiocation2		
(Fibroblast)		
59. Ferrochelatase	215	Not determined
60. NADP dependent leukotriene B4 12 hydroxy	230	OV, TT, HE, HC, LO, IT,
dehydrogenase		PL, TG, ST, ES, HP
61. Zonadhesin isoform 4	177	OV, TT, HE, HC, LO
62. TAF15 RNA polymerase II, TATA box	320	Not determined
binding protein (TBP)-associated factor, 68kDa.		
isoform CRA_c		
63. Immunophilin FKBP 52	311	Not determined
64. Aspartate aminotransferase	334	OV,TT,HE,HC,IT,PL,ES,H

OV = ovaries, TT = testes, HE = heart, HC = hemocytes, LO = lymphoid organs, IT = intestine, GL = gill, PL = pleopods, TG = thoracic ganglion, ST = stomach, ES = eyestalk and HP = hepatopancreas.

 Table 3.3 Gene homologues exhibiting identical expression levels in ovaries and

 testes of P. monodon broodstock

Gene homologues	Expected size.(bp.)
1. Guanine nucleotide binding protein	180
2. Thyroid hormone receptor associated protein complex 230 kDa component	312
3. Myelodysplasia/Myeloid leukemia factor	217
4. 5-methylcytosine G/T mismatch	190
5. MINUTE protein	400
6. Cyclin A	256
7. Leucine-rich repeat protein	213
8. 2-cys –thioredoxin peroxidase	233
9. Hydroxyacyl-CoA-dehydrogenase	244
10. Carbamoyl phosphate synthetase	262
11. Testes development-relate NYD-SP19	193
12. Integrin beta 4 binding protein	166
13. Cop 9 constitutive photomorphogenic homolog subunit 6	360
14. Dihydropteridine reductase	327
15. Casein kinase II beta chain	320
16. Multicatalytic endopeptidase	217
17. Innexin 2	208
18. Tetrasparin D 107	316
19. HLA-B associated transcript 1A, nuclear RNA helicase bata 1	150
20. Heat shock protein 10 (HSP10)	176
21. Muskelin 1, intracellular mediator containing kelch motifs	346
22. Nonclatirin coat protein zeta 2	203
23. Nit protein 2	292
24. Endothelial cell growth factor 1	243
25. Clatrin adaptor protein AP 50	267
26. Calponin I	316

Table 3.3 (cont.)

Gene homologues	Expected size.(bp.)
27. Defender against cell death 1	214
28. Receptor activating protein kinase C	187
29. Vacuolar type H+ ATPase subunit A	150
30. Death box protein 15	-
31. ATP-dependent RNA helicase	
32. Splicing factor 3a, subunit 1	200
33. DNA primase	256
34. FK 506 binding protein 4	446
35. ZZZ3	315
36. <i>Heterotrimeric GTP binding protein</i> (H) alpha subunit G-alpha-q	216
37. Keratinocyte associated protein 2	318
38. PeF protein with along N-terminal hydrophobic domain	314

Table 3.4 Gene homologues exhibiting non-specific amplification products from RT-PCR analysis

Gene	Expected size (bp)
1. Glutathione peroxidase	145
2. Serine proteinase inhibitor	293
3. Leukemia virus receptor	230
4. ETS1 protein	335
5. COG4122: Predicted ; O-methyl transferase	399

Gene	Expected size (bp)
1. Phospholipase C	188
2. Adenosylhomocysteinase	314
3. Mitocondrial oxodicarboxylate	320
4. Ras interacting protein RIPA	263
5. Fructose 1,6-bisphosphate aldolase	170
6. High mobility group protein DSP1	285
7. Domain family member	318
8. TRAP-like protien precursor	198
9. C-myc bindig protein (AMY-1)	320
10. Translocon associated protein gamma	266
11. Cyclophilin 18	278
12 mRNA splicing factor (deahbox)	278
13. Cdc2 homologue	305
14. Microspherule protein 1	317
15. Cystathionine gamma lyase	145
16. Splicing factor 34F	200
17. NADPH-ferrihemoprotein reductase; NADPH- cytochroome P450 reductase	189
18. Spermtail specific protein mst 101	301
19. Nm2 protein	365
20. Tetratricopeptide repeat domain 5	227
21. Translationally controlled tumor protein	182
22. Interleukin 1 receptor like 1 ligand precursor	162
23. Ornithine decarboxylase	255
24. Programmed cell death protein6	303
25. Charperon subunit 8	323
26. Presenilin enhancer	244
27. Phosphoglucose isomerase	200

Table 3.5 Gene homologues that were not successfully amplified by RT-PCR

Table 3.5 (cont.)

Gene	Expected size (bp)
28. Dendritic cell protein	185
29. Vitellogenin	
30. Pre B cell colony enhancing factor	239
31. Methyl CpG binding protein 2	206
32. Synaptic vesicle-associated integral membrane protein	187
33. Peroxinectin	366
34. Cyclic AMP regulated protein	264
35. Chloride intracellular channel 6-like protein	191
36. Finger protein	378
37. Exocyst complex component sec 6	305
38. Small ubiquitin-like modifier	
39. Prophenoloxidase activating factor (Propo factor)	154
40. Heterogeneous nuclear ribonucleoprotein 87F	298
41. Cyclophilin A	310
42. Diphenoloxidase A2	205

Gene	Expression level											
	OV	TT	HE	НС	LO	IT	GL	PL	TG	ST	ES	HP
1. Female sterile	+++				3172				1			
2. ATP/GTP binding protein	+++		+	+	+	+	+		+	+		
3. Proactivator polypeptide precursor	+++		+++	+	++	+	++	+	++	+	+	++
4. TATA box binding protein associated factor9	· +++	+	• •	+		· + ·			• •			• •
5. Broad complex Z4 isoform	+++			++	+	+	+	+	+	+	+	+
6. Zonadhesin isoform 4	+++	+	+	+	+							
7. Ovarian lipoprotein receptor	+++											
8. Small androgen receptor interacting protein	+++		+	+	+						+	
9. NADP dependent leukotriene B4 12 hydroxy	+++	+	++	+	+	+		+	+			
dehydrogenase												
10. Aminopeptidase	+++		+	+	+	+	+			+		
11. Y-box protein	+++	++	+	++		+	++	++	+	+	+	+
12.Wolf hirschorn syndrome candidate 1 protein	+++		+		+	+						
13.RAB protein 10 CG 17060-PA	+++	+	++	++	++	+	++	+	+	+	+	

Table 3.6 Expression levels of gene homologues in various tissues of *P. monodon* broodstock

78

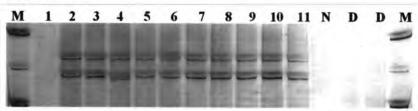
Table. 3.6 (cont.)

Gene	Expression											
	OV	TT	HE	НС	LO	IT	GL	PL	TG	ST	ES	HP
14.Chromobox protein	+++	+	+	++	+	+	+	+	+	+		
15 Aspartate aminotransferase	+++	+	+	++		+		++			+	+
16.Endothelial cell growth factor 1	+	+	++	+	+	+	+					
17. COG4122: Predicted ; O-methyl transferase	++	· +	+	+++	· +	+	+		+ '	+	•	++
18.3-Oxoacid CoA transferase	++	+	+					+		++		
19.Cyclin A	+++	+		+	+		+	+		+	+	
20. Dolichyl diphosphooligosaccharide protein	+++	++	+	++	+	+	+	+		+	+	+
glycotransferase												
21.Nuclear autoantigenic sperm protein	+++	+				+						
22. Asparaginyl tRNA synthetase	+++	++		++	+	+	+	+		+++	+	
23 CG-1681-PA	+++	+	++	++	++	++	++	++	++	++	+	+
24. RuvB like protein2	+++	+	++	++	++	++	++	++	++	++	+	++
25.Phosphatidyl serine receptor short form	+++	+	++	++	++	+	+	+	+	+	+	
26.Adipose differentiation related protein	+++		+	+	+					+		

+++ = high expression level, ++ = moderate expression level, + = low expression level, - = not expressed in a particular tissue.

3.2 Identification of polymorphic SSCP patterns of cDNA genes of *P. monodon* exhibiting different GSI

RT-PCR of 22 gene homologues including those (5) expressed only in ovaries but not testes of *P. monodon* broodstock (*adipose differentiation related* protein, ovarian lipoprotein receptor, female sterile, broad complex Z4 isoform and proactivator polypeptide precursor) and those (17) exhibiting preferential expression in ovaries than testes (*TATA binding protein associated factor9*, *RAB protein 10 CG* 17060-PA, nuclear autoantigenic sperm protein, dynein heavy chain, ESO 3 protein, dolichyl diphosphooligocharide protein glycotransferaase, survival motor neuron, 3-oxoacid CoA transferrase, thiolase, ferritin, Y-box protein p-50, tissue specific transplantation antigen p35B like protein, asparaginyl tRNA synthetase, calcineurinB, cop 9 subunit 6, immonophilin FKBP 52 and tetrasparin D 107) were carried out using the first strand cDNA of ovaries or testes of *P. monodon*. The RT-PCR product was further analyzed by SSCP.


Ovarian lipoprotein receptor which is specifically expressed in ovaries but not other tissues displayed highly polymorphism among individuals of *P. monodon* (Figure 3.22). Nonsynonymous mutations of this gene should be further identify in different shrimp as they may relate with functional activity of ovarian lipoprotein receptor during veltellogenesis.

On the other hand, the RT-PCR product of *female sterile* (Figure 3.23) and *adipose differentiation related protein* (Figure 3.24) was the not polymorphic across shrimp exhibiting different stages of ovarian development.

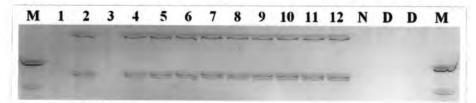


Figure 3.22 The amplified cDNA products of *ovarian lipoprotein receptor* from ovaries of *P. monodon* having the GSI of 5.69, 4.70, 3.02, 2.40, 2.13, 2.02, 1.90, 1.43, 1.10, 0.92, 0.87, and 0.65 corresponding to lanes 1 - 12 were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

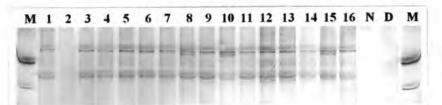

Although polymorphic the RT-PCR products of *immonophilin FKBP52* was observed, identified isotypes of *immonophilin* were found in both ovaries and testes of *P. monodon* (Figure 3.25).

Figure 3.23 The amplified cDNA products of *female sterile* of *P. monodon* having the GSI of 5.69, 4.70, 3.02, 2.13, 2.02, 1.90, 1.43, 1.10, 0.92, 0.87, and 0.65 corresponding to lanes 1 - 11 were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

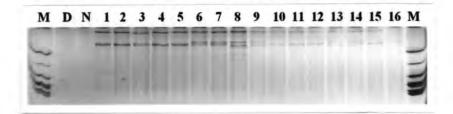


Figure 3.24 The amplified RT-PCR products of *adipose differentiation related protein* from ovaries of *P. monodon* having the GSI of 5.69, 4.70, 3.02, 2.13, 2.02, 1.90, 1.43, 1.10, 0.92, 0.87, and 0.65 corresponding to lanes 1 - 12 were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Figure 3.25 The amplified RT-PCR products of *immunophilin FKBP52* from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, 0.54, and 0.52and ovaries of female *P. monodon* having the GSI of 3.02, 2.02, 1.90, 1.43, 1.10, 0.92, 0.87, and 0.65 corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP.Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Asparaginyl t-RNA synthetase is preferentially expressed in ovaries of P. monodon. Different SSCP isotypes were found in testes but did not correlate with the GSI values. In contrast, additional SSCP isotypes of asparaginyl tRNA synthetase were found in the female shrimp possessing the GSI of 1.90, 2.02 and 2.13 compared with those having the GSI between 0.65 - 1.43% (Figure 3.26). This indicated that rapid accumulation of proteins containing Asp is required during vitellogenesis.

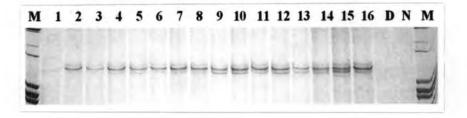
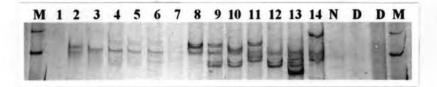


Figure 3.26 The amplified RT-PCR products of *asparaginyl tRNA synthetase* from ovaries of female *P. monodon* having the GSI of 0.65, 0.87, 0.92, 1.10, 1.43, 1.90, 2.02, and 3.02 and testes of male *P. monodon* having the GSI of 0.52, 0.54, 0.58, 0.61, 0.67, 0.76, 0.84, and 1.11 corresponding to lanes 1 - 8 and 9 - 16, respectively. were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

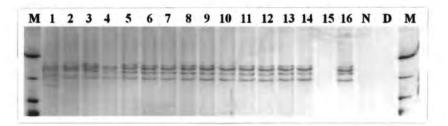
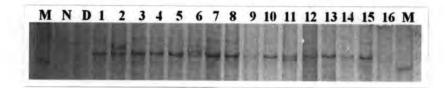
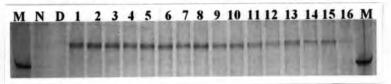

A fixed SSCP pattern of *TATA binding protein associated factor9* was found in ovaries and testes of *P. monodon* (Figure 3.27). This suggested sex-specific isotypes of *TATA binding protein associated factor9*. It is interesting to examine SSCP of the genomic DNA of *TATA binding protein associated factor9* for the possibility to develop genomic sex determination of *P. monodon*.

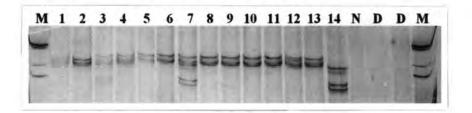
The RT-PCR product of *nuclear autoantigenic sperm protein* was highly polymorphic whereas that of testes was less polymorphic that of ovaries. Individual-specific SSCP patterns were observed in ovaries of *P. monodon*. Correlations between single nucleotide polymorphism (SNP) of this gene and the quality of oocytes should be further examined.

Limited polymorphism was found from RT-PCR products of *ferritin* (Figure 3.29) and *3-oxoacid CoA transferase* (Figure 3.30) and *ESO-3 protein* (Figure 3.31). *Tissue-specific transplantation antigen p35B like protein* (Figure 3.32) revealed slightly greater polymorphism than *ferritin* and *3-oxoacid CoA transferase*. Nevertheless, *tetrasparinD 107* was highly polymorphic in both ovaries and testes (Figure 3.33).

Figure 3.27 The amplified cDNA products of *TATA binding protein associated factor9* from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, 0.54, and 0.52 and ovaries of female *P. monodon* having the GSI of 3.02, 2.13, 2.02, 1.90, 1.43, 1.10, 0.92, 0.87, and 0.65 corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Figure 3.28 The amplified RT-PCR products of *nuclear autoantigenic sperm protein* from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, , and 0.54 and ovaries of female *P. monodon* having the GSI of 4.70, 2.13, 2.02 ,1.90, 1.43, 0.92, and 0.87 corresponding to lanes 1 - 7 and 8 - 14, respectively we re analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.


Figure 3.29 The amplified cDNA products of *ferritin* from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, 0.54, and 0.52 and ovaries of female *P. monodon* having the GSI of 4.70, 3.02, 2.02, 1.90, 1.43, 0.92, 0.87, and 0.65corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP. Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

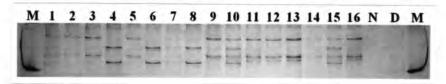
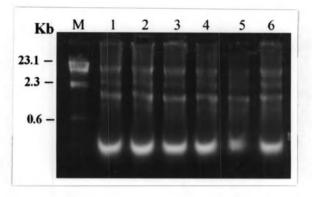

Figure 3.30 The amplified cDNA products of *3-oxoacid CoA transferase* from ovaries of female *P. monodon* having the GSI of 0.65, 0.87, 0.92, 1.43, 1.90, 2.02, 2.13 and 4.70 and testes of male *P. monodon* having the GSI of 0.52, 0.54, 0.58, 0.61, 0.67, 0.76, 0.84, and 1.11 and corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Figure 3.31 The amplified cDNA products of *ESO-3 protein* from ovaries of female *P. monodon* having the GSI of 0.65, 0.87, 0.92, 1.43, 1.90, 2.02, 2.13 and 4.70 and testes of male *P. monodon* having the GSI of 0.52, 0.54, 0.58, 0.61, 0.67, 0.76, 0.84, and 1.11 and corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Figure 3.32 The amplified cDNA products of *tissue-specific transplantation antigen* p35B like protein from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, and 0.54 and ovaries of female *P. monodon* having the GSI of 4.70, 2.13, 2.02, 1.90, 1.43, 0.92, and 0.87 corresponding to lanes 1 - 7 and 8 - 14, respectively were analyzed by SSCP Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.

Figure 3.33 The amplified cDNA products of *tetrasparinD 1073* from testes of male *P. monodon* having the GSI of 1.11, 0.84, 0.76, 0.67, 0.61, 0.58, 0.54, and 0.52 and ovaries of female *P. monodon* having the GSI of 4.70, 2.13, 2.02, 1.90, 1.43, 0.92, 0.87 and 0.65 corresponding to lanes 1 - 8 and 9 - 16, respectively were analyzed by SSCP Lanes N, M and D are the negative control, a 100 bp DNA marker and the non-denatured PCR product (double strand control), respectively.


3.3 Isolation and characterization of full length cDNA using RACE-PCR

3.3.1 RNA extraction and first strand synthesis

The quantity and quality of total RNA was spectrophotometrically and electrophoretically examined, respectively. The ratio of OD_{260}/OD_{280} of extracted RNA ranged between 1.8 - 2.0 indicating that the extracted RNA was relatively pure. Agarose gel electrophoresis indicated smear total RNA with a few discrete bands implying the accepted quality of extracted total RNA (Figure 3.34). The ovarian mRNA was purified and large amount of mRNA was obtained. The purified mRNA was subjected to the synthesis of the 5' and 3'RACE template

Gene	Expected size	SSCP
	(bp)	
1. Adipose differentiation related protein	267	Monomorphism
2. Rab protein 10 CG 17060-PA	177	Monomorphism
3.Nuclear autoantigenic sperm protein	301	Polymorphism
4. Ovarian lipoprotein receptor	354	Polymorphism
5. Dynein heavy chain	192	Monomorphism
6. ESO 3 protein	349	Polymorphism
7. Dolichyl diphosphooligocharide protein	233	Polymorphism
glycotransferaase	1 - 1984	
8. Survival motor neuron	245	Monomorphism
9. 3-oxoacid CoA transferrase	303	Polymorphism
10. Thiolase	231	Monomorphism
11. TATA binding protein associated factor9	320	Polymorphism
12. Ferritin	280	Polymorphism
13. Y-box protein	435	Polymorphism
14. Tissue specific transplantation antigen p35B like	352	Polymorphism
protein		
15. Asparaginyl tRNA synthetase	330	Polymorphism
16 .Immonophilin FKBP 52	312	Polymorphism
17. CalcineurinB	319	Monomorphism
18. Female sterile	296	Monomorphism
19. Proactivator polypeptide precursor	266	Monomorphism
20. Cop 9 subunit 6	360	Polymorphism
21. Broad complex Z4 isoform	192	Monomorphism
22. Tetrasparin D 107	316	Polymorphism

Table 3.7 SSCP pattern of the RT-PCR product of various gene homologues

Figure 3.34 A 0.8% ethidium bromide-stained agarose gel showing the quality of RNA from ovaries of different individuals of *P. monodon* (lanes = 1 - 6). Lanes M is λ /*Hin*d III marker.

3.3.2 Isolation and characterization of the full length cDNA of gene homologues

1. 3-oxoacid CoA transferrase

A 1200 bp fragment was obtained from 5'RACE-PCR of a 3-oxoacid CoA transferase primer (Figure 3.35). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of EST and RACE-PCR were assembled and analyzed.

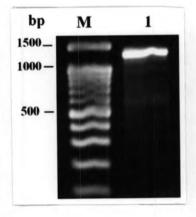
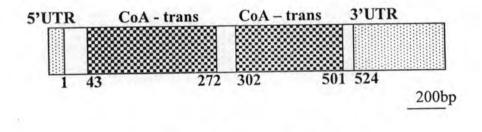



Figure 3.35 The primary 5'RACE-PCR product of *3-oxoacid CoA transferrase* (lane 1). A 100 bp (lane M) DNA ladder was used as the markers.

The full length cDNA of 3-oxoacid CoA transferrase of P. monodon was 2129 bp in length. The ORF of 3-oxoacid CoA transferrase was 1575 bp encoding a polypeptide of 524 amino acids. The 5' and 3' UTRs of 3-oxoacid CoA transferrase were 58 and 496 bp (excluding the poly A tail). The poly A additional signal (AATAAA) was located between 2087 - 2092 of the entire sequence. The closest species according to the best hit approach of the full length cDNA of 3-oxoacid CoA transferrase of P.monodon was Mus musculus (E-value = 0.00).

The calculated pI and MW of 3-oxoacid CoA transferrase of P. monodon was 5.57 and 56079.41 dalton, respectively. The signal peptide was not found in this putative nonsecretory protein. Two domains of the CoA transferrase. domain functionally catalyzing the reversible transfer of CoA from one carboxylic acid to another, were found at the amino acid positions 43 - 272 (4.80e-105) and 302 - 501 (1.30e-67; Figure 3.36).

Domain	Position	E-value				
CoA trans	43-272	4.80e-105				
CoA trans	302-501	1.30e-67				

Figure 3.36 Diagram illustrating the full length cDNA of *3-oxoacid CoA transferrase* of *P.monodon*. The CoA transferrase domains were found in this transcript. The scale bar is 200 bp in length.

AT	AAC	AGC	GGG	GCG	TAC	GAG	GCA	AAC	TTC	TGG	CAG	AAG	GGC	TAG	CTA	TCA	CAC	TAC	
M	1									100	crio	1110	000	ING	CIA	ICA	GAC	IAC	LIAA
TC	CGC	TCG	TCC	GTG	TTG	GTT	AGG	GCG	TTC	CGA	GGC	GTC	CCC	CCA	ACC	ccc	~~~	TCC	
S	R	S	S	V	L	v	R	A	F	R	G	V	G	G	c	A	D	C	JOCG
AA	GCC	GAT	CGT	CGC	ATT	AGT	ACA	TCA	CTG	TTG	TGC	GTT	CAA	CTT	220	A	CTC	5	A
K	A	D	D	D	T	C	-				100	OII.	chn	GII	AAG	IGC	CIC	AGG	GCAC
GT	CTT	CTC	ANC	R	T	Daa	I	S	Ц	Р	C	V	Q	V	K	C	L	R	H
	M TC S AA K	M CGCTC R S GCCAA A K	M TCGCGCTC S R S GATGCCAA D A K	M TCCTCGCGCTC S S R S CGTGATGCCAA R D A K	M GTGTCCTCGCGCTC V S S R S CGCCGTGATGCCAA R R D A K	M TTGGTGTCCTCGCGCTC L V S S R S ATTCGCCGTGATGCCAA I R R D A K	M GTTTTGGTGTCCTCGCGCTC V L V S S R S AGTATTCGCCGTGATGCCAA S I R R D A K	M AGGGTTTTGGTGTCCTCGCGCTC R V L V S S R S ACAAGTATTCGCCGTGATGCCAA T S I R R D A K	M GCGAGGGTTTTGGTGTCCTCGCGCTC A R V L V S S R S TCAACAAGTATTCGCCGTGATGCCAA S T S I R R D A K	M TTCGCGAGGGTTTTGGTGTCCTCGCGCTC F A R V L V S S R S CTGTCAACAAGTATTCGCCGTGATGCCAA L S T S I R R D A K	M CGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC R F A R V L V S S R S TTGCTGTCAACAAGTATTCGCCGTGATGCCAA L L S T S I R R D A K	M GGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC G R F A R V L V S S R S TGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA C L L S T S I R R D A K	M GTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC V G R F A R V L V S S R S GTTTGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA V C L L S T S I R R D A K	M GGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC G V G R F A R V L V S S R S CAAGTTTGCTIGCTGTCAACAAGTATTCGCCGTGATGCCAA O V C L L S T S I R R D A K	M GGAGGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC G G V G R F A R V L V S S R S GTTCAAGTTTGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA V O V C L L S T S I R R D A K	M AGCGGAGGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC S G G V G R F A R V L V S S R S AAGGTTCAAGTTTGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA K V O V C L L S T S I R R D A K	M GCGAGCGGAGGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC A S G G V G R F A R V L V S S R S TGCAAGGTTCAAGTTTGCTIGCTGTCAACAAGTATTCGCCGTGATGCCAA C K V O V C L L S T S I R R D A K	M CGGGCGAGCGGAGGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC R A S G G V G R F A R V L V S S R S CTCTGCAAGGTTCAAGTTTGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA L C K V O V C L L S T S I R R D A K	TACGACTCACTATAGGGCAAGCAGTGGTTCAACGCAGAGTACGCGGGGAGCAACAT M TCGCGGGGCGAGCGGAGGCGTCGGCCGATTCGCGAGGGTTTTGGTGTCCTCGCGCTC S R A S G G V G R F A R V L V S S R S AGGCTCTGCAAGGTTCAAGTTTGCTTGCTGTCAACAAGTATTCGCCGTGATGCCAA R L C K V Q V C L L S T S I R R D A K TATGACAGCGCGCTGGAGGCTGTCGATGATATTCCCTCGGGGTCAAAGCTCCTTGT

61 PS G S K L L v ь EA VDD T F Y D S A CGGAGGCTTCGGTCTCTGCGGGCATTCCGGAGAACCTGATTGGAGGGCTGCTGGAGACCAA 300 81 P Е N L Ι G G L L E т K G L C G Ι G G F 360 AGTCAAGGACTTGACAGTGGTGAGCAACAACGCAGGAGTGGACAACTTTGGCCTGGGGGCT N 101 F G G T. т V s Ν Α G V D N L D L V v к CCTGCTGGCACAGAAGCAGATCAAGCGCATGATCTCCTCCTACGTGGGCGAAAATGCCGA 420 E 121 K Ι S S Y V G E N A T R M 0 К 0 L А GTTCGAGCGGCAGTACCTGAGCGGGGGAACTGGAGGTGGAGCTTACGCCGCAGGGCACGTT 480 141 T. T P 0 G T G Е L E v E L R 0 Y L S F E GGCCGAGCGATGTCGTGCAGGGGGGGGGGCTGGCATCCCTGCCTTCTTCACTCCCACGGGT TT 540 161 G Τ P A F F Т P T G F G G A R A E R C A 600 TGGCACACTCGTCCACGAGGGAGGGTCTCCCATCAAATATGGGGAAGGTGGTGCTATTCA 181 E G G A Т 0 Y G L V H Ε G G S P Т K т GATCCAGAGTGCCCCCAAGGGAGAGCCGGATATTCAATGGACGGAACTACATCATGCAGGA 660 201 G R N Y т M E E E S R I F N A P R 0 S Т 720 221 N L W K D R A G т G D F A L T K A A I TCTCTTTAGGAAGACAACACGCAACTTCAACCTGCCGATGTGCAAGGCTGCCAAGACCAC 780 T 241 C K A A K T т R N F N L P М R K т L F CATAGTTGAAGTGGAGGAGGTCGTCGACATTGGGGAAATCCCAGAGGACAGCGTACATGT 840 261 Ρ H V GE Τ Ε D S EE VVD I v E v Ι CCCTGCCATCTATGTGGACCGCATCATTACAGGGGAGAAGTATGAGAAGAAATTGAGCG 900 281 E R т G E Κ Y E K R T YVD R T Ι T P A CCTGACCCTGCGCAAGGAGAAGAAGAAGAGTGCCGCATCCTCCAGCCCGGCCGTGGCCAT 960 301 KK K SA S S S P A V A M A R K E т L GAGGGAGCGCATTGTGCGACGCGCAGCCCTCGAGTTCAAAGACGGCATGTACGCCAACCT 1020 321 N Y A L E F K D G M R T ν R R A A L E R GGGGATTGGGATGCCCATGCTTGCCAGCAATTACATCCCTGATGGCACGAATGTGCAGCT 1080 341 Y T P D G T N V 0 L A S N Ι G M P М L G 1140 GCAGAGTGAGAACGGGGTGCTGGGCTTGGGTCCCTTCCCTGCCCCAGGTGAGCAAGATCC D P 361 P P G E 0 P F A S E N G V L G L G 0 1200 TGACCTCATCAACGCTGGCAAAGAGACCGTGACTGTCACGCCTGGGGCCTCCTACTTTGG 381 S Y F G E T V T V т Ρ G A G K A D Τ. т N 1260 CTCTGACGAGAGCTTTGCCATGATCCGAGGTGGCCACGTGGACCTGACAATCCTTGGGGC 401 G A V D T Ι L A M I R G G н L E S F S D CATGGAAGTCTCTCAGTACGGTGACCTTGCCAACTGGATGATTCCGGGCAAGATGGTGAA 1320 421 Μ V K I Ρ G K D LA N W Μ Y G E VS 0 M AGGCATGGGTGGTGCAATGGACCTGGTGTCATCACCTGGCACGAAGGTGGTGGTGACAAT 1380 441 K V V V T Μ V S S P G T M D L Μ G G A G 1440 P L T 461 C S L K I V E A K G G H H S A K E AGGCAAGAACTGTGTCGATATGATAATCACAGAGAAGTGCGTATTCAGTGTAGACAAGGA 1500 481 F S V D K E T E K C v Т T C v D M Κ N 1560 GAATGGCCTGACTCTGGTTGAAATCGCCGATGGCGTTACCATCGAGGACGTCGTATCCAG V V S S 501 Ι E D V T V E T. A D G G L T L N CACAGGATGCTTATTTGAAGTGGCGGAAAACCTCAAGCCAATGGGACAGATTGAGGTTGC 1620 521 VA LFEVA E N L K P M G Q Т E T GC 1680 AGATGAATAAAAGGCTGAAATTTGCTTAGACTTAGTCATCAAGTCAAAAGAAATATAGAT 523 E D 1740 ATTCAGATTAGTAGAGTGTGTCATTGTGCACATGGTTTGCTGGCACTTTTGATTTAACTT 1800 1860 **GGGATTCACGTATCCTTTTGCTACTATAGTTCTTCCACACCCATACTAACAGCACGATAA** 1920 1980 ATTCAAGCCAAGGATTCCTTCTTTGGATCATTGCCTTAGTCATTGTAGTGGCATTCA GTTTTACTCTTGTGTGACAGTGTGTTAAAAGCAAGTTTTTCTTGAGCTTACATCATGTGT 2040 2100 2129 СТТТАТСАТБАААААААААААААААААА

Figure 3.37 The full length cDNA sequences of 3-oxoacid CoA transferrase of P. monodon. Start and stop codons are illustrated in boldface and underlined. The 5' RACE-PCR primer is underlined, boldfaced and italicized. The polyA additional signal is boldfaced.

89

2. Adipose differentiation related protein (PMADRP)

A 600 bp fragment was obtained from 5'RACE-PCR of a *PMADRP* primer (Figure 3.38). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5'RACE-PCR were assembled and analyzed.

The full length cDNA of *PMADRP* was 1336 bp in length where the 5' and 3'UTRs of *PMADRP* were 78 and 148 bp (excluding the poly A tail), respectively. The ORF of *PMADRP* was 1110 bp encoding a polypeptide of 369 amino acids. The poly A additional signal (AATAAA) was located between 1302 - 1307 of the entire sequence of *PMADRP* (Figure 3.40).

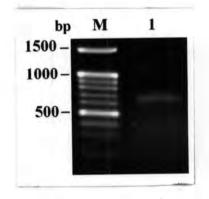
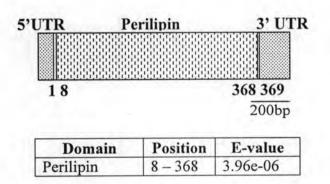



Figure 3.38 The primary 5'RACE-PCR product of *PMADRP* (lanes A). A 100 bp DNA ladder (lanes M) was used as the markers.

Figure 3.39 Diagram illustrating the full length cDNA of *PMADRP*. The perilipin domain was found in this transcript.

The closest sequence to *PMADRP* was *adipophilin* (an alternative name of *adipose differentiation-related protein*, *ADRP*) of *Canis familiaris* (E-value = 9e-18).

The calculated pI was 6.90 with the molecular weight of 39729.22 dalton. The signal peptide was not found in this putative non-scretory protein. A *perilipin* domain was found in the ORF at positions 8 - 368 (3.90e-06; Figure 3.39). Perilipin is a modulator of adipocyte lipid metabolism and adipophilinis which involve in the development and maintenance of adipose tissues.

CTAATACGGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGTACGCGGGGGGTCTCT 60 120 GCCCAGTTTTCGAACGAAATCCCTCCGAACACGAGTAATGCGACACCGGCTGCAGAAGGC SNATPAAEG 14 N Т MAP TTTTTTGAGAGAGTCTTGCTCTTGCCTGTGCTTAGCGACGCCATCACCATCGTTTCTCAT 180 ERVLLLPV S D A I T Т V S H 34 L F F GCCTACAAAATTACCCAAGACCGATA@CAGTATGTGGGAACTGCTTTGCGAGTAGCAGAG 240 54 Т AE YKIT 0 D R YQYV G ALRV A GCAGGCATCCGGGTGGCCACCGAGGGAGCTCTCCCTCTGGCTATGCCCCTTCTGCACCCC 300 AGIRVATEGALPL 74 AMP LL H CTCGTGGACCGCGTCGGAGGATGGAGTACCCTGGATGAGTGGGCATGTCGCGGTCTGGAT 360 EWACRGLD 94 LVDRVGGWSTLD CGCGTTGAGGAGGCAGCGCCCATCATAACCAAGTCAACGGATGAGATCGTGAGTTCAGCG 420 RVEEAAPIITKS 114 Т DEI V S S A CGCCGTCGGGTGCTCAGCGTCGTGGCGGGGGAAGGACGCTCTACCCCCCTCCCGCC 480 134 R R R V L S V V A G K D A L P P S L S A 540 154 AVTSRAND T V D V I A A S R G G R GTCGTCGCGGGCGCTGCGGAGCGGGTGCTCAACACTGCCCACACGCTGGTCGACGCCTAC 600 174 R VL N T A H т L v D A Y GAA E V A TTACCACCCCGCGAGGGCGACCTTCACGACACAGATGGCCGCGACGCAACGGTGGGCGTA 660 194 GDLHDT D G RDA T v G V LPPR E AAGGTGATAGCGCTGGCAAGCAAGACGAGGCGGCGTTTGGCCCGCGCGCTTCATTCGCTC 720 ASKT R R RL A R A L H S 214 VIAL K GCGCATCCGCACGCCCACGCCCACACCAACGCCGACGCCTGTGACGCCACGGATGCA 780 234 TDA AHPHHAHAHTN ADACDA 840 SGSFLIAFSRECV S G W H SEV 254 ACGCGGCAGCCGGAGCCCCACGAGGCGGTGCCTGTAGTTTTGAGAATCGCACGAACTTCC 900 274 S R Τ A R T RQP EPHEA V P V V L т TACAGGTACCTAAGGAACGTTACGGAGAATCTTGGATCACTCGTTGTTGCTGTTCGCAAT 960 294 V V A V R N ΤE N L G S L RYLRNV 1020 TCCCTGGCTCGGAACGCAGTGAGAGAGCCTTGAGCGGCGCGGCGGCCAACGGATGTTA 314 G A A A N GCY LS ARN AVREA L GTCGTTTCCGAGATGCAAGCCTGGGGAGAGTACTTTGTTGTTGTCATGTCGATGACGCCA 1080 334 VV V M SM T P OAW G E YF S Е Μ VV AGTCTGATCGAAGAGGCTTCGCTTCGCTCCAGGGTGTGGGGCTGAAGGGTGTCTGGAATCT 1140 354 RVWAEGCLES EASLRS SLI E 1200 V M K M K Y T N P H L C W Q * 368 CAGTGAAGACCAGAGGAACTCCCTGAATTGTTTTTCACGGCTGGATAATTACTCTTAATC 1260 1320 GATGTTAGCTGTTTTGTGGTTTGGACGTTTGTAATAAGGGTAATAAAATTACTGAAAGCA 1337 ААААААААААААААААА Figure 3.40 The full length cDNA sequences of ADRP of P. monodon. Start and stop

Figure 3.40 The full length cDNA sequences of *ADRP* of *P. monodon*. Start and stop codons are illustrated in boldface and underlined. The 5'RACE-PCR primer is underlined, boldfaced and italicized. The polyA additional signal is boldfaced.

91

3. Asparaginyl tRNA synthetase (PMATRS)

A 980 bp fragment was obtained from 5'RACE-PCR of a *PMATRS* primer (Figure 3.41). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5'RACE-PCR (both direction + 1 internal primer for the primer walking) were assembled and analyzed.

The full length cDNA of *PMATRS* was 1835 bp in length where the 5' and 3'UTRs of *PMATRS* were 106 and 63 bp (excluding the poly A tail), respectively. The ORF of *PMATRS* was 1686 bp encoding a polypeptide of 561 amino acids. The poly A additional signal (AATAAA) was located between 1803 - 1808 of the entire sequence of *PMATRS* (Figures 3.42 and 3.43).

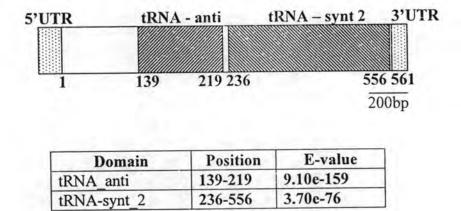



Figure 3.41 The primary 5'RACE-PCR product of *PMATRS* (lane 1). A 100 bp (lanes M) DNA ladder was used as the markers

The closest sequence to *PMATRS* was *asparaginyl-tRNA synthetase* of *Aedes aegypti* (E-value = 0.0). The calculated pI and MW of pI *PMASP* were 6.00 and 64058.09 dalton, respectively with no signal peptide in this putative non-secretory protein. An anti -codon binding domain (positions 139 - 219; 9.10e-15) and tRNA synthetases class II domain (positions 236 - 556; 3.70e-76) were found (Figure 3.43).

The anti-codon binding domain I (containing the OB domain) binds to nucleic acids and catalyzes the addition of an amino acid to the appropriate tRNA molecule. The tRNA synthetases class II domain catalyze the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction.

Figure 3.42 Diagram illustrating the full length cDNA of *PMATRS*. The anti-codon binding domain and tRNA synthetase class II domain were found in this transcript. The scale bar is 200 bp in length

CACAC	GAAC	CTC	CATO	CGAG	STG	CTGF	CG	rCG	CGCI	TTCC	CTT	CTC	CCCC	GGA	ATG	GCA	AAC	GAG	AC	120
															М	A	N	E	Т	5
GACAG	AAC	AAA	TGG	CTC	AAA	TGA	GTT	TAG	GGGG	AAA	TTT	ACA	ACCI	CGG	AGA	AAA	CAT	GGC	C	180
т	E	0	M	A	0	М	S	L	G	E	I	Y	Т	S	Е	K	Н	G	S	25
AGATO	GAG	ACGO	GGG	GAC	GGCI	ACTO	SCT	GAC	CGA	CCC.	TTG.	AAG	ACG	GCC	ATG	CAG	GCC	ATG	CG	240
D	E	т	G	D	G	Т	A	D	R	P	L	K	Т	А	М	Q	A	Μ	R	45
TAAG	GCTO	GC	AAG	GAG	TCT	TTC	CCC	ACC	ATC	TAC	GTT	GAC	GCC.	AAA	GAG	GAA	GGA	CAG	AA	300
K	A		K	E	S		P	т	I	Y	V	D	A	K	E	E	G	Q	K	65
ATAT	GAA	STG		GCA	AAG	AGT	CAG	TTG	AAG	AAG	CTC	ACA	AAA	CTA	TGG	AAG	GAT	GAG	TG	360
Y	E	V	T	A	K	S		L		K		т	K	L	W	K	D	Ē	C	85
CAAA				GCT	CGG	CTC				AAG	GAG	GAT	GCC	GAG	AAG	AGA	GCA	AAG	GC	420
	K	T		A			K			K	E	D	A	Е	К		A	K	A	105
CATA	GAG	GAA	GCC	AAG	AAG	GTC	GTG	ATC	ACA	GAG	GAC	AAG	AGC	CTG	CCA	GCC	CCC	GTC	TG	480
	E	E	A	K		V	V	I		E	D	K	S	L	P	A	Ρ	V	С	125
CATC	AAG	ATC	CGC	GAC	GGA	AAG	GAG	CAC	AGA	GGG	AAA	CGT	GTC	AAA	ATC	AGG	GGG	TGG	GT	540
I	K		R					Н				R	V	K	I	R	G	W	V	145
CCAC	CCT									ATG	TTC	ATC	GTT	CTG	CGA	GAT	GGG	TCF	GG	600
H	R	L	R	R	0			N	M		F	I		L	R	D	G	S	G	165
ATAC	CTA	CAG	TCG	GTG							CAG	ACG	TAC	GAG	GCC	ATC	CATO	CCTC	AA	660
Y	L	0	S	V	L	T		0	L	C	0		Y	Е	A	I	Ι	L	N	185
CACT	CAA	ACC	ACC						ATG	CTC	CAG	GAG	GTG	CCG	GAG	GGG	SAAC	GAG	GC	720
T	E	S	T	V		L		G	M	L	0	E	V	P	E	G	K	E	А	205
CCCA	CCT									TGG	GAG	CTG	GTO	GGA	GAG	STCA	ACCI	AGC	rGG	780
P		G	H	E	L	0		D			E	L	V	G	E	S	Р	A	G	225
TGGT	G	CAC	CCA	CAC	ATC	AAC						GAT	GTO	CAG	CTO	GAG	CAA	GCG	ACA	840
G		E	A	E	I	N		L		N	P	D	V	0	L	D	K	R	Н	245
CCTC	A	ATC	CGT		GAG						GCTO	GCGC	GCTO	GCG	TCA	ATO	CCT	TAT	GAA	900
L	M	I	R	G	E	N	C			V	L	R	L	R	S	I	L	М	K	265
GGCC	יחשייר	CTC	GAC	CAC	TAC	ACG				TAC	GAG	TGO	GATA	ATCO	CCC	CCC	GAC	CCT	GGT	960
A	F	V	D	H	Y	T	D	R	G	Y	E	W	Ι	S	P	P	Т	L	V	285
GCAG	TACC	CAG	TGT	GAO	GGI			CACO	GCTO	TTC	CGA	TTC	CAAT	TTT	TTT	rGG	CGA	GAA	GGC	1020
0	T	0	C	E	G	G	S	Т	L	F	D	F	N	F	F	G	E	K	A	305
CTAC	CTC	TACT	CAC	TCO	CAG	CAG	CTO	TAT	TCTO	GAG	GAC	STG	CAT	CCC	CAG	TTT	TGG	CGA	TGT	1080
v	Τ.	T	0	S	S	0	L	Y	L	E	Т	C	I	P	S	F	G	D	V	325
GTTO	TGC	TAT	GAG	GCAG	GAG	TAC	CCG	AGC	AGAG	GCAG	STC	ACG	CAC	CAG	AAG	GCA	TCT	GGC	ATC	1140
F	C	T	E	0	1000			A	E	Q	S	R	Т	R	R	H	L	A	S	345
TTA	CACT	CAC	GT	TGA						CAT	TAG	CTT	CGA'	TGA	CCT	CCT	GGA	TCG	CAT	1200
Y		H	V	E		E	C	P	F	I	S	F	D	D	L	L	D	R	I	365
-	-	nom/	CT	TC	CGA		GT	GGA	CCG	TGTO	STT	GAA	GCA	CCC	CGT	GGG	CGG	AGA	CCT	126

E D L V C D V V D R V L K H P V G G D L 385 GATGAAGGACCTCCACCCTGAGTTTGTGGCTCCCACTCGGCCCTTCCTCAGAATGCCGTA 1320 MKDLHPEFVAPTRPF L R MPY 405 CAAAGACGCCATCCAGTACCTCAAGGACAATGGCATCACCAAAGAGGATGGGACACTGTA 1380 K D A I Q Y L K D N G I T K E D G T L Y 425 TGAGTTTGGAGAGGACATTCCCGAGATGCCGGAGCGCAAGATGACAAGATCGGCCG 1440 445 EFGEDIPEMPERKMT D K I GR ACCAATCCTGCTGAACCGGTTCCCTGCGGGCATCAAGGCCTTCTACATGTCTCGCTGCCA 1500 465 PILLNRFPAGIKAFY M S R C O **GGACGACAAGAGCCTCACCGAATCCGTCGACTTGTTAATGCCAGGCGTGGGAGAGATTGT** 1560 LT ESV D LLM P G V G E Ι V 485 D K S D CGGAGGCTCAATGAGGATGCACGACTACCAAGAGCTCATGGATGCTTACAAGGCTAATGA 1620 YQELMDAY 505 GG SMRMH D K A N D CTTGGACGCAAAGCCGTACTATTGGTATACCGATCAGCGGCGGTACGGGACCAGCCCCCA 1680 525 LDAKPYY W YTDQRRY G T S P H CGGCGGCTATGGACTGGGCTTGGAGCGCTTCCTCTGCTGGATCGCCAACCGCTACCACAT 1740 G G Y G L G L E R F L C W I A N R Y H I 545 1800 TAGAGAAGCCACTCTCTACCCCAGATTCGTTGGCCGTTGCACGCCTTAAGCAAAGAATGA REATLYPRFVGRCTP 560 * 1835

Figure 3.43 The full length cDNA sequences of *PMATRS*. Start and stop codons are illustrated in boldface and underlined. The 5'RACE-PCR primer is underlined, boldfaced and italicized. The polyA additional signal is boldfaced.

4. Aspatase amino transferase (PMAST)

A 900 bp fragment was obtained from 5'RACE-PCR of a *PMAST* primer (Figure 3.44). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5'RACE-PCR were assembled and analyzed.

The full length cDNA of *PMAST* was 1944 bp in length where the 5'and 3'UTRs of *PMAST* were 232 and 464 bp (excluding the poly A tail), respectively. The ORF of *PMAST* was 1248 bp encoding a polypeptide of 415 amino acids. The poly A

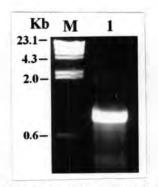
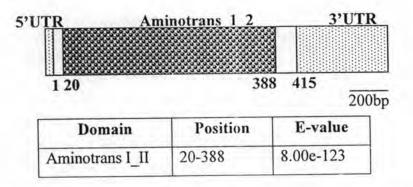



Figure 3.44 The primary 5'RACE-PCR product of *PMAST* (lane 1). The λ -*Hin*d III (lane M) DNA marker were included as the marker

additional signal (AATAAA) was located between 1904 - 1909 of the entire sequence of *PMAST* (Figure 3.45 and 3.46).

The closest sequence to *PMAST* was *aspartate aminotransferase* of *Tribolium castaneum* (E-value = 5e-176). The calculated pI was 8.55 with the molecular weight of 43293.86 daltons and the signal peptide was not found in this putative nonsecretory protein. An *aminotransferase* domain was found at positions 20 - 388 (8.00e-123; Figure 3.45). *Aspartate aminotransferase* catalyzes the reversible transamination between dicarboxylic amino and a keto acids essentially needs in nitrogen and carbon metabolism in the cells.

Figure 3.45 Diagram illustrating the full length cDNA of *PMAST*. An aminotransferase class I and II domains were found in this transcript. The scale bar is 200 bp in length.

מאמ	ACG	ACT	CAC	TAT	AGG	GCA	AGC	AGT	GGT	ATC	AAC	GCA	GAG	TAC	GCG	GGG	AGA	GGC	CGC	60
CGA	CAT	CTC	CCC	CTC	CGA	ATA	CGC	TTC	GCT	CCG	CCA	CAG	TCC	CGA	GGA	AAT	ACC	TTT	CGT	120
COT	TCC	CCA	AAT	CCC	CCG	CGC	AGG	ACC	CCG	CAC	GCT	CAA	CCT	CGT	CAG	GCA	AAA	CCA	GGC	180
CTC	CAT	CCA	CCA	TGT	CTG	CTC	GAG	GGC	AAG	TTC	TTG	GTG	GTC	TGG	GGT	GGA	GAT	GA	CC	240
cic	GAI	CCA	och	101			0110				200	52.5					М	G	P	3
ccc	AGA	TGC	CAT	CTT	GGG	TGT	TAC	CGA	GGC	ATT	CAA	GCG	TGA	CAC	GAA	CTC	CAA	GAA	GAT	300
D	D	A	T	L	G	v	Т	E	A	F	K	R	D	т	N	S	К	K	М	23
GAA		TGG	CGT	TGG	TGC	CTA	CCG	GCGA	TGA	TAA	CGG	CAA	GCC	TTT	CGT	CCT	CCC	GTC	TGT	360
N	T	G	v	G	A	Y	R	D	D	N	G	K	р	F	v	L	P	S	v	43
GAG	GAA	GGC	TGA	GGA	GCT	AAT	TGI	GAG	GCCA	AAA	GTT	AGA	CAA	GGA	GTA	CTT	GCC	CAT	CTC	420
R	K	A	E	E	L	I	v	S	Q	K	L	D	К	Е	Y	L	P	I	S	63
TGG	CAG	TGC	CGA	GTT	CTG	CAA	GCA	ATGO	TAT	TAC	CTT	GGC	"I'C'I	TGG	GAG	TGA	CAG	CCC	AGT	480
G	S	A	E	F		K	H	A	I	Т	L	Α	L	G	S	D	S	P	v	83
TAT	TGC	CGA	TGO	ACT	GAA	TGT	AA	CAG	TTC/	AGGO	TAT	TT	TGG	TAC	TGG	GCGC	TCI	CCG	TAT	540
T	A	D	G	L	N	v	т	v	0	G	I	S	G	т	G	Α	L	R	I	103
TGO	CTC	CAC	CTT	CCT	CTC	GAA	GTT	TCT'	FCCC	CAGO	TGC	AAA	GAA	TGT	ATC	GCT	GCC	AGC	CACC	600
G	S	Т	F	L		K	F	F	P	G	A	K	N	V	W	L	P	Α	P	123
		GGG	CAZ	ACCI	TGT	TCO	CAT	TCT	TCA	AAC	ATGI	CAZ	TAT	GGI	TGI	CAA	GCA	GTA	TAG	660
m		C	N	u	V	1000	т		к	н	V	N	M	D	V	K	0	Y	R	143

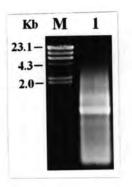

ATATTATGACCCAAAGACCTGTGGATTTGACTTCAGTGGAGCAATGGAGGACATTTCTAA	720
YYDPKTCGFDFSGAMEDISK	163
AATCCCTAAGGGTAGTTTGATCATGCTTCACGCATGTGCCCACAACCCCACTGGTGTAGA	780
I P K G S L I M L H A C A H N P T G V D	183
CCCCAAGGCAGAGCAGTGGGACGAAATGAGCAAGGTTATCAAGGAGAGAGA	840
PKAEOWDEMSKVIKERELLP	203
CTTCTTTGACATGGCATATCAAGGATTTGCCTCGGGAGATGTAGCGAAGGATGCCTATGC	900
FFDMAYQGFASGDVAKDAYA	223
TGTGCGCAAGTTCTTGGCTGATGGCCACAAGATCTGTCTTTCCCAGTCTTTCTCCAAGAA	960
VRKFLADGHKICLSQSFSKN	243
TATGGGCTTGTATGGTGAGAGAGAGCTGGTGCATTTACAATCGTATGCAACGACAAAGATGA	1020
MGLYGERAGAFTIVCNDKDE	263
AGCTGCCCGTGTTCTGTCACAGGTGAAGATCTTGATCCGACCCCTTTATTCCAACCCACC	1080
AARVLSQVKILIRPLYSNPP	283
TCTCCATGGCGCTCGCATTGTGTCCACCATTCTTAGTAATCCAGAACTGAACTCTATTTG	1140
LHGARIVSTILSNPELNSIW	303
GCTGAAGGATGTCAAGGGTATGGCTGACAGGATCATTAACATGCGTACCAAGTTGAAGGA	1200
LKDVKGMADRIINMRTKLKE	323
AAACCTGGCCAAGGAAGGGTCCATCAGAGACTGGAGTCACATCACTGACCAAATTGGCAT	1260
NLAKEGSIRDWSHITDQIGM	353
GTTCTGCTTCACTGGCATGACTCCAGACCAGGTTGAGAAGCTGACCAAGGAGTTTTCTGT	1320
FCFTGMTPDQVEKLTKEFSV	373
GTACCTGACAAAGGATGGACGTATCTCAGTTGCTGGTATTGCTTCCAGTAATGTTGAATA	1380
Y L T K D G R I S V A G I A S S N V E Y	393
CTTGGCTCATGCAATGCACCATGCCACCATAAATATAAAAGTTCTCAGATTTAGATCTAT	1440
LAHAMHHATINIKVLRFRSI	403
TTATTGGGAGTGTGAAATGGGACTTTTTTACAATTAATATCACTGAAATGGTTTAGAAT	1500
YWECEMGLFYN*	414
ACAGCCAATGTTAGGACATACACACTATAAACTTTACAAGGTTATTTCTTGTGCTTAACA	1560
TTGCTGTTATCATGATTTTAAAAAGTGCACTGCTTTTCTTAAAATTTAAAAGATTTGCTG	1620
CAGTGTTTATTGATAATCAGTCATGATGAAAATTTGTTCATATGGTAAACAAAGCAGGCA	1680
AAAGATAGTTACCTCCCCCTTTCTGTACATTTCTGTAGATAAGTCAACACCCTACAAAGT	1740
TATTTTAAATTGAACCCAGTGAAATAAAAGACGACCACGTTTGCTTTATTTGAAGATGTA	1800
ATTCATTCTGATATTATTTAAAACCAATTATTTTGGTGTATATACATCCTGTGTCCCTGC	1860
ATTGCAGGTACTATTCCATGTACAGGTACTATTCCATGTACACAATAAACAGTATAATAT	1920
ТТАААААААААААААААААААА	

Figure 3.46 The full length cDNA sequences of *PMAST* of *P. monodon*. Start and stop codons are illustrated in boldface and underlined. The 5'RACE-PCR primer is underlined, boldfaced and italicized. The polyA additional signal (AATAAA) is boldfaced.

5. Dolichyl diphosphooligocharide protein glycotransferaase (PMDDPG)

The smear product was obtained from the primary 5'RACE-PCR. After nested PCR was carried out, a 900 bp fragment was obtained (Figure 3.47). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5'RACE-PCR were assembled and analyzed.

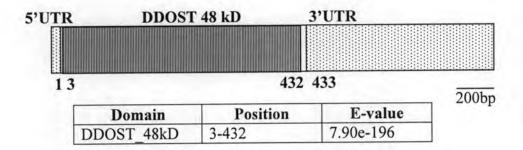

The full length cDNA of *PMDDPG* was 2326 bp in length with the 5' and 3'UTRs of 32 and 992 bp (excluding the poly A tail), respectively. The ORF of *PMADRP* was 1210 bp encoding a polypeptide of 369 amino acids (Figure 3.48 and 3.49).

Figure 3.47 The primary 5'RACE-PCR product of *PMDDPG* (lanes A). The λ -*Hind* III DNA marker (lane M) were included as the marker

The closest sequence to *PMDDPG* was *dolichyl diphosphooligosaccharide protein glycosyltransferase* of the mosquitoe, *Aedes aegypti (*E-value = 8e-137).

The calculated pI was 5.13 with the molecular weight of 48184.17 dalton. The signal peptide was not found in this presumably nonsecretory protein. The *dolichyl diphosphooligosaccharide protein glycosyltransferase 48kD subunit* domain was found at positions 3 - 432 (E value = 7.90e-196) (Figure 3.48). DDPG which is also recognized as as oligosaccharyltransferase (OST) transfers the high-mannose sugar GlcNAc(2)-Man(9)-Glc(3) from a dolichol-linked donor to an asparagine acceptor in a consensus Asn-X-Ser/Thr motif.

Figure 3.48 The diagram illustrating the full length cDNA of *PMDDPG*. The dolichyldiphosphooligosaccharide protein glycosyltransferase 48kD domain was found in this transcript. The scale bar is 200 bp in length.

AAGCAGTGGTATCAACGCAGAGTACGCGGGGGGGAT@TAAGATTAGCAGCATTAGCAGTGC MIRLAALAV

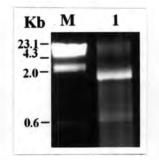

TTTTGGCACTGACACTAGCACAGAAACAAAATACTTTGGTGCTAGTGGACACGTTAGCGA 120 29 LALTLAQKQNTLV L V D T TTCGGGAGACTCATTCTATCTTCCTGAAGTCACTCCAAGAACGTGGTCATGAAGTTACCG 180 49 SIFLKSLQERGHEV T RE T H 240 69 KAADDPSPQ LSRF G E Y I 0 V 300 ACCTGGTGATTCTTGCTCCAGGAGTAGAAGAATTTGGTGGGGGCTCTCAGTGTTGAGGCTA 89 LVILAPGVEEFGGALSVEA TCGTTGAGTTCATTGATGGCAGTGGGAATGTCCTGGTTGCTGGATCTCGAGAAGCTGCTG 360 109 GSRE A A EFIDGSGNVLVA V T 420 ELVTEVGVEMDEEG AA 129 R I 480 TCATTGACCATTTGCACTATGATGCAAAATGATGATGGGCAGCACACCCTCATTGCTGCAC 149 Η т LI A A HLHY DANDDG 0 D I 540 CAAATACTGGACTGATTGACTCGGAGGTTATGGTTGGATCTAATTCCCAAGTGCCATTGT LIDSEVMV V P 169 G S N S 0 L T G N TGTACCGAGGCACAGGGCTGATCACAGATGCTGACAACCCCTTGGTTCTACCAGTGTTGA 600 VL 189 GT GLITDAD N P L VLP R Y GGGCTCCCTCTACTGCATATTGCTATAATCCTACACAATCCATCACTGACTACCCTCATG 660 209 QS I T D Y P H PSTAYCYNPT A CCACAAGTCAGAATATGCTGNTAGTTGCTGCTCCGCAAGCTCGCAACAATGCAAGAGTGG 720 QARNNARV 229 ONMLXVAAP т S A TAGTTTCTGGCTCGCTAGAGTTCTTCTCCGATGCCTTTATCATGGCCTCTGTCCAGACAC 780 QT 249 EFFSDAF IMAS V v VSGSL CACAGGGTAAATTTTATGAACGTTCTGGCAACGGCAAAGTAGTAGAAGCTCTTAGTCGCT 840 ERSGNGKVVEAL R 269 S FY GK 0 GGGTATTTCGGGAGGAGGGCGTCCTGCGTGTCGTATCTATTGAACATCATCTTCAGGGAG 900 289 HHL Q G V L R V V S I E W FRE E G V 960 ATTCTCAACCTCCAGTTGCATACACTATCAAGGAAGATGTGGAGTACAAAATCATGGTTG PPVAYTIKEDV E Y K Τ M 309 0 AGAGGCTTGTGAATGGCTCATGGAAACCATTCATGGCAGATGATGTGCAGATGGACTTTG 1020 MDF 329 GSWKPFM A D DV 0 L V N E R TTCGCATTGACCCATTCATCAGGCTGACCATGACACCCAGTCCTGAAGGGATTTTCTCAG 1080 P E I 349 PFIRLT MT P S G F I D V R TCAAGTTTACGGTACCTGATGTCTATGGTGTATACCAGTTCAAGGTGGAGTACAATCGTG 1140 V K F T V P D V Y G V Y Q F K V E Y N R 369 1200 VGFTRLYSSTQVSVRPF H R 389 т AGTACGAGAGATTACTTGAGTGTGCCTTCCCATATTATGCTAGTGCCTTCTCCATGATGT 1260 409 MM EYERLLECAFPYYASAFS TTGGTGTCTGGTTATTTCCATGGGTTTTCTTGCACCACAAAGAACCTATCCCCAAACGTA 1320 GVWLFPWVFLHHKEPI 429 Ρ KR F AGGCCGAA**TAA**GTTTGCTTGTTTGACCTAATAGAACTAGTTAACTTCACCATTCCTGCTG 1380 432 A E K TTTCTTTCAGCTGTTGTTTGTGTAGAAGAGAGATGCACAAGAAGCATATTCATAATTTTACA 1440 TTTTGTAACTACAGGATTTTTCATCATTCTTAATATTGATATACTGTAATTTGGAAACTG 1500 1560 1620 1680 1740 CATATTTCACCAACAACTTGTAATAACAACTTGTAATTGTTATCTCTGCTAGTAAAACTA 1800 CAGGAAGATGACTTTGATAGTTTCAAGGAAGGAGTGAAGGGTGTTGTAGTACCTCCTGAC 1860 CAACTGAGTGAATGTGATTTCACAGACGATGAGAGTGGATGCAGTGAAATCCTGGATTAC 1920 AGCCAGATGAGGGAGGATCAGAGCTTCATGCAAGCACAATGGGAAGCCTACAAGAAGGAA 1980 TTTCATCAGAAGCAAAAGGAAGAATCGCAAGAATATCACAAGAAATCTGAGGCAGAAAAA 2040 2100 GAAAAGGATGCTGGTGTACTGGTGAAGAAATGTTTTGAAACATCAGATATAAAGCAAGAG 2160 GATTGCAAGATAGAAACGGTTATAGGGAAGAAAGTGTCGAGTGCCAATGATGTAAATACT 2220 2280 2326

Figure 3.49 The full length cDNA sequences of *DDPG* of *P. monodon*. Start and stop codons are illustrated in boldface and underlined. The overlapped 5'RACE-PCR

primer (GCGTCCTGCGTGTCGTATCTATTGAACA) and nested 5'RACE-PCR primer (TCGCTGGGTATTTCGGGGAGGAGGGC) are underlined, boldfaced and italicized.

6. Nuclear autoantigenic sperm protein (PMNASP)

A 1620 bp fragment was obtained from 5'RACE-PCR of a *PMNASP* primer (Figure 3.50). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5'RACE-PCR were assembled and analyzed.

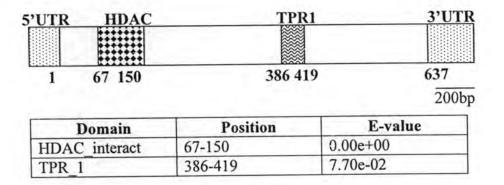


Figure 3.50 The primary 5'RACE-PCR product of *PMNASP* (lanes 1). The λ -*Hin*d III (lane M) DNA marker was included as the marker.

The full length cDNA of *PMNASP* was 2270 bp in length with the 5' and 3'UTRs of *PMADRP* of 138 and 218 bp (excluding the poly A tail), respectively. The ORF of *PMADRP* was 1914 bp encoding a polypeptide of 637 amino acids (Figure 3.51 and 3.52).

The closest sequence to the full length *PMADRP* was *nuclear autoantigenic* sperm protein (histone-binding) of Danio rerio (E-value = 3e-81). The calculated pI was 5.22 with the molecular weight of 70369. The histone deacetylase (HDAC) interacting domain is found at positions 67 - 150 (E-value = 0). The HDAC forms interactions with histone deacetylases and prevent polyspermy during fertilization of eggs and sperm.

The tetratrico peptide repeat (TPR) was also found with low matching value. TPR is a structural motif present in a wide range of proteins It mediates proteinprotein interactions and the assembly of multiprotein complexes Proteins containing TPRs are involved in a variety of biological processes, such as cell cycle regulation, transcriptional control, mitochondrial and peroxisomal protein transport, neurogenesis and protein folding.

Figure 3.51 Diagram illustrating the full length cDNA of *PMNASP*. The HDAC interacting domain and tetratricopeptide repeat domain were found in this transcript. The scale bar is 200 bp in length.

CTA	ATA	CGA	CTC	ACT	ATA	GGG	CAA	GCA	GTG	GAT	CAA	CGC	AGA	GTA	CGC	GGG	GAC	TCT	TTT	60
CCG	GCC	TTT	TA	CGC	TCC	ACA	CGC	GCA	ACC	CCG	TCA	CCC	TCG	TTT	GTT	GCT	TCC	GAA	CGT	120
TGC	TAA	TAG	FCG.	ACC	ACG	ATG	CCC	GAGT												180
						М	S	Е		P						T	-	A	S	14
CCC	AAG	AGC'	TCG	CCG	TCC	AAG	AAA	GAG	ATT	GAT	ACA	GCA	ACC	CAA	GCT	TTA			TTT	240
P	K	S	S		S			Е	I	D	т	Α	Т	_	A	Г	N	H	F	34
GCT	CAG	GGC	AAG	AGA	CAC	TTG	GTT	GTT	GGT	GAC	ATT	TCA	TCT	GCA	GTT	AAT	TCT	TTG	CAG	300
A	0	G	K					V			I	-	S		V		S	Ŀ	Q	54
GAA	GCA	TGT	AGA	CTA	CTA	GCA	GAG	CAA	TAC	GGT	GAA	ACT	GCT	CCC	GAG	TGT	GGT	GAT	GCT	360
E	A	C	R				Е		-	G	_	Т	Α		Е	C	G	D	A	74
TAT	TTC	TAC	TAT	GGC	CGT	GCA	CTG	CTT	GAA	ATG	GCA	CGC	ATG	GAG	AAC	GGA	GTC	TTA	GGA	720
Y	F	Y	Y	G	R	A	L	L	E	Μ	A	R	Μ	Е	N	G	V	L	G	94
AAT	GCT	TTG	GAT	GGA	GTT	CCC	GAT	GGA	GAG	GAC	ATC	GAC	AAT	TCC	CAG	GTA	GAA	AAT	CCT	780
	A	L		G	V	P	D	G	E	D	М	D	N	S	Q	V	Е	N	P	114
				GAG	GAT	GAG	AAG	AAC	GAG	GTA	ACA	GAA	CAG	GTT	GGG	AAC	GCA	TTG	GAA	840
E	K	M		E	D	E	K	N	E	v	т	E	0	v	G	K	A	L	E	134
GAG	200	TTTT			CTT	GAG	GAT	GTO	TCA	AAA	AGT	CAAC	TCO	GCA	CAC	CAC	GAAT	GGA	GAT	900
E	N	F	K	D	L	E	D	v	S	K	S	K	S	A	Q	Q	N	G	D	154
CCA	770						TCT	TCZ	GGT	TGTT	GAG	GAG	GCT	AAN	JATO	GAT	GTZ	GAT	TCA	960
A	K	A	K	A	E	E	S	S	G	v	E	E	A		М	D	V	D	S	174
CCT	CCA	CTC	TCA	GAA			GTG	AAG	ATG	GAG	GCG	AGA	GGC	AAG	AGG	ATA	AGT	AGA	AAG	720
A	1000	V	S	E	S	K	v	K	М	E	A	R	G	K	R	I	S	R	K	194
mor										AAC	TCO	GGA	CACT	GAT	rgg	CAC	CAC	CAC	TTCC	780
S	E	G	E	E	K	S		E	E	T	S	D	т	D	G	Т	Т	т	S	214
5	E CTT	CAC	CC	PAG	TCZ	GTZ				AAA	GGT	AGA	CAAC	GA	AAT	CAA	GCC.	TGA	GAAA	840
K		E	A	S	S	V		S	E		v		K	Е		K	P	E	K	234
ANC	CAT					זאמי		TAG	TTC	CAA	AGA	GGA	GGC	AGA	GGA	ATC	CGA	AAA	GGTG	900
K		V	V	D	T	K	D	S	S			E	A	E	E	S	E	K	v	254
ACC	CN	CAC	27.70	CT	CAC						AGG	GAA	AAC	CAC	TGA	GAA	GGG	AGA	GGGA	960
T	E	E	K		E	A	K		E		G		Т	Т	E	K	G	E	G	274
CN		E CA7	177								TGA	AAA	GGG	AAA	GGA	AGA	TGC	CAA	AGTG	1020
1000		E	K		S	G	D							K		D	A	K	V	294
E	K	E CA	100	TCT	100									GAA	ACT	GAT	TCG	TTG	TGAG	1080
GA		GAG	N		K	T	E							K	L	I	R	C	E	314
E	Б	B	14	V									CAT	CCC	CAT	GGT	GAT	GGT	GATG	1140

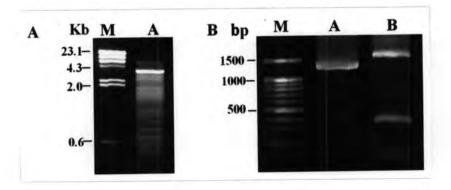
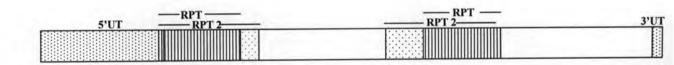

к	E	G	s	S	N	G	E	R	ĸ	R	ĸ	R	М	A	М	v	М	v	М	334
				~		-	_								GTG	AAA	AGG	AAA	GTA	1200
A	K	100.00			K				K		P				v	K	R	к	v	354
													AAG	GTT	ATC	TAT	CAG	AAG	CAA	1260
S	N		0			W			L				K				0	к		374
											GCC	CAA	GTG	TAC	CTA	AAA	CTT	GGA	GAA	1320
10.000	D	D	N	P	E	M				v		0	v			K	L	G	E	394
												GAA	GAT	TTC	AAA	CAG	TGT	CTG	CAA	1380
	G			S		N	Y			G		E	D	F		Q	C	L		414
												TTC	GCA	GAA	ACC	CAT	TAC	CAC	CTT	1440
I			K			E	E			R			A	E	т	Н	Y	2	L	434
						TGC	TCO	AAA	TTA	ACC	CTC	ACT	AAA	GGG	AAC	AAA	AGC	TGO	GAGC	1500
G		A			F	C	S	K	L	т		Т	K	G	N	K	S	W	S	454
TCC				GCC	GCC	GCT	CTA	GAA	CTA	GTO	GAT	CCC	CCC	GGGC	TGC	AGG	GAAT	TCC	GCA.	1560
S		A									D			G	C	R	N	S		474
														GAT	CCZ	TT	TAC	ACO	CGAA	1620
R		E				K						R	P	D	P	F	Y	т	E	494
												AGAG	GATO	AAG	GAA	AAA	GGTT	CAC	AGAT	1680
E		E	I	E		L			L	1			M			K	V		D	514
								TAAC	GAG	AGA	CTC	CAG	AAA	GCG	GGA	AGG	GAAG	GCA.	TTC	1740
M	E	E	M	K		D		K		R		0	K	A			Е	A	F	534
								TC	CAA	AGC	TGG/	ATC	TTC/	ATCA	ACA	AAC	TGGA	ATT	FGAT	1800
	A		A			G				A		S		S		т	G	F	D	554
												AAT	AAA	GGC	TTC	CAA	CAT	FAC'	TCAT	1860
A	100		S	S		S		т					K	A		N	I	т	H	574
								ACC	TGA	GGA	TGA	GGT	TGA	GGG	AGA	AGA	GGT	GAA	AAAG	1920
	V		K			R								G	E					594
CC	1744			TAA	TGG	GA	ACC	ACA	TGG	AAC	TGC	TAA	TGG	ACCI	ACC	AAT	GGC	ACC	AATG	1980
	K		E			E			G				G		P		A	P	М	614
CC	CAC	TOTO	200									ACC	CCA	ACA	AAT	GGG	GCA	AGC	ACTG	2040
	T				W						I				M		0			634
													~				ATC	ACT	GGGA	2100
	N	_		SAG	TTT	Jun	Jer		01101											636
A	N		CCA	CCA	TCC	TAC	מדה	GTG	TAT	TAA	GCC	TTT	AAA	ACA	CTG	CCA	GTT	ATT	GGAC	2160
AA	ACT	GAG	TTT	CTA	TUC	TAG	TCT	AAT	GGA	AGC	CAT	TTT	ATT	ACC	AGT	GAA	CTG	TGT	TTTA	2220
TA	AGA	ACT	111	ATT	111	TAL	101	TCA	AAT	GTA	AAA	AAA	AAA	AAA	AAA	AAA			5.0.0	2270
AG	ATT.	TAC	ATA	ALL	TAT	IAA	AAA	LGA	uut	GIA	mm	in	a wars							

Figure 3.52 The full length cDNA sequences of *NASP* of *P. monodon*. Start and stop codons are illustrated in boldface and underlined. The 5'RACE-PCR primer are underlined, boldfaced and italicized whereas the internal sequencing primer is boldfaced.

7. Female sterile (PMFS)


A fragment of approximately 3000 bp long was obtained from 5'RACE-PCR of a *PMFS* primer (Figure 3.53A). An amplification fragment was cloned and sequenced for both directions. Primer walking was carried out to obtain the adjacent sequence of the 5'RACE-PCR product but it was surprisingly not successful. The 5'FSII forward primer (5'-TGA TAG CCT GGA GGA TGA-3') and 5'FSII reverse primer (5'-GAC AGG CTC CCA AAC CAT-3') and the 3'FSII forward (5'-ACA ACT TGG TGG TGC TCT CG-3') and 3' FSII reverse (5'-CCA CAT TAG TAG CCA TAA CAT C-3') was designed and successfully amplified the fragments of 1300 and 1500

bp, respectively.(Figuer 3.53B) The amplified fragment was cloned and sequenced. Nucleotide sequences of the original EST, 5'RACE-PCR and RT-PCR were assembled and analyzed.

Figure 3.53 The primary 5'RACE-PCR of *PMFS* (panel A, lane 1) and the conventional PCR product of 3' (lane 1, B) and 5' fragment (lane 2, B) of *FS*. A λ -*Hind* III (lane M, A) or100 bp DNA ladder (lane M, B) were used as the markers

The full length cDNA of *PMFS* was 5028 bp in length with the 5' and 3'UTRs of 1191 and 70 bp (excluding the poly A tail), respectively. The ORF of *PMFS* was 3945 bp encoding a polypeptide of 1314 amino acids. (Figure 3.54 and 3.55).

Domain	Position	E-value
RPT 2	3-267	8.37e-07
RPT 1	6-201	1.13e-07
RPT 2	590-866	8.37e-07
RPT 1	687-884	1.13e-07

Figure 3.54 Diagram illustrating the full length cDNA of *PMFS*. Internal repeat 1 and 2 domains were found in this transcript. The scale bar is 200 bp in length.

200bp

The closest sequence with the full length *PMFS* was *ficolin* of the sea urchin, *Strongylocentrotus purpuratus* (E-value = 7e-37). The calculated pI was 4.46 with the molecular weight of 141312.27 dalton and the signal peptide was not found in this putative nonsecretory protein. Four internal repeat domains were found in *PMFS* (Figure 3.54).

CTA	ATAC	GAC	TCA	CTA	TAG	GGC	AAG	CAG	TGG	TAT	CAF	ACGO	CAGA	GTA	CGG	CGG	GAT	GTG	TAT	60
GGT	TATT	TCA	AGC	CCA	GCT	TTG	TAA	TGC	AAA	CGC	ACI	GCC	ACT	CCA	TAC	CATA	AATO	CTT	CTC	120
ATG	AAGA	GAC	TAA	GCA	ATA	CTT	ATG	TGA	TTG	TGT	ATC	STCI	GTA	AGG	AAC	GT	STA	AAA	AGC	180
AGT	CTCG	ACT	CTA	GGG	AAG	TGA	TCA	TGG	ACG	AAG	TAA	ATC	TAC	AGA	AAC	CA	AAA	GAC	AGG	240
GAA	GATC	TTC	TTC	TCG	AGT	GTC	TTG	TCG	ACT	TAC	AAC	GCAG	ACT	TGG	ATO	GGC	AGA	AAA	CCA	300
ACA	ATTI	CTC	TGC	TTG	AAC	AAG	CAA	TTO	CAG	ATG	AAA	TT	TGA	TGA	CTZ	AATO	GAT	GTA'	TCA	360
CAG	ACCI	GGC	AAG	AAA	CTC	AAA	TCT	TCA	CAC	CTG	GTC	TGA	ACCA	TTC	GTO	GGC	ACA	ACA	GGT	420
ATA	CTGC	AGA	CTG	CAA	ATC	TAA	AGG	GTO	AAC	GTA	CAA	ACAG	AAC	CAC	TAT	GAA	GAA	ACT	TTC	480
GAA	GAGI	TCT	ACG	CAA	AGA	CTG	ATA	GCC	TGG	AGG	ATG	ATG	TAG	AGG	CCA	TTC	GTO	GCT7	AGC	540
TTC	GATO	CTC	TCT	TGT	TATC	TTAT	CAF	CAZ	ACC	AAC	TG	CTT	CAC	GGG	TCT	GTT	GTT	GCT	TCT	600
CTC	ATA	CTC	CAG	ACA	דעעו	TCC	TAAT	CGA	ATZ	GCZ	CAG	CGG	GTT/	ACA	AG	TTA.	AAT	GAT	ATG	660
CCC	GTG	TCC	ATTA	TCT	CTZ	GCA	CAT	PTT7	TG	ATTO	ATC	GGA	ATA	GAG	CAG	AAC	ATA	AGG	TCT	720
TCA	ATG	CACC	mm	יחחי	CAT	TCI	AAZ	ACGO	ATO	TCT	TC	TCT	ACT	AGA	GAG	CAA	GGC	TTG	TCT	780
CCA	CCT	MCC	2110	TAT	TCO	TTT	CCI	ACC	יממי	TCZ	TG	AGG	AAG	TCT	TTT	GCT	TCA	CAA	GAA	840
GCA	ACG	1117	ATC	TATC	77.00	DAC7	CT	TAT	PTC	TAT	TAT	AAC	CAC	ATC	TAT	GGC	AAG	CAG	GGT	900
GIA	GGA	JGIA	AIL	AIC	AC	mm7	AGIC	CN	TA	CACI	CT	AGT		ATT	TG	ACT	AAA	GGA	AAC	960
GAT	TTT	rere	CAL	TAC	JUC	111	ALL	SGA	TTC	יארי	ACC	ATC	ACC	ATT	CTG	CAA	GAG	TTA	GAT	1020
AAI	CAA	ACCI	TTA	AIGO	JACA	AAGA	TAA	ALL	TOT	TAT	200	TCA	ACC	CAT	TTG	GTG	TAC	ACT	TAAT	1080
GT'I	TAC	CTTC	TCA	ATC	JAAC	JUC	JAC	CIA	TCA	DOD	ACT	CTA	CAT	CAT	CTA	AAT	GTG	GAT	GGC	1140
GTC	TAC	AGG	CCC	AA	ATA	TGG	SAT	GGC	TCA	1111	ACTO	ADD	CAL	CTT	AAC	ACC	ATC	TCG	TC	1200
AAC	GTT	GAT	GTA/	AAA	AAC	ATCA	AA.I.	AGT	arc	GAC	AIG	AAA	GAA	CIL	AAC	ALL	M	V	v	3
												0.000		101						1260
AGA	ACTI	CTG	GAG	ACT	TTA															23
R	т	S	G	D	F	Т	L	S	G	D	v	Т	Y	Q	K	D	F	H	V	
TCI	AGGA	AAC	CTG	ATC	AGC	CCA	ATA	CTA	AAT										AAA	1320
S	G	N	L	I	S	Р	I	L	N	G	Ι	v	М	D	N	I	V	D	K	43
GA'	FACC	ACC	ACC	ATA	AAT	GGT	GTC	TAT	ACC	TTT.	ACA	TAA	GCA							1380
D	т	Т	Т	I	N	G	V	Y	Т	F	Т	N	A	N	I	K	A	A	I	63
GGG	CTGC	TCC	AAC	ATC.	AGT	GGA.	ATA	AAT	CTA	AGC	GTA	GAT	GTT			GTI	'GA'I	GC'	rGAC	1440
G	C	S	N	I	S	G	I	N	L	S	V	D	V	V	Т	v	D	A	D	83
CAG	GACT	ATA	TCG	GGC	GCT	TTA	ACC	TTC	ACT	GAC	GAC	GTG	TTG	GTA	ACI	GGG	CCT	rGA/	AGGA	1500
0	т	т	S	G	A	L	Т	F	т	D	D	V	L	V	Т	G	P	E	G	103
GT	AAAG	ATG	TTG	GAT	TCT	GTT	ACC	TTA	AAT	AAC	ATC	GAC	CCC	TAT	AGC	CTT	CGA?	FAA	GATG	1560
V	K	M	T.	D	S	V	T	I	N	N	I	D	P	Y	S	Г	D	K	М	123
GA	TGAC	CAT	GGA	AAC	CTC	TTC	GTA	GAA	AAG	GCT	GTT	GTC	TTT	TAA	GCZ	ACCZ	ACT	rca'	FGTG	1620
D	D	H	G	N	L	F	V	E	K	A	V	v	F	Ν	Α	P	Г	н	V	143
AC	AGAG	GAT	GTA	GAT	GTT	GAA	GTT	ATC	TAA	GCA	TTC	GCA	CTC	AAA	GGG	CATA	AGA	AGA	CCGT	1680
T	F	D	V	D	V	E	V	T	N	A	L	A	L	K	G	I	E	D	R	163
TA	TTGO	AGA	AAG	GAA	ACT	GAT	CAA	GTA	ATT	GAT	GTO	TTT	GCCF	GAG	ATT	[GT]	ATC	TAC	CACT	1740
v	W	R	K	E	T	D	0	V	I	D	V	L	P	E	I	V	S	T	т	183
TT	CAGT	GAT	TAT	GTG	ACT	GCT	AAC	TAA	TAT	AAC	AAC	CCAC	CAG	SATO	GCI	AGA	CTT"	TTT	GTCT	1800
P	C	D	v	V	T	A	K	N	I	N	N	H	Q	M	A	D	F	_L	S	203
CT	GACA	CCC	TCC	CAA	ACC	ATC	AAT	GGA	GCC	TAT	ACC	TTC	CAG	GGA	TTG	GTA	ACC	CATA	TAAL	1860
57	T	G	S	0	Т	T	N	G	A	Y	т	F	Q	G	L	V	т	1	N	223
CC	ACAT	CTC	AAA	GTZ	ACZ	GAT	GGG	CAA	AGTZ	ATA	AGA'	IGG.	FGT	GGA.	L.G.L.	AIC	LUC	ACT	ACAT	1920
0	· U	Τ.	K	V	T	D	G	K	V	I	D	G	v	D	V	S	S	1	н	243
CA	מ מדת	T	CTT	ACT	PCT7	TCT	rGA'	TAA	CA	AGAG	TAT	AGA	AGC	AGA	GAC	CAC	CTT	TGG	TAAG	1980
T	N	Τ.	V	T	Τ.	S	D	N	0	D	I	E	A	E	T	T	F	G	A	263
L	N	1	V	1	FCA	ידידיר	CT	CT	SAA	TGG	TGA	CCT	CAA	TGG	ATG	GAA	TGT	TGT	GGCC	2040
GI	CAT	ATA	1110	000	D	T	V	T	N	G	D	I.	N	G	W	N	v	v	A	283
~	L	T	L	G	FGN	CD	ATC	CCT	SCC	CAD	AAC	TGG	GAG	TCT	TGC	ATT	TTT	GGA	CAAA	2100
GA	CIT	1100	aCG(T	DAU	n	C	T	P	0	T	G	S	L	A	F	I	E	K	303
1	ч	V	K	L	D	CN	201	GTC	TAC	TGC	AGA	CCT	TAC	TGT	TCA	GAG	CCT	TAA	TGGA	2160
-	WITE CT								S											

ATGGATGTGAAATCTGCTACAGAGGATTTGGTCTTGGTAAATGAAGATGCATCACTTGCT 2220 MDVKSATEDLVLVNEDASLA 343 GGGCCCCTGAAGTTCACCTCCAATACGAAAGCTAATGACCTCTTCGTTAGTGGAACTGTT 2280 G P L K F T S N T K A N D L F V S G T V 363 GATGGTGTTGATGTGACGGATCTTGTAGACCGCAGCCTTAAGAAGACTTCTGCTACACCA 2340 DGVDVTDLVDRSLKKTSATP 383 2400 CAGGCAGTAACGGGGGGCAATAACGGTGAACAAGGGAGTCACTTTGATCAGAGCCCATCT VNKGVHFDQSPS 403 QAVTGAIT TTGACCATGGTTAACAGCAAGGACTGGACCACCTACCTTAGCAAGGTTGTGCCACAAAAT 2460 LTMVNSKDWTTYLSKVVPQN 423 TACAATGGTGCAATTGGCGGAAAGAAGACTTTCACAAAGCCAGTATCTATATCCGGCAAC 2520 YNGAIGGKKTFTKPVSISGN 443 TTCAACCCAACTACACTAAACGGGTTTAGTGTAGTTCCACTATCGGACAGAATACTGACA 2580 FNPTTLNGFSVVPLSDRILT 463 AAGAGCACAAAACCAGAACGTTGGCAGCAAGTACACCATCAATGGGGATGTTATGGCTACT 2640 K S T N Q N V G S K Y T I N G D V M A T 483 AATGTGGTTGCAGCAGAAATTGATGGAGTGTTGTCCTCAAATCTCCTCCTCCTAGATGAG 2700 VVAAEIDGVLSSNLLLLDE 503 AGCAGTATTGTATCTGGCATGGTGGACTTTGCTGATAACTTAATCATTGCTGATGTAACG 2760 523 SSIVSGMVDFADNLIIADVT TCCGAGTCTCGAGTTCTTGATGGATGCAATGTAGTTCAGTTAAACACCTCAACCATCTGG 2820 SESRVLDGCNVVQLNTSTIW 543 AAAAATGGTAATGGAGATGTGGTAATGCCCTTCAACATGGCAGTAACAAATCTTCTAGTT 2880 K N G N G D V V M P F N M A V T N L L V 563 AAAAAAGATGCAACTGCAAAGGGTCCAGTAAAAGCTGGAACAAGCCACATGGATGTCTTC 2940 K K D A T A K G P V K A G T S H M D V F 583 CATTTCCTGGATAAGATAGTTACAAAGTCTTCCAACCAAGAAATAACAGGCACAGTAGAG 3000 HFLDKIVTKSSNQEITGTVE 603 3060 FMTNLSVNDLLTNTIDDVYV 623 GACAATCTCTATGCTGTGACTGTTATGGACAATGAAGCAAGTGTAATAGACTGTGATACA 3120 D N L Y A V T V M D N E A S V I D C D T 643 GACTTCACCAAAGTTCTGACGGTTGATAATCTGAAAGTAAAAACTTCCCTGCACGGATCT 3180 D F T K V L T V D N L K V K T S L H G S 663 GGTGTTGAAGGGGTGTTGATAAATACAATGAATGTAACGGATGTGAATACCCATGCAGTC 3240 GVEGVLINTMNVTDVNTHAV 683 CACTTAACGGGTGGACCATACATGATAACTGGTGACAAAACTTTCAACAGTGGTCTCTCT 3300 HLTGGPYMITGDKTFNSGLS 703 GTTGGCGAACTTGCTATTGATGGATCACTAGATGGAGTACCTGTAGACAACTTGGTGGTG 3360 VGELAIDGSLDGVPVDNLVV 723 CTCTCGGATCATAATAGACATGCTGCCAATATCCTCTTCAAAGCTCCCATCTCAATTAGT 3420 SDHNRHAANILFKAPISIS 743 GGAGATCTACAGGTTGATGGGCTGTTGGATAATGTGAACCTTGAGCAGCTCCTATCTGAC 3480 763 G D L Q V D G L L D N V N L E Q L L S D AGGATCAAACTAGATGCTACAGAAACATTAAGCTCATCTACTATATTTGATGGAGTGAAA 3540 RIKLDATETLSSSTIFDGVK 783 GTGGAAGGTGACCTCTATGTTGATACCATAGACGGAATCATGGTGTCAGAGATTGTCTTT 3600 VEGDLYVDTIDGIMVSEIVF 803 AAATCGGGAAGGATGCAGCAGGAGATAGAAGGAGTAAAGACCTTCTCTGGAGGGTTACAT 3660 K S G R M Q Q E I E G V K T F S G G L H 823 3720 V V G E T Q A P V V N G I N I L D L N N 843 AATGTGGTCCGGAAAGACAGGGCAGCAACTATAACTAAAGAGTTGGTCTTCGAGAAGCCA 3780 NVVRKDRAATITKELVFEKP 863 ACAATATCGCAAGTAGATATGTTGGTACAAGGAAATGTAAATGGTTATGATCTTTCTGAA 3840 TISQVDMLVQGNVNGYDLSE 903 ACCGACTATGAGGCCTCGGTCCTACAAGGAAACATTAAAGCAGAGAATGACCGCTTATTG 3900 923 TDYEASVLQGNIKAENDRL L AACCTAAACTTGACTTTGTCAACTATCCATGTTGACACAAAGCTACTCTCCTGTGGAATG 3960 NLNLTLSTIHVDTKLLSCGM 943 TATGAAACGTACCATTATGGTGAAAGAATAAACGAAAAGGCTATATCCATTTCTGGTAAA 4020 Y E T Y H Y G E R I N E K A I S I S G K 963 ATGAGTTGTGGAACATTCGGAGGTTCATCAGTATTGGCTGTGCGGGATTGCAGTGACTAC 4080 M S C G T F G G S S V L A V R D C S D Y 983 GATTGCAGATGCCCTTTGCAATATGCACTCTATGAAGTTGATGATAACGGTAACATGAGC 4140 DCRCPLQYALYEVDDNGNMS 1003 CAGATAGAGACGGATGTAAACTCTGCTTTCATCTTCAGTACAGAAGGGTATGAAGGCACT 4200 QIETDVNSAFIFSTEGYEGT 1023

104

.

GGA	CTA	ATA	AGC	AGC	TGT	GCC	AAT	GGT	GGA	TCA	AGT	ACT	GTA	AAG	ATC	TTG	CTA	AAC	AAT	4260
G	L	I	S	S	C	A	N	G	G	S	S	Т	V	K	Ι	L	L	N	N	1043
AGG	GAA	ACG	GAC	CTG	CCA	CAG	GGA	TCA	GCA	CTA	GGA	ATT	ATT	GCA	GAT	GCA	AAA	TCC	TTT	4320
R	E	т	D	L	P	0	G		A	L	G	I	I	Α	D	Α	K	S	F	1063
ACC	ACC	AGT	GGT	GGC	ACC	TAC	ATC	GTG	ACG	GCA	GGT	GCA	ATT	TCT	GAT	GTG	AAT	ACT	GCT	4380
T	т	S	G	G	т	Y	М	v	т	A	G	A	I	S	D	V	N	Т	A	1083
CCA	ACA	ACA	AAT	ACC	ACC	AGT	GGT	GGC	ACC	TAC	ATC	GTG	ACG	GCA	GGT	GCA	ATT	TCT	GAT	4440
P	т	т	N	Т	Т	S	G	G	т	Y	М	v	т	Α	G	Α	I	S	D	1103
	TAA	ACT	GCT	CCA	ACA	ACA	AAA	GTC	AGT	GTO	TTA	AAG	TTG	AAT	AAC	AAT	GCC	ATA	GAT	4500
v	N	T	A	P	т	т	K	V	S	v	L	K	L	N	N	N	Α	I	D	1123
						TOAT	GCC	TAT	AGT	GCT	TCA	ACA	CTC	GAC	TTG	ACC	CTG	GGA	GAT	4560
V	T	W	S	L	D	Т	A	Y	S	A	S		L	D	L	т	L	G	D	1143
							GCZ	AAT	TTC	ATC	GCZ	GCA	TAAA	GAT	ACT	GTA	GAT	CCT	TTC	4620
E	G	W	L	L	L	V	A	N	L	M	A	A	N	D	Т	v	D	P	F	1163
						TAT	CTO	TGO	TCT	TACT	CGC7	GAA	AGAA	AAG	TTC	ACC	CTT	GTT	CAA	4680
M	A	P	S	0	L	Y	L	W	S	т	A	E	E	K	F	т	L	v	Q	1183
										TAT	TTT	TTT	CAAE	TCT	AAC	AAG	AAT	CTC	CAAG	4740
E	F	M	G	0	H	V			G		F	L	N	S	K	K	N	L	K	1203
											GC	AAA	ATCI	CAA	ATO	CAC	GGG	ACZ	AAAA	4800
E	R	F	F	T	L	T	0			A				0	М	0	G	Т	K	1223
													TCG	TAT	GTT	rccz	ATTO	CGAC	GAGT	4860
L		T	K	V	0	V	F	K			D	S	R	Y	V	P	F	E	S	1243
											GCT	TTC	CATZ	AGGO	GAT	TGA	CCTO	CTA	CTTG	4920
L		T	T.	G	A	I	A		A		L	S	I	G	D	D	L	Y	L	1263
											TAT	CTA	TGA	ACTO	TTT	ACC	TTT'	TGA	GGGA	4980
A	1.5.2.2	T.	S		F	K		T						L	L	P	F	E	G	1283
												_	CCT	TGAT	TGTO	GAA	GAA	GAT	AGAG	5040
F		L	O	O	S	T	A					and the second second			v	K	K	I	Е	1303
F	H C	L	2 C												AAT	GAT	AAC	AAT	AAGA	5100
		AGA		L			1.							0	M	I	Т	I		1323
T	T	E	D											×.		TGT	TTA	TTT	TAAC	5140
			100									- Child						275		1333
L		A							_			222	AAA		A				5185	
T.L.	ALL	AAT	ACA	AAT	CIA	100	IAA	AAA	AAA	Ann	ana	rinn	a war							

Figure 3.55 The full length cDNA sequences of FS of P. monodon. Start and stop codons are illustrated in boldface and underlined. The 5'RACE-PCR primer are underlined, boldfaced and italicized whereas a primer for primer walking is boldfaced. Primer for cloning of 5' PCR fragment (5'-TGA TAG CCT GGA GGA TGA-3', in boldface and italicized) was used in combination of the 5'RACE-PCR primer. Primer for cloning of the 3' PCR fragment are underlined and italicized.

8. Endothelial cell growth factor I (PMECGFI)

Fragments of 750 and 1700 bp was obtained from 5' and 3'RACE-PCR of *PMECGF1* primers (Figure 3.56). An amplification fragment was cloned and sequenced for both directions. Nucleotide sequences of the original EST and 5' and 3' RACE-PCR were assembled and analyzed.

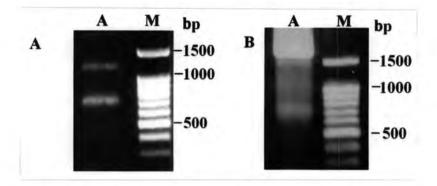
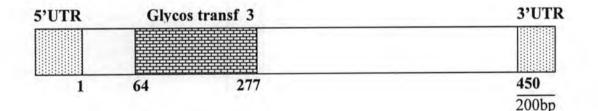



Figure 3.56 The primary 5' (lane 1, A) and 3'RACE-PCR (lane 1, B) product of *ECGFI*. A 100 bp DNA ladder (lanes M) was used as the markers

The full length cDNA of *PMECGF1* was 2845 bp in length. The ORF of *PMECGF1* was 1353 bp encoding a polypeptide of 450 amino acids with the 5' and 3'UTRs of 264 and 1142 bp (excluding the poly A tail), respectively. (Figure 3.57 and 3.58).

The closest sequence to the full length *PMECGF1* was *spermatogonial stemcell renewal factor* of *Danio rerio* (E-value = 2e-108). The calculated pI of *PMECGF1* was 6.22 with the molecular weight of 47296.64 dalton and the signal peptide was not found in this putative nonsecretory protein. The glycosyl transferase family a/b domain was found at positions 64 - 277 (Fig. 3.57).

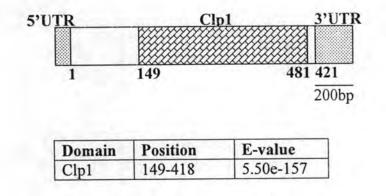
Domain	Position	E-value
Glycos_transf_3	64-277	6.20e-02

Figure 3.57 Diagram illustrating the full length cDNA of *ECGF I*. The Glycosyl transferase family, a/b domain was found in this transcript. The scale bar is 200 bp in length.

The glycosyl transferase family is composed of anthranilate phosphoribosyltransferase (TrpD) and thymidine phosphorylase. These proteins transfer a phosphorylated ribose substrate. Thymidine phosphorylase catalyses the reversible phosphorolysis of thymidine, deoxyuridine and their analogues to their respective bases and 2-deoxyribose - 1-phosphate. This enzyme regulates the availability of thymidine and is therefore essential to nucleic acid metabolism.

GGACGAGACGATGAGCGGCACAGATTTGACGGTTGAAGCGACGTCTCTTGCGGCGTACAT 60 GGGATTCATGGGTGTGTGCGTGTGTGCGTTTTCGAGAGACCACTAGTGGGAAAGCCTCGC 120 GGAGAAGTGCAAGTTCAGTCGCGGCGGAGTTTCGCAGCGGGACCGGTTGGTGTGCTCCTC 180 GTGGTGGCCGCACTGTTATCTACACCTGGTCCCCACCCGAGTACGATTCGCCGCACAACC 240 GGTCAGATAGGGGCCACGGCCACCATGAGCGCTGCACAGACCTCTCAAGGCAGGTGGAGG 300 MSAAQTSQGRWR 12 360 IPDLLSMKRDGLAYSEDQIA 32 TTCTTGGTCCGGTCGGTCTCGGATCGGTCCATGGACGACTGTCAGCTGGGGGGGCGCTCCTG 420 LVRSVSDRSMDDCQLGALL 52 ATGGCCATCAAGCTGCAGGATATGACGGACGTAGAGACGATCGCCCTCACTAAGGGCATG 480 MAIKLQDMTDVETIALTKGM 72 AGGGACTCAGGAAGTGTGTTCTCGTGGCCGAAGGACTGGCGCGTCGTGGACAAGCACAGC 540 R D S G S V F S W P K D W R V V D K H S 92 ACGGGCGGCGTGGGTGACAAGGTGTCCCTGGCGCTGGCCCCCGCCTCGCCGCCTGCGGC 600 112 TGGVGDKVSLALAPALAA CG 660 132 TLDK FKVPMISGRGLEHT GG CTGGAGAGCATCCCAGGCTTCAAGGTGTCTCTGACGGAGGCCGAGATGAAGACGGCGCTG 720 LESIPGFKVSLTEAEMKT AL 152 GAGGAGGTCGGCTGCTGTATCGTAGGCCAGACCGCCGACATCGTACCTGCTGACAGACGC 780 EVGCCIVGQTADIVPADRR 172 E ATGTACGCCGCAAGAGACGTCGCTTCAACCGTCAAATCTGTGCCGCTCATCGTCTCGTCC 840 YAARDVASTVKSVPLIVSS 192 ATCATCAGCAAGAAGGCTGCGGAAACCGTGAGCGGGCTGGTGCTCGACGTCAAGTTCGGC 900 IISKKAAETVSGLVLDVKFG 212 GGAGGAGCCTTCATGAAGACCCAGGAGGAGGAGGCAGGGGGCGCTGGCCAAGAAAATGGTGGAT 960 GGAFMKTQEEAGALAKKMVD 232 GTGGCCAACGGCGTGGGCATGGCCACGACGGCCCTCCTGACCACGATGGATATCCCCGCTC 1020 VANGVGMATTALLTTMDIPL 252 GGCAGGGCCATCGGCAACGCCCTCGAGGTGCGGGAGTCGCTGGAGTGTCTTCGGGGCAAC 1080 272 GRAIGNALEVRESL RGN E CL <u>GGA</u>CCGGAGGACCTTGAGGAGCTCGTAACGCACCTGGGCGGAGAATTACTGCTGGGTGCG 1140 EDLEELVTHLGGELLLGA 292 P GGAGCGGCCTCTACGCTGGATGAAGCTCGCCAGAAGCTGGCCAAGGCTCTGAGGGATGGC 1200 GAASTLDEARQKLAKALRD 312 G AGTGCCAGAACGGCTTTCTGCAATATGATACAGAAGCAGGGTGTCACCAAGAGTGTAGCA 1260 332 SARTAFCNMIQKQGVTKSVA GAGGCACTGTGCGGCAATGTTCCCGACTACTCCCATCTACCTTCCTCGGCTCATGTCACT 1320 EALCGNVPDYSHLPSSAH 352 VT 1380 GCCGTCAAAGCTGCTTCCTCAGGAGTGCTAGTTGGTATGGATGCCATGACTATGGCGAAG 372 A V K A A S S G V L V G M D A M T MAK ATCAGTTTAGAACTCGGGGGCTGGCAGGAACAAGGTCGGCGACCCGATCAACTACAGCGTG 1440 S V 392 ISLELGAGRNKVG I N V D P 1500 IMLIKVVGESVKEGETW 412 AE G CTGCACCACGATTCCTCACTGCCACCCACCCTCCTACAGAGGATGCAGGGAGCCGTCACC 1560 LHHDSSLPPTLLQRMQGAVT 432 ATCAAGGCGTCGGCGGAAGCATGCAAGCCCTCGCGCGTTGCCGCGCTCGCGTTGTCTAGTG 1620 I K A S A E A C K P S R V A A R V V* 450 CTCGAAACCCTCAGTTGCAGAGGCCAAGATCCAGCTCGCACTGTCAGTCTCCTAACTTGA 1680

GATCTAGTATCCATGCAAAATACTTTATGTTGCACAAATTATGTTAGGGCCTGTTCGCAT	1740
GAGCGGACATAATCGGCGGGGCGCGCGCGCGCGCAAACGTAATAGTCCGGTGGGCTAGTGCTC	1800
CTAACAGCAGTTCCCTTTGTAACGTCACCTTCACAGGTGCCTGACGTTGCGGACAGGTCT	1860
TTAACCGTTTGAACCTTCTACTTTTTTTTTTTTTTTTTT	1920
CTCTTCCGGGTTCATCGTCATACTAGTCACTGACCCCAAATATACTAGTACATGGGGAAG	1980
GGGACTGTTATTTTCACGTGGCACAATCTTCACATCGCCAGTTCTTTCT	2040
ATTCATCGTCAAATAGAAAGTATACCTATAGATACTTATATTCGGTGCATATATGCCAGT	2100
TGCTCTTCCCAGTATATAACTGTAACCATCATTAACTATTCCAGGTACCTGCTGGCGCTC	2160
ATCAGGATTTTTTCTTTACGAAACTAACTTAATTGCGTTGTTGTTGTTGTTTTTTGGTTCA	2220
CAAATATGATTTAATGTGTTAGTTTTTTGGTTCACAAGAATTATTTGATTTTGTTATGTA	2280
AATCAGCCGGTGTGTTAATCGGTCTGCAGTTAATACGATTGTTCTGATTCTGGCTTCCAG	2340
TCACTGTGGTTCTCTTTATGATTTCAGCTTACTACTACTACAAATCTTCTACATAGTGA	2400
TTTCTGATATTTTTGATGTTTGCACAAGCTATTTAATTGGATGGTATGAAATTACACATG	2460
ACCTGCATATTAGTCATCTATTGGCTGACCTAACCGATTCATTC	2500
AATAACTCATTCTGTACAACTCTTTACTATGCAACTGGCCAACGTCATCCTCACATTCCA	2560
GTCTATGTAGATTTAACAAGAAATATTTTTGTGATTGAAATATTTTTTGTTGAGTTTTAC	2620
TATTGTGTTGTAATGGGAAATTAATAGTTTTTGTATGATATTGAAATTTACACAATGTCT	2680
CTCCTTGTTCATGAAAAAAAAAAAAAAAAAAAAAAAAAA	2739


Figure 3.58 The full length cDNA sequences of *PMECGF I*. Start and stop codons are illustrated in boldface and underlined. The 5'ECGF, 3'ECGF and internal primers are underline and italicized. The polyA additional signal is illustrated in boldface.

10. ATP/GTP binding protein (PMATP/GTP)

The full length cDNA of *PMATP/GTP* was obtained from sequencing of both 5' and 3' of the EST significantly matched to a homologue of *ATP/GTP* binding. The full length cDNA of *PMATP/GTP* was 1547 bp in length. The ORF of *PMATP/GTP* was 1266 bp encoding a polypeptide of 421 amino acids. The 5' and 3'UTRs of *ATP/GTP* were 68 and 213 bp (excluding the poly A tail; Figure 3.59 and 3.60).

The closest sequence to the full length *PMATP/GTP* was *cleavage/polyadenylation factor in subunit clp1* of *Aedes aegypti* (E-value = 2e-144). The calculated pI was 5.98 with the molecular weight of 46517.8 dalton and the signal peptide was not found in this putative protein.

The pre-mRNA cleavage complex II protein, Clp1 domain was found at positions 149 - 481 (Figure 3.59). This protein family consists of several pre-mRNA cleavage complex II Clp1 (or HeaB) proteins. Six different protein factors are required *in vitro* for the 3' end formation of mammalian pre-mRNAs by endonucleolytic cleavage and polyadenylation. Clp1 is a subunit of cleavage complex IIA, which is required for cleavage, but not for polyadenylation of pre-mRNA

Figure 3.59 Diagram illustrating the full length cDNA of *ATP/GTP* of *P. monodon* The pre-mRNA cleavage complex II protein Clp1 domain was found in this transcript. A scale bar is 200 bp in length.

CACA	GCT	AIC	GLU	TCI	110	CIII	TTT	CCC	TTT	CON	CCC	AGA	TAG	GA	ACT	CAG	GTT	TGA	GG	60 120
GATG	CAA	M	S	E	K	E	F	R	L	D	P	D	S	E	L	R	F	E	v	18
TTGA	000									-	_	~	~	-	-		AGT	GTT	TG	180
	GGGG	K	O	D	T		D		T	L	V	N	G	K	A	E	V	F	G	38
EGCAC													_			_	AGC	AGT	GT	240
GCAC	E	L	AGC	P	D	K	P	Y	T	F	F	P	G	A	K	v	A	V	F	58
TCAC									-	-	-	-	~	~ ~		ATA	TGT	GGC	AA	300
			G			L	K	L	S	G	P	T	E	G	T	Y	v		K	78
T AGGI	W	H							~	-	-	-	_	-		-				360
						Y	L	N	T	H	A		L	E	R	L	R	R	Н	98
E		P	M		M							-	_			-			TG	420
								E	D	T	R	G	P	V	T	M	v	V	G	118
A		E	G	L	S	R	G			-		-	-						-	480
								L	C	R	I		L	N	Y	A	v	R	M	138
P		D	V	G	K	S	T					_	_		_					540
									D	I	G	O	G	S	I	A	I	P	G	158
GAA		R	P	I	F	V	D	L			_		-	~	-		-	-	-	600
1000											D	V	G	E	G	F	S	0	E	178
T	I	G	A	L	L	V	E	R	A	A	_				-	-	-	-	-	660
0.000											P	A	S	N	M	T	L	Y	N	198
A		L	V		N	F	G	H	L	S	_		-			-	_	-		720
ACA														V	G	N	R	K	V	218
I		V	S	R	М	A	A	Т	I	Q	D	K	M		-					780
TTG													K	N	E	G	Y	K	S	238
A	A		G	v	v	I	N	T	C	G	W	I					-			840
GTC													ICA.	V	L.	D	O	E	R	258
L	T TAT	H	V	A	Q	A	F	E	V	D	V	I				-	-	_		900
									P	F	ICA	R	V	V	F	L	P	K	S	278
L	Y GAG	N	E	L	V	R	D	I		-	_				-	_	-		-	960
											A	S	A	R	D	D	R		R	298
G	G		V	E	R	T	Q	S	M			-				_				1020
													S	F	E	V	K		S	318
E	Y	Y	Y	G	L	R	T						-	-	~					1080
													D	S	C			A	D	338
T	TGA	Q	I	Y	K		G				_	-	-	_	-				-	1140
	A DUI	ACCC	1122	A'I'(-	ATC'A	ALA	ADI	LA	AAL	TIG	TAC	010	TUQ	noc.	CTU.	010	****			

AGCA	TCA	CAT	GTT	GGC	TGT	AAG	TCT	TGC	AAC	AGA	ACC	CGA	GGA	CCI	CTT	GAC	CTC	CAA	TG	1200
H	H	М	L	A	V	S	L	A	т	Е	P	E	D	L	L	Т	S	N	v	378
TCGC	TGG	ATT	TAT	TTG	CGT	ACT	TGA	CGT	TGA	TGA	AGA	CCT	CAA	AGT	CAT	GAA	GGT	CTT	GT	1260
A	G	F	I	C	v	L	D	v	D	E	D	L	K	v	М	K	V	L	S	398
CTCC	ACA	ACC	AAA	GCC	ACT	CCC	AAA	AAC	AAT	TTT	GAT	TTT	GAC	GGA	AAT	TCA	GTT	CAT	'GG	1320
P	0	P	K	P	L	P	K	т	I	L	I	L	т	E	I	Q	F	М	D	418
ACTC	ATC	GTA	AAA	TGA	AGA	GTG	GTT	TTG	TAA	TTT	CTC	GTA	AAT	CAT	GTG	GTA	TTA	CAT	TT	1380
S	S	*	2																	420
TTTT	TTT	TCT	CTC	TCT	CTC	TCT	TCT	CCT	TTT	TTC	CTA	TAT	TTT	CTI	TGA	TAT	AGC	AGT	AT	1440
TTTA	TAT	TGT	GTA	ATT	TTT	GTA	TAC	AGA	TGA	TTT	CTG	CTG	ATT	TTT	GGT	GTA	ACT	TAA	AA	1500
TTTT	גידיד	מידיד	AAT	AAG	TAT	ידידי	ACA	AGA	ΔΔΔ		AAA	AAA	AAA	AAA	A					1547

Figure 3.60 The full length cDNA sequences of *ATP/GTP* of *P. monodon*. Start and stop codons are illustrated in boldface and underlined. The internal sequencing primer is boldfaced.

11. Ovarian lipoprotein receptor (PMOVLP)

Several fragments were obtained from 3'RACE-PCR of a *PMOVLP* primer (Figure 3.61). The largest product of approximately 3000 bp in length was cloned and sequenced for both directions. Primer walking was applied for sequencing of the entire 3'RACE-PCR fragment using 2 internal primers. Nucleotide sequences of the original EST and 3'RACE-PCR were assembled and analyzed.

The complete ORF of *PMOVLP* was still not obtained. The combined nucleotide of *PMOVLP* was 3437 bp in length. The partial ORF of *PMOVLP* was 3318 bp translated to 1105 amino acids. The 3'UTRs of *PMOVLP* was 116 bp (excluding the poly A tail). (Figure 3.62 and 3.63).

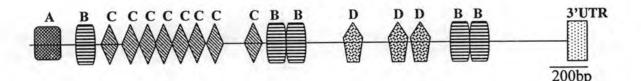



Figure 3.61 The primiary 3'RACE-PCR product of *PMOVLP* (lane 1). The λ -Hind III (lane M) was used as the markers.

The closest sequence to *PMOVLP* was ovarian lipoprotein receptor of the green tiger shrimp, *Penaeus semisulcatus* (E-value = 0.00) followed by the vitellogenin receptor of Blattella germanicaat (E-value = 5e-130).

Several functionally important domains were found such as, the internal repeat 3 domain, epidermal growth factor domain, low-density lipoprotein receptor domain class A and LY domain were found in this partial transcript.

Domain	Begin	End	E-value
internal repeat 3	7	61	7.71e-05
EGF like	103	141	5.62e+00
LDLa	144	182	8.74e-10
LDLa	185	224	9.81e-13
LDLa	226	263	4.27e-13
LDLa	264	301	4.05e-14
LDLa	302	341	1.44e-10
LDLa	347	389	9.98e-05
LDLa	390	429	3.31e-10
LDLa	452	490	1.68e-11
EGF like	491	527	4.56e+00
EGF like	528	567	2.15e-03
LY	635	676	4.17e+01
LY	747	789	3.79e-06
LY	790	830	9.69e+00
EGF like	857	895	2.62e+00
EGF like	892	933	2.00e-01

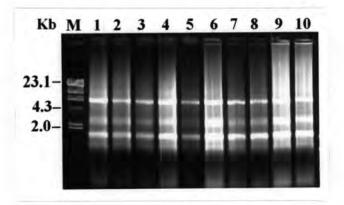
Figure 3.62 Diagram illustrating of partial *PMOVLP* with 3'UTR and internal repeat 3 domain (A), epidermal growth factor domain (B), Low-density lipoprotein receptor domain class A (C) and LY domain.(D) (200bp: 1 centimeter)

LDLa domains are cysteine-rich repeats that play a central role in mammalian cholesterol metabolism. The *N*-terminal type A repeats in LDL receptor bind the lipoproteins.

Low density lipoprotein (LDL) is the major cholesterol-carrying lipoprotein of plasma. The LDL-receptor class A domain contains 6 disulphide-bound cysteines and a highly conserved cluster of negatively charged amino acids. LY domain is the type "B" repeats in low-density lipoprotein (LDL) receptor that plays a central role in mammalian cholesterol metabolism.

Epidermal growth factors (EGF)-like domain shares a repeat pattern involving a number of conserved cys residues. Growth factors are involved in cell recognition and division found frequently in nature, particularly in extracellular proteins.

> AGCGTGGTCGCGGGCCGAGGTACTGGTGTGACCACGTCCTGGGACGTATCGAGAGCGTGGC 60 R P R Y W C D H V L G R I E S VA 20 AWS CGAAGACGGGACGGACCGACGGGTATTCATGGAAAACGTGAAGAGCCCCGTCTCGGTCCT 120 DGTDRRVFMENVKSPVSVL 40 E GGTGACTCGTTCGCACATCATGTGGTCTGAGGAACGGACTTCTCTCATCTACTCCGCTTC 180 VTRSHIMWSEE RTSLIYSAS 60 240 CAAATTAGATAACAGTTCTGTGCGGATGATGTCTCTTGATCTGGGCGTTCCGGAAAATGG ENG 80 K L D N S S V R M M S L D L G V P AGAACGTTCCCTGAAAATTCTGGAAGTCGGGTGGAAAATTCCCGAGCAACTTGCAGCGAC 300 ERSLKILEVGWKIPEQLAAT 100 GAACCACCCGTGTCTGCAGAGTAACGAGAGCTGTAGTCAGTTGTGCCTTGGAGACGACTT 360 120 NHPCLQSNESCSQLCLG D D F CAACGAAAAGGTGTGCGCTTGCAGTTTCGGCTACAAACTCCAGGTGGACAGAAGAACGTG 420 NEKVCACSFGYKLQVDR RT C 140 TGAATCCGTCCAGTGTAACGACATCCAGTTTCACTGTTTTCGATCGCACACTTGTATTCC 480 ESVQCNDIQFHCFR 160 S H Т CT P TCGTTCATGGAAATGTGACTTGACCCCAGACTGCAAAGACGGCGAAGATGAAGAGGACTG 540 R S W K C D L T P D C K D G E D E E D C 180 CAAGGAGTCAACGACGTGTAAGGAGAAAGAGTTCCGGTGCTCTACGGGTTCATGCATTAA 600 200 K E S T T C K E K E F R C S T G S C I N CAAGCTGTGGACGTGTGACGGTGTGCACGATTGCGAGGATGGCTCTGACGAGAGACTCGA 660 K L W T C D G V H D C E D G 220 SDERLD 720 TGAATGCACGAATGTGACATGTAGCAGCGTACATTGGAAGTGCAAGTCAGGCATGTGCAT 240 I ECTNVTCSSVHWKCKS GMC TCCGAAGATGTGGGTTTGTGACCAAGAGAAAGAGTGCGACGATGGGTCGGACGAGACTGA 780 ETE 260 PKMWVCDQEKECDD G S D 840 GTGCGTTACTTCCTGCCCTGACCATAAAGTCGCTTGTAGAGATGGAAAATGTGTACCAAA C P D H K V A C R D G K C V 280 P K т S GGTGTGGAAATGTGACGGCGACAAGGACTGCCTGGACGGAAGTGACGAGGAAAATTGTCC 900 300 SDEENCP V W K C D G D K D C L D G GGTGGAGTGTGCGAACAATGAGTTCACCTGCAGCAACAAAAACTGTGTACCCCACGATGC 960 V E C A N N E F T C S N K N C V P H D A 320 CAAGTGCGATGGCGAGGATGACTGTGGCGACGGCTCTGATGAGGCACTTCCTTGGTGCCA 1020 K C D G E D D C G D G S D E A L P W C Q 340 GCCTCCGGACCCTCCTGTAACGTGCCCCAGCGGCCAGATTTTGTGTGAACGCCACGACGT 1080 P P D P P V T C P S G Q I L C E R H D V 360 TTCTTCCCCGCGTGTCTGTATACAACTGAATAACGTATGCAACGGTGTCCCGGGACTGCCC 1140


S S P R V C I Q L N N V C N G V R D C P 380 CTTAGGCGAAGACGAGGACTGTGATAACTGCGCCCGCCACGAGTTCAGCTGCTTATCACG 1200 LGEDEDCDNCARHEFSCLSR 400 TGGCTGCATCCCAAGAGGGTGGATGTGTGTGATGGGGAAGAGGACTGCACTGACGGCTCCGA 1260 GCIPRGWMCDGEEDCTDGS 420 D CGAGAGCCAGGCAGCCGGTTGCATGATTGCACAAGGCAATGACACCGTTGATCTAAGCCT 1320 ESQAAGCMIAQGNDTVDLSL 440 GAATGGTAGCGATGGTAAGGCAGCTCCAGTGCCAGTCTGTGGAATACACGAGTTCGAGTG 1380 NGSDGKAAPVPVCGIHEFEC 460 1440 G I G G C I A S R L V C D G S A D C L D 480 TGGCTCTGATGAAGGCAGCTTGTGCGCAAAAAGTTGTCTGGGTAATGGCGGGTGCCAACA 1500 G S D E G S L C A K S C L G N G G C Q H 500 CACATGCAAAGAAGGTCCCAAAAATCGCATTTGCTCCTGTTGGAAGGGATTCCAACTCGC 1560 TCKEGPKNRICSCWKGFQLA 520 CGAGGATCAGATTAGCTGCATTGATGTGAAGGAATGCGACGATGAGGCCACCTGCAGCCA 1620 EDQISCIDVKECDDEATCSQ 540 AAAGTGCGAAGAAAGACATGGCTACCACTTGTGCTCCTGCCTACCCGGGTATACTCTTAG 1680 K C E E R H G Y H L C S C L P G Y T L R 560 ACCTGACAGACGCTCTTGCAAACCAGCAGGTGGCGACGAATATGTGGTCTTGGTGCATC 1740 P D R R S C K P A G G D E Y V V L V H P 580 TGGGTCCATCCTGAATATGTCCCGCACCTTCCATCTTGCTGACAAAGTGGCGATGCCCCC 1800 GSILNMSRTFHLADKVAMPP 600 TCATGTTCAGTTTTCGTCTGTTGAGTTTACGCCCGAGTCCCATAATTTCGTTTATGCTGA 1860 HVQFSSVEFTPESHNFVYAD 620 CAAAGCCCATGGAGTTATCGGGAAGATGAGCATGGACGGCGTAGTGACAATACTCTTTAA 1920 K A H G V I G K M S M D G V V T I L F K 640 GCACAGAAAGCGTCCTCAGGGTCTCTCCTTGGACCCCATTAGCAACAGCGTTTATTTCTC 1980 HRKRPQGLSLDPISNSVYFS 680 CGAACAGTTCAGTAAAGCTGAAGTTGTGGATAATGGCTTGATAAGAGTGCGCAGGGAGCC 2040 EQFSKAEVVDNGLIRVRREP 700 GAGTGCTGCTGGGACTTATTCTGTGATAATGGTTTGTGGGATGGAGGGCGACAAGGATTG 2100 SAAGTYSVIMVCGMEGDKDC 720 CAGCATGGTGTACCAATCACATGGTGGAGAGATCCCGGCAATCCGTGTTGCCCCAATGGC 2160 S M V Y Q S H G G E I P A I R V A P M A 740 AAGACGACTCTTCTTCTGCGCTAACAACGTGGCGCAGGACGAAGCAAAAATTTTCACCTC 2220 R R L F F C A N N V A Q D E A K I F T S 760 GGATATGGATGGCACATCGGCTCGAATTCTCAGCCATAAGGTTGTGAAGTGTGGTGACCT 2280 DMDGTSARILSHKVVKCGDL 780 GGCAGTGGATGAGGCAAAGGAGCGAGTCTACTGGACGGATCTCTCCCGTAACGTTATCGA 2340 AVDEAKERVYWTDLSRNVIE 800 GTCCGTCAAATGGTCAGGCGAAGGCCATCGTGTTGTACAAGAAAATGTACACACGCCAAT 2400 S V K W S G E G H R V V Q E N V H T P I 820 TGGACTAGCCTTGATTGAAGACTGGGTGCTGTGGCTGGACACGCACCAGCACCAAATAAT 2460 GLALIEDWVLWLDTHQHQII 840 CAAGTGTAACAAGTACAAGATGGGTATGTGTGACCACCACCATGGGCACTGCCGGCTT 2520 K C N K Y K M G M C D H H T M G T A G L 860 2580 ALTVQHRLRMESPLIGDCRV 900 AAAAAAAACTGCACTCACCACTGCATGATTCAAATGGGCAAAAAGGCCAGCTGTATGTG 2640 K K N C T H H C M I Q M G K K A S C M C 920 2700 CAAAGTTGGCTACATCTCTGCACCCAGCCGTCCTAACGAGTGTATCAGGATGAAATCCTG K V G Y I S A P S R P N E C I R M K S C 940 CGACCACAGCCCGTGTCAAGGCAAAGGTATATGCGAGTCGCACTCCGAATCAGAGTTCAT 2760 DHSPCQGKGICESHSESEFI 960 2820 TTGCAGGTGTCCTGAAGGCCGTGAAGGGTCCCTGTGCGAGGTGGCCAAGACGCCCACAGC CRCPEGREGSLCEVAKTPTA 980 AGACAACAGCGGCAGCGGCAGCAGCGCAACCTTAGGCGTGTGCCTCTTCCTCCTCTTTT 2880 D N S G S G S S A T L G V C L F L L F F 1000 CGGTGCCCTCCTCTTTGGGCTTTATTGGTATCGAAAGCAACCTTTCCCCTTTTGGAAGGG 2940 G A L L F G L Y W Y R K Q P F P F W K G 1020 AAAAGGAGGGCAACTTCGCAAGAGATGCTTCAAAGCCAATCAGACCCTACGTTTCGCCAA 3000 Q L R K R C F K A N Q T L R F A N 1040 KGG CCCAGGTTTTGGCATCATTTCCCCCACCACTGTGCCCAACGGAAATGGGACGTCCAGCAC 3060 PGFGIISPTTVPNGNGTSST 1060 CAACAGCAACACCATCCCCTCAACCCCGCCTGTCTTGGGAGGTTCTCACAACTTCGAAAA 3120 NSNTIPSTPPVLGGSHNFEN 1080 CCCTTTCTTTAAAACTGATGAGCACGTGCCGGACACGAGTGCGGACTCGGCCATAGTGAG 3180

P	F	F	K	т	D	Е	Н	v	P	D	т	S	Α	D	S	Α	I	v	S	1100
CAC	AGC	CGA	CTC	GAC	CTC	CAT	CAA	CAT	CGC	TCC	CCA	TCA	GGG	GGA	TCI	GAC	CCC	GCC	ACA	3240
Т	A	D	S	Т	S	I	N	I	A	Ρ	н	Q	G	D	L	т	Ρ	Ρ	Q	1120
GAA	CGT	ACT	GAA	GCC	ACC	GGT	AGA	GAA	GAG	GGT	CGA	GTG	GGA	TCT	CTC	TCC	TTT	CCA	GCC	3300
N	v		K		P	v		K		v		W	D		S		F	Q	Ρ	1140
TTT	GCA	CAGCCTCAGGTTGAGGCAGTGCATTGGAATAGATCTA'TTGATTTAGATGCAC										ACT	TCT	3360						
L	0	P	0	v	*															1160
_	~	TGT	TAT	GTT	TAA	TGI	TAT	AGC	CTA	ATA	TAT	CTT	TCT	TAAA	CTA	AAA	AAA	AAA	AAA	3420
AAA	AAA	AAA	AAA	AAA	AA															3437

Figure 3.63 The partial cDNA sequences of *PMOVLP*. The stop codon are illustrated in boldface and underlined. The 3'RACE-PCR primer is underlined, boldfaced and italicized whereas the internal primers are boldfaced

3.4 Semiquantitative RT-PCR of female sterile, adipose differentiation related protein, nuclear autoantigenic sperm protein, ovarian lipoprotein receptor, 3-oxoacid CoA transferase, dolichyl diphophooligosaccharide protein glycotransferase and aspartase aminotransferase upon induction by 5-HT treatment

Total RNA extracted from ovaries of normal and 5-HT-treated juvenile (approximately 4-month-old) *P. monodon* females were determined by spectrophotometry and by agarose gel electrophoresis (Figure 3.64). The ratio of OD_{260}/OD_{280} of the extracted RNA was 1.8 - 2.0 indicating its acceptable purity for further used for the reverse transcription. Agarose gel electrophoresis showed sharp ribosomal RNA bands reflecting good quality of total RNA isolated from ovaries of juvenile *P. monodon*. The first strand cDNA was successfully synthesized as revealed by 1.2% agarose gel electrophoresis (Figure 3.65).

Figure 3.64 A 1.0% ethidium bromide-stained agarose gel showing the quality of total RNA extracted from ovaries of juvenile *P. monodon*. Lane $M = \lambda$ -*Hind* III, Lanes 1-10 = total RNA individually extracted from ovaries of each *P. monodon*.

Figure 3.65 A 1.0% ethidium bromide-stained agarose gel showing the quality of the first strand cDNA synthesized from ovaries of juvenile *P. monodon*. Lane $M = \lambda$ -*Hind* III. Lane 1-10 = the first strand cDNA from ovaries of each *P. monodon*.

3.4.1 Optimization of semi-quantitative RT-PCR conditions

The first strand cDNA of ovaries of juvenile shrimp single injected with the normal saline (A0) and 5-HT for 12, 24, 48 and 72 hours (A12, A24, A48 and A72, respectively; N = 5 for each group) and those of juvenile shrimp repeatedly injected with normal saline (B0) and 5-HT for 12, 24, 48 and 72 hours (B12, B24, B48 and B72, respectively; N = 5 for each group) after the first injection were used as template for a time-course analysis of homologues of *female sterile (PMFS)*, adipose differentiation related protein (PMADRP), nuclear autoantigenic sperm protein (PMNASP), ovarian lipoprotein receptor (PMOVLP), 3-oxoacid CoA transferase, aspartate amino transferase (PMAST) and dolichyl diphosphooligosaccharide protein glycotransferaase (PMDDPG) using semiquantitative RT-PCR analysis. This technique requires optimization of several parameters including concentration of primers, MgCl₂, and the number of PCR cycles.

Primers for the target genes were designed. $EF-1\alpha$ was used as the control. The preliminary RT-PCR was carried out using the standard conditions and the annealing temperature of 53°C as previously used during screening of gene expression patterns of various genes.

3.4.1.1 Optimization of the primer concentration

RT-PCR of each gene was carried out with fixed components except primer concentrations (0.1, 0.15, 0.20, 0.25 and 0.30 μ M). Lower concentrations may result in non-quantitative amplification whereas higher concentrations of primer may leave a large amount of unused primers which could give rise to non-specific amplification products. The suitable concentration of primers for each gene is shown by Table 3.8.

3.4.1.2 Optimization of the MgCl2 concentration

The optimal concentration of $MgCl_2$ (between 1.0, 1.5, 2.0, 2.5 and 3.0 mM) for each primer pair was carefully examined using the amplification conditions with the optimaized primer concentration. The concentration of $MgCl_2$ that gave the highest yields and specificity for each PCR product was chosen (Table 3.8).

3.4.7.3 Optimization of the cycle numbers

The number of amplification cycles was important because the product reflecting the expression level should be measured quantitatively before reaching a plateau amplification phase. At the plateau stage, transcripts initially present at different levels may give equal intensity of the amplification products.

In this experiment, RT-PCR of each gene was performed using the conditions that primers and $MgCl_2$ concentrations were optimized for 18, 20, 23 and 25 cycles. The number of cycles that gave the highest yield before the product reached a plateau phase of amplification was chosen (Table 3.8).

Transcript	Expected	Primer	MgCl ₂	PCR
	amplicons	concentration	concentration	cycles
	(bp)	(μM)	(mM)	
Female sterile	296	0.15	1.5	20
Adipost differential	267	0.20	1.0	23
related protein				
Ovarian lipoprotein	354	0.15	2.0	25
receptor				
Nuclear autoantigenic	301	0.20	2.0	25
sperm protein				
Aspartate	334	0.20	2.0	25
aminotransferase				
3-Oxoacid CoA	303	0.20	2.0	25
transferase				
Dolichyl diphosphooligo-	233	0.20	2.0	25
saccharide protein				
glycotransferaase				
Elongationfactor 1-a	500	0.125	1.5	23

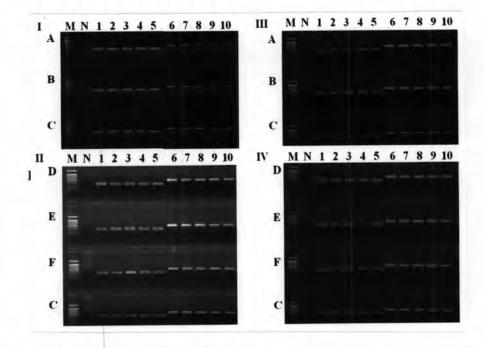
Table 3.8 Optimal primer and $MgCl_2$ concentrations and the number of PCR cyclesfor semiquantitative analysis of genes in *P. monodon*

3.4.2 Semi-quantitative RT-PCR analysis

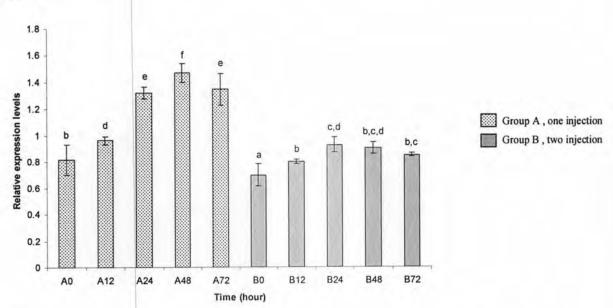
3.4.2.1 PMFS

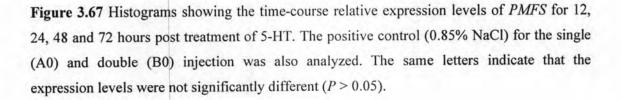
The expression level of *PMFS* in juvenile *P. monodon* upon single injection with 5-HT (group A) was greater than that of double injection (group B, P < 0.05) and the expression level of both treatment was significantly higher than the control (P < 0.05).

Within the single injection group, the expression level of *PMFS* was initially up-regulated at 12 hour post treatment (12 hpt; 0.965 ± 0.029 , P < 0.05) and further increased at 24 hpt (1.323 ± 0.045 , P < 0.05). The highest expression of *PMFS* was observed at 48 hpt (1.470 ± 0.070 , P < 0.05). The expression was slightly reduced but still significant from that of the control A0 at 72 hpt (1.348 ± 0.119 , P < 0.05) (Figure 3.66 and 3.67; Table 3.9).


Within the double injection group, the expression of *PMFS* was significantly up-regulated at 12 hpt (0.803 \pm 0.015, *P* <0.05) and increased at 24 and 48 hpt (0.930 \pm 0.057 and 0.904 \pm 0.043, respectively; *P* < 0.05). The expression of *PMFS* was reduced but still significant to that of the control Bo at 72 hpt (0.853 \pm 0.015, *P* < 0.05) (Figures 3.66 and 3.67; Table 3.9).

3.4.2.2 PMADRP


The expression level of *PMADRT* in juvenile *P. monodon* upon single and double injection with 5-HT was comparable (P > 0.05). This gene was only upregulated at 48 hpt (0.661 ± 0.057, P < 0.05) and returned to the normal levels at 72 hpt (0.550 ± 0.019, P > 0.05). Repeat injection of 5-HT did not affect the expression of *PMADRT* when compared with the control B0 (0.426 ± 0.057, P > 0.05) (Figures 3.68 and 3.69; Table 3.9).


3.4.2.3 PMNASP

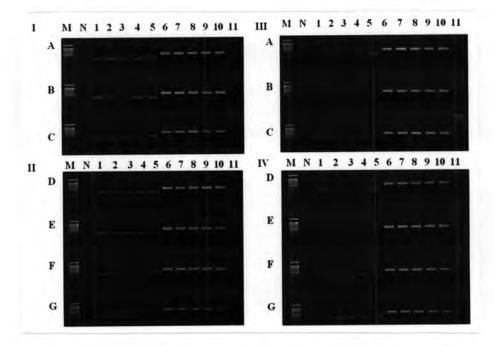
The expression level of *PMNASP* in juvenile *P. monodon* upon single injection with 5-HT (A) was lower than that of double injection (B, P < 0.05) and the expression level of both treatment was significantly higher than the control (P < 0.05).

Figure 3.66 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMFS* (lanes 1 - 5) and *EF*-1 α (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

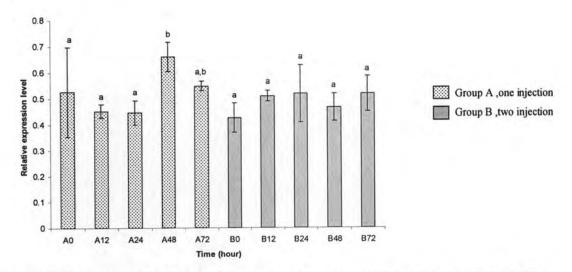
Within the single injection group, the expression of *PMNASP* was only upregulated at 12 hpt (0.799 \pm 0.033, *P* < 0.05) and returned to the normal level since 24 hpt (*P* >0.05) (Figures 3.70 and 3.71; Table 3.9).

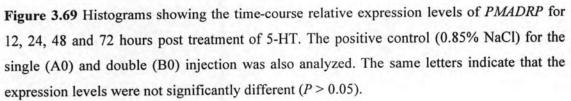
Within the double injection group, the expression of *PMNASP* was initially upregulated to the highest level at 24 hpt (0.799 \pm 0.033, *P* <0.05) and still significantly different from the control B0 at 48 and 72 hpt (0.738 \pm 0.062 and 0.831 \pm 0.049, respectively, *P* <0.05) (Figure 3.70 and 3.71; Table 3.9).

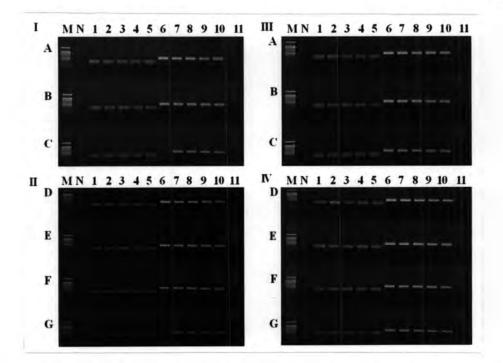
3.4.2.4 PMOVLP

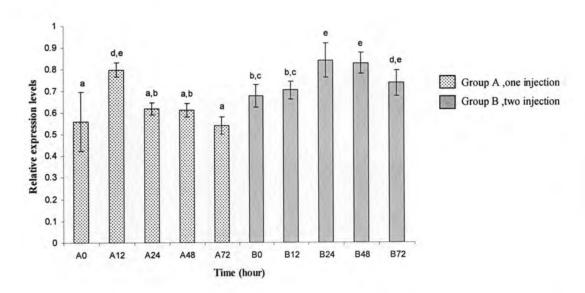

The expression level of *PMOVLP* in juvenile *P. monodon* upon single injection with 5-HT (A) was significantly greater than that of double injection (B, P < 0.05) and the expression level of both treatment was significantly higher than the control (P < 0.05).

Within the former group, the gene expression of *PMOVLP* was initially upregulated at 24 hpt (0.773 \pm 0.034, *P* < 0.05). The expression level was constant at 48 and 72 hpt (0.816 \pm 0.053 and 0.752 \pm 0.047, respectively) and significant from that of the control A0 (0.580 \pm 0.071, *P* < 0.05) (Figure 3.72 and 3.73; Table 3.9).


Within the latter group, the expression of *PMOVLP* was up-regulated to the highest level within the treatment at 24 hpt (0.634 ± 0.049 , P < 0.05). The expression level of *PMOVLP* was slightly lowered at 48 and 72 hpt (0.576 ± 0.060 and 0.538 ± 0.088 , respectively) but still significant to that of the control B0 (0.435 ± 0.077 , P < 0.05) (Figures 3.72 and 3.73; Table 3.9).


3.4.2.5 3-oxoacid CoA transferase


The expression level of 3-oxoacid CoA transferase in juvenile P. monodon upon single injection with 5-HT (A) was approximately equal to that of double injection (group B, P > 0.05) and the expression level of both treatment was significantly higher than that of the control (P < 0.05).


Figure 3.68 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMADRP* (lanes 1 - 5) and *EF-1a* (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

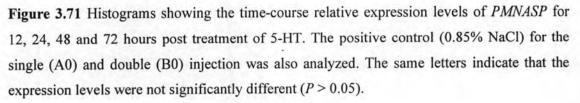


Figure 3.70 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMNASP* (lanes 1 - 5) and *EF*-1 α (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA.ladder

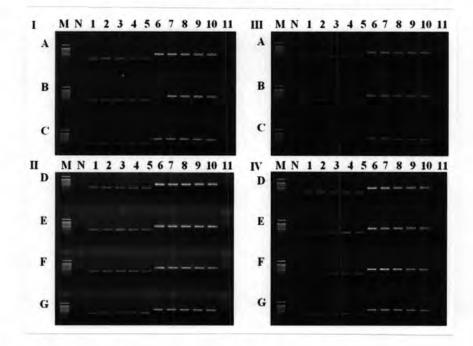


Figure 3.72 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMOVLP* (lanes 1 - 5) and *EF-1a* (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

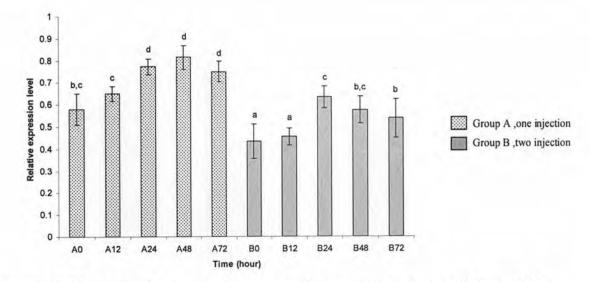
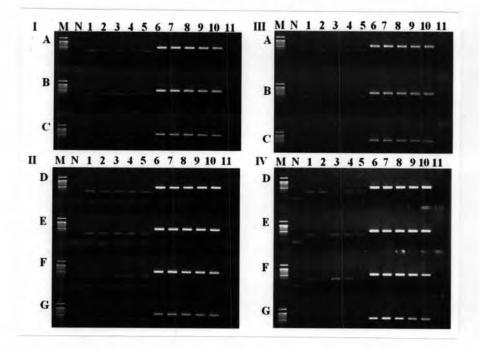


Figure 3.73 Histograms showing the time-course relative expression levels of *PMOVLP* for 12, 24, 48 and 72 hours post treatment of 5-HT. The positive control (0.85% NaCl) for the single (A0) and double (B0) injection was also analyzed. The same letters indicate that the expression levels were not significantly different (P > 0.05).

Within the single injection group, the expression of 3-oxoacid CoA transferase was initially up-regulated at 12 hpt (0.389 ± 0.014 , P < 0.05) and further increased at 24 and 48 hpt (0.516 ± 0.043 and 0.450 ± 0.045 , respectively, P < 0.05). The expression level was reduced but still significant to that of the control A0 at 72 hpt (0.410 ± 0.026 compared to 0.309 ± 0.042 , P < 0.05). (Figure 3.74 and 3.75; Table 3.9).


Likewise, 5-HT provided similar effects on levels of expression of 3-oxoacid CoA transferase in the double injection group. The gene expression was initially upregulated at 12 hpt (0.405 ± 0.027 , P < 0.05) and further increased at 24 and 48 hpt (0.536 ± 0.054 and 0.481 ± 0.057 , respectively, P < 0.05). The expression level was still significant to that of the control B0 at 72 hpt (0.482 ± 0.091 compared to 0.328 ± 0.017 , P < 0.05) (Figure 3.74 and 3.75; Table 3.9).

3.4.2.6 PMDDPG

The expression level of *PMDDPG* in juvenile *P. monodon* upon single (A) and double injection (B) with 5-HT was not different (P > 0.05) and the expression level of both treatment was significantly higher than that of the control (P < 0.05).

Within the single injection group, the expression of *PMDDPG* was initially upregulated at 12 hpt (0.665 \pm 0.084, *P* <0.05) and further increased to the highest level at 24 hpt (0.702 \pm 0.086, *P* <0.05). The expression level was slightly reduced but still significant from that of the control A0 at 48 hpt (0.661 \pm 0.048, *P* <0.05) and returned to the normal level at 72 hpt (0.538 \pm 0.028, *P* >0.05) (Figure 3.76 and 3.77; Table 3.9).

Similarly, the expression of *PMDDPG* within the double injection group was initially up-regulated at 12 hpt (0.691 \pm 0.037, *P* <0.05) and further increased to the highest level at 24 hpt (0.759 \pm 0.125, *P* <0.05). The expression was reduced to the same level as that of the control B0 at 48 hpt (0.539 \pm 0.102 compared to 0.440 \pm 0.127, *P* >0.05) and returned to the normal level at 72 hpt (0.497 \pm 0.049, *P* >0.05) (Figure 3.76 and 3.77; Table 3.9).

Figure 3.74. A 1.6% ethidium bromide-stained agarose gel showing the expression level of 3oxoacid CoA transferase (lanes 1 - 5) and $EF-1\alpha$ (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

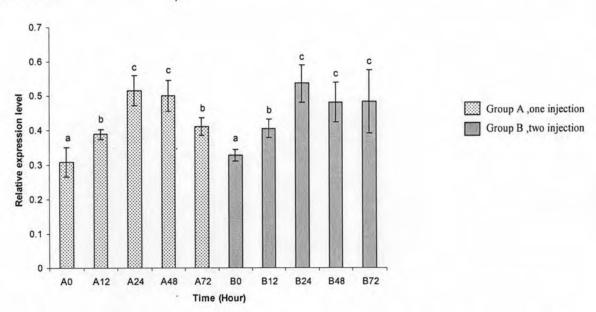


Figure 3.75 Histograms showing the time-course relative expression levels of 3-oxoacid CoA transferase for 12, 24, 48 and 72 hours post treatment of 5-HT. The positive control (0.85% NaCl) for the single (A0) and double (B0) injection was also analyzed. The same letters indicate that the expression levels were not significantly different (P > 0.05).

3.4.2.7 PMAST

The expression level of *PMAST* in juvenile *P. monodon* upon single (A) and double injection (B) with 5-HT was similar (P > 0.05) and the expression level of both treatment was significantly higher than that of the control (P < 0.05).

Within the single injection group, the expression level of *PMAST* was initially up-regulated at 12 hpt (0.480 ± 0.067 , P < 0.05) and further increased to the highest level at 24 hpt (0.505 ± 0.046 , P < 0.05). The expression was slightly reduced but still significant from that of the control A0 at 48 and 72 hpt (0.482 ± 0.043 and 0.482 ± 0.030 , P < 0.05) (Figure 3.78 and 3.79; Table 3.9).

The expression level of *PMAST* within the double injection group was initially up-regulated at 12 hpt (0.471 \pm 0.033, P < 0.05). The highest expression level was observed at 48 hpt (0.501 \pm 0.071, P < 0.05). The expression was reduced but still significantly different from that of the control B0 at 72 hpt (0.481 \pm 0.055 compared to 0.384 \pm 0.046, P < 0.05) (Figure 3.78 and 3.79; Table 3.9).

Figure 3.76 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMDDPG* (lanes 1 - 5) and *EF*-1 α (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

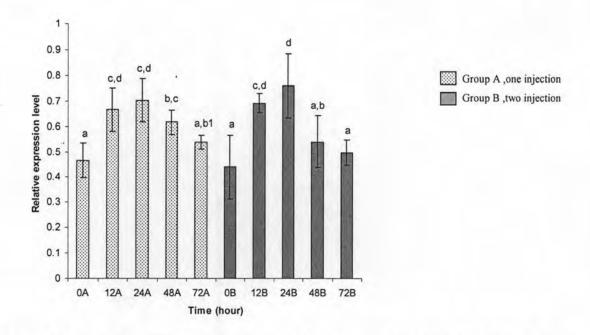
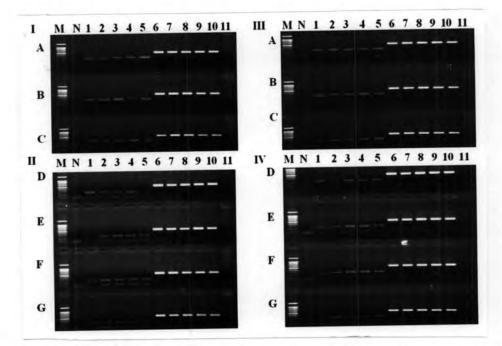



Figure 3.77 Histograms showing the time-course relative expression levels of *PMDDPG* for 12, 24, 48 and 72 hours post treatment of 5-HT. The positive control (0.85% NaCl) for the single (A0) and double (B0) injection was also analyzed. The same letters indicate that the expression levels were not significantly different P > 0.05).

Figure 3.78 A 1.6% ethidium bromide-stained agarose gel showing the expression level of *PMAST* (lanes 1 - 5) and *EF-1a* (lanes 6 - 10) of single (I and II) and double (III and IV) injection of 5-HT for 12, 24, 48 and 72 hours post injection (B, D, E, F). The positive control (0.85% NaCl) for the single injection (A, C and G of I and II; control A) and the double injection (A, C and G of III and IV; control B) was also included. Lane M = 100 bp DNA ladder.

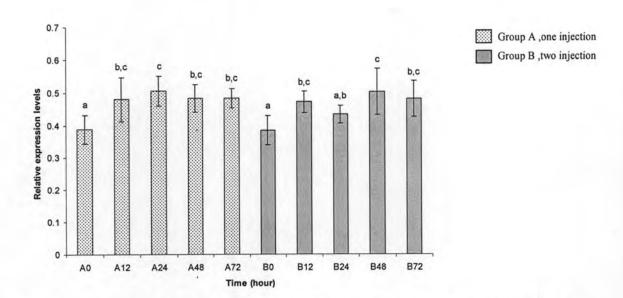


Figure 3.79 Histograms showing the time-course relative expression levels of *PMAST* for 12, 24, 48 and 72 hours post treatment of 5-HT. The positive control (0.85% NaCl) for the single (A0) and double (B0) injection was also analyzed. The same letters indicate that the expression levels were not significantly different (P > 0.05).

Table 3.9 A time-course analysis of expression levels of various genes using semiquantitative RT-PCR. The same superscripts between different time interval data are not significantly different (P > 0.05)

Gene	Mean relative expression level											
	Control A	12A	24A	48A	72A	Control B	12B	24B	48B	72B		
PMFS	0.818±0.113 ^b	0.965±0.029 ^e	1.323±0.045 ^{c,d}	1.470±0.070 ^f	1.348±0.119 ^e	0.698±0.084 ^a	0.803±0.015 ^b	0.930±0.057 ^{c,d}	0.904±0.043 ^{b,c,d}	0.853±0.015 ^{b,c}		
PMADRP	0.526±0.171ª	0.452±0.025 ^a	0.447±0.047 ^a	0.661±0.057 ^b	0.550±0.019 ^{a,b}	0.426±0.057 ^a	0.511±0.021ª	0.521±0.110 ^a	0.467±0.053 ^a	0.519±0.068ª		
PMNASP	0.559±0.135ª	0.799±0.033 ^{d,e}	0.619±0.028 ^{a,b}	0.612±0.032 ^{a,b}	0.541±0.042 ^a	0.676±0.053 ^{b,c}	0.704±0.040 ^{b,c}	0.842±0.079 ^e	0.831±0.049 ^e	0.738±0.062 ^{c,d}		
PMOVLP	0.580±0.071 ^{b,c}	0.649±0.033°	0.773±0.034 ^d	0.816±0.053 ^d	0.752±0.047 ^d	0.435±0.077 ^a	0.456±0.039 ^a	0.634±0.049°	0.576±0.060 ^{b,c}	0.538±0.088 ^b		
PM 3-Oxoacid CoA transferase	0.309±0.042 ^a	0.389±0.014°	0.516±0.043°	0.450±0.045 ^b	0.410±0.026 ^b	0.328±0.017ª	0.405±0.027 ^b	0.536±0.054°	0.481±0.057°	0.482±0.091°		
PMDDPG	0.467±0.068 ^a	0.665±0.084 ^{c,d}	0.702±0.086 ^{c,d}	0.616±0.048 ^{b,c}	0.538±0.028 ^{a,b}	0.440±0.127 ^a	0.691±0.037 ^{c,d}	0.759±0.125 ^d	0.539±0.102 ^{a,b}	0.497±0.049 ^a		
PMAST	0.387±0.044 ^a	0.480±0.067 ^{b,c}	0.505±0.046°	0.482±0.043 ^{b,c}	0.482±0.030 ^{b,c}	0.384±0.046 ^a	0.471±0.033 ^{b,c}	0.433±0.027 ^{a,b}	0.501±0.071°	0.481±0.055 ^{b,c}		

*The expression of $EF-1\alpha$ was normalized to 1.00. The relative expression level of the target genes was determined as the signal ratio between the target gene and $EF-1\alpha$.