ปัญหาการกำหนดค่ารายการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

LIST ASSIGNMENT PROBLEMS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Mathematics

Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic Year 2010
Copyright of Chulalongkorn University

Thesis Title
By
Field of Study
Thesis Advisor
Thesis Co-advisor

LIST ASSIGNMENT PROBLEMS
Mr. Wongsakorn Charoenpanitseri
Mathematics

Assistant Professor Chariya Uiyyasathian, Ph.D.
Professor Narong Punnim, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science
(Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

(Associate Professor Patanee Udomkavanich, Ph.D.)

.. Thesis Co-advisor
(Professor Narong Punnim, Ph.D.)
\qquad
(Associate Professor Wanida Hemakul, Ph.D.)
\qquad
Examiner
(Assistant Professor Yotsanan Meemark, Ph.D.)

External Examiner
(Assistant Professor Varaporn Saenpholphat, Ph.D.)

วงศกร เจริญพานิชเสีี : ปัญหาการกำหนดค่ารายการ (LIST ASSIGNMENT PROBLEMS), อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. ดร.จริยา อุ่ยยะเสถียร, อ.ที่ปรึกษาวิทยานิพนธ์ร์วม : ศ. ดร. ณรงค์ ปั้นนิ่ม, 121 หน้า

การกำหนดค่ารายการแบบ $-k$ ของกราฟ G คือฟังก์ช์นันจากเซตของจุดยอดของกราฟ G ไปเซต ของเซตขนาด k ให้ L เป็นการกำหนดค่ารายการแบบ k ของกราฟ G เรียก L ว่าเป็นการกำหนดค่า รายการแบบ $-(k, t)$ เมื่อ $\left|\bigcup_{v \in V(G)} L(v)\right|=t$ และ G เป็นกราฟระบายสีได้แบบ L เมื่อ G มีฟังก์ชัน การระบายสี f ที่ $f(v) \in L(v)$ ทุก $v \in V(G)$ ถ้ากราฟ G เป็นกราฟระบายสีได้แบบ L สำหรับ ทุก L ที่เป็นการกำหนดค่ารายการแบบ $-(k, t)$ จะเรียก G ว่ากราฟเลือกได้แบบ (k, t) และถ้า G เป็นกราฟเลือกได้แบบ (k, t) สำหรับทุก t แล้วจะเรียก G ว่าเป็นกราฟเลือกได้แบบ $-k$

ในวิทยานิพนธ์นบับนี้เราหาเงื่อนไขเพียงพอที่ทำให้กราฟที่มีจุดยอด n จุดเป็นกราฟเลือกได้แบบ(k, t) และหาเงื่อนไขที่เพียงพอที่ทำให้กราฟที่มี่จุดยอด n จุดซึ่งไม่มี K_{k+1} เป็นกราฟย่อยเป็นกราฟ เลือกได้แบบ $-(k, t)$ นอกจากนั้นเราสร้างกลยุทธ์ใหม่เพื่อที่ได้ผลลัพธ์ทั้งหมดเกี่ยวกับสมบัติการเลือกได้ แบบ-3 ของกราฟสองส่วนแบบบริบูรณ์ที่มีจุดยอดไม่เคิน 16 จุด และศึกษาสมบัติการเลือกได้แบบ $-(k, t)$ ของกราฟสองส่วนแบบบริบูรณ์ $K_{\binom{2 k-1}{k} \cdot\binom{2 k-1}{k}}^{\left.()^{2}\right)}$

ภาควิชา. \qquad คณิตศาสตร์. \qquad ลายมือซื่อนิสิต สาขาวิชา \qquad .คณิตศาสตร์. \qquad ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก \qquad ปีการศึกษา............. 2553 \qquad ลายมือซื่ออ.ที่ปรึกษาวิทยานิพนธ์ร์วม. \qquad
\# \# 5173852923 : MAJOR MATHEMATICS
KEYWORDS : LIST ASSIGNMENTS, CHOOSABILITY
WONGSAKORN CHAROENPANITSERI : LIST ASSIGNMENT PROBLEMS
THESIS ADVISOR : ASST. PROF. CHARIYA UIYYASATHIAN, Ph.D., THESIS CO-ADVISOR : PROF. NARONG PUNNIM, Ph.D., 121 pp.

A k-list assignment of a graph G is a function which assigns a set of size k to each vertex of G. Given a k-list assignment L of a graph G, L is called a (k, t) list assignment when $\left|\bigcup_{v \in V(G)} L(v)\right|=t$ and G is L-colorable when G has a proper coloring f such that $f(v) \in L(v)$ for all $v \in V(G)$. If a graph G is L-colorable for every (k, t)-list assignment L, then G is called (k, t)-choosable and if G is (k, t)-choosable for each positive integer t then G is called k-choosable.

In this dissertation, we investigate a sufficient condition to be (k, t)-choosable of n-vertex graphs and n-vertex graphs not containing K_{k+1} as a subgraph. Moreover, we establish new strategies to obtain the complete result of 3 -choosability of complete bipartite graphs with at most 16 vertices, and study the (k, t)-choosability of the complete bipartite graph $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$ for all positive integers t.

Chulalongkorn University

Department: ...Mathematics... Student's Signature :................................
Field of Study : ...Mathematics... Advisor's Signature :.................................
Academic Year :2010.......... Co-advisor's Signature:.............................

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my dissertation advisor and my dissertation co-advisor, Assistant Professor Chariya Uiyyasathian and Professor Narong Punnim, for their excellent supervisions, helpful advices and very useful helps. Without their constructive suggestions and knowledgeable guidance in this study, this work would never have successfully been completed. Sincere thanks and deep appreciation are also extended to Associate Professor Wanida Hemakul, Associate Professor Patanee Udomkavanich, Assistant Professor Yotsanan Meemark, and Assistant Professor Varaporn Saenpholphat, my dissertation committee, for their comments and suggestions. In particular, I would like to thank/H.M. the King's $72^{\text {nd }}$ Birthday Scholarship for financial support.

Moreover, I am also grateful to the teachers who taught me for my knowledge and skills. Finally, I would like to express my deep gratitude to my family and friends for their encouragement throughout my study.

CONTENTS

page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES ix
CHAPTER
I INTRODUCTION 1
1.1 Definitions and Notations 1
1.2 History and Outline 5
II ON (k, t)-CHOOSABILITY OF GRAPHS 8
2.1 Basic Properties and Examples 8
2.2 On (k, t)-choosability of K_{k+1}-free Graphs 11
III ON 3-CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS 23
3.1 Background 23
3.2 Strategies 25
3.3 Complete Bipartite Graphs with Fourteen Vertices: a New Proof 41
3.4 Complete Bipartite Graphs with Fifteen Vertices 45
IV ON 3-CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS WITH 16 VERTICES 50
4.1 Consequence of the Strategies 50
4.2 On 3 -choosability of $K_{8,8}$ 54
CHAPTER page
4.3 On $(3, t)$-choosability of $K_{7,9}$ 89
V ON (k, t)-CHOOSABILITY of $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$ 97
5.1 Background 97
5.2 On (k, t)-choosability of $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$ 100
5.3 On $(3, t)$-choosability of $K_{10,10}$ 107
VI CONCLUSIONS AND FUTURE WORK 111
6.1 Conclusions 111
6.2 Future Work 115
REFERENCES 119
VITA 121

LIST OF FIGURES

Figure Page
1.1.1 A $(2,3)$-list assignment of C_{5}. 3
1.1.2 A $(2,3)$-list assignment of C_{5}. 3
1.1.3 C_{5} is (2,3)-choosable. 4
1.1.4 $\mathrm{A}(3,3)$-list assignment and a $(3,24)$ list assignment 4
1.1.5 the list assignment $\left.L\right|_{S}$ of $K_{5}[S]$ where $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and the list assignment $L=\{1,7\}$ of K_{5} 5
2.1.1 A $(3,5)$-list assignment of $K_{10,10}$ 10
2.2.1 Examples of $K_{k-1} \vee K_{4}$ or $K_{k-2} \vee C_{5}$ 16
2.2.2 $V(H) \cup\left\{v_{1}\right\}$ and $V(H) \cup\left\{v_{2}\right\}$ are k-cliques while $v_{1} \nleftarrow u_{1}, v_{2} \nleftarrow$ u_{2} and $v_{1} \nleftarrow v_{2}$. 16
2.2.3 $G-\left\{w, u_{1}, v_{2}\right\}$ is a complete graph with k vertices. 17
2.2.4 $\left\{w, v_{1}, u_{2}, u_{1}, v_{2}\right\}$ forms a cycle of length 5 17
2.2.5 (2,5)-choosable graphs 19
2.2.6 The list assignment L of G_{1} 20
2.2.7 The list assignment L of G_{2} 20
2.2.8 A $(2,5)$-list assignment of $K_{3,3}$ and $K_{3,3}-e$ 21
3.1.1 The list assignment L of $K_{3,3}$ 26
5.1.1 A $(3,5)$-list assignment L of $K_{10,10}$ 98
5.1.2 A $(3,6)$-list assignment L^{1} of $K_{10,10}$ 99
5.1.3 A $(3,7)$-list assignment L^{2} of $K_{10,10}$ 100
5.1.4 A $(3,8)$-list assignment L^{3} of $K_{10,10}$ 101

CHAPTER I

INTRODUCTION

1.1 Definitions and Notations

Recall some known definitions and notations here. For other terminologies, we follow West's book [22]. Unless we say otherwise, G denotes a simple, undirected, finite, connected graph; $V(G)$ and $E(G)$ are the vertex set and the edge set of G, respectively. A clique is a set of pairwise adjacent vertices in a graph; a clique of size k is called a k-clique. A cycle is a graph with an equal number of vertices and edges whose vertices can be placed around a circle so that two vertices are adjacent if and only if they appear consecutively along the circle; the cycle with n vertices is denoted by C_{n}. A complete graph is a graph whose vertices are pairwise adjacent; the complete graph with n vertices is denoted by K_{n}. A graph G is bipartite if $V(G)$ is the union of two disjoint independent sets called partite sets. A complete bipartite graph is a bipartite graph such that two vertices are adjacent if and only if they are in different partite sets; the complete bipartite graph with partite sets of size a and b is denoted by $K_{a, b}$. Given a graph G and $S \subseteq V(G), G-S$ is the graph obtained from G by deleting all vertices of S. In case $S=\{v\}$, we write $G-v$ instead of $G-\{v\}$. The subgraph induced by S, denoted by $G[S]$ is the graph obtained from G by deleting all vertices of $V(G)$ outside S. Given a graph H, a graph is said to be H-free if H is not its induced subgraph. A graph is said to be a triangle-free if it does not contain a 3-clique. A complement of a graph G, denoted by \bar{G}, is the graph with the vertex set $V(G)$
defined by $u v \in E(\bar{G})$ if and only if $u v \notin E(G)$. The join of graphs G and H, written $G \vee H$, is the graph obtained from G and H by adding the edges between all vertices of G and all vertices of H.

A coloring of a graph G is a mapping from $V(G)$ to a set of colors S such that adjacent vertices receive distinct colors. If $|S|=t$, then such coloring is called a t-coloring. A graph is t-colorable if it has a t-coloring. The chromatic number of G, denoted by $\chi(G)$ is the smallest positive integer t such that G is t-colorable. A list assignment of a graph G is a mapping which assigns a set of colors, called a list to each vertex $v \in V(G)$. A list assignment L of a graph G is said to be a k-list assignment if $|L(v)|=k$ for all $v \in V(G)$. A k-list assignment L of a graph G is said to be a (k, t)-list assignment if $\left|\bigcup_{v \in V(G)} L(v)\right|=t$. Given a list assignment L of a graph G, a coloring f of G is an L-coloring of G if $f(v)$ is chosen from $L(v)$ for each vertex $v \in V(G)$. A graph is L-colorable if it has an L-coloring. Particularly, if L is a (k, k)-list assignment of a graph G, then any L-coloring of G is a k-coloring of G. A graph G is (k, t)-choosable if G is L colorable for every (k, t)-list assignment L of G. If a graph G is (k, t)-choosable for each positive integer t then G is called k-choosable, and the smallest positive integer k satisfying this property is called the list chromatic number of G denoted by $\chi_{l}(G)$.

Example 1.1.1. Let L be the 2 -list assignment of C_{5} as shown in Figure 1.1.1. That is, $L\left(v_{1}\right)=\{1,2\}, L\left(v_{2}\right)=\{1,3\}, L\left(v_{3}\right)=\{1,2\}, L\left(v_{4}\right)=\{2,3\}$ and $L\left(v_{5}\right)=\{1,3\}$. Because of $\left|\bigcup_{v \in V\left(C_{5}\right)} L(v)\right|=3, L$ is called a (2,3)-list assignment of C_{5}.

Let f be a coloring of C_{5} as shown in Figure 1.1.1. That is, $f\left(v_{1}\right)=2$, $f\left(v_{2}\right)=3, f\left(v_{3}\right)=1, f\left(v_{4}\right)=3$ and $f\left(v_{5}\right)=1$. Because of $f(v) \in L(v)$ for all $v \in V\left(C_{5}\right), f$ is an L-coloring of C_{5}.

Figure 1.1.1: $\mathrm{A}(2,3)$-list assignment of C_{5}.

If there is no ambiguous, each list is written without commas and braces; moreover, each box containing a color from each list represent its coloring in order to simplify our figure. Figure 1.1.2 is the simplify figure of Figure 1.1.1.

Figure 1.1.2: A $(2,3)$-list assignment of C_{5}.

Now, we consider $(2,3)$-choosability of C_{5}. The set of all $(2,3)$-list assignments of C_{5} is divided into eight cases. $L_{1}, L_{2}, \ldots, L_{8}$ in Figure 1.1.3 represent a $(2,3)$-list assignments of C_{5} in each case

The (2,3)-list assignment L_{1} contains four vertices with the same list while L_{2}, L_{3}, L_{4} and L_{5} contain three vertices with the same list. The list assignments L_{6}, L_{7} and L_{8} contain only two vertices with the same list. It is shown in Figore 1.1.3 that C_{5} is L_{i}-colorable for each $i=1,2, \ldots, 8$.

Example 1.1.2. Let G be the graph with eight vertices in Figure 1.1.4. The minimum number of colors in a 3 -list assignment of G occurs when all vertices

Figure 1.1.3: C_{5} is $(2,3)$-choosable.
are assigned by the same list of size 3 while the maximum number of colors in a 3-list assignment of G occurs when all vertices are assigned by mutually disjoint lists as shown in Figure 1.1.4.

Figure 1.1.4: A $(3,3)$-list assignment and a $(3,24)$ list assignment

Unless we say otherwise, our parameters k, n and t in this dissertation are always positive integers such that $t \geq k$ and $t \leq k n$ because when $t<k$ or $t>k n$, there is no (k, t)-list assignment of a graph with n vertices, so it is automatically (k, t)-choosable. If $k \geq n$ then all graphs with n vertices are (k, t)-choosable. Besides, when $k \geq \chi_{l}(G)$, a graph G is always (k, t)-choosable; therefore, we focus on a positive integer k such that $k<\chi_{l}(G)$.

Let $S \subseteq V(G)$. If L is a list assignment of G, we let $\left.L\right|_{S}$ denote L restricted
to S and $L(S)$ denote $\bigcup_{v \in S} L(v)$. For a color set A, let $L-A$ be the new list assignment obtained from L by deleting all colors in A from $L(v)$ for each $v \in V(G)$. When A has only one color a, we write $L-a$ instead of $L-\{a\}$. Examples are illustrated in Figures 1.1.5.

Figure 1.1.5: the list assignment L_{S} of $K_{5}[S]$ where $S=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and the list assignment $L-\{1,7\}$ of K_{5}

1.2 History and Outline

The problem of list assignments was first studied in 1976 by Vizing [21] and by Erdős, Rubin and Taylor [4]. The authors gave a characterization of 2-choosable graphs. However, for a positive integer $k \geq 3$, there has been no literature giving a complete solution of k-choosable graphs, yet only some specific classes of graphs are investigated. For example, all planar graphs are 5 -choosable, while some planar graphs are 3-choosable. (See [11],[20],[19],[23],[24],[25], [26] for more details.)

Finding the list chromatic number of a graph is considered to be a complicated problem. Even in the case of bipartite graphs, a characterization of complete bipartite graphs which are k-choosable is revealed only when $k \leq 3$. Let a and
b be positive integers such that $a \leq b$. Then the complete bipartite graph $K_{a, b}$ is 2 -choosable if and only if $a=1$ or $(a, b) \in\{(2, b) \mid b \leq 3\}$ and $K_{a, b}$ is 3-choosable if and only if $a \leq 2$ or $(a, b) \in\{(3, b) \mid b \leq 26\} \cup\{(4, b) \mid b \leq 20\} \cup\{(5, b) \mid b \leq$ $12\} \cup\{(6, b) \mid b \leq 10\}$. (See [4],[12],[17],[15].) Moreover, for $7 \leq a \leq b$, Erdős et al. showed in [4] that $K_{a, b}$ is not 3-choosable because $K_{7,7}$ is not 3 -choosable. They defined a list assignment from the set of the seven lines in the Fano plane. Given $\mathcal{F}=\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\},\{3,4,7\},\{3,5,6\}\}$, let $L_{\mathcal{F}}$ be the 3 -list assignment of $K_{7,7}$ such that all seven vertices in each partite set are assigned by distinct lists from \mathcal{F}. Erdős et al. proved that $K_{7,7}$ is not $L_{\mathcal{F}}$-colorable. Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that every complete bipartite graph with at most 13 vertices is 3 -choosable. Hence, the smallest complete bipartite graph which is not 3 -choosable has 14 vertices. Fitzpatrick and MacGillivray [5] added that every complete bipartite graph with 14 vertices except $K_{7,7}$ is 3 -choosable. Moreover, $L_{\mathcal{F}}$ is the unique list assignment up to renaming the colors which prevents $K_{7,7}$ from being 3 -choosable. This result inspires us to study more on 3 -choosability of complete bipartite graphs with fifteen vertices and sixteen vertices in Chapter III and Chapter IV.

Since k-choosability implies k-colorability, we have $\chi(G) \leq \chi_{l}(G)$ for every graph G. Note that for a tree $T, \chi(T)=\chi_{l}(T)=2$; however, there exists a graph of which such two parameters are significantly different. These graphs was found in [21] and [4], for all positive integer k, the authors gave a non k choosable complete bipartite graph $K_{m, m}$ where $m=\binom{2 k-1}{k}$ with a list assignment L containing $2 k-1$ colors such that $K_{m, m}$ is not L-colorable. In other words, $K_{m, m}$ is not ($k, 2 k-1$)-choosable. We then are interested in exploring more results when the total number of colors is not $2 k-1$. We investigate (k, t)-choosability of $K_{m, m}$ when $t \neq 2 k-1$ in Chapter V.

Ganjari et al. [6] first defined (k, t)-choosability in order to generalize a characterization of uniquely 2 -list colorable graphs. Besides, Fitzpatrick and MacGillivray [5] proved 3-choosability of complete bipartite graphs with 14 vertices by showing the graphs is $(3, t)$-choosable for each positive integer t.

The dissertation has six chapters, including this introduction in Chapter I. Next, we start studying a (k, t)-list assignment of any graph in Chapter II. We obtain a sufficient condition of a (k, t)-choosable graph with n vertices; if $t \geq k n-$ $k^{2}+1$ then every graph with n vertices is always (k, t)-choosable. Moreover, we prove that this bound is best possible because a graph with n vertices containing $k+1$-clique is not ($k, k n-k^{2}$)-choosable. However, we also improve this bound for a K_{k+1}-free graph; if $k \geq k n-k^{2}-2 k+1$, then every K_{k+1}-free graph with n vertices is (k, t)-choosable and this bound is best possible for a K_{k+1}-free graph with n vertices.

Chapter III and Chapter IV are devoted to solve the problem of the 3choosability of complete bipartite graphs with at most 16 vertices. In 2005, Fitzpatrick and MacGillivray [5] extend the result in [4] and [8] to obtain a stronger result that every complete bipartite graph with 14 vertices except $K_{7,7}$ is 3choosable. Moreover, $L_{\mathcal{F}}$ is the unique list assignment up to renaming the colors which prevents $K_{7,7}$ from being 3 -choosable. In order to keep extending this result to 16 vertices, we establish new strategies in Chapter III, which also lead to an alternative proof of [5].

Chapter V focuses on (k, t)-choosability of $K_{m, m}$ where $m=\binom{2 k-1}{k}$. We give results of (k, t)-choosability of $K_{m, m}$ when $t \neq 2 k-1$; if $t \leq 2 k-2$ or $t \geq 2 k m-2 k^{2}+2 k$, then $K_{m, m}$ is L-colorable, while if $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$ then $K_{m, m}$ is not (k, t)-choosable. In particularly, when $k=3$, we integrate the results in Chapters II, III and IV to conclude our results in Theorems 5.3.1 and
5.3.3. Finally, we summarize results from all chapters and introduce some future work in Chapter VI.

จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER II

ON (k, t)-CHOOSABILITY OF GRAPHS

2.1 Basic Properties and Examples

In Example 2.1.1, we show that $C_{2 n}$ is $(2, t)$-choosable for every positive integer t and $C_{2 n+1}$ is (2,t)-choosable for every positive integer $t \geq 3$. Moreover, we show that $K_{2,3}$ is (2,t)-choosable for every positive integer t.

Example 2.1.1.

(i) Choosability of cycles. The cycle C_{n} is $(2, t)$-choosable unless n is odd and $t=2$.

Note that a graph G is $(2,2)$-choosable if and only if G is 2 -colorable. Hence, C_{n} is $(2,2)$-choosable if and only if n is even. It remains to show that all of the cycles are $(2, t)$-choosable for $t \geq 3$.

Let $t \geq 3$ and L be a ($2, t$)-list assignment of C_{n}. Thus there are two adjacent vertices $v_{1}, v_{n} \in V(G)$ such that $L\left(v_{1}\right) \neq L\left(v_{n}\right)$. Let $v_{2}, v_{3} \ldots, v_{n-1}$ be remaining vertices along the cycle C_{n} where v_{i} is adjacent to v_{i+1} for $i=1,2, \ldots, n-1$. First, we label v_{1} by a color c in $L\left(v_{1}\right)$ which is not in $L\left(v_{n}\right)$ and then we label vertex v_{2} by a color in $L\left(v_{2}\right)$ different from c and so on. This algorithm guarantees that each pair of adjacent vertices receives distinct colors.
(ii) Choosability of $K_{2,3}$. The complete bipartite graph $K_{2,3}$ is $(2, t)$-choosable for every positive integer t.

Let $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the partite sets of $K_{2,3}$ and L be a $(2, t)$-list assignment of $K_{2,3}$. If $L\left(u_{1}\right) \cap L\left(u_{2}\right) \neq \varnothing$, then u_{1} and u_{2} can be colored by
the same color; hence, the remaining vertices in another partite set can be easily colored. Otherwise, $L\left(u_{1}\right) \cap L\left(u_{2}\right)=\varnothing$. There are 4 possible ways to pick a color from each of $L\left(u_{1}\right)$ and $L\left(u_{2}\right)$. Thus, we can choose $c_{1} \in L\left(u_{1}\right)$ and $c_{2} \in L\left(u_{2}\right)$ such that $\left\{c_{1}, c_{2}\right\}$ is distinct from $L\left(v_{i}\right)$ for $i=1,2,3$. Then, we can color v_{i} by a color which is neither c_{1} nor c_{2} in $L\left(v_{i}\right)$ for $i=1,2,3$.

When we try to color all vertices of a graph with some conditions, it tends to success and be easier if we have more colors. However, this is not true for a (k, t)-list assignment. It may not be true that (k, t)-choosability implies $(k, t+1)$ choosability. Example 2.1 .2 illustrates this fact.

Example 2.1.2. Let X, Y be the bipartite sets of $K_{10,10}$. To show that $K_{10,10}$ is (3,4)-choosable, let L be a (3,4)-list assignment of $K_{10,10}$. For any $u \in X$, at least one of the numbers 1,2 is in $L(u)$. Hence, each vertex in X can be colored by only color 1 or 2 . For all $v \in Y$, at least one of the numbers 3,4 is in $L(v)$. Hence, we can color each vertex in Y by only color 3 or 4 .

Figure 2.1.1: A $(3,5)$-list assignment of $K_{10,10}$

To show that $K_{10,10}$ is not $(3,5)$-choosable, let L be the $(3,5)$-list assignment as shown in Figure 2.1.1. At least three colors must be used to color all vertices in each partite set of $K_{10,10}$. However, only five colors are available; hence, there are $u \in X$ and $v \in Y$ receiving the same color. It is a contradiction.

Although (k, t)-choosability does not imply $(k, t+1)$-choosability, if the number t is large enough, we can prove that (k, t)-choosability implies $(k, t+1)$ choosability. In Theorem 2.1.3, Hanson et.al. gives the number of colors we need to guarantee this statement.

Theorem 2.1.3. [8] Let G be an n-vertex graph. If G is L_{1}-colorable for every k-list assignment L_{1} such that $\left|\bigcup_{v \in V(G)} L_{1}(v)\right|=t$ and $n\binom{k}{2}<\binom{t+1}{2}$, then G is L_{2}-colorable for every k-list assignment L_{2} such that $\left|\bigcup_{v \in V(G)} L_{2}(v)\right| \geq t$.

Proof. Since $n\binom{k}{2}<\binom{t+1}{2}$, there exists a pair of colors which does not appear together in a list, say 1,2 . Then we construct a k-list assignment L_{1} defined by

$$
L_{1}(v)= \begin{cases}L_{2}(v) & \text { if } 1 \in L_{2}(v), \\ L_{2}(v) \cup\{1\}-\{2\} & \text { if } 2 \in L_{2}(v) .\end{cases}
$$

Since G is not L_{2}-colorable, G is not L_{1}-colorable.
Definition 2.1.4. [22] Given a collection of sets, $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, a System of Distinct Representatives (SDR) of \mathcal{A} is a set of distinct elements $a_{1}, a_{2}, \ldots a_{n}$ such that $a_{i} \in A_{i}$ for all i.

The following theorem shows the well-known necessary and sufficient condition for the existence of an SDR. Indeed, Hall's Theorem [7] is originally proved in the language of an SDR and is equivalent to Manger's Theorem [13].

Theorem 2.1.5. [22] Given a collection of sets, $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$, an $S D R$ of \mathcal{A} exists if and only if $\left|\bigcup_{i \in J} A_{i}\right| \geq|J|$ for all $J \subset\{1,2, \ldots, n\}$.

Corollary 2.1.6. Let L be a list assignment of a graph G. If $|L(S)| \geq|S|$ for all $S \subset V(G)$, then G is L-colorable. Moreover, there exists an L-coloring such that each vertex of G assigned by distinct colors.

Proof. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. From Theorem 2.1.5, there exist $c_{1} \in L\left(v_{1}\right), c_{2} \in$ $L\left(v_{2}\right), \ldots, c_{n} \in L\left(v_{n}\right)$ such that $c_{1}, c_{2}, \ldots, c_{n}$ are distinct. Thus we define f : $V(G) \rightarrow\{1,2, \ldots, n\}$ by $f\left(v_{i}\right)=c_{i}$; hence, f is an L-coloring.

Theorem 2.1.7 studies a more profound condition than one in Corollary 2.1.6 to conclude an L-colorable graph. Kierstead [10] and He et al. [9] used it to investigate the list chromatic number on some complete multipartite graphs.

Theorem 2.1.7. [10] Let L be a list assignment of a graph G and let $S \subset V(G)$ be a maximal non-empty subset such that $|E(S)|<|S|$. If $G[S]$ is $\left.L\right|_{S}$-colorable then G is L-colorable.

To utilize Theorem 2.1.7 as well as simplify our proof, throughout the rest of the dissertation, we will prove a stronger assumption by considering all nonempty subsets $S \subset V(G)$ such that $|L(S)|<|S|$. We apply this theorem to obtain the expected results.

2.2 On (k, t)-choosability of K_{k+1}-free Graphs

In this section, we first find the parameters k and t such that an n-vertex graph is (k, t)-choosable. Theorem 2.2.2 states that if $t \geq k n-k^{2}+1$, then every n-vertex graph is always (k, t)-choosable and this bound is best possible because an n-vertex graph containing a k-clique is not $\left(k, k n-k^{2}\right)$-choosable. Fortunately, this bound can be improved for K_{k+1}-free graphs. Theorem 2.2.11 states that if $k \geq 3$ and $t \geq k n-k^{2}-2 k+1$, then every n-vertex graph which is K_{k+1}-free is always (k, t)-choosable and Theorem 2.2.12 states that if $t \geq 2 n-6$, then every n-vertex graph which is triangle-free is always $(2, t)$-choosable. Moreover, these bounds are best possible, as well.

The next lemma has a simple proof but quite powerful when we combine with Theorem 2.1.7 in order to obtain Theorem 2.2.2.

Lemma 2.2.1. Let $A_{1}, A_{2}, \ldots, A_{n}$ be k-sets and $J \subset\{1,2, \ldots, n\}$. If $\left|\bigcup_{i=1}^{n} A_{i}\right| \geq$ p, then $\left|\bigcup_{i \in J} A_{i}\right| \geq p-(n-|J|) k$.

Proof. Suppose that $\left|\bigcup_{i \in J} A_{i}\right|<p-(n-|J|) k$. Thus $\left|\bigcup_{i=1}^{n} A_{i}\right| \leq\left|\bigcup_{i \in J} A_{i}\right|+$ $\left|\bigcup_{i \notin J} A_{i}\right|<p-n k+|J| k+k(n-|J|)=p$. It is a contradiction.

Theorem 2.2.2. For an n-vertex graph G, if $t \geq k n-k^{2}+1$ then G is (k, t) choosable.

Proof. Let L be a (k, t)-list assignment of G such that $t \geq k n-k^{2}+1$; that is, we obtain $|L(V(G))|=t \geq k n-k^{2}+1$. Let $S \subset V(G)$. If $|S| \leq k$, then, together with $|L(S)| \geq k$ always, $|L(S)| \geq|S|$. Otherwise, $|S| \geq k+1$. By Lemma 2.2.1, $|L(S)| \geq k n-k^{2}+1-(n-|S|) k=k|S|-k^{2}+1=|S|+(k-1)|S|-k^{2}+1 \geq$ $|S|+(k-1)(k+1)-k^{2}+1=|S|$. Hence $|L(S)| \geq|S|$ for all $S \subset V(G)$; therefore, by Corollary 2.1.6, G is L-colorable.

In particular, Theorem 2.2.2 can be rephrased in terms of a sufficient condition of the existence of an SDR on k-sets, concluded in Corollary 2.2.3.

Corollary 2.2.3. Let $A_{1}, A_{2}, \ldots, A_{n}$ be k-sets. If $\left|\bigcup_{i=1}^{n} A_{i}\right| \geq k n-k^{2}+1$, then $A_{1}, A_{2}, \ldots, A_{n}$ have an $S D R$.

Next, we will prove the bound in Theorem 2.2.2 is best possible by giving an n-vertex graph which is not $\left(k, k n-k^{2}\right)$-choosable.

Theorem 2.2.4. An n-vertex graph containing a $(k+1)$-clique is not (k, t) choosable where $k \leq t \leq k n-k^{2}$.

Proof. Let G be an n-vertex graph containing $(k+1)$-clique K and $k \leq t \leq$ $k n-k^{2}$. Consider a (k, t)-list assignment L of G such that $L(v)=\{1,2, \ldots, k\}$
for each vertex v in K. Because $t-k \leq k(n-k-1)$, it is possible to construct a (k, t)-list assignment L in which the union of lists for the rest $n-k-1$ vertices outside K is $\{k+1, k+2, \ldots, t\}$. However, since every vertex in K receives the same list of size k, we cannot color all vertices in this $(k+1)$-clique. Therefore, G is not L-colorable.

Theorem 2.2.4 shows the necessity of the first part in Theorem 2.2.14. The sufficiency will be held by Theorem 2.2.11. Besides, Theorems 2.2.12 and 2.2.13 are provided to claim the statement for the case $k=2$. To simplify the proofs of our desired theorems, we prove a number of lemmas along the way.

Lemma 2.2.5. Let G be an n-vertex graph. If $k \geq n-2$ and G is $K_{k+1}-f r e e$, then G is (k, t)-choosable for every positive integer t.

Proof. Let L be a (k, t)-list assignment of G where $t \geq k$. By Theorem 2.1.7, it suffices to show that $\forall S \subset V(G)$, if $|L(S)|<|S|$, then $G[S]$ is $\left.L\right|_{S}$-colorable.

Let $S \subset V(G)$ such that $|L(S)|<|S|$. Recall that $|L(S)| \geq k$ and $|S| \leq n \leq$ $k+2$; hence, $|S|=k+1$ or $|S|=k+2$.

Case 1. $|S|=k+1$. We obtain $|L(S)|=k$. Since G is K_{k+1}-free, $G[S]$ is k-colorable. Therefore, $G[S]$ is $\left.L\right|_{S}$-colorable.

Case 2. $|S|=k+2$. Then $S=V(G)$, so $|L(S)|=k$ or $k+1$. Let u, v be nonadjacent vertices of G. If $L(u) \cap L(v)=\varnothing$, then $2 k=|L(u) \cup L(v)| \leq t \leq k+1$. Hence $k \leq 1$, which is a trivial case. Suppose that $c \in L(u) \cap L(v)$.

Case 2.1 $G-\{u, v\}$ is not a complete graph. It is easy to check that a k-vertex graph which is not complete graph is always L^{\prime}-colorable for every $(k-1)$-list assignment L^{\prime}. Therefore, $G-\{u, v\}$ is $(L-c)$-colorable. Together with coloring u and v by c, we have that G is L-colorable.

Case 2.2. $G-\{u, v\}$ is a complete graph. Since $G-\{u, v\}$ has k vertices,
$G-\{u, v\}$ is $\left.L\right|_{V(G-\{u, v\})}$-colorable. Since G does not contain K_{k+1}, each of vertices u, v is adjacent to at most $k-1$ vertices in $G-\{u, v\}$. Therefore, u, v can be colored.

Corollary 2.2.6 is obtained from Lemma 2.2.5. This gives a characterization of an upper bound of some graphs. It then suggests a simple proof to conclude that $\chi_{l}\left(K_{n}-e_{1}-e_{2}\right)= \begin{cases}n-1 & \text { if } e_{1}, e_{2} \in E\left(K_{n}\right) \text { are incident; } \\ n-2 & \text { otherwise. }\end{cases}$

Corollary 2.2.6. Let G be an n-vertex graph. Then $\chi_{l}(G) \leq n-2$ if and only if G contains two pairs of nonadjacent vertices or an independent set of size 3 .

Proof. Let $k=|V(G)|-2$. Assume that G contains two pairs of nonadjacent vertices or an independent set of size 3 . Since G has $k+2$ vertices, it is $K_{k+1^{-}}$free. By Lemma 2.2.5, G is (k, t)-choosable for every positive integer $t \geq k$, i.e. $\chi_{l}(G) \leq k=n-2$.

Conversely, assume that $\chi_{l}(G) \leq k$. Then G is k-colorable. Since $k=n-2$, there exist three vertices assigned the same color or two pairs of vertices such that each pair assigned the same color.

The join of graphs G and H, written $G \vee H$, is the graph obtained from G and H by adding the edges between all vertices of G and all vertices of H.

Lemma 2.2.7. Let G be a K_{k+1}-free graph with $k+3$ vertices. Then G is isomorphic to either $K_{k-1} \vee \overline{K_{4}}$ or $K_{k-2} \vee C_{5}$ if and only if $G-\{u, v\}$ contains a k-clique for every pair of nonadjacent vertices u, v.

Proof. It is easy to check that the necessity is true. For sufficiency, assume that $G-\{u, v\}$ contains a k-clique for every pair of nonadjacent vertices u, v.

Figure 2.2.1: Examples of $K_{k-1} \vee \overline{K_{4}}$ or $K_{k-2} \vee C_{5}$

Since G has $k+3$ vertices and does not contain any $(k+1)$-clique, G contains four distinct vertices $u_{1}, u_{2}, v_{1}, v_{2}$ such that u_{i} is not adjacent to v_{i} for $i=1,2$. Let $X=\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$ and $H=G-X$. By the assumption, $G-\left\{u_{1}, v_{1}\right\}$ contains a k-clique. Since $G-\left\{u_{1}, v_{1}\right\}$ has $k+1$ vertices, exactly one vertex among nonadjacent vertices u_{2}, v_{2} must be in such k-clique, say v_{2}. That is, $V(H) \cup\left\{v_{2}\right\}$ is a k-clique. Similarly, we may assume that $V(H) \cup\left\{v_{1}\right\}$ is a k clique by considering $G-\left\{u_{2}, v_{2}\right\}$. As a consequence, v_{1} is not adjacent to v_{2}; otherwise, G contains a $(k+1)$-clique. (See Figure 2.2.2.)

Figure 2.2.2: $V(H) \cup\left\{v_{1}\right\}$ and $V(H) \cup\left\{v_{2}\right\}$ are k-cliques while $v_{1} \nleftarrow u_{1}, v_{2} \nleftarrow u_{2}$ and $v_{1} \nleftarrow v_{2}$.

Suppose both u_{1} and u_{2} are adjacent to every vertex in H. If X is not an independent set, then G contains a $(k+1)$-clique which is a contradiction. If X is an independent set, then G is isomorphic to $K_{k-1} \vee \overline{K_{4}}$. Now, we can suppose that there is $w \in V(H)$ such that w is not adjacent to u_{1}.

We know that $G-\left\{u_{1}, w\right\}$ has $k+1$ vertices and contains a k-clique. Since v_{2} is not adjacent to v_{1} and u_{2}, the vertex v_{2} cannot be in the k-clique. Therefore, $V(H-w) \cup\left\{v_{1}, u_{2}\right\}$ forms a k-clique. Besides, u_{2} is not adjacent to w; otherwise,
$V(H) \cup\left\{v_{1}, u_{2}\right\}$ forms a $(k+1)$-clique. (See Figure 2.2.3.)

Figure 2.2.3: $G-\left\{w, u_{1}, v_{2}\right\}$ is a complete graph with k vertices.

Similarly, considering $G-\left\{w, u_{2}\right\}$, we obtain that $V(H-w) \cup\left\{v_{2}, u_{1}\right\}$ forms a k-clique.

Finally, we consider $G-\left\{v_{1}, v_{2}\right\}$. Then w cannot be in any k-clique of $G-$ $\left\{v_{1}, v_{2}\right\}$ because w is not adjacent to both u_{1} and u_{2}. Then $V(H-w) \cup\left\{u_{1}, u_{2}\right\}$ forms a k-clique. That is, u_{1} is adjacent to u_{2}. (See Figure 2.2.4.) Therefore, $\left\{w, v_{1}, u_{2}, u_{1}, v_{2}\right\}$ forms a cycle of length 5 and $H-w$ is a complete graph with $k-2$ vertices; moreover, all vertices of C_{5} are adjacent to all vertices of $H-w$.

Figure 2.2.4: $\left\{w, v_{1}, u_{2}, u_{1}, v_{2}\right\}$ forms a cycle of length 5

Lemma 2.2.8. If a $(k+3)$-vertex graph is K_{k+1}-free, then it is (k, t)-choosable for $t \geq k+1$.

Proof. Let G be a graph with $k+3$ vertices and L be a (k, t)-list assignment of G. Assume that G does not contain K_{k+1} as a subgraph and $t \geq k+1$. Let $S \subset V(G)$ such that $|L(S)|<|S|$. It suffices to show by Theorem 2.1.7 that $G[S]$ is $\left.L\right|_{S}$-colorable. If $k=1$ then G has no edges. Therefore, it is $(1, t)-$ choosable for every positive integer t. If $k=2$, then G is triangle-free and has

5 vertices which could be only C_{5} or a subgraph of $K_{2,3}$. By Example 2.1.1, G is (2,t)-choosable for $t \geq 3$. If $|S|=k+1, k+2$, then the statement holds by Lemma 2.2.5.

Now, assume that $k \geq 3$ and $|S|=k+3$; that is, $S=V(G)$.
Case 1. There exists a pair of nonadjacent vertices $u, v \in V(G)$ such that $G-\{u, v\}$ does not contain a k-clique. Since $t=|L(V(G))|<|V(G)|=k+3$, we obtain $t \leq k+2$. Moreover, $L(u) \cap L(v) \neq \varnothing$ since $k \geq 3$. Let $c \in L(u) \cap L(v)$. By Lemma 2.2.5, $G-\{u, v\}$ is $\left.(L-c)\right|_{V(G-\{u, v\})}$-colorable. Extend this to an L-coloring of G by coloring vertices u, v with color c.

Case 2. $G-\{u, v\}$ contains a k-clique for every pair of nonadjacent vertices u, v. Apply Lemma $2.2 .7 ; G$ can be only two possible graphs. If $G \cong K_{k-1} \vee \overline{K_{4}}$, then first color all vertices in K_{k-1} and then choose a remaining color in $L(v)$ to color v for each $v \in \overline{K_{4}}$. Otherwise, $G \cong K_{k-2} \vee C_{5}$. Begin with coloring all vertices of K_{k-2}; each vertex of C_{5} has at least two remaining colors. The total number of remaining colors is at least $t-(k-2) \geq 3$. So, by Example 2.1.1, every vertex of C_{5} can be colored. Therefore, G is L-colorable.

In the next two following lemmas, we focus on 2-list assignments. Both two lemmas are prepared for Theorem 2.2.12.

Lemma 2.2.9. Graphs G_{1} and G_{2} in Figure 2.2 .5 are $(2,5)$-choosable.

Figure 2.2.5: $(2,5)$-choosable graphs

Proof. Let L be a $(2,5)$-list assignment of G_{1}. Since $\left|L\left(V\left(G-v_{6}\right)\right)\right| \geq 3, G-v_{6}$ has an $\left.L\right|_{V\left(G-v_{6}\right)}$-coloring, say ϕ_{1}. Now, ϕ_{1} can be extend to be an L-coloring unless, without loss of generality, $L\left(v_{6}\right)=\{1,2\}$ and $\phi_{1}\left(v_{2}\right)=1, \phi_{1}\left(v_{5}\right)=2$.

In such case, let ϕ_{2} be a new $\left.L\right|_{V\left(G-v_{6}\right)}$-coloring such that $\phi_{2}\left(v_{2}\right)=A \in$ $L\left(v_{2}\right)-\left\{\phi_{1}\left(v_{2}\right)\right\}$ and $\phi_{2}(v)=\phi_{1}(v)$ for the remaining vertices v. Notice that A can be any color from $\{2,3,4,5\}$. If ϕ_{2} is a proper coloring then it can be extend to be an L-coloring. In the remaining case, suppose ϕ_{2} is not a proper coloring. That is, $\phi_{2}\left(v_{1}\right)=A$ or $\phi_{2}\left(v_{3}\right)=A$. Both two cases have similar proof; hence, we suppose that $\phi_{2}\left(v_{3}\right)=A$.

Again, we let ϕ_{3} be a new $L V_{V\left(G-v_{6}\right)}$-coloring such that $\phi_{3}\left(v_{3}\right)=B \in L\left(v_{3}\right)-$ $\left\{\phi_{2}\left(v_{3}\right)\right\}$ and $\phi_{3}(v)=\phi_{2}(v)$ for the remaining vertices v. If ϕ_{3} is a proper coloring then it can be extend to be an L-coloring. Otherwise, we define a new $\left.L\right|_{V\left(G-v_{6}\right)^{-}}$ coloring and so on. Finally, if all new $\left.L\right|_{V\left(G-v_{6}\right)}$-colorings are not proper then we know the list assignment L of G_{1} shown in Figure 2.2.6. Since L have 5 colors, we know that $\{A, B, C\}=\{3,4,5\}$. Therefore, we easily investigate an L-coloring of G_{1}.

Figure 2.2.6: The list assignment L of G_{1}

Let L be a $(2,5)$-list assignment of G_{2}. Since $\mid L\left(V\left(G_{2}\right) \mid=5\right.$, we obtain an L-coloring of $G-v_{3} v_{6}$, say ϕ_{1}. The L-coloring ϕ_{1} is also an L-coloring of G_{2} unless $\phi_{1}\left(v_{3}\right)=\phi_{1}\left(v_{6}\right)$. In such case, let ϕ_{2} be a new L-coloring of $G-v_{3} v_{6}$ such that $\phi_{2}\left(v_{3}\right)=A \in L\left(v_{3}\right)-\left\{\phi_{2}\left(v_{3}\right)\right\}$ and $\phi_{2}(v)=\phi_{1}(v)$ for the remaining vertices
v. If ϕ_{2} is proper, then it is an L-coloring of G_{2}. In case ϕ_{2} is not proper, we define a new L-coloring of $G-v_{3} v_{6}$, We continue to define a new L-coloring of $G-v_{2} v_{6}$ similar to the proof of G_{1}. Finally, if all new L-colorings of $G-v_{3} v_{6}$ are not proper, we obtain the list assignment L of G_{2} shown in Figure 2.2.7. Since L have 5 colors, we know that $\{A, B, C, D\}=\{2,3,4,5\}$. Therefore, we easily investigate an L-coloring of G_{2}.

Figure 2.2.7: The list assignment L of G_{2}

Lemma 2.2.10. A triangle-free graph with six vertices is $(2,5)$-choosable if and only if it is neither $K_{3,3}$ nor $K_{3,3}-e$.

Proof. The $(2,5)$-list assignment L of $K_{3,3}$ or $K_{3,3}-e$ shown in Figure 2.2.8 has no proper coloring.

Figure 2.2.8: A $(2,5)$-list assignment of $K_{3,3}$ and $K_{3,3}-e$

Let G be a triangle-free graph with six vertices and L be a $(2,5)$-list assignment of G. Assume that G is neither $K_{3,3}$ nor $K_{3,3}-e$. If G has no cycle, G can be easily colored. If G contains only one cycle, then we can color the cycle,
and the remaining vertices outside the cycle can be easily colored. Assume G contains at least 2 cycles. Since G is a triangle-free graph, G is one of the graphs in Lemma 2.2.9. Therefore, G is L-colorable.

Now, we are ready to prove our theorems. Start with Theorem 2.2.11.

Theorem 2.2.11. Let $k \geq 3$. A K_{k+1}-free graph with n vertices is (k, t) choosable for $t \geq k n-k^{2}-2 k+1$.

Proof. Let $k \geq 3, t \geq k n-k^{2}-2 k+1$ and G be a K_{k+1}-free graph with n vertices. Let $S \subset V(G)$ be such that $|L(S)|<|S|$. We will prove that $G[S]$ is $\left.L\right|_{S}$-colorable in order to utilize Theorem 2.1.7. By Lemma 2.2.1, $|S| k-k^{2}-2 k+1 \leq|L(S)|<$ $|S|$. Hence $|S|<k+3+\frac{2}{k-1}$;i.e. $|S| \leq k+3$.

If $|S| \leq k+2$, then $G[S]$ is $\left.L\right|_{S}$-colorable by Lemma 2.2.5. If $|S|=k+3$ and $|L(S)|=k$ then by Lemma 2.2.1 we obtain $t=|L(V(G))| \leq k n-k^{2}-2 k$, a contradiction. Otherwise, $|S|=k+3$ and $|L(S)| \geq k+1$; hence $G[S]$ is also $\left.L\right|_{S}$-colorable by Lemma 2.2.8.

It is worth mentioning that Theorem 2.2.11 is not true when $k=2$. However, the statement is correct if the bound is slightly improved. This is illustrated in Theorem 2.2.12. Furthermore, Theorem 2.2.13 reveals all graphs forbidding the case for which Theorem 2.2.11 fails when $k=2$.

Theorem 2.2.12. A triangle-free graph with n vertices is $(2, t)$-choosable where $t \geq 2 n-6$.

Proof. Assume that G is a triangle-free graph with n vertices. Let $S \subset V(G)$ such that $|L(S)|<|S|$. Again, we will show that $G[S]$ is $\left.L\right|_{S}$-colorable in order to utilize Theorem 2.1.7. By Lemma 2.2.1, $2|S|-6 \leq|L(S)|<|S|$. Hence $|S|<6$. If $|S| \leq 4$ then $G[S]$ is $\left.L\right|_{S}$-colorable by Lemma 2.2.5. Now assume that
$|S|=5$. By Lemma 2.2.1, $|L(S)| \geq 2 n-6-2(n-|S|)=4$; therefore, $G[S]$ is $\left.L\right|_{S}$-colorable by Lemma 2.2.8.

Theorem 2.2.13. A triangle-free graph with n vertices is $(2,2 n-7)$-choosable if and only if it does not contain $K_{3,3}-e$ as a subgraph.

Proof. Let G be a triangle-free graph with n vertices.
Necessity. Assume that G contains $K_{3,3}-e$ as a subgraph. We will find a $(2,2 n-7)$-list assignment of G such that G is not L-colorable. First, assign lists of colors for vertices in $K_{3,3}-e$ shown in Figure 2.2.8. Assign disjoint sets of colors to each remaining $n-6$ vertices; this uses $2 n-12$ colors. Thus we obtain $(2,2 n-7)$-list assignment L of G. Since $K_{3,3}-e$ is not $\left.L\right|_{V\left(K_{3,3}-e\right)}$-colorable, G is not L-colorable.

Sufficiency. Assume that G does not contain $K_{3,3}-e$ as a subgraph. Let L be a $(2,2 n-7)$-list assignment of G. Let $S \subset V(G)$ such that $|L(S)|<|S|$. By Theorem 2.1.7, it suffices to show that $G[S]$ is $\left.L\right|_{S}$-colorable.

By Lemma 2.2.1, $2|S|-7 \leq|L(S)|<|S|$; therefore, $|S| \leq 6$. If $|S|=6$, then $|L(S)| \geq 2 \cdot 6-7=5$; hence, the proof is done by Lemma 2.2.10. If $|S|=5$, then $|L(S)| \geq 2 \cdot 5-7=3$, so the proof is done by Lemma 2.2.8. Otherwise, $|S| \leq 4$. Since $G[S]$ is triangle-free, it is a subgraph of $K_{2,3}$; hence, it is L-colorable by Example 2.1.1. Therefore, $G[S]$ is $\left.L\right|_{S}$-colorable.

Theorem 2.2.14. Let n, k, t be positive integers such that $n k-k^{2}-2 k+1 \leq$ $t \leq n k-k^{2}$ and $3 \leq k \leq n-3$. An n-vertex graph is (k, t)-choosable if and only if it is K_{k+1}-free. Moreover, for $k=2$ and $2 n-6 \leq t \leq 2 n-4$, an n-vertex graph is $(2, t)$-choosable if and only if G is triangle-free.

Proof. Theorem 2.2.4 and Theorem 2.2.11 are necessity and sufficiency for the case $k \geq 3$ this theorem. Furthermore, Theorems 2.2.4, 2.2.12 and 2.2.13 prove the remaining case of the theorem.

We next step further to the case $k \leq t \leq n k-k^{2}-2 k$. Some K_{k+1}-free graphs with n vertices are (k, t)-choosable. Theorem 2.2.15 gives us forbidden graphs.

Theorem 2.2.15. Let G be an n-vertex graph and $k \leq t \leq n k-k^{2}-2 k$ where $k \geq 2$. If G contains $C_{5} \vee K_{k-2}$ then G is not (k, t)-choosable.

Proof. Consider a (k, t)-list assignment L of G such that $L(v)=\{1,2, \ldots, k\}$ for every vertex v in $C_{5} \vee K_{k-2}$. It is possible to construct such (k, t)-list assignment L because $t-k \leq k(n-k-3)$. Notice that the union of lists for the rest $n-k-3$ vertices outside $C_{5} \vee K_{k-2}$ is $\{k+1, k+2, \ldots, t\}$. However, since every vertex in $C_{5} \vee K_{k-2}$ receives the same list of size k, we cannot color all vertices in $C_{5} \vee K_{k-2}$. Therefore, G is not L-colorable.

CHAPTER III

ON 3-CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS

3.1 Background

In [4], the authors illustrated the list assignment L such that $K_{7,7}$ is not L colorable. Such list assignment originated from the Fano plane which is defined in Notation 3.1.1.

Notation 3.1.1. Let $\mathcal{F}=\{\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\}$, $\{3,4,7\},\{3,5,6\}\}$ and $L_{\mathcal{F}}$ be the 3 -list assignment of $K_{7,7}$ such that all seven vertices in each partite set are assigned by distinct lists from \mathcal{F}.

Later, in 1996, Hanson, MacGillivray, and Toft [8] proved that every complete bipartite graph with at most 13 vertices is 3 -choosable. Hence, the smallest complete bipartite graph which is not 3 -choosable has 14 vertices. Fitzpatrick and MacGillivray [5] added that every complete bipartite graph with 14 vertices except $K_{7,7}$ is 3 -choosable. Moreover, $L_{\mathcal{F}}$ is the unique list assignment up to renaming the colors which prevents $K_{7,7}$ from being 3 -choosable. We will give another proof of this statement in Theorem 3.3.6.

It is noticeable that renaming the colors in a list assignment does not affect its colorability. Thus, all results throughout the rest of dissertation does not depend on renaming the colors.

In Section 3.2, we first establish new strategies which can be utilized to verify

3-choosability of complete bipartite graphs. In Section 3.3, we use our strategies to obtain another proof of [5] and in Section 3.4, we also extend this result to a complete bipartite graph with 15 vertices. We prove that every complete bipartite graph with 15 vertices is 3 -choosable except $K_{7,8}$. Besides, for a 3 -list assignment $L, K_{7,8}$ is not L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$. New notations and definitions used in Chapter 3 and chapter 4 are defined in Notations 3.1.2, 3.1.3 and Definition 3.1.4. Example 3.1.5 illustrate these notations and definitions.

Notation 3.1.2. Let L be a list assignment of the complete bipartite graph $K_{a, b}$. The notation L_{a} and L_{b} denote the collections of lists assigned to the vertices in the partite sets with a and b vertices, respectively. If $a=b$, we use the notation $L_{a(i)}$ and $L_{a(i i)}$.

Notation 3.1.3. For convenience, we write lists without commas and braces. For example, we write $\{123,145,167,246,257,347,356\}$ in stead of $\{\{1,2,3\}$, $\{1,4,5\},\{1,6,7\},\{2,4,6\},\{2,5,7\},\{3,4,7\},\{3,5,6\}\}$. For a list A, the notation $A-1$ represents the list which is obtained from A by removing color 1 from A. Similarly, the notation $A-12$ represents the list which is obtained from A by removing color 1 and color 2 from A.

Definition 3.1.4. Given a collection of lists $\mathbb{X}=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$, a coloring of \mathbb{X} is a set $C \subseteq X_{1} \cup X_{2} \cup \ldots \cup X_{n}$ such that $C \cap X_{i} \neq \varnothing$ for all $i=1,2, \ldots, n$. A coloring C of \mathbb{X} is called a t-coloring if $|C|=t$.

Notice that a coloring of a collection of lists \mathbb{X} is not necessary a coloring of a graph G; for example, if a graph G has $|\mathbb{X}|$ vertices and has no edge, and L is a list assignment of G such that all vertices of G are assigned by distinct lists from \mathbb{X}, then a coloring of \mathbb{X} and an L-coloring of G are the same. We are interested in a collection of lists \mathbb{X} when it is a collection of lists which are assigned to all
vertices in a partite set of complete bipartite graphs. Example 3.1.5 illustrates these notations.

Example 3.1.5. Let L be the list assignment of $K_{3,3}$ as shown in Figure 3.1.1. Then $L_{3(i)}=\{12,13,45\}$ and $L_{3(i i)}=\{14,15,23\}$. Since $1 \in 12,13$ and $4 \in 45$, we conclude that $\{1,4\}$ is a 2 -coloring of $L_{3(i)}$. Similarly, $\{1,5\}$ is a 2 -coloring of $L_{3(i)}$ while $\{2,3,4\}$ and $\{2,3,5\}$ are 3 -colorings of $L_{3(i)}$.

Figure 3.1.1: The list assignment L of $K_{3,3}$

3.2 Strategies

In order to prove our desire results, we may prove many similar cases. We group similar cases together and construct tools for each group. First, we introduce a lemma by Hanson, MacGillivray and Toft [8] which will be used throughout this section.

Lemma 3.2.1. [8] Let L be a list assignment of the complete bipartite graph $K_{a, b}$. Then $K_{a, b}$ is not L-colorable if and only if every coloring of $L_{a}\left(\right.$ or $\left.L_{b}\right)$ has a subset that is a list in $L_{b}\left(\right.$ or $\left.L_{a}\right)$.

Proof. Necessity. Assume that there is a coloring C of L_{a} which does not contain any lists in L_{b}. Then after we color L_{a} by C, each list in L_{b} still has an available color. Hence $K_{a, b}$ is L-colorable.

Sufficiency. Assume that every coloring of L_{a} has a subset that is a list in L_{b}.

Let C be any coloring of L_{a}. So, there exists B_{i} in L_{b} such that $B_{i} \subseteq C$. Then we cannot use C to color vertices in L_{a} because there is no color left to color B_{i}.

We introduce six theorems, called strategies, which can be applied to prove 3 -choosability complete of bipartite graphs. To begin with, we find a sufficient condition of $K_{a, b}$ to be L-colorable when all lists in L_{a} are mutually disjoint.

Theorem 3.2.2. (Strategy A) Let L be a list assignment of $K_{a, b}$ with $L_{a}=$ $\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}, L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ and all lists have size at most 3 . If all lists in L_{a} are mutually disjoint and $\prod_{i=1}^{a}\left|A_{i}\right|>3^{a-1} n_{1}+\left\lfloor 3^{a-2}\right\rfloor n_{2}+\left\lfloor 3^{a-3}\right\rfloor n_{3}$ where $n_{i}=\left|\left\{B \in L_{b},|B|=i\right\}\right|$ for $i=1,2,3$, then $K_{a, b}$ is L-colorable.

Proof. Since there are $\left|A_{i}\right|$ possible ways to color the list A_{i} for each i and all A_{i} 's are mutually disjoint, the number of a-colorings of L_{a} is $\prod_{i=1}^{a}\left|A_{i}\right|$. Now we count the number of those a-colorings containing each B_{i} of L_{b} for $i=1,2, \ldots, b$. Consider $B_{i} \in L_{b}$.

Case 1. $\left|B_{i}\right|=1$, say $B_{i}=r$. If $r \notin A_{j}$ for all $j=1,2, \ldots, j$, then all a-colorings of L_{a} do not contain B_{i}. Without loss of generality, suppose that $r \in A_{1}$. To complete an a-coloring of L_{a}, we choose the other $a-1$ colors each from the remaining A_{j} where $j=2,3, \ldots, a$. Thus the number of the a-colorings of L_{a} containing r is $\prod_{j=2}^{a}\left|A_{j}\right|$. That is, the number of the a-colorings of L_{a} which contain B_{i} as a subset is at most 3^{a-1}.

Case 2. $\left|B_{i}\right|=2$, say $B_{i}=r s$. Consider an a-coloring of L_{a} containing both r and s. Without loss of generality, suppose that $r \in A_{1}$ and $s \in A_{2}$. To complete an a-coloring of L_{a}, we choose the other $a-2$ colors each from the remaining A_{j} where $j=3,4, \ldots, a$. Thus the number of the a-colorings of L_{a} which contain B_{i} as a subset is $\prod_{j=3}^{a}\left|A_{j}\right|$. That is, the number of the a-colorings
of L_{a} which contain B_{i} as a subset is at most 3^{a-2}. Note that in case $a=1$, all a-colorings are 1-colorings; hence, the number of a-colorings contains B_{i} as a subset is $\left\lfloor 3^{a-2}\right\rfloor=0$.

Case 3. $\left|B_{i}\right|=3$, say $B_{i}=r s t$. Consider an a-coloring of L_{a} containing r, s and t. Without loss of generality, suppose that $r \in A_{1}, s \in A_{2}, t \in A_{3}$. Again, we choose the other $a-3$ colors from each A_{j} where $j=4,5, \ldots, a$. Thus the number of the a-colorings of L_{a} which contain B_{i} as a subset is $\prod_{j=4}^{a}\left|A_{j}\right|$. That is, the number of the a-colorings of L_{a} which contain B_{i} as a subset is at most 3^{a-3}. Note that in case $a \leq 2$, all a-colorings are 1-colorings or 2-colorings; hence, the number of a-colorings contains B_{i} as a subset is $\left\lfloor 3^{a-3}\right\rfloor=0$.

Hence L_{a} has at most $3^{a-1} n_{1}+\left\lfloor 3^{a-2}\right\rfloor n_{2}+\left\lfloor 3^{a-3}\right\rfloor n_{3} a$-colorings containing some B_{i}. Since the number of a-colorings of L_{a} is $\prod_{j=1}^{a}\left|A_{j}\right|$ and $\prod_{j=1}^{a}\left|A_{j}\right|>$ $3^{a-1} n_{1}+\left\lfloor 3^{a-2}\right\rfloor n_{2}+\left\lfloor 3^{a-3}\right\rfloor n_{3}$, there exists a coloring of L_{a} which does not contain any list in L_{b}. Therefore, $K_{a, b}$ is L-colorable.

Notation 3.2.3. We can conclude the same result if we consider the other way around, that is, the assumption in Strategy A for a list assignment L of $K_{a, b}$ becomes all lists in L_{b} are mutually disjoint and $\prod_{i=1}^{b}\left|B_{i}\right| \leq 3^{b-1} n_{1}+\left\lfloor 3^{b-2}\right\rfloor n_{2}+$ $\left\lfloor 3^{b-3}\right\rfloor n_{3}$, where $n_{i}=\left|\left\{A \in L_{a},|A|=i\right\}\right|$ for $i=1,2,3$. Then we call it Strategy A for L_{b} and we call the original version Strategy A for L_{a}.

A remark from Strategy A, if $\prod_{i=1}^{a}\left|A_{i}\right|>3^{a-1} n_{1}+\left\lfloor 3^{a-2}\right\rfloor n_{2}+\left\lfloor 3^{a-3}\right\rfloor n_{3}$ where $n_{i}=\left|\left\{A \in L_{a},|A|=i\right\}\right|$ for $i=1,2,3$, then $K_{a, b}$ may not L-colorable. For example, let L be a 3 -list assignment of $K_{3,27}$ such that $L_{3}=\{123,456,789\}$ and $L_{27}=\{a b c \mid a \in 123, b \in 456, c \in 789\}$.

The next five strategies, B, C, D, E and F, can be used to color $K_{a, b}$ with respect to a list assignment L in the case that a color appears in at least $a-$ $1, a-2, a-3$ and $a-4$ in L_{a}, respectively. The next strategy is called Strategy B
for L_{a} and we can define Strategy B for L_{b}, similarly.

Theorem 3.2.4. (Strategy B) Let L be a 3 -list assignment of $K_{a, b}$. If a color appears in $a-1$ lists in L_{a}, then $K_{a, b}$ is L-colorable.

Proof. Notice that L_{a} can be labeled by at most two colors. Since every list in L_{b} has size 3, all list in L_{b} still have available colors.

Remark 3.2.5. Let L be a list assignment of $K_{a, b}$ and C be a 2-coloring of L_{a}. Then,
(i) if L is a 3 -list assignment then $K_{a, b}$ is L-colorable;
(ii) if all lists of size at most 2 in L_{b} have a color which is not in C, then $K_{a, b}$ is L-colorable.

Theorem 3.2.6. (Strategy C) Let L be a 3-list assignment of $K_{a, b}$ such that each color appears in at most eight lists in L_{b}. If a color appears in $a-2$ lists in L_{a} then $K_{a, b}$ is L-colorable.

Proof. Strategy B takes care the case that a color appears in more than $a-2$ lists in L_{a}. Assume that a color appears in exactly $a-2$ lists in L_{a}. If the two remaining lists in L_{a} have a common color, then there exists a 2 -coloring of L_{a}. Since all lists in L_{b} are of size $3, K_{a, b}$ is L-colorable by Remark 3.2.5. Suppose that the two remaining lists in L_{a} have no common color. Hence, L_{a} has at least nine 3 -colorings containing color 1 . However, by the assumption, color 1 appears in at most eight lists in L_{b}. Thus, at least one of such nine 3 -colorings is not a list in L_{b}. Therefore, by Lemma 3.2.1 $K_{a, b}$ is L-colorable.

Theorem 3.2.7. (Strategy D) Let L be a 3 -list assignment of $K_{a, b}$ such that each color appears in at most r lists in L_{b}. If a color appears in $a-3$ lists in L_{a} and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq 22\} \cup\{(3, b) \mid b \leq 14\} \cup\{(4, b) \mid b \leq 12\} \cup\{(5, b) \mid b \leq 9\}$, then $K_{a, b}$ is L-colorable.

Proof. Let $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}$ and $L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$.If a color appears in more than $a-3$ lists, we apply Strategy C. Assume that color 1 appears in exactly $a-3$ lists in L_{a}, and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq 22\} \cup\{(3, b) \mid b \leq 14\} \cup\{(4, b) \mid b \leq$ $12\} \cup\{(5, b) \mid b \leq 9\}$. Without loss of generality, let $1 \in A_{1}, A_{2}, \ldots, A_{a-3}$. First, we label $A_{1}, A_{2}, \ldots, A_{a-3}$ by color 1 . Now, we consider the remaining vertices which form $K_{3, b}$. For the worst case, we may suppose that $1 \in B_{1}, B_{2}, \ldots, B_{r}$. Let L^{\prime} be the list assignment of $K_{3, b}$ which is obtained from L by removing color 1. Notice that $L_{3}^{\prime}=\left\{A_{a-2}, A_{a-1}, A_{a}\right\}$ and $L_{b}^{\prime}=\left\{B_{1}-1, \ldots, B_{r}-1, B_{r+1} \ldots, B_{b}\right\}$. If $A_{a-2} \cap A_{a-1} \cap A_{a} \neq \varnothing$ then there is a 2 -coloring of L_{a};hence, $K_{a, b}$ is L-colorable by Remark 3.2.5. Suppose that $A_{a-2} \cap A_{a-1} \cap A_{a}=\varnothing$.

Case 1. $\left|A_{a-2} \cap A_{a-1}\right|=2$.
Let $2,3 \in A_{a-2}, A_{a-1}$ and $A_{a}=456$. Then L_{a} has at least six 3 -colorings, called $\{1,2,4\},\{1,2,5\},\{1,2,6\},\{1,3,4\},\{1,3,5\},\{1,3,6\}$. Since $r \leq 5$, at least one of the six 3 -colorings is not a list in L_{b}. By Lemma 3.2.1, $K_{a, b}$ is L-colorable.

Case 2. $\left|A_{a-2} \cap A_{a-1}\right|=1$.
Let $A_{a-2}=234, A_{a-1}=256$ and $A_{a}=p q r$ where $p, q, r \notin\{1,2\}$. Then we divide this case into several subcases.

Case $2.1\{p, q, r\} \cap\{3,4,5,6\} \neq \varnothing$.
Without loss of generality, we let $p=3$. Then L_{a} has at least five 3 -colorings, called $\{1,2,3\},\{1,2, q\},\{1,2, r\},\{1,3,5\},\{1,3,6\}$. If one of such 3 -colorings is not a list in L_{b}, then $K_{a, b}$ is L-colorable by Lemma 3.2.1. Suppose that such 3 -colorings are lists in L_{b}. Thus $r=5$ and $b \leq 9$. Let $B_{1}=123, B_{2}=12 q, B_{3}=$ $12 r, B_{4}=135$ and $B_{5}=136$. We label $B_{1}, B_{2}, B_{3}, B_{4}$ and B_{5} by color 2 and color 3 . Now, the remaining vertices form $K_{3, b-5}$ where $b \leq 9$. For the worst case, we suppose $b=9$. Let $L^{\prime \prime}$ be the list assignment of $K_{3,4}$ which is obtained from L^{\prime} by removing color 2. Then $L_{3}^{\prime \prime}=\{4,56, q r\}$ and $L_{4}^{\prime \prime}=\left\{B_{6}, B_{7}, \ldots, B_{9}\right\}$.

If $L_{3}^{\prime \prime}$ has a 2 -coloring, then $K_{3,4}$ is $L^{\prime \prime}$-colorable by Remark 3.2.5. Hence, suppose that $L_{3}^{\prime \prime}$ has no 2 -coloring. That is, $q, r \notin\{4,5,6\}$. We let $q=7$ and $r=8$. Then $L_{3}^{\prime \prime}$ has four 3 -colorings, namely $\{4,5,7\},\{4,5,8\},\{4,6,7\},\{4,6,8\}$. Again, we suppose that such 3 -colorings are lists in $L_{4}^{\prime \prime}$. Now, $L_{b}=L_{9}=$ $\{123,127,128,135,136,457,458,478,468\}$. Hence, color 1 and color 4 form a 2-coloring of L_{b}. By Remark 3.2.5, $K_{a, b}$ is L-colorable.

Case $2.2 p, q, r \notin\{3,4,5,6\}$.
Let $p=7, q=8$ and $r=9$. Then $\{1,2,7\},\{1,2,8\}$ and $\{1,2,9\}$ are 3 -colorings of L_{a}. Again, by Lemma 3.2.1, $K_{a, b}$ is L-colorable unless the case that L_{b} contains 127, 128 and 129. Let $B_{1}=127, B_{2}=128, B_{3}=129$. Thus $r \geq 3$. Next, we label B_{1}, B_{2}, B_{3} by color 2. Let $L^{\prime \prime}$ be the list assignment of $K_{3, b-3}$ which is obtained from L^{\prime} by removing color 2 . Then $L_{3}^{\prime \prime}=\left\{A_{a-2}-2, A_{a-1}-2, A_{a}\right\}$ and $L_{b-3}^{\prime \prime}=\left\{B_{4}-1, \ldots, B_{r}-1, B_{r+1}, B_{r+2}, \ldots, B_{b}\right\}$. Now, we apply Strategy A for $L_{3}^{\prime \prime}$.

Case 2.2.1 $r=3$. Then all lists in $L_{b-3}^{\prime \prime}$ are of size 3. We apply Strategy A for $L_{3}^{\prime \prime}$ because $12>3^{3-3}(b-3)$.

Case 2.2.2 $r=4$. For the worst case, we suppose that $1 \in B_{4}$. That is $L_{b-3}^{\prime \prime}$ has exactly one lists of size 2 and the remaining lists are of size 3. Again, we apply Strategy A for $L_{3}^{\prime \prime}$ because $12>3^{3-2} \cdot 1+3^{3-3}(b-4)$.

Case 2.2.3 $r=5$. For the worst case, we suppose that $1 \in B_{4}, B_{5}$. That is $L_{b-3}^{\prime \prime}$ has exactly two lists of size 2 and the remaining lists are of size 3. Again, we apply Strategy A for $L_{3}^{\prime \prime}$ because $12>3^{3-2} \cdot 2+3^{3-3}(b-5)$.

Case 3. A_{a-2}, A_{a-1}, A_{a} are mutually disjoint.
Then $\left|A_{a-2}\right| \cdot\left|A_{a-1}\right| \cdot|A|=3^{3}$ Now, we use Strategy A for L_{3}^{\prime}. Note that there are r lists in L_{b} containing color 1 . So the number of lists of size 2 and size 3 in L_{b}^{\prime} are $n_{2}=r$ and $n_{3}=b-r$, respectively. Thus $3 \cdot r+(b-r)<3^{3}$. Hence $K_{3, b}$
is L^{\prime}-colorable by Strategy A for L_{3}^{\prime}. Therefore, $K_{a, b}$ is L-colorable.

The next lemma is used only in Strategy E.

Lemma 3.2.8. Let L be a 3 -list assignment of $K_{a, b}$ and each color appears in at most three lists in L_{b}. If color 1 appears in exactly $a-4$ lists in L_{a}, and color 1 and color 2 appear together in three lists in L_{b}, then $K_{a, b}$ is L-colorable.

Proof. Let $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}, L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. Assume that $1 \in$ $A_{1}, A_{2}, \ldots, A_{a-4}$ and $1,2 \in B_{1}, B_{2}, B_{3}$. If $A_{a-3} \cap A_{a-2} \cap A_{a-1} \cap A_{a}$ is not empty, then L_{a} has a 2 -coloring; hence, $K_{a, b}$ is L-colorable by Remark 3.2.5. Suppose that $A_{a-3} \cap A_{a-2} \cap A_{a-1} \cap A_{a}=\varnothing$. Then we label $A_{1}, A_{2}, \ldots, A_{a-4}$ by color 1 and label B_{1}, B_{2}, B_{3} by color 2. Next, we consider the remaining vertices which form $K_{4, b-3}$. Let L^{\prime} be the list assignment of $K_{4, b-3}$ which is obtain from L by removing color 1 and color 2. For the worst case, we suppose that $2 \in A_{a-3}, A_{a-2}, A_{a-1}$. That is, $L_{4}^{\prime}=\left\{A_{a-3}-2, A_{a-2}-2, A_{a-1}-2, A_{a}\right\}$ and $L_{b-3}^{\prime}=\left\{B_{4}, B_{5}, \ldots, B_{b}\right\}$. If any two lists in L_{4}^{\prime} have a common color, it can be verified that L_{4}^{\prime} has at least four 3-colorings of L_{4}^{\prime}. Since every color appears in at most three lists in L_{b-3}^{\prime}, at least one of these 3 -colorings is not a list in L_{b-3}^{\prime}. Then we suppose that all lists in L_{4}^{\prime} have no common color. Let $L_{4}^{\prime}=\{34,56,78,9 A B\}$. Since all lists in L_{4}^{\prime} are subsets of $\{3,4,5,6,7,8,9, A, B\}$, we may suppose that all lists in L_{b-3}^{\prime} are subsets of $\{3,4,5,6,7,8,9, A, B\}$. Since every color appears in at most three lists in L_{b}^{\prime}, we obtain $b-3 \leq 9$.

Case 1. $b-3 \leq 7$.
Then $K_{4, b-3}$ is L^{\prime}-colorable by Strategy A for L_{4}^{\prime}.
Case 2. $b-3=8$. We consider the possibility of L_{8}^{\prime} such that $K_{4,8}$ is not L^{\prime}-colorable. Then L_{8}^{\prime} must be $\{357,358,367,368,457,458,467,468\}$. However, this case cannot occur because every color appears in at most three lists in L_{8}^{\prime}.

Case $3 . b-3=9$. Then every color from $3,4,5,6,7,8,9, A, B$ must appear in three lists in L_{9}^{\prime}. Then we label 34 in L_{4}^{\prime} by color 3 and label three lists containing color 4 in L_{9}^{\prime} by color 4 . The remaining vertices form $K_{3,6}$. Let $L^{\prime \prime}$ be the lists assignment of $K_{3,6}$ which is obtained from L^{\prime} by removing color 3 and color 4. Then $L_{3}^{\prime \prime}=\{56,78,9 A B\}$. For the worst case, we suppose that $L_{6}^{\prime \prime}$ has three lists of size 2 and three lists of size 3. Again, we consider the possibilities of $L_{6}^{\prime \prime}$ such that $K_{4,6}$ is not $L^{\prime \prime}$-colorable. Without loss of generality, $L_{6}^{\prime \prime}$ must be $\{57,58,67,689,68 A, 68 B\}$. However, this case cannot occur because every color appears in at most three lists in $L_{6}^{\prime \prime}$.

Theorem 3.2.9. (Strategy E) Let L be a 3 -list assignment of $K_{a, b}$ such that each color appears in at most r lists in L_{b}. If color 1 appears in $a-4$ lists in L_{a}, and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq 22\} \cup\{(3, b) \mid b \leq 14\}$, then $K_{a, b}$ is L-colorable unless $\mathcal{F} \subseteq L_{b}$ and the four remaining lists in L_{a} are 246, 257, 347, 356 up to rename the colors.

Proof. Let $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}$ and $L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. If a color appears in more than $a-4$ lists in L_{a}, then we apply Strategy D. Assume that color 1 appears in exactly $a-4$ lists in L_{a} and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq 22\} \cup\{(3, b) \mid b \leq$ $14\}$. Without loss of generality, we suppose that $1 \in A_{1}, A_{2}, \ldots, A_{a-4}$. Moreover, we suppose that the four remaining lists in L_{a} are not $246,257,347,356$ or $\mathcal{F} \nsubseteq$ L_{b}.

We first label $A_{1}, A_{2}, \ldots, A_{a-4}$ by color 1 . Then the remaining vertices form $K_{4, b}$. For the worst case, we may suppose that $1 \in B_{1}, B_{2}, \ldots, B_{r}$. Let L^{\prime} be the list assignment of $K_{4, b}$ which is obtained from L by removing color 1 . Then $L_{4}^{\prime}=\left\{A_{a-3}, A_{a-2}, A_{a-1}, A_{a}\right\}$ and $L_{b}^{\prime}=\left\{B_{1}-1, \ldots, B_{r}-1, B_{r+1}, \ldots, B_{b}\right\}$.

Case 1. A color appears in all lists in L_{4}^{\prime}.
Thus we use such color to label all lists in L_{4}^{\prime}. It is easy to see that every list in
L_{b}^{\prime} still has an available color. Then $K_{a, b}$ is L-colorable.
Case 2. A color appears in three lists in L_{4}^{\prime}.
If a color appears in four lists, then it is done by case 1. Suppose that no color appears in four lists in L_{4}^{\prime}. Let $2 \in A_{a-3} \cap A_{a-2} \cap A_{a-1}$ and $A_{a}=345$. Now, we consider L of $K_{a, b}$. Then L_{a} has at least three 3-colorings, that is, $\{1,2,3\},\{1,2,4\},\{1,2,5\}$. If L_{b} does not contain all of these 3 -colorings, $K_{a, b}$ is immediately L-colorable by Lemma 3.2.1. Otherwise, we suppose that $B_{1}=123, B_{2}=124, B_{3}=125$. By Lemma 3.2.8, $K_{a, b}$ is L-colorable.

Case 3. A color appears in two lists in E_{4}^{\prime} and the remaining two lists have no common color.

If a color appears in more than two lists, then the proof is done by Case 1 and Case 2. Suppose that each color appears in at most two lists in L_{4}^{\prime}. Let $2 \in$ A_{a-3}, A_{a-2} and $A_{a-1} \cap A_{a} \neq \varnothing$. We next label A_{a-3} and A_{a-2} by color 2. Then, we focus on the remaining vertices which form $K_{2, b}$. Let $L^{\prime \prime}$ be the list assignment of $K_{2, b}$ which is obtained from L^{\prime} by removing color 2 . Since we use color 1 and color 2 to label lists in L_{a}, we may suppose that both 1 and color 2 appear in three lists in $L_{b}^{\prime \prime}$ for the worse case. Thus, there are four possibilities of $L_{b}^{\prime \prime}$.

Case $3.1 L_{b}^{\prime \prime}$ has six lists of size 2 and $b-6$ lists of size 3 . We see that $\left|A_{a-1}\right| \cdot\left|A_{a}\right|=3^{2}>3^{0} \cdot 6$. By Strategy A for $L_{2}^{\prime \prime}, K_{2, b}$ is $L^{\prime \prime}$-colorable. Then $K_{a, b}$ is L-colorable.

Case $3.2 L_{b}^{\prime \prime}$ has one list of size 1 , four lists of size 2 and $b-5$ lists of size 3. We see that $\left|A_{a-1}\right| \cdot\left|A_{a}\right|=3^{2}>3 \cdot 1+4$. By Strategy A for $L_{2}^{\prime \prime}, K_{2, b}$ is $L^{\prime \prime}$-colorable. Then $K_{a, b}$ is L-colorable.

Case $3.3 L_{b}^{\prime \prime}$ has two lists of size 1 , two lists of size 2 and $b-4$ lists of size 3. We see that $\left|A_{a-1}\right| \cdot\left|A_{a}\right|=3^{2}>3 \cdot 2+2$. By Strategy A, $K_{2, b}$ is $L^{\prime \prime}$-colorable. Then $K_{a, b}$ is L-colorable.

Case 3.4 $L_{b}^{\prime \prime}$ has three lists of size 1 , no list of size 2 and $b-3$ lists of size 3. That is, color 1 and color 2 appear together in exactly three lists of L_{b}. Then $K_{a, b}$ is L-colorable by Lemma 3.2.8.

Case 4. A color appears in two lists in L_{4}^{\prime} and the remaining two lists have a common color.

Similar to case 3, we suppose that no color appears in three lists in L_{4}^{\prime}. Let $2 \in A_{a-3}, A_{a-2}$ and $3 \in A_{a-1} \cap A_{a}$. Hence, $\{1,2,3\}$ is a 3 -coloring of L_{a}. If 123 is not a list in L_{b}, then $K_{a, b}$ is L-colorable by Lemma 3.2.1. Otherwise, we suppose that $B_{1}=123$.

Case $4.1\left|A_{a-3} \cap A_{a-2}\right| \geq 2$ and $\left|A_{a-1} \cap A_{a}\right| \geq 2$.

Let $4 \in A_{a-3} \cap A_{a-2}$ and $5 \in A_{a-1} \cap A_{a}$. We obtain at least four 3-colorings of L_{a}, that is, $\{1,2,3\},\{1,2,5\},\{1,4,3\},\{1,4,5\}$. Since each color appears in at most three lists in L_{b}, at least one of such 3-colorings is not a list in L_{b}. Then $K_{a, b}$ is L-colorable by Lemma 3.2.1.

Case $4.2\left|A_{a-3} \cap A_{a-2}\right| \geq 2$ and $\left|A_{a-1} \cap A_{a}\right|=1$.
We may suppose that $\left|A_{a-3} \cap A_{a-2}\right|=2$. Let $A_{a-3}=24 x, A_{a-2}=24 y, A_{a-1}=356$ and $A_{a}=378$ where $x \neq y$ and $x, y \notin\{1,2,3,4\}$. Then $\{1,4,3\}$ is a 3 -coloring of L_{a}. If 143 is not a list in L_{b}, then $K_{a, b}$ is L-colorable by Lemma 3.2.1. Otherwise, suppose that $B_{2}=143$. Recall that we have already labeled $A_{1}, A_{2}, \ldots, A_{a-4}$ by color 1 . Now, we label B_{1}, B_{2} by color 3 . Consider the uncolor vertices which form $K_{4, b-2}$. Let $L^{\prime \prime}$ be a list assignment of $K_{4, b-2}$ which is obtained from L by removing color 3. Then $L_{4}^{\prime \prime}=\{24 x, 24 y, 56,78\}$ and $L_{b-2}^{\prime \prime}=\left\{B_{3}-\right.$ $\left.1, B_{4}, B_{5}, \ldots, B_{b}\right\}$. By the fact that L_{4}^{\prime} has at least eight 3 -colorings and every color appears in at most three colors in L_{b}, it can be verified that $K_{4, b-2}$ is $L^{\prime \prime}$-colorable.

Case $4.3\left|A_{a-3} \cap A_{a-2}\right|=1$ and $\left|A_{a-1} \cap A_{a}\right| \geq 2$.

It is similar to Case 4.2.
Case $4.4\left|A_{a-3} \cap A_{a-2}\right|=1$ and $\left|A_{a-1} \cap A_{a}\right|=1$.
Let $A_{a-1}=345, A_{a}=367$ and $A_{a-3}=2 e f, A_{a-2}=2 g h$ where e, f, g, h are distinct. Note that $\{1,2,4,6\},\{1,2,4,7\},\{1,2,5,6\},\{1,2,5,7\}$ are 4 -colorings of L_{a}. By Lemma 3.2.1, if one of these 4 -colorings has no subset that is a list in L_{b}, then $K_{a, b}$ is L-colorable. Again, suppose that these 4-colorings have a subset that is a list in L_{b}. Without loss of generality, L_{b} can be verified that there are two possibilities of L_{b}.

Case 4.4.1 $B_{2}=124$ and $B_{3}=125$.
Then $K_{a, b}$ is L-colorable by Lemma 3.2.8.
Case 4.4.2 $B_{2}=146, B_{3}=147, B_{4}=256, B_{5}=257$.
Recall that we have already labeled $A_{1}, A_{2}, \ldots, A_{a-4}$ by color 1 . Now, we label A_{a-1}, A_{a} by color 3 and label B_{1}, B_{4}, B_{5} by color 2 . Next, we consider the remaining vertices which forms $K_{2, b-3}$. Let $L^{\prime \prime}$ be the list assignment of $K_{2, b-3}$ which is obtained from L^{\prime} by removing color 2 and color 3. That is, $L_{2}^{\prime \prime}=\{e f, g h\}$ and $L_{b-3}^{\prime \prime}=\left\{46,47, B_{6}, B_{7}, \ldots, B_{b}\right\}$. Then $L_{2}^{\prime \prime}$ has exactly four 2 -colorings, namely $\{e, g\},\{e, h\},\{f, g\}$ and $\{f, h\}$. If one of such 2-colorings is not a list in $L_{b-3}^{\prime \prime}$, then $K_{2, b-3}$ is $L^{\prime \prime}$-colorable by Lemma 3.2.1. Suppose that such four 2-colorings are lists in $L_{b-3}^{\prime \prime}$. Then $L_{b-3}^{\prime \prime}$ has at least four lists of size 2 . Recall that $3 \in B_{1}$. Then color 3 appears in two lists in $B_{6}, B_{7}, \ldots, B_{b}$. Hence, we suppose that $3 \in B_{6}, B_{7}$. Then $L_{b-3}^{\prime \prime}=\left\{56,57, B_{6}-3, B_{7}-3, B_{8}, B_{9}, \ldots, B_{b-3}\right\}$.

Let L^{*} be a 2 -list assignment of $K_{2,4}$ such that $L_{2}^{*}=\{e f, g h\}$ and $L_{4}^{*}=$ $\left\{56,57, B_{6}-3, B_{7}-3\right\}$. By Remark 3.2.5, $K_{2, b-3}$ is $L^{\prime \prime}$-colorable if and only if $K_{2,4}$ is L^{*}-colorable. Moreover, $K_{2,4}$ is not L^{*}-colorable if and only if $L_{2}^{*}=\{45,67\}$ and $L_{4}^{*}=\{46,47,56,57\}$. Therefore, $K_{2,4}$ is not L^{*}-colorable if and only if $\left\{A_{a-3}, A_{a-2}, A_{a-1}, A_{a}\right\} \neq\{246,257,347,356\}$ or $\mathcal{F} \nsubseteq L_{b}$.

Case 5. All lists in L_{4}^{\prime} are mutually disjoint.
Note that L_{b}^{\prime} has $b-r$ lists of size $3, r$ lists of size 2 and no list of size 1 . We have that $\prod_{i=a-3}^{a}\left|A_{i}\right|=3^{4}>3^{2} \cdot r+3 \cdot(b-r)$. By Strategy A for $L_{4}^{\prime}, K_{4, b}$ is L^{\prime}-colorable.

The next lemma is used only in Strategy F.

Lemma 3.2.10. Let L be a 3 -list assignment of $K_{a, b}$ and each color appears in at most two lists in L_{b}. If a color appears in exactly $a-5$ lists in L_{a} and a color appears in exactly three of the five remaining lists, then $K_{a, b}$ is L-colorable.

Proof. Let $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}$ and $L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. Suppose that $1 \in$ $A_{1}, A_{2}, \ldots, A_{a-5}$ and $2 \in A_{a-4}, A_{a-3}, A_{a-2}$. Then we first label $A_{1}, A_{2}, \ldots, A_{a-5}$ by color 1 and label $A_{a-4}, A_{a-3}, A_{a-2}$ by color 2. Consider the remaining vertices which form $K_{2, b}$. Let L^{\prime} be the list assignment of $K_{2, b}$ which is obtained from L by removing color 1 and color 2 . Note that $L_{2}^{\prime}=\left\{A_{a-1}, A_{a}\right\}$. Next, we divide the proof into four cases.

Case 1. $A_{a-1} \cap A_{a}=\varnothing$.
To apply Strategy A for L_{2}^{\prime}, we count the number of lists of size 1 , size 2 and size 3 in L_{b}^{\prime}. We have three possibilities. Denote that n_{i} is the number of lists of size i in L_{b}^{\prime} for $i=1,2,3$.

1. $n_{1}=2, n_{2}=0$ and $n_{3}=b-2$.
2. $n_{1}=1, n_{2}=2$ and $n_{3}=b-3$.
3. $n_{1}=0, n_{2}=4$ and $n_{3}=b-4$.

All possibilities satisfy conditions in Strategies A of L_{2}^{\prime}. Therefore, $K_{2, b}$ is L^{\prime} colorable.

Case 2. $\left|A_{a-1} \cap A_{a}\right|=1$.
Let $A_{a-1}=345$ and $A_{a}=367$. If 123 is not a list in L_{b}, then $K_{a, b}$ is L colorable. Without loss of generality, suppose that $B_{1}=123$. Then we label all lists containing color 3 in L_{b}^{\prime} by color 3 . Now, we consider all uncolored vertices. For the worst case, we suppose that no other list except B_{1} containing color 3 . Thus the remaining vertices form $K_{2, b-1}$. Let $L^{\prime \prime}$ be the list assignment of $K_{2, b-1}$ which is obtained from L^{\prime} by removing color 3 . Then we can apply Strategy A for L_{2}^{\prime}.

Case 3. $\left|A_{a-1} \cap A_{a}\right|=\varnothing$.
Let $A_{a-1}=345$ and $A_{a}=346$. If 123 and 124 are not lists in L_{b}, then $K_{a, b}$ is immediately L-colorable. Without loss of generality, suppose that $B_{1}=123$ and $B_{2}=124$. Then we label B_{1}, B_{2}, A_{a-1} and A_{a} by color 3 , color 4 , color 5 and color 6, respectively. Notice that every uncolored vertex in L_{b}^{\prime} still has an available color. Therefore, $K_{2, b}$ is L^{\prime}-colorable.

Theorem 3.2.11. (Strategy F) Let L be a 3 -list assignment of $K_{a, b}$ and each color appears in at most two lists in L_{b}. If a color appears in $a-5$ lists in L_{a} and $a+b \leq 18$, then $K_{a, b}$ is L-colorable.

Proof. Let $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}$ and $L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. Since $a+b \leq 18$ and $a \geq 5$, we obtain $b \leq 13$. Since each color appears in at most two lists in L_{b}, we have $\mathcal{F} \not \subset L_{b}$. Then we can apply Strategy E if a color appears in more than $a-5$ lists. Suppose that a color appears in exactly $a-5$ lists. Without loss of generality, we assume $1 \in A_{1}, A_{2}, \ldots, A_{a-5}$. Then we label the $a-5$ lists by color 1 . For the worst case, we assume that color 1 is in two list in L_{b}, say B_{1}, B_{2}. Next, consider the remaining vertices which form $K_{5, b}$. Let L^{\prime} be the list assignment of $K_{5, b}$ which is obtained from L by removing color 1 . Then $L_{5}^{\prime}=\left\{A_{a-4}, A_{a-3}, A_{a-2}, A_{a-1}, A_{a}\right\}$ and $L_{b}^{\prime}=\left\{B_{1}-1, B_{2}-1, B_{3}, \ldots, B_{b}\right\}$.

Case 1. A color appears in all lists in L_{5}^{\prime}.
Then L_{a} has a 2-coloring; hence, $K_{a, b}$ is L-colorable by Remark 3.2.5.
Case 2. A color appears in four lists in L_{5}^{\prime}.
By case 1, we may suppose that color 2 appears in exactly four lists in L_{5}^{\prime}. Let $2 \in A_{a-4}, A_{a-3}, A_{a-2}, A_{a-1}$ and $A_{a}=345$. We obtain three 3 -colorings of L_{a}, that is, $\{1,2,3\},\{1,2,4\},\{1,2,5\}$. Since every color appears in at most two lists in L_{b}, at least one of the 3 -colorings is not a list in L_{b}. Therefore, $K_{a, b}$ is L-colorable by Lemma 3.2.1.

Case 3. A color appears in three lists in L_{5}^{\prime}.
By Lemma 3.2.10, $K_{a, b}$ is L-colorable.
Case 4. A color appears in two lists in L_{5}^{\prime}.
From Case 3, we may suppose that each color appears in at most two lists in L_{5}^{\prime}. Since color 1 appears in at most two lists in L_{b}, at most four colors appears in the same lists with color 1 in L_{b}. We apply Theorem 2.1.3. Since $18 \cdot\binom{3}{2} \leq\binom{ 10+1}{2}$, we may suppose that $\left|\bigcup_{i=a-4}^{a} A_{i}\right| \leq\left|\bigcup_{v \in V\left(K_{a, b}\right)} L(v)\right| \leq 10$. Since $\left|A_{a-4}\right|+\left|A_{a-3}\right|+$ $\left|A_{a-2}\right|+\left|A_{a-1}\right|+\left|A_{a}\right|=15$ and the number of colors is at most ten, at least five colors must appear in exactly two lists in L_{5}^{\prime}. Recall that only B_{1}, B_{2} contain color 1. Hence, at most four colors from the five colors appear in the same lists with color 1 in L_{b}. Hence, we can choose the remaining color such that no list in L_{b} contain both color 1 and this color, namely color 2 . Let $2 \in A_{a-4}, A_{a-3}$ and then we label A_{a-4}, A_{a-3} by color 2. Let $L^{\prime \prime}$ be the list assignment of $K_{3, b}$ which is obtained from L^{\prime} by removing color 2 . For the worst case, we suppose $2 \in B_{3}, B_{4}$. Hence, $L_{b}^{\prime \prime}=\left\{B_{1}-1, B_{2}-1, B_{3}-2, B_{4}-2, B_{5} \ldots, B_{b}\right.$ and $L_{2}^{\prime \prime}=\left\{A_{a-2}, A_{a-1}, A_{a}\right\}$.

If color 3 appears in exactly two lists in A_{a-2}, A_{a-1}, A_{a}, then $L_{3}^{\prime \prime}$ has at least three 2-colorings containing color 3. Since every color appears in at most two lists in $L_{b}^{\prime \prime}$, at least one 2 -coloring is not a list in $L_{b}^{\prime \prime}$. Otherwise, we suppose
that A_{a-2}, A_{a-1}, A_{a} are mutually disjoint. To apply Strategy A, we count the number of lists of size 1 , size 2 and size 3 in $L_{b}^{\prime \prime}$. We obtain that $L_{b}^{\prime \prime}$ has no list of size 1 , four lists of size 2 and $b-4$ lists of size 3 where $b-4 \leq 6$. Then $\left|A_{a-2}\right| \cdot\left|A_{a-1}\right| \cdot\left|A_{a}\right|=3^{3}>3 \cdot 4+(b-4)$.

Case 5. $A_{a-4}, A_{a-3}, A_{a-2}, A_{a-1}, A_{a}$ are mutually disjoint.
Then L_{b}^{\prime} has at most three lists of size $b-2$ and two lists of size 2. Since $\prod_{i=a-4}^{a}\left|A_{i}\right|=3^{5}>3^{3} \cdot 2+3^{2} \cdot(b-2), K_{a, b}$ is L-colorable by Strategy A for L_{5}^{\prime}.

Notation 3.2.12. Strategies A,B,C,D,E and F'show that there exists a coloring of L_{a} such that every list in L_{b} still has available colors. It is called Strategy $A(B, C, D, E, F)$ for L_{a}. However, we can exchange the role between L_{a} and L_{b} for a list assignment L of $K_{a, b}$ and we call Strategy $A(B, C, D, E, F)$ for L_{b}.

Strategy A can be applied for a list assignment whose all lists have size at most 3. However, we can imitate Strategy A to build a new strategy which can be applied when all lists have size at most 2 .

Theorem 3.2.13. (Strategy \mathbf{A}^{\prime}) Let L be a list assignment of $K_{a, b}$ with $L_{a}=$ $\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}, L_{b}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ and all lists have size at most 2. If all lists in L_{a} are mutually disjoint and $2^{a}>\prod_{i=1}^{a}\left\lfloor 2^{a-1}\right\rfloor n_{1}+\left\lfloor 2^{a-2}\right\rfloor n_{2}$ where $n_{i}=$ $\left|\left\{B \in L_{b},|B|=i\right\}\right|$ for $i=1,2$, then $K_{a, b}$ is L-colorable.

Proof. Similar to Strategy A.

According to the proof of Strategies B, C, D, E and F, if color 1 appears in $a-1, a-2, a-3, a-4$ and $a-5$ lists, respectively, then we label such lists by color 1 . The size of lists containing color 1 is insignificant. Then we can prove Strategies $\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}, \mathrm{E}^{\prime}$ and F^{\prime} similar to Strategies $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F , respectively.

Theorem 3.2.14. (Strategy B') Let L be a list assignment of $K_{a, b}$. If a color appears in $a-1$ lists in L_{a} and the remaining lists in L_{a} and L_{b} are of size 3, then $K_{a, b}$ is L-colorable.

Proof. Similar to Strategy B.
Theorem 3.2.15. (Strategy \mathbf{C}^{\prime}) Let L be a list assignment of $K_{a, b}$ where every color appears in at most eight lists in L_{b}. If a color appears in $a-2$ lists in L_{a} and the remaining lists in L_{a} and L_{b} are of size 3 , then $K_{a, b}$ is L-colorable.

Proof. Similar to Strategy C.

Theorem 3.2.16. (Strategy \mathbf{D}^{\prime}) Let L be a list assignment of $K_{a, b}$ where every color appears in at most r lists in L_{b}. If a color appears in $a-3$ lists in L_{a}, the remaining lists in L_{a} and L_{b} are of size 3 and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq$ $22\} \cup\{(3, b) \mid b \leq 14\} \cup\{(4, b) \mid b \leq 12\} \cup\{(5, b) \mid b \leq 9\}$, then $K_{a, b}$ is L-colorable.

Proof. Similar to Strategy D.
Theorem 3.2.17. (Strategy \mathbf{E}^{\prime}) Let L be a list assignment of $K_{a, b}$ where every color appears in at most r lists in L_{b}. If color 1 appears in $a-4$ lists in L_{a}, the remaining lists in L_{a} and L_{b} are of size 3 and and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq$ $22\} \cup\{(3, b) \mid b \leq 14\}$, then $K_{a, b}$ is L-colorable unless the four remaining lists in L_{a} are 246,257, 347, 356 and $\mathcal{F} \subseteq L_{b}$.

Proof. Similar to Strategy E.

Theorem 3.2.18. (Strategy \mathbf{F}^{\prime}) Let L be a list assignment of $K_{a, b}$ where every color appears in at most two lists in L_{b}. If a color appears in $a-5$ lists in L_{a}, the remaining lists in L_{a} and L_{b} are of size 3 , and $a+b \leq 18$, then $K_{a, b}$ is L-colorable.

Proof. Similar to Strategy F.

3.3 Complete Bipartite Graphs with Fourteen Vertices: a New Proof

This section gives another proof of the result by Fitzpatrick and MacGillivray [5] which was stated that every complete bipartite graph with 14 vertices except $K_{7,7}$ is 3 -choosable and $L_{\mathcal{F}}$ (see Notation 3.1.1) is the unique 3 -list assignment such that $K_{a, b}$ is not $L_{\mathcal{F}}$-colorable. Their proof is a detailed case analysis which cannot be extended to verify 3 -choosability of complete bipartite graphs with 15 vertices while our proof is obtained from Strategies A, B, C, D, E and F, and our proof can be applied to give results of 3-choosability of complete bipartite graphs with 15 vertices. Moreover, our strategies can be applied to verify complete bipartite graphs to be L-colorable for/some 3 -list assignments L.

Lemma 3.3.1. The complete bipartite graph $K_{3, b}$ is 3 -choosable if and only if $b \leq 26$.

Proof. Let L be the 3 -list assignment of $K_{3,27}$ defined by $L_{3}=\{123,456,789\}$ and $L_{27}=\{\{a, b, c\} \mid a \in\{1,2,3\}, b \in\{4,5,6\}, c \in\{7,8,9\}\}$. Notice that every coloring of L_{3} is a list in L_{27}. By Lemma 3.2.1, $K_{3,27}$ is not L-colorable.

Next, we will prove $K_{3,26}$ is 3 -choosable. Let L be a 3 -list assignment of $K_{3,26}$. If some lists in L_{3} have a common color, $K_{3,26}$ is immediately L-colorable by Strategy B for L_{3}. Suppose that all lists in L_{3} have no common color. To apply Strategy A for L_{3}, we count the number of 3 -coloring of L_{3} and count the number of lists of size 1 , size 2 and size 3 in L_{26}. We see that the number of 3-coloring of L_{3} is 27 . Since L_{26} has only 26 lists of size 3, at least one of those 3-colorings is not a list in L_{26}. Hence, we can use such 3-coloring to color L_{3} while every list in L_{26} still has an available color.

Lemma 3.3.2. The complete bipartite graph $K_{4,10}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{4,10}$. Let r_{4} (and r_{10}) be the maximum number of lists in L_{4} (and L_{10}) containing a common color. Note that $r_{4} \leq 4$ and $r_{10} \leq 10$.

Case 1. $r_{4}=3,4$ or $r_{10}=9,10$; apply Strategy B for L_{4} or Strategy B for L_{10}, respectively.

Case 2. $r_{4}=2$ and $r_{10} \leq 8$; apply Strategy C for L_{4}.
Case 3. $r_{4}=1$ and $r_{10} \leq 8$; apply Strategy A for L_{4}. Notice that $\prod_{i=1}^{4}\left|A_{i}\right|=$ $3^{4}>3 \cdot 10=3^{4-3} n_{3}$.

Lemma 3.3.3. The complete bipartite graph $K_{5,9}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{5,9}$. Let r_{5} (and r_{9}) be the maximum number of lists in L_{5} (and L_{9}) containing a common color. Then $r_{5} \leq 5$ and $r_{9} \leq 9$.

Case 1. $r_{5}=4,5$ or $r_{9}=8,9$; apply Strategy B for L_{5} or Strategy B for L_{9}, respectively.

Case 2. $r_{5}=3$ and $r_{9} \leq 7$; apply Strategy C for L_{5}.
Case 3. $r_{5} \leq 2$ and $r_{9}=7$; apply Strategy C for L_{9}.
Case 4. $r_{5} \leq 2$ and $r_{9}=6$; apply Strategy D for L_{9}.
Case 5. $r_{5} \leq 2$ and $r_{9}=5$; apply Strategy E for L_{9}. Notice that $\mathcal{F} \not \subset L_{5}$ because L_{5} contains only five lists.

Case 6. $r_{5}=2$ and $r_{9} \leq 4$; apply Strategy D for L_{5}.
Case 7. $r_{5}=1$ and $r_{9} \leq 4$; apply Strategy A for L_{5}. Notice that $\prod_{i=1}^{5}\left|A_{i}\right|=$ $3^{5}>3^{2} \cdot 9=3^{5-3} n_{3}$.

Lemma 3.3.4. The complete bipartite graph $K_{6,8}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{6,8}$. Let r_{6} (and r_{8}) be the maximum number of lists in L_{6} (and L_{8}) containing a common color. Then $r_{6} \leq 6$ and
$r_{8} \leq 8$.
Case 1. $r_{6}=5,6$ or $r_{8}=7,8$; apply Strategy B for L_{6} or Strategy B for L_{8}, respectively.

Case 2. $r_{6}=4$ and $r_{8} \leq 6$; apply Strategy C for L_{6}.
Case 3. $r_{6} \leq 3$ and $r_{8}=6$; apply Strategy C for L_{8}.
Case 4. $r_{6} \leq 3$ and $r_{8}=5$; apply Strategy D for L_{8}.
Case 5. $r_{6} \leq 3$ and $r_{8}=4$; apply Strategy E for L_{8}. Notice that $\mathcal{F} \not \subset L_{6}$ because L_{6} contains only six lists.

Case 6. $r_{6}=3$ and $r_{8} \leq 3$; apply Strategy D for L_{6}.
Case 7. $r_{6}=2$ and $r_{8} \leq 3$; apply Strategy E for L_{6} unless $1 \in A_{1}, A_{2}$, $A_{3}=246, A_{4}=257, A_{5}=347, A_{6}=356$ and $\mathcal{F} \subset L_{8}$. In such case, color $1,2,3,4,5,6,7$ have already appeared in two lists in L_{6}, we have two new color $8,9 \in A_{1}$ because $r_{6}=2$. Hence $3 \in A_{a-1}, A_{a}$ and the four remaining lists cannot rename the colors to $246,257,347,356$ because the union of the four remaining lists contains eight colors. Therefore, we can apply Strategy E for L_{6}.

Case 8. $r_{6}=1$ and $r_{8} \leq 3$; apply Strategy A for L_{6}. Notice that $\prod_{i=1}^{6}\left|A_{i}\right|=$ $3^{6}>3^{3} \cdot 8$.

Lemma 3.3.5. Let L be a 3-list assignment of $K_{7,7}$. The complete bipartite graph $K_{7,7}$ is L-colorable unless $L_{7(i)}=L_{7(i i)}=\mathcal{F}$.

Proof. Let L be a 3 -list assignment such that $\mathcal{F} \not \subset L_{7(i)}$ or $\mathcal{F} \not \subset L_{7(i i)}$. Let $r_{7(i)}$ (and $r_{7(i i)}$) be the maximum number of lists in $L_{7(i)}$ (and $L_{7(i i)}$) containing a common color. Then $r_{7(i)}, r_{7(i)} \leq 7$.

Let $t=\left|\bigcup_{v \in V\left(K_{7,7}\right)} L(v)\right|$. By Theorem 2.1.3, we may suppose that $t \leq 10$ because $14 \cdot 3<\binom{10+1}{2}$. Since $\sum_{v \in L_{7(i)}}|L(v)|=21$, we obtain $r_{7(i)} \geq 3$ by the pigeonhole principle. Similarly, $r_{7(i)} \geq 3$.

Case 1. $r_{7(i)}=6,7$ or $r_{7(i i)}=6,7$; apply Strategy B for $L_{7(i)}$ or Strategy B for
$L_{7(i i)}$, respectively.
Case 2. $r_{7(i)}=5$ and $r_{7(i i)} \leq 5$; apply Strategy C for $L_{7(i)}$.
Case 3. $r_{7(i)} \leq 4$ and $r_{7(i i)}=5$; apply Strategy C for $L_{7(i i)}$.
Case 4. $r_{7(i)}=4$ and $r_{7(i i)} \leq 4$; apply Strategy D for $L_{7(i)}$.
Case 5. $r_{7(i)}=3$ and $r_{7(i i)}=4$; apply Strategy D for $L_{7(i i)}$.
Case 6. $r_{7(i)}=3$ and $r_{7(i i)}=3$; apply Strategy E for $L_{7(i)}$ unless $1 \in A_{1}, A_{2}, A_{3}$, $A_{4}=246, A_{5}=257, A_{6}=347, A_{7}=356$ and $L_{7(i i)}=\mathcal{F}$. In such case, $\{1,2,3\},\{1,4,5\},\{1,6,7\}$ are 3 -colorings of $L_{7(i i)}$. One of such 3 -colorings is not a list in $L_{7(i)}$ because $L_{7(i)} \neq \mathcal{F}$. Then $K_{7,7}$ is L-colorable by Lemma 3.2.1.

Theorem 3.3.6. The complete bipartite graph with 14 vertices is 3 -choosable if and only if it is not $K_{7,7}$. For a 3 -list assignment $L, K_{7,7}$ is L-colorable unless $L=L_{\mathcal{F}}$.

Proof. It follows from Lemmas 3.3.1, 3.3.2 3.3.3, 3.3.4 and 3.3.5.

By Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4, we can easily verify that every complete bipartite graph is 3 -choosable.

Theorem 3.3.7. The complete bipartite graph with at most 13 vertices is 3choosable.

Proof. If $a+b \leq 13$, then $K_{a, b}$ is a subgraph of one of $K_{3,26}, K_{4,10}, K_{5,9}, K_{6,8}$ which are 3 -choosable by Lemmas 3.3.1, 3.3.2, 3.3.3 and 3.3.4. Therefore, a complete bipartite graph with at most 13 vertices is 3 -choosable.

Since $K_{7,7}$ is not $L_{\mathcal{F}}$-colorable and $L_{\mathcal{F}}$ is a $(3,7)$-list assignment, $K_{7,7}$ is not $(3,7)$-choosable. However, $K_{7,7}$ is $(3, t)$-choosable if and only if $t \neq 7$. Theorem 3.3.8 gives all positive numbers t such that all complete bipartite graphs with 14 vertices are $(3, t)$-choosable.

Theorem 3.3.8. A complete bipartite graph with 14 vertices is $(3, t)$-choosable unless $t=7$.

Proof. Let a, b be positive integers such that $a \leq b$ and $a+b=14$. Then $a \leq 7$.
Case 1. $a \leq 3$.
Then $K_{a, b}$ is a subgraph of $K_{3,26}$ which is 3 -choosable by Lemma 3.3.1.
Case 2. $a=4,5,6$.
Then $K_{a, b}$ is one of $K_{4,10}, K_{5,9}, K_{6,8}$ which is 3-choosable by Lemma 3.3.2, Lemma 3.3.3 and Lemma 3.3.4.

Case 3. $a=7$ Since $L_{\mathcal{F}}$ is the unique 3 -list assignment such that $K_{7,7}$ is not $L_{\mathcal{F}}$-colorable, $K_{7,7}$ is $(3, t)$-choosable for all $t \neq 7$.

3.4 Complete Bipartite Graphs with Fifteen Vertices

In this section, we keep utilizing our strategies to extend the result in the previous section to 15 vertices. We first show that $K_{4,11}, K_{5,10}, K_{6,9}$ are 3 -choosable and then we prove that for a 3 -list assignment $L, K_{7,8}$ is L-colorable unless $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$.

Lemma 3.4.1. The complete bipartite graph $K_{4,11}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{4,11}$ and r_{4} (and r_{11}) be the maximum number of lists in L_{4} (and L_{11}) containing a common color. Then $r_{4} \leq 4$ and $r_{11} \leq 11$.

Case 1. $r_{4}=3,4$ or $r_{11}=10,11$; apply Strategy B for L_{4} or Strategy B for L_{11}, respectively.

Case 2. $r_{4} \leq 2$ and $r_{11}=9$; apply Strategy C for L_{11}.
Case 3. $r_{4}=2$ and $r_{11} \leq 8$; apply Strategy C for L_{4}.

Case 4. $r_{4}=1$ and $r_{11} \leq 8$; apply Strategy A for L_{4}. Notice that $\prod_{i=1}^{4}\left|A_{i}\right|=$ $3^{4}>3 \cdot 11=3^{4-3} n_{3}$.

Lemma 3.4.2. The complete bipartite graph $K_{5,10}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{5,10}$ and r_{5} (and r_{10}) be the maximum number of lists in L_{5} (and L_{10}) containing a common color. Then $r_{5} \leq 5$ and $r_{10} \leq 10$.

Case 1. $r_{5}=4,5$ or $r_{10}=9,10$; apply Strategy B for L_{5} or Strategy B for L_{10}, respectively.

Case 2. $r_{5}=3$ and $r_{10} \leq 8$; apply Strategy C for L_{5}.
Case 3. $r_{5} \leq 2$ and $r_{10}=8$; apply Strategy C for L_{10}.
Case 4. $r_{5} \leq 2$ and $r_{10}=7$; apply Strategy D for L_{10}.
Case 5. $r_{5} \leq 2$ and $r_{10}=6$; apply Strategy E for L_{10}. Notice that $\mathcal{F} \not \subset L_{5}$ because L_{5} contains only five lists.

Case 6. $r_{5} \leq 2$ and $r_{10}=5$; apply Strategy F for L_{10}.
Case 7. $r_{5}=2$ and $r_{10} \leq 4$; apply Strategy D for L_{5}.
Case 8. $r_{5}=1$ and $r_{10} \leq 4$; apply Strategy A for L_{5}. Notice that $\prod_{i=1}^{5}\left|A_{i}\right|=$ $3^{5}>3^{2} \cdot 10=3^{5-3} n_{3}$.

Lemma 3.4.3. The complete bipartite graph $K_{6,9}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{6,9}$ and r_{6} (and r_{9}) be the maximum number of lists in L_{6} (and L_{9}) containing a common color. Then $r_{6} \leq 6$ and $r_{9} \leq 9$.

Case 1. $r_{6}=5,6$ or $r_{9}=8,9$; apply Strategy B for L_{6} or Strategy B for L_{9}, respectively.

Case 2. $r_{6}=4$ and $r_{9} \leq 7$; apply Strategy C for L_{6}.
Case 3. $r_{6} \leq 3$ and $r_{9}=7$; apply Strategy C for L_{9}.

Case 4. $r_{6} \leq 3$ and $r_{9}=6$; apply Strategy D for L_{9}.
Case 5. $r_{6} \leq 3$ and $r_{9}=5$; apply Strategy E for L_{9}. Notice that $\mathcal{F} \not \subset L_{6}$ because L_{6} contains only six lists.

Case 6. $r_{6}=3$ and $r_{9} \leq 4$; apply Strategy D for L_{6}.
Case 7. $r_{6} \leq 2$ and $r_{9}=4$; apply Strategy F for L_{9}.
Case 8. $r_{6}=2$ and $r_{9} \leq 3$; apply Strategy E for L_{6} unless $1 \in A_{1}, A_{2}$ and $A_{3}=246, A_{4}=257, A_{5}=347, A_{6}=356$. In such case, we obtain that $4,5,6,7 \notin A_{1}, A_{2}$ because $r_{6}=2$. Let $A_{1}=178$. Then $3 \in A_{5}, A_{6}$ and the four remaining lists cannot rename the colors to be $246,257,347,356$. Hence, we still apply Strategy D for L_{6}.

Case 9. $r_{6}=1$ and $r_{9} \leq 3$, apply Strategy A for L_{6}. Notice that $\prod_{i=1}^{6}\left|A_{i}\right|=$ $3^{6}>3^{3} \cdot 9=3^{6-3} n_{3}$.

Lemma 3.4.4. Let L be a 3-list assignment of $K_{7,8}$. The complete bipartite graph $K_{7,8}$ is L-colorable unless $\mathcal{F} \subset L_{7}, L_{8}$.

Proof. Let L be a 3 -list assignment of $K_{7,8}$ such that $\mathcal{F} \not \subset L_{7}$ or $\mathcal{F} \not \subset L_{8}$. Let r_{7} (and r_{8}) be the maximum number of lists in L_{7} (and L_{8}) containing a common color. Then $r_{7} \leq 7$ and $r_{8} \leq 8$.

Case 1. $r_{7}=6,7$ or $r_{8}=7,8$; apply Strategy B for L_{7} or Strategy B for L_{8}, respectively.

Case 2. $r_{7}=5$ and $r_{8} \leq 6$; apply Strategy C for L_{7}.
Case 3. $r_{7} \leq 4$ and $r_{8}=6$; apply Strategy C for L_{8}.
Case 4. $r_{7} \leq 4$ and $r_{8}=5$; apply Strategy D for L_{8}.
Case 5. $r_{7}=4$ and $r_{8} \leq 4$; apply Strategy D for L_{7}.
Case 6. $r_{7} \leq 3$ and $r_{8}=4$; apply Strategy E for L_{8} unless $1 \in B_{1}, B_{2}, B_{3}, B_{4}$, $B_{5}=246, B_{6}=257, B_{7}=347, B_{8}=356$ and $L_{7}=\mathcal{F}$. Since $L_{7}=\mathcal{F}$, $\{1,2,3\},\{1,4,5\}$ and $\{1,6,7\}$ are 3 -colorings of L_{7}. Since $\mathcal{F} \not \subset L_{8}$, one of
such 3-colorings is not a list in L_{8}. Hence $K_{7,8}$ is L-colorable by Lemma 3.2.1, Case 7. $r_{7}=3$ and $r_{8} \leq 3$; apply Strategy E for L_{7} unless $1 \in A_{1}, A_{2}, A_{3}$, $A_{4}=246, A_{5}=257, A_{6}=347, A_{7}=356$ and $\mathcal{F} \subset L_{8}$. In such case, let $B_{1}=123, B_{2}=145, B_{3}=146, B_{4}=246, B_{5}=257, B_{6}=347, B_{7}=356$. Suppose that $B_{8}=89 A$ because $r_{8} \leq 3$ and color 1 to color 7 are appears in three lists in $B_{1}, B_{2}, \ldots, B_{7}$. Since $L_{7} \neq \mathcal{F}$, we obtain that 123,145 or 167 are not a list in L_{7}. Suppose that $123 \notin L_{7}$. Notice that $\{1,2,3,8\},\{1,2,3,9\}$ and $\{1,2,3, A\}$ are 4 -colorings of L_{8}. Since color 2 appears in at most two lists in A_{1}, A_{2}, A_{3}, 128,129 or $12 A$ is not a list in L_{7}. Suppose that $128 \notin L_{7}$. Then $\{1,2,3,8\}$ is a 4-coloring of L_{8} which has no subset that is a list in L_{7}. Then $K_{7,8}$ is L-colorable by Lemma 3.2.1.

Case 8. $r_{7} \leq 2$ and $r_{8}=3$; apply Strategy F for L_{8}.
Case 9. $r_{7}=2$ and $r_{8} \leq 2$; apply Strategy F for L_{7}.
Case 10. $r_{7}=1$ and $r_{8} \leq 2$; apply Strategy A for L_{7}. Notice that $\prod_{i=1}^{7}\left|A_{i}\right|=$ $3^{7} \geq 3^{4} \cdot 8=3^{7-3} n_{3}$.

Theorem 3.4.5. The complete bipartite graph with 15 vertices is 3 -choosable if and only if it is not $K_{7,8}$. For a 3-list assignment $L, K_{7,8}$ is L-colorable unless $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$.

Proof. It follows from Lemmas 3.3.1, 3.4.1, 3.4.2, 3.4.3 and 3.4.4.

Since $K_{7,8}$ is not L-colorable when $\left.L\right|_{V\left(K_{7,7}\right)}, K_{7,8}$ is not $(3, t)$-choosable for $t=7,8,9,10$. However, $K_{7,8}$ is (3,t)-choosable if and only if $t \neq 7,8,9,10$. Theorem 3.4.6 gives all positive numbers t such that all complete bipartite graphs with 15 vertices are $(3, t)$-choosable.

Theorem 3.4.6. A complete bipartite graph with 15 vertices is $(3, t)$-choosable unless $t=7,8,9,10$.

Proof. Let a, b be positive integers such that $a \leq b$ and $a+b=15$. Then $a \leq 7$.
Case 1. $a \leq 3$.
Then $K_{a, b}$ is a subgraph of $K_{3,26}$ which is 3-choosable by Lemma 3.3.1.
Case 2. $a=4,5,6$.
Then $K_{a, b}$ is one of $K_{4,11}, K_{510}$ or $K_{6,9}$ which is 3 -choosable by Lemma 3.4.1, Lemma 3.4.2 and Lemma 3.4.3, respectively.

Case 3. $a=7$ When $t \leq 6$ or $t \geq 11$, we obtain that $\mathcal{F} \not \subset L_{7}$ or $\mathcal{F} \not \subset L_{8}$. Then $K_{7,8}$ is L-colorable by Lemma 3.4.4.

CHAPTER IV

ON 3-CHOOSABILITY OF COMPLETE BIPARTITE GRAPHS WITH 16 VERTICES

In this chapter, we keep studying about 3-choosability of complete bipartite graphs. The main result of this chapter is Theorem 4.3.10 which is stated that every complete bipartite graph with 16 vertices is ($3, t$)-choosable for $t \leq 6$ or $t \geq 14$. We will apply this result to prove Theorem 5.3.1 in Chapter 5 .

In Section 4.1, we study 3-choosability of complete bipartite graphs by using strategies from Section 3.1. Unlikely, some cases of $K_{6,10}, K_{7,9}$ and $K_{8,8}$ cannot be proved by our strategies. For $K_{6,10}$, we claim that $K_{6,10}$ is 3 -choosable by referring to [15]. For $K_{8,8}$ and its 3 -list assignment L, we prove that $K_{8,8}$ is L-colorable unless $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$ (See Notation 3.1.1) in Section 4.2. For $K_{7,9}$ which is more difficult than $K_{8,8}$, we prove that $K_{7,9}$ is $(3, t)$-choosable if and only if $t \leq 6$ or $t \geq 14$ in Section 4.3.

4.1 Consequence of the Strategies

We apply our strategies to study 3 -choosability of complete bipartite graphs with 16 vertices.

Lemma 4.1.1. The complete bipartite graph $K_{4,12}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{4,12}$. Let r_{4} (and r_{12}) be the maximum number of lists in L_{4} (and L_{12}) containing a common color. Then $r_{4} \leq 4$ and $r_{12} \leq 12$.

Case 1. $r_{4}=3,4$ or $r_{12}=11,12$; apply Strategy B for L_{4} or Strategy B for L_{12}, respectively.

Case 2. $r_{4} \leq 2$ and $r_{12}=10$; apply Strategy C for L_{12}.
Case 3. $r_{4} \leq 2$ and $r_{12}=9$; apply Strategy D for L_{12}.
Case 4. $r_{4}=2$ and $r_{12} \leq 8$; apply Strategy C for L_{4}.
Case 5. $r_{4}=1$; apply Strategy A for L_{4}.

Lemma 4.1.2. The complete bipartite graph $K_{5,11}$ is 3 -choosable.

Proof. Let L be a 3 -list assignment of $K_{5,11}$. Let r_{5} (and r_{11}) be the maximum number of lists in L_{5} (and L_{11}) containing a common color. Then $r_{5} \leq 5$ and $r_{11} \leq 11$.

Case 1. $r_{5}=4,5$ or $r_{11}=10,11$; apply Strategy B for L_{5} or Strategy B for L_{11}, respectively.

Case 2. $r_{5} \leq 3$ and $r_{11}=9$; apply Strategy C for L_{11}.
Case 3. $r_{5}=3$ and $r_{11} \leq 8$; apply Strategy C for L_{5}.
Case 4. $r_{5} \leq 2$ and $r_{11}=8,7,6$; apply Strategies D,E and F for L_{11}, respectively.
Case 5. $r_{5}=2$ and $r_{11} \leq 5$; apply Strategy D for L_{5}.
Case 6. $r_{5}=1$; apply Strategy A for L_{5}.

To study 3 -choosability of $K_{6,10}$, we divide the proof into several cases. However, our strategies cannot be applied for a case as shown in Lemma 4.1.3. We do not prove the missing case here because O'Donnell[15] has done it.

Lemma 4.1.3. Let L be a 3-list assignment of $K_{6,10}$. Let r_{6} (and r_{10}) be the maximum number of lists in L_{6} (and L_{10}) containing a common color. If $\left(r_{6}, r_{10}\right) \neq(2,4)$, then $K_{6,10}$ is L-colorable.

Proof. Case 1. $r_{6}=5,6$ or $r_{10}=9,10$; apply Strategy B for L_{6} or Strategy B for L_{10}, respectively.

Case 2. $r_{6}=4$ and $r_{10} \leq 8$; apply Strategy C for L_{6}.
Case 3. $r_{6} \leq 3$ and $r_{10}=8,7,6$; apply Strategy C,D,E for L_{10}, respectively.
Case 4. $r_{6}=3$ and $r_{10} \leq 5$; apply Strategy D for L_{6}.
Case 5. $r_{6} \leq 2$ and $r_{10}=5$; apply Strategy F for L_{10}.
Case $6 r_{6}=2$ and $r_{10} \leq 3$; apply Strategy E for L_{6}.
Case 7. $r_{6}=1$; apply Strategy A for L_{6}.
Lemma 4.1.4. [15] The complete bipartite graph $K_{6, b}$ is 3 -choosable if and only if $b \leq 16$.

To study 3 -choosability of $K_{7,9}$, we cannot use our strategies to prove all cases of the proof as shown in Lemma 4.1.5. However, we prove that $K_{7,9}$ is (3,t)-choosable if and only if $t \leq 6$ or $t \geq 14$ in Section 4.3.

Lemma 4.1.5. Let L be a 3 -list assignment of $K_{7,9}$. Let r_{7} (and r_{9}) be the maximum number of lists in $L_{7}\left(\right.$ and $\left.L_{9}\right)$ containing a common color. If $\left(r_{7}, r_{9}\right) \neq$ $(3,4),(2,3)$ and $\left.L\right|_{V\left(K_{7,7}\right)} \neq L_{\mathcal{F}}$, then $K_{7,9}$ is L-colorable.

Proof. Case 1. $r_{7}=6,7$ or $r_{9}=8,9$; apply Strategy B for L_{7} or Strategy B for L_{9}, respectively.

Case 2. $r_{7}=5$ and $r_{9} \leq 7$; apply Strategy C for L_{7}.
Case 3. $r_{7} \leq 4$ and $r_{9}=6$; apply Strategy D for L_{9}.
Case 4. $r_{7}=4$ and $r_{9} \leq 5$; apply Strategy D for L_{7}.
Case 5. $r_{7} \leq 3$ and $r_{9}=5$; apply Strategy E for L_{9}. In this case, $K_{7,9}$ is L-colorable unless $\mathcal{F} \subset L_{7}, L_{9}$.

Case 6. $r_{7} \leq 2$ and $r_{9}=4$; apply Strategy F for L_{9}.
Case 7. $r_{7}=3$ and $r_{9} \leq 3$; apply Strategy E for L_{7}. In this case, $K_{7,9}$ is L-colorable unless $\mathcal{F} \subset L_{7}, L_{9}$.

Case 8. $r_{7}=2$ and $r_{9} \leq 2$; apply Strategy F for L_{7}.
Case 9. $r_{7}=1$; apply Strategy A for L_{7}.

Again, to study 3 -choosability of $K_{8,8}$, we cannot use our strategies to prove all cases as shown in Lemma 4.1.6. However, we have a complete proof in Section 4.3; for a 3 -list assignment L of $K_{8,8}$, it is L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)} \neq L_{\mathcal{F}}$.

Lemma 4.1.6. Let L be a 3 -list assignment of $K_{8,8}$. Let $r_{8(i)}\left(\right.$ and $\left.r_{8(i i)}\right)$ be the maximum number of lists in $L_{8(i)}$ (and $L_{8(i i)}$) containing a common color. If $\left(r_{8(i)}, r_{8(i i)}\right) \neq(4,4),(4,3),(3,4),(3,3),(2,2)$, then $K_{8,8}$ is L-colorable.

Proof. Case 1. $r_{8(i)}=7,8$ or $r_{8(i i)}=7,8$; apply Strategy B for $L_{8(i)}$ or Strategy B for $L_{8(i i)}$, respectively.

Case 2. $r_{8(i)}=6$ and $r_{8(i i)} \leq 6$; apply Strategy C for $L_{8(i)}$.
Case 3. $r_{8(i)} \leq 5$ and $r_{8(i i)}=6$; apply Strategy C for $L_{8(i i)}$.
Case 4. $r_{8(i)}=5$ and $r_{8(i i)} \leq 5$; apply Strategy D for $L_{8(i)}$.
Case 5. $r_{8(i)} \leq 4$ and $r_{8(i i)}=5$; apply Strategy D for $L_{8(i i)}$.
Case 6. $r_{8(i)}=4$ and $r_{8(i i)} \leq 2$; apply Strategy E for $L_{8(i)}$.
Case 7. $r_{8(i)} \leq 2$ and $r_{8(i i)}=4$; apply Strategy E for $L_{8(i i)}$.
Case 8. $r_{8(i)}=3$ and $r_{8(i)} \leq 2$; apply Strategy F for $L_{8(i)}$.
Case 9. $r_{8(i)} \leq 2$ and $r_{8(i i)}=3$; apply Strategy F for $L_{8(i i)}$.
Case 10. $r_{8(i)}=1$; apply Strategy A for $L_{8(i)}$.
Case 11. $r_{8(i i)}=1$; apply Strategy A for $L_{8(i i)}$.

Theorem 4.1.7. A complete graph with 16 vertices is 3 -choosable unless it is $K_{7,9}$ or $K_{8,8}$.

Proof. It follows from Lemma 3.3.1, Lemma 4.1.1, Lemma 4.1.2 and Lemma 4.1.4.

4.2 On 3-choosability of $K_{8,8}$

Recall that $r_{8(i)}$ (and $r_{8(i i)}$) be the maximum number of lists in $L_{8(i)}$ (and $\left.L_{8(i i)}\right)$ containing a common color and Lemma 4.1.6 has results of 3-choosability of $K_{8,8}$ except when $\left(r_{8(i)}, r_{8(i i)}\right)=(4,4),(4,3),(3,4),(3,3),(2,2)$. Then lemmas and theorems can be classified into three groups. The first group, which is from Lemma 4.2.1 to Theorem 4.2.18, deals with $\left(r_{8(i)}, r_{8(i)}\right)=(4,4),(4,3),(3,4)$. The second group, which is from Theorem 4.2.19 to Theorem 4.2.34, deals with $\left(r_{8(i)}, r_{8(i i)}\right)=(3,3)$ The last group, which is only Theorem 4.2.35, deals with $\left(r_{8(i)}, r_{8(i i)}\right)=(2,2)$. The conclusion is in Theorem 4.2.36 which is stated that, for a 3 -list assignment L of $K_{8,8}$, it is L-colorable if and only if $\{123,145,167$, $246,257,347,356\} \subset L_{8(i)}, L_{8(i i)}$.

Lemma 4.2.1. Let L be a list assignment of $K_{4,5}$ such that $L_{4}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{5}=\left\{B_{1}, B_{2}, \ldots, B_{5}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|B_{1}\right|=2$ and $\left|A_{4}\right|=\left|B_{2}\right|=$ $\left|B_{3}\right|=\left|B_{4}\right|=\left|B_{5}\right|=3$, then $K_{4,5}$ is L-colorable unless $L_{4}=\{1 p, 1 q, 23,245\}$ and $L_{5}=\{12,134,135,267,367\}$ where $p \neq q$ and $p, q \neq 1,2,3$ up to renaming the colors.

Proof. Case 1. $A_{1}, A_{2}, A_{3}, A_{4}$ are mutually disjoint.
Hence, we apply Strategy A for L_{4}.
Case 2. $A_{1}, A_{2}, A_{3}, A_{4}$ are not mutually disjoint but A_{1}, A_{2}, A_{3} are mutually disjoint.

Suppose $A_{1}=12, A_{2}=34, A_{3}=56$ and $1 \in A_{4}$. It is easy to verify that if a color appears in four lists of L_{5} then $K_{4,5}$ is L-colorable. Hence, we suppose that each color appears in at most three lists of L_{5}.

Then L_{4} has at least four 3-colorings, namely, $\{1,3,5\},\{1,3,6\},\{1,4,5\}$ and $\{1,4,6\}$. If one of such 3 -colorings has no subset that is a list in L_{5}, then $K_{4,5}$
is L-colorable by Lemma 3.2.1. Hence, we suppose that such 3 -colorings have a subset that is a list in L_{5}. Without loss of generality, let $B_{1}=13, B_{2}=145$ and $B_{3}=146$ because each color appears in at most three lists of L_{5}. Hence, we label B_{1}, B_{2}, B_{3} by color 1 and label A_{1} by color 2 . Now, the remaining vertices form $K_{3,2}$. Let L^{\prime} be the list assignment of $K_{3,2}$ which is obtained from L by removing color 1 and color 2 . For the worst case, we suppose that $2 \in B_{4}, B_{5}$. Then $L_{3}^{\prime}=\left\{34,56, A_{4}-1\right\}$ and $L_{2}^{\prime}=\left\{B_{4}-2, B_{5}-2\right\}$. Since $K_{3,2}$ is 2-choosable, $K_{3,2}$ is L^{\prime}-colorable. Hence, $K_{8,8}$ is L-colorable.

Case 3. A_{1}, A_{2}, A_{3} are not mutually disjoint and $A_{3} \cap A_{4}=\varnothing$.
Let $1 \in A_{1}, A_{2}$ and $A_{3}=23, A_{4}=456$. Thus, $L_{8(i)}$ has at least six 3-colorings containing color 1. Again, we suppose that such 3 -colorings has subset that is a list in $L_{8(i i)}$ by Lemma 3.2.1. Without loss of generality, we let $B_{1}=12, B_{2}=$ $134, B_{3}=135, B_{4}=136$. Hence, we label $B_{1}, B_{2}, B_{3}, B_{4}$ by color 1 and the remaining vertices are easily labeled.

Case 4. A_{1}, A_{2}, A_{3} are not mutually disjoint and $A_{3} \cap A_{4} \neq \varnothing$. If L_{4} has a coloring which is has no subset that is a list in L_{5}, then $K_{4,5}$ is L colorable by Lemma 3.2.1. Suppose that each coloring of L_{4} has a subset that is a list in L_{5}. Since L_{5} has only one list of size $2, L_{4}$ has at most one 2 -coloring. That is, $\left|A_{1} \cap A_{2}\right|=\left|A_{3} \cap A_{4}\right|=1$. Let $A_{1}=1 p, A_{2}=1 q, A_{3}=23, A_{4}=245$ where $p, q \neq 1$. We consider possibility of p, q. Since L_{4} has at most one 2 -coloring, we have $p, q \neq 2, p \neq q$ and if $p=3$, then $q \neq 4,5$.

Case $4.1 p=3$ or $q=3$.
Suppose that $p=3$ and $q=6$. Thus we swap A_{2} and A_{3}. That is, $A_{1}=$ $13, A_{2}=23, A_{3}=16$ and $A_{4}=245$. The case $\left|A_{1} \cap A_{2}\right|=1$ and $A_{3} \cap A_{4}=\varnothing$ is Case 3 that we have already done.

Case $4.2 p, q \neq 3$.

Since $\{1,3,4\},\{1,3,5\}$ and $\{2, p, q\}$ are 3 -colorings of L_{4}, we let $B_{2}=134, B_{3}=$ 135 and $B_{4}=2 p q$. Since $\{p, q, 3,4\}$ and $\{p, q, 3,5\}$ are 4 -colorings of L_{4} and we have only one list of size 3 left, we let $B_{5}=3 p q$.

It can be directly verified that if $L_{4}=\{1 p, 1 q, 23,245\}$ and $L_{5}=\{12,134$, 135, 267,367$\}$, then $K_{4,5}$ is not L-colorable.

Lemma 4.2.2. Let L be a list assignment of $K_{4,5}$ such that $L_{4}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{5}=\left\{B_{1}, B_{2}, \ldots, B_{5}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=2$ and $\left|A_{4}\right|=\left|B_{1}\right|=\left|B_{2}\right|=$ $\left|B_{3}\right|=\left|B_{4}\right|=\left|B_{5}\right|=3$, then $K_{4,5}$ is L-colorable.

Proof. If L_{4} has a 2 -coloring then $K_{4,5}$ is L-colorable by Lemma 3.2.1. Suppose that L_{4} has no 2 -coloring. Let $p \in B_{1}$ and L^{*} be the list assignment of $K_{4,5}$ such that $L_{4}^{*}=L_{4}$ and $L_{5}^{*}=\left\{B_{1}-p, B_{2}, B_{3}, B_{4}\right\}$. Since $L_{4}^{*}=L_{4}$ has no 2-coloring, we have $L_{4}^{*} \neq\{1 p, 1 q, 23,245\}$. Hence, $K_{4,5}$ is L^{*}-colorable by Lemma 4.2.1. Therefore, $K_{4,5}$ is L-colorable.

Theorem 4.2.3. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $2 \in A_{5}, A_{6}, A_{7}$ then $K_{8,8}$ is L-colorable.

Proof. If $2 \in A_{8}$ then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label $A_{5}, A_{6}, A_{7}, A_{8}$ by color 2 and every remaining list still has an available color. Suppose that $A_{8}=$ 345. Then $L_{8(i)}$ has at least three 3-colorings of, namely $\{1,2,3\},\{1,2,4\},\{1,2,5\}$. If one of such 3 -colorings is not a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that $B_{1}=123, B_{2}=124, B_{3}=125$.

We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label B_{1}, B_{2}, B_{3} by color 2 . The remaining vertices form $K_{4,5}$. Let L^{\prime} be the list assignment which is obtained from L by removing color 1 and color 2 .

Case 1. $1 \notin B_{4}$.
Then $K_{4,5}$ is L^{\prime}-colorable by Lemma 4.2.2.

Case 2. $1 \in B_{4}$ and $B_{5}, B_{6}, B_{7}, B_{8}$ have at least five 2-colorings.
Then $L_{8(i i)}$ has at least five 3 -colorings. Since color 1 appears in at most four lists in $L_{8(i)}$, at least one of such 3 -colorings is not a list in $L_{8(i)}$. Hence, $K_{8,8}$ is L-colorable by Lemma 3.2.1.

Case 3. $1 \in B_{4}$ and $B_{5}, B_{6}, B_{7}, B_{8}$ have at most four 2 -colorings.
That is, $L_{4}^{\prime}=\left\{A_{5}-2, A_{6}-2, A_{7}-2, A_{8}\right\}$ and $L_{5}^{\prime}=\left\{B_{4}-1, B_{5}, B_{6}, B_{7}, B_{8}\right\}$. Since $B_{5}, B_{6}, B_{7}, B_{8}$ have at most four 2-colorings, lists in L_{5}^{\prime} cannot be renamed to lists in $\{12,134,135,267,367\}$. By Lemma 4.2.1, $K_{4,5}$ is L^{\prime}-colorable; hence, $K_{8,8}$ is L-colorable.

Lemma 4.2.4. Let L be a list assignment of $K_{4,5}$ such that $L_{4}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{5}=\left\{B_{1}, B_{2}, \ldots, B_{5}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=2,\left|A_{3}\right|=\left|A_{4}\right|=\left|B_{2}\right|=$ $\left|B_{3}\right|=\left|B_{4}\right|=\left|B_{5}\right|=3$, then $K_{4,5}$ is L-colorable.

Proof. Let $r \in A_{3}$ and L^{*} be the list assignment of $K_{4,5}$ such that $L_{4}^{*}=$ $\left\{A_{1}, A_{2}, A_{3}-r, A_{4}\right\}$ and $L_{5}^{*}=L_{5}$.

By Lemma 4.2.1, $K_{4,5}$ is L^{*}-colorable unless $L_{4}^{*}=\{1 p, 1 q, 23,245\}$ and $L_{5}^{*}=$ $\{12,134,135,267,367\}$ where $p \neq q$ and $p, q \neq 1,2,3$. Suppose that $L_{4}=$ $\{1 p, 1 q, 23 r, 245\}$ and $L_{5}=\{12,134,135,267,367\}$ where $p \neq q$ and $p, q \neq 1,2,3$. Then we label A_{1}, A_{2} by color 1 , label A_{3} by color r and label A_{4} by color 4 . All remaining vertices still have available colors; hence, $K_{4,5}$ is L-colorable.

Theorem 4.2.5. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $1,2 \in B_{1}, B_{2}, B_{3}$ then $K_{8,8}$ is L-colorable.

Proof. We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label B_{1}, B_{2}, B_{3} by color 2 . The remaining vertices form $K_{4,5}$. Let L^{\prime} be the list assignment of $K_{4,5}$ which is
obtained from L by removing color 1 and color 2 . If color 2 appears in three lists of L_{4}^{\prime}, then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Hence, suppose that color 2 appears in at most two lists of L_{4}^{\prime}. Moreover, for the worst case, we let $2 \in A_{5}, A_{6}$. That is, $L_{4}^{\prime}=\left\{A_{5}-2, A_{6}-2, A_{7}, A_{8}\right\}$ and $L_{5}^{\prime}=\left\{B_{4}-1, B_{5}, B_{6}, B_{7}, B_{8}\right\}$. By Lemma 4.2.4, $K_{4,5}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Lemma 4.2.6. Let L be a list assignment of $K_{2,4}$ such that $L_{2}=\left\{A_{1}, A_{2}\right\}$ and $L_{4}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=3$ and $\left|B_{1}\right|,\left|B_{2}\right|,\left|B_{3}\right|,\left|B_{4}\right| \leq 3$ and $\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\left|B_{4}\right| \geq 8$, then $K_{2,4}$ is L-colorable.

Proof. For the worst case, we suppose that $\left|B_{1}\right|+\left|B_{2}\right|+\left|B_{3}\right|+\left|B_{4}\right|=8$. Without loss of generality, let $\left|B_{1}\right| \leq\left|B_{2}\right| \leq\left|B_{3}\right| \leq\left|B_{4}\right|$.

Case 1. $\left|B_{1}\right|=\left|B_{2}\right|=\left|B_{3}\right|=\left|B_{4}\right|=2$.
If A_{1} and A_{2} have a common color, we use this color to color A_{1} and A_{2}; hence, all lists in L_{4} still have an available color. Otherwise, we suppose that $A_{1} \cap A_{2}=\varnothing$. Thus we apply Strategy A for L_{2}.

Case 2. $\left|B_{1}\right|=1,\left|B_{2}\right|=\left|B_{3}\right|=2$ and $\left|B_{4}\right|=3$.
Let $B_{1}=1$. Since B_{1} has only one color, we must use color 1 to color lists in L_{4}. For the worst case, we suppose $1 \in A_{1}, A_{2}$ but $1 \notin B_{2}, B_{3}, B_{4}$. After we color B_{1}, the remaining vertices form $K_{2,3}$. Let L^{\prime} be the list assignment of $K_{2,3}$ which is obtained from L by removing color 1 . Thus $L_{2}^{\prime}=\left\{A_{1}-1, A_{2}-1\right\}$ and $L_{3}^{\prime}=\left\{B_{2}, B_{3}, B_{4}\right\}$.

If $A_{1}-1$ and $A_{2}-1$ have a common color, we can use the color to color $A_{1}-1$ and $A_{2}-1$ and all lists in L_{3}^{\prime} still have an available color. Otherwise, we suppose that $A_{1}-1, A_{2}-1$ are disjoint. Hence, L_{2}^{\prime} has four 2-colorings. Since L_{3}^{\prime} has two lists of size 2, at least one of such 2-colorings of L_{2}^{\prime} is not a list in L_{3}^{\prime}. By Lemma 3.2.1, $K_{2,3}$ is L^{\prime}-colorable. Therefore, $K_{2,4}$ is L-colorable.

Case 3. $\left|B_{1}\right|=\left|B_{2}\right|=1$ and $\left|B_{3}\right|=\left|B_{4}\right|=3$.

Let $B_{1}=1$ and $B_{2}=2$. Since each of B_{1} and B_{2} has only one color, we must use color 1 and color 2 to label lists in L_{4}. For the worst case, we suppose $1,2 \in A_{1}, A_{2}$ but $1,2 \notin B_{2}, B_{3}, B_{4}$. Let $A_{1}=123$ and $A_{2}=124$ After we color B_{1} and B_{2}, the remaining vertices form $K_{2,2}$. Let L^{\prime} be the list assignment of $K_{2,2}$ which is obtained from L by removing color 1 and color 2 . Thus $L_{2(i)}^{\prime}=\{3,4\}$ and $L_{2(i i)}^{\prime}=\left\{B_{3}, B_{4}\right\}$. We have to label lists $L_{2(i)}^{\prime}$ by color 3 and color 4. Since each list in $L_{2(i i)}^{\prime}$ still have an available color, $K_{2,2}$ is L^{\prime}-colorable. Therefore, $K_{2,4}$ is L-colorable.

Lemma 4.2.7. Let L be a list assignment of $K_{3,4}$ such that $L_{3}=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $L_{4}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=\left|B_{2}\right|=2$ and $\left|A_{3}\right|=\left|B_{3}\right|=$ $\left|B_{4}\right|=3$, then $K_{3,4}$ is L-colorable.

Proof. Case 1. A_{1} and A_{2} have a common color.
Thus L_{3} has at least three 2 -colorings. Since L_{4} has only two lists of size 2, at least one of such 2 -colorings is not a list in L_{4}. By Lemma 3.2.1, $K_{3,4}$ is L-colorable.

Case 2. A_{1} and A_{2} are disjoint.
Let $A_{1}=12$ and $A_{2}=34$. If A_{1}, A_{2}, A_{3} are mutually disjoint, then we apply Strategy A for L_{3}. Otherwise, we suppose that $1 \in A_{3}$. Thus, $\{1,3\}$ and $\{1,4\}$ are 2 -colorings of L_{3}. If 13 and 14 are not lists in L_{4}, then $K_{3,4}$ is L-colorable by Lemma 3.2.1. Otherwise, we let $B_{1}=13$ and $B_{2}=14$.

Now, we label A_{2} by color 2 and label B_{1}, B_{2} by color 1 . The remaining vertices form $K_{2,2}$. Let L^{\prime} be the list assignment of $K_{2,2}$ which is obtained from L by removing color 1 and color 2 . For the worst case, we suppose that $2 \in B_{3}, B_{4}$. Then $L_{2(i)}^{\prime}=\left\{A_{2}, A_{3}-1\right\}$ and $L_{2(i i)}^{\prime}=\left\{B_{3}-2, B_{4}-2\right\}$. We can directly verify that $K_{2,2}$ is L^{\prime}-colorable. Hence, $K_{3,4}$ is L-colorable.

Theorem 4.2.8. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}, 1,2 \in B_{1}, B_{2}$ and $1,3 \in B_{3}, B_{4}$, then $K_{8,8}$ is L-colorable.

Proof. We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 , label B_{1}, B_{2} by color 2 and label B_{3}, B_{4} by color 3 . Then the remaining vertices form $K_{4,4}$. Let L^{\prime} be the list assignment of $K_{4,4}$ which is obtained from L by removing color 1 , color 2 and color 3.

If a color appears in three lists in $A_{5}, A_{6}, A_{7}, A_{8}$ or three lists in $B_{5}, B_{6}, B_{7}, B_{8}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Suppose that each color appears in at most two lists in $A_{5}, A_{6}, A_{7}, A_{8}$ and at most two lists in $B_{5}, B_{6}, B_{7}, B_{8}$.

For the worst case, we suppose that both color 2 and color 3 appear in two lists in $A_{5}, A_{6}, A_{7}, A_{8}$.

Case 1. $2 \in A_{5}, A_{6}$ and $3 \in A_{7}, A_{8}$.
Then $L_{8(i)}$ has a 3 -coloring, namely $\{1,2,3\}$. If 123 is not a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Without loss of generality, we suppose $B_{1}=123$. Hence, $K_{8,8}$ is L-colorable by Theorem 4.2.5.

Case 2. $2 \in A_{5}, A_{6}$ and $3 \in A_{5}, A_{7}$.
Let $A_{5}=234$. Then $A_{5}-23$ which is a list in $L_{4(i)}^{\prime}$ has only one color left. Hence, we label A_{5} by color 4. The remaining vertices forms $K_{3,4}$. Let $L^{\prime \prime}$ be the list assignment of $K_{3,4}$ which is obtained form L^{\prime} by removing color 4. Since each color appears in at most two lists of $B_{5}, B_{6}, B_{7}, B_{8}$, we let $4 \in B_{5}, B_{6}$ for the worst case. Then $L_{3}^{\prime \prime}=\left\{A_{6}-2, A_{7}-3, A_{8}\right\}$ and $L_{4}^{\prime \prime}=\left\{B_{5}-4, B_{6}-4, B_{7}, B_{8}\right\}$. Thus, $K_{3,4}$ is $L^{\prime \prime}$-colorable by Lemma 4.2.7. Therefore, $K_{8,8}$ is L-colorable.

Case 3. $2 \in A_{5}, A_{6}$ and $3 \in A_{5}, A_{6}$.
Let $A_{5}=234$ and $A_{6}=235$. Then $A_{5}-23$ and $A_{6}-23$ which are lists in $L_{4(i)}^{\prime}$
have only one color left. Hence, we label A_{5} and A_{6} by color 4 and color 5, respectively. The remaining vertices form $K_{2,4}$. Let $L^{\prime \prime}$ be the list assignment of $K_{2,4}$ which is obtained form L^{\prime} by removing color 4 and color 5 .

Since each color appears in at most two lists of $B_{5}, B_{6}, B_{7}, B_{8}$, we obtain that $\left|B_{5}-23\right|+\left|B_{6}-23\right|+\left|B_{7}-23\right|+\left|B_{8}-23\right| \geq\left|B_{5}\right|+\left|B_{6}\right|+\left|B_{7}\right|+\left|B_{8}\right|-2 \cdot 2=$ $4 \cdot 3-2 \cdot 2=8$. Thus, $K_{2,4}$ is $L^{\prime \prime}$-colorable by Lemma 4.2.6. Therefore, $K_{8,8}$ is L-colorable.

Lemma 4.2.9. Let L be a list assignment of $K_{4,4}$ such that $L_{4(i)}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{4(i i)}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$. If $\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=\left|B_{2}\right|=2,\left|A_{3}\right|=\left|A_{4}\right|=$ $\left|B_{3}\right|=\left|B_{4}\right|=3$ and $A_{1} \cap A_{2}=A_{3} \cap A_{4}=\varnothing$, then $K_{4,4}$ is L-colorable.

Proof. If $A_{1}, A_{2}, A_{3}, A_{4}$ are mutually disjoint, then we apply Strategy A for $L_{4(i)}$. Suppose that $A_{1}, A_{2}, A_{3}, A_{4}$ are not mutually disjoint. Without loss of generality, suppose that $p=1$.

If $L_{4(i)}$ has a coloring which has no subset that is a list in $L_{4(i i)}$, then $K_{4,4}$ is L-colorable by Lemma 3.2.1. Suppose that every coloring of $L_{4(i)}$ has a subset that is a list in $L_{4(i)}$. Then $r, s \neq 1$. In the next three cases, we will prove that $1 \in B_{1}, B_{2}$.

Case 1. $r, s \in\{4,5,6\}$.
Then $\{1, r\}$ and $\{1, s\}$ are 2 -colorings of $L_{4(i)}$. Hence, we suppose that $B_{1}=$ $1 r, B_{2}=1 \mathrm{~s}$.

Case 2. $r \in\{4,5,6\}$ but $s \notin\{4,5,6\}$.
Since $\{1, r\}$ is a 2 -coloring of $L_{4(i)}$, let $B_{1}=1 r$. Since $\{1, s, 4\},\{1, s, 5\}$ and $\{1, s, 6\}$ are 3 -colorings of $L_{4(i)}$ but we have only one list of size 2 and two lists of size 3 , let $B_{2}=1 s$.

Case 3. $r, s \notin\{4,5,6\}$.
Then $L_{4(i)}$ has at least six 3 -colorings, namely $\{1, r, 4\},\{1, r, 5\},\{1, r, 6\},\{1, s, 4\}$,
$\{1, s, 5\}$ and $\{1, s, 6\}$. If all six 3 -colorings have a subset that is a list in $L_{4(i i)}$, then $B_{1}=1 r, B_{2}=1, s$.

We label B_{1}, B_{2} by color 1 and the remaining vertices can be colored by Lemma 4.2.6; hence, $K_{4,4}$ is L-colorable.

Theorem 4.2.10. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}, 2 \in A_{5}, A_{6}$ and $A_{7} \cap A_{8}=\varnothing$, then $K_{8,8}$ is L-colorable.

Proof. If $2 \in A_{7}$ or $2 \in A_{8}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Let $A_{7}=345$ and $A_{8}=678$.

Case 1. No list in $L_{8(i i)}$ contains both color 1 and color 2.
Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label A_{5}, A_{6} by color 2 . The remaining vertices form $K_{2,8}$. Let L^{\prime} be the list assignment of $K_{2,8}$ which is obtained from L by removing color 1 and color 2. Then we apply Strategy A for L_{2}^{\prime}.

Case 2. Only one list in $L_{8(i i)}$ contains both color 1 and color 2.
Let $1,2 \in B_{1}$. Then $L_{8(i)}$ has at least nine 4 -colorings, namely $\{1,2,3,6\}$, $\{1,2,3,7\},\{1,2,3,8\},\{1,2,4,6\},\{1,2,4,7\},\{1,2,4,8\},\{1,2,5,6\},\{1,2,5,7\}$ and $\{1,2,5,8\}$. If one of such 4 -colorings has no list that is a subset in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable. Suppose that such 4-colorings has subset that is a list in $L_{8(i i)}$.

Case $2.1 B_{1} \cap\{3,4,5,6,7,8\}=\varnothing$.
Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 , label A_{5}, A_{6} by color 2 and label B_{1} by the remaining color. Then we apply Strategy A similar to case 1 . Thus, the proof is done.

$$
\text { Case } 2.2 B_{1} \cap\{3,4,5,6,7,8\} \neq \varnothing
$$

Then we suppose that $3 \in B_{1}$. That is, $B_{1}=\{1,2,3\}$. Consider such 4-colorings, $L_{8(i)}$ has six 4-colorings not containing 3. Since the remaining seven lists do not
contain both color 1 and color 2, we need six lists to be a subset of six 4-colorings. That is, we may suppose that $1 \in B_{2}, B_{3}, B_{4}$ and $2 \in B_{5}, B_{6}, B_{7}$. Hence, $K_{8,8}$ is L-colorable by Theorem 4.2.3.

Case 3. Exactly two lists in $L_{8(i i)}$ contain both color 1 and color 2.
Let $1,2 \in B_{1}, B_{2}$. Similar to Case 2, we suppose that nine 4 -colorings of $L_{8(i)}$ have a subset that is a list in $L_{8(i i)}$.

Case $3.1 B_{1} \cap A_{7}=\varnothing$ and $B_{1} \cap A_{8}=\varnothing$.
Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 , label A_{5}, A_{6} by color 2 and label B_{1} by the remaining color. Similar to Case 2, we can prove that the remaining vertices can be colored.

Case $3.2 B_{2} \cap A_{7}=\varnothing$ and $B_{2} \cap A_{8}=\varnothing$.
Similar to Case 3.1.
Case $3.3 B_{1} \cap A_{7} \neq \varnothing$ and $B_{2} \cap A_{7} \neq \varnothing$.
Suppose $B_{1}=\{1,2,3\}$ and $B_{2}=\{1,2,4\}$. Then $\{1,2,5,6\},\{1,2,5,7\}$ and $\{1,2,5,8\}$ do no contain B_{1} or B_{2} as a subset. Hence, we need three more lists to be a subset of such three 4-colorings. If $B_{3}=156, B_{4}=157$ or $B_{3}=157, B_{4}=$ 158 or $B_{3}=157, B_{4}=158$, then the proof is done by Theorem4.2.8. Hence, we suppose that $B_{3}=156$ and $B_{4}=257, B_{5}=258$. Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label $B_{1}, B_{2}, B_{4}, B_{5}$ by color 2 . Lemma 4.2.9 guarantee that the remaining vertices can be colored.

Case $3.4 B_{1} \cap A_{7} \neq \varnothing$ and $B_{2} \cap A_{8} \neq \varnothing$.
Suppose $B_{1}=\{1,2,3\}$ and $B_{2}=\{1,2,6\}$. Then $\{1,2,4,7\},\{1,2,4,8\},\{1,2,5,7\}$ and $\{1,2,5,8\}$ do no contain B_{1} or B_{2} as a subset. Hence, we need four more lists to be a subset of such three 4 -colorings. That is, we may suppose that $1 \in B_{3}, B_{4}$ and $2 \in B_{5}, B_{6}$. Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label $B_{1}, B_{2}, B_{4}, B_{5}$ by color 2. Lemma 4.2.9 guarantee that the remaining vertices can be colored.

Case 3.5 $B_{1} \cap A_{8} \neq \varnothing$ and $B_{2} \cap A_{8} \neq \varnothing$.
Similar to Case 3.3.
Case 3.6 $B_{1} \cap A_{8} \neq \varnothing$ and $B_{2} \cap A_{7} \neq \varnothing$.
Similar to Case 3.4.
Case 4. Exactly three lists in $L_{8(i i)}$ contain both color 1 and color 2. Then $K_{8,8}$ is L-colorable by Theorem 4.2.5.

Theorem 4.2.11. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}, 2,3 \in A_{5}, A_{6}$ and $4,5 \in A_{7}, A_{8}$, then $K_{8,8}$ is L-colorable.

Proof. Notice that $L_{8(i)}$ has at least four 3-colorings, namely $\{1,2,4\},\{1,2,4\}$, $\{1,3,4\},\{1,3,5\}$. If one of such 4 -colorings is not a list in $L_{8(i i)}$ then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Hence, we suppose that $B_{1}=124, B_{2}=125, B_{3}=$ $134, B_{4}=135$. Therefore $K_{8,8}$ is L-colorable by Theorem 4.2.8.

Lemma 4.2.12. Let L be a list assignment of $K_{3,6}$ such that $L_{3}=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $L_{6}=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}$. If $A_{1}=\{1,2\}, A_{2}=\{3,4\}, A_{3}=\{5,6\}$ and $\left|B_{1}\right|=\left|B_{2}\right|=2,\left|B_{3}\right|=\left|B_{4}\right|=\left|B_{5}\right|=\left|B_{6}\right|=3$, then $K_{3,6}$ is L-colorable or $L_{6}=\{13,14,235,236,245,246\}$ or $L_{6}=\{13,24,145,146,235,236\}$ or $L_{6}=$ $\{13,45,146,235,236,246\}$ up to renaming the colors.

Proof. Suppose that $K_{8,8}$ is not L-colorable.
Notice that L_{3} has at least eight 3 -colorings, namely $\{1,3,5\},\{1,3,6\}$, $\{1,4,5\},\{1,4,6\},\{2,3,5\},\{2,3,6\},\{2,4,5\},\{2,4,6\}$. Since $K_{3,6}$ is not L colorable, all 3 -coloring of L_{3} have a subset that is a list in L_{6} by Lemma 3.2.1.

If a list in L_{6} contains a color which is not in any A_{i} for $i=1,2,3$, then at most seven 3-colorings of L_{3} have a subset that is a list in L_{6}. Hence, we suppose that every list in L_{6} is a subset of $\{1,2,3,4,5,6\}$.

If $A_{1}=B_{1}$ then B_{1} is not a subset of any 3 -coloring of L_{3}; hence, at most six 3 -colorings of L_{3} has a subset that is a list in L_{6}. Hence, we suppose that $A_{i} \neq A_{j}$ for $i=1,2,3$ and $j=1,2$.

Since B_{1} must be a subset of a 3 -coloring of L_{3}, we may suppose that $B_{1}=13$. That is, two 3 -colorings of L_{3}, namely $\{1,3,5\}$ and $\{1,3,6\}$, contain B_{1} as a subset. Without loss of generality, we divide the possibility of B_{2} into four cases.

Case 1. $B_{2}=14$.
That is, two 3 -colorings of L_{3}, namely $\{1,4,5\}$ and $\{1,4,6\}$, contain B_{2} as a subset. Hence, the remaining four 3 -colorings of L_{3} must be $B_{3}, B_{4}, B_{5}, B_{6}$. Therefore, $L_{6}=\{13,14,235,236,245,246\}$.

Case 2. $B_{2}=15$.
That is, two 3 -colorings of L_{3}, namely $\{1,3,5\}$ and $\{1,4,5\}$, contain B_{2} as a subset. Now, the remaining five 3 -colorings do not contain B_{1} or B_{2} as a subset but we have only four lists of size 3 left in L_{6}. It is a contradiction to the assumption that $K_{3,6}$ is not L-colorable.

Case 3. $B_{2}=24$.
That is, two 3 -colorings of L_{3}, namely $\{2,4,5\}$ and $\{2,4,6\}$, contain B_{2} as a subset. Hence, the remaining four 3-colorings of L_{3} must be $B_{3}, B_{4}, B_{5}, B_{6}$. Therefore, $L_{6}=\{13,24,145,146,235,236\}$.

Case 4. $B_{2}=25$.
That is, two 3 -colorings of L_{3}, namely $\{2,3,5\}$ and $\{2,4,5\}$, contain B_{2} as a subset. Hence, the remaining four 3 -colorings of L_{3} must be $B_{3}, B_{4}, B_{5}, B_{6}$. Therefore, $L_{6}=\{13,45,146,235,236,246\}$.

Theorem 4.2.13. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $2,3 \in A_{5} \cap A_{6}$, then $K_{8,8}$ is L-colorable.

Proof. If $A_{7} \cap A_{8}$ is an empty set, the proof is done by Theorem 4.2.10 and if $\left|A_{7} \cap A_{8}\right| \geq 2$, the proof is done by Theorem 4.2.11. Hence, we suppose that $\left|A_{7} \cap A_{8}\right|=1$. Let $A_{7}=\{6, p, q\}$ and $A_{8}=\{6, r, s\}$. If a color appears in three lists of $A_{5}, A_{6}, A_{7}, A_{8}$, then the proof is done by Theorem 4.2.3. We suppose each color appears in at most two lists of $A_{5}, A_{6}, A_{7}, A_{8}$. Hence, $2,3 \notin A_{7}, A_{8}$.

If there exists a coloring in $L_{8(i)}$ such that has no subset that is a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that every coloring in $L_{8(i)}$ has a subset that is a list in $L_{8(i i)}$. Since $\{1,2,6\}$ and $\{1,3,6\}$ are 3-colorings of $L_{8(i)}$, we may suppose that $B_{1}=126$ and $B_{2}=136$. Since $\{1,4,5,6\}$ is a 4-coloring of $L_{8(i)}$, we may suppose that 145 or 146 or 156 is a list in $L_{8(i i)}$. If 146 or 156 is a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.5. Hence, we suppose that $B_{3}=145$. We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 and label B_{1} and B_{2} by color 6 . Then the remaining vertices form $K_{4,6}$. Let L^{\prime} be the list assignment of $K_{4,6}$ which is obtained from L by removing color 1 and color 6 . Then we define the new list assignment L^{*} of $K_{3,6}$ such that $L_{3}^{*}=\{23, p q, r s\}$ and $L_{6}^{*}=L_{6}^{\prime}$. It is easy to see that if $K_{3,6}$ is L^{*}-colorable, then $K_{4,6}$ is L^{\prime}-colorable.

Case 1. Color 1 appears only in B_{1}, B_{2}, B_{3}.
Then $L_{4}^{\prime}=\{234,235, p q, r s\}$ and $L_{6}^{\prime}=\left\{45, B_{4}, B_{5}, B_{6}, B_{7}, B_{8}\right\}$. Then we apply Strategy A for L_{3}^{*} to prove that $K_{3,6}$ is L^{*}-colorable; hence, $K_{4,6}$ is L^{\prime}-colorable.

Case 2. Color 1 appears in one of $B_{4}, B_{5}, B_{6}, B_{7}, B_{8}$.
Suppose that $1 \in B_{4}$. Then $L_{4}^{\prime}=\{234,235, p q, r s\}$ and $L_{6}^{\prime}=\left\{45, B_{4}-1, B_{5}\right.$, $\left.B_{6}, B_{7}, B_{8}\right\}$. If a color appears in three lists in $B_{5}, B_{6}, B_{7}, B_{8}$ then the proof is done by Theorem 4.2.3. If $\left|B_{5} \cap B_{6}\right| \geq 2$ and $\left|B_{7} \cap B_{8}\right| \geq 2$ then the proof is done by Theorem 4.2.11. Hence, we suppose that each color appears in at most two lists in $B_{5}, B_{6}, B_{7}, B_{8}$ and $\left(\left|B_{5} \cap B_{6}\right| \leq 1\right.$ or $\left.\left|B_{7} \cap B_{8}\right| \leq 1\right)$. Then L_{6}^{*} cannot rename color to be $\{13,14,235,236,245,246\}$ or $\{13,24,145,146,235,236\}$ or
$\{13,45,146,235,236,246\}$. By Lemma 4.2.12, $K_{3,6}$ is L^{*}-colorable; hence, $K_{8,8}$ is L-colorable.

For the next lemma, the alphabet A represents 10 and the alphabet B represents 11.

Lemma 4.2.14. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}=245, A_{6}=267, A_{7}=389, A_{8}=3 A B$, then $K_{8,8}$ is L-colorable.

Proof. Notice that $\{1,2,3\}$ is a 3 -coloring of $L_{8(i)}$. If 123 is not a list in $L_{8(i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that $B_{1}=123$.

Case 1. At least two lists in $L_{8(i i)}$ contain both color 1 and color 2.
If three lists in $L_{8(i i)}$ contains both color 1 and color 2, then the proof is done by Theorem 4.2.5. Suppose that $1,2 \in B_{2}$ and no list from $B_{3}, B_{4}, \ldots, B_{8}$ contains both color 1 and color 2. We label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 . Let L^{\prime} be the list assignment of $K_{4,8}$ which is obtained from L by removing color 1 . For the worst case, suppose that $1 \in B_{1}, B_{2}, B_{3}, B_{4}$. Then $L_{4}^{\prime}=\left\{A_{5}, A_{6}, A_{7}, A_{8}\right\}$ and $L_{8}^{\prime}=\left\{B_{1}-1, B_{2}-1, B_{3}-1, B_{4}-1, B_{5}, B_{6}, B_{7}, B_{8}\right\}$.

Case $1.13 \in B_{3} \cup B_{4}$.
Suppose that $3 \in B_{3}$. Then we label B_{1}, B_{2} by color 2 and label B_{3} by color 3. Let $L^{\prime \prime}$ be the list assignment of $K_{4,5}$ which is obtained from L by removing color 2 and color 3 . Then we apply Strategy A^{\prime} for L_{4}^{\prime}.

Case $1.23 \in B_{5} \cup B_{6} \cup B_{7} \cup B_{8}$.
Suppose that $3 \in B_{5}$. Then we label B_{1}, B_{2} by color 2 and label B_{5} by color 3. Let $L^{\prime \prime}$ be the list assignment of $K_{4,5}$ which is obtained from L by removing color 2 and color 3. Then we apply Strategy A ${ }^{\prime}$ for L_{4}^{\prime}.

Case $1.33 \notin B_{3} \cup B_{4} \cup \ldots \cup B_{8}$.
Then we label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 , label B_{1}, B_{2} by color 2 and label A_{7}, A_{8} by color 3 . The remaining vertices can be easily labeled.

Case 2. At least two lists in $L_{8(i i)}$ contain both color 1 and color 3. Similar to Case 1.

Case 3. No list from $B_{2}, B_{3} \ldots, B_{8}$ contains both color 1 and color i where $i=1,2$.

Case 3.1 Color 1 appears in four lists in $L_{8(i i)}$.
Suppose that $1 \in B_{1}, B_{2}, B_{3}, B_{4}$. If $L_{8(i)}$ has a coloring which has no subset that is a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that every coloring of $L_{8(i)}$ has a subset that is a list in $L_{8(i i)}$. Notice that $\{1,2,8, A\}$, $\{1,2,8, B\},\{1,2,9, A\}$ and $\{1,2,9, B\}$ are 4 -colorings of $L_{8(i)}$. If two lists of $B_{5}, B_{6}, B_{7}, B_{8}$ have two common colors, then the proof is done by Theorem 4.2.13. Without loss of generality, suppose that $28 A, 29 B, 18 B, 19 A \in L_{8(i i)}$. Notice that $\{1,3,4,6\},\{1,3,4,7\},\{1,3,5,6\}$ and $\{1,3,5,7\}$ are 4-colorings of $L_{8(i)}$. Similarly, $346,357,147,156 \in L_{8(i i)}$. It is a contradiction to the fact that $L_{8(i i)}$ contains exactly eight lists.

Case 3.2 Color 1 appears in at most three lists in $L_{8(i i)}$ and color 2 appears in at most two lists in $L_{8(i i)}$.

We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 . For the worst case, suppose that $1 \in$ B_{1}, B_{2}, B_{3} and $2 \in B_{1}, B_{4}$. Then we label A_{5}, A_{6} by color 2 and label B_{1} by color 3 . The remaining vertices are easily labeled.

Case 3.3 Color 1 appears in at most three lists in $L_{8(i i)}$ and color 2 appears in at least three lists in $L_{8(i i)}$.

We first label $A_{1}, A_{2}, A_{3}, A_{4}$ by color 1 . For the worst case, suppose that $1 \in$ B_{1}, B_{2}, B_{3} and $2 \in B_{1}, B_{4}, B_{5}$. Then we label B_{1} by color 3 and label B_{4}, B_{5}
by color 2. The remaining vertices form $K_{4,5}$. Let L^{\prime} be the list assignment of $K_{4,5}$ which is obtained from L by removing color 2 and color 3 . Then we apply Strategy A ${ }^{\prime}$ for L_{4}^{\prime}.

Lemma 4.2.15. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}=246, A_{6}=247, A_{7}=358, A_{8}=359$, then $K_{8,8}$ is L-colorable.

Proof. If $L_{8(i)}$ has a coloring which has no subset that is a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that every coloring of $L_{8(i)}$ has a subset that is a list in $L_{8(i i)}$. Since $\{1,2,3\}$ and $\{1,4,5\}$ are 3-colorings of $L_{8(i)}$, we suppose that $B_{1}=123$ and $B_{2}=145$.

Case 1. A list from $B_{3}, B_{4}, \ldots, B_{8}$ contains both color 1 and color x for some $x \in\{2,3,4,5\}$.

Suppose that $1,2 \in B_{3}$.
Case $1.11 \notin B_{4} \cup B_{5} \cup \ldots \cup B_{8}$.
Notice that $\{1,3,4,7\},\{1,3,5,6\},\{1,3,6,7\},\{1,4,7,8\}$ and $\{1,5,6,9\}$ are 4 colorings of $L_{8(i)}$. Then we suppose that $B_{4}=347, B_{5}=356, B_{6}=367$, $B_{7}=478, B_{8}=569$. Then we label $B_{1}, B_{4}, B_{5}, B_{6}$ by color 3 , label B_{2}, B_{7} by color 4, label B_{3} by color 2 and label B_{8} by color 5 . Since no list in $L_{8(i)}$ is a subset of $\{2,3,4,5\}, K_{8,8}$ is L-colorable.

Case $1.21 \in B_{4} \cup B_{5} \cup \ldots \cup B_{8}$.
Suppose that $1 \in B_{4}$. Notice that $\{1,3,4,7\},\{1,3,5,6\}$ and $\{1,3,6,7\}$ are 4 -colorings of $L_{8(i)}$. If $347,356,367 \in B_{8}$, then we apply Theorem 4.2.3. If $4 \in B_{4}$ or $5 \in B_{4}$, then we apply Theorem 4.2.8. Otherwise, we suppose that 347, 356 and 167 are lists in $L_{8(i i)}$. Again, since $\{1,4,7,8\}$ and $\{1,5,6,9\}$ are 4-colorings of $L_{8(i)}$, we suppose that $478,659 \in B_{8}$. Since $347,478 \in L_{8(i i)}$, we
apply Theorem 4.2.13.
Case 2. No list $B_{3}, B_{4}, \ldots, B_{8}$ contains both color 1 and color x for all $x \in\{2,3,4,5\}$.

Notice that $\{1,2,4,8\},\{1,2,5,9\},\{1,3,4,7\},\{1,3,5,6\}$ are 4-colorings of $L_{8(i)}$. Then each of such 4 -coloring has a subset that is a list in $L_{8(i i)}$. Suppose that $B_{5}=348, B_{6}=259, B_{7}=347, B_{8}=356$. Again, $\{1,2,8,9\}$ and $\{1,3,6,7\}$ are 4-colorings of $L_{8(i)}$; hence, we suppose that $B_{3}=189$ and $B_{4}=167$. Finally, we label all lists in $L_{8(i)}$ by color 1, color 4, color 7 and color 8 and all lists in $L_{8(i i)}$ still have available colors.

Theorem 4.2.16. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5} \cap A_{7}=\varnothing$, then $K_{8,8}$ is L-colorable.

Proof. If A_{5}, A_{6}, A_{7} and A_{8} are mutually disjoint, we apply Strategy A for L_{4}^{\prime} to guarantee that $K_{4,8}$ is L^{\prime}-colorable. Suppose that color 2 appears at least two lists in $A_{5}, A_{6}, A_{7}, A_{8}$. If $2 \in A_{6}, A_{8}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.10. Without loss of generality, let $2 \in A_{5}, A_{6}$. Again, if $A_{7} \cap A_{8}=\varnothing$ then $K_{8,8}$ is L-colorable by Theorem 4.2.10. Hence, we suppose that $3 \in A_{7}, A_{8}$, as well.

If $\left|A_{5} \cap A_{6}\right| \geq 2$ or $\left|A_{7} \cap A_{8}\right| \geq 2$ then $K_{8,8}$ is L-colorable by Theorem 4.2.13. Suppose that $\left|A_{5} \cap A_{6}\right|=1$ and $\left|A_{7} \cap A_{8}\right|=1$. Let $A_{5}=246, A_{6}=2 p r, A_{7}=357$ and $A_{8}=3 q s$ where p, q, r, s are distinct colors.

If $q=2, s=2, p=3$ or $r=3$, then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Suppose that $q, s \neq 2$ and $p, r \neq 3$.

Case 1. $\{p, r\} \cap\{4,6,\} \neq \varnothing$ or $\{q, s\} \cap\{5,7\} \neq \varnothing$.
Then $K_{8,8}$ is L-colorable by Theorem 4.2.13.
Case 2. $\{p, r\} \cap\{4,6\}=,\{q, s\} \cap\{5,7\}=\varnothing$ but $\{p, q, r, s\} \cap\{4,5,6,7\} \neq \varnothing$.
Suppose that $p=5$.

Case $2.1 q \notin\{4,6\}$.
Then $K_{8,8}$ is L-colorable by Theorem 4.2.10.
Case $2.2 q \in\{4,6\}$.
Let $q=4$. If $r=7$, or $s=6$ then $K_{8,8}$ is L-colorable by Theorem 4.2.13. Suppose that $r \neq 7$ and $s \neq 6$. Then r, s must be new colors. Let $r=8$ and $s=9$. Hence, the proof is done by Lemma 4.2.15.

Case 3. $\{p, q, r, s\} \cap\{4,5,6,7\}=\varnothing$.
The proof is done by Lemma 4.2.14.
Case 4. $p \in\{5,7\}$ but $r \notin\{1,2,3,4,5,6,7\}$.
Suppose that $p=5$ and $r=8$. Then $5 \in A_{6}, A_{7}$. If $A_{5} \cap A_{8}=\varnothing$, then $K_{8,8}$ is L-colorable by Theorem 4.2.10. Suppose that $A_{5} \cap A_{8} \neq \varnothing$. Let $q=4$

Corollary 4.2.17. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, A_{4}$ and there are $A_{i}, A_{j} \in\left\{A_{5}, A_{6}, A_{7}, A_{8}\right\}$ such that $\left|A_{i} \cap A_{j}\right| \neq 1$, then $K_{8,8}$ is L-colorable.

Proof. It follows from Theorem 4.2.13 and Theorem 4.2.16.
Theorem 4.2.18. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most four lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$. If $1 \in$ $A_{1}, A_{2}, A_{3}, A_{4}$ then $K_{8,8}$ is L-colorable unless $\{123,145,167,246,257,347,356\} \subset$ $L_{8(i)}, L_{8(i i)}$ up to renaming colors.

Proof. If $\left|A_{i} \cap A_{j}\right| \neq 1$ for some $i, j \in\{5,6,7,8\}$ then $K_{8,8}$ is L-colorable by Corollary 4.2.17. If a color appears in at least three lists in $A_{5}, A_{6}, A_{7}, A_{8}$ then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Hence, we suppose that $A_{5}=246, A_{6}=$ $257, A_{7}=347, A_{8}=356$.

If $L_{8(i)}$ has a coloring which has no subset that is a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that each coloring in $L_{8(i)}$ has a subset
that is a list in $L_{8(i i)}$. Since $\{1,2,3\},\{1,4,5\},\{1,6,7\}$ are 3 -colorings of $L_{8(i)}$, we suppose that $B_{1}=123, B_{2}=145, B_{3}=167$.

Case 1. Color 1 appears in at most three lists in $L_{8(i i)}$.
Consider 4 -colorings of $L_{8(i)},\{1,2,4,6\},\{1,2,7,5\},\{1,3,4,7\}$ and $\{1,3,6,5\}$. Note that they do not contain B_{1}, B_{2} or B_{3} as a subset. Hence, $246,257,347,356$ must be lists in $L_{8(i i)}$, say $B_{5}=246, B_{6}=257, B_{7}=347, B_{8}=356$.

If $123,145,167 \in L_{8(i)}$, then the proof is done because we have $\mathcal{F} \subset L_{8(i)}, L_{8(i i)}$. Suppose that 123 is not a list in $L_{8(i)}$.

Case $1.12 \in B_{4}$ or $3 \in B_{4}$.
Then $\{1,2,3\}$ is a 3 -coloring of $L_{8(i i)}$. Since 123 is not a list in $L_{8(i)}, K_{8,8}$ is L-colorable by Lemma 3.2.1.

Case $1.22,3 \notin B_{3}, B_{4}$.
Then we label B_{1}, B_{2}, B_{3} by color 1, label B_{5}, B_{6} by color 2 and label B_{7}, B_{8} by color 3 ; hence, the remaining vertices can be easily labeled.

Case 2. Color 1 appears in exactly four lists in $L_{8(i i)}$.
Let $1 \in B_{4}$. Similar to Case 1, $\{1,2,4,6\},\{1,2,7,5\},\{1,3,4,7\},\{1,3,6,5\}$ are 4-colorings of $L_{8(i)}$ which do not contain B_{1} or B_{2} or B_{3} as a subset. The list B_{4} is a subset of at most one of such 4-colorings. Hence, at least three of such 4-colorings do not contain $B_{1}, B_{2}, B_{3}, B_{4}$ as a subset. Without loss of generality, suppose that $\{1,2,4,6\},\{1,2,7,5\},\{1,3,4,7\}$ do not contain $B_{1}, B_{2}, B_{3}, B_{4}$ as a subset. Then we suppose that $B_{5}=246, B_{6}=257, B_{7}=347$.

Again, if $\left|B_{i} \cap B_{j}\right| \neq 1$ for some $i, j \in\{5,6,7,8\}$ then $K_{8,8}$ is L-colorable by Corollary 4.2.17. If a color appears in at least three lists in $B_{5}, B_{6}, B_{7}, B_{8}$ then $K_{8,8}$ is L-colorable by Theorem 4.2.3. Hence, we suppose that $\left|B_{i} \cap B_{j}\right|=1$ for all $i, j \in\{5,6,7,8\}$ and each color appears in at most two lists in $B_{5}, B_{6}, B_{7}, B_{8}$. Hence, $B_{8}=356$. Therefore, $\mathcal{F} \subset L_{8(i)}, L_{8(i i)}$.

Next, we focus on a list assignment L of $K_{8,8}$ such that each color appears in at most three lists in each partite set.

Theorem 4.2.19. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}$ but $1 \notin B_{2}, B_{3} \ldots, B_{8}$, then $K_{8,8}$ is L-colorable.

Proof. We first label A_{1}, A_{2}, A_{3} by color 1. Then the remaining vertices form $K_{5,8}$. Let L^{\prime} be the list assignment of $K_{5,8}$ which is obtained from L by removing color 1. Then $L_{5}^{\prime}=\left\{A_{4}, A_{5}, A_{6}, A_{7}, A_{8}\right\}$ and $L_{8}^{\prime}=\left\{23, B_{2}, B_{3}, \ldots, B_{8}\right\}$.

Let L^{*} be the list assignment of $K_{6,10}$ such that $L_{6}^{*}=L_{5}^{\prime} \cup\{x y z\}$ where x, y, z are new colors and $L_{10}^{*}=\left\{x 23, y 23, z 23, B_{2}, B_{3}, \ldots, B_{10}\right\}$. It is easy to see that if $K_{6,10}$ is L^{*}-colorable, then $K_{5,8}$ is L^{\prime}-colorable By Lemma 3.3.4, $K_{6,10}$ is L^{*}-colorable; hence, $K_{5,8}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Lemma 4.2.20. Let L be a list assignment of $K_{4,5}$ where $L_{4}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{5}=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}\right\}$. If $\left|A_{i}\right|=2$ for $i=1,2,3,4$ and $\left|B_{j}\right|=3$ for $j=1,2,3,4,5$, then $K_{4,5}$ is L-colorable.

Proof. If all lists in L_{4} are mutually disjoint, then we apply Strategy A' for L_{4}. Hence, we suppose that $1 \in A_{1}, A_{2}$. If L_{4} has a coloring which has no subset that is list in L_{5}, then the proof is finished by Lemma 3.2.1. Suppose that every coloring of L_{4} has a subset that is a list in L_{5}. Since L_{5} has no list of size 2, we suppose L_{4} has no 2 -coloring. Then we suppose that $A_{3}=23, A_{4}=45$. Moreover, we may suppose that $B_{1}=124, B_{2}=125, B_{3}=134, B_{4}=135$. Then we label $B_{1}, B_{2}, B_{3}, B_{4}$ by color 1 and the remaining vertices are easily colored. Therefore, $K_{4,5}$ is L-colorable.

Lemma 4.2.21. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}$ and $2 \in A_{4}, A_{5}, A_{6}$ but $1 \notin B_{3}, B_{4}, \ldots, B_{8}$, then $K_{8,8}$ is L-colorable.

Proof. Case 1. $A_{7} \cap A_{8}=\varnothing$.
Then we label A_{1}, A_{2}, A_{3} by color 1 and label A_{4}, A_{5}, A_{6} by color 2 . The remaining vertices form $K_{2,8}$. Let L^{\prime} be the list assignment of $K_{2,8}$ which is obtained from L by removing color 1 and color 2 , Since $A_{7} \cap A_{8}=\varnothing$, we apply Strategy A for L_{2}^{\prime}.

Case 2. $\left|A_{7} \cap A_{8}\right|=1$.
Let $3 \in A_{7} \cap A_{8}$. Then $\{1,2,3\}$ is a 3 -coloring of $L_{8(i)}$. If 123 is not a list in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that $B_{1}=123$. Then we label A_{1}, A_{2}, A_{3} by color 1 , label A_{4}, A_{5}, A_{6} by color 2 and label B_{1} by color 3. If color 3 is in other lists in $L_{8(i i)}$, then we label the lists by color 3 . For the worst case, we suppose that $3 \notin B_{2}, B_{3}, \ldots, B_{8}$. Let L^{\prime} be the list assignment of $K_{2,7}$ which is obtained from L by removing color 1 , color 2 and color 3 . Now, we apply Strategy A for L_{2}^{\prime}.

Case 3. $\left|A_{7} \cap A_{8}\right|=2$.
Let $A_{7}=345$ and $A_{8}=346$. Then $\{1,2,3\}$ and $\{1,2,4\}$ are 3 -colorings of $L_{8(i)}$. If 123 or 124 is not a list in $L_{8(i i)}$ then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Suppose that $B_{1}=123$ and $B_{2}=124$. Again, since $\{1,2,5,6\}$ is a 4 -coloring of $L_{8(i)}$, we suppose that $\{1,2,5,6\}$ has a list that is a subset in $L_{8(i i)}$. Since color 1 appears in exactly two lists of $L_{8(i i)}$, we suppose that $B_{3}=256$.

Then we label A_{1}, A_{2}, A_{3} by color 1 and label B_{1}, B_{2}, B_{3} by color 2 . The remaining vertices form $K_{5,5}$. Let L^{\prime} be the list assignment of $K_{5,5}$ which is obtained from L by removing color 1 and color 2 . Then $L_{5(i)}^{\prime}=\left\{A_{4}-2, A_{5}-\right.$
$\left.2, A_{6}-2,345,346\right\}$ and $L_{5(i i)}^{\prime}=\left\{B_{4}, B_{5}, B_{6}, B_{7}, B_{8}\right\}$.
Let L^{*} be the list assignment of $K_{4,5}$ such that $L_{4}^{*}=\left\{A_{4}-2, A_{5}-2, A_{6}-2,34\right\}$ and $L_{5}^{*}=L_{5(i i)}^{\prime}$. It is easy to see that if $K_{4,5}$ is L^{*}-colorable, then $K_{5,5}$ is L^{\prime} colorable. By Lemma 4.2.20, $K_{4,5}$ is L^{*}-colorable; hence, $K_{5,5}$ is L^{\prime}-colorable. That is, $K_{8,8}$ is L-colorable.

Theorem 4.2.22. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}$ but $1 \notin B_{3}, B_{4} \ldots, B_{8}$, then $K_{8,8}$ is L-colorable.

Proof. Case 1. A color appears in three lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$.
Then $K_{8,8}$ is L-colorable by Lemma 4.2.21.
Case 2. A color appears in two lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$ but it is not in $B_{1} \cup B_{2}$.

Let L^{*} be the new list assignment of $K_{8,8}$ which is obtained from L by changing color 2 to color 1. It is easy to see that if $K_{8,8}$ is L^{*}-colorable, then $K_{8,8}$ is L-colorable. By Strategy D, $K_{8,8}$ is L^{*}-colorable; hence, $K_{8,8}$ is L-colorable.

Case 3. Every color which appears in two lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$ must be in $B_{1} \cup B_{2}$ and no color appears in three lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$.

Notice that $B_{1} \cup B_{2}-\{1\}$ has at most four colors. Thus, at most four colors appear in two lists of $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$. Since $\left|A_{4}\right|+\left|A_{5}\right|+\left|A_{6}\right|+\left|A_{7}\right|+\left|A_{8}\right|=15$, we have at least 11 colors in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$. Since $A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2}-\{1\}$ is a set of size 10 , there exists a color which is not a color in $A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2}$. Let $2 \in A_{4}$ but $2 \notin A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2}$. Similar to Case 2, we define the new list assignment L^{*} of $K_{8,8}$ which is obtained from L by changing color 2 to color 1. Then color 1 appears in four lists in $L_{8(i)}^{*}$. By Theorem 4.2.16, $K_{8,8}$ is L^{*}-colorable. That is, $K_{8,8}$ is L-colorable.

Lemma 4.2.23. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ and $2 \in A_{4}, A_{5}, A_{6}, B_{4}$, B_{5}, B_{6} then $K_{8,8}$ is L-colorable.

Proof. We define the new list assignment L^{*} of $K_{8,8}$ which is obtained from L by changing color 2 to color 1 . It is easy to see that if $K_{8,8}$ is L^{*}-colorable, then $K_{8,8}$ is L-colorable. By Strategy C for $L_{8(i)}, K_{8,8}$ is L^{*}-colorable. That is, $K_{8,8}$ is L-colorable.

Lemma 4.2.24. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ and $2 \in A_{4}, A_{5}, A_{6}, B_{1}$, B_{4}, B_{5} then $K_{8,8}$ is L-colorable.

Proof. If a coloring of $L_{8(i)}\left(\right.$ or $\left.L_{8(i i)}\right)$ has no subset that is a list in $L_{8(i i)}$ (or $\left.L_{8(i)}\right)$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Hence, we suppose that every coloring of $L_{8(i)}\left(\right.$ or $\left.L_{8(i i)}\right)$ has a subset that is a list in $L_{8(i i)}\left(\right.$ or $\left.L_{8(i)}\right)$.

Case 1. $\left|A_{7} \cap A_{8}\right| \geq 2$.
Let $3,4 \in A_{7}, A_{8}$. Since $\{1,2,3\}$ and $\{1,2,4\}$ are 3 -colorings of $L_{8(i)}$, we have $123,124 \in L_{8(i i)}$. It is contradiction to the fact that only one list in $L_{8(i i)}$ contains both color 1 and color 2.

Case 2. $\left|A_{7} \cap A_{8}\right|=1$.
Let $A_{7}=345$ and $A_{8}=367$. Since $\{1,2,3\}$ is a 3 -coloring of $L_{8(i)}$, we suppose that $B_{1}=123$. Since $\{1,2,4,6\},\{1,2,4,7\},\{1,2,5,6\}$ and $\{1,2,5,7\}$ are 4 colorings of $L_{8(i)}$, we obtain that $\left\{B_{2}-1, B_{3}-1, B_{4}-2, B_{5}-2\right\}=\{46,47,56,57\}$.

Case 2.1. B_{6}, B_{7}, B_{8} are not mutually disjoint.
We suppose that $w \in B_{6}, B_{7}$. If $w \in B_{8}$ then we label all lists in $L_{8(i i)}$ by color

1 , color 2 and color w; hence, the proof is done. Suppose that $B_{8}=x y z$ where w, x, y, z are distinct colors. Then $\{1,2, w, x\},\{1,2, w, y\}$ and $\{1,2, w, z\}$ are 4colorings of $L_{8(i i)}$. Since no list in $L_{8(i)}$ contains both color 1 and color 2, we have $\{w x, w y, w z\} \subset\left\{A_{1}-1, A_{2}-1, A_{3}-1, A_{4}-2, A_{5}-2, A_{6}-2\right\}$. That is, color w appears in at least three lists in $L_{8(i)}$. Since each color appears in at most three lists in $L_{8(i)}, w$ is not color 3. Since each color appears in at most three lists in $L_{8(i i)}, w$ is not an element in $\{1,2,4,5,6,7\}$. Hence, w appears in exactly two lists in $L_{8(i i)}$ and in exactly three lists in $L_{8(i)}$. By Theorem 4.2.22, $K_{8,8}$ is L-colorable.

Case 2.2. B_{6}, B_{7}, B_{8} are mutually disjoint.
We label B_{1}, B_{2}, B_{3} by color 1 and label B_{4}, B_{5} by color 2 . The remaining vertices form $K_{8,3}$. Let L^{\prime} be the list assignment of $K_{8,3}$ which is obtained from L by removing color 1 and color 2 . Since B_{6}, B_{7}, B_{8} are mutually disjoint, we apply Strategy A for L_{3}^{\prime}.

Case 3. $A_{7} \cap A_{8}=\varnothing$.
We label A_{1}, A_{2}, A_{3} by color 1 and label A_{4}, A_{5}, A_{6} by color 2 . The remaining vertices form $K_{2,8}$. Let $L^{\prime \prime}$ be the list assignment of $K_{2,8}$ which is obtained from L by removing color 1 and color 2 . Since A_{7} and A_{8} are disjoint, we apply Strategy A for $L_{2}^{\prime \prime}$.

Lemma 4.2.25. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ and $2 \in A_{4}, A_{5}, A_{6}, B_{1}$, B_{2}, B_{4}, then $K_{8,8}$ is L-colorable.

Proof. If a coloring of $L_{8(i)}\left(\right.$ or $\left.L_{(i i)}\right)$ has no subset that is a list in $L_{8(i i)}$ (or $\left.L_{8(i)}\right)$, then $K_{8,8}$ is L-colorable by Lemma 3.2.1. Hence, we suppose that every coloring of $L_{8(i)}\left(\right.$ or $\left.L_{8(i i)}\right)$ has a subset that is a list in $L_{8(i i)}\left(\right.$ or $\left.L_{8(i)}\right)$. Notice
that if color 3 appears in three lists in $L_{8(i i)}$ and color 3 appears in two lists in $L_{8(i)}$, then the proof is finished by Theorem 4.2.22 and if color 3 appears in three lists in $L_{8(i i)}$ and color 3 appears in three lists in $L_{8(i)}$, then the proof is finished by Lemma 4.2.24. Suppose that color 3 appears in two lists in $L_{8(i i)}$.

Case 1. $A_{7} \cap A_{8}=\varnothing$.
We label A_{1}, A_{2}, A_{3} by color 1 and label A_{4}, A_{5}, A_{6} by color 2 . The remaining vertices form $K_{2,8}$. Let L^{\prime} be the list assignment of $K_{2,8}$ which is obtained from L by removing color 1 and color 2 . Since A_{7} and A_{8} are disjoint, we apply Strategy A for L_{2}^{\prime}.

Case 2. $\left|A_{7} \cap A_{8}\right|=1$.
Let $A_{7}=345$ and $A_{8}=367$. Since $\{1,2,3\}$ is a 3 -coloring of $L_{8(i)}$, we suppose that $B_{1}=123$. Since $\{1,2,4,6\},\{1,2,4,7\},\{1,2,5,6\}$ and $\{1,2,5,7\}$ are 4 colorings of $L_{8(i)}$, we suppose that $B_{2}=124, B_{3}=156$ and $B_{4}=257$.

We label A_{1}, A_{2}, A_{3} by color 1 and label B_{1}, B_{2}, B_{4} by color 2 . The remaining vertices form $K_{5,5}$. Let L^{\prime} be the list assignment of $K_{5,5}$ which is obtained from L by removing color 1 and color 2 . That is, $L_{5(i)}^{\prime}=\left\{A_{4}-2, A_{5}-2, A_{6}-2,345,367\right\}$ and $L_{5(i i)}^{\prime}=\left\{56, B_{5}, B_{6}, B_{7}, B_{8}\right\}$.

Case $2.1 A_{4}-2, A_{5}-2, A_{6}-2$ have a common color, say p.

Then we label $A_{4}-2, A_{5}-2, A_{6}-2$ by color p and label A_{7}, A_{8} by color 3 . Since the remaining vertices in another partite set still have available colors, $K_{5,5}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Case $2.2 A_{4}-2, A_{5}-2, A_{6}-2$ have no common color and not mutually disjoint.

Let $p \in A_{4}-2, A_{5}-2$ and $A_{7}=2 q r$.
Case 2.2.1 $p=5$ and $6 \in\{q, r\}$.
Suppose that $q=6$. Notice that $\{3,5, r\}$ and $\{7,5, r\}$ are 3 -colorings of $L_{5(i)}$.

However, at most one of such 3-colorings is a list of $L_{5(i i)}$ because each color appears in at most three lists in $L_{8(i i)}$. Hence, $K_{5,5}$ is L^{\prime}-colorable by Lemma 3.2.1. Therefore, $K_{8,8}$ is L-colorable.

Case 2.2.2 $p \neq 5$ or $6 \notin\{q, r\}$.
Then $\{3, p, q\}$ and $\{3, q, r\}$ are 3 -colorings of $L_{5(i)}^{\prime}$. Since color 3 appears in at most two lists in $L_{8(i i)}$ and $3 \in B_{1}$, at least one of such 3 -colorings is not a list in $L_{5(i i)}$. Again, by Lemma 3.2.1, $K_{5,5}$ is L^{\prime}-colorable by Lemma 3.2.1. Therefore, $K_{8,8}$ is L-colorable.

Case $2.3 A_{4}-2, A_{5}-2, A_{6}-2$ are mutually disjoint.
We label A_{7}, A_{8} by color 3 . Then the remaining vertices form $K_{3,5}$. Recall that color 3 appears in at most two lists in $L_{8(i i)}$; suppose that $3 \in B_{5}$. Let $L^{\prime \prime}$ be the list assignment of $K_{3,5}$ which is obtained from L^{\prime} by removing color 3. Then $L_{3}^{\prime \prime}=\left\{A_{4}-2, A_{5}-2, A_{6}-2\right\}$ and $L_{5}^{\prime \prime}=\left\{56, B_{5}-3, B_{6}, B_{7}, B_{8}\right\}$. Then we apply Strategy A for $L_{3}^{\prime \prime}$.

Case 3. $\left|A_{7} \cap A_{8}\right|=2$.
Let $A_{7}=345$ and $A_{8}=346$. We label A_{1}, A_{2}, A_{3} by color 1 and label B_{1}, B_{2}, B_{4} by color 2 . Then the remaining vertices form $K_{5,5}$. Let L^{\prime} be the list assignment of $K_{5,5}$ which is obtained from L by removing color 1 and color 2 . Then $L_{5(i)}^{\prime}=$ $\left\{A_{4}-2, A_{5}-2, A_{6}-2,345,346\right\}$ and $L_{5(i i)}^{\prime}=\left\{B_{3}-1, B_{5}, B_{6}, B_{7}, B_{8}\right\}$.

We define the new list assignment L^{*} of $K_{4,5}$ such that $L_{4}^{*}=\left\{A_{4}-2, A_{5}-\right.$ $\left.2, A_{6}-2,34\right\}$ and $L_{5}^{*}=L_{5(i i)}^{\prime}$. It is easy to see that if $K_{4,5}$ is L^{*}-colorable, then $K_{5,5}$ is L^{\prime}-colorable. By Lemma 4.2.20, $K_{4,5}$ is L^{*}-colorable; hence, $K_{5,5}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Lemma 4.2.26. Let L be a 3 -list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ and $2 \in A_{4}, A_{5}, A_{6}, B_{1}$,
B_{2}, B_{3}, then $K_{8,8}$ is L-colorable.

Proof. We label A_{1}, A_{2}, A_{3} by color 1 and label B_{1}, B_{2}, B_{3} by color 2. The remaining vertices form $K_{5,5}$. Let L^{\prime} be the list assignment of $K_{5,5}$ which is obtained from L by removing color 1 and color 2 . That is, $L_{5(i)}^{\prime}=\left\{A_{4}-2, A_{5}-\right.$ $\left.2, A_{6}-2, A_{7}, A_{8}\right\}$ and $L_{5(i i)}^{\prime}=\left\{B_{4}, B_{5} \ldots, B_{8}\right\}$.

Case 1. A color appears in exactly three lists in $L_{5(i i)}^{\prime}$, say color 3.
If color 3 appears in at most two lists in $L_{8(i)}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 3 appears in exactly three lists in $L_{8(i)}$.

Then at most two lists in $L_{8(i)}$ contains both color 1 and color 3, or at most two lists in $L_{8(i)}$ contains both/color 2 and color 3. Hence, $K_{8,8}$ is L-colorable by Lemma 4.2.23 and Lemma 4.2.24.

Case 2. Every color appears in at most two lists in $L_{5(i i)}^{\prime}$.
Let $x_{i} y_{i} z_{i}$ be a list in $L_{5(i i)}^{\prime}$ such that $x_{i} y_{i} z_{i} \cap\left(A_{i+3}-2\right)=\varnothing$ for $i=1,2,3$. Let L^{*} be the 3 -list assignment of $K_{11,5}$ such that $L_{1}^{*} 1=\left\{\left\{x_{i}\right\} \cup A_{i+3}-2 \mid i=1,2,3\right\}$ $\cup\left\{\left\{y_{i}\right\} \cup A_{i+3}-2 \mid i=1,2,3\right\} \cup\left\{\left\{z_{i}\right\} \cup A_{i+3}-2 \mid i=1,2,3\right\} \cup\left\{A_{4}, A_{5}\right\}$ and $L_{5}^{*}=L_{5}^{\prime}$. Notice that if $K_{11,5}$ is L^{*}-colorable, then $K_{5,5}$ is L^{\prime}-colorable. According to [17], $K_{11,5}$ is 3 -choosable. Hence, $K_{5,5}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L colorable.

Theorem 4.2.27. Let L be a 3-list assignment of $K_{8,8}$ such that every color appears in at most three lists of each partite set where $L_{8(i)}=\left\{A_{1}, A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$. If $1 \in A_{1}, A_{2}, A_{3}$ and $2 \in A_{4}, A_{5}, A_{6}$ then $K_{8,8}$ is L-colorable.

Proof. If color 1 or color 2 appear in at most two lists in $L_{8(i i)}$, then $K_{8,8}$ is L colorable by Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 1 and color

2 appear in exactly three lists of $L_{8(i i)}$. Hence, the proof is done by Lemma 4.2.23, Lemma 4.2.24, Lemma 4.2.25 and Lemma 4.2.26.

Lemma 4.2.28. Let L be a 3 -list assignment of $K_{5,6}$ such that $L_{5}=\left\{A_{1}, A_{2}\right.$, $\left.\ldots, A_{5}\right\}$ and $L_{6}=\left\{B_{1}, B_{2}, \ldots, B_{6}\right\}$. If $\left|B_{1}\right|=2$ and $\left|A_{1}\right|=\ldots=\left|A_{5}\right|=\left|B_{2}\right|=$ $\ldots=\left|B_{6}\right|=3$, then $K_{5,6}$ is L-colorable.

Proof. Let $A_{6}=x y z$ where $x, y, z \notin \bigcup_{v \in K_{5,6}} L(v)$. Let L^{*} be a 3 -list assignment of $K_{6,8}$ such that $L_{6}^{*}=\left\{A_{1}, A_{2}, \ldots, A_{6}\right\}$ and $L_{8}^{*}=\left\{12 x, 12 y, 12 z, B_{2}, B_{3}, \ldots, B_{6}\right\}$. Notice that if $K_{6,8}$ is L^{*}-colorable, then $K_{5,6}$ is L-colorable. By Lemma 3.3.4, $K_{6,8}$ is L^{*}-colorable; hence, $K_{5,6}$ is L-colorable.

Theorem 4.2.29. Let L be a 3 -list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ where each color appears in at most three lists in each partite set. If $1 \in A_{1}, A_{2}, A_{3}$ and $2 \in A_{1}, A_{2}$ then $K_{8,8}$ is L-colorable.

Proof. If color 1 appears at most two lists in $L_{8(i i)}$, then the proof is done by Theorem 4.2.19 and Theorem 4.2.22. Suppose that $1 \in B_{1}, B_{2}, B_{3}$.

We label B_{1}, B_{2}, B_{3} by color 1 and label A_{1}, A_{2} by color 2 . The remaining vertices form $K_{6,5}$. Let L^{\prime} be the list assignment of $K_{6,5}$ which is obtained from L by removing color 1 and color 2. By Lemma 4.2.28, $K_{6,5}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Theorem 4.2.30. Let L be a 3-list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ where each color appears in at most three lists in each partite set. If color 1 and color 2 appear in exactly two lists in each partite set such that $1 \in A_{1}, A_{2}, B_{1}, B_{2}$, and $2 \in A_{3}, A_{4}, B_{3}, B_{4}$, then $K_{8,8}$ is L-colorable.

Proof. We define the new list assignment L^{*} of $K_{8,8}$ which is obtained from L by changing color 8 to color 1. If $K_{8,8}$ is L^{*}-colorable, then $K_{8,8}$ is also L-colorable and the proof is done. Hence, we suppose that $K_{8,8}$ is not L^{*}-colorable. By Corollary 4.2.18, the remaining four lists are $246,257,347,356$. That is, $A_{5}=$ $B_{5}=246, A_{6}=B_{6}=257, A_{7}=B_{7}=347, A_{8}=B_{8}=356$.

Since $\{1,8,2,3\}$ is a 4 -coloring of $L_{8(i)}$, we may suppose that it has a subset that is a list in $L_{8(i i)}$ by Lemma 3.2.1. That is, there is a list from $B_{1}, B_{2}, B_{3}, B_{4}$ containing both color 2 and color 3 . Similarly, a list from $B_{1}, B_{2}, B_{3}, B_{4}$ contains both color 4 and color 5 and another list in $B_{1}, B_{2}, B_{3}, B_{4}$ contains both color 6 and color 7. Since each color appears in at most three lists, the remaining list in $B_{1}, B_{2}, B_{3}, B_{4}$ contains two new/colors, say color 9 and color A. With out loss of generality, let $B_{1}=123, B_{2}=145, B_{3}=167$ and $B_{4}=19 A$. Similarly, we can prove that $23,45,67,9 A$ are a subset of a list in $A_{1}, A_{2}, A_{3}, A_{4}$.

Case 1. $9 A \subset A_{1}$ or $9 A \subset A_{2}$.
Suppose that $A_{1}=19 A$. Then we use color 2 , color 3 , color 8 and color 9 to label lists in $L_{8(i)}$ and use color 1 and color A to label lists in $L_{8(i i)}$. The remaining vertices from $K_{1,5}$ which is easily colored.

Case 2. $9 A \subset A_{3}$ or $9 A \subset A_{4}$.
Suppose that $A_{3}=89 A$. Then we use color 1, color 9, color 6 and color 7 to label lists in $L_{8(i)}$ and use color 8 to label lists in $L_{8(i i)}$. Then the remaining vertices form $K_{1,6}$ which are easily labeled.

Theorem 4.2.31. Let L be a 3 -list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ where each color appears in at most three lists in each partite set. If $1 \in A_{1}, A_{2}, B_{1}, B_{2}$, and $2 \in A_{3}, A_{4}, B_{3}$ and no other list contains 1 or 2 , then $K_{8,8}$ is L-colorable.

Proof. The proof is similar to Theorem 4.2.30.

Lemma 4.2.32. Let L be a 3 -list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}, A_{2}\right.$, $\left.\ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ and each color appears in at most three lists in each partite set. If $1 \in A_{1}, A_{2}, B_{1}, B_{2}$ but $1 \notin A_{3}, \ldots, A_{8}, B_{3}, \ldots, B_{8}$ $2 \in A_{3}, A_{4}, A_{5}, B_{1}, B_{3}, B_{4}$ and $x \in A_{6}$ and $x \notin A_{7}, A_{8}, B_{1}, B_{2}, \ldots, B_{4}$, then $K_{8,8}$ is L-colorable.

Proof. Case 1. Color x appears in exactly three lists in $L_{8(i)}$.
If color x appears in exactly one list, two lists, three lists, then we apply Theorem 4.2.19, Theorem 4.2.22 and Theorem 4.2.27, respectively.

Case 2. Color x appears in exactly two lists in $L_{8(i)}$.
If color x appears in three lists in $L_{8(i i)}$, then the proof is done by Theorem 4.2.27. Then we suppose that color x appears in at most two lists in $L_{8(i i)}$. If $x \in A_{1}$ or $x \in A_{2}$, then we define a new list assignment of $K_{8,8}$ which is obtained from L by changing color x to color 2 and then we apply Strategy D. If $x \in A_{3}, x \in$ A_{4} or $x \in A_{5}$, then we define a new list assignment of $K_{8,8}$ which is obtained from L by changing color x to color 1 and then we apply Theorem 4.2.30 and Theorem 4.2.31.

Case 3. Color x appears in exactly one list in $L_{8(i)}$.
If color x appears in three lists in $L_{8(i i)}$, then the proof is done by Theorem 4.2.27. Then we suppose that color x appears in at most two lists in $L_{8(i i)}$. If x appears in exactly one list in $L_{8(i i)}$ then we define a new list assignment of $K_{8,8}$ which is obtained from L by changing color x to color 1 and then we apply Theorem 4.2.27. If x appears in exactly two list in $L_{8(i i)}$ then we define a new list assignment of $K_{8,8}$ which is obtained from L by changing color x to color 2 and then we apply Strategy D for $L_{8(i i)}$.

Theorem 4.2.33. Let L be a 3 -list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ and each color appears in at most
three lists in each partite set. If $1 \in A_{1}, A_{2}$ but $1 \notin A_{3}, \ldots, A_{8} 2 \in A_{3}, A_{4}, A_{5}$, then $K_{8,8}$ is L-colorable.

Proof. If a color appears in three lists in $A_{1}, A_{2}, A_{6}, A_{7}, A_{8}$, then $K_{8,8}$ is L colorable by Theorem 4.2.27. We can suppose that each color appears in at most two lists in $A_{1}, A_{2}, A_{6}, A_{7}, A_{8}$.

If color 2 appears in at most two lists in $L_{8(i i)}$, then $K_{8,8}$ is L-colorable by Theorem 4.2.19 and Theorem 4.2.22. Suppose that color 2 appears in exactly three lists in $L_{8(i i)}$.

Case 1. Color 1 is not in any list in $L_{8(i i)}$.
Hence, we color A_{1}, A_{2} by color 1 . The remaining vertices from $K_{6,8}$ which is 3-choosable by Lemma 3.3.4.

Case 2. Color 1 appears in exactly one list in $L_{8(i i)}$.
Let $1 \in B_{1}$. If $2 \notin B_{1}$, then we define a new list assignment L^{*} by changing color 2 to color 1 and then we apply Strategy D. Suppose that $2 \in B_{1}, B_{2}, B_{3}$. Let 3 be the remaining color in B_{1}. Notice that color 3 appears in at most two list in A_{6}, A_{7}, A_{8}.

We label A_{1}, A_{2} by color 1 , label A_{3}, A_{4}, A_{5} by color 2 and label B_{1} by color 3. For the worst case, we suppose that $3 \in A_{7}, A_{8}$. The remaining vertices form $K_{3,7}$ Let L^{\prime} be the list assignment of $K_{3,7}$ which is obtained from L by removing color 1 , color 2 and color 3. That is, $L_{3}=\left\{A_{6}-3, A_{7}-3, A_{8}\right\}$ and $L_{7}=\left\{B_{2}-2, B_{3}-2, B_{4}, B_{5} \ldots, B_{8}\right\}$.

We may suppose that B_{2} and B_{2} have only one common color because if B_{2} and B_{3} have more than one common color then the proof is done by Theorem 4.2.29. Hence, if L_{3} has two 2-colorings which is not disjoint or has at least three 2 -colorings, then at least one of such 2 -colorings is not a list in L_{7}; hence, $K_{8,8}$ is L-colorable by Lemma 3.2.1.

Suppose that L_{3} has at most one 2-coloring or has two 2-coloring which are disjoint. Hence, $A_{6}-2, A_{7}-2, A_{8}$ are mutually disjoint. Then we apply Strategy A for L_{3} to prove that $K_{3,7}$ is L^{\prime}-colorable. Therefore, $K_{8,8}$ is L-colorable.

Case 3. Color 1 appears in exactly two lists in $L_{8(i i)}$.
Let $1 \in B_{1}, B_{2}$. Recall that color 2 appears in exactly three lists in $L_{8(i i)}$. If $2 \in B_{1}, B_{2}$, then the proof is done by Theorem 4.2.29. If color $2 \notin B_{1}, B_{2}$, we define a new list assignment L^{*} of $K_{8,8}$ by changing color 2 to color 1 and then we apply Strategy D. Suppose that $2 \in B_{1}, B_{3}, B_{4}$.

We label A_{1}, A_{2} by color 1 and label A_{3}, A_{4}, A_{5} by color 2 . The remaining vertices form $K_{3,8}$. Let L^{\prime} be the list assignment of $K_{3,8}$ which is obtained from L by removing color 1 and color 2. If L_{3}^{\prime} has a coloring that is not a list in L_{8}^{\prime}, then the proof is done by Lemma 3.2.1. Suppose that every coloring of L_{3}^{\prime} has a subset that is a list in L_{8}^{\prime}.

Case $3.1\left|A_{6} \cap A_{7}\right| \geq 2$ or $\left|A_{6} \cap A_{8}\right| \geq 2$ or $\left|A_{7} \cap A_{8}\right| \geq 2$.
Without loss of generality, suppose that $3,4 \in A_{6}, A_{7}$ and $A_{8}=567$. Hence, L_{3}^{\prime} has at least six 2 -colorings, namely $\{3,5\},\{3,6\},\{3,7\},\{4,5\},\{4,6\},\{4,7\}$. Since every coloring in L_{3}^{\prime} must have a subset that is a list in L_{8}^{\prime}. We have $3 \in B_{1}$ or $4 \in B_{1}$. Without loss of generality, suppose that $3 \in B_{1}$. Moreover, $45,46,47$ must be a list in L_{8}^{\prime}. Hence, we suppose $B_{2}=245, B_{3}=246$ and $B_{4}=247$. Hence, there are two lists containing both color 2 and color 4. Then $K_{8,8}$ is L-colorable by Theorem 4.2.29.

Case $3.2\left|A_{6} \cap A_{7}\right|=1$ and $\left|A_{6} \cap A_{8}\right|=1$ and $\left|A_{7} \cap A_{8}\right|=1$.
Suppose that $A_{6}=345, A_{7}=367$ and $A_{8}=468$. Similar to Case 3.1, we may suppose that $B_{1}=\left\{123, B_{2}=146, B_{3}=247\right.$ and $B_{4}=256$. Since color 8 appears in exactly one list in A_{6}, A_{7}, A_{8} and $8 \notin B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, K_{8,8}$ is L-colorable by Lemma 4.2.32.

Case $3.3\left|A_{6} \cap A_{7}\right|=1$ and $\left|A_{6} \cap A_{8}\right|=1$ and $\left|A_{7} \cap A_{8}\right|=0$. Suppose that $A_{6}=345, A_{7}=367$ and $A_{8}=489$. Similar to Case 3.1, we may suppose that $B_{1}=123, B_{2}=146$ and $B_{3}=247$.

If $8 \notin B_{4}$ or $9 \notin B_{4}$, then the proof is finished by Lemma 4.2.32. Suppose that $B_{4}=289$.

Since $\{1,2,5,7,8\}$ and $\{1,2,5,7,9\}$ are 5 -colorings of $L_{8(i)}$, we may suppose that such 5 -colorings has a subset that is a list in $L_{8(i i)}$ by Lemma 3.2.1. We suppose that $B_{6}=578$ and $B_{7}=579$. Therefore, $K_{8,8}$ is L-colorable by Theorem 4.2.29.

Case $3.4\left|A_{6} \cap A_{7}\right|=1$ and $\left\langle A_{6} \cap A_{8}\right|=0$ and $\left|A_{7} \cap A_{8}\right|=0$.
Then $A_{6} \cup A_{7} \cup A_{8}$ has at least eight colors; hence, there is a color $x \in A_{6} \cup A_{7} \cup A_{8}$ such that no list in L containing both color 1 and color x because color 1 appears only in four lists in L and B_{1} has already contained color 1 and color 2. Thus we define a new list assignment L^{*} of $K_{8,8}$ by changing color x to color 1 . If x appears in exactly two lists in A_{6}, A_{7}, A_{8}, then we apply Theorem 4.2.3 for L^{*}. If x appears in exactly one list in A_{6}, A_{7}, A_{8}, then we apply Theorem 4.2.27 for L^{*}.

Case 3.5 $\left|A_{6} \cap A_{7}\right|=0$ and $\left|A_{6} \cap A_{8}\right|=0$ and $\left|A_{7} \cap A_{8}\right|=0$.
The proof is similar to case 3.4.
Case 4. Color 1 appears in exactly three lists in $L_{8(i i)}$.
Since color 1 only appears in exactly two lists in $L_{8(i)}, K_{8,8}$ is L-colorable by Theorem 4.2.22.

Theorem 4.2.34. Let L be a 3-list assignment of $K_{8,8}$ such that $L_{8(i)}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{8}\right\}$ and $L_{8(i i)}=\left\{B_{1}, B_{2}, \ldots, B_{8}\right\}$ and each color appears in at most three lists in each partite set. If $1 \in A_{1}, A_{2}, A_{3}$ then $K_{8,8}$ is L-colorable unless $\mathcal{F} \subset L_{8(i)}, L_{8(i i)}$.

Proof. By Theorem 4.2.19 and Theorem 4.2.22, we may suppose that $1 \in B_{1}, B_{2}, B_{3}$.

By Theorem 4.2.27, we suppose that each color appears in at most two lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$. Similarly, we suppose that each color appears in at most two lists in $B_{4}, B_{5}, B_{6}, B_{7}, B_{8}$. We will prove that if L has one of the following three properties, then $K_{8,8}$ is L-colorable and finally we prove that L must have one of these three properties,

Property 1. There is a color $x \in A_{4}, A_{5}$ but $x \notin A_{1}, A_{2}, A_{3}$ or there is a color $x \in B_{4}, B_{5}$ but $x \notin B_{1}, B_{2}, B_{3}$.

The proof is done by Theorem 4.2.33.
Property 2. There is a color $x \in A_{4}, A_{5}$ but $x \notin B_{1}, B_{2}, B_{3}$ or there is a color $x \in B_{4}, B_{5}$ and $x \notin B_{1}, B_{2}, B_{3}$.

We define the new list assignment of $K_{8,8}$ which is obtained from L by changing color x to color 1 and then we apply Strategy D.

Property 3. There is a color $x \in A_{4}, B_{4}$ and the remaining lists do not con$\operatorname{tain} x$.

We define the new list assignment L^{*} of $K_{8,8}$ which is obtained from L by changing color x to color 1. By Theorem 4.2.18, $K_{8,8}$ is L^{*}-colorable unless the remaining four lists are $246,257,347,356$. Hence, we suppose that $A_{5}=B_{5}=$ $246, A_{6}=B_{6}=257, A_{7}=B_{7}=347$ and $A_{8}=B_{8}=356$. If 123 is not a list in $L_{8(i i)}$, then we label $A_{1}, A_{2}, A_{3}, A_{5}, A_{6}, A_{7}$ by color $1,2,3$. The remaining vertices form $K_{1,8}$ which is easily colored. Hence, we suppose that $A_{1}=123, A_{2}=145$ and $A_{3}=167$. That is, $\{123,145,167,246,257,247,256\} \subset L_{8(i i)}$. Similarly, we can prove that $\{123,145,167,246,257,247,256\} \subset L_{8(i)}$. It can be directly verified that if $\{123,145,167,246,257,247,256\} \subset L_{8(i)}, L_{8(i i)}$ then $K_{8,8}$ is not L-colorable.

Finally, we will prove that L must have a color x with one of the properties. Suppose that no color x with the properties in Property 1 and Property 2. Let
$x_{1}, x_{2}, \ldots, x_{k}$ be the colors which appears in three lists in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$. Since $A_{1} \cup A_{2} \cup A_{3}-\{1\}$ (and $\left.B_{1} \cup B_{2} \cup B_{3}-\{1\}\right)$ contains at most six colors, we have $k \leq 6$. Thus at least one list from A_{1}, A_{2}, A_{3} and another list from B_{1}, B_{2}, B_{3} contains x_{i} for each i. Hence, $A_{1} \cup A_{2} \cup A_{3} \cup B_{1} \cup B_{2} \cup B_{3}-\left\{1, x_{1}, x_{2}, \ldots, x_{k}\right\}$ has at most $12-2 k$ elements. Since $15-2 k$ is the number of colors which appears once in $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$, there is a color $x \in A_{5} \cup A_{6} \cup A_{7} \cup A_{8}$ which is not in $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$. If color x appears in two lists in $B_{5}, B_{6}, B_{7}, B_{8}$, then it is in Property 1. Hence, color x appears in exactly one list in $L_{8(i i)}$ which is in Property 3 ..

Theorem 4.2.35. Let L be a 3-list assignment of $K_{8,8}$ such that each color appears in at most two lists in each partite set. Then $K_{8,8}$ is L-colorable

Proof. If all lists in $L_{8(i)}$ are mutually disjoint, then we apply Strategy A. Otherwise, we suppose that $1 \in A_{1}, A_{2}$. For the six remaining lists in $L_{8(i)}$, we have at least nine colors because each color appears in at most two lists. However, color 1 appears in at most two lists in each partite set. At most eight colors are in the lists containing color 1 . Without loss of generality, suppose that $2 \in B_{3}$ and no list containing both color 1 and color 2. Hence, we define the new list assignment L^{*} of $K_{8,8}$ which is obtained from L by changing color 2 to color 1 . By Theorem 4.2.18 and Theorem 4.2.34, $K_{8,8}$ is L^{*}-colorable unless $246,257,347,356$ are the lists in both partite set. If $K_{8,8}$ is L^{*}-colorable, then $K_{8,8}$ is L-colorable; hence, we suppose that $A_{5}=B_{5}=246, A_{6}=B_{6}=257, A_{7}=B_{7}=347$ and $A_{8}=B_{8}=356$.

Since every color appears in at most two lists in each partite set, the remaining lists do not contain color $2,3,4,5,6,7$. That is, we can split graph $K_{8,8}$ is to two copies of $K_{4,4}$. Let L^{\prime} be the 3 -list assignment of $K_{4,4}$ such that $L_{4(i)}^{\prime}=$ $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $L_{4(i i)}^{\prime}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$. Let $L^{\prime \prime}$ be the 3 -list assignment
of $K_{4,4}$ such that $L_{4(i)}^{\prime \prime}=\left\{A_{5}, A_{6}, A_{7}, A_{8}\right\}$ and $L_{4(i i)}^{\prime \prime}=\left\{B_{5}, B_{6}, B_{7}, B_{8}\right\}$. Since $K_{4,4}$ is 3 -choosable, $K_{8,8}$ is L-colorable.

Theorem 4.2.36. Let L be a 3 -list assignment of $K_{8,8}$. Then $K_{8,8}$ is L-colorable if and only if $\mathcal{F} \subset L_{8(i)}, L_{8(i i)}$.

Proof. Assume that $\mathcal{F} \not \subset L_{8(i)}$ or $\mathcal{F} \not \subset L_{8(i i)}$.
If $r_{8(i)} \geq 5$ or $r_{8(i i)} \geq 5$, then we apply Lemma 4.1.6. If $r_{8(i)} \leq 4$ and $r_{8(i i)} \leq 4$; apply Theorem 4.2.18, Theorem 4.2.34 and Theorem 4.2.35. In this case, $K_{8,8}$ is L-colorable unless $\mathcal{F} \subset L_{8(i)}, L_{8(i i)}$.

4.3 On (3,t)-choosability of $K_{7,9}$

Study 3 -choosability of $K_{7,9}$ is difficult than $K_{8,8}$ because $K_{7,9}$ is not symmetric. That is, $K_{7,9}$ requires more cases. It is clear that, for a 3 -list assignment $L, K_{7,9}$ is not L-colorable if $L \mid V\left(K_{7,7}\right)=L_{\mathcal{F}}$. We conjecture that, for a 3 -list assignment $L, K_{7,9}$ is L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)} \neq L_{\mathcal{F}}$.

Here, we prove that $K_{7,9}$ is $(3, t)$-choosable if and only if $t \leq 6$ or $t \geq 14$. We still left a characterization of all 3 -list assignments of L such that $K_{7,9}$ is not L-colorable for future work. (See Chapter 6.) We introduce remarks which are used several times in this section.

For the following remarks, let L be a $(3, t)$-list assignment of $K_{7,9}$ where $L_{7}=$ $\left\{A_{1}, A_{2} \ldots, A_{7}\right\}$ and $L_{9}=\left\{B_{1}, B_{2}, \ldots, B_{9}\right\}$ and r_{7} (and r_{9}) be the maximum number of lists in L_{7} (and L_{9}) containing a common color.

Suppose that $\left(r_{7}, r_{9}\right)=(3,4)$; this is one of two missing cases of Lemma 4.1.5.

Remark 4.3.1. If $1 \in A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, B_{4}$ and 2 is in some lists in L but no lists contains both color 1 and color 2, then we can define the new list assignment L^{*} from L by changing color 2 to color 1 . It is easy to see that if $K_{7,9}$ is $L^{*}-$
colorable then $K_{7,9}$ is L-colorable. Notice that color 1 appears at least in four lists in L_{7}^{*} or at least five lists in L_{9}^{*}. Hence, $K_{7,9}$ is L^{*}-colorable by Lemma 4.1.5. Therefore, $K_{7,9}$ is L-colorable.

Remark 4.3.2. Suppose that $t \geq 14$ and color 1 appears in at most six lists in L. Since a list containing color 1 has another two colors, at most 12 colors appear in the lists which contain color 1. Since we have 14 color, we have one color left. Then there exists a color, say color 2 such that no list contains both color 1 and color 2. Then we construct new 3 -list assignment l^{*} by changing color 2 to color 1 .

Remark 4.3.3. Suppose that $t \geq$. If a color appears in lists in only one partite set, then we can label such vertices by this color and the remaining vertices can be labeled by Theorem 3.3.7. Theorem 3.3.8 and Theorem 3.4.6. Suppose that every color appears in lists of both partite sets.

If color 1 appears in three lists in L_{7} but color 1 appears in at most three lists in L_{9}, then we construct a new 3 -list assignment l^{*} as in Remark 4.3.2. Hence, color 1 appears in at least four lists in L_{7}^{*}, then $K_{7,9}$ is L^{*}-colorable by Lemma 4.1.5. Therefore, $K_{7,9}$ is L-colorable.

If color 1 appears in exactly four lists in L_{9} but color 1 appears in at most two lists in L_{7}, then we can conclude that $K_{7,9}$ is L-colorable, similarly.

Remark 4.3.4. Suppose that $t \geq 14$. Let $\mathbb{X}=\left\{A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, B_{4}\right\}$ and color 1 is in all lists in \mathbb{X}. If a color not including color 1 appears in at least three lists in \mathbb{X} or at least two colors not including color 1 appear in two lists in \mathbb{X}, then there exists a color $x \notin \bigcup_{x \in \mathbb{X}} X$ because L contains at least 14 colors. Then $K_{7,9}$ is L-colorable by Remark 4.3.1.

Lemma 4.3.5. Let L be a (3,t)-list assignment of $K_{7,9}$ such that $L_{7}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{7}\right\}$ and $L_{9}=\left\{B_{1}, B_{2}, \ldots, B_{9}\right\}$ where $t=14,15$. Let r_{7} (and r_{9})
be the maximum number of lists in L_{7} (and L_{9}) containing a common color. If $1 \in A_{1}, A_{2}, A_{3}, 2 \in A_{4}, A_{5}, A_{6}$ and $\left(r_{7}, r_{9}\right)=(3,4)$, then $K_{7,9}$ is L-colorable.

Proof. Case 1. All of $123,124,125$ are lists in L_{9}.
Then $K_{7,9}$ is L-colorable by Remark 4.3.4.
Case 2. One of $123,124,125$ is not a list in L_{9}.
Since $\{1,2,3\},\{1,2,4\}$ and $\{1,2,5\}$ are 3 -colorings of L_{7}, there exists a 3coloring of L_{7} which has no subset that is a list in L_{9}. Then $K_{7,9}$ is L-colorable by Lemma 3.2.1.

Lemma 4.3.6. Let L be a $(3, t)$-list assignment of $K_{7,9}$ such that $L_{7}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{7}\right\}$ and $L_{9}=\left\{B_{1}, B_{2}, \ldots, B_{9}\right\}$ where $t=14,15$. Let r_{7} (and r_{9}) be the maximum number of lists in L_{7} (and L_{9}) containing a common color. If $1 \in B_{1}, B_{2}, B_{3}, B_{4}, 2 \in B_{5}, B_{6}, B_{7}$ and $\left(r_{7}, r_{9}\right)=(3,4)$, then $K_{7,9}$ is L-colorable.

Proof. By Remark 4.3.3, we may suppose that $1 \in A_{1}, A_{2}, A_{3}$.
Case 1. $2 \in A_{1}, A_{2}, A_{3}$.
Notice that $A_{1}-12, A_{2}-12, A_{2}-12$ contain a color and $B_{1}-1, B_{2}-1, B_{3}-1$ contain two colors. At most nine colors (including color 2) are in the same lists with color 1. Since we have at least 14 colors, there exists a color x such that no list in L contain both color 1 and color x. Then the proof is done by Remark 4.3.1.

Case 2. $2 \in A_{1}, A_{2}$ but $2 \notin A_{3}$.
If $2 \in A_{4}$, then color 2 appears in three lists in L_{7}. By Remark 4.3.3, we suppose that color 2 appears in four lists in L_{9}. If $2 \in B_{8}$ or $2 \in B_{9}$, then we label $B_{1}, B_{2}, B_{3}, B_{4}$ by color 1 and label $B_{5}, B_{6}, B_{7}, B_{8}$ by color 2 and the remaining vertices can be easily colored. If $2 \in B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$, then there exists a color x such that no list in L contain both color 1 and color x. Then the proof is done by Remark 4.3.1.

Case 3. $2 \in A_{1}$ but $2 \notin A_{2}, A_{3}$.
If $\left|B_{8} \cap B_{9}\right| \neq 1$, then we label $B_{1}, B_{2} \ldots, B_{7}$ by color 1 and color 2. The remaining vertices can be directly labeled. Suppose that $B_{8}=346$ and $B_{9}=$ 357. If L_{9} has a coloring which has no subset that is a list in L_{7}, then $K_{7,9}$ is L-colorable by Lemma 3.2.1. Suppose that each coloring of L_{9} has a subset that is a list in L_{7}. Since $\{1,2,3\}$ is a 3 -coloring of L_{9}, let $A_{1}=123$. Since $\{1,2,4,5\},\{1,2,4,7\},\{1,2,6,5\}$ and $\{1,2,6,7\}$ are 4 -colorings of L_{7}, we suppose that $2 \in A_{4}, A_{5}$ and $\left\{A_{2}-1, A_{3}-1, A_{4}-2, A_{5}-2\right\}=\{45,47,65,67\}$. Since $\left(B_{2}-1\right) \cup\left(B_{3}-1\right) \cup\left(B_{4}-1\right)$ is of size 6 , one of colors $8,9, A, B, C, D, E$ is not in $\left(B_{2}-1\right) \cup\left(B_{3}-1\right) \cup\left(B_{4}-1\right)$. Suppose that $8 \notin B_{2}, B_{3}, B_{4}$. Then color 8 is not in the same list with lists containing color 1 . Then this case is done by Remark 4.3.1.

Case 4. $2 \notin A_{1}, A_{2}, A_{3}$.
If $2 \notin A_{1}, A_{2}, A_{3}$, then we define the new list assignment L^{*} by changing color 2 to color 1 and then we apply Strategy C for L_{9}^{*}.

Lemma 4.3.7. Let L be a (3,t)-list assignment of $K_{7,9}$ such that $L_{7}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{7}\right\}$ and $L_{9}=\left\{B_{1}, B_{2}, \ldots, B_{9}\right\}$ where $t=14,15$. Let r_{7} (and r_{9}) be the maximum number of lists in L_{7} (and L_{9}) containing a common color. If $1 \in A_{1}, A_{2}, A_{3},\left(r_{7}, r_{9}\right)=(3,4)$ and there exists another color which appears in three lists in L_{7}, then $K_{7,9}$ is L-colorable.

Proof. Let color 2 be another color which appears in three lists in L_{7}.
Case 1. $2 \notin A_{1} \cup A_{2} \cup A_{3}$.
Then color 2 appears in three lists in A_{4}, A_{5}, A_{6}; hence, $K_{7,9}$ is L-colorable by Lemma 4.3.5.

Case 2. $2 \in A_{1} \cup A_{2} \cup A_{3}$.
By Remark 4.3.3, we suppose that both color 1 and color 2 appear in exactly
four lists in L_{9}. If at least two lists in L_{9} contains both color 1 and color 2, then $K_{7,9}$ is L-colorable by Remark 4.3.4. If at most one list in L_{9} contains both color 1 and color 2 , then $K_{7,9}$ is L-colorable by Lemma 4.3.6.

Lemma 4.3.8. Let L be a (3,t)-list assignment of $K_{7,9}$ such that $L_{7}=\left\{A_{1}\right.$, $\left.A_{2}, \ldots, A_{7}\right\}$ and $L_{9}=\left\{B_{1}, B_{2}, \ldots, B_{9}\right\}$ where $t=14,15$. Let r_{7} (and r_{9}) be the maximum number of lists in L_{7} (and L_{9}) containing a common color. If $1 \in B_{1}, B_{2}, B_{3}, B_{4}$ and $\left(r_{7}, r_{9}\right)=(3,4)$, then $K_{7,9}$ is L-colorable.

Proof. By Remark 4.3.3, suppose that $1 \in A_{1}, A_{2}, A_{3}$. By Lemma 4.3.7, suppose that each color appears in at most two lists in L_{7}.

We first label $B_{1}, B_{2}, B_{3}, B_{4}$ by color 1 ; hence, the remaining vertices form $K_{7,5}$. Let L^{\prime} be the list assignment of $K_{7,5}$ which is obtained from L by removing color 1 and color 2.

Case 1. No color appears in two lists in L_{5}^{\prime}.
Then we apply Strategy A for L_{5}^{\prime}.
Case 2. Exactly one color appears in two lists in L_{5}^{\prime}.
Let $2 \in B_{5}, B_{6}$. Then we label B_{5}, B_{6} by color 2 ; hence, the remaining vertices form $K_{7,3}$. Let $L^{\prime \prime}$ be the list assignment of $K_{7,3}$ which is obtained from L^{\prime} by removing color 2 . Since color 2 appears in at most two lists in L_{7}, we can apply Strategy A for $L_{3}^{\prime \prime}$.

Case 3. Exactly two colors appear in two lists in L_{5}^{\prime}.
Let $2 \in B_{5}, B_{6}$. If $3 \in B_{5}$ or $3 \in B_{6}$, then B_{7}, B_{8}, B_{9} are still mutually disjoint; hence, the proof is similar to Case 2 . Next, suppose that $3 \in B_{7}, B_{8}$.

Case 3.12 or $3 \notin A_{1} \cup A_{2} \cup A_{3}$

Define the new list assignment L^{*} of $K_{7,9}$ which is obtained from L by changing such color to color 1 . Then we apply Strategy D^{\prime}.

Case $3.22 \in A_{1} \cup A_{2} \cup A_{3}$ and color 2 appears in two lists in L_{7}.

Recall that we have labeled $B_{1}, B_{2}, B_{3}, B_{4}$ by color 1 . Then we label such two lists in L_{7} by color 2 and label B_{7} and B_{8} by color 3. The remaining vertices form $K_{5,3}$. Let $L^{\prime \prime}$ be the list assignment of $K_{5,3}$ which is obtained from L by removing color 2 and color 3 . Then we apply Strategy A for $L_{3}^{\prime \prime}$.

Case $3.33 \in A_{1} \cup A_{2} \cup A_{3}$ and color 3 appears in two lists in L_{7}. Similar to Case 3.2.

Case $3.42,3 \in A_{1}$ and no other list in L_{7} contains color 2 or color 3.
We label B_{5}, B_{6} by color 2 and label A_{1} by color 3 . For the worst case, we suppose that $2,3 \notin A_{2}, A_{3} \ldots, A_{7}$. Then the remaining vertices form $K_{6,3}$. Let $L^{\prime \prime}$ be the list assignment of $K_{6,3}$ which is obtained from L^{\prime} by removing color 2 and color 3. Notice that $L_{3}^{\prime \prime}$ contains two lists of size 2 and one list of size 3 . Define the new list assignment L^{*} of $K_{6,3}$ by deleting a color from only such list of size 3. It is obvious that if $K_{6,3}$ is L^{*}-colorable, then $K_{6,3}$ is $L^{\prime \prime}$-colorable. Then we apply Strategy A' for L_{3}^{*} to guarantee that $K_{6,3}$ is L^{*}-colorable.

Case $3.52 \in A_{1}, 3 \in A_{2}$ and no other list in L_{7} contains color 2 or color 3 . We label B_{5}, B_{6} by color 2 and label B_{7}, B_{8} by color 3 . The remaining vertices can be easily labeled.

Case 4. At least three colors appear in exactly two lists in L_{5}^{\prime}.
Since $\left|B_{5}\right|+\left|B_{6}\right|+\left|B_{7}\right|+\left|B_{8}\right|+\left|B_{9}\right|=15$, exactly nine colors appear in exactly one list. Since $t \geq 14$, there is a color, say color 2 which is not in $B_{5}, B_{6}, B_{7}, B_{8}, B_{9}$. Case $4.12 \notin B_{1}, B_{2}, B_{3}, B_{4}$.

Then color 2 only appears in L_{7}; hence, we label some lists in L_{7} by color 2 . The remaining vertices form a complete bipartite graph with at most 15 vertices which can be labeled by Theorem 3.3.7, Theorem 3.3.8 and Theorem 3.4.6.

Case $4.22 \in B_{1}, B_{2}, B_{3}, B_{4}$.
Suppose that $2 \in B_{1}$. Similar to Case 5.1, we suppose that color 2 is in a list of
L_{7}. Then we label some lists in L_{7} by color 2 . For the worst case, suppose $2 \in A_{4}$ and no other list in L_{7} contains color 2 . The remaining vertices form $K_{6,5}$. Let $L^{\prime \prime}$ be the list assignment of $K_{6,5}$ such that $L_{6}^{\prime \prime}=\left\{A_{1}-1, A_{2}-1, A_{3}-1, A_{5}, A_{6}, A_{7}\right\}$ and $L_{5}^{\prime \prime}=\left\{B_{5}, B_{6}, B_{7}, B_{8}, B_{9}\right\}$.

Since each color appears in at most two lists in $L_{5}^{\prime \prime}$, there exists a list $x_{1} y_{1} z_{1} \in$ $L_{5}^{\prime \prime}$ such that $x_{1} y_{1} z_{1} \cap\left(A_{1}-1\right)=\varnothing$. Similarly, there exist lists $x_{2} y_{2} z_{2}$ and $x_{3} y_{3} z_{3}$ such that $x_{2} y_{2} z_{2} \cap\left(A_{2}-1\right)=x_{3} y_{3} z_{3} \cap\left(A_{3}-1\right)=\varnothing$. Hence, we define the new list assignment L^{*} of $K_{12,5}$ such that $L_{1}^{*} 2=\left\{A_{5}, A_{6}, a_{7}\right\} \cup\left\{\left\{x_{i}\right\} \cup\left(A_{i}-1\right) \mid i=\right.$ $1,2,3\} \cup\left\{\left\{y_{i}\right\} \cup\left(A_{i}-1\right) \mid i=1,2,3\right\} \cup\left\{\left\{z_{i}\right\} \cup\left(A_{i}-1\right) \mid i=1,2,3\right\}$. It is easy to see that if $K_{12,5}$ is L^{*}-colorable, then $K_{6,5}$ is $L^{\prime \prime}$-colorable. According to Shende[17], $K_{5,12}$ is 3 -choosable. Hence, $K_{7,9}$ is L-colorable.

Theorem 4.3.9. The complete bipartite graph $K_{7,9}$ is $(3, t)$-choosable if and only if $t \leq 6$ or $t \geq 14$.

Proof. If L is a 3 -list assignment of $K_{7,9}$ such that $L_{7}=\mathcal{F}$ and $L_{9}=\mathcal{F} \cup$ $\left\{x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right\}$ where $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ are any colors, then $K_{7,9}$ is not L colorable. Depending on such six colors, t may be $7,8,9, \ldots, 13$. Hence, $K_{7,9}$ is not $(3, t)$-choosable for $7,8, \ldots, 13$.

Case 1. $t \leq 6$.
Then a color in L_{9} appears in at least $\left\lceil\frac{9 \cdot 3}{6}\right\rceil=5$ lists. Hence, $K_{7,9}$ is $(3, t)$ choosable for $t \leq 6$ by Lemma 4.1.5.

Case 2. $t \geq 16$.
Let $S \subset V\left(K_{7,9}\right)$. If $|S| \leq 13$, then $K_{7,9}[S]$ is $\left.L\right|_{S}$-colorable by Theorems 3.3.7; if $|S|=14$, then $K_{7,9}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 3.3.8 and if $|S|=15$ then $K_{7,9}[S]$ is $\left.L\right|_{S}$-colorable by Theorem3.4.6. Then $K_{7,9}$ is L-colorable by Theorem 2.1.7.

Case 3. $t=14,15$.

By Lemma 4.1.5, $K_{7,9}$ is always L-colorable unless $\left(r_{7}, r_{9}\right)=(2,3),(3,4)$. If $\left(r_{7}, r_{9}\right)=(3,4)$, then $K_{7,9}$ is L-colorable by Lemma 4.3.8. Suppose that $\left(r_{7}, r_{9}\right)=$ $(2,3)$. Let $1 \in B_{1}, B_{2}, B_{3}$. Notice that 1 appears in at most two lists in L_{7}. Since we have at least 14 colors, there exists a color, say color 2 which is not in the same list with color 1 . Then we define the new 3 -list assignment L^{*} of $K_{7,9}$ by changing color 2 to color 1 . Then color 1 appears in at least four lists in L_{7}^{*}; hence, $K_{7,9}$ is L^{*}-colorable by Lemma 4.3.8 and Lemma 4.1.5.

Theorem 4.3.10. A complete bipartite graph with 16 vertices is $(3, t)$-choosable for $t \leq 6$ or $t \geq 14$.

Proof. It follows from Theorem 4.1.7, Theorem 4.2.36 and Theorem 4.3.9.

CHAPTER V

ON (k, t)-CHOOSABILITY of $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$

5.1 Background

Since k-choosability implies k-colorability, $\chi(G) \leq \chi_{l}(G)$ for every graph G. This bound is sharp because $\chi(G)=\chi_{i}(G)=2$ when G is a tree. However, there exists a graph G such that $\chi(G)$ and $\chi_{l}(G)$ is significantly different. In [4], Erdős, Rubin, and Taylor gave an example of bipartite graphs which is not k choosable for each positive integer k. Such graph is the complete bipartite graph $K_{m, m}$ when $m=\binom{2 k-1}{k}$. They gave a k-list assignment L such that $K_{m, m}$ is not L-colorable. Example 5.1 .1 shows a special case when $k=3$.

Example 5.1.1. When $k=3$, we have $m=\binom{5}{3}=10$. Figure 2.1.1 shows the $(3,5)$-list assignment L such that $K_{10,10}$ is not L-colorable.

Figure 5.1.1: A $(3,5)$-list assignment L of $K_{10,10}$

The complete bipartite graph $K_{10,10}$ is not L-choosable because each partite set requires three colors but there are only five available colors.

In general, we assign distinct k-subsets of $\{1,2, \ldots, 2 k-1\}$ to each vertex in
each partite set of $K_{m, m}$ where $m=\binom{2 k-1}{k}$ to form a k-list assignment L. If we use only $k-1$ colors to label lists in a partite set, then the remaining k colors form a list which we are not labeled. That is, we need at least k colors to color all vertices in each partite set. However, we have only $2 k-1$ colors. Hence, we cannot label all vertices in both partite sets. Notice that the k-list assignment contains exactly $2 k-1$ colors; in other words, $K_{m, m}$ is not $(k, 2 k-1)$-choosable. Particularly, $K_{10,10}$ is not $(3,5)$-choosable. Next, we also show that $K_{10,10}$ is not (3, $t)$-choosable for $t=6,7,8$.

Example 5.1.2 shows how to obtain a $(3, t)$-list assignment L of $K_{10,10}$ for $t=5,6,7$ such that $K_{10,10}$ is not L-colorable.

Example 5.1.2. Let L be the $(3,5)$-list assignment L of $K_{10,10}$ in Figure 5.1.2. We will construct new list assignments L^{1}, L^{2}, L^{3} of $K_{10,10}$ such that $K_{10,10}$ is not L^{i}-colorable for $i=1,2,3$. The list assignments L^{1}, L^{2} and L^{3} are obtained from L by changing colors in boxes as shown in Figures 5.1.2, 5.1.3 and 5.1.4.

Figure 5.1.2: A $(3,6)$-list assignment L^{1} of $K_{10,10}$

We show that $K_{10,10}$ is not L^{1}-colorable. Let $\mathcal{A}_{1}=\left\{A_{1}, A_{2}, \ldots, A_{10}\right\}$ and $\mathcal{A}_{2}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{10}^{\prime}\right\}$ be the lists of vertices in the left partite set and the right partite set in Figure 5.1.2, respectively. We show that $K_{10,10}$ is not L^{1}-colorable by dividing the proof into several cases.

Case 1. If we use both color 1 and color 2 to label some lists in \mathcal{A}_{1}, then we cannot label all of $A_{10}, A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}$.

Case 2. Similar to Case 1, if we use both color 1 and color 2 to label some lists in \mathcal{A}_{2}, then we cannot label all of $A_{1}, A_{2}, A_{3}, A_{10}^{\prime}$.

Case 3. If we use color 1 to label some lists in \mathcal{A}_{1} and use color 2 to label lists in \mathcal{A}_{2}, then we cannot label all of $A_{7}, A_{8}, A_{9}, A_{4}^{\prime}, A_{5}^{\prime}, A_{6}^{\prime}$.

Case 4. Similarly to Case 2, if we use color 2 to label some lists in \mathcal{A}_{1} and use color 1 to label lists in \mathcal{A}_{2}, then we cannot label all of $A_{4}, A_{5}, A_{6}, A_{7}^{\prime}, A_{8}^{\prime}, A_{9}^{\prime}$.

Case 5. If we use neither color 1 or color 2 , we cannot color all of A_{4}, A_{5}, $A_{6}, A_{7}^{\prime}, A_{8}^{\prime}, A_{9}^{\prime}$. Hence, $K_{10,10}$ is not L^{1}-colorable.

Figure 5.1.3: A $(3,7)$-list assignment L^{2} of $K_{10,10}$

Figure 5.1.4: A $(3,8)$-list assignment L^{3} of $K_{10,10}$

It can be proved similarly that $K_{10,10}$ is neither L^{2}-colorable nor L^{3}-colorable.

In this chapter, k, t and m are always positive integers such that $m=\binom{2 k-1}{k}$. We have seen that $K_{m, m}$ is not (k, t)-choosable for $t=2 k-1$. We next are interested in $t<2 k-1$ or $t>2 k-1$ which is studied in Section 5.2. Given a positive integer k, we reveal all (k, t)-choosability of the complete bipartite graph $K_{m, m}$ except when $17 \cdot 2^{k-2}-4 k-4<t<2 k m-k^{2}+2 k$; in such a case, the problem still unsolved. In particular, Section 5.3 contains the complete results when $k=3$. We combine the tool in Theorem 2.1.7 with and the main results from Chapter 3 and Chapter 4 to obtain these complete results when $k=3$.

5.2 On (k, t)-choosability of $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$.

In this section, we focus on general cases. We prove that if $t \leq 2 k-2$ or $t \geq$ $2 k m-2 k^{2}+2 k$, then $K_{m, m}$ is (k, t)-choosable, and if $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$ then $K_{m, m}$ is not (k, t)-choosable.

Theorem 5.2.1. Let k, t, m be positive integers such that $k \geq 3$ and $m=\binom{2 k-1}{k}$. If $t \leq 2 k-2$, then $K_{m, m}$ is (k, t)-choosable.

Proof. Let L be a (k, t)-list assignment of $K_{m, m}$. We can use $\left\lfloor\frac{t}{2}\right\rfloor$ colors to color all vertices in each partite set because $\left\lfloor\frac{t}{2}\right\rfloor+k \geq\left\lfloor\frac{t}{2}\right\rfloor+\frac{t+1}{2} \geq t+1$. Hence, we label vertices in one partite set by color $1,2, \ldots,\left\lfloor\frac{t}{2}\right\rfloor$ and label vertices in the other partite set by color $\left\lfloor\frac{t}{2}\right\rfloor+1,\left\lfloor\frac{t}{2}\right\rfloor+2, \ldots, t$.

In Theorem 5.2.2, we will show that if the number t is large enough, then $K_{m, m}$ is (k, t)-choosable.

Theorem 5.2.2. Let k, t, m be positive integers such that $m=\binom{2 k-1}{k}$. If $t \geq$ $2 k m-2 k^{2}+2 k$, then $K_{m, m}$ is (k, t)-choosable.

Proof. Let L be a (k, t)-list assignment of $K_{m, m}$. For every $S \subset V(G),|L(S)| \geq$ $t-L(V(G)-S) \geq 2 k m-2 k^{2}+2 k-k(2 m-|S|)=k|S|-2 k^{2}+2 k$.

To apply Theorem 2.1.7, let $S \subset V\left(K_{m, m}\right)$ be such that $|L(S)|<|S|$. Then $|S|>k|S|-2 k^{2}+2 k$. Hence, $|S|<2 k$. It is easy to see that a bipartite graph with less than $2 k$ vertices is k-choosable. Therefore, $K_{m, m}$ is (k, t)-choosable.

Before we prove our main result in Theorem 5.2.10, we need Lemma 5.2.4 as a basis step for mathematical induction.

Definition 5.2.3. Let L be a list assignment of a graph G. Then L is called a colorable list assignment of G if G is L-colorable; otherwise, L is called a non-colorable list assignment of G.

Recall Notation 3.1.2 that if L is a list assignment of $K_{a, a}$, then $L_{a(i)}$ and $L_{a(i i)}$ are collections of lists assigned to the vertices in each partite set.

Lemma 5.2.4. Let t be a positive integer. $K_{3,3}$ is $(2, t)$-choosable if and only if $t \leq 2$ or $t \geq 6$. Moreover, for a 3 -list assignment L of $K_{3,3}$, the complete bipartite graph $K_{3,3}$ is L-colorable if and only if $L \neq L^{1}, L^{2}, L^{3}$ where $L_{3(i)}^{1}=$ $\{12,13,23\}, L_{3(i i)}^{1}=\{12,13,23\}, L_{3(i)}^{2}=\{12,13,24\}, L_{3(i i)}^{2}=\{12,14,23\}$, and $L_{3(i)}^{3}=\{12,13,45\}, L_{3(i i)}^{3}=\{14,15,23\}$.

Proof. Let L be a $(2, t)$-list assignment of $K_{3,3}$.
Case 1. $t \geq 2$ or $t \geq 6$.
If $t=2$, then $K_{3,3}$ is $(2, t)$-choosable because $K_{3,3}$ is 2 -colorable. Suppose that $t \geq 6$. To apply Theorem 2.1.7, let $S \subset V\left(K_{3,3}\right)$ be such that $|L(S)|<|S|$. Then $|S|=5$. Hence, $K_{3,3}[S]$ is a subgraph of $K_{2,3}$ which is 2 -choosable by Example 2.1.1(ii). Hence, $K_{3,3}$ is $\left.L\right|_{S}$-colorable. Therefore, $K_{3,3}$ is L-colorable.

Case 2. $t=3,4,5$.
Define a $(2,3)$-list assignment, a $(2,4)$-list assignment, and a $(2,5)$-list assign-
ment L^{1}, L^{2} and L^{3} as follows. $L_{3(i)}^{1}=\{12,13,23\}, L_{3(i i)}^{1}=\{12,13,23\}, L_{3(i)}^{2}=$ $\{12,13,24\}, L_{3(i i)}^{2}=\{12,14,23\}$, and $L_{3(i)}^{3}=\{12,13,45\}, L_{3(i i)}^{3}=\{14,15,23\}$. Since $K_{3,3}$ is not L^{i}-colorable for $i=1,2,3, K_{3,3}$ is not $(2, t)$-choosable for $t=3,4,5$.

Next, we characterize all non-colorable 2-list assignments L of $K_{3,3}$. If all lists in $L_{3(i)}$ are mutually disjoint, then $K_{3,3}$ is L-colorable by Strategy A'. Suppose that $L_{3(i)}=\{1 a, 1 b, c d\}$ where a, b, c, d are positive integers. By Lemma 3.2.1, if L is a non-colorable list assignment, then such colorings has a subset that is a list in $L_{3(i i)}$. Since $\{1, c\},\{1, d\},\{a, b, c\}$ and $\{a, b, d\}$ are colorings of $L_{3(i)}$, we obtain $L_{3(i i)}=\{1 c, 1 d, a b\}$. Next, we consider possibility of L.

Case 2.1. a, b, c, d are distinct.
Suppose that $a=2, b=3, c=4$ and $d=5$. Hence, $t=5$ and $L_{3(i)}=$ $\{12,13,45\}, L_{3(i i)}=\{14,15,23\}$.

Case 2.2. $a=c$ but a, b, d are distinct.
Suppose that $a=c=2, b=3$ and $d=4$. Hence $t=4$ and $L_{3(i)}=$ $\{12,13,24\}, L_{3(i i)}=\{12,14,23\}$.

Case 2.3. $a=c$ and $b=d$.
Suppose that $a=c=2$ and $b=d=5$. Hence, $t=3$ and $L_{3(i)}=\{12,13,23\}, L_{3(i i)}=$ $\{12,13,23\}$.

Notation 5.2.5. Let \mathcal{A}_{1} and \mathcal{A}_{2} be collections of lists. The notation $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ represents the list assignment, say L, of $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$ such that $L_{\left|\mathcal{A}_{1}\right|}=\mathcal{A}_{1}$ and $L_{\left|\mathcal{A}_{2}\right|}=\mathcal{A}_{2}$.

Definition 5.2.6. Let S be a set and i a positive integer. Define the collection of sets $\binom{S}{i}=\{A \subset S \mid A$ has size $i\}$. Let \mathbb{X} be a collection of sets and c be an element which is not in any set in \mathbb{X}. Define $c \mathbb{X}=\{\{c\} \cup X \mid X \in \mathbb{X}\}$.

Example 5.2.7. Let $S=\{1,2,3,4\}$ and $\mathbb{X}=\binom{S}{2}$. Then $\mathbb{X}=\{\{1,2\},\{1,3\}$, $\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$ and $5 \mathbb{X}=\{\{1,2,5\},\{1,3,5\},\{1,4,5\},\{2,3,5\}$, $\{2,4,5\},\{3,4,5\}\}$.

Remark 5.2.8 introduces an idea to construct a non-colorable list assignment of a complete bipartite graph from an existing non-colorable list assignment of a smaller complete bipartite graph. Example 5.2.9 illustrates the idea.

Remark 5.2.8. Let $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ be a non-colorable list assignment of the complete bipartite graph $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$.
(i) If $\left[p \mathcal{A}_{1}, q \mathcal{A}_{2}\right]$ is a colorable list assignment of $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$, then any $\left[p \mathcal{A}_{1}, q \mathcal{A}_{2}\right]$ coloring of $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$ must use color p or color q.
(ii) If $\left[p q \mathcal{A}_{1}, \mathcal{A}_{2}\right]$ is a colorable list assignment of $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$, then any $\left[p q \mathcal{A}_{1}, \mathcal{A}_{2}\right]$ coloring of $K_{\left|\mathcal{A}_{1}\right|,\left|\mathcal{A}_{2}\right|}$ must use color p or color q.

Example 5.2.9. Let $\mathcal{A}_{1}=\{34,35,45\}, \mathcal{A}_{2}=\{34,35,45\}, \mathcal{B}_{1}=\{34,35,46\}$ and $\mathcal{B}_{2}=\{34,46,45\}$. Then $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ and $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ are a non-colorable (2,3)-list assignment and a non-colorable (2,4)-list assignment of $K_{3,3}$, respectively, by Lemma 5.2.4.

We will construct a non-colorable (3, 9)-list assignment of $K_{10,10}$ from $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$. First, let $C=\{6,7,8\}$ and $D=\{7,8,9\}$. Define a 3 -list assignment L of $K_{10,10}$ as follows:

$$
\begin{aligned}
& L_{10(i)}=1 \mathcal{A}_{1} \cup 2 \mathcal{B}_{1} \cup 12\binom{C}{1} \cup\binom{D}{3} \\
& L_{10(i i)}=1 \mathcal{B}_{2} \cup 2 \mathcal{A}_{2} \cup 12\binom{D}{1} \cup\binom{C}{3}
\end{aligned}
$$

That is,

$$
L_{10(i)}=\{134,135,145\} \cup\{234,235,246\} \cup\{126,127,128\} \cup\{789\}
$$

$$
L_{10(i i)}=\{134,136,146\} \cup\{234,235,245\} \cup\{127,128,129\} \cup\{678\}
$$

Consider the subgraph of $K_{10,10}$ induced by vertices labeled by $12\binom{C}{1} \subset L_{10(i)}$ and $\binom{C}{3} \subset L_{10(i i)}$. Since $\left[\binom{C}{1},\binom{C}{3}\right]$ is a non-colorable list assignment of $K_{1,3}$, color 1 or color 2 is used to label lists in $12\binom{C}{1} \subset L_{10(i)}$ by Remark 5.2.8. Similarly, consider the subgraph of $K_{10,10}$ induced by vertices labeled by $12\binom{D}{1} \subset L_{10(i i)}$ and $\binom{D}{3} \subset L_{10(i)}$. Since $\left[\binom{D}{1},\binom{D}{3}\right]$ is a non-colorable list assignment of $K_{1,3}$, color 1 or color 2 is used to label lists in $12\binom{D}{1} \subset L_{10(i i)}$, by Remark 5.2.8.

Case 1. Color 1 is used to label lists in $L_{10(i)}$ and color 2 is used to label lists in $L_{10(i i)}$.

It follows that lists in $L_{10(i i)}$ cannot be labeled by color 1 and lists in $L_{10(i)}$ cannot be labeled by color 2 . Then consider the subgraph of $K_{10,10}$ induced by vertices labeled by $1 \mathcal{B}_{2} \subset L_{10(i i)}$ and $2 \mathcal{B}_{1} \subset L_{10(i)}$. Vertices of this induced subgraph cannot be labeled because $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ is a non-colorable list assignment of $K_{3,3}$.

Case 2. Color 1 is used to label lists in $L_{10}(i i)$ and color 2 is used to label lists in $L_{10(i)}$.

Similar to Case 1, consider the subgraph of $K_{10,10}$ induced by vertices labeled by $1 \mathcal{A}_{1} \subset L_{10(i)}$ and $2 \mathcal{A}_{2} \subset L_{10(i i)}$. Vertices of this induced subgraph cannot be labeled because $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ is a non-colorable list assignment of $K_{3,3}$.

Hence, we conclude that $K_{10,10}$ is not L-colorable.
Note further that the construction starts from two non-colorable list assignments of $K_{3,3}$, say $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ and $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$. By Lemma 5.2.4, the number of colors in $\mathcal{A}_{1} \cup \mathcal{A}_{2}\left(\mathcal{B}_{1} \cup B_{2}\right)$ can possibly be three, four or five. Notice that $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ can be the same as $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ while C and D can be any sets of three colors. The set of colors in L consists of colors from $\mathcal{A}_{1} \cup \mathcal{A}_{2}, \mathcal{B}_{1} \cup \mathcal{B}_{2}, C, D$ and two new colors. Then the total number of colors in L is smallest, which is five, when $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ and
$\mathcal{B}_{1} \cup \mathcal{B}_{2}$ contains the same three colors and C, D are the set of such three colors. The total number of colors in L is largest, which is 18 , when $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ and $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ contains five different colors and C, D are the disjoint sets of new three colors. It is easy to see that the total number of colors in L can possibly be any numbers from 3 to 18 . Hence, $K_{10,10}$ is not $(3, t)$-choosable for $t=3,4, \ldots, 18$.

Theorem 5.2.10. Let k, t, m be positive integers such that $m=\binom{2 k-1}{k}$. If $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$ then $K_{m, m}$ is not (k, t)-choosable.

Proof. We will prove by mathematical induction on k. The basis step is shown in Lemma 5.2.4 for the case $k=2$. We prove the induction step similar to Example 5.2.9.

Let C and D be any sets of size $2 k-3$ and $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ be collections of sets of size $k-1$ such that $\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{2}\right|=\left|\mathcal{B}_{1}\right|=\left|\mathcal{B}_{2}\right|=\binom{2 k-3}{k-1}$. Suppose that $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ and $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ are non-colorable list assignments of $K_{\binom{2 k-3}{k-1},\binom{2 k-3}{k-1}}$ and suppose that C, D and all lists in $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{B}_{1}, \mathcal{B}_{2}$ do not contain color 1 and color 2 .

Define a (k, t)-list assignment L of $K_{m, m}$ by

$$
\begin{aligned}
& L_{m(i)}=1 \mathcal{A}_{1} \cup 2 \mathcal{B}_{1} \cup 12\binom{C}{k-2} \cup\binom{D}{k} \\
& L_{m(i i)}=1 \mathcal{B}_{2} \cup 2 \mathcal{A}_{2} \cup 12\binom{D}{k-2} \cup\binom{C}{k}
\end{aligned}
$$

Since $2\binom{2 k-3}{k-1}+\binom{2 k-3}{k-2}+\binom{2 k-3}{k}=\binom{2 k-1}{k}=m$, all vertices of $K_{m, m}$ are assigned.
Consider the subgraph of $K_{m, m}$ induced by vertices labeled by $12\binom{C}{k-2} \subset$ $L_{m(i)}$ and $\binom{C}{k} \subset L_{m(i i)}$. Since $\left[\binom{C}{k-2},\binom{C}{k}\right]$ is a non-colorable list assignment of $K_{\binom{2 k-3}{k-2},\binom{2 k-3}{k}}$, color 1 or color 2 is used to label lists in $12\binom{C}{k-2} \subset L_{m(i)}$ by Remark 5.2.8. Similarly, consider the subgraph of $K_{m, m}$ induced by vertices labeled by $12\binom{D}{k-2} \subset L_{m(i i)}$ and $\binom{D}{k} \subset L_{m(i)}$. Since $\left[\binom{D}{k-2},\binom{D}{k}\right]$ is a non-
colorable list assignment of $K_{\binom{2 k-3}{k-2},\binom{2 k-3}{k}}$, color 1 or color 2 is used to label lists in $12\binom{D}{k-2} \subset L_{m(i i)}$, by Remark 5.2.8.

Case 1. Color 1 is used to label lists in $L_{m(i)}$ and color 2 is used to label lists in $L_{m(i i)}$.

It follows that lists in $L_{m(i i)}$ cannot be labeled by color 1 and lists in $L_{m(i)}$ cannot be labeled by color 2 . Then consider the subgraph of $K_{m, m}$ induced by vertices labeled by $1 \mathcal{B}_{2} \subset L_{m(i i)}$ and $2 \mathcal{B}_{1} \subset L_{m(i)}$. Vertices of this induced subgraph cannot be labeled because $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ is a non-colorable list assignment of $K_{\binom{2 k-3}{k-1},\binom{2 k-3}{k-1}}$.

Case 2. Color 1 is used to label lists in $L_{m(i i)}$ and color 2 is used to label lists in $L_{m(i)}$.

Similar to Case 1, consider the subgraph of $K_{m, m}$ induced by vertices labeled by $1 \mathcal{A}_{1} \subset L_{m(i)}$ and $2 \mathcal{A}_{2} \subset L_{m(i i)}$. Vertices of this induced subgraph cannot be labeled because $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ is a non-colorable list assignment of $K_{\binom{2 k-3}{k-1},\binom{2 k-3}{k-1}}$.

Hence, we conclude that $K_{m, m}$ is not L-colorable.
Note further that the construction starts from two non-colorable list assignments of $K_{\binom{2 k-3}{k-1},\binom{2 k-3}{k-1}}$, say $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ and $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$. By the induction hypothesis, the number of colors in $\left[\mathcal{A}_{1}, \mathcal{A}_{2}\right]$ and $\left[\mathcal{B}_{1}, \mathcal{B}_{2}\right]$ can possibly be any number from $2 k-3$ to $17 \cdot 2^{k-3}-4 k$. The set of colors in L consists of colors in $\mathcal{A}_{1} \cup \mathcal{A}_{2}$, $\mathcal{B}_{1} \cup \mathcal{B}_{2}, C, D$ and two new colors. Then the total number of colors in L is smallest, which is $2 k-3+2=2 k-1$, when $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ and $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ contains the same $2 k-3$ colors and C, D are the set of such $2 k-3$ colors. The total number of colors in L is largest, which is $2\left(17 \cdot 2^{k-3}-4 k\right)+2(2 k-3)+2=17 \cdot 2^{2 k-2}-4 k-4$, when $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ and $\mathcal{B}_{1} \cup \mathcal{B}_{2}$ contains $2^{k-3}-4 k$ different colors and C, D are the disjoint sets of new $2 k-3$ colors. It is easy to see that the total number of colors in L can possibly be any numbers from $2 k-1$ to $17 \cdot 2^{2 k-2}-4 k-4$. Hence,
$K_{m, m}$ is not $(3, t)$-choosable for all $2 k-1 \leq t \leq 2^{2 k-2}-4 k-4$.

5.3 On $(3, t)$-choosability of $K_{10,10}$

Let k and m be positive integers such that $m=\binom{2 k-1}{k}$. In Section 5.2, we have proved that $K_{m, m}$ is (k, t)-choosable for $t \leq 2 k-2$ and $t \geq 2 k m-2 k^{2}+2 k$, and $K_{m, m}$ is not (k, t)-choosable for $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$. When $17 \cdot 2^{k-2}-4 k-4<t<2 k m-2 k^{2}+2 k$, the problem is still unsolved. Now, we focus on a specific positive integer k. When $k=2$, we get $m=\binom{2 \cdot 2-1}{2}=3$. The complete result is proved in Lemma 5.2 .4 that $K_{3,3}$ is $(2, t)$-choosable if and only if $t \neq 3,4,5$. Thus, here, we focus on $k=3$, and then $m=10$. Hence, we determine each positive integer t such that $K_{10,10}$ is $(3, t)$-choosable, in other words, we investigate the 3 -choosability of complete bipartite graphs with 20 vertices. However, only results of complete bipartite graphs with at most 14 vertices are revealed. In 1996, Hanson, MacGillivray, and Toft [8] proved that all complete bipartite graphs with 13 vertices are 3-choosable, and in 2005 Fitzpatrick and MacGillivray [5] proved that all complete bipartite graphs with 14 vertices except $K_{7,7}$ is 3 -choosable and $L_{\mathcal{F}}$ is the unique 3 -list assignment such that $K_{7,7}$ is not $L_{\mathcal{F}}$-colorable. To extend their result from 14 vertices to 20 vertices, our work in Chapters II, III and IV are devoted to solve this problem. Applying Theorem 2.1.7, the problem can be solved for complete bipartite graphs with 17, 18, 19 and 20 vertices. Results in Chapters III and IV take care the rest.

The desired main result is concluded in Theorem 5.3.1 and Theorem 5.3.3.

Theorem 5.3.1. Let t be a positive integer. The complete bipartite graph $K_{10,10}$ is $(3, t)$-choosable if and only if $t \neq 5,6, \ldots, 25$.

Proof. By Theorem 5.2.1, if $t \leq 4$, then $K_{10,10}$ is $(3, t)$-choosable. By Theorem 5.2.10, if $5 \leq t \leq 18$, then $K_{10,10}$ is not ($3, t$)-choosable. From Chapter 3, we have known that $K_{7,7}$ is not $(3,7)$-choosable and $L_{\mathcal{F}}$ is a non-colorable $(3,7)$-list assignment of $K_{7,7}$. We define a new assignment L^{*} of $K_{10,10}$ which is obtained from $L_{\mathcal{F}}$ by adding three new lists in each partite set. Then it follows that L^{*} is a non-colorable list assignment of $K_{10,10}$. The number of colors in L^{*} depends on the lists that we add. The minimum number of colors in L^{*} is 7 and the maximum number in L^{*} is 25 . Hence, $K_{10,10}$ is not $(3, t)$-choosable for $t=7,8, \ldots, 25$.

Next, suppose that $t \geq 26$ and let L be any ($3, t$)-list assignment of $K_{10,10}$. We will prove that $K_{10,10}$ is L-colorable by Theorem 2.1.7. Let $S \subset V\left(K_{10,10}\right)$ be such that $|S|>|L(S)|$. Since $|L(S)| \geq t-3 \cdot\left|V\left(K_{10,10}\right) \backslash S\right| \geq 3|S|-34$, we have $|S|>|L(S)| \geq 3|S|-34$. That is, $|S|<17$.

If $|S|=16$, then $|L(S)| \geq 48-34=14$. Hence, $K_{10,10}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 4.3.10. If $|S|=15$, then $|L(S)| \geq 45-34=11$. Hence, $K_{10,10}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 3.4.6. If $|S|=14$, then $|L(S)| \geq 42-34=8$. Hence, $K_{10,10}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 3.3.8. If $|S| \leq 13$, then $K_{10,10}[S]$ is $L_{\mid S}$-colorable because every complete bipartite graph with at most 13 vertices is 3 -choosable by Theorem 3.3.7. Therefore, by Theorem 2.1.7, $K_{10,10}$ is L-colorable. Hence, $K_{10,10}$ is $(3, t)$-choosable for $t \geq 26$.

Lemma 5.3.2. The complete bipartite graph $K_{9, b}$ is always $(3,5)$-choosable.

Proof. Let L be a $(3,5)$-list assignment of $K_{9, b}$.
Part 1. All lists in L_{9} can be color by only two colors.
Because of $\binom{5}{3}=10$, there exists a set $S \subset\{1,2,3,4,5\}$ such that $S \notin L_{9}$. Suppose that $S=\{1,2,3\}$. Hence, we use color 4, 5 label all lists in L_{9}.

Part 2. All lists in L_{b} can be color by the remaining three colors.
Since each list in L_{b} has size 3 and is a subset of $\{1,2,3,4,5\}$, it contains at least
one color from $\{1,2,3\}$. That is, we all lists in L_{b} can be labeled by color 1 , color 2 , or color 3 .

Theorem 5.3.3. Let a, b, t be positive integers such that $a, b \geq 7, a+b \leq 20$ and $t \neq 6$ and $(a, b, t) \neq(10,10,5)$. Then $K_{a, b}$ is $(3, t)$-choosable if and only if $t \leq 5$ or $t \geq 3(a+b)-34$. Moreover, $K_{10,10}$ is not $(3,5)$-choosable.

Proof. Let L be a $(3, t)$-list assignment of $K_{a, b}$. Then $t \geq 3$.
Case 1. $t=3,4$.
If $t=3$, then $K_{a, b}$ is L-colorable because $K_{a, b}$ is 3 -colorable. If $t=4$, then we can use any two color label all vertices in each partite set, then $K_{a, b}$ is L-colorable, too.

Case 2. $t=5$.
If $(a, b)=(10,10)$, then $K_{10,10}$ is not $(3,5)$-choosable by Example 5.1.1. Suppose that $a \leq b$ and $(a, b) \neq(10,10)$. Since $a+b=20$, we have $a \leq 9$. Hence, $K_{a, b}$ is $(3,5)$-choosable by Lemma 5.3.2.

Case 3. $7 \leq t \leq 3(a+b)-35$.
Notice that if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$, then $K_{a, b}$ is not L-colorable. Hence, we construct a non-colorable 3 -list assignment of $K_{a, b}$ by adding new $a+b-14$ lists to $L_{\mathcal{F}}$. The number of colors in such $a+b-14$ lists possibly be any number from 3 to $3(a+b)-42$. Moreover, such $a+b-14$ lists may contain the same colors as colors in $L_{\mathcal{F}}$. Hence, L possibly contains $7,8, \ldots, 3(a+b)-35$ colors. That is, $K_{a, b}$ is not $(3, t)$-choosable for $7,8, \ldots, 3(a+b)-35$.

Case 4. $t \geq 3(a+b)-34$.
We will prove that $K_{a, b}$ is L-colorable by Theorem 2.1.7. Let $S \subset V\left(K_{a, b}\right)$ be such that $|S|>|L(S)|$. Since $|L(S)| \geq t-3 \cdot(a+b-|S|) \geq 3 S-34$, we have $|S|>|L(S)| \geq 3 S-34$. That is,$|S|<17$.

If $|S|=16$, then $|L(S)| \geq 26-12=14$. Hence, $K_{a, b}[S]$ is $\left.L\right|_{S}$-colorable by

Theorem 4.3.10. If $|S|=15$, then $|L(S)| \geq 26-15=11$. Hence, $K_{a, b}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 3.4.6. If $|S|=14$, then $|L(S)| \geq 26-18=8$. Hence, $K_{a, b}[S]$ is $\left.L\right|_{S}$-colorable by Theorem 3.3.8. If $|S| \leq 13$, then $K_{a, b}[S]$ is $K_{a, b}[S]$ is $L_{\mid S}$-colorable because every complete bipartite graph with at most 13 vertices is 3 -choosable by Theorem 3.3.7. By Theorem 2.1.7, $K_{a, b}$ is L-colorable.

CHAPTER VI CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, we have studied three main problems. Firstly, find a sufficient condition of (k, t)-choosable graphs and a sufficient condition of (k, t) choosable graphs not containing K_{k+1}. Secondly, give a complete result on 3choosability of complete bipartite graphs with 15 vertices by establishing new strategies; moreover, obtain some partial results on 3-choosability of complete bipartite graphs with 16 vertices. Lastly, study (k, t)-choosability of the complete bipartite graph $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$.

All results in this dissertation are listed as follows:
Sufficient conditions of (k, t)-choosable graphs
Let k, t and n be positive integers.
Theorem 2.2.2: If $t \geq k n-k^{2}+1$, then every graph with n vertices is (k, t) choosable.

Theorem 2.2.4: If $k \leq t \leq k n-k^{2}$, then every graph with n vertices containing a $(k+1)$-clique is not (k, t)-choosable.

Lemma 2.2.5: If $k \geq n-2$, then a K_{k+1}-free graph with n vertices is (k, t) choosable. In other words, the list chromatic number of a K_{k+1}-free graph with n vertices is at most $n-2$.

Lemma 2.2.8: If $t \geq k+1$, then a K_{k+1}-free graph with $k+3$ vertices is (k, t) choosable.

Theorem 2.2.11: Let $k \geq 3$. If $t \geq k n-k^{2}-2 k+1$, then a K_{k+1}-free graph with n vertices is (k, t)-choosable.

Theorem 2.2.12: If $t \geq 2 n-6$, then a triangle-free graph with n vertices is ($2, t$)-choosable.

Theorem 2.2.13: A triangle-free graph with n vertices is $(2,2 n-7)$-choosable if and only if it is $\left(K_{3,3}-e\right)$-free.

Theorem 2.2.14: Let $n k-k^{2}-2 k+1 \leq t \leq n k-k^{2}$ and $3 \leq k \leq n-3$.
A graph with n vertices is (k, t)-choosable if and only if it is $K_{k+1}-f r e e$. Moreover, for $k=2$ and $2 n-6 \leq t \leq 2 n-4$. A graph with n vertices is $(2, t)$-choosable if and only if it is triangle-free.

Theorem 2.2.15: If $k \leq t \leq k n-k^{2}-2 k$, then every K_{k+1}-free graph with n vertices containing $C_{5} \vee K_{k-2}$ is not (k, t)-choosable.

Strategies for 3-list assignments

Let L be a 3 -list assignment of $K_{a, b}$ with $L_{a}=\left\{A_{1}, A_{2}, \ldots, A_{a}\right\}$ and $L_{b}=$ $\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$. Let r be the maximum number of lists in L_{b} containing a common color.

Strategy A: If all lists in L_{a} are mutually disjoint and $\prod_{i=1}^{a}\left|A_{i}\right|>3^{a-1} n_{1}+$ $\left\lfloor 3^{a-2}\right\rfloor n_{2}+\left\lfloor 3^{a-3}\right\rfloor n_{3}$ where $n_{i}=\left|\left\{B \in L_{b},|B|=i\right\}\right|$ for $i=1,2,3$, then $K_{a, b}$ is L-colorable.

Strategy B: If a color appears in $a-1$ lists in L_{a}, then $K_{a, b}$ is L-colorable.
Strategy C: If a color appears in $a-2$ lists in L_{a} and $r \leq 8$, then $K_{a, b}$ is L-colorable.

Strategy D: If a color appears in $a-3$ lists in L_{a} and $(r, b) \in\{(r, b) \mid r \leq 2, b \leq$ $22\} \cup\{(3, b) \mid b \leq 14\} \cup\{(4, b) \mid b \leq 12\} \cup\{(5, b) \mid b \leq 9\}$, then $K_{a, b}$ is L-colorable.

Strategy E: If a color appears in $a-4$ lists in L_{a}, say color 1 and $(r, b) \in$ $\{(r, b) \mid r \leq 2, b \leq 22\} \cup\{(3, b) \mid b \leq 14\}$, then $K_{a, b}$ is L-colorable unless the four remaining lists of L_{a} are 246, 257, 347, 356 and $\{123,145,167,246,257,347$, $356\} \subset L_{b}$.

Strategy F: If a color appears in $a-5$ lists in $L_{a}, r \leq 2$ and $a+b \leq 18$, then $K_{a, b}$ is L-colorable.

On 3-choosability of complete bipartite graphs

Recall that $\mathcal{F}=\{123,145,167,246,257,347,356\}$ be the collection of all lines in the Fano plane and $L_{\mathcal{F}}$ be the 3 -list assignment of $K_{7,7}$ which seven vertices in each partite set are assigned by distinct elements from \mathcal{F}.

Theorem 3.3.6: A complete bipartite graph with 14 vertices except $K_{7,7}$ is 3choosable. Moreover, for a 3 -list assignment L of $K_{7,7}$, it is not L-colorable if and only if $L=L_{\mathcal{F}}$.

Theorem 3.4.5: A complete bipartite graph with 15 vertices except $K_{7,8}$ is 3choosable. Moreover, for a 3 -list assignment L of $K_{7,8}$, it is not L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$.

Theorem 3.4.6: A complete bipartite graph with 15 vertices is $(3, t)$-choosable for $t \leq 6$ and $t \geq 11$.

Theorem 4.1.7: A complete bipartite graph with 16 vertices except $K_{7,9}$ and $K_{8,8}$ is 3 -choosable.

Theorem 4.2.36: For a 3 -list assignment L of $K_{8,8}$, it is not L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$.

Theorem 4.3.10: A complete bipartite graph with 16 vertices is $(3, t)$-choosable for $t \leq 6$ or $t \geq 14$.

On (k, t)-choosability of $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$.
Let k and t be positive integers.
Theorem 5.2.1, Theorem 5.2.2: If $t \leq 2 k-2$ or $t \geq 2 k \cdot\binom{2 k-1}{k}-2 k^{2}+2 k$, then $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$ is (k, t)-choosable.

Theorem 5.2.10: If $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$, then $K_{\binom{2 k-1}{k},\binom{(2 k-1}{k}}$ is not (k, t)-choosable.

Lemma 5.2.4: $K_{3,3}$ is $(2, t)$-choosable if and only if $t \leq 2$ or $t \geq 6$.

Theorem 5.3.1: $K_{10,10}$ is (3,t)-choosable if and only if $t \leq 4$ or $t \geq 26$.
Theorem 5.3.3: Let a, b, t be positive integers such that $a, b \geq 7, a+b \leq 20$ and $t \neq 6$ and $(a, b, t) \neq(10,10,5)$. Then $K_{a, b}$ is (3,t)-choosable if and only if $t \leq 5$ or $t \geq 3(a+b)-34$. Moreover, $K_{10,10}$ is not (3,5)-choosable.

6.2 Future Work

We propose some ideas for further research as follows:

1. Let G be a graph with n vertices which is K_{k+1}-free and $C_{5} \vee K_{k-2}$-free. What is the smallest number t_{0} in terms of k and n such that G is (k, t)-choosable for each positive integer $t \geq t_{0}$? We conjecture that if $t \geq k n-k^{2}-4 k+1$, then G is (k, t)-choosable and if G contains $C_{7} \vee K_{k-2}$ as a subgraph, then G is not (k, t)-choosable for $k \leq t \leq k n-k^{2}-4 k$.
2. Establish strategies for 4 -choosable graphs. For example, let L be a 4 -list assignment of $K_{a, b}$ such that $L_{a}=\left\{A_{1}, \ldots, A_{a}\right\}$ and $L_{b}=\left\{B_{1}, \ldots, B_{b}\right\}$. The following can be proved similar to Strategies A, B and C, respectively.

- If all lists in L_{a} are mutually disjoint and $\prod_{i=1}^{a}\left|A_{i}\right|>4^{a-1} n_{1}+\left\lfloor 4^{a-2}\right\rfloor n_{2}+$ $\left\lfloor 4^{a-3}+\right\rfloor n_{3}+\left\lfloor 4^{a-4}+\right\rfloor n_{4}$ where $n_{i}=\left|\left\{B \in L_{b},|B|=i\right\}\right|$ for $i=1,2,3,4$, then $K_{a, b}$ is L-colorable.
- If a color appears in $a-2$ lists, then $K_{a, b}$ is L-colorable.
- If a color appears in $a-3$ lists and each color appears in at most 63 lists in L_{b}, then $K_{a, b}$ is L-colorable.

3. Find all 3 -list assignments L of $K_{7,9}$ such that it is not L-colorable. In chapter IV, we have proved that for a 3 -list assignment L of $K_{8,8}$, it is L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$. It leads to a conjecture that for a 3 -list assignment L of $K_{7,9}$, it is L-colorable if and only if $\left.L\right|_{V\left(K_{7,7}\right)}=L_{\mathcal{F}}$.
4. Find the positive integer t_{0} such that every complete bipartite graph with 17 vertices is $(3, t)$-choosable for all $t \geq t_{0}$.
5. Study 3-list assignments of complete bipartite graphs with more than 16 vertices. Notice that 3 -choosability of complete bipartite graphs with 18 vertices is difficult to study because each of them has many 3 -list assignments L such that it is not L-colorable. For example, we found at least three different 3list assignments L such that $K_{9,9}$ is not L-colorable and five different 3 -list assignments L such that $K_{7,11}$ is not L-colorable

The following are non-colorable list assignments L of $K_{a, b}$ where L_{a} and L_{b} are the collection of lists assigned to vertices in the partite set of size a and b, respectively.

$$
\begin{aligned}
& L_{8}=\{158,168,159,169,278,279,345,346\} \\
& L_{9}=\{158,168,159,169,278,279,345,346\} \\
& L_{9(i)}=\{127,128,129,347,348,349,567,568,569\} \\
& L_{9(i i)}=\{135,136,145,146,235,236,245,246,789\} \\
& L_{9(i)}=\{124,135,19 A, 236,237,238,456,457,458\} \\
& L_{9(i i)}=\{678,124,125,134,135,925,934, A 25, A 34\} \\
& L_{9(i)}=\{134,156,157,189,234,256,257,289, A B C\} \\
& L_{9(i i)}=\{12 A, 12 B, 12 C, 367,467,358,359,358,359\}
\end{aligned}
$$

$$
L_{7}=\{678,123,124,125,134,135,925,934\}
$$

$$
L_{11}=\{124,135,196,197,198,236,237,238,456,457,458\}
$$

```
L
L11 = {123,124,125,69A,79A,683,684,685,783,784,785}
L
L11 = {678,29A,39A,124,125,134,135,B24,B25,B34,B35}
L
L}\mp@subsup{L}{11}{}={123,124,125,68A,68B,69A,69B,78A,78B,79A,79B
L7 ={127,128,347,348,567, 568,9AB}
L11 = {135,136, 145, 146,235, 236, 245, 246,789,78A,78B}
L5}={345,167,189,267,289
L15}={123,124,125,683,684,685,693,694,695,783,784,785,793,794,795
L
L12}={345,126,127,128,19B,19C,1AB,1AC,2DF,2DG,2EF,2EG
```

$L_{9}=\{125,126,127,345,346,347,138,248,9 A B\}$
$L_{12}=\{567,138,248,149,14 A, 14 B, 239,23 A, 23 B, 813,814,823,824\}$
$L_{6}=\{123,124,125,67 B, 67 C, 89 A\}$
$L_{15}=\{345,168,169,16 A, 178,179,17 A, 1 B C, 268,269,26 A, 278,279,27 A, 2 B C\}$
6. Study 4-choosability of complete bipartite graphs. Since it is easy to prove that $K_{4, b}$ is 4 -choosable if and only if $b \leq 63$, an open problem is to find the maximum number of b such that $K_{5, b}\left(K_{6, b}, K_{7, b}, \ldots\right)$ is 4-choosable.
7. Find the smallest number n such that there exists a non 4 -choosable complete bipartite graph with n vertices. Recall that the smallest non 3-choosable complete bipartite graph has 14 vertices; this statement is proved by Hanson, MacGillivray, and Toft [8]. (See [1] [2] [3] [14] [16] [18] for more information.)
8. Find each positive integer t such that $K_{\binom{2 \cdot 4-1}{4},\left({ }_{4}^{2 \cdot 4-1}\right)}$ is $(4, t)$-choosable.
9. In chapter V , we prove that if $2 k-1 \leq t \leq 17 \cdot 2^{k-2}-4 k-4$, then $K_{\binom{2 k-1}{k},\binom{2 k-1}{k}}$ is not (k, t)-choosable. A possible future work is to improve the upper bound.
10. Theorem 5.3.3 gives results about $(3, t)$-choosability of complete bipartite graphs with at most 20 vertices except the case $t=6$. Another future work is to study the $(3,6)$-choosability of complete bipartite graphs with at most 20 vertices.

REFERENCES

[1] Abbott H.L., Hanson D.: On a combinatorial problem of Erdős, Canad. Math. Bull. 12, 823-829 (1969).
[2] Beck J.: On 3-chromatic graphs, Discrete Math. 24, 127-137 (1978).
[3] Erdős P.: On a combinatorial problem II, Acta Math. Acad. Sci. Hung. 15, 445-447 (1964).
[4] Erdős P., Rubin A., Taylor H.: Choosability in graphs, Congr. Num. 26, 125-157 (1979).
[5] Fitzpatrick S.L., MacGillivray G.:: Non 3-choosable bipartite graphs and the Fano plane, Ars Combin. 76, 113-127 (2005).
[6] Ganjari Y.G., Ghebleh M., Hajiabothassan H., Mirzazadeh M., Sadjad B.S.: Uniquely 2-list colorable graphs, Discrete Appl. Math. 119, 217-225 (2002).
[7] Hall P.: On representation of subsets, J. Lond. Mat. Sc. 10, 26-30 (1985).
[8] Hanson D., MacGillivray G., Toft B.: Choosability of bipartite graphs, Ars Combin. 44, 183-192 (1996).
[9] He W., Zhang L., Cranston D.W., Shen Y., Zheng G.: Choice number of complete multipartite graphs $K_{3 * 3,2 *(k-5), 1 * 2}$ and $K_{4,3 * 3,2 *(k-6)}, 1 * 3$, Discrete Math. 308, 5871-5877 (2008).
[10] Kierstead H.A.: On the choosability of complete multipartite graphs with part size three, Discrete Math. 211, 255-259 (2000).
[11] Lam P.C.B., Shiu W.C., Song Z.M.: The 3-choosability of plane graphs of girth 4, Discrete Math. 294, 297-301 (2005).
[12] Mahadev N.V.R., Roberts F.S., Santhanakrishnan P.: 3-choosable complete bipartite graphs. DIMACS Tech. Report, 91-62 (1991).
[13] Menger K.: Zur allgemeinen Kurventheorie, Fund. Math. 10, 95-115 (1927).
[14] Miller E.W.: On a property of families of sets, C.R. Soc. Sci. Varsovie 30, 31-38 (1937).
[15] O'Donnell P.: The choice number of $K_{6, q}$, Rutgers University (1995). (preprint)
[16] Seymour P.D.: A note on a combinatorial Problem of Erdős and Hajnal, J. London Math. Soc. 8(2), 681-682 (1974).
[17] Shende A.M., Tesman B.: 3-choosability of $K_{5, q}$, Computer Science Technical Report \#94-9, Bucknell University (1994).
[18] Toft B. : On Colour-critical hypergraphs, Colloquia Mathematica Societatis Janos Bolyai 10, 1445-1457 (1973).
[19] Thomassen C. : Every planar graph is 5-choosable, J. Combin. Theory B 62, 180-181 (1994).
[20] Thomassen C. : 3-list-coloring planar graphs of girth 5, J. Combin. Theory B 64, 101-107 (1995).
[21] Vizing V.G. : Vertex colorings with given colors, Metody Diskret. Analiz. 29, 3-10 (1976). (in Russian)
[22] West D.B. : Introduction to Graph Theory, Prentice Hall, New Jersey, (2001).
[23] Zhang H. : On 3-choosability of plane graphs without 5-, 8- and 9-cycles, J. Lanzhou Univ. Nat. Sci. 41, 93-97 (2005).
[24] Zhang H., Xu B.: On 3-choosability of plane graphs without 6-, 7- and 9-cycles, Appl. Math., Ser. B 19, 109-115 (2004).
[25] Zhang H., Xu B., Sun Z.: Every plane graph with girth at least 4 without 8- and 9 -circuits is 3 -choosable, Ar's Combin. 80, 247-257 (2006).
[26] Zhu X., Lianying M., Wang C.: On 3-choosability of plane graphs without 3-, 8- and 9-cycles, Australas. J. Comb. 38, 249-254 (2007).

VITA

Mr. Wongsakorn Charoenpanitseri was born on May 7, 1984 in Suphanburi, Thailand. In primary school, he studied in Anubarn Suphanburi School. In grade 7-9 he had studied in Kannasoot suksalai school. When he was 15 years old, he went to Bangkok to study grade 10-12 in Triamudomsuksa school. He got a Bachelor of Science in Mathematics in 2006 and a Master of Science in Mathematics in 2008 from Chulalongkorn University, and he has furthered his Ph.D. program in Mathematics at Chulalongkorn University.

