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CHAPTER I

INTRODUCTION AND PRELIMINARIES

Let R, Q , Z and N denote respectively the set of all real numbers, the set of

all rational numbers, the set of all integers and the set of all natural numbers and

the partial order on any nonempty subset of R means the natural partial order

on R.

For a set X, let |X| denote the cardinality of X and P(X) denote the power

set of X. In this reseach, we use the Generalized Continuum Hypothesis. Then

for any sets X and Y , if |P(X)| = |P(Y )|, then |X| = |Y |.

An element a of a semigroup is called an idempotent if a2 = a. The set of all

idempotents of a semigroup S is denoted by E(S), that is,

E(S) = {x ∈ S | x2 = x}.

An idempotent semigroup or a band is a semigroup S in which x2 = x for every

x ∈ S, that is, E(S) = S. An element a of a semigroup S is said to be regular if

a = aba for some b ∈ S and S is called a regular semigroup if every element of S is

regular. If a, b ∈ S are such that a = aba, then a = a(bab)a and bab = (bab)a(bab).

Hence for a ∈ S, a is regular if and only if there is an element c ∈ S such that

a = aca and c = cac, and c is called an inverse of a in S. Thus S is a regular

semigroup if and only if every element of S has an inverse in S. Then every idem-

potent semigroup is regular.

Let X be a set. We call a map α from a subset of X into X a partial trans-

formation of X, and if domain of α is X, then α is a transformation of X. We
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let 0 denote the mapping with empty domain. Then 0 is a partial transformation

of X which called the empty transformation.

The domain and the range of a partial transformation of X will be denoted

respectively by domα and ranα and the image of x in the domain of α under α is

written by xα. The identity mapping on a nonempty set A is denoted by 1A and

for x ∈ X and ∅ 6= A ⊆ X, let Ax denote the constant map whose domain and

range are A and {x}, respectively.

Let P (X), T (X) and I(X) denote the set of all partial transformations of X,

the set of all transformations of X and the set of all 1-1 partial transformations

of X, respectively, that is,

P (X) = {α : A → X | A ⊆ X},

T (X) = {α ∈ P (X) | domα = X},

I(X) = {α ∈ P (X) | α is 1-1}.

We can see that all of P (X), T (X) and I(X) contain 1X and 0 is contained in

P (X) and I(X) but not in T (X) if X 6= ∅ and T (X) and I(X) are subsets of

P (X).

For α, β ∈ P (X), let αβ be the composition of α and β, that is, αβ = 0

if ranα ∩ domβ = ∅, and otherwise, αβ = α|(ran α∩dom β)α−1β|(ran α∩dom β)
, the com-

position of α restricted to (ranα ∩ domβ)α−1 and β restricted to ranα ∩ domβ.

Then P (X) under the composition defined above is a semigroup having T (X) and

I(X) as subsemigroups. Observe that for α, β ∈ P (X),

dom (αβ) = (ranα ∩ domβ)α−1 ⊆ domα,

ran (αβ) = (ranα ∩ domβ)β ⊆ ranβ,

for x ∈ X, x ∈ dom (αβ) ⇔ x ∈ domα and xα ∈ domβ.
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The semigroups P (X), T (X) and I(X) are called the partial transformation semi-

group on X, the full transformation semigroup on X and the 1-1 partial transfor-

mation semigroup or the symmetric inverse semigroup on X, respectively. It is

well-known that all the semigroups P (X), T (X) and I(X) are regular ([ 3 ], page

4). Moreover, for α ∈ P (X), α2 = α if and only if ranα ⊆ domα and xα = x for

all x ∈ ran α. Hence Xa ∈ E(T (X)) for all a ∈ X and for a nonempty subset A

of X and x ∈ X, Ax ∈ E(P (X)) if and only if x ∈ A. In particular,

E(T (X)) = {α ∈ T (X) | xα = x for all x ∈ ranα},

E(I(X)) = {1A | ∅ 6= A ⊆ X} ∪ {0}.

For convenience, we may use a bracket notation to define a mapping in P (X).

For examples,

(
a b

c d

)
stands for α ∈ P (X) defined by domα = {a, b} and

aα = c and bα = d,

(
A x

a x

)
x∈XrA

stands for β ∈ T (X) defined by xα =


a if x ∈ A,

x if x ∈ X r A.

By the above notation representing an element of P (X), we have that for any

α ∈ P (X) r {0}, α =

(
x

xα

)
x∈dom α

.

The full transformation semigroup T (X) is considered very important. In

1975, J. S. V. Symons [ 8 ] considered the semigroup T (X, X ′), ∅ 6= X ′ ⊆ X,

under composition comprised of all mappings in T (X) whose ranges are contained

in X ′, that is,

T (X, X ′) = {α ∈ T (X) | ranα ⊆ X ′}.
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Then T (X, X ′) is a subsemigroup of T (X) containing Xa for every a ∈ X ′. Since

T (X, X) = T (X), T (X, X ′) can be counted as a generalization of T (X). J. S. V.

Symons studied in [ 8 ] the automorphisms of T (X, X ′) and being isomorphic of

two T (X, X ′). In fact, in 1966, K. D. Magrill Jr. [ 7 ] has studied the semigroup

T (X, X ′) = {α ∈ T (X) | X ′α ⊆ X ′}

which clearly contains T (X, X ′) defined above. Also, if X ′ = X, then T (X, X ′) =

T (X), then T (X,X ′) can be also considered as a generalization of T (X).

In this research, the semigroups P (X, X ′) and I(X, X ′) are defined similarly,

that is,

P (X, X ′) = {α ∈ P (X) | ranα ⊆ X ′},

I(X, X ′) = {α ∈ I(X) | ranα ⊆ X ′}.

Then P (X, X ′) and I(X, X ′) are respectively subsemigroups of P (X) and I(X)

containing 0 and 1X′ . Also, since P (X,X) = P (X) and I(X, X) = I(X), we can

also count P (X, X ′) as a generalization of P (X) and I(X, X ′) as a generalization

of I(X).

By a subchain of a poset X we mean a subposet of X which is also a chain.

For posets X and Y , the map ϕ : X → Y is said to be order-preserving if

for all a, b ∈ X, a ≤ b in X ⇒ aϕ ≤ bϕ in Y ,

and we call ϕ an order-isomorphism of X onto Y if ϕ is a bijection of X onto

Y and both ϕ and ϕ−1 are order-preserving. Hence a bijection ϕ : X → Y is an

order-isomorphism if and only if

for all a, b ∈ X, a ≤ b in X ⇔ aϕ ≤ bϕ in Y .

The posets X and Y are said to be order-isomorphic if there is an order-isomorphism

of X onto Y . It is clear that if X and Y are chains, then ϕ is an order-isomorphism
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of X onto Y if and only if ϕ is an order-preserving bijection of X onto Y . Natu-

rally, a bijection ϕ : X → Y satisfying the condition

for a, b ∈ X, a ≤ b in X ⇔ bϕ ≤ aϕ in Y

is called an anti-order-isomorphism. We say that X and Y are anti-order-isomorphic

if there is an anti-order-isomorphism from X onto Y .

For a poset X, we say that α ∈ P (X) is order-preserving if

for a, b ∈ domα, a ≤ b ⇒ aα ≤ bα

and let OP (X) denote the set of all order-preserving transformations in P (X),

that is,

OP (X) = {α ∈ P (X) | α is order-preserving}.

Then OP (X) is clearly a subsemigroup of P (X) containing 0 and 1X and OP (X)

is called the order-preserving partial transformation semigroup on X. Similarly,

we define

OT (X) = {α ∈ T (X) | α is order-preserving},

OI(X) = {α ∈ I(X) | α is order-preserving}.

Also, OT (X) and OI(X) are respectively subsemigroups of T (X) and I(X), 1X ∈

OT (X) and 0, 1X ∈ OI(X). The semigroups OT (X) and OI(X) are called the

full order-preserving transformation semigroup on X and the order-preserving 1-1

partial transformation semigroup on X, respectively.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of

a chain X is called an interval in X if for a, b, x ∈ X, a, b ∈ Y and a ≤ x ≤ b

imply that x ∈ Y . We say that an interval Y in X is a nontrivial interval if

Y contains more than one element. Since every subfield F of R contains Q, it

follows that every nontrivial interval X of F is infinite.



6

It is well-known [ 3, page 203 ] that the semigroup OT (X) is regular if X is a

finite chain. In 2000, Y. Kemprasit and T. Changphas [ 5 ] extended this results

by showing that OT (X) is regular for any chain which is order-isomorphic to a

subchain of Z. In particular, the following result is obtained.

Theorem 1.1. ([ 5 ]). For any nonempty subset X of Z, OT (X) is a regular

semigroup.

Moreover, they also proved that for an interval X in R, being closed and bounded

of X is necessary and sufficient for OT (X) to be regular and for any chain X,

OP (X) and OI(X) are always regular.

Theorem 1.2. ([ 5 ]). For an interval X in R, OT (X) is a regular semigroup if

and only if X is closed and bounded.

Theorem 1.3. ([ 5 ]). For any chain X, the semigroups OP (X) and OI(X) are

regular.

The following example shows that Theorem 1.3 need not be true if X is a poset

which is not a chain.

Example 1.4. Let X be a poset defined by the Hasse diagram as follows :

�
�

@
@

rr r
a b

c

Define α =

(
a b

c b

)
. Then α ∈ OI(X) and suppose that α = αβα for some

β ∈ OP (X). Then c = aα = aαβα = (cβ)α and b = bα = bαβα = (bβ)α, so

by the definition of α, cβ = a and bβ = b. But c < b and cβ and bβ are not

comparable, so β is not order-preserving. This is a contradiction. This shows

that both OP (X) and OI(X) are not regular.

In passsing, we note here that in 1970, J. M. Howie [ 4 ] showed that if X
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is a finite chain, OT (X) is also idempotent generated or equivalently, for every

α ∈ OT (X), α = δ1δ2 . . . δk for some δ1, δ2, . . . , δk ∈ E(OT (X)). In 1981, C. C.

Edwards and M. Anderson [ 1 ] considered the semigroup S(X) consisting of all

order-preserving transformations α whose domains are final segments in a chain

X, that is, x ∈ dom α and x ≤ y ∈ X imply y ∈ dom α and they observed that

S(X) need not be regular. V. H. Fernandes noted in [ 2 ] in 1997 that OI(X) is

a regular semigroup if X is a finite chain. This result becomes a special case of

Theorem 1.3.

An important isomorphism theorem of full order-preserving transformation

semigroups given in the book named “ Semigroups ” written by E. S. Lyapin [ 6 ]

is as follows :

Theorem 1.5. ([ 6, page 222-223 ]) For posets X and Y , OT (X) ∼= OT (Y ) if

and only if X and Y are either order-isomorphic or anti-order-isomorphic.

The converse of Theorem 1.5 is obtained from the following natural fact. It is

mentioned that it is easy in [ 6 ], page 222 and the isomorphism of OT (X) onto

OT (Y ) is not provided.

Proposition 1.6. Let X and Y be posets and ϕ : X → Y . If ϕ is either an

order-isomorphism or an anti-order-isomorphism, then the map α 7→ ϕ−1αϕ is

an isomorphism of OT (X) onto OT (Y ).

Proof. Let α ∈ OT (X) and let a, b ∈ X be such that a ≤ b. If ϕ is an order-

isomorphism, then ϕ−1, α and ϕ are order-preserving, and thus ϕ−1αϕ is order-

preserving. If β ∈ OT (Y ), then ϕβϕ−1 ∈ OT (X) and ϕ−1(ϕβϕ−1)ϕ = β. Since

ϕ is a bijection, α 7→ ϕ−1αϕ is a 1-1 map.
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For the case that ϕ is an anti-order-isomophism, we have that for α ∈ OT (X),

for c, d ∈ Y, c ≤ d ⇒ cϕ−1 ≥ dϕ−1

⇒ cϕ−1α ≥ dϕ−1α

⇒ cϕ−1αϕ ≤ dϕ−1αϕ.

Hence α 7→ ϕ−1αϕ is a map from OT (X) onto OT (Y ). We show analogously as

above that map is also onto and 1-1

It is easily seen that for finite chains X and Y , X and Y are order-isomorphic

[anti-order-isomorphic] if and only if |X| = |Y |. Hence from Theorem 1.5, we have

Corollary 1.7. For finite chains X and Y , OT (X) ∼= OT (Y ) if and only if

|X| = |Y |.

Example 1.8. (1) For n ∈ N, the map x 7→ nx [x 7→ −nx] is an order-

isomorphism [anti-order-isomorphism] of Z onto nZ, so by Theorem 1.5, OT (Z) ∼=

OT (nZ).

(2) Let Z+ and Z− be the set of positive integers and the set of negative

integers, respectively (that is, Z+ = N). Since the map x 7→ −x is an anti-order-

isomorphism of Z+ onto Z−, from Theorem 1.5, OT (Z+) ∼= OT (Z−).

(3) Since Z has neither a maximum nor a minimum while Z+ has a minimum,

we deduce that Z and Z+ are neither order-isomorphic nor anti-order-isomorphic.

Hence OT (Z) and OT (Z+) are not isomorphic.

(4) Let X, Y and Z be posets as shown by the following Hasse diagrams.

X : rr
r

Y :

�
�

�

@
@

@
r r

r Z :

�
�

�@
@

@

r
rr

Then X is neither order-isomorphic nor anti-order-isomorphic to Y and Z but

Y and Z are anti-order-isomorphic. We therefore have from Theorem 1.5 that
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OT (X) � OT (Y ) ∼= OT (Z). Observe that |X| = |Y | = |Z| = 3. This example

also shows that Corollary 1.7 is not generally true for finite posets.

Based on the semigroup T (X, X ′) introduced by J. S. V. Synmons [8] and those

P (X, X ′) and I(X, X ′) mentioned previously for a set X and ∅ 6= X ′ ⊆ X, the

following semigroups OT (X, X ′), OP (X, X ′) and OI(X,X ′) are defined similarly

to generalize OT (X), OP (X) and OI(X), respectively where X ′ is a subposet of

a poset X. That is,

OT (X, X ′) = {α ∈ OT (X) | ranα ⊆ X
′},

OP (X, X ′) = {α ∈ OP (X) | ranα ⊆ X
′} and

OI(X, X ′) = {α ∈ OI(X) | ranα ⊆ X
′}

which are respectively subsemigroups of OT (X), OP (X) and OI(X). Also,

OT (X, X) = OT (X), OP (X, X) = OP (X) and OI(X, X) = OI(X). No-

tice that Xa ∈ OT (X, X ′) for every a ∈ X ′, 0 ∈ OP (X, X ′), 0 ∈ OI(X, X ′),

Ax ∈ OP (X, X ′) for every nonempty subset A of X and every x ∈ X ′, and

Ax ∈ OI(X, X ′) if and only if |A| = 1.

Due to Theorem 1.1 and Theorem 1.2, it is natural to ask when OT (X) is

regular if X is an interval in Q. To answer this question, a more extensive result

is obtained in our study. We extend Theorem 1.2 by showing that for a nontrivial

interval X in a subfield F of R, OT (X) is regular if and only if F = R and X

is closed and bounded. An interesting consequence is that OT (X) is not regular

for any nontrivial interval X in Q. This is our first purpose of Chapter II. A

characterization of when OT (X, X ′) is regular is given in terms of X and X ′ and

the regularity of OT (X) is our second purpose of Chapter II where X is a chain

and X ′ is a subchain of X. From Theorem 1.3, one might expect that for any

chain X and any subchain X ′ of X, OP (X, X ′) and OI(X, X ′) are regular. We

show in the last part of this chapter that this is not true except X = X ′. It is
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shown that X = X ′ is a necessary and sufficient for OP (X, X ′) and OI(X, X ′) to

be regular. Note that the sufficiency part is Theorem 1.3.

In Chapter III, many isomorphism theorems of OT (X, X ′), OP (X, X ′) and

OI(X, X ′) are provided where X ′ is a subchain of a chain X. The main iso-

morphism theorems obtained in this chapter are as follows : If OT (X, X ′) ∼=

OT (Y, Y ′), then X ′ and Y ′ are either order-isomorphic or anti-order-isomorphic.

This result generalizes Theorem 1.5 for chains. If OP (X,X ′) ∼= OP (Y, Y ′), then

|X| = |Y | and X ′ and Y ′ are either order-isomorphic or anti-order-isomorphic.

Also, OI(X,X ′) ∼= OI(Y, Y ′) if and only if either |X| = |Y | and |X ′| = |Y ′| = 1

or there is an order-isomorphism or an anti-order-isomorphism θ : X → Y

such that X ′θ = Y ′. The converse of the first two isomorphism theorems are

also shown to be not generally true. Some interesting consequences of our sec-

ond and third isomorphism theorems are as follows : For chains X and Y ,

OP (X) ∼= OP (Y )[OI(X) ∼= OI(Y )] if and only if X and Y are either order-

isomorphic or anti-order-isomorphic.



CHAPTER II

REGULAR ORDER-PRESERVING

TRANSFORMATION SEMIGROUPS

This chapter deals with the regularity of our target order-preserving transfor-

mation semigroups. We characterize when they are regular.

2.1 Regularity of OT (X) with X an Interval in a Subfield

of R

The purpose of this section is to extend Theorem 1.2 by showing that for a

nontrivial interval X in a subfield F of R under usual addition and multiplication,

OT (X) is regular if and only if F = R and X is closed and bounded. Notice that

if |X| = 1, then |OT (X)| = 1, so OT (X) is trivially regular. First, we note that

every subfield of R with usual addition and multiplication contains Q and there

are infinitely many subfields of R, namely, Q(
√

p) = { x+ y
√

p | x, y ∈ Q } where

p ∈ P and P is the set of all positive prime numbers. In particular, the set of all

algebraic numbers in R is a well-known proper subfield of R.

To obtain the main result mentioned above, Theorem 1.2 and the following

lemma are our main tools.

Lemma 2.1.1. If F is a proper subfield of R and X is a nontrivial interval in

F , then the semigroup OT (X) is not regular.

Proof. Let X be an interval in a proper subfield F of R such that |X| > 1.
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Let a, b ∈ X such that a < b. Since Q ⊆ F ( R, there exists an irrational

number c ∈ R r F . Then a − c < b − c, and so a − c < d < b − c for some

d ∈ Q. Consequently, a < c + d < b. But d ∈ Q ⊆ F and c /∈ F , so c + d /∈ F .

Put e = c + d. Then

X = ((−∞, a) ∩X) ∪ ([a, e) ∩X) ∪ ((e,∞) ∩X) (1)

and
a + e

2
< e. Define α : R → R by

xα =



x if x < a,

a + x

2
if a ≤ x ≤ e,

x if x > e.

(2)

Then α is a 1-1 order-preserving map and ran α = (−∞,
a + e

2
] ∪ (e,∞). Let

β = α|X , the restriction of α to X. Then β is 1-1 and order-preserving. Also,

from (1) and (2), we have

ranβ = ((−∞, a) ∩X)α ∪ ([a, e) ∩X)α ∪ ((e,∞) ∩X)α

= ((−∞, a) ∩X) ∪ ([a, e) ∩X)α ∪ ((e,∞) ∩X). (3)

Since F is a field, Q ⊆ F and a ∈ F , it follows that
a + x

2
, 2x − a ∈ F for all

x ∈ F . We claim that ([a, e) ∩ X)α = [a,
a + e

2
) ∩ X. Let x ∈ [a, e) ∩ X. Then

a ≤ x < e < b and x ∈ X ⊆ F , so

a ≤ a + x

2
= xα <

a + e

2
<

a + b

2
< b

which implies that xα ∈ [a,
a + e

2
) ∩ X since X is an interval in F . Thus ([a, e)

∩X)α ⊆ [a,
a + e

2
) ∩X. For the reverse inclusion, let y ∈ [a,

a + e

2
) ∩X. Then

a ≤ 2y − a < e < b, and hence 2y − a ∈ [a, e) ∩X and (2y − a)α = y by (2).

Therefore we have the claim. It then follows from (3) that

ranβ = ((−∞, a) ∩X) ∪ ([a,
a + e

2
) ∩X) ∪ ((e,∞) ∩X). (4)
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Hence we have that β ∈ OT (X). Suppose that β = βγβ for some γ ∈ OT (X).

Since β is 1-1, βγ = 1X . Consequently,

(ranβ)γ = X, (5)

γ|ran β
= β−1 which is a 1-1 map from ranβ onto X. (6)

Let f ∈ (
a + e

2
, e) ∩ Q. Then a <

a + e

2
< f < e < b and f ∈ F , so f ∈ X. We

have from (5) that

gγ = fγ for some g ∈ ranβ. (7)

From (4), g <
a + e

2
or g > e.

Case 1 : g <
a + e

2
. Then g <

a + e

2
< f . Let p ∈ Q be such that g < p <

a + e

2
.

Thus p ∈ X since f, g ∈ X. By (4), p ∈ ran β. Since γ is order-preserving,

gγ ≤ pγ ≤ fγ. We have from (7) that gγ = pγ which is contrary to (6) because

of g, p ∈ ranβ with g < p.

Case 2 : g > e. Then f < e < g. Let q ∈ Q be such that e < q < g.

Therefore q ∈ X since f < q < g and f, g ∈ X, and so q ∈ ran β from (4). Hence

fγ ≤ qγ ≤ gγ since γ ∈ OT (X) and hence qγ = gγ by (7). This contradicts (6).

This shows that β is not a regular element of OT (X), and hence OT (X) is not a

regular semigroup.

Theorem 2.1.2. For a nontrivial interval X in a subfield F of R, OT (X) is a

regular semigroup if and only if F = R and X is closed and bounded.

Proof. Let F be a subfield of R and X a nontrivial interval in F . Assume that

the semigroup OT (X) is regular. By Lemma 2.1.1, F = R, and hence X is closed

and bounded by Theorem 1.2.

The converse follows directly from Theorem 1.2.
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The following corollary is a direct consequence of Theorem 2.1.2.

Corollary 2.1.3. The semigroup OT (X) is not regular for any nontrivial interval

X in Q.

2.2 Regularity of OT (X, X ′)

For a poset X, we let minX and maxX denote respectively the minimum and

the maximum of X if they exist.

We give necessary and sufficient conditions for OT (X, X ′) to be regular where

X is a chain and X ′ is a subchain of X. For our required result, the following

lemmas are needed.

Lemma 2.2.1. If X is a poset whose minimum and maximum exist, then

OT (X, {minX, maxX}) is an idempotent semigroup (band).

Proof. Let α ∈ OT (X, {min X, max X}). Then ran α = {min X}, ran α =

{max X} or ran α = {min X, max X}. If ran α = {min X}, then α = Xmin X .

Also, α = Xmax X if ran α = {max X}. If ran α = {min X, max X}, then

(min X)α = min X and (max X)α = max X since α is order-preserving. These

imply that xα = x for all x ∈ ranα, and hence α2 = α.

Lemma 2.2.2. Let X be a chain. If X ′ ( X and |X ′| ≥ 3, then the semigroup

OT (X, X ′) is not regular.

Proof. Let a, b, c ∈ X ′ be such that a < b < c and let d ∈ X r X ′. Define

α : X → X ′ by

xα =



a if x < d,

b if x = d

c if x > d.



15

Then α ∈ OT (X, X ′). Let β ∈ T (X) be such that α = αβα. Thus

b = dα = dαβα = (bβ)α

which implies by the definition of α that bβ = d. But d ∈ X r X ′, so β /∈

OT (X, X ′). Hence α is not a regular element of OT (X, X ′).

Lemma 2.2.3. Let X be a chain and assume that X has no minimum or maxi-

mum. If X ′ ⊆ X and |X ′| = 2, then the semigroup OT (X, X ′) is not regular.

Proof. Let X ′ = {a, b} be such that a < b.

Case 1 : X has no minimum. Then there is an element c ∈ X such that c < a.

Let α : X → X ′ be defined by

xα =


a if x < a,

b if x ≥ a.

Then α ∈ OT (X, X ′). If β ∈ T (X) is such that α = αβα, then

a = cα = cαβα = (aβ)α,

so aβ < a from the definition of α and hence ran β * X ′. This shows that α is

not a regular element of OT (X, X ′).

Case 2 : X has no maximum. Then b < d for some d ∈ X. Let λ : X → X ′ be

defined by

xλ =


a if x ≤ b,

b if x > b.

Then λ ∈ OT (X, X ′). If µ ∈ T (X) is such that λ = λµλ, then we have

b = dλ = dλµλ = (bµ)λ,
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which implies that bµ > b and thus ran µ * X ′. We thus deduce that λ is not a

regular element of OT (X, X ′).

Lemma 2.2.4. Let X be a chain whose minimum and maximum exist, X ′ ⊆ X

and |X ′| ≥ 2. If the semigroup OT (X, X ′) is regular, then minX, maxX ∈ X ′.

Proof. Let a, b ∈ X ′ be such that a < b. Define α, β : X → X ′ by

xα =


a if x = minX,

b if x > minX,

, xβ =


a if x < maxX,

b if x = maxX.

Then α, β ∈ OT (X,X ′). By the regularity of OT (X,X ′), α = αλα and β = βµβ

for some λ, µ ∈ OT (X,X ′). Consequently,

a = (minX)α = (minX)αλα = (aλ)α,

b = (maxX)β = (maxX)βµβ = (bµ)β.

We therefore deduce from the definitions of α and β that aλ = min X and bµ =

maxX. But since ranλ ⊆ X ′ and ranµ ⊆ X ′, it follows that minX, maxX ∈ X ′,

as required.

Theorem 2.2.5. Let X be a chain and X ′ a subchain of X. Then the semigroup

OT (X, X ′) is regular if and only if one of the following statements holds.

(i) |X ′| = 1.

(ii) X ′ = X and OT (X) is regular.

(iii) The minimum and the maximum of X exist and X ′ = {minX, maxX}.

Proof. If (i) holds, then |OT (X, X ′)| = 1, so OT (X, X ′) is regular. If (ii) holds,

then OT (X, X ′) = OT (X) which is regular. It follows from Lemma 2.2.1 that

OT (X, X ′) is regular if (iii) is true. Therefore the sufficiency part is proved.
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To prove neccessity, assume that the semigroup OT (X, X ′) is regular and (i)

and (ii) are false. Then |X ′| ≥ 2 and either X ′ ( X or OT (X) is not regular.

Case 1 : |X ′| ≥ 2 and X ′ ( X. Since OT (X,X ′) is regular, it follows from

Lemma 2.2.2 that |X ′| < 3 and thus |X ′| = 2. We therefore deduce from Lemma

2.2.3, the minimum and the maximum of X must exist. Also, by Lemma 2.2.4,

minX, maxX ∈ X ′. Since |X ′| = 2, X ′ = {minX, maxX}. Hence (iii) holds.

Case 2 : |X ′| ≥ 2 and OT (X) is not regular. Since OT (X, X ′) is regular and

OT (X) is not regular, it follows that X ′ ( X. Thus |X ′| < 3 because of Lemma

2.2.2. Hence |X ′| = 2. Since OT (X, X ′) is regular, we conclude from Lemma 2.2.3

that both the minimum and the maximum of X must exist. Then by Lemma 2.2.4,

min X, max X ∈ X ′. But |X ′| = 2, thus X ′ = {min X, max X} and hence (iii)

holds.

The following corollary is a direct consequence of Theorem 1.1 and Theorem

2.2.5

Corollary 2.2.6. Let X and X ′ be nonempty subsets of Z such that X ′ ⊆ X.

Then the semigroup OT (X,X ′) is regular if and only if one of the following state-

ments holds.

(i) |X ′| = 1.

(ii) X ′ = X.

(iii) X is finite and X ′ = {minX, maxX}.

Also, Theorem 2.1.2 and Theorem 2.2.5 yield the following result.

Corollary 2.2.7. Let X be a nontrivial interval of a subfield F of R and X ′ a

nonempty subset of X. Then OT (X, X ′) is a regular semigroup if and only if one

of the following statements holds.
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(i) |X ′| = 1.

(ii) X ′ = X, F = R and X is closed and bounded.

(iii) The minimum and the maximum of X exist and X ′ = {minX, maxX}.

Example 2.2.8. By Corollary 2.2.7, we have that OT ( [0, 1] ∩Q, {1
2
} ) and

OT ( [0, 1] ∩Q, {0, 1} ) are regular while OT ( [0, 1] ∩Q, {0, 1
2
} ) is not regular.

2.3 Regularity of OP (X, X ′) and OI(X, X ′)

Recall that for any chain X, OP (X) and OI(X) are always regular (Theorem

1.3). We shall show that for any proper subchain X ′ of X, both OP (X, X ′) and

OI(X, X ′) are not regular semigroups.

Theorem 2.3.1. . Let X be a chain and X ′ a nonempty subchain of X and let

S(X, X ′) be OP (X,X ′) or OI(X, X ′). Then the semigroup S(X, X ′) is regular if

and only if X ′ = X.

Proof. Assume that S(X, X ′) is a regular semigroup. To prove that X ′ = X,

suppose on the contrary that X ′ ( X. Let a ∈ X r X ′ and b ∈ X ′. Then(
a

b

)
∈ S(X, X ′), so (

a

b

)
=

(
a

b

)
α

(
a

b

)

for some α ∈ S(X, X ′). Thus

(
a

b

)
α

(
a

b

)
6= 0 which implies that b ∈ dom α and

bα = a. But α ∈ S(X, X ′), so a ∈ ranα ⊆ X ′. This is a contrary to the choice of

a.

The converse follows directly from Theorem 1.3.

Remark 2.3.2. We can see from the proof of Theorem 2.3.1 that the following

result is true. For any posets X and any proper subposet X ′ of X, the semigroups

OP (X, X ′) and OI(X, X ′) are not regular.
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The next theorem yields the result that the domain of every regular element

of OI(X, X ′) does not contain any element of X r X ′. Moreover, the set of all

regular elements of OI(X, X ′) and the set of all regular elements of OI(X ′) are

identical.

Theorem 2.3.3. Let X be a poset and X ′ a subposet of X.

(i) For α ∈ OI(X, X ′), if α is a regular element of OI(X,X ′), then domα ⊆ X ′.

(ii) {α ∈ OI(X, X ′) | α is regular in OI(X, X ′)}

= {α ∈ OI(X ′) | α is regular in OI(X ′)}.

Proof. (i) Let α ∈ OI(X, X ′). Assume that α = αβα for some β ∈ OI(X, X ′).

Then ranαβ ⊆ X ′ and

1dom α = αα−1 = αβαα−1 = αβ1dom α.

Consequently,

domα = ran (1dom α)

= ran (αβ1dom α)

= ((ranαβ) ∩ dom (1dom α))1dom α

= ((ranαβ) ∩ domα)1dom α

= ranαβ ∩ domα

⊆ ranαβ ⊆ X ′.

Hence (i) is proved.

(ii) Let α ∈ OI(X,X ′) be a regular element. Then α has an inverse in

OI(X, X ′), say β. Thus α = αβα and β = βαβ. It then follows from (i) that

dom α ⊆ X ′ and dom β ⊆ X ′. Hence β ∈ OI(X ′), so α is a regular in OI(X ′).

This shows that
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{α ∈ OI(X, X ′) | α is regular in OI(X,X ′)}

⊆ {α ∈ OI(X ′) | α is regular in OI(X ′)}.

The reverse inclusion is obvious since OI(X ′) ⊆ OI(X,X ′), so (ii) is obtained.

If X ′ is a chain, then by Theorem 1.3, OI(X ′) is a regular semigroup. Also, if

X ′ is isolated, that is, any two distinct elements of X ′ are not comparable, then

OI(X ′) = I(X ′) which is a regular semigroup. Due to these facts and Theorem

2.3.3(ii), the following consequence is obtained.

Corollary 2.3.4. Let X be a poset and X ′ a subposet of X. Assume that X ′ is

a chain or X ′ is isolated. Then

{α ∈ OI(X, X ′) | α is regular in OI(X, X ′)} = OI(X ′).

We note that Theorem 2.3.3 is not true if we replace OI(X, X ′) by OP (X, X ′)

as shown by the following example.

Example 2.3.5. Let X be a poset and X ′ a subposet of X as shown by the

following Hasse diagrams :

�
�

@
@

r rrr r
a

c

a b

c
X ′ :X : ,

Define α ∈ OP (X, X ′) by α =

(
b c

c c

)
. Then dom α = {b, c} * X ′ but(

c

c

)
∈ OP (X, X ′) and

(
b c

c c

)(
c

c

)(
b c

c c

)
=

(
b c

c c

)
.
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Example 2.3.6. Let X and X ′ be defined as in Example 2.3.5. Since X ′ is a

subchain of X, by Corollary 2.3.4, {α ∈ OI(X, X ′) | α is regular in OI(X, X ′)} =

OI(X ′). It is clear that

OI(X ′) =

{
0, 1X′ ,

(
a

a

)
,

(
c

c

)
,

(
a

c

)
,

(
c

a

)}
,

so the number of all regular elements of OI(X, X ′) is 6.

Remark 2.3.7. The assumption that X ′ is a chain or X ′ is isolated in Corollary

2.3.4 cannot be omitted. This clearly follows from the fact if X is a poset which is

neither a chain nor an isolated poset, then OI(X) need not be regular. Example

1.4 is an example for this case.



CHAPTER III

ISOMORPHISM THEOREMS OF

ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS

The purpose is to provide isomorphism theorems of any two of OT (X, X
′
), of

OP (X, X
′
) and of OI(X, X

′
) for chains. In particular, Theorem 1.5 for chains is

extended.

3.1 Some Elementary Results

In this section, some elementary results are provided and they will be referred

later.

Proposition 3.1.1. Let X be a chain and X
′
a subchain of X. Then OT (X, X

′
)

has an identity if and only if |X ′| = 1 or X
′
= X.

Proof. Assume that OT (X, X
′
) has an identity, say η. Then αη = ηα = α for all

α ∈ OT (X, X
′
). Suppose that |X ′| > 1 and X

′ ( X. Let a ∈ X r X
′
. Then

aη ∈ X
′
and either aη < a or a < aη. Since |X ′| > 1, there is some b ∈ X

′
such

that b 6= aη. Then either b < aη or aη < b.

Case 1 : b < aη < a. Let α ∈ OT (X, X
′
) be defined by

xα =


aη if x ≥ a,

b if x < a.
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Then ηα = α, so b = (aη)α = aα = aη which is a contradiction.

Case 2 : aη < a and aη < b . Let β ∈ OT (X, X
′
) be defined by

xβ =


b if x ≥ a,

aη if x < a.

Thus ηβ = β, and hence aη = (aη)β = aβ = b, a contradiction.

Case 3 : a < aη and b < aη. Let γ ∈ OT (X,X
′
) be defined by

xγ =


aη if x > a,

b if x ≤ a.

Then ηγ = γ. This is contrary to that aη = (aη)γ = aγ = b.

Case 4 : a < aη < b. Let λ ∈ OT (X, X
′
) be defined by

xλ =


b if x > a,

aη if x ≤ a.

Therefore ηλ = λ. This is a contradiction because b = (aη)λ = aλ = aη.

The converse is trivial.

Proposition 3.1.2. Let X be a poset and X
′
a subposet of X.

(i) OP (X, X
′
) has an identity if and only if X

′
= X.

(ii) OI(X,X
′
) has an identity if and only if X

′
= X.

Proof. Let S(X, X
′
) be OP (X, X

′
) or OI(X, X

′
) and let η be the identity of

S(X, X
′
). Then αη = ηα = α for all α ∈ S(X, X

′
). Let a ∈ X

′
be fixed.

Then

(
x

a

)
∈ S(X,X

′
) for all x ∈ X, and hence η

(
x

a

)
=

(
x

a

)
for every x ∈ X.
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This implies that x ∈ dom η

(
x

a

)
⊆ dom η and xη = x for all x ∈ X, thus

ran η = X ⊆ X
′
, that is, X = X

′
.

The converses of (i) and (ii) are trivial.

Due to Proposition 3.1.2, it is natural to ask whether Proposition 3.1.1 is still

true if X is any poset. The following example gives a negative answer.

Example 3.1.3. Let X be a poset and X ′ a subposet of X defined by the Hasse

diagram as follows :

�
�

@
@

r rrr r
d

e

a b

c
X : X ′ : c

r r
e

Define η, α ∈ OT (X, X ′) as follows :

η =

(
{a, b, c} {d, e}

c e

)
, α =

(
{a, b, c} {d, e}

e c

)
.

Clearly, OT (X, X ′) = {Xc, Xe, η, α}. Also, the multiplication on OT (X, X ′) is as

follows :

· Xc Xe η α

Xc Xc Xe Xc Xe

Xe Xc Xe Xe Xc

η Xc Xe η α

α Xc Xe α η

This table shows that η is the identity of OT (X, X ′).

From the proof of Proposition 1.6, the following result is obtained similarly.
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Proposition 3.1.4. Let X and Y be posets, X
′
a subposet of X and Y

′
a subposet

of Y . If ϕ : X → Y is an order-isomorphism or an anti-order-isomorphism

such that X
′
ϕ = Y

′
, then the map ϕ : OP (X, X

′
) → OP (Y, Y

′
) defined by

αϕ = ϕ−1αϕ for all α ∈ OP (X,X
′
) is an isomorphism such that (OT (X, X

′
))ϕ =

OT (Y, Y
′
) and (OI(X, X

′
))ϕ = OI(Y, Y

′
).

3.2 Isomorphism Theorems of OT (X, X
′
)

The purpose of this section is to generalize Theorem 1.5. To obtain the required

theorem, the following lemma is required.

Lemma 3.2.1. Let X and Y be posets, X
′
a subposet of X and Y

′
a subposet

of Y . If ϕ is an isomorphism of OT (X, X
′
) onto OT (Y, Y

′
), then the following

statements hold.

(i) For every a ∈ X
′
, there is an element a ∈ Y

′
such that Xaϕ = Ya.

(ii) The map a 7→ a is a bijection of X
′
onto Y

′
.

Proof. (i) Let a ∈ X
′
. Then Xa ∈ OT (X, X

′
) and Xaϕ ∈ OT (Y, Y

′
). Let

a ∈ ran (Xaϕ). Therefore a ∈ Y
′
and Ya ∈ OT (Y, Y

′
), so αϕ = Ya for some α ∈

OT (X, X
′
). Hence αXa = Xa. Since Xa ∈ E(OT (X, X

′
)), Xaϕ ∈ E(OT (Y, Y

′
)).

But a ∈ ran (Xaϕ), so a(Xaϕ) = a. Consequently, Ya(Xaϕ) = Ya and thus

Xaϕ = (αXa)ϕ = (αϕ)(Xaϕ) = Ya(Xaϕ) = Ya.

(ii) Since ϕ is one-to-one, the map a 7→ a is a one-to-one map of X
′
into Y

′
.

Because ϕ−1 : OT (Y, Y
′
) → OT (X, X

′
) is an isomorphism, from (i), we have that

for any b ∈ Y
′
, Ybϕ

−1 = Xa for some a ∈ X
′
, so Yb = Xaϕ = Ya which implies

that ā = b. Hence (ii) holds.
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Theorem 3.2.2. Let X and Y be chains, X
′
a subchain of X and Y

′
a subchain

of Y . If OT (X,X
′
) ∼= OT (Y, Y

′
), then X

′
and Y

′
are either order-isomorphic or

anti-order-isomorphic.

Proof. Let ϕ : OT (X, X
′
) → OT (Y, Y

′
) be an isomorphism. By Lemma 3.2.1,

for each a ∈ X
′
, there is an element a ∈ Y

′
be such that Xaϕ = Ya. Define

θ : X
′ → Y

′
by aθ = a for all a ∈ X

′
. Then by Lemma 3.2.1(ii), θ is a

bijection from X
′
onto Y

′
. To show that θ is either order-isomorphism or anti-

order-isomorphism, let a, b, c, d ∈ X
′
such that a < b and c < d. Since X

′
and Y

′

are chains and θ is one-to-one, it follows that a < b or a > b and c < d or c > d.

Define α : X → X
′

by

xα =


c if x < b,

d if x ≥ b.

Then α ∈ OT (X, X
′
), Xaα = Xc and Xbα = Xd. Consequently,

Ya(αϕ) = (Xaϕ)(αϕ) = (Xaα)ϕ = Xcϕ = Yc,

Yb(αϕ) = (Xbϕ)(αϕ) = (Xbα)ϕ = Xdϕ = Yd,

which imply that a(αϕ) = c and b(αϕ) = d. Since αϕ is order-preserving, we

deduce that a < b implies c < d and a > b implies c > d.

Therefore the theorem is proved.

Theorem 1.5 for chains follows directly from Theorem 3.2.2 and Proposition

3.1.4.

Corollary 3.2.3. For chains X and Y , OT (X) ∼= OT (Y ) if and only if X and Y

are either order-isomorphic or anti-order-isomorphic.
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The converse of Theorem 3.2.2 is not generally true as shown by the following

example.

Example 3.2.4. Let X be any chain and X
′
a proper subchain of X containing

more than one element. By Proposition 3.1.1, OT (X, X
′
) has no identity. But

OT (X
′
, X

′
) = OT (X

′
) has an identity, thus OT (X, X

′
) � OT (X

′
) = OT (X ′, X

′
).

From this example, it is natural to ask whether it is true that for a chain X

and subchains X1, X2 of X, if X1 and X2 are either order-isomorphic or anti-

order-isomorphic, then OT (X, X1) ∼= OT (X, X2). The following example gives a

negative answer. The map x 7→ 2x is an order-isomorphism from Z onto 2Z. Also,

x 7→ −2x is an anti-order-isomorphism from Z onto 2Z. Since OT (Z, 2Z) has

no identity by Proposition 3.1.1, it follows that OT (Z, Z) = OT (Z) � OT (Z, 2Z).

In fact, Example 3.2.4 follows from the following general fact.

Corollary 3.2.5. Let X and Y be chains and X
′

a subchain of X. Then

OT (X, X
′
) ∼= OT (Y ) if and only if

(i) |X ′| = |Y | = 1 or

(ii) X
′
= X and X and Y are either order-isomorphic or anti-order-isomorphic.

Proof. Suppose that OT (X, X
′
) ∼= OT (Y ). We then have from Theorem 3.2.2

that X
′
and Y are either order-isomorphic or anti-order-isomorphic. Then |X ′| =

|Y |. Since OT (X, X
′
) must have an identity, by Proposition 3.1.1, |X ′| = 1 or

X
′

= X. Hence |X ′| = |Y | = 1 or X
′

= X and X and Y are either order-

isomorphic or anti-order-isomorphic.

If (i) holds, then |OT (X, X
′
)| = |OT (Y )| = 1, and thus OT (X,X

′
) ∼= OT (Y ).

From Corollary 3.2.3, (ii) implies that OT (X, X
′
) ∼= OT (Y ).
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3.3 Isomorphism Theorems of OP (X, X
′
)

The aim of this section is to show that for chains X and Y , a subchain X
′
of

X and a subchain Y
′
of Y , if OP (X, X

′
) ∼= OP (Y, Y

′
), then |X| = |Y | and X

′

and Y
′
are either order-isomorphic or anti-order-isomorphic.

The following two lemmas are required.

Lemma 3.3.1. Let X and Y be posets, a ∈ X and b ∈ Y . Then OP (X, {a}) ∼=

OP (Y, {b}) if and only if |X| = |Y |.

Proof. Assume that |X| = |Y |. Then |X r {a}| = |Y r {b}|. Let ϕ : X → Y be

a bijection such that aϕ = b. Then

P(Y ) = {Aϕ | A ∈ P(X)} where Aϕ = {xϕ | x ∈ A} ,

and for A ∈ P(X), a ∈ A ⇔ b ∈ Aϕ. (1)

It is clearly seen that

OP (X, {a}) = {Aa | A ∈ P(X) r {φ}} ∪ {0}, (2)

OP (Y, {b}) = {(Aϕ)b | A ∈ P(X) r {φ}} ∪ {0}.

Define ϕ : OP (X, {a}) → OP (Y, {b}) by

0ϕ = 0 and Aaϕ = (Aϕ)b for all A ∈ P(X) r {φ}.

Then ϕ is a bijection by (2) and we have from (1) that for A, B ∈ P(X) r {φ},

a ∈ B =⇒ AaBa = Aa and (Aϕ)b(Bϕ)b = (Aϕ)b,

a /∈ B =⇒ AaBa = 0 and (Aϕ)b(Bϕ)b = 0.

Hence ϕ is an isomorphism.

For the converse, assume that OP (X, {a}) ∼= OP (Y, {b}). Then |OP (X, {a})| =
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|OP (Y, {b})|. We therefore deduce from (1) and (2) that |P(X)| = |P(Y )|. This

implies that |X| = |Y |.

Lemma 3.3.2. Let X and Y be posets, X
′
a subposet of X and Y

′
a subposet

of Y . If ϕ : OP (X, X
′
) → OP (Y, Y

′
) is an isomorphism, then the following

statements hold.

(i) For each a ∈ X ′, there is an element a ∈ Y ′ such that OP (X, {a})ϕ =

OP (Y, {a}).

(ii) The map θ : X ′ → Y ′ defined by aθ = a for all a ∈ X
′
is a bijection.

(iii) For each nonempty subset A of X, there is a unique nonempty subset A of Y

such that Aaϕ = Aa for every a ∈ X
′
.

Proof. (i) Let a ∈ X
′
. Then Xaϕ ∈ E(OP (Y, Y

′
)) r {0}. Let a ∈ ran (Xaϕ).

Then a(Xaϕ) = a and

((Yaϕ
−1)Xa)ϕ = Ya(Xaϕ) = Ya.

Hence (Yaϕ
−1)Xa = Yaϕ

−1 which implies that ran (Yaϕ
−1) = {a}. Thus Yaϕ

−1 =

Za for some φ 6= Z ⊆ X with a ∈ Z, and so Zaϕ = Ya. It then follows that

(Xaϕ)Ya = (Xaϕ)(Zaϕ) = (XaZa)ϕ = Xaϕ.

This implies that ran(Xaϕ) = {a}. Next, to show that OP (X, {a})ϕ = OP (Y, {a}),

let φ 6= A ⊆ X. Since AaXa = Aa, (Aaϕ)(Xaϕ) = Aaϕ. But ran (Xaϕ) = {a}, so

ran (Aaϕ) = {a}. We therefore have that Aaϕ = Aa for some φ 6= A ⊆ Y . This

proves that

OP (X, {a})ϕ ⊆ OP (Y, {a}). (1)

Since ϕ−1 : OP (Y, Y ′) → OP (X,X ′) is an isomorphism, from (1), we can deduce

that there is an element b ∈ X ′ such that

OP (Y, {a})ϕ−1 ⊆ OP (X, {b}). (2)
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It then follows from (1) and (2) that

OP (X, {a})ϕ ⊆ OP (Y, {a}) ⊆ OP (X, {b})ϕ. (3)

But ϕ is a one-to-one map, so OP (X, {a}) ⊆ OP (X, {b}). Consequently, a = b,

and hence (3) yields

OP (X, {a})ϕ = OP (Y, {a}). (4)

(ii) If a, b ∈ X are such that a = b, from (i), OP (X, {a}) = OP (X, {b}) since

ϕ is one-to-one. Thus a = b. This shows that θ is a one-to-one map from X ′ into

Y ′. Since ϕ−1 : OP (Y, Y ′) → OP (X, X ′) is an isomorphism, from (i), we have

similarly that

for every c ∈ Y ′, there is an element c′ ∈ X ′such that

OP (Y, {c})ϕ−1 = OP (X, {c′}). (5)

If d ∈ Y ′, then from (5), we have OP (Y, {d})ϕ−1 = OP (X, {d′}), so

OP (X, {d′})ϕ = OP (Y, {d}). (6)

Since d′ ∈ X ′, we have from (i) that

OP (X, {d′})ϕ = OP (Y, {d′}). (7)

Hence (6) and (7) yield OP (Y, {d}) = OP (Y, {d′}), and thus d = d′ = d′θ. This

proves that θ : X ′ → Y ′ is a bijection, as required.

(iii) Let A be a nonempty subset of X and a ∈ X ′. Since OP (X, {a})ϕ = OP (Y,

{a}) by (i) and Aa ∈ OP (X, {a}), there is a nonempty subset A of Y such

that Aaϕ = Aa. Let b ∈ X ′. We then have similarly that Abϕ = Bb for

some φ 6= B ⊆ Y . We shall show that B = A. Since AaXb = Ab, we have

(Aaϕ)(Xbϕ) = Abϕ. Thus Aa(Xbϕ) = Bb which implies that a ∈ dom (Xbϕ) and

a(Xbϕ) = b. Hence Ab = Bb, so B = A.

Therefore the proof is complete.
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Theorem 3.3.3. Let X and Y be chains, X
′
a subchain of X and Y

′
a subchain

of Y . If OP (X,X
′
) ∼= OP (Y, Y

′
), then |X| = |Y | and X

′
and Y

′
are either

order-isomorphic or anti-order-isomorphic.

Proof. Let ϕ : OP (X, X
′
) → OP (Y, Y

′
) be an isomorphism. From Lemma

3.3.2(i), for each a ∈ X ′, there is an element a ∈ Y ′ such that OP (X, {a})ϕ =

OP (Y, {a}) and by Lemma 3.3.2(ii), θ : X ′ → Y ′ defined by aθ = a for all a ∈ X ′

is a bijection. It then follows that for a ∈ X ′, OP (X, {a}) ∼= OP (Y, {a}). By

Lemma 3.3.1, |X| = |Y |.

Next, we shall show that θ is an order-isomorphism or an anti-order-isomorphism.

Let a, b, c, d ∈ X ′ be such that a < b and c < d. Then

(
a b

c d

)
∈ OP (X, X ′). We

have from Lemma 3.3.2(iii) that there are nonempty subsets A and B of Y such

that

(
a

a

)
ϕ = Aa ,

(
a

c

)
ϕ = Ac ,

(
b

b

)
ϕ = Bb ,

(
b

d

)
ϕ = Bd.

But

(
a

a

)(
a b

c d

)
=

(
a

c

)
and

(
b

b

)(
a b

c d

)
=

(
b

d

)
,

so we have

Aa

((
a b

c d

)
ϕ

)
= Ac and Bb

((
a b

c d

)
ϕ

)
= Bd .

Consequently,

ā

((
a b

c d

)
ϕ

)
= c̄ and b̄

((
a b

c d

)
ϕ

)
= d̄.

Since X ′ and Y ′ are chains, θ is one-to-one and

(
a b

c d

)
ϕ ∈ OP (Y, Y ′), it follows

that ā < b̄ implies c̄ < d̄ and ā > b̄ implies c̄ > d̄. This shows that θ is either an



32

order-isomorphism or an anti-order-isomorphism of X
′
onto Y

′
, as required.

The following interesting isomorphism theorem is a direct consequence of Pro-

prosition 3.1.4 and Theorem 3.3.3.

Corollary 3.3.4. For chains X and Y , OP (X) ∼= OP (Y ) if and only if X and

Y are either order-isomorphic or anti-order-isomorphic.

The next example shows that the converse of Theorem 3.3.3 need not be true.

Example 3.3.5. The maps x 7→ 2x and x 7→ −2x are respectively an order-

isomorphism and an anti-order-isomorphism from Z onto 2Z. Since OP (Z) and

OP (2Z) have an identity and by Proposition 3.1.2, OP (Z, 2Z) has no identity,

we deducd that OP (Z) � OP (Z, 2Z) � OP (2Z). In fact, OP (Z) ∼= OP (2Z) by

Corollary 3.3.4.

The following corollary gives a general fact of Example 3.3.5 . It is obtained

directly from Proposition 3.1.2(i) and Corollary 3.3.4.

Corollary 3.3.6. Let X and Y be chains and X
′

a subchain of X . Then

OP (X, X
′
) ∼= OP (Y ) if and only if X

′
= X and X and Y are either order-

isomorphic or and anti-order-isomorphic.

Remark 3.3.7. From Theorem 3.3.3 and Proposition 3.1.4 one might expect

that the if part of Proposition 3.1.4 may be neccessary and sufficient conditions

for OP (X,X
′
) and OP (Y, Y

′
) to be isomorphic for chains X and Y , ∅ 6= X

′ ⊆ X

and ∅ 6= Y
′ ⊆ Y . Lemma 3.3.1 shows that this is not true . For example,

OP ([0, 2], {1}) ∼= OP ((0, 2), {1}) by Lemma 3.3.1 since |[0, 2]| = |(0, 2)| = ℵ1.

Since [0, 2] has a minimum and a maximum while (0, 2) has neither a minimum
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and a maximum, we have that [0, 2] and (0, 2) are neither order-isomorphic nor

anti-order-isomorphic.

3.4 Isomorphism Theorems of OI(X, X
′
)

Our purpose of this section is to give neccessary and sufficient conditions for

OI(X, X
′
) and OI(Y, Y

′
) being isomorphic where X and Y are any chains, X

′
is

a subchain of X and Y
′
is a subchain of Y .

The following lemma is a main tool to obtain our required result. We first note

that for a subposet X
′
of a poset X and for α ∈ OI(X, X

′
), α ∈ E(OI(X, X

′
)) if

and only if α = 0 or α = 1A for some nonempty subset A ⊆ X ′.

Lemma 3.4.1. Let X and Y be posets, X
′
a subposet of X and Y

′
a subposet

of Y . If ϕ : OI(X,X
′
) → OI(Y, Y

′
) is an isomorphism, then the following

statements hold.

(i) For every x ∈ X, there is defined an element x ∈ Y subject to :(
x

a

)
ϕ =

(
x

a

)
for all x ∈ X and a ∈ X

′
.

(ii) The map θ : X → Y defined by xθ = x for all x ∈ X is a bijection such

that X
′
θ = Y

′
.

(iii) For every α ∈ OI(X, X
′
), αϕ =

(
x

xα

)
x∈dom α

.

Proof. (i) Let a0 ∈ X
′
be fixed. Since 0 6=

(
a0

a0

)
∈ E(OI(X, X

′
)), 0 6=

(
a0

a0

)
ϕ ∈

E(OI(Y, Y
′
)). Then

(
a0

a0

)
ϕ = 1B for some nonempty subset B of Y

′
. Let

b0 ∈ B. Then 0 6=
(

b0

b0

)
ϕ−1 ∈ E(OI(X,X

′
)). But

((
a0

a0

)((
b0

b0

)
ϕ−1

))
ϕ = 1B

(
b0

b0

)
=

(
b0

b0

)
,
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(((
b0

b0

)
ϕ−1

)(
a0

a0

))
ϕ =

(
b0

b0

)
1B =

(
b0

b0

)
,

so (
a0

a0

)((
b0

b0

)
ϕ−1

)
=

(
b0

b0

)
ϕ−1 =

((
b0

b0

)
ϕ−1

)(
a0

a0

)
.

Consequently, dom

((
b0

b0

)
ϕ−1

)
=

{
a0

}
= ran

((
b0

b0

)
ϕ−1

)
. Hence

(
b0

b0

)
ϕ−1 =(

a0

a0

)
, and so

(
a0

a0

)
ϕ =

(
b0

b0

)
. This also proves the following fact.

For every a ∈ X
′
,

(
a

a

)
ϕ =

(
b

b

)
for some b ∈ Y

′
. (1)

Next, let x ∈ X. Then

0 6=
(

x

a0

)
ϕ =

((
x

a0

)(
a0

a0

))
ϕ =

((
x

a0

)
ϕ

)(
b0

b0

)
,

so ran

((
x

a0

)
ϕ

)
= {b0}. Since

(
x

a0

)
ϕ is one-to-one, there exists an element

x ∈ Y such that

(
x

a0

)
ϕ =

(
x

b0

)
. Now, we have that for every x ∈ X, there

exists an element x̄ ∈ Y subject to :

(
x

a0

)
ϕ =

(
x̄

b0

)
for all x ∈ X. (2)

To prove that

(
x

a

)
ϕ =

(
x

a

)
for all x ∈ X and a ∈ X

′
, let x ∈ X and a ∈ X

′

be arbitrary fixed. Then

(
a

a0

)
ϕ =

(
ā

b0

)
by (2) and hence

(
a

b0

)
=

(
a

a0

)
ϕ =

((
a

a

)(
a

a0

))
ϕ =

((
a

a

)
ϕ

)(
a

b0

)
.

This implies that a ∈ dom

((
a

a

)
ϕ

)
and a ∈ ran

((
a

a

)
ϕ

)
⊆ Y

′
. It then follows

from (1) that
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(
a

a

)
ϕ =

(
a

a

)
. (3)

Since (
x

a

)
ϕ =

((
x

a

)(
a

a

))
ϕ =

((
x

a

)
ϕ

)(
a

a

)

by (3), we have that ran

((
x

a

)
ϕ

)
= {a}. Also, since

(
x

b0

)
=

(
x

a0

)
ϕ =

((
x

a

)(
a

a0

))
ϕ =

((
x

a

)
ϕ

)(
ā

b0

)

from (2), it follows that x ∈ dom

((
x

a

)
ϕ

)
. Consequently,

(
x

a

)
ϕ =

(
x

a

)
because(

x

a

)
ϕ is a one-to-one map.

(ii) Since

(
x

a

)
ϕ =

(
x

a

)
for all x ∈ X and a ∈ X ′ from (i), we deduce that

θ : X → Y is a map with X ′θ ⊆ Y ′. If x1, x2 ∈ X are such that x1 = x2, then(
x1

a0

)
ϕ =

(
x1

b0

)
=

(
x2

b0

)
=

(
x2

a0

)
ϕ,

so x1 = x2 since ϕ is one-to-one. Finally, let y ∈ Y and b ∈ Y
′
. Then

(
y

b

)
∈

OI(Y, Y
′
). Since ϕ−1 : OI(Y, Y

′
) → OI(X, X

′
) is an isomorphism, from (i) by

considering ϕ−1 instead of ϕ,

(
y

b

)
ϕ−1 =

(
x

a

)
for some x ∈ X and a ∈ A. Thus(

x

a

)
=

(
x

a

)
ϕ =

(
y

b

)
, and hence x = y and a = b. This proves that θ : X → Y

is a bijection such that X
′
θ = Y

′
, as required.

(iii) Let α ∈ OI(X, X
′
) and x ∈ domα. Then

(αϕ)

(
xα

xα

)
=

(
α

(
xα

xα

))
ϕ from (i)

=

(
x

xα

)
ϕ since α is one-to-one

=

(
x

xα

)
from (i)
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which implies that x ∈ dom (αϕ) and x (αϕ) = xα.

Next, let y ∈ dom (αϕ). By (ii), y = x and y (αϕ) = a for some x ∈ X and

a ∈ X
′
and so

(
x̄

ā

)
=

(
y

y(αϕ)

)
and

(
ā

ā

)
=

(
y(αϕ)

y(αϕ)

)
. Hence

(
x

a

)
ϕ =

(
x̄

ā

)
from(i)

=

(
y

y(αϕ)

)
= (αϕ)

(
y(αϕ)

y(αϕ)

)
since y ∈ dom (αϕ) and αϕ is one-to-one

= (αϕ)

(
a

a

)
=

(
α

(
a

a

))
ϕ from(i).

Since ϕ is one-to-one,

(
x

a

)
= α

(
a

a

)
, so x ∈ domα and x = y ∈ dom (αϕ). This

proves that

αϕ =

(
x

xα

)
x∈dom α

.

Therefore the lemma is completely proved.

Lemma 3.4.2. Let X and Y be posets, a ∈ X and b ∈ Y . Then OI(X, {a}) ∼=

OI(Y, {b}) if and only if |X| = |Y |.

Proof. Assume that |X| = |Y |. Then |X r {a}| = |Y r {b}|. Let ϕ : X → Y be

a bijection such that aϕ = b. Observe that

OI(X, {a}) =

{(
x

a

)
| x ∈ X

}
∪ {0},
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OI(Y, {b}) =

{(
y

b

)
| y ∈ Y

}
∪ {0} =

{(
xϕ

b

)
| x ∈ X} ∪ {0}

}
.

Define ϕ : OI(X, {a}) → OI(Y, {b}) by

0ϕ = 0 and

(
x

a

)
ϕ =

(
xϕ

b

)
for all x ∈ X.

Then ϕ is a bijection and for all x1, x2 ∈ X,

x2 = a =⇒
(

x1

a

)(
x2

a

)
=

(
x1

a

)
and

(
x1ϕ

b

)(
x2ϕ

b

)
=

(
x1ϕ

b

)(
b

a

)
=

(
x1ϕ

b

)
,

x2 6= a =⇒
(

x1

a

)(
x2

a

)
= 0 and

(
x1ϕ

b

)(
x2ϕ

b

)
= 0 since x2ϕ 6= b.

Hence ϕ is a homomorphism.

Conversely, assume that OI(X, {a}) ∼= OI(Y, {b}). Then |OI(X, {a})| =

|OI(Y, {b})|. But x 7→
(

x

a

)
is clearly a bijection from X onto OI(X, {a}) r {0},

so |X|+ 1 = |OI(X, {a})| = |OI(Y, {b})| = |Y |+ 1. Hence |X| = |Y |.

Theorem 3.4.3. Let X and Y be chains, X
′
a subchain of X and Y

′
a subchain

of Y . Then OI(X, X
′
) ∼= OI(Y, Y

′
) if and only if one of the following statements

holds.

(i) |X| = |Y | and |X ′| = |Y ′| = 1.

(ii) There exists an order-isomorphism or an anti-order-isomorphism θ : X → Y

such that X
′
θ = Y

′
.

Proof. Let ϕ : OI(X,X
′
) → OI(Y, Y

′
) be an isomorphism. By Lemma 3.4.1(i),

for each x ∈ X, there is an element x ∈ Y satisfying the following property.(
x

a

)
ϕ =

(
x

a

)
for all x ∈ X and a ∈ X

′
.
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By Lemma 3.4.1(ii), the map θ : X → Y defined by xθ = x for all x ∈ X is a

bijection such that X
′
θ = Y

′
. Then |X| = |Y | and |X ′| = |Y ′|.

First, we claim that θ|
X
′ : X

′ → Y
′
is either an order-isomorphism or an anti-

order-isomorphism. Let a, b, c, d ∈ X
′
be such that a < b and c < d. Since θ is

a one-to-one map and Y ′ is a chain, a < b or a > b and c < d or c > d. Define

α =

(
a b

c d

)
. Then α ∈ OI(X, X

′
), so by Lemma 3.4.1(iii), αϕ =

(
ā b̄

c̄ d̄

)
∈

OI(Y, Y ′). Consequently, a < b implies c < d or a > b implies c > d. Hence we

have the claim. Suppose that (i) is fault. Since |X| = |Y | and |X ′| = |Y ′|, we

have |X ′| = |Y ′| > 1. Let a, b ∈ X ′ be such that a < b.

Case 1 : θ|
X
′ : X

′ → Y
′
is an order-isomorphism. Since a < b, we have a < b.

If x1, x2 ∈ X are such that x1 < x2, then

(
x1 x2

a b

)
∈ OI(X, X

′
), then by Lemma

3.4.1(iii),

(
x1 x2

a b

)
∈ OI(Y, Y

′
) which implies that x1 < x2 since a < b. We

deduce that θ is an order-isomorphism from X onto Y .

Case 2 : θ|
X
′ : X

′ → Y
′
is an anti-order-isomorphism. Then a > b since a < b.

If x1, x2 ∈ X are such that x1 < x2, then

(
x1 x2

a b

)
∈ OI(X, X

′
), then by Lemma

3.4.1(iii),

(
x1 x2

a b

)
∈ OI(Y, Y

′
), so x2 < x1 since b < a. Consequently, θ is an

anti-order-isomorphism from X onto Y .

The converse follows directly from Lemma 3.4.2 and Proposition 3.1.4.

Therefore the theorem is proved, as desired.

A direct interesting consequence of Theorem 3.4.3 is the following.

Corollary 3.4.4. For chains X and Y , OI(X) ∼= OI(Y ) if and only if X and Y

are either order-isomorphic or an anti-order-isomorphic.

Also, we have
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Corollary 3.4.5. Let X and Y be chains and X
′

a subchain of X. Then

OI(X, X
′
) ∼= OI(Y ) if and only if X

′
= X and X and Y are either isomorphic or

anti-order-isomorphic.

Proof. Assume that OI(X, X
′
) ∼= OI(Y ). We have by Proposition 3.1.2(ii) that

X
′
= X, and hence from Corollary 3.4.4, X and Y are either order-isomorphic or

anti-order-isomorphic.

The converse follows from Corollary 3.4.4.
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