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Conventionally, the asymptotic property of a growth model is identified via the 

scaling of interface width. This method requires large-scale simulations to minimize finite-size 

effects on the results. The multiple hit noise and the long surface diffusion length noise 

reduction techniques ( NRTs) have been used to promote the asymptotic behaviors of the 

growth models. Lately, an alternative method involving comparison of roughness distribution 

in the steady state has been proposed. In this work, firstly, the roughness distribution of the 

(2+1)-dimensional ballistic deposition (BD), Das Sarma-Tamborenea (DT), Wolf-Villain 

(WV), Larger Curvature (LC), and Family (F) models, without the NRTs, are calculated. Next, 

the noise reduced DT, WV, and LC models are studied in order to investigate the effects of the 

NRTs on the roughness distributions. In the steady state, our results indicate that the NRTs do 

not seem to have any impact on the roughness distribution of the DT model, but it significantly 

changes the roughness distributions of the LC and WV models to the normal distribution curves. 

Furthermore, we found that the finite substrate size does not strongly affect the roughness 

distributions of the noise reduced DT, LC, and WV models. Secondly, the effects of the NRTs 
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CHAPTER I 

INTRODUCTION 

 

 

 

 

 

 

 

In thin film growth simulation, one of the interesting problems is to identify 

universality classes of discrete growth models. Determining the universality class is 

important because it helps us to identify the asymptotic behavior of a discrete growth 

model at very large scale, and to find a true continuum growth equation of a discrete 

growth model. Growth models that belong to the same universality class, have the same 

continuum growth equation. Simulating a very large substrate system is necessary to 

find a real universality class of a growth model, but it takes a long time. In addition, 

some growth models have crossover behaviors before a true asymptotic behavior can 

be seen. Examples include the solid-on-solid limited mobility discrete growth models 

such as the Das Sarma -Tamborenea (DT) model [1, 2] and the Wolf-Villain (WV) 

model [3].  

Conventionally, the scaling of interface width  W  is used to determine the 

universality class of a discrete growth model. Usually,W , substrate size  L , and 

growth time ( t ) are related as  , ~
z

t
W L t L f

L

  
 
 

, which is called the Family-Vicsek 

scaling relation [4], when   is roughness exponent and z  is dynamical exponent. The 

interface width is a function of time as  , ~W L t t  , where   is growth exponent. In 

this method, three critical exponents (  ,  , and z ) are calculated and compared to 

the theoretical values of each universality class. When the growth exponent changes 

with the growth time, the system is said to have crossover. 
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In some growth models, it is difficult to obtain true asymptotic exponents 

because of finite size effects. Previous works [5-7] try to find more accurate critical 

exponents by determining the terms of the critical exponents. In our previous work, the 

expected asymptotic growth exponent of the DT model was found by using the 

correction-to-scaling technique. However, the asymptotic behavior of some models, 

such as the WV model, are still not clear. 

Recently, a method involved roughness distribution in the steady state has been 

proposed [8-10] as an alternative technique to identify possible universality classes of 

the models. Reis Aarão and coworkers [11-14] have used the roughness distribution  to 

study the ballistic deposition (BD), and the restricted solid-on-solid  models and found 

that they are in the Kardar-Parisi-Zhang [15] (KPZ) scaling. This method has also been 

used [11-14, 16] to determine the universality class of models such as the collective 

diffusion, the limited mobility, the bidisperse ballistic deposition, and the grain 

deposition models.  

In addition, Das Sarma and coworkers [17, 18] have suggested that using the 

multiple hit ( 1m  ) and the long surface diffusion length ( 1 ) noise reduction 

techniques (NRTs) with the scaling of interface width can reduce stochastic noise until 

the asymptotic behavior of growth models are observed. They have also showed that 

the 1m   and the 1  NRTs are equivalent in enhancing an asymptotic universality 

class of the DT model. The NRTs can be used to induce an unstable growth of the WV 

and Larger Curvature (LC) [19, 20] models in (2+1)- dimensional substrate systems.  

In previous work [21], the roughness distribution with 1m   NRT has been 

used to find the universality class of the (1+1)-dimensional DT model.  The results 

showed that the 1m   NRT may enhance the asymptotic roughness distribution of the 

(1+1)-dimensional DT model.  

Consequently, determining asymptotic universality class of a discrete growth 

model with and without the NRTs by using the roughness distribution method is an 

interesting issue. Our aims are to use the roughness distribution method to identify the 

asymptotic universality class of thin film growth models and to study effects of NRTs 

on the roughness distributions of thin film growth models. We expect that universality 
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classes of various thin film growth models can be determined, and effects of the NRTs 

on roughness distributions of thin film growth models can be identified.  

More realistic simulations are done on two-dimensional substrates which is 

denoted as (2+1) dimensional simulations.  In this work, the roughness distribution of 

the (2+1)-dimensional BD [22],  DT [1, 2], WV [3], LC [19, 20], and F [23] models are 

investigated. The NRTs, both the 1m   NRT and the 1  NRT, are utilized. It is the 

first time that effects of the NRTs on the roughness distribution are investigated in the 

(2+1)-dimensional substrate systems. Additionally, the scaling of interface width of 

these noise reduced growth models at early times is also studied. 

Moreover, in order to understand growth mechanisms in microscopic scale, it is 

necessary to characterize the grown surface morphologies. The height distribution may 

be used to characterize morphologies and to study the up-down symmetric property of 

thin films. So, we also study the height distributions of growth models that provide 

important growth modes: layer-by-layer growth mode and mound formation.   

A layer-by-layer growth is a characteristic of high quality surface growth. A 

well-known technological process used to produce high quality thin films is Molecular 

Beam Epitaxy (MBE) [24]. A high temperature MBE growth enables one to produce 

smooth thin films, since a high substrate temperature yields higher surface diffusion 

that gives rise to the layer-by-layer growth. In growth simulation, this event is identified 

by oscillations of interface width. The 1m   NRT [18, 25, 26] and the 1 NRT [18, 

26] are used to enhance the layer-by-layer growth.  

In studies of mound formation, the NRTs can be used to produce mounded 

morphology [26, 27] in the (2+1)-dimensional LC and WV models. Mound formation 

is discussed in thin film growth both in simulations and in experiments [27-30]. Our 

purpose is to consider the height distribution of the mounded morphologies and to study 

effects of substrate size on the height distribution of the mounded surfaces. 

 

Overview of the dissertation 

In this dissertation, thin films are simulated using the BD, DT, WV, LC, and F 

models with and without the 1m   NRT and the 1  NRT on (2+1)-dimensional 

substrate systems. This thesis is organized as following. Chapter I is the introduction: 

the background, the motivation, and the objectives. Modeling and theories regarding 
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the BD, DT, WV, LC, and F models, the continuum growth equations, along with 

details of the NRTs and quantities of interest are explained in chapter II. In chapter III, 

surface morphologies and scaling of interface width of the growth models with and 

without the NRTs, are shown and discussed. The effects of the NRTs on the growth 

exponent are also presented in this chapter. In chapter IV, we show roughness 

distributions of the growth models with and without the NRTs, and also present finite 

size effects on the roughness distribution of growth models. In Chapter V, the height 

distribution of the growth models with and without the NRTs are shown and finite size 

effects on the height distribution of growth models are presented. Finally, we conclude 

our study in chapter VI.  
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CHAPTER II 

MODEL AND THEORY 

 

 

 

 

 

 

In this chapter, we discuss growth models with and without the NRTs. 

Moreover, continuum growth equations used to describe the possible universality 

classes of the models will be presented. Important quantities such as interface width, 

roughness distribution, and height distribution will be defined. Scaling relation will be 

explained.  

  

2.1 Growth models and universality class 

 In our work, various thin film growth models: the BD, DT, WV, LC, and F 

models were simulated in (2+1)-dimensional substrate systems with and without the 

NRTs. Nowadays, the asymptotic behavior of the BD, LC, and F models are well 

known, whereas asymptotic universality class of the DT and WV models are difficult 

to observe in simulation study. 

 

2.1.1 The BD, DT, WV, LC, and F models 

The BD [22] model is a discrete porous aggregation model, whereas the DT [1, 

2], WV [3], LC [19, 20], and F [23]  models are discrete solid-on-solid (SOS) models 

proposed in the early 1990s for the study of kinetic surface roughening in thin film 

growth. The SOS conditions mean that desorption, overhanging, and vacancy are not 

allowed. These conditions correspond to the ideal MBE growth. In all models, an atom 

is deposited on a substrate on a randomly chosen site. After arriving at the surface, the 

newly deposited atom can move according to surface diffusion rules of each model as 

illustrated in Fig. 2.1.  
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Fig. 2. 1 Diagrams illustrating diffusion rules of the (2+1)-dimensional (a) BD, (b) 

DT, (c) WV, (d) LC, and (c) F models. The adatom moves in the direction indicated 

by the arrows. 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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In the BD model (Fig. 2.1(a)), the atom is deposited at a randomly chosen site. 

It is incorporated at the first site that it comes into contact with the film. Bond formation 

at the first contact makes it possible to have void defects in the grown films (atoms A 

and C). The BD model is selected for studying in this work because this model is well-

known as a porous aggregation model. 

In the DT model (Fig. 2.1(b)), only an atom without a lateral bond can move to 

one of its nearest neighbors where it can form at least one lateral bond. If only one of 

the nearest neighbors provides the lateral bond, the atom moves directly to that site 

(atoms F). If more than one nearest neighbors meet this condition, one of them is chosen 

by random (atoms A and C follow one of the arrows with equal probability). However, 

if none of the nearest neighbor can provide a lateral bond, the atom stays at its 

deposition site (atom E). An atom that is deposited at a site with at least one lateral bond 

also remains at its deposition site (atoms B and D). The DT model is chosen to 

investigate its roughness distribution because it is difficult to see the true asymptotic 

behavior of this model. The DT model can be used to study the thin film growth at low 

temperature. 

In the WV model (Fig. 2.1(c)), an atom moves to find the site with the maximum 

number of bonds. There are two differences in the WV and DT diffusion rules. Firstly, 

an atom that already has one lateral bond can move to a site that can provide more 

bonding in the WV model but is not allowed to move in the DT model. This is illustrated 

by atom D which does not move in the DT model (Fig. 2.1(b)) but moves to its nearest 

neighbor which provides more bonds in the WV model (Fig. 2.1(c)). Secondly, a 

diffusing atom only moves to a site with at least one lateral bond in the DT model, while 

it seeks the site with the maximum number of bonding in the WV model. This point is 

seen clearly in atom C which can moves to either left (one lateral bonds) or right (two 

lateral bond) in the DT model (Fig. 2.1 (b)) but will only move to its right in the WV 

model (Fig. 2.1 (c)). We study the WV model because the scaling of interface width 

cannot be used to find asymptotic universality of this model [2]. Additionally, the WV 

model can be used to study the mound formation of thin film growth.  

In the LC model, an atom moves to a nearest neighbor that provides the largest 

curvature. The curvature at each site can be calculated from
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     2 1 1 2h h x h x h x       for the (1+1)-dimensional growth and 

         2 1, 1, , 1 , 1 4 ,h h x y h x y h x y h x y h x y           for the (2+1)-

dimensional growth when  ,h x y is the height of the deposition site  ,x y  on the 

substrate. Fig. 2.1(d) shows how adatoms move in the (2+1) LC model. Atom C 

moves to the right and atoms B and F move to the left because they have the largest 

curvature among the nearest neighbors. If the curvature of the deposited site and its 

neighbors are equal, the atom does not move (atom E). Finally, if the curvature of the 

neighboring sites are the same, but larger than that of the deposition site, one of the 

neighbors is chosen randomly (atoms A and D). The LC model can be used to study 

the mound formation of thin film growth. Its asymptotic behavior should belong to the 

linear fourth-order equation by construction. 

According to the F model (Fig. 2.1(e)), after atom arrives on the surface, it can 

move to its nearest neighbors that provide the smallest height. If the height of the 

neighbors are the same as at the deposition site, the atom does not move (atom B, E, 

and F). If the height of the neighboring sites and the deposition site are the same, one 

of the neighbors is chosen randomly (atoms A, C, and D). The F model is used to study 

the growth that depends on the gravitational force instead of the bond formation.   

 

2.1.2 Universality class of the Growth models 

The scaling functions and critical exponents are used to define the universality 

class of growth models [22, 31]. Two growth models that have the same critical 

exponents and scaling function belong in the same universality class [22, 31]. 

Continuum growth equations are used to study behavior of the interface in large length 

scale. The critical exponents investigated from a discrete growth model should be 

consistent with the corresponding continuum growth equation describing that model 

[22]. 

The BD model belongs to the KPZ scaling which can be described by a 

continuum equation: 

 
 

22

2 2

,h x t
h h

t
  


    


               (2.1) 
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where 2v , and 2 are growth coefficients, h is the surface height at position x  and time 

t , and   is the Gaussian noise associated with the incident beam fluctuation. The  

2

2v h  term leads to a smoothing effect of the surface for a positive 2v  while a negative 

2v leads to unstable growth with mounded morphologies. The nonlinear term   
2

2 h 

yields a bump on the interface called the lateral growth. The film grown with this 

nonlinear term has larger local slope in the interface and the average height of the 

surface is increased [22].   

Identifying universality class of the (2+1)-dimensional DT model is quite 

complicated due to many crossovers [7]. Das Sarma and coworkers [17] use the 1m   

NRT and suggest that the (2+1) DT model can be described by a continuum growth 

equation:   

 
   

22 4 2

2 4 2 2
1,2,3,...

, n

n
n

h x t
h h h

t
   




       


                                  (2.2) 

where  2v , 4v and 2(2 )n are growth coefficients. They found that [17] 2v is extremely 

small but not negligible. The 
4

4v h   term describes the relaxation due to surface 

diffusion. From equation (2.2), the asymptotic universality class of the (2+1) DT model 

should be the Edwards-Wilkinson (EW) universality class. The continuum growth 

equation that describes the EW universality class is [22]  

  2

2

,h x t
v h

t



  


                                                        (2.3)                                                                       

where 2v is a surface tension.  The critical exponents of the EW universality class can 

be written in the following forms [22]: the growth exponent  2 / 4d   , the 

roughness exponent  2 / 2d   , and the dynamical exponent 2z   when d is the 

dimension of the substrate. Chame and Aarão Reis [32] studied the evolution of 

effective dynamical exponent  z  which confirmed that the (2+1) DT model belonged 

asymptotically to the EW universality class. In this work, we investigate the 

universality class of both the original and the noise reduced DT models in (2+1)-

dimensions by studying the roughness distribution [6, 8, 9, 11, 13, 16].  
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Identifying asymptotic behavior of the (2+1) dimensional WV model is not 

straight forward either. It has been reported that values of the critical exponents in the 

(2+1)-dimensional WV model are  = 0.20  0.20 and  = 0.66  0.03 [22], while Das 

Sarma and Ghaisas [33] found that  = 0.192  0.002. These are close to the values 

from the Villain-Lai-Das Sarma (VLDS) equation [34];  

 
   txhh

t

txh
,

, 22

22

4

4  



                                (2.4) 

which can be approximated by [22]    4 / 8d d    ,  4 / 3d   , and 

 8 / 3z d  . Note that these expressions are not exact. There was a detailed numerical 

study [4] and a theoretical work using renormalized field theory [23] to explain the 

origin of higher order corrections to these values. Later, Krug [35] and Siegert [36] 

studied the global particle diffusion current in the (100) direction of the original WV 

model and found the current to be downhill which indicates that the asymptotic 

universality class of the (2+1) dimensional WV model should  be the EW universality 

class. However, Das Sarma and coworkers [17, 26, 28] found uphill current in the (111) 

direction of both the original and the noise reduced WV model. The uphill current is 

temporary before crossing over to downhill current in the original WV model while the 

1m   WV model yields very strong uphill current. This information suggests that the 

(2+1) dimensional WV model is unstable with mounded morphology. This result has 

been confirmed by Ref. [27]. Recently, Chame and Aarão Reis [32] used the scaling of 

the local interface width of the (2+1) dimensional WV model and showed that the 

effective dynamical exponent converged to 2z  (when t  ) which is consistent 

with the value of z  in the EW universality class. From previous works [17, 26, 28, 32, 

33, 35-37], it is clear that scaling behavior of the WV model is far from trivial. In our 

work, we attempt to study the (2+1)-dimensional WV model using the roughness 

distribution of the NRT growth simulations. 

By construction, the LC model should be in the Kim-Das Sarma class [19]  

described by the linear fourth-order equation (the Mullins-Herring, MH): 

  4

4

h
h

t
 


   


.                                                              (2.5) 
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According to its diffusion rules, the F model is in the linear second-order scaling or EW 

class [22] defined by Eq. (2.3). The LC and F models are chosen for our study for the 

sake of comparison. The model is linear and obtaining its universality class should be 

quite straightforward. 

 

2.2 The Growth models with the NRTs 

The NRT has been used [17, 18, 26] to study the universality class of discrete 

growth models via calculation of the critical exponents. Two different techniques have 

been used in the literature: the 1m   [17, 18, 25, 26, 38] and the 1  [17, 18, 26, 38] 

NRTs. In general, 1m   NRT and 1  NRT can induce layer-by-layer-growth in early 

time [18, 25, 38], and lead to asymptotic behavior at later time [17, 18]. Additionally, 

the 1m   NRT has previously been used [21] in the study of the roughness distribution 

of (1+1)-dimensional DT model. The result has been shown that the 1m   NRT may 

lead to the asymptotic universality class of the (1+1)-dimensional DT model. 

 

2.2.1 Multiple hit noise reduction technique  

In growth simulations, the 1m   NRT is a well-known technique used to reduce 

the stochastic noise due to the incident beam fluctuation.  It is only a computational 

technique without any real physical meaning. A multiple hit parameter m  is the number 

of time a site must be selected before an actual incorporation can occur. Each site has 

its own counter. When a site is selected, the counter of that site is increased by one but 

the height of that site remains the same until the counter reaches the multiple hit 

parameter (m), which is an integer (m = 1 for the original model), then the height of that 

site is increased by one and the counter is reset to zero. Fig. 2.2 shows an example for 

the 1m   NRT when m  equals 3. Starting with a flat substrate with both height and 

counter at all sites are zero, if site number 5 is selected, the counter of the site, C5, is 

increased by 1 (C5 = 1) and the height is still equal to 0 (h5 = 0). Next round, site number 

2 is chosen, the counter C2 is increased by one (C2 = 1) and its height is zero (h2 = 0). 

In third round, if site number 5 is chosen again, its counter is increased to C5 = 2 and its 

height is still equal to zero. For the fourth round, if site number 5 is selected again, so  
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Fig. 2. 2 Illustrations of the 1m   NRT in the case that m = 3 on (2+1)-dimensional 

flat substrates. After deposited atom selects its final site, the counter of that site is 

increased by one but its height does not change until the counter is equal to 3. 
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C5 = 3. Since C5 = m , the height is increased by one and h5 = 1, the counter C5 is then 

reset to zero (C5 = 0). 

 

2.2.2 Long surface diffusion length noise reduction technique 

The 1  NRT has also been used as a noise reduction technique [17, 18, 26, 

38]. This is a technique that increases the lateral length that each atom can move. This 

can be done by increasing the number of time an atom is allowed to hop. In our work, 

we have defined the parameter  as a maximum number of times that the diffusing atom 

can hop to find the final site under diffusion rules of the original models. 

 In the DT model with the 1  NRT, an atom without a lateral bond is allowed to hop 

in order to increase its number of bond just as in the original model. However, it can 

hop more than once. The hopping stops when the number of hop is  or the number of 

lateral bond is at least one. Let us consider atom E in Fig. 2.1(b) which stays at its 

deposition site in the original model. But if, for example, 3 , diffusion process for 

atom E will be as following. For the first round, it checks its nearest neighbors, neither 

can provide any lateral bond so one is chosen by random. If the neighbor on its left is 

chosen, atom E moves to one left. In the second round, it checks its neighbors again 

and finds that the neighbor does not provide a lateral bond, so atom E moves to the 

neighbor by a random again. If the neighbor on its left is chosen, in third round, atom 

E will be grown on the film with one lateral bond. Note that this variation of the DT 

model is practically the same as the limited mobility model studied in Ref. [11]. 

In the original WV model, a deposited atom diffuses to find the site with the 

maximum number of bond, which is five in the 2-dimensional substrate systems.  When 

the 1 NRT is implemented, each newly deposited atom repeats the diffusion process 

times. In each step, the atom compares number of bond it can form at its present site 

and at its nearest neighbor sites. If at least one nearest neighbor can offer more bonding 

than the present site, the atom hops to the neighbor with the maximum bonds. If the 

maximum number of bond the nearest neighbors can provide is the same as at the 

present site, the atom chooses among the neighbors with the maximum bonds and the 

present site with equal probability. However, if all nearest neighbors provide less bonds 

than the present site, the atom remains at the present site and the diffusion process ends 

here even when the number of hop is still less than .  
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In the LC model, an atom moves to one of its nearest neighbors that provide the 

largest curvature. The 1  NRT is applied in the same way as the WV model described 

above. Note that an atom can move to its nearest neighbors that provide larger or the 

same curvature compared to the initial site. The hopping will stop when the atom finds 

a site that has the largest curvature or the number of hop is .  

For the F model with the 1  NRT, an atom can move to its nearest neighbors 

that provide smaller or equal height compared to the initial site. The hopping will stop 

when the atom finds a site that has the lowest height or the number of hop is , 

whichever comes first.  

Note also that the growth models studied here are valid only for a certain range 

of temperature which is high enough for surface atoms to diffuse but not enough for 

them to desorb. This mean the value of  cannot be too large.  

 

2.3 Quantities of interest 

 Quantities used in this work are interface width (W ), roughness distribution, 

and the height distribution. Qualitative characterization of the distributions such as 

skewness ( S ), and kurtosis ( Q ) are also studied. 

 2.3.1 Interface width 

The first quantity of interest is the interface width which is the standard 

deviation of the surface height and is defined, for 2 dimensional substrate systems with 

a substrate of L L lattice sites, as   

                          
1/2

2

2
1 1

1
, , ,

L L

x y

W L t h x y t h t
L  

 
    

 
 .                  

(2.6) 

Here,  , , th x y  is the height of site  ,x y  at time t ,  h t  is the average height of the 

surface at time t and the bracket, , denotes a configurational average. In this work, 

50-100 configurations were used. The plot of interface width versus time consists of 

two regions separated by a crossover time or saturation time ( satt ). At early time                   

( satt t ), the interface width increases as a power of time 
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 , ~W L t t  ,                         (2.7) 

where  is the growth exponent. At large time, ( satt t ), the interface width reaches a 

saturated value ( satW ) that depends on the substrate size: 

  ~satW L L ,                     (2.8) 

where   is the roughness exponent. Furthermore, the saturation time also depends on 

the substrate size,  

~ Z

satt L ,       (2.9) 

where z is the dynamical exponent. These three critical exponents obey scaling relation,   




z .     (2.10) 

 

Interface width is plotted as a function of time in monolayers (MLs) on a log-

log scale. A monolayer means that the number of deposited particles during that time 

divide by number of lattice sites on the substrate; L L . Slope of the best linear fit is 

the growth exponent β. In the saturation regime or the steady state, the interface width 

becomes steady. This constant width, Wsat, depends on the system size. If we plot Wsat 

versus L on a log-log scale. The data should be a straight line with the slope being the 

roughness exponent α. 

 

2.3.2 Roughness distribution 

The second quantity calculated in this work is the probability density of squared 

width,  2P W , also known as the roughness distribution [8-10]. Previous works [8-10, 

21] have shown that growth models belonging to the same universality class have the 

same roughness distribution. During simulations, the squared interface width is 

calculated in different configurations, i.e. growth at different time instants, within the 

saturation regime.  2P W  is the probability that the squared width of a given 

configuration lies within the range 2 2 2,W W dW   . Over 810 configurations are used 

for each roughness distribution in our work. 
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The roughness distributions obey a scaling relation of the form [10, 14, 16, 21]  

 
2 2

2 1 W W
P W

 

 
  
 
 

.                                              (2.11) 

Here   is the universal function [6, 10, 16, 21],   is the standard deviation 

calculated from 

    
2 2

2 2W W   ,          (2.12) 

and the average of squared width is  

 

 

2 2

2 1

2

1

N

i i

i

N

i

i

W P W

W

P W









             (2.13) 

when N is the number of configurations. The roughness distribution can be 

quantitatively analyzed with skewness  S and kurtosis (Q ) [39] which are 

   
3

23 2
2 2 2 21 1N N

i i i i

i i

S W W W W
N N

 
   

 
   , and                    (2.14)

   
2

4 2
2 2 2 21 1

3
N N

i i i i

i i

Q W W W W
N N

  
        

  .                          (2.15) 

If 0S  , the height distribution is a normal distribution (Fig. 2.3(a)); if 0S  , it is 

called positively skewed and the height distribution has a longer right tail (Fig. 2.3(b); 

and if 0S  , it is called negatively skewed and the height distribution has a longer left 

tail (Fig. 2.3(c)). In analyzing film morphology, 0S  indicates an up-down symmetry. 

As for the kurtosis, 0Q   indicates a normal distribution (Fig. 2.4(a)) while positive and 

negative Q  shows a peaked distribution (Fig. 2.4(b)) and a flat distribution (Fig. 2.4(c)) 

relative to a normal distribution respectively. 

 

2.3.3 Height distribution  

In this work, we also study the height distribution,  hP h  , which is the probability 

density of the height relative to the average height ( h h h   ).  hP h  is the  
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 (a) 0S                                     (b) 0S                                   (c) 0S                                 

 

 Fig. 2. 3 Illustrations geometrical characteristics of the distribution according to the 

value of S     

 

 

 (a) 0Q                                        (b) 0Q                              (c) 0Q                                 

Fig. 2. 4 Illustrations geometrical characteristics of the distribution according to the 

value of Q     

                                                                                

 

probability that h  of a given configuration lies within the range  ,h h dh   . In 

previous work [12], the scaling of height distribution is    
1

/h h h

h

P h P h 


    when 

h  is the root mean square fluctuation of h . It was used to discuss the height 

distributions of growth models in the KPZ [15] scaling. Quantitative characterization 

of the height distribution can be done by studying the skewness ( S ) and the kurtosis       

(Q ) which can be written as [12] 

   

3

2
3 2

1
1

d d

d

L L

dL
i i

S h h
L

 
   

 
                (2.16) 

 

     

2

4 2
1

1
3

d d

d

L L

dL
i i

Q h h
L

  
     
   

                           (2.17)         
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where L  is the substrate size and d  is the dimension of the substrate. The < > represent 

the ensemble average. 

In analyzing surface morphology, 0S   indicates an up-down symmetry. As 

for the kurtosis, 0Q   indicates a normal distribution while positive and negative Q  

means a peaked distribution and a flat distribution relative to a normal distribution 

respectively.  
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CHAPTER III 

RESULTS AND DISCUSSIONS: SURFACE 

MORPHOLOGY AND INTERFACE WIDTH OF 

GROWTH MODELS 

 

 

 

 

 

 

In this chapter, surface morphology, interface width, and growth exponent of the 

BD, DT, WV, and LC models with and without the NRTs will be presented. Firstly, 

time evolution of surface morphologies and interface width with and without the NRTs 

will be presented. Secondly, effects of the NRTs parameters on the growth exponent of 

the growth models will be discussed. 

Thin film growth with the BD, DT, WV, and LC models in (2+1)-dimensional 

substrate systems were simulated. Substrates of size L L lattice sites are used. The 

value of L  used in this chapter is 100L  . The size 100L  is large enough to show 

the behavior of each model because the finite size effects on the roughness distributions 

of the DT, WV, and LC models are not strong. All models were simulated up to the 

steady state (more than 
610  MLs for the BD, DT, and WV models, and more than 

710  

MLs for the LC model). Effects of the NRTs on the surface morphologies and interface 

width are investigated. The interface width is averaged over 50 to100 configurations. 

 

3.1 Surface morphologies of growth models with and without the NRTs 

In this section, all morphologies are plotted on the same scale for easy 

comparison. The variable on the height axis is, in fact, the height fluctuation, h h . 

Each figure shows a section of 100100 lattice sites from a morphology at time t . 
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Morphologies and an effects of the NRTs on surface morphologies of the BD, DT, WV, 

and LC models are shown.   

Firstly, we present the surface morphologies of the BD model with and without 

only the 1m   NRT. The 1  NRT cannot be used to reduce the noise for the BD 

model because the long surface diffusion length technique cannot be incorporated to 

the BD diffusion rule. Fig 3.1 shows surface morphologies for original BD model              

( 1m  ) at t  = 0.5 MLs, 
33.3 10 MLs, 

63.3 10 MLs. In the noise reduced BD model, 

when m is increased, for example; m  1, 3, 5, and 25 as shown in Fig. 3.2,  surface 

morphologies become smoother as m  increased . This means that a void defect of the 

film grown with the noise reduced BD model is smaller than the original BD model. 

So, the 1m   NRT can reduce a void defect of film grown by a porous aggregation 

model. 

In the DT model, the effects of both the NRTs on morphologies are investigated. 

The morphologies grown with the DT model are shown in Fig. 3.3. The surfaces here 

are in a saturation region. Fig.3.3 (a) shows the surface of the original DT model that 

we can see a lot of high surface steps and deep grooves.  When the noise is reduced 

with 3m  , the surface in Fig. 3.3(b) is much smoother than in Fig. 3.3 (a), with further 

noise reduction at 5m   in Fig. 3.3 (c), the high steps and deep grooves become smaller 

as m increased. Similarly, the surface from the DT model with  1  NRTs become 

smoother as  increased. In Fig. 3.3(d) is morphology that the noise is reduced with

25 . The long surface diffusion length induces reducing the deep grooves by 

increasing probability of atom diffusion to search for the grooves and be incorporated 

there. So, the morphologies become smoother with increasing . Comparing the NRTs, 

we see that both of them are equivalent to produce smoother surface for the film grown 

by the DT model. These agree with previous works [17, 25, 38]. 

 For the WV model, the surfaces from the original WV model shown in Figs. 3.4 

(a) – 3.4(b) suggest that the surface becomes rougher with increasing deposition time. 

In order to investigate the effects of the 1m  NRT, the surface of the WV with the 

noise reduced 5m   is presented in Fig. 3.5. At early time (1.0 ML) in Fig 3.5 (a), the 

morphology is smoother than the original model in Fig 3.4 (a) because the noise 

reduction yields the layer-by-layer growth [17]. Later, at 
31.0 10 MLs in Fig 3.5 (b),  
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Fig. 3. 1 Surface morphologies of the BD model with  m = 1 and at t (a) 0.5 

MLs (b) 
33.3 10 MLs, and  (c) 

63.3 10 MLs   

  

 

 

 

 

(a) 

(b) 

(c) 
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Fig. 3. 2  Surface morphologies of the BD model when (a) 1m   (original model) (b) 

3m  , (c) 5m  , and (d) 25m   at the same time in the steady state. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

(c) 
(d) 
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Fig. 3. 3 Surface morphologies of the DT model when (a) 1m   and 1 , (b) 3m   

and 1 , (c) 5m   and 1 , and (d) 1m   and 25  at the same time in the 

steady state. 

 

 

 

 

 

 

 

 

 

 

(a) ,  
(b) ,  

(c) ,  (d) ,  
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Fig. 3. 4 Surface morphologies of the WV model with  m = 1, 1  at t  (a) 1.0 MLs 

(b) 
31.0 10 MLs, and  (c) 

55.0 10 MLs   

 

(a) 1.0 ML 

(b) 1.0103 MLs 

(c) 5.0105 MLs 
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Fig. 3. 5 Surface morphologies of the WV model with the 5m   and 1 at t  (a) 1.0 

MLs (b) 
31.0 10 MLs, and (c) 

55.0 10 MLs   

 

 

(a) 1.0 ML 

(b) 1.0103 MLs 

(c) 5.0105 MLs 
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specular mounding pattern caused by a non-equilibrium edge diffusion effect [28] can 

be seen, which is step edge diffusion (SED) instability [26]. This also shows that the 

1m   NRT enhances a local uphill particle current [26]. At the steady state, at 
55.0 10  

MLs in Fig 3.5(c), mound formation becomes a single mound, in agreement with 

previous works [26-28].  

In the WV model with the 1  NRT, the noise is reduced with 25 illustrated 

in Fig. 3.6 suggests that increasing  induces the smooth surface at early time in Fig. 

3.6(a), leads a specific mounding pattern in Fig. 3.6(b), and yields a single mounded 

morphology at the steady sate in Fig. 3.6(c). So, the >1 NRT can enhance the layer-

by-layer growth and the mounded morphology same as the 1m   NRT. Our results help 

complete the study of the mounding instability in epitaxial growth model, which have 

been deeply discussed in Ref. [26] and [28]. Additionally, we found that the mounded 

surface can be clearly seen when 3m   for the 1m   NRT and 5  for the 1 NRT.       

For the LC model morphology, time varying surface grown with the original 

LC model is presented in Fig. 3.7(a) - 3.7(c). The film roughness is increased with 

increasing deposition time. When the NRTs are incorporated into the LC model, we 

found that both the 1m   and the 1  NRTs induce the mounded growth in the LC 

model shown in Fig. 3.8 and Fig. 3.9. In Fig. 3.8(a) and Fig. 3.9(a), the small islands 

appeared, however, the surface in Fig. 3.8(a) seems smoother than the surface in Fig. 

3.9(a) this is because the 1m   NRT leads to layer-by-layer-growth in the LC model, 

whereas the 1  NRT cannot induce the smooth surface, unlike the 1m   NRT. the 

1  NRT immediately yields the mounding at early time. In Fig 3.8(b) and 3.9(b), the 

surfaces are in the kinetically rough growth region at 
31.0 10 MLs. When the noise is 

reduced with parameter 5m   in Fig 3.8(b), the mounded surface clearly appear. 

Similarly, when   is increased, for example; 25  in Fig 3.9(b), the specific mounded 

morphology is emerged. At the steady state (
61.0 10 MLs), a single mounded 

morphology is clearly seen as shown in Fig 3.8(c) for the noise is reduced with the 

1m   NRT and in Fig 3.9 (c) for the noise is reduced with the 1  NRT. In our work, 

we found that the mound formation is exhibited when 3m   for the 1m   NRT and  
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Fig. 3. 6 Surface morphologies of the WV model with the 1m   and 25 at 

t  (a) 1.0 MLs (b) 
31.0 10 MLs, and (c) 

55.0 10 MLs   

 

 

 

 

 

 

(a) 1.0 ML 

(b) 103 MLs 

(c) 5105 MLs 
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Fig. 3. 7 Surface morphologies of the LC model with m = 1, 1  at t  (a) 1.0 

MLs (b) 
31.0 10 MLs, and  (c) 

61.0 10 MLs   

  

 

 

 

(a) 1.0 ML 

(b) 1.0103 MLs 

(c) 1.0106 MLs 
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Fig. 3. 8 Surface morphologies of the LC model with 5m   , 1  at t  (a) 1.0 

MLs (b) 
31.0 10 MLs, and  (c) 

61.0 10 MLs   

 

 

 

 

(a) 1.0 ML 

(b) 1.0103 MLs 

(c) 1.0106 MLs 
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Fig. 3. 9 Surface morphologies of the LC model with 1m   , 25  at t  (a) 1.0 MLs               

(b) 
31.0 10 MLs, and  (c) 

61.0 10 MLs   

 

  

(a) 1.0 ML 

(b) 1.0103 MLs 

(c) 1.0106 MLs 
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when 5  for the 1 NRT. The mounding of the noise reduced LC model arises from 

the SED instability caused by the uphill current which have been described in Ref. [26]. 

In addition, our morphology results agree with previous work [26] and also complete 

the mounding study in epitaxial growth as shown in Ref. [26] and [28].        

Finally, the F model which is in the EW class described by Eq. 2.3. The 

morphology grown with the F model is smoother than the film simulated with other 

models. Fig. 3.10(a) shows the surface from the original F ( 1m  and 1 ) and Fig. 

3.10(b) and 3.10(c) present the noise reduced F model. We can see that when the noise 

is reduced with m (Fig. 3.10 (b) and with  (Fig. 3.10 (c)), the morphologies become 

very smooth. 

 

3.2 Effects of the NRTs on the interface width and the growth exponent 

In this section, effects of the NRTs on interface width, and the growth exponent 

are investigated. The value of L is 100 throughout the chapter except when the effect 

of the substrate size is investigated and L  is varied (Fig. 3.19 in section 3.2.2). All 

models are simulated up to the steady state. The results from the films grown with the 

DT, WV, and LC models will be shown only.   

 

3.2.1 Interface width of the DT, WV, and LC models with and without the 

NRTs 

 The effects of the noise reduction parameters ( m  and  ) on the interface width 

are investigated. Plots of W versus t  the growth models with the NRTs are presented.  

In order to study effects of the 1m   NRT, plots of  W t for the DT model with 

the 1m   NRT is shown in Fig. 3.11. The oscillations indicating layer-by-layer growth 

can clearly be observed in early time. They become damp and eventually disappear at 

later time when the interface width crossover to kinetically rough region. This same 

behavior is seen in both the WV (Fig. 3.12), and the LC (Fig. 3.13) models, in 

agreement with previous works [17, 18, 27, 38]. 

The oscillation of W  reveals that each layer is grown from a flat surface, then 

the surface width increases until a layer is half filled. The film becomes a flat surface 

at a completely filled layer before the next layer is grown. Thus the interface width 
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Fig. 3. 10 Surface morphologies of the F model when (a) 1m   and 1 , (b) 10m   

and 1 , and (c) 1m   and 15  in the steady state at 105 MLs. 

 

 

 

(a) ,  

(b) ,  

(c) ,  
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Fig. 3. 11 Plots of  tW  for the DT model, 1 , and m  = 1, 3, 7,and 10. The growth 

exponents correspond to the best slope fit. 
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Fig. 3. 12 Plots of  tW  for the WV model when 1 , and m  = 1, 2, 3, 5, 10, and 15. 

The growth exponents correspond to the best slope fit.  
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Fig. 3. 13 Plots of  tW for the LC model when 1 , and m  = 1,3, 5, 7, 10, and 15. 

The growth exponents correspond to the best slope fit.  
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fluctuates between the minimum values (a filled layer) and the maximum values (a half 

filled layer) and a period of the oscillations is one monolayer (ML). Note that, for 

“perfect” layer-by-layer growth, W  fluctuates between 0 (a completely filled layer) and 

1 (a half completely filled layer).  

The W oscillations are damped because a new layer starts forming before the 

preceding layer is completely filled. Thus W is not reduced to zero. Consequently, our 

results show that 1m  NRT yields layer-by-layer growth at the beginning of the 

growth process for all models studied here. 

In the 1  NRT, the damped oscillations of  W t  for the DT (Fig. 3.14) and 

WV (Fig. 3.15) models are observed when the noise is reduced with parameter . The 

oscillations are obviously observed when parameter  is increased.  These results agree 

with the effects from the 1m  NRT. However, the damped oscillation is not seen in 

the  W t  plot for the LC model. This means that, unlike the 1m   NRT, the 1  NRT 

does not induce layer-by-layer growth in the LC model (see Fig. 3.16). Investigation of 

the morphologies shows that mound formation develops from the beginning of the 

growth process (seen in Fig. 3.8).   

At later growth time, our morphologies confirm that both 1m   and 1  NRTs 

promote very smooth surface in the DT model (seen in Fig. 3.3) and mound formation 

in the WV (Fig. 3.4 - 3.6) and LC (Fig. 3.7 - 3.9) models.  

  

3.2.2 Effects of the NRTs on the growth exponent of the DT, WV, and LC 

models  

Next, we study effects of the noise reduction parameters ( m  and ) on the 

growth exponent    of the DT, WV, and LC models. We found that the noise reduced 

growth exponents m  and m , which are the exponent obtained using different noise 

reduction parameters m  and , depend quite strongly on the value of m and  when 

they are small. However, for large m and , m  and   do not change much as shown 

in Fig. 3.17 - 3.18. 
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Fig. 3. 14  Plots of  tW  for the DT model when 1m  , and  = 1, 5, 15,and 50. The 

growth exponents correspond to the best slope fit.  
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Fig. 3. 15 Plots of  tW for the WV model when 1m  , and  = 1,3, 5, 15, and 

25. The growth exponents correspond to the best slope fit. 
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Fig. 3. 16  Plots of  tW  for the LC model when 1m  , and  = 1, 3, 5, 15, 

and 50.  The growth exponents correspond to the best slope fit. 
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Fig. 3. 17  Plots of m  versus m  for the DT (square), WV (triangle), and LC 

(circle) models when 100L   and 1 . 

 

 

 

Fig. 3. 18 Plots of   versus / L  for the DT (square), WV (triangle), and LC 

(circle) models, when 100L   and 1m  . 
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In the original DT model ( 1m  and 1 ), during early time ( t 102  MLs), 

the best fit yields 
(1) 0.25    while in the later time ( t 102 MLs), the best fit provides

(2) 0.19   as shown in Fig. 3.11 and Fig. 3.14. The value 
(1) 0.25   is close to the 

theoretical calculation from the MH class in Eq. 2.5. This is not the true asymptotic 

value for the growth exponent for the DT model [17, 22]. The value 
(2) 0.19    during 

later growth time is very close to the theoretical value from the VLDS class in Eq. 2.15. 

However, we can suggest that the growth exponent for the (2+1) DT model is 

approximately 0.2, in agreement with previous works [17, 22]. Consequently, the 

crossover shows that the continuum equation describing the DT model contains both 

[40]  the linear forth-order term )( 4h  and the nonlinear fourth-order term ))(( 22 h . 

In order to study the effects of noise reduction, we can see that when m  is 

increased, m  decreases to 0.10m   at 10m   (the DT model in Fig. 3.17). At large 

,   also decreases to 0.13   (the DT model in Fig. 3.18). The decreasing of m  

and   for large m and  hints at the possibility of a crossover to the EW universality 

class which has been shown to be the asymptotic universality class of the (2+1) DT 

model. 

In the WV model, the value of the growth exponent is 0.2 when 1m  and =1, 

which is consistent with previous works [33, 37]. When m and  are increased, m  and 

  both increase significantly (see Fig 3.17 and Fig. 3.18). At the largest  m  and  

used here, both m  and   become larger than 0.3 which does not agree with any known 

universality classes. It is possible that the calculation of the growth exponent may not 

be of much use in the model with mounded morphologies. 

For the LC model, 0.25   when 1m  and =1 indicating that the (2+1) LC 

model belongs to the MH universality class as it should be. However, when m  is 

increased (see Fig. 3.17), we found that m  increases in exactly the same way as in the 

noised reduced WV model. So, we can suggest that the noise reduction parameter m

yields decreasing growth exponent and provides 0.3   for mounded surface grown 

with the WV and LC models. Additionally, increasing  (see Fig. 3.18), on the other 
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hand, does not have much effect on the growth exponent as the value of   remains 

0.25   for all  used here. 

In Fig. 3.19, we show our results of the effective growth exponent in all 3 

models with 1  NRT, denoted 
,eff . For each , 

,eff  is obtained by calculating   

from systems with different substrate size L , plotting    as a function of 
1

L
, then 

extrapolate the curve for 
,eff  which is   as L  as shown in Fig. 3.20. Fig. 3.20 

is the plot of   when L   50, 100, 150, 200, and 250 for the DT model with 10 . 

From the plot, , 0.16eff   for the DT model with 10 . This extrapolation is done 

in an attempt to reduce the finite size effect on  . For this plot, the value of L  ranges 

from 50 to 250. It can be seen that Fig. 3.20, although not identical to Fig. 3.18, offers 

approximately the same information: increasing leads to the slow decrease of   in 

the DT model, significant increase of   in the WV model, and not much change in   

in the LC model. 

Our results shown in this section suggest that studying the growth exponent may 

not be the best method to determine the asymptotic universality of the DT, WV, and 

LC models because of the crossover. However, the results obtained indicate that the 

1m   NRT yields similar behavior in the WV and LC models. 

 

 

 

 

 

 



 

 

47 

                
Fig. 3. 19 Plots of  

,eff  versus  for the DT (square), WV (triangle), and LC (circle) 

models when 1m  . 

 

 

 

 

 

 
Fig. 3. 20 Plots of    versus 1/L for the DT when 10 and L= 50, 100, 150, 200, 

and 250. 
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CHAPTER IV 

RESULTS AND DISCUSSIONS: ROUGHNESS 

DITRIBUTION 

 

 

 

 

 

 

In chapter III, conventional method for finding universality class are shown. In 

this chapter, the roughness distributions and its quantitative characterization such as 

skewness and kurtosis of the original BD, DT, WV, LC, and F models will be shown. 

Effects of the NRTs on the roughness distribution on the DT, WV and the LC are 

presented. Finally, effects of substrate size on the noise reduced DT, WV, and LC 

models will be presented. In this chapter, value of L is 100 throughout the chapter 

except when effect of the substrate size is investigated and L  is varied (in section 4.3). 

  

4.1 Roughness distributions of growth models without the NRTs 

The roughness distributions at the steady state are studied for the (2+1)-

dimensional BD, DT, WV, LC, and F models. The roughness distribution in Eq. (2.11), 

along with S and Q  in Eq. (2.14) and (2.15) are calculated.  

Fig. 4.1 - 4.5 show the roughness distributions of the original BD, DT, WV, LC, 

and F models. In the graph, the distributions are calculated using 89 10N   (for the 

BD, DT, WV and F models) and 910N  (for the LC model). From the roughness 

distribution of each model, S  and Q  are calculated.  We obtained 1.6S  and 5.1Q   

for the BD model, in agreement with previous works [10, 14]. For the DT model, we 

found 1.1S   and 2.1Q  . The closest theoretical values of S  and Q  are from the 

VLDS universality class [10]. Roughness distribution of the WV model has 1.0S  and  
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Fig. 4. 1  Roughness distribution of the BD model with 1m   and 1 . 

 

 

 

 

Fig. 4. 2 Roughness distribution of the DT model with 1m   and 1 . 
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Fig. 4. 3 Roughness distribution of the WV model with 1m   and 1 . 

 

 

 

 

 

Fig. 4. 4 Roughness distribution of the LC model with 1m   and 1 . 
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Fig. 4. 5 Roughness distribution of the F model with 1m   and 1 . 

 

 

 

1.9Q  , which also agree approximately with the VLDS class. For the LC model, we 

obtained 1.3S  and 2.3Q  . These values are close to the theoretical values of the 

MH universality class [10]. In the F model, we obtained 0.6S   and 0.9Q  . 

 

4.2 Roughness distributions of growth models with the NRTs 

In this part, the noise is reduced with the parameter m and  to investigate 

roughness distribution of the growth models. For the DT model, Fig. 4.6 shows the 

roughness distribution when the parameter m  is increased from 1m   (original model) 

to 10m  . It is clear that the roughness distribution does not change significantly with 

the noise reduction parameter m . The values of S  and Q  do not change much either. 

We found 1.1S   and 2.1Q   in the original model, while 1.0S   and 1.9Q   when 

10m  . The 1  NRT leads to similar results with insignificant change in the 

roughness distribution curve (see Fig. 4.7). The film grown with the largest  used 

here, 50 , yields 1.2S   and 2.1Q  . These S and Q  agree approximately with the 

theoretical values of  1.1S   and 1.8Q   in the VLDS class [10]. These results seem 

to indicate that both NRTs, within the limit of m  and  used here, still do not lead to  
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Fig. 4. 6  Roughness distributions of the DT model with the 1m   NRT. 

 

 

 

 

 

Fig. 4. 7  Roughness distributions of the DT model with the 1  NRT. 
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roughness distribution curve of the expected EW distribution [8]. The cause of this 

discrepancy maybe the finite size effects as shown in Ref. [21] for the (1+1)-

dimensional DT model. 

In the WV model, the NRTs drastically affect the roughness distribution curve 

of the WV model. Fig. 4.8 presents the roughness distributions for the WV with the  

1m   NRT. We obtained that when m  is large enough to induce mounded 

morphologies, the roughness distribution turns into a normal distribution. At 10m  , 

we obtained 0.1S  and 0.2Q  . The WV model with the 1m   curves can be fitted 

with the Gaussian function,  

 

2
0x x

c
b

f x ae

  
  

    ,                                                   (4.1)                                       

with 0.24a  , 1b  , 0.5c  , and 0 0.019x   . Similar shift of the roughness 

distribution to the Gaussian curve is found in the WV model with 1  NRT. Fig. 4.9 

shows the roughness distributions for the WV with 1  NRT. At 50 , we obtained 

0.0S   and 0.0Q  . The 1  curves can be also fitted with the Gaussian function, 

with 0.03a  , 1b  , 0.5c  , and 0 0.008x   .  

In the LC model, the NRTs lead to roughness distribution which can be fitted 

with the Gaussian function as well. The distribution curves, with 1m   NRT, are 

presented in Fig. 4.10. The solid line is the Gaussian fit using 0.12a  , 0.96b  , 

0.5c  , and 0 0.05x   . We obtained the skewness and kurtosis of the distribution at 

10m   as 0.2S   and 0.2Q  . The distribution, with 1 , are shown in Fig. 4.11. 

The solid line shows the Gaussian fit using 0.3a  , 1b  , 0.5c  , and 0 0.007x   . 

Both S and Q  are approximately zero at 50 .  

 

4.3 Effects of substrate size on the roughness distribution 

In this part, effects of the substrate size on the roughness distributions of the three 

models with the NRTs are investigated. When the substrate size is varied, we found 

that the roughness distributions are statistically unchanged as shown in Fig 4.12. Fig 

4.12 (a) shows the DT model with 5m    when the substrate size, L , is varied from 

80, 100, 130, to 200. The roughness distribution curves of all substrate sizes collapse 
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Fig. 4. 8  Roughness distributions of the WV model with the 1m   NRT. Solid 

line shows the fit obtained with the Gaussian function. 

 

 

 

 

                       
Fig. 4. 9  Roughness distributions of the WV model with the 1  NRT. Solid 

line shows the fit obtained with the Gaussian function. 
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Fig. 4. 10 Roughness distributions of the LC model with the 1m   NRT. Solid 

line shows the fit obtained with the Gaussian function. 

 

 

 

 

             
Fig. 4. 11  Roughness distributions of the LC model with the 1  NRT. Solid 

line shows the fit obtained with the Gaussian function. 
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(a)  

 

 (b)  

 

 (c)  

 

Fig. 4. 12 Roughness distributions of the (a) DT model ( 5m  ), (b) WV 

model ( 20 ), and (c) LC model ( 20 ) using various substrate sizes. 
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into the same curve. This confirms that the substrate size does not affect the roughness 

distribution of the DT model with the 1m   NRT. Similar results are obtained for the 

WV and the LC models with the 1  NRT. Fig 4.12 (b) and Fig 4.12 (c) are the 

roughness distributions of the 1  WV and LC models respectively. For both models, 

the diffusion length used in these plots is 20 . The substrate size is varied from 50, 

100, 130, to 150. Similar to the 1m   NRT cases, all roughness distribution curves 

collapse into the same normal distribution curve. Similar results are obtained for the 

DT model with the 1  NRT.  

According to our results, the values of S and Q for all 3 models, both original 

and with NRTs, are summarized in Table 1. Note that the theoretical values of the 

skewness and kurtosis (in (2+1)-dimensional films) for the distribution curves of the 

MH are 1.30S    and 2.63Q   [10] while 1.1S  and 1.8Q  for the VLDS 

distribution [10]. 

The results found in the original models are not surprising, but the noise reduced 

results are quite remarkable. Actually, we expected to see a slow change in the noise 

reduced DT roughness distribution from the VLDS to the EW class and the LC 

roughness distribution curve to remain the same, as the LC model, by construction, is 

purely MH class. However, our results are completely different. The NRTs do not 

change anything in the DT model, but lead to the change of the roughness distribution 

curves of both WV and LC models to ones that can be fitted beautifully with the 

Gaussian function and negligible S  and Q . In the case of the DT model, it is possible 

that we do not see any change because the finite size effects may keep the DT roughness 

distribution in the shape of the VLDS class. As for the noise reduced WV and LC 

models, both of them have mounded morphologies when the noise reduction factor is 

large enough and the saturated mounded morphologies of the two models are almost 

indistinguishable. Although unexpected, it may be reasonable for the roughness 

distribution, calculated directly from the saturated morphologies, of the two models to 

be the same as well. We note also that, although previous works [17, 26, 38] have shown 

that the NRTs do not change asymptotic behavior of growth models, our findings here 

show the possibility that the universality class of the models may be affected.  
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Table 1 The values of S and Q for the BD, DT, WV, LC, and F models with and 

without NRTs.  

 

Model 
1m  , 1  10m  , 1  1m  , 50  

S Q S Q S Q 

BD 1.6 5.1 - - - - 

DT 1.1 2.1 1.0 1.9 1.2 2.1 

WV 1.0 1.9 0.1 0.2 0.0 0.0 

LC 1.3 2.3 0.2 0.2 0.0 0.0 

F 0.6 0.9 - - - - 
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CHAPTER V 

RESULTS AND DISCUSSIONS: HEIGHT DISTRIBUTION 

 

 

 

 

 

 

In this chapter, time varying height distributions of the growth models with and 

without the NRTs are simulated. The height distributions are investigated both in the 

early time and the steady state were presented. Beside, finite size effects on the height 

distribution are also shown. In this part, result shown are from simulation film on 

substrates of size L L lattice sites. Value of L is 100L   except when an effect of the 

substrate size is investigated and L  is varied (in section 5.3). 

.  

5.1 Skewness and kurtosis of the height distribution in the early time 

5.1.1 The LC, DT, and WV models with the multiple hit NRT 

In the LC model, when the 1m   NRT is applied, the film is grown in the layer-

by-layer at early time indicated by the oscillating of the interface width (see Fig. 3.13). 

The oscillations become damp and eventually disappear at later time (less than 30 

MLs). For example, if 15m  , interface width crossover to kinetically rough region at 

30 MLs. The layer-by-layer growth is near perfect at larger m . 

To study the height distribution of the layer-by-layer growth, time varying S

and Q  of the height distribution are investigated. The calculated S and Q  are shown 

in Fig. 5.1. Morphologies at very early time are shown in Fig. 5.2.   
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Fig. 5. 1 Plots of (a) S  and (b) Q  versus t  at early growth time of the 

LC model with the 1m   NRT 
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Fig. 5. 2 Surface morphologies of the LC model when 1 and 10m  ; (a) at 

0.5 ML (b) at 0.9 ML (c) at 1.0 ML, and (d) at 1.1 ML. 
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In Fig 5.1(a), at early growth time (less than 10 MLs), the S  value fluctuates 

between the maximum and the minimum values when 1m  . Period of the oscillations 

is one monolayer (ML). Amplitudes of the oscillations become larger as m  is increased, 

which corresponds to a near-perfect layer-by-layer growth. From Fig. 5.1(a), S  

gradually decreases from 0S   at 0.5 ML to its minimum value before abruptly jumps 

back to 0S   at 1.0 ML. It then rises rapidly to its maximum value before gradually 

decreases to 0S   at 1.5 ML. This complete one cycle of the oscillation of S . Figs. 

5.2(a) - (d) show morphologies when the noise is reduced with 10m  . Fig. 5.2(a) 

shows the morphology at 0.5 ML when 0S   (as seen in Fig. 5.1(a)). The zero of S  

indicates that the number of sites that have higher and lower height than the average 

value are the same. This result agrees with the up-down symmetric morphology in Fig 

5.2(a). Fig. 5.2(b) shows the surface with a very large negative S  at 0.9 ML. It is clear 

that the height fluctuations ( h ) are either zero or negative. The film at 0.9 ML is 

obviously negatively skewed. Fig. 5.2(c) illustrates the surface at 1.0 ML which shows 

up-down symmetry. A film at 1.1 ML is shown in Fig. 5.2 (d).  It is obvious that the 

surface is positively skewed in this case.  

Note that although the values of S  at 0.5 ML and 1.0 ML are both zero, their 

surface morphologies (Fig. 5.2(a) and Fig. 5.2(c) are not similar. The reason is that even 

when the height of most positions on the surface at 0.5 ML are varied, the numbers of 

the positions with height lower and higher than 0.5 ML are equal as shown in Fig. 

5.2(a). On the other hand, the height fluctuation of most sites on surface at 1 ML is zero 

and the surface is quite smooth.  

Fig. 5.1(b) shows the oscillation of ( )Q t  of the LC model when the 1m   NRT 

is incorporated with the inset showing details of the curves. We find that Q  oscillates 

with period 1 ML as well. At 0.5 ML, the value of Q  is at its minimum negative value 

which corresponds to the morphology in Fig. 5.2(a). The height of each site on the 

surface is varied so the height distribution is broad. After that, the value of Q   gradually 

increases to the maximum positive value at 1.0t   ML. The height of most sites are the 

same and the surface becomes quite smooth as shown in Figs. 5.2(b) – (d).   

Additionally, S and Q  values can be used to quantitatively analyze the surface 

morphologies as shown in Figs. 5.2(a) to (d). For example, if 0S  and 2.0Q    (see 
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Fig.  5.2 (a)), the surface has up-down symmetry and the height of each site on the film 

are varied, whereas 2.6S    and 5.1Q   (see Fig. 5.2(b)) indicate that the height of 

most sites on the surface are higher than the height average and the top of the surface 

is smooth. In Fig. 5.2(c) ( 0S   and 80.3Q  ), the surface has up-down symmetry and 

the film is very smooth. In Fig. 5.2(d) ( 2.7S   and 5.1Q  ), most positions on the 

surface are smaller than the height average and the surface is smooth. 

In conclusion, we find that S  and Q  values can be used to quantitatively 

analyze the surface morphologies.  When 0S   and 0Q  , the morphology is rough 

with up-down symmetry (Fig. 5.2(a)), however if 0S   but 0Q  , the film is smooth 

with up-down symmetry (Fig. 5.2(c)). When 0S   and 0Q  , the film is smooth with 

tiny grooves (Fig. 5.2(b)) while 0S   and 0Q   indicates a smooth morphology with 

tiny pillars (Fig. 5.2(d)). 

The DT model with the 1m   NRT is also studied for comparison.  W t of the 

noise reduced DT model oscillates during small t  when the noise is reduced.  S t  and 

 Q t  oscillations of the DT model with the 1m   NRT are presented in Fig. 5.3(a) and 

5.3(b).  The period of the oscillations is 1 ML.  At a half monolayer, we found that 

0S   and 0Q  , while at every complete layer 0S   and 0Q  . Our DT results are 

consistent with the LC results.  

Finally, we also study the roughness distribution of the WV model when the 

noise is reduced with m . The 1m   NRT induces the layer-by-layer growth same as 

the LC and DT results. Then  W t  becomes damped oscillation as shown in Fig. 3.12. 

Time varying height distribution presented in Fig. 5.4(a) and 5.4(b) also agree with the 

LC (see Fig. 5.1) and DT (see Fig. 5.3) results.  

  

5.1.2 The LC and DT models with the long surface diffusion length NRT 

We investigate the height distribution of the 1  LC model. Noise reduction 

parameter; 1, 3, 5, 10, 15, and 50 are used. In the early growth time ( 100t  MLs), 

we found that the 1  NRT does not lead to layer-by-layer growth as with the 1m   

NRT (see Fig. 3.16). This is evident by the study of the interface width which does not 
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Fig. 5. 3 Plots of (a) S  and (b) Q  versus t  at early growth time of the DT 

model with the 1m   NRT. 
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Fig. 5. 4 Plots of (a) S  and (b) Q  versus t  at early growth time of the WV 

model with the 1m   NRT.  
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show any oscillation for any value of . These results are confirmed by plots of  S t

in Fig. 5.5(a) and  Q t  in Fig. 5.5(b). It is clear from the plots that when  is increased, 

the small oscillation of S  and Q , which are observed only in the first ML, sharply 

decreases. This means that the layer-by-layer growth is interrupted and it eventually 

disappeared, which agree with morphology result. At beginning growth time                       

( 1  ML), the film becomes mounded surface instead of smooth surface.  

The  S t  and  Q t of the DT model with the 1  NRT is studied to compare 

the results with those of the LC model. The 1  NRT induces the layer-by-layer in the 

DT model (seen in Fig. 3.14) and the  S t  and  Q t results presented in Fig. 5.6(a) and 

5.6(b) agree with the results from the DT model with the 1m   NRT.  

 

 

5.2 Skewness and kurtosis of the height distribution in the steady state  

5.2.1 The LC, WV, and DT models with the multiple hit NRT 

Surface morphologies in the steady state of the 1m   LC, WV, and DT models 

are studied. The 1m   NRT leads to a perfect single mounded morphology as illustrated 

in Fig. 5.7. In Figs. 5.7(a) - (d), the mounded surfaces of the LC model in the steady 

state are illustrated, here the noise is reduced with m  1, 3, 5, and 10. The 1m   NRT 

leads to a single mound on the saturated film for all values of m  used here. Fig. 5.8 

shows the scaled height distributions corresponding to the morphologies in Fig. 5.7. 

Note that the scaled height distributions from systems with different m are 

approximately the same. This is expectable since the saturated morphologies of 

different m  do not differ. Fig. 5.8 is the scaled height distributions of the 1m   LC 

model. A solid line is the Gaussian fit. We can see that all scaled height distributions in 

Fig. 5.8 are nearly the same.  

Fig. 5.9 shows the values of S  and Q  with various m . It can be seen that S  

fluctuates around 0S   while Q  is negative and almost constant for all m . Our finding 

that S  is approximately zero indicates that the mounded morphologies obtained from 

the 1m   LC model are also approximately up-down symmetric. The 1m  NRT does 

not affect the up-down symmetric property of the LC model. The negative values of Q   
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Fig. 5. 5 Plots of (a) S  and (b) Q  versus t  at early growth time of the LC 

model with the 1  NRT. 
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Fig. 5. 6 Plots of (a) S  and (b) Q  versus t  at early growth time of the 

DT model with the 1  NRT. 
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Fig. 5. 7 Surface morphologies of the 1m   LC model at the steady state with 

(a) 1m   (at 61 10 MLs), (b) 3m   (at 51 10 MLs), (c) 5m   (at 51 10

MLs), and (d) 10m   (at 51 10 MLs). 
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Fig. 5. 8 Plots of the height distribution at the steady state of the LC 

model with the 1m   NRT. 

 

 

 

            
 

Fig. 5. 9 Plots of S and Q  of the height distribution at the steady state 

of the LC model with the 1m   NRT. 
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indicates that the single mounded morphology is rough and the 1m   NRT does not 

change the roughness of the film. 

In the WV model, the skewness and kurtosis are 0.06 0.03S     and 

0.16 0.04Q    . The value of skewness shows an up-down symmetry of the surface. 

When m  is increased (see Fig. 5.10), we found that S  is approximately zero same as 

the LC result. This imply that a single mounded surface grown with the 1m   WV 

model are approximately up-down symmetric. Moreover, the value of Q  is slightly 

decreases from 0.2Q    at m =1 to 1.0Q    at 10m  . This indicates that the single 

mounded morphology is rough and the 1m   NRT does not change the roughness of 

the film. 

The height distribution of the DT model is also studied. The surface 

morphologies in the steady state of the 1m   DT model (seen in Fig. 3.3(b) and 3.3(c)) 

present that the 1m   NRT leads to a smooth morphology. In the original DT model, 

the skewness and kurtosis of height distribution are 0.66 0.04S    and 1.4 0.2Q   . 

From the values of S  and Q , we found that when m  is increased the skewness 

increases and converts to zero and the kurtosis decrease to zero as illustrated in Fig. 

5.11. This indicates that the height distribution of the 1m   DT model becomes the 

normal distribution at large m .  

 

 

5.2.2 The LC, WV, and DT models with the long surface diffusion length 

NRT 

Surface morphologies at the steady state of the 1  LC, WV, and DT models 

are investigated. The values of  used here are 1, 3, 5, 10, 15, 25, and 50 for the LC 

model and 1, 5, and 50 for the WV and DT models.  

We found that the 1  NRT leads to a single mounded morphology in the LC 

and WV models (seen in Fig.3.9 (c) and Fig. 3.6 (c) respectively). When 1 , the 

height distributions of the LC and WV models are slightly changed confirmed by the 

plots of the S and Q  in Fig. 5.12 (for the LC model) and in Fig. 5.13 (for the WV 

model). We found that the values of S  and Q  do not change significantly when the 

1  NRT is applied to the LC and WV models. This indicates that the 1  NRT   
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Fig. 5. 10 Plots of S  and Q  of the height distribution at the steady state of the 

WV model with the 1m   NRT. 

 

 

 

 

 

Fig. 5. 11 Plots of S  and Q  of the height distribution at the steady state of the 

DT model with the 1m   NRT. 
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Fig. 5. 12 Plots of S and Q  at the steady state for the LC model with the 1 NRT. 

 

 

 

 

 

 

 
 

Fig. 5. 13 Plots of S and Q  at the steady state for the WV model with the 1 NRT. 
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does not change the up-down symmetric property and the roughness of the film surfaces 

of the LC and WV models. We can conclude that the 1m   NRT and the 1  NRT 

have similar effects on the LC and WV models. 

For the DT model, the 1  NRT produces smooth morphology as shown in 

Fig. 3.3 (d). We found that when  is increased as illustrated in Fig. 5.14 the skewness 

increases but the kurtosis decreases. Our result suggests 0.3S   and 0.3Q  at 50 . 

This indicates that the height distribution of the DT model nearly becomes the normal 

distribution at large , which is approximately consistent with the large m  result. 

 

 

5.3 Finite size effect on skewness and kurtosis of the height distribution at the 

steady state for the BD, LC, and F models. 

Because the substrate size used in previous section is finite, this section shows 

the finite size effects on the S  and Q  of some growth models such as the LC, BD, and 

F models. Substrate size used here are L   32, 64, 128, 256, and 512. To investigate 

effects of the substrate size on the skewness and kurtosis, the values of these quantities 

are calculated from systems with different L . The obtained values, denoted LS  and LQ  

are plotted as a function of 1/ L , when   is a constant that provides the best linear fit. 

The curves are extrapolated back to find the values of LS   and LQ   at 1/ 0L   or 

L . 

From the BD result, plots of LS  and LQ  versus 1/ L  of the BD model are 

illustrated in Fig. 5.15. The constant   used here is 1. The extrapolation shows that the 

skewness and kurtosis are 0.22 0.09LS      and 0.2 0.1LQ    , in agreement 

with previous work [12].  

For the LC model, we obtained the constant   that yields the best linear fit is 0.2 

as shown in Fig. 5.16. In Fig 5.16, the data indicates that when L  the skewness 

and kurtosis convert to 0.05 0.02LS     and 0.62 0.07LQ     .  
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Fig. 5. 14 Plots of S and Q  at the steady state for the DT model with the 1 NRT. 

 

 

 

   

 
Fig. 5. 15 Plots of S and Q  at the steady state versus 1/ L of the BD model when L = 

32, 64, 128, 256, and 512.  
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Fig. 5. 16  Plots of S and Q  at the steady state versus 0.21/ L  of the LC model 

when L = 32, 64, 128, 256, and 512.  

 

 

 

Comparing the noise reduced values of S  and Q  in Fig. 5.9 and Fig. 5.12 (using 

the values from the largest m  and ) with the LS   and LQ   from Fig. 5.16, we find 

them to be approximately the same. Moreover, from Fig. 5.16, it can be seen that the 

finite size effect on the values of S and Q  is very weak in the LC model. Similar to 

the very weak dependent of S and Q  on the noise reduction parameters m  and  in 

the previous subsection. 

In the F model, plots of LS  and LQ  versus 1/ L are presented in Fig. 5.17. The 

values of LS  and LQ   approximately equal -0.03. This shows that finite size 

substrates do not have strong effect on the height distribution of F model.  

From our results, the LC and WV models with the 1m   and the 1  NRTs 

yields a single mounded morphology. We found that S  and Q  do not change 

significantly with parameters m  and . Our results show that S 0  both in the original 

and the noise reduced models which confirms the up-down symmetric property of the 

single mounded surface of the models. Q  is found to be negative which indicates that 

the steady state morphology of the model is rough. It is important to note that mounded 

and rough surfaces are indistinguishable using the value of Q . 
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Fig. 5. 17 Plots of S and Q  at the steady state versus 1/ L of the F model when 

L = 32, 64, 128, 256, and 512.  

 

 

For the DT with NRTs result, we found that, at the steady state, when m is 

increased the height distribution changes into the normal distribution indicated by the 

S  and Q which convert to zero at large m . As the 1  DT result, the result is 

approximately agree with the 1m   DT result. We found that the values of S  and Q  

cannot be used to distinguish the mounded surface and the rough surface of the growth 

models. As the 1  DT result, the result is approximately agree with the 1m   DT 

result. We found that the values of S  and Q  cannot be used to distinguish the mounded 

surface and the rough surface of the growth models. Furthermore, we have performed 

the extrapolation of the values of S  and Q  to that of a system with infinite substrate 

size in order to reduce the finite size effect. 
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CHAPTER VI 

CONCLUSIONS 

 

 

 

 

 

 

Our study is separated into three parts. In the first part, we have studied interface 

widths and growth exponents of the BD, DT, WV, and LC models in (2+1)-dimensional 

substrate systems. Then the DT, WV, and LC models with NRTS were investigated. 

According to the interface width results, the 1m   NRT can induce layer-by-layer 

growth at early growth time in DT, WV, and LC models whereas the 1  NRT can 

only enhance the layer-by-layer growth for the DT and WV models. We do not see the 

layer-by-layer growth in the LC model because mound formation appears at very early 

time. Additionally, both the 1m   and 1  NRTs are equivalent in changing the 

growth exponent towards the EW class. They both enhance the surface smoothness of 

the DT model. They are also equivalent in enhancing the mound formation in the WV 

and the LC models.  

In the Second part, the roughness distribution curves at the steady state of the 

original BD, DT, WV, LC, and F models have been studied. Only the noise reduced 

DT, WV, and LC models were investigated. We found that both the 1m   and 1  

NRTs do not change the roughness distribution for the DT model.  However, they 

totally transform the roughness distributions for the WV and LC models. When the 

values of m  and  are large enough, the roughness distributions of the WV and LC 

models change to the Gaussian distribution. This suggests that the roughness 

distribution of the mounded epitaxial growth should be the Gaussian distribution or the 

normal distribution. We also found that the substrate size does not have any effect on 

the roughness distribution curves of the DT, WV, and LC models. We note that the 
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advantage of the roughness distributions is clear when the study involves models with 

crossovers.    

After that, we studied S  and Q  of the height distribution of the BD, DT, WV, 

LC, and F models in both early time and steady state regimes. Effects of the 1m   and 

1  NRTs on S  and Q , and the surface morphology of the LC, WV, and DT models 

are investigated. For the 1m   NRT, the layer by layer growth mode is observed at the 

transient state as is evident from the oscillation of S  and Q  . The amplitude of the 

oscillation increases with m  indicating that the more perfect layer by layer growth 

mode is obtained when the stronger NRTs are applied. The LC, WV and DT models 

with 1m   NRT show the same results and the same flat morphology for large m  after 

completion of each layer. The oscillation of S  and Q  is, therefore, one of the 

characteristics of layer-by-layer growth mode of all growth models. When the 1  

NRT is applied to the system, rapidly damped oscillation of S  and Q  suggests that 

there is no layer-by-layer growth. The non-oscillating interface width and the mounded 

morphology (which are not shown here) support our conclusion. The 1  NRT 

enhances the layer-by-layer- growth for the WV and DT models but it cannot induce 

the layer-by-layer growth for the LC model indicated by the non-oscillated interface 

width. Rapidly damped oscillations of  S t and  Q t also confirm our conclusion. 

In the steady state, the LC and WV models with the 1m   and the 1  NRTs 

are studied. We found that S  and Q  do not change significantly with parameters m  

and . This confirms the up-down symmetric property of the single mounded surface 

of the models. The steady state morphology of the models is rough. It is important to 

conclude that mounded and rough surfaces are analyzed using the value of Q . 

For the DT, we found that, at the steady state, the NRTs transform the height 

distribution into the normal distribution indicated by the S  and Q which convert to zero 

at large m or . For the BD model, the values of S  and Q  are strongly dependent on 

the substrate size. The finite substrate size does not strongly affect the height 

distribution in the steady state of the LC and F models. 

From all results combined, we conclude that the NRTs cannot be used to find the 

asymptotic critical exponents (  ,  , and z ) for the models that have the mounded 
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morphology such as the LC and the WV models but they are  appropriate for study of 

the roughness distribution of these models. The NRTs are suitable to determine the 

asymptotic critical exponents for the models that have kinetically rough surface without 

mound such as the DT and F models. The roughness distributions of the DT and F 

models with and without the NRTs are very similar so the NRTs are not needed to find 

the roughness distribution of these two models. For the BD model, the multiple hit NRT 

can be used to find both the asymptotic critical exponent and roughness distribution.  
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