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Chapter 1 

INTRODUCTION 

Recently, the solar cell efficiency competitive has drawn significant interest 

from scientist of various disciplines since the energy crisis is one of the world’s major 

problems. The doping II-VI semiconductors, such as in ZnO and ZnS, are promising 

candidate for blue range optoelectronic and spintronic devices. Besides, the ZnO1-xSx 

and ZnO1-xSex ternary alloys have been synthesized for electronic and optical devices 

with the wide range of applications as well. In the band gap-engineering point of view, 

doping cation or anion in both II-VI and III-V lead to a large reduction in band gap. 

The Band-anticrossing (BAC) model was used to describe electronic band structure of 

mismatched alloys. From the BAC, the anticrossing interaction between N localized 

states and conduction band states in a host semiconductor causes the band gap 

bowling effect [1, 2]. The lager bowling parameters of ZnOS and ZnOSe than those of 

GaNP and GaNAs were expected that it is due to large differences in electronegativity 

of O, S and Se [3]. Due to large bowing parameter, II-VI semiconductor would be 

substitute for more adjustable solar cell device, which early has been dominated by 

III-V group. Lehr et al. [4] reported that using special molecular precursors, they can 

adjust the concentration of S in ZnO1-xSx, whereas the latter is adjusted via special 

organometallic precursor molecule for more suitable for light absorption in any range. 

In 2004, Meyer et al. [5] report that using radio-frequency reactive sputtering, a series 

of ZnO1-xSx films with 0 ≤ 𝑥 ≤ 1 was deposited on different substrate. The x-ray 

diffraction (XRD) measurements were used to reveal the structure. The researchers 

found that the films have Wurtzite symmetry. The fundamental energy gaps of ZnO1-

xSx films were shown in Fig. 1. Even through, the films were growth in most 

composition but the structure and electronic property of ZnO0.5S0.5 (x = 0.5) are still in 

doubt due to solubility limit and substitutionally random alloys. 

Rozale et al. [6] reported the structure and properties of ordered ZnO1-xSx 

alloys calculation in various structure (CuAU-I, Cu3Au, Luzonite and Famatinite) 

using local-density approximation (LDA) and Landau-Lifshitz theory of order-

disorder transformation. The calculations result yield that Chalcopyrite and CuAu-I 



 

 

2 

were only two candidate structures of ZnO0.5S0.5 at 0 GPa. However, the electronic 

properties calculation result was underestimate compare with the experimental result 

due to LDA exchange correlation functional. According to Fan et al. [7], in order to 

include the random anion site of alloy, special quasi-random structure (SQSs) with 

LDA was used to investigate the structure and properties of ZnO1-xSx. Wurtzite 

supercells (2 × 1 × 2, 2 × 2 × 1) and Zincblende (1 × 1 × 2) structure were treated as 

model structure. The result yield that the lowest enthalpy structure of ZnO0.5S0.5 at 0 

GPa is Chalcopyrite structure.  

Thangavel et al. [8] computed the electronic properties and total energy of five 

different structures of ZnO0.5S0.5 and ZnO0.5Se0.5 namely Chalcopyrite, Wurtzite, 

Zincblende, CuAu-I and Rocksalt using LDA as exchange correlation function. The 

initial lattice parameters of all structures were obtain by Vegard’s law, which is 

𝑎(𝐴1−𝑥𝐵𝑥𝐶)𝑎𝑙𝑙𝑜𝑦 = (1 − 𝑥)𝑎𝐴𝐶 + 𝑥𝑎𝐵𝐶 , where AC stand for ZnO and BC stand for 

ZnS or ZnSe. By comparing the total energy with decreasing volume (E-V curve), the 

result yield that the lowest total energy at 0 GPa of both ternary alloys were 

Chalcopyrite structure. Khan and Ahmad [9] investigated the electronic band structure 

and partial density of state (PDOS) of ZnO1-xSx using modified Becke and Johnson 

(mBJ) exchange potential comparing with LDA, GGA and corrected LDA in all 

compositions on Zincblende structure. The results yield that both LDA and GGA 

significantly underestimate the band gap from experimental values. The correct LDA 

yield non-reliable results but the mBJ potential calculation results are very close to the 

experimental results, with less than 2% error.  

Although, the previous researchers performed computational work on the 

structure and properties of ZnO0.5S0.5 and ZnO0.5Se0.5 at 0 GPa, there were such 

theoretical reports, it is still unclear that which structure is stable at ambient condition 

owing to insufficient dynamical information of the system, e.g. phonon dispersion and 

structural dynamics at nonzero temperature.  

 



 

 

3 

 

 

Figure 1: Band gap energy of ZnO1-xSx as a function of composition x [5]. 

 

Not only the ternary alloy is interested among the researchers but also II-VI 

doped semiconductor.  A lot of theoretical and experimental works have been done on 

doping II-VI system. Pan et al. [10] reported that a series of ZnO1-xSx (0 ≤ 𝑥 ≤ 1) 

were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS 

ceramic target, using oxygen and argon as working gas. The films were grown for 2 h 

at substrates temperature of 573K and were annealed in temperature range 773-873 K. 

XRD with Cu Kα radiation was used to characterize the structure of the film. X-ray 

photoelectron spectroscopy (XPS) were used to analyze the composition of the films. 

The structures in O-rich side 0 < 𝑥 < 0.23 were Wurtzite and S-rich side (0.77 ≤

𝑥 ≤ 1) were Zincblende structure. However, the films were consistent of 2 phases or 

amorphous in the range of 0.23 < 𝑥 < 0.77 . On the other hand, He et al. [11] 

reported interesting different result. The researchers synthesized ZnO1-xSx thin film on 

sapphire substrates by pulse laser deposition. A ZnS ceramic was used as target with 

varying oxygen partial pressure in order to adjust O composition. The substrate 

temperature was kept constant at 750 °C while the O2 partial pressure was varied in 

the range 0-6 GPa. XRD using both a power diffractometer and a four-circle single 

crystal diffractometer were performed for structural characterization. XPS was used to 
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analyze the composition of ZnO1-xSx films. Wurtzite structures were observed in 

composition range of 0 ≤ 𝑥 ≤ 0.23 and 0.94 ≤ 𝑥 ≤ 1. All of the others compositions 

(0.23 < 𝑥 < 0.94) were phase separation of ZnO and ZnS. Even the researcher 

reported different structure in doping ZnS by O (0.94 ≤ 𝑥 ≤ 1) but the theoretical 

conditions are still in doubt; furthermore, no calculation work on their properties and 

stability under high pressure has been done yet. 

 Elastic properties of solid are important due to fundamental solid-state 

phenomena such as equation of state, phonon spectra and atomic potentials. 

Furthermore, the elastic stiffness coefficients are essential for many applications to 

mechanical properties of solid such as internal strain and thermoelastic stress. 

However, only a few studies have conduct on the mechanical properties of ZnO0.5S0.5 , 

ZnO0.5Se0.5 and O doped in ZnS at high pressure condition. Bilge et al. [12] reported 

that ZnS crystallizes in cubic Zincblende and Wurtzite structure at ambient pressure 

condition. There is a phase transition from Wurtzite to Zincblende and from 

Zincblende to Rocksalt when the pressure is applied. For O doped in ZnS, the high-

pressure phase hasn’t been revealed yet.  

Yu et al. [13] investigated multiple electronic band gap semiconductors in Zn1-

yMnyOxTe1-x. Those alloys have been synthesized using the combination of oxygen 

ion implantation and pulse laser melting. Only 1.3% O doped that substituted Te atom 

in a Zn0.88Mn0.12Te host lead to the formation of a narrow, oxygen-derived band of 

extend state locate within the band gap of host. The researchers demonstrate that these 

type of alloys fulfill the criteria for three-band semiconductor that has been propose of 

making high efficiency, single-junction solar cells. Ishikawa and Nakayama [14] 

performed first principle calculation to investigate the electronic structure on O doped 

in II-VI (ZnS, ZnSe and ZnTe) semiconductor using GGA as exchange correlation 

energy. The 2 × 2 × 2 Zincblende supercells that contain 32 Zn and 32 atom of VI (S, 

Se and Te) were created as a host. To simulate O doping in the II-VI semiconductor, 

one of the VI atom were substituted with O, which correspond to the 3% doping 

comparable to experimental. The result yield that a narrow O originate state occurred 

in host ZnTe band gap as expected; on the other hand, the doped O state was 
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interpreted to be hybridization state of O with conduction band state of host in ZnS 

and ZnSe. The electronic structure of ZnS. ZnSe and ZnTe were shown in Fig. 2. 

According to previous works, the knowledge about the structure and 

properties of ZnO0.5S0.5 , ZnO0.5Se0.5 and O doped in ZnS under pressure should be 

investigated; especially, the structure stability and electronic structure due to 

opportunity to become a promising optoelectronic device. In this thesis, we simulated 

the structure of ZnO0.5S0.5, ZnO0.5Se0.5 and Zn16O1S15 using Cambridge Serial Total 

Energy Package (CASTEP) code base on density functional theory (DFT) with GGA 

and Heyd-Scuseria-Ernzerhof (HSE). The mechanical, electronic properties and 

corresponding stability under pressure of ZnO0.5S0.5 , ZnO0.5Se0.5 up to 30 GPa and 

Zn16O1S15 up to 20 GPa were investigated. The geometry optimizations have been 

done for all structures. The electronic structure, PDOS and elastic stiffness constants 

are reported the first time in this work. 

 

 

Figure 2: Schematic illustration of energy position of O-originate states in ZnS, ZnSe 

and ZnTe [14]. 
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The organization of the thesis is as follows: In Chapter 2 we describe the 

theory is used in this work. Chapter 3 contains the results for structure stability such 

as enthalpy, phonon dispersion and elastic stiffness constant. Chapter 4 gives the 

information about electronic structure and also PDOS of the stable structure. The 

conclusions of this work were presented in Chapter 5. 
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Chapter 2 

THEORETICAL BACKGROUND 

2.1 Many body problem 

Solid is composed of many electrons and nucleus which interaction to one 

another. Therefore, the many body problem needs to be solved inevitably. In classical 

mechanics, the solution for more than 3 particles interaction problem cannot be solved 

exactly. The study of electron and nucleus, therefore, needs the quantum mechanics to 

find the accurate answers. 

 To solve this problem, for quantum mechanics, we apply Schrodinger equation 

as follows; 

 Ĥ E   , (2.1) 

where E is energy of the solid system,   is the wavefunction and Ĥ  is the 

Hamiltonian operator. Hamiltonian operator in solid (system) consists of electron and 

nucleus, as follows; 

 ˆ ˆ ˆ ˆ ˆ ˆ
e e e n e n n nH T V V T V       , (2.2) 

The terms are kinetic energy of electron, Coulomb potential energy between 

electrons, kinetic energy of nucleus, and potential energy between nucleuses 

respectively. The exact Hamiltonian in Eq. (2.2) is in differential form. One of the 

most powerful tools to obtain the solution is the separation variable method. However, 

this method cannot be used due to the Coulomb potential cannot decouple.  

 In order to simplify this problem, Born and Oppenheimmer proposed that in 

the adiabatic condition, the wave functions of electron and nucleus are separable 

function. Thus, the Schrodinger equation for electron and nucleus can be solved 

separately which we focus on electron. Because most of solid’s properties are 

depended on electron. Eq. (2.2) reduced to  

 ˆ ˆ ˆ ˆ
e e e n eH T V V    . (2.3) 
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 Even though the wave function of electron and nucleus are separable but the 

Coulomb potential between electron and electron, as show in the second term in Eq. 

(2.3), are coupling. In order to solve this problem, Hartree used the orthogonal 

electron’s wave function which is, 

 1 2( ) ( )... (r )H n    r r , (2.4) 

as the solution of Eq. (2.3). However, the Hartree energy, defined as EH, is higher than 

the ground state energy in well-known system. In order to improve the Hartee 

approximation, Hartee and Fock added the electron’s behavior. Due to electron is 

indistinct particle and must obey the Puali exclusion principle, lead to the anti-

symmetric electron wave function. The improved solution was represented in Slater 

determinant form as follow; 

  1 2

1
det ...

!
HF n

N
   . (2.5) 

The anti-symmetric wave function provide lower energy, namely Hartre-Fock 

energy EHF, than Hartee energy. However, EHF is still higher than the ground state 

energy due to correlation energy. Fig. 3 show the energy level of E, Ex and Ec. The 

exchange energy was defined by  

 x H HFE E E   , (2.6) 

and the correlation energy was defined by 

 c HFE E E   . (2.7) 

     

Figure 3: The ground state energy level calculated by Hatree and Hartree-Fock 

approximation. 

E 

EH 

Ex = exchange energy 
Energy 

Ec = correlation energy 

EHF 
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2.2 Density function theory 

 In order to investigate the ground state of many body systems, the density 

function theory is the other way to solve Eq. (2.3). This method simplifies the n-body 

equation to the n equation of one body. Density function theory (DFT) has been used 

due to low computational cost requirement and flexibility, nowadays even the 

personal computer (PC) can perform the DFT calculation. 

 In DFT, the energy of the system was represented by the functional of density 

of electron as follow; 

 [ ] T[ ] V [ ] V [ ] V [ ]e e ext xcE         . (2.8) 

The first term, T[  ], represented the kinetic energy of non-interacting electron. The 

next term, Ve-e[  ], is the Coulomb potential between electron and electron. The third 

term, Vext[  ], is called the external potential which is the Coulomb potential between 

electron and nucleus. The last term, Vxc[  ], is the exchange-correlation potential. 

The total number of electron (N) in many body system are defined by  

 ( )N dV  r . (2.9) 

Two important theorems in the DFT were stated by Hohenbreng-Kohn. First, 

the external potential is unique for the corresponding electronic density, beside an 

additive constant. This first theorem is also easily described; the external potential is 

one on one mapping function with electron density.  In order to demonstrate, we 

rewrite the Hamiltonian in term of electron density functional as density matrices as 

follows; 

             extE T V U      , (2.10) 

where   

 2

1

1
( ) ( , )

2
T d      r r =rr r r , (2.11) 

      extV v d   r r r , (2.12) 
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    ' '

2 1 2 1 2 1 2

1 2

1
  ,U d 

 r r r r dr r
r r

, (2.13) 

where  ' ' '

1 2 1 2,N N N    r r r rr r  is the N particle density matrices defined by 

    ' ' ' ' ' ' *

1 2 1 2 1 2 1 2( , )N N N N N N N           r r r r r r r r r r r r . (2.14) 

The first term in Eq. (2.10),  T  , is non-interacting kinetic energy of 

electron. The second term,  extV  , is the potential energy from nucleus of system and 

latter is the potential energy between electrons. We suppose that the external energy is 

not uniquely determined by electron density. We should be able to find two external 

potential ,V V   corresponding to ground state energy with the same  . Let   be the 

ground state of the Hamiltonian ˆ ˆ   ˆ ˆ
ext eeH T V U    that provides the ground state 

energy 0
ˆ E H  . Let   be the ground state of another Hamiltonian

'ˆ ˆ ˆ ˆ  ext eeH T V U     which provides ground state energy ' '

0   ˆ E H   . We have 

 ' '

0
ˆ ˆ           ˆ ˆ E H H H H             , (2.15) 

                                     ' '

0 ext extE v v d      r r r r ,  (2.16) 

and vice versa, 

 ' ' '

0
ˆ ˆ      ˆ  ˆ E H H H H          , (2.17) 

                                        '

0 ext extE v v d      r r r r .  (2.18) 

Adding Eq. (2.16) and (2.18), we get 

 ' '

0 0 0 0   E E E E   , (2.19) 

which is not possible. Therefore, we can conclude that one electron density of 

the system does not provides two difference  extV r . In addition, the ground state 

density and their corresponding  extV r  are confidently obtained at this point. The 

second theorem is that there is the only one exact ground state density,  0 r , which 
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provide the ground state energy of the system, 
0E . The non-ground states densities, 

  r , yield higher energy than the lowest one. The ground state energy is defined by 

     0 0E E E    r r . (2.20) 

2.3 Kohn-Sham method  

Although the classical electron-electron interaction was considered by Hartree 

(the so call Hartee term) that Hatree-Fock modified later by adding exchange energy 

but certain amount of energy (in Quantum point of view) in many body problem is 

displaced, namely the correlation energy. In order to deal with the correlation energy, 

the density matrices come forth to play the main role of this problem. The electron 

density of the system in N particles many body problem is shown in Eq. (2.14). 

However, it is too difficult to deal with so many variables, so we reduced it into one 

particle problem as, 

 
' ' ' '

1 1 1 1 2 1 2 2( ) ( , )N N N NN d d          r r r r r r r r r r . (2.21) 

To handle the two-electron interaction (Coulomb potential), the density matrices 

should be written down in two-particle problem as,    

 
 ' ' ' ' '

2 1 2 1 2 1 2 1 2 2

1
( , ) ( , )

2
N N N N

N N
d d          


  r r r r r r r r r r r r . (2.22) 

 The Hamiltonian can be written in term of the density functional as Eq. (2.10). 

Moreover, the Coulomb potential is less complicated when the density matrices is 

reduced to one particle density matrices as follow, 

      1 2 1 2

12

1 1

2
J d d

r
    r r r r . (2.23) 

 The Hatree potential which considers only classical part of Coulomb potential 

was represented in Eq. (2.23). Beside, we reduced the density matrices of two 

particles as, 

        ' '

2 1 2 1 2 1 2 1 1 2

1
( , ) ,

2
xc       r r r r r r r r r , (2.24) 
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which is separated into classical and quantum part. The
xc  term is the exchange-

correlation hole which provide the exchange-correlation energy, 

      1 1 2 1 2

12

1 1
,

2
xc xcE d d

r
    r r r r r . (2.25) 

The energy functional in Eq. (2.10) becomes 

            xc extE T J E V        . (2.26) 

Due to Kohenberg-Kohn second theorem, we performed the vibrational method to 

find the extremum path 

 
 
 

0
E 




r
, (2.27) 

which lead to  

    21
0

2
effv d

 
    
 

 r r r , (2.28) 

when  effv r is defined as 

  
 

 
 
 

xc

eff

E
v d

  




  


r

r r v r
r r r

. (2.29) 

In this point of view, the non-interacting electrons are moving in the effective 

potential  effv r . Due to the   r  is satisfied Eq. (2.27) condition, the solution of Eq. 

(2.28) and (2.29) are obtained by one-particle Schrödinger’s equation in atomic unit 

      21
 

2
eff iv 

 
    
 

KS KS

i ir ψ r ψ r , (2.30) 

when 

    
2

1

N

i





KS

i
r ψ r . (2.31) 
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The  KS

i
ψ r is the Kohn-Sham orbital. The   r  can be solved self-consistently by 

Eq. (2.29)-(2.31) that is known as the Kohn-Sham method. 

2.4 Exchange-correlation energy 

 The Kohn-Sham method is the powerful tool to obtain the accurate total 

energy of many electrons system. According to Eq. (2.7), the total energy of any solid 

system can be represented in term of electron’s density functional. The first three term 

is well-known form but the exact form of the last, exchange-correlation energy, is still 

questionable functional. Therefore, the exact mapping between electron’s density and 

total energy cannot be written in an explicit form. 

 The exchange-correlation energy can be separated into two term the exchange 

energy, Ex[𝜌], and correlation energy, [ ]cE  , as  

       xc x cE E E    . (2.32) 

The exchange energy, arises from an antisymmetric wavefunction was represented by 

Hatree-Fock approximation in the explicit form as 

 * *1
[ ] ( ) ( ) ( ) ( )d dexact

x j j i iE        
 r r r r r r

r - r
. (2.33) 

However, this exact form is not widely used in the DFT calculation because it is non-

local.  

 There are so many approaches that were proposed lately. They can be 

classified by approximate method as shown in Fig. 4. According to Fig. 4, the higher 

approach lead to more accurate result but it costs more resource. Thus, we have to 

optimize between the acceptable output and the resource. In this thesis we used two 

exchange-correlation functional, i.e. GGA and Hybrid GGA. 
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Figure 4: Jacob’s ladder for the five generation of DFT functionals. 
 

The first exchange-correlation that was chosen, GGA proposed by Perdew-

Burke-Ernzerfof (PBE), which is not only consider the electron’s density but to 

supplement the density with information about the gradient of the charge density, 

 r  in order to account for the non-homogeneity of the electron density as 

follows;  

 [ ] ( , )GGA

xc xcE v d     r . (2.34) 

Even though the GGA provided good result in atomic and molecular energy but their 

electronic structure results do not agree with experimental results.  There are two 

reasons for this problem. First, the DFT method can only predict the ground state 

density. Second, this approach approximated that the exchange-correlation energy is 

the semi-local potential instead of non-local potential in real system. Therefore, the 

Hybrid approach is introduced. 

Fully Non-Local 

Chemical Accuracy 

Hybrid Meta GGA 

Hybrid GGA 

Meta GGA 

GGA 

LDA SPWL 

BLYP, PBE 

TPSS 

HSE, B3LYP 

Hatree-Fock Theory 
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 To treat the non-local effect, the Hybrid included the Hartree-Fork exchange 

energy with the exchange-correlation function in DFT as  

  1hyb HF DFT DFT

xc x x cE E E E     , (2.35) 

where   is either chosen or is fit to some properties of a molecular data base. There 

are many Hybrid functionals have been proposed. In thesis, we used Heyd-Scuseria-

Emzerhof (HSE) functional. In the HSE scheme, not only HF exchange energy is 

included but also the screened Coulomb potential is arise. The GGA-PBE exchange 

and correlation energy are chosen to represent DFT

xE  and DFT

cE . In this functional the 

division of exchange interaction has been proposed in short-range (SR), SRPBE

xE , , and 

long-range part (LR), LRPBE

xE , , as shown 

          , , ,1hyb HF SR PBE SR PBE LR PBE

xc x x x cE E E E E          . (2.36) 

The coefficient   which is set as 25.0 and using 15.0 , which is a numerical 

tests based a realistic value.  HSE has been improved more efficient in predicting the 

energy gap compared to normal GGA. 

2.5 Plane wave Basis set 

 It is keep in mind that the atom in solid state arrange orderly. In non-

interacting system, the electrons are moving in the periodic potential from nucleus. 

Therefore, the potential has to follow the Bloch’s theorem   

 , (2.37) 

where T  is a translation vector. The  U r  satisfied the periodicity in solid by this 

condition. In order to follows the Bloch’s theorem, the electron wave function is 

written as  

 ( ) ( )ie    k R
r R r .  (2.38) 
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Using the Fourier’s transformation, the electron wave function can be expressed as  

 ( )1
( ) ( ) mi

m

m e


 



k G r

r k G , (2.39) 

where G denotes the reciprocal lattice vector and   is the volume of solid system. 

The plane wave basis suit very well in Eq. (2.37). 

2.6 Pseudopotenital  

 In many body problem, the most precise method is all electron calculation 

(AE). However, AE is the most expensive approach to perform calculation. In order to 

optimize resource, the pseudopotential method was introduced to simplify computing 

problem. The AE wave function can be separated into two parts, divided by cutoff  

radius )( cr , the core and valence wave function as suggested by Herring [15], Phillips 

and Kleinman [16]. The core electron wave function oscillates lead to the expensive 

resource, it required so many number of plane wave basis to represent core electron 

wave function. On the other hand, the valence wave function is smooth which mainly 

represent the interaction to other atoms and distributes around the Fermi surface. To 

reduce the computational cost, the core wave function can be replaced by effective 

potential, or pseudopotential as shown in Fig. 5. The pseudo wave function can be 

written as 

 |ps c c ps

c

      , (2.40) 

where c is the wave function in core region, so the summation is summed over the 

core states and   is the AE wave function. Thus, the Schrödinger’s equation that 

satisfies the pseudo wave function is 

 H E  ,  (2.41) 

 ( | ) E( | )ps c c ps ps c c ps

c c

H            ,  (2.42) 

                  (E E) |ps c c c ps ps

c

H E       , (2.43) 
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where  21

2
H V    r  and cE is the eigenenergy of the core state, so that 

 21
( U )

2
ps ps psE     , (2.44) 

where    ps c ps psU V E E    r  is the pseudopotential. To avoid the AE 

calculation, the energy of many body systems can be calculated using pseudo wave 

function and pseudopotential instead. 

 In order to generate an accurate pseudopotential, Hamann, Schlǘter and 

Chiang [17] proposed the conditions to generate norm-conserving pseudopotential as 

follows: 

1. The eigenvalues of the real and pseudo system,  E  and E , respectively, are 

equivalent 

 E E . (2.45) 

2. The wave function outside the core region of the real and pseudo system are 

equivalent 

 ( ) ( )ps r r  for cr r . (2.46) 

3. The integrals from 0 to R , when crR   of the real and pseudo charge 

densities are equivalent (norm-conserving) 

 | |ps psR R
    . (2.47) 

4. The first energy derivatives of the logarithmic derivatives of the real and 

pseudo wave function are equivalent for crr  . 

However, Vanderbit proposed that the norm-conserving constraint can be reduced 

[18]. It is so-called ultrasoft pseudopotential. 
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Figure 5: Comparison of a Coulomb potential and a compatible wavefunction of the 

nucleus (dash blue line) and of the pseudopotential (solid red line), wavefunctions and 

potentials of both are identical when above the cutoff radius, rc. 
 

2.7 Band structure 

 In order to construct the electronic band structure of solid system, Kohn-Sham 

has to be solved to obtain the ground state wave function and also corresponding 

Hamiltonian of the system. The information about properties of the solid system can 

be obtained by the 1
st
 Brillouin zone. The energy level of the n

th
 band at wave vector 

k are obtained by 

 ˆ| H |nk nk nkE   . (2.48) 

 This process yields the energy levels of any n band at various wave vector k, 

for constructing of band structure. 

 The density of states (DOS) for a given n
th

 band, (E)nN , can be calculated 

from 

 
3

(E) (E E (k))
4

n n

dk
N 


  , (2.49) 
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where E (k)n
 depicts the dispersion of the n

th
 band. The total density of state is 

obtained from the summation of all bands. In addition, the total number of electron in 

unit cell can be compute by the integral of DOS from the lowest energy to Fermi level. 

2.8 Structure stability 

2.8.1 Phonon calculation 

 The phonon calculation is performed to investigate the structure’s stability 

under high pressure, the softening of phonon frequency in acoustic mode occur during 

the structure transformation. The imaginary value of phonon frequency implies that 

the crystal structure is in unstable phase.  

 The total energy expansion around the equilibrium point can be written as 

 ,

0 , , , ,

, , , ,,

1
...

2

E
E E  

       

      



  

 


      


 u u u

u
 (2.50) 

where 
,k u  is the atomic displacement from equilibrium position and 





 ,

,  is the 

matrix of force constants 
2

,

,

, ,k k

E 

 

 





 


 

 u u
 . Due to the lowest energy at the 

equilibrium point, all of the others term except the first are the derivative of the 

energy with respect to
,k u . Thus, the second term on the right hand side in Eq. 2.50, 

the 1
st
 order derivative is represented the force acting on the atom, are all zero. The 

fourth term and so on are assumed to be negligible.  The third term represents the 

energy in harmonic approximation. The dynamical matrix is introduced, to obtain the 

phonon frequency, which is defined as   

 , ,

, ,

1
( )D

M M

   

   

 

 

 



 q , (2.51) 

where kM is the mass of the nucleus. The solution of the Eq. (2.51) is obtained by 

eigenvalue equation, 

 2

m m mD   . (2.52) 
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 The results of phonon calculation yield the eigenvalue 2

m , which describes a 

phonon frequency. 

2.8.2 Born criterion 

 The other way to examine the structure’s stability of the crystals system under 

pressure is used the Born criterion. In 1937, Born proposed his theory which based on 

the fact that a liquid differs from a crystal in having zero resistance to the shear stress. 

The distances between the atoms are increase due to thermal expansion, hence the 

restoring forces between the atoms are reduced, and therefore the shear elastic moduli 

decrease with the rising temperature. The softening of the shear moduli leads to a 

mechanical instability of the solid structure and finally lead to a collapsing of the 

crystal lattice at some temperature. The elastic behaviors of a lattice are described by 

its matrix of second-order elastic constant: 

 
2

0

1
ij

i j

E
C

V  

 
     

, (2.53) 

where E is the energy of the crystal, 0V  its equilibrium volume and   denotes a strain. 

The stiffness matrix has size 6  6 and is symmetric. The number of independent 

elastic constant can be reduced by adding symmetry constrains of the crystal class. 

For arbitrary homogeneous deformation by an infinitesimal strain, the energy of 

crystal can be written as follows; 

 
6

3

0 0

, 1

1
( )

2
ij i j

i j

E E V C O  


   . (2.54) 

  There are two conditions to determine the stability of crystal structure. First, 

all of its phonon modes have positive frequencies for all wave vectors so called 

dynamical stability. Second, the elastic energy, given by Eq. (2.54) is always positive. 

The latter condition is called the elastic stability condition. For the example, in the 

case of cubic crystals, the conditions of stability reduce to a simple form; 

 11 12 11 12 440; 2 0; 0C C C C C      . (2.55) 
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 However, the stability criteria must be modified when the solid is subject to an 

external load. The Born criterion under high pressure condition for tetragonal and 

hexagonal system in this work is shown as follows [19, 20]; 

 44 66 11 120, 0, 2 0C P C P C C P          

and                                      
2

33 11 12 13(C C ) 2 0C P C P     . (2.56) 

2.8.3 Molecular dynamic (MD) 

 Although the DFT is fairly popular and powerful for solving condensed matter 

system but it has a limitation. It is keep in mind that DFT calculation is performed 

under extremely 0 K. Therefore, the optimized structure from our calculation is 

obtained under unrealistic thermodynamic condition. In order to include temperature 

effect on solid system, MD is introduced in this work. It is well know that the effect 

of temperature are crucial for nucleus movement, the effect of temperature on the 

motion of nuclei has been included in order to predict the evolution of the structure at 

non-zero temperature. In MD calculation, the motions of the nucleus were examined 

by the force acting on individual nuclei which can be written as follows; 

 I

I


 


F

R
, (2.57) 

where RI is a nuclei position. The total energy,  , can be expressed as 

  

 Ĥ   , (2.58) 

where   represent the Kohn-Sham orbital. By substitute Eq. (2.58) into Eq. (2.57) we 

get: 

ˆ
ˆ ˆ

I

I I I

H
H H

 
   

  
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  
F

R R R
 

                                   
ˆ

I I
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R R

 
  
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 
   

                                        
ˆ

I

H

R
 


 


,                 (2.59) 
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where the normalized condition is 1   . 

  

 
Figure 6: Diagram of Molecular dynamics (MD) method. 
 

DFT calculation in MD method through Hellman-Feynman theorem was 

shown in Fig. 6. First, the optimization calculation give the ground state Kohn-Sham 

orbital so the force act on nuclei were obtain by Eq. 2.59. Second, the Newton’s 

equation, I IF Ma , was applied to obtain the acceleration. The velocity and position 

of nuclei were computed by integrated the acceleration once and twice, respectively. 

Finally, the temperature of the system can be described by the Maxwell-Boltzmann 

distribution as following, 

 2

B

1 3

2 2
Imv Nk T , (2.60) 

where Bk  is the Boltzmann constant. The system will evolve until the temperature of 

the system is converted.   
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Chapter 3 

Structure properties and stabilities 

 The II-VI ternary alloys ZnOxS1-x and ZnOxSe1-x are unable to synthesize yet 

due to their solubility limit [11]. In this work, we compared the total enthalpy of five 

different structures, namely, Chalcopyrite (𝐼4̅2𝑑 ), Rocksalt (𝐹𝑚3𝑚 ), Zincblende 

(𝐹4̅3𝑚), Wurtzite (𝑃63𝑚𝑐) and CuAu-I (𝑃4̅𝑚2) at various pressures. The symbols in 

parentheses after the structure names stand for space group symmetry symbol 

following the International Tables for Crystallography. All of the candidate structures 

were shown in Fig. 7. In order to investigate the structure properties and their 

stabilities, the lattice parameters have to be computed due to the fact that there is no 

experimental result yet. We applied the Vegard’s law to ternary alloy systems, which 

is,  1( ) 1x x alloy AC BCa A B C x a xa    , where AC stand for ZnO and BC stand for ZnS 

or ZnSe, to obtain the initial value of lattice parameter of all structures at 0 GPa 

condition. All of the lattice parameters were optimized to provide more accurate 

crystal structures properties. Besides, the optimized structure at high pressure was 

calculated to obtain the high-pressure structure properties and their corresponding 

stability such as bulk modulus, phonon dispersion and electronic structure. The results 

will yield the condition for synthesize ternary alloy II-VI films and also their 

corresponding properties of high pressure phase structure. 

 For O doped in II-VI case, previous researchers reported two different 

structures namely Wurtzite and Zincblende, which obtained from two different 

conditions in the film growth processes [10,11]. To investigate the lowest enthalpy of 

crystal structure, Wurtzite, Zincblende and Rocksalt structures were optimized to 

improve structure at 0-50 GPa conditions. It is note here that Rocksalt structure is 

common high-pressure structure phase of II-VI semiconductor, which was included to 

consider the new phase of Wurtzite and Zincblende structures at high-pressure 

condition. Not only the total enthalpies of all structures were calculated but also the 

structure stability and corresponding electronic structures at high-pressure conditions 

were presented here for the first time. In this chapter, we present the computational 
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detail, the calculated enthalpies, bulk modulus and phonon dispersion of all structure 

at ambient as well as high-pressure conditions to reveal the most stable structure at 

these conditions.  

 

Figure 7: The five possible structures for ZnO0.5S0.5 and ZnO0.5Se0.5 a) Chalcopyrite b) 

Zincblende c) CuAu-I d) Rocksalt and e) Wurtzite.  

 

In this work, the self-consistent field (SCF) method in Cambridge Serial Total 

Energy Package (CASTEP) code [21, 22] with plane wave basis set were used to 

investigate the structural properties and stability of ZnO0.5S0.5, ZnO0.5Se0.5 and 

Zn16O1S15 at high-pressure condition. All the calculations performed in this chapter 

d) 
a)

b) 

 

c) 

e) 
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are based on DFT using GGA scheme. 

 In order to compare our calculation results with the experiment, we computed 

the properties of II-VI semiconductors such as ZnO, ZnS and ZnSe in Wurtzite and 

Zincblende structures at ambient condition using GGA as exchange-correlation 

functional. The convergence tests of energy cutoff and k-point have been done. The 

calculation results compared with the others experimental works were shown in table 

1. The results yield that our calculated lattice constants are only difference from the 

experimental less than 2%. For electronics properties, it is well known that the energy 

gap in GGA scheme is under estimate so our electronic properties calculation can 

only suggest the trend but not an exact value. However, in this work the hybrid 

functional HSE06 was introduced to obtain more accurate electronic properties.  

 

Table 1: The optimized lattice parameter and energy gap of II-VI semiconductors 

compared with the experimental results. 

 ZnO ZnS ZnSe 

Lattice 

constant (Å) 

Wurtzite Zincblende Wurtzite Zincblend Zincblend 

a 3.28, 

3.25
[23, 24]

 

4.620, 

4.60
[23]

 

3.842, 

3.811
[23]

 

5.438, 

5.42
[23]

 

5.692, 

5.67
[23]

 

c 5.29, 

5.20
[25]

 

 6.301, 

6.234
[23]

 

  

Energy gap 

(eV) 

1.157, 

3.2
[23]

 

0.646, 

3.28
[25]

 

2.172, 

3.68
[23]

 

2.109, 

3.911
[23, 24]

 

1.304, 

2.7
[23, 24]

 

 

For phonon dispersion calculation, CASTEP provide two powerful tools to 

obtain phonon dispersion of solid system namely linear response and finite 

displacement methods. We compared the phonon dispersion calculations results of 

both linear response and finite displacement methods of ZnO in Wurtzite structure in 

Fig. 8. According to Fig. 8, the phonon calculations results from both methods yield 

similar thread. Both linear response and finite displacement methods provided non-

imaginary frequencies. This result is good agreement with experimental result that 

ZnO can be synthesized in Wurtzite structure at ambient condition. Unfortunately, the 

linear response in CASTEP code is only supported norm-conserving pseudopotential 

which the researchers proposed that required more computing power beyond the 
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available resource since it required more energy cutoff to converge than the ultrasoft 

pseudopotential in finite displacement method. In this work, we used the finite 

displacement method to investigate the phase stability. 

 

 

Figure 8: The phonon dispersion of ZnO in Wurtzite structure by a) linear response 

and b) finite displacement methods.  

a

) 

b

) 
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3.1 The structure of ZnO0.5S0.5 and ZnO0.5Se0.5 

Even the higher cutoff energy (more term required in plane wave basis set) 

leads to more accurate result but they also consume significant computational 

resource since the convergence test has to be done to optimize resource. The energy 

convergence tests were calculated by comparing total energy of plane wave with 

cutoff energy in all structures. The cutoff energy convergence test of ZnO0.5S0.5 and 

ZnO0.5Se0.5 in Chalcopyrite and CuAu-I structures were shown in Fig. 9 and 10 

respectively. In addition, the k-points convergence tests are performed in all structures. 

The energy versus number of k-points of ZnO0.5S0.5 and ZnO0.5Se0.5 in Chalcopyrite 

and CuAu-I were shown in Fig. 11 and 12 respectively. The lattice parameters and 

calculations setting of all structures are listed in table 2. 

Table 2: The lattice parameter, energy cutoff and k-points of five structures were 

shown. 
 

 

Structure 

 

a (Å) 

 

c (Å) 

 

Energy cutoff (eV) 

 

k-points 

Chalcopyrite 5.0411 10.055 550 8×8×4 

Rocksalt 5.9155  550 6×6×6 

Zincblende 5.9633  600 6×6×6 

Wurtzite 3.5760 5.8394 550 6×6×6 

CuAu-1 3.6256 4.8386 700 6×6×6 
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Figure 9: The cutoff energy convergence test of ZnO0.5S0.5 in a) Chalcopyrite and  

b) CuAu-I structures. 

  

a) 

b) 
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Figure 10: The cutoff energy convergence test of ZnO0.5Se0.5 in a) Chalcopyrite and  

b) CuAu-I structures. 

  

a) 

b) 
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Figure 11: The k-point convergence test of ZnO0.5S0.5 in a) Chalcopyrite and  

b) CuAu-I structures. 

  

a) 

b) 
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Figure 12: The k-point convergence test of ZnO0.5Se0.5 in a) Chalcopyrite and  

b) CuAu-I structures. 

 

  

a) 

b) 
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3.2 The structure stability of ZnO0.5 S0.5 and ZnO0.5Se0.5 

 In order to investigate the most stable structure at ambient and also high-

pressure condition, we compared total enthalpy of the five structures at various 

pressures. The total enthalpies differences from Chalcopyrite structure in ZnO0.5S0.5 

and ZnO0.5Se0.5 with various pressures were shown in Fig. 13a and 13b. By 

considering the total enthalpy differences between the Chalchopyrite and the others 

structures, we found that the lowest enthalpy structure of both ZnO0.5S0.5 and 

ZnO0.5Se0.5 at low-pressure regime is the Chalchopyrite and then they transform to 

CuAu-I at high-pressure condition. The transition pressures are at 27 GPa and 30 GPa 

for ZnO0.5S0.5 and ZnO0.5Se0.5 respectively.  

 

Figure 13: The total enthalpies difference compare with Chalcopyrite structure per 

formulae unit versus pressure of a) ZnO0.5S0.5 and b) ZnO0.5Se0.5. 
 

Not only the lowest enthalpy was used to reveal the stable structure at any 

pressure but also the necessary elastic stiffness constant conditions have to be 

considered in mechanical stability point of view. We perfumed elastic stiffness 

constants calculation on both Chalcopyrite and CuAu-I structures with various 

pressures. The bulk modulus and elastic stiffness constants are shown in table 3 The 

Born criterion to be stable structure in both Chalcopyrite, CuAu-I (tetragonal) and 

Wurtzite (hexagonal) are 33 11 12

2

11 12 13 4 664(CC C ; 2C 0;C 0C );CC     for 0 GPa 

and Eq. (2.56) for applied pressure conditions respectively. According to table 3, the 

Chalcopyrite structures in both ZnO0.5S0.5 and ZnO0.5Se0.5 satisfied the Born criterion 
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at 0 GPa and also satisfied lowest necessary conditions for Born criterion at high-

pressures conditions up to 10 GPa, so Chalcopyrite structure can be the stable 

structure up to 10 GPa. On the other hand, CuAu-I provided negative value in C66 in 

both ZnO0.5S0.5 and ZnO0.5Se0.5 structures at 25-35 GPa, which are not satisfaction for 

necessary mechanical stability conditions in solid. Therefore, the structures of II-VI 

ternary alloys in this work may be Chalcopyrite structure up to 10 GPa but the high-

pressure CuAu-I phase is not a stable structure due to mechanical stability conditions. 

In order to verify this, further calculations have been performed.  

One of the most powerful tools to observe the dynamical stability of any 

structure is phonon dispersion calculation. The main idea of this tool is that the 

negative phonon frequencies do not contain in phonon dispersion of stable structure. 

In order to check the dynamical stability of the candidate structures, the phonon 

dispersion calculation were performed at 0-30 GPa for Chalcopyrite and 25-35 GPa 

for CuAu-I respectively. The phonon dispersions of ZnO0.5S0.5 and ZnO0.5Se0.5 in both 

candidate structures at various pressures were shown in Fig. 14 for ZnO0.5S0.5 and Fig. 

15 for ZnO0.5Se0.5. The high symmetry point of both Chalcopyrite and CuAu-I were 

shown in Table 4. According to Fig. 14a, the Chalcopyrite ZnO0.5S0.5 phonon 

dispersion shows the phase transition signal with increase in pressure through 

softening of acoustic phonon around M and R points. Nevertheless, up to 30 GPa, it 

never reaches negative value. For the Chalcopyrite ZnO0.5Se0.5 (see Fig. 15a), the 

phonon dispersion shows softening of acoustic mode around X and Z points but non-

negative frequencies occurred. 
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Table 3: The elastic stiffness constant and bulk modulus of Chalcopyrite and CuAu-I 

structure with various pressures of ZnO0.5S0.5 and ZnO0.5Se0.5. 

 

ZnO0.5S0.5 Chalcopyrite 

Pressure (GPa) C11 C12 C13 C33 C44 C66 B (GPa) 

0 

10 

20 

30 

145.24935 

178.76330 

208.98915 

235.20130 

100.85090 

141.44775 

186.08790 

230.88105 

104.73770 

146.75775 

192.54785 

236.50550 

152.09275 

184.96845 

233.53605 

278.46490 

66.44435 

58.49910 

47.97290 

40.33175 

57.53515 

46.95335 

38.35075 

33.56435 

117.94341 

156.64997 

196.99682 

232.72941 

ZnO0.5S0.5 CuAu-I 

25 

30 

35 

308.88098 

357.34535 

395.23555 

196.47036 

224.17780 

248.71070 

162.06800 

172.84955 

184.01255 

127.62283 

145.58930 

170.46665 

26.72024 

20.45690 

18.17965 

-1.89740 

-36.35970 

-65.13380 

117.96243 

137.39176 

168.99181 

ZnO0.5Se0.5 Chalcopyrite 

Pressure (GPa) C11 C12 C13 C33 C44 C66 B (GPa) 

0 

10 

20 

30 

84.46470 

143.74795 

198.69780 

207.62255 

60.30870 

115.69475 

177.31465 

199.50615 

48.74905 

120.95565 

186.41870 

207.22950 

117.06870 

163.85050 

232.39590 

256.16495 

44.54605 

31.46395 

52.58430 

60.24755 

43.18810 

46.72340 

49.64665 

63.20915 

66.31064 

128.23400 

187.95324 

203.26761 

ZnO0.5Se0.5 CuAu-I 

25 

30 

35 

302.79335 

342.06010 

372.19530 

196.08170 

218.67255 

237.12085 

152.03135 

161.49445 

173.93905 

126.79065 

150.94575 

176.32665 

-1.23465 

2.31100 

14.95200 

-40.45170 

-81.60795 

-204.1679 

117.96243 

149.91850 

176.28382 

 

Beside, CuAu-I structure yielded phonon hardening sign (see Fig. 14b and 

15b) in both ZnO0.5S0.5 and ZnO0.5Se0.5.To conclude, in the low pressure regime, We 

found no imaginary phonon frequency and no Born criteria violation elastic stiffness 

constants up to 10 GPa for Chalchopyrite. However, for CuAu-I, there exist the 

unsatisfactory elastic stiffness constant, C66. Therefore, Chalchopyrite is the only 

stable structure of ZnO0.5S0.5 and ZnO0.5Se0.5 at ambient which is in excellent 

agreement with the others researchers [6–8].  
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Figure 14: The phonon dispersion of ZnO0.5S0.5 of a) Chalcopyrite and b) CuAu-I 

structures with various pressures. 

 

a) 

b) 
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Figure 15: The phonon dispersion of ZnO0.5Se0.5 of a) Chalcopyrite and b) CuAu-I 

structure with various pressures. 

 

 

 

Table 4: The symmetry point of a) Chalcopyrite and b) CuAu-I structures. 

a) 

b) 
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Lable Coordinates 
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N    0    
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2
    0 

 

 

To obtain more evidence for our calculations, the MD calculations were 

established. NPT [26] Gamma-point (Γ-point) MD calculations were employed for the 

Chalcopyrite structure (Zn 108, O and S 54 atoms) and CuAu-I structure (Zn 54, O 

and Se 27 atoms) systems at 300 K under 30 GPa. The converged results from MD 

calculations of Chalcopyrite and CuAu-I structures of ZnO0.5S0.5 at 30 GPa and 300 K 

are shown in Fig. 16b and 16d, respectively. By comparing with their respective 

initial structures Fig. 16a and 16c, Zn (grey) S (yellow) and O (red) atoms fluctuate 

about their equilibrium point owing to the temperature effect and this result converged 

within 1 ps simulation time, nevertheless they are still in the same crystal plane as the 

initial supercell. In contrast, in the case of CuAu-I structure, Zn (grey) atoms in [100] 

and [010] plane in the final supercell (see Fig. 16d) are distorted and tend to change 

the supercell into another structure after 5 ps of MD calculation time which shows 

that this structure is not vibrational stable. This indicates that the Chalcopyrite 

structure were stable at 30 GPa and 300 K even adding the temperature effect by MD 

calculation. However, combining these results with those of the phonon dispersion 

and the Born criteria, these are the strong evidences enable us to conclude that the 

Chalcopyrite structure is the most stable structure up to only 10 GPa due to elastic 

constant stability condition. These results also agree with the ternary alloy such as 

𝐼 − 𝐼𝐼𝐼 − 𝑉𝐼2 and 𝐼𝐼 − 𝐼𝑉 − 𝑉2 they tend to be in Chalcopyrite structure at ambient 

condition at room temperature [27]. In addition, the phonon softening and decreasing 

Lable Coordinates 
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2
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a) b) 
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of C66 with the increasing pressure of the Chalcopyrite phase show the possibility of 

phase transition at higher pressure. 

 

 

Figure 16: a) The initial optimum supercell of ZnO0.5S0.5  in Chalcopyrite structure at 

0 GPa and 0 K b) The final supercell at 30 GPa and 300 K c) The initial optimized 

supercell of ZnO0.5S0.5  in CuAU-I structure at 30 GPa and 0 K and d) The final 

supercell at 30 GPa 300 K. 
 

Not only the structure stability and properties of II-VI ternary alloys were 

investigated but phase transition also were included in this work. Rocksalt structure, 

the common high-pressure phase of II-VI semiconductors, is examined due to its 

enthalpy is lower than Chalcopyrite structure at 70 GPa. The phonon dispersion were 

calculated at 70 GPa. The result revealed that Rocksalt structure was unstable at high-

pressure regime. The phonon dispersion of Rocksalt structure at 70 GPa was shown in 

Fig. 17. 

 

 

 

a) b) 

c) d) 
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Figure 17: The phonon dispersion of Rocksalt structure at 70 GPa condition.  

 

3.3 The structure stability of O doped in ZnS 

Two dilute O-doped ZnS − i.e. Zn16O1S15 − systems are modeled by 

substituting an S atom of 2 × 2 × 1 Zincblende and 2 × 2 × 2 Wurtzite supercells, 

which compose of 16 Zn and 16 S atoms, with an O atom. In addition, the energy 

cutoff and k-point convergences test have been done. 

  According to Pan et al. [10] and He et al. [11], structures of S rich O-doped 

ZnS are both Zincblende and Wurtzite at ambient pressure depending on sample 

preparations. To figure out that which one is the most stable structure of Zn16O1S15 at 

a given pressure, we compared the enthalpy/formula of Wurtzite with that of 

Zincblende as a function of pressure. The result is shown in Fig. 18. At low pressure, 

the lowest enthalpy/formula structure is Zincblende. The Zincblende enthalpy/formula 

is lower than that of Wurtzite about 0.238 eV/formula at 0 GPa and slightly more at 

higher pressure. The Wurtzite enthalpy/formula difference is fairly firm against 

pressure before it approaches a particular pressure at which it becomes zero, ~42 GPa. 

After this pressure, the Wurtzite structure is energetically more preferable than 

Zincblende. On the other hand, Bilge et al. [12] reported that ZnS crystallizes in cubic 

Zincblende and Wurtzite structure at ambient pressure condition. There is a phase 
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transition from Wurtzite to Zincblende and from Zincblende to Rocksalt under high 

pressure condition. As mention before, both of Zincblende and Wurtzite structures of 

S rich in ZnO1-xSx films were observed experimentally. This can be explained by our 

results as follows. At ambient pressure the both of Zincblende and Wurtzite structures 

are stable and the energetically preferable one is the Zincblende. Thus, a difference in 

growing temperatures results in different crystal structures. In Pan et al.’s [10] work, 

the temperatures during annealing process were around 773-873 K. While in He et 

al.’s [11] work the temperature of the ZnS substrate was 1023 K. The thermal energy 

differences between these two sample preparations are in a range of 0.207 – 0.345 

eV/formula, assuming that each atom gained 
1

2
Bk T  thermal energy. This is a reason 

why they obtained such crystal structures. 

 

  

Figure 18: The total enthalpies difference compare with Zincblende structure per 

formulae unit of Zn16O1S15 versus pressure. 
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In order to examine the mechanical and dynamical stability of both Zincblende 

and Wurtzite structure at a given pressure, we computed the phonon dispersion and 

elastic stiffness constant at a given pressure. The phonon dispersion were shown in 

Fig. 19 and 20 for Zincblende and Wurtzite structures respectively. The elastic 

stiffness constant calculations results were shown in table 5. Besides, the high 

symmetry point of both Zincblende and Wurtzite were shown in Table 6. For 

Zincblende structure, The phonon dispersion,  2 k , and elastic constants show that 

this structure is mechanical stable from 0 to 10 GPa and unstable at 20 GPa as the 

former reaches negative values and the latter violate the Born criteria, i.e. 

11 12 2 11.32 0C C P     , (see Fig. 19 and Tab. 5). On the other hand, Wurzite 

structure obeys both mechanical stability conditions at a range of pressure 

from 0 to 20 GPa (see Fig. 20 and Tab. 5). 

 

Figure 19: The phonon dispersion of Zn16O1Se15 in Zincblende structure with various 

pressures. 
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Figure 20: The phonon dispersion of Zn16O1Se15 in Wurtzite structure with various 

pressures. 
 

Table 5: The elastic stiffness constants and bulk modulus of Zn16O1S15 with various 

pressures. 
 

Zincblende 

Pressure (GPa) C11 C12 C13 C33 C44 C66 B (GPa) 

0 

10 

20 

99.70 

137.66 

171.55 

58.15 

101.79 

142.87 

58.15 

101.70 

142.74 

99.67 

137.46 

170.45 

48.43 

45.43 

40.13 

48.68 

46.00 

40.20 

72.00 

113.69 

152.25 

Wurtzite 

0 

10  

20 

118.38 

157.64 

188.07 

52.52 

94.51 

134.06 

40.77 

80.70 

122.51 

138.80 

188.24 

228.00 

28.11 

25.21 

20.85 

32.93 

31.56 

27.00 

71.46 

112.61 

150.74 
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It is well known that Rocksalt structure is the common high-pressure phase for 

both Zincblende and Wurtzite structure in II-VI semiconductor. In this work, we also 

investigated the phase transition in O doped ZnS. The total enthalpy/formulae versus 

pressure were calculated comparing with low-pressure phase. The results were shown 

in Fig. 21. Even, the enthalpy/formulae of Rocksalt structure is the most energetically 

preferable structure and the phase transition from Zincblende or Wurtzite to Rocksalt 

occurs at around 17.5 GPa but its phonon dispersion, which is shown in Fig. 22, yield 

an imaginary phonon frequencies so the Rocksalt structure was excluded in this point 

of view. 

 

Table 6: The symmetry point of a) Zincblende structure and b) Wurtzite structure 
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Figure 21: The total enthalpies difference compare with Zincblende structure per 

formulae unit of Zn16O1S15 versus pressure. 
 

 

Figure 22: The phonon dispersion of Rocksalt structure at 40 GPa.  
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Chapter 4  

ELECTRONIC PROPERTIES 

II-VI wide band gap semiconductors have been used in blue-range 

optoelectronic device due to wide band gap. In addition, these types of 

semiconductors have also drawn interest for substitute in III-V, which dominate the 

solar cell device scene. Due to the large bowing parameter of II-VI semiconductor 

lead to more adjustable band gap than III-V groups [5,10,11]. In this chapter, we 

investigated the electronics properties of both II-VI ternary alloys (ZnO0.5S0.5, 

ZnO0.5S0.5) and O doped in ZnS (Zn16O1S15). For II-VI ternary alloys, GGA were used 

as exchange correlation energy to observe the electronic structure, PDOS and electron 

densities difference of the stable structure in Chapter 3 under high-pressure conditions. 

The electronic structures of O doped ZnS were revealed more precisely by HSE06 

functional and also comparing with the GGA, to examine the PDOS of the stable 

structure under high-pressure. The information about these results are vital for band 

gap engineering in this type of materials. 

 

4.1 The electronic structure of ZnO0.5S0.5 and ZnO0.5S0.5 

The Chalcopyrite’s electronic structure of both ZnO0.5S0.5 and ZnO0.5Se0.5 at 0 

GPa condition were shown in Fig. 23 and 24 respectively. According to Fig. 23 and 

24, both of Chalcopyrite ZnO0.5S0.5 and ZnO0.5Se0.5 are direct band gap 

semiconductors at gamma point. Their corresponding energy gaps at 0 GPa are 1.193 

and 0.675 eV respectively. Additionally, more calculation results of energy gaps of 

Chalcopyrite ZnO0.5S0.5 and ZnO0.5Se0.5 at various pressures and those from others 

works are listed in table 7. 

Furthermore, we investigated the atomic state characters of the electron Bloch 

wave function in both valence and conduction band at ambient and 30 GPa pressures 

by computing the total density of state (DOS) and partial density of state (PDOS) of 

both ZnO0.5S0.5 and ZnO0.5Se0.5. The results are shown in Fig. 25 From Fig. 25a, DOS 
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and PDOS of ZnO0.5S0.5 show that, in the case of ZnO0.5S0.5, the top of valence band 

(VB) is occupied by S-3p and p-d hybridization (Zn-3d, Zn-4p, S-3p, and O-2p) while 

the conduction band (CB) is dominated by Zn-pd hybridization. At the 30 GPa (Fig. 

25b), the bottom of CB, slightly shifts away above the Fermi level corresponding to 

wider band gap at higher pressure. Moreover, applying pressure causes the VB 

broadening and S-3p PDOS lowering at around -1 eV below the Fermi level (see Fig. 

25a and b). For ZnO0.5Se0.5 as the case, The DOS and PDOS near the band edge are 

almost the same as ZnO0.5S0.5 is the case. The difference is just it is Se-4p instead of 

S-3p (see Fig. 26).  

Also, we analyzed the electron density difference of both Chalcopyrite alloys 

at 0 GPa as shown in Fig. 27 It indicates that bonding between Zn-O and Zn-S (Se) 

have ionic characters. The blue zone near the Zn cation indicates that the electrons 

transfer from Zn cation to those O and S (Se) anion. Electron densities slightly 

increase near O than S (Se) comparing with isolated O and S atoms due to the higher 

electronegativity of O than S (Se) atoms. Additionally, at high pressure up to 30 GPa, 

we found that nature of bonding between Zn, O, and S (Se) are still ionic. 

 

Figure 23: The electronic band structure of ZnO0.5S0.5Chalcopyrite structures at 0 GPa. 
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Figure 24: The electronic band structure of ZnO0.5Se0.5Chalcopyrite structures at 0 

GPa. 

 

Table 7: The energy gap of ZnO0.5S0.5 and ZnO0.5Se0.5 with various pressures. 
 

Pressure (GPa) ZnO0.5S0.5 

Band gap (eV) 

ZnO0.5Se0.5 

Band gap (eV) 

 

0 

 

1.193,2.83
[9]

, 1.44
[6]

, 1.39
[8]

 

 

0.675, 0.694
[8]

 

10 1.475 0.998 

20 1.703 1.255 

30 1.924 1.484 
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Figure 25: The PDOS of chalcopyrite structure of ZnO0.5S0.5 at a) 0 GPa and b) 30 

GPa. The color representations of atomic orbitals are as following fashion: red for the 

Zn atomic orbital, blue for the O atomic orbital, yellow for S atomic orbital, and 

orange for Se atomic orbital. The s orbitals are represented by solid line, p by dotted 

line, d by dashed line, and total DOS by dark black dashed line. The PDOS near the 

top of valence band states were magnified by figure inset. 

a) 

b) 
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Figure 26: The PDOS of chalcopyrite structure of ZnO0.5Se0.5 at 0 GPa. 

 

 

Figure 27: The electron densities difference of Chalcopyrite structure a) ZnO0.5S0.5 b) 

ZnO0.5Se0.5 at 0 GPa. 
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4.2 The electronic structure of Zn16O1S15 

As mention in the previous chapter, both Zincblende and Wurtzite structures 

occurred during the films preparation with difference conditions. We calculated the 

electronic structures of Zn16O1S15 system at ambient and also high-pressure conditions, 

from 0 to 20 GPa, using HSE06 and GGA exchange correlation functionals. The 

results are shown in Fig. 28 and 29 for Zincblende and Wurtzite respectively. As seen 

in Fig. 28 and 29, Zincblende and Wurtzite structures are direct band gap 

semiconductors at Gamma point with deep O-3s state located in the fundamental band 

gap of ZnS. This is the local state as described by Ishikawa and Nakayama [14] that 

causes Zn16O1S15 becoming a multiple band gap semiconductor defined by 1E and 2E  

in Fig. 28. 1E  and 2E  respectively represent a primary and secondary band gaps. At 

ambient pressure, HSE06 and GGA functionals yield the same trend in electronic 

structures at the band edges and at the middle of the gap. Table 8 lists all calculated 

pressure dependent energy gaps. To elucidate effects of pressure on the energy gaps, 

we calculate HSE06 pressure-dependent energy gaps of both structures at a number of 

pressures. Interestingly, 1E increases while 2E  decreases with increasing in pressure 

for Zincblende structure. For Wurtzite structure, 1E and 2E  increase as pressure 

increase with faster rate of 2E  in the low pressure range, P ≤ 10 GPa, and faster rate 

of 1E  in the high pressure range, P ≥ 10  GPa. This can be easily seen from the 

change of ∆E. Our results provide basic knowledge and enable the flexibility of band 

gap engineering in this class of material by varying pressure. Additionally, this 

knowledge on pressure–dependent of optical band gap may provide an alternative 

way for structure characterization by observing its optical transition as a function of 

pressure. 
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Figure 28: The electronic band structure at 0 GPa of Zn16O1S15 in Zincblende 

structure using a) HSE06 b) GGA. The primery band gap (E1), secondary (E2) and 

their difference (∆E) were shown. 
  

a) 

∆E 
E2 E1 

b) 
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Figure 29: The electronic band structure at 0 GPa of Zn16O1S15 in Wurtzite structure 

using a) HSE06 b) GGA.. 
 

 

 
 

 

a)

) 

b) 
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Table 8: The primary, secondary and their different energy gap of Zn16O1S15 in 

Zincblende and Wurtzite structure with various pressures. 

 

Zincblende Wurtzite 

Pressure 
(GPa) E1 (eV) ∆E (eV) E2 (eV) E1 (eV) ∆E (eV) E2 (eV) 

0 

10 

20 

2.94 

3.31 

3.46 

1.48 

0.87 

0.53 

4.42 

4.18 

3.99 

2.61 

2.79 

2.92 

1.39 

1.51 

1.49 

4.00 

4.30 

4.41 

 

Due to the time consuming problem of electronic properties calculation by 

HSE06, so, we further qualitatively analyze the electronic states in both structures by 

performing total density of state (DOS) and partial density of state (PDOS) 

calculations. According to Fig. 30, for both structures, DOS and PDOS illustrate that 

the top of valence band (VB) is mainly occupied by S-3p with small contribution of 

Zn-4s and p-d hybridyzation ( Zn-4p, Zn-3d, and O-2p ). While the bottom of 

conduction band is dominated by Zn-s and 4p orbital with S-s and doped O-3s state. 

These are surprising results compared with Ishikawa et al. [14] in which electronic 

structures of Zincblende Zn32O1S31 and Zn32O1Se31 were obtained by performing 

density functional based calculations allowing GGA-PBE96 as exchange–correlation 

functional. In this work, there exists no O-3s state in-between VB and CB. On the 

other hand, the hybridization state between O-3s and host ZnS locates in CB [14]. In 

contrast, our results reveal that the O-induced state exist in both Zincblende and 

Wurtzite structures. The DOS and PDOS of Wurtzite and those of Zincblende are 

fairely the same in shape but with the larger gap for the former [see Fig. 30]. 

Moreover, the density of intermediate O-3s state of Zincblende structure is higher 

than that of Wurtzite which correspond to higher optical transition rate of electrons 

from VB into the intermediate state and from the intermediate state into host CB. 
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Figure 30: The PDOS of Zn16O1S15 at 0 GPa of a) Zincblende and b) Wurtzite. The 

color representations of atomic orbitals are as following fashion: red for the Zn atomic 

orbital, blue for the O atomic orbital and green for S atomic orbital. The s orbitals are 

represented by solid line, p by dash line, d by dotted line, and total DOS by dark black 

dashed line. The PDOS near the top of valence band states were magnified by figure 

inset.  

b) 

a) 
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Chapter 5 

Conclusion 

Structural stability of five phases of ZnO0.5S0.5 and ZnO0.5Se0.5 have been 

examined at ambient pressure and high pressure up to 30 GPa within the GGA 

approximation density functional theory. The total enthalpy, Phonon dispersions, 

Born criteria and MD calculations have been used for structural stability verification 

at both ambient and high pressure conditions. From our results, it turns out that 

Chalcopyrite is a stable structure up to 10 GPa for both alloys. On the other hand, 

even though the CuAu-I has the lowest enthalpy at 27 and 30 GPa for ZnO0.5S0.5 and 

ZnO0.5Se0.5 respectively, it does not satisfy the Born criteria. Moreover, their 30 GPa 

and room temperature MD results do not converged within 5 ps simulation time and 

there is no sign for convergence from our calculation. This imply that the CuAu-I 

structure is unstable under those conditions. Also, in this work, we report the 

equilibrium lattice parameters, bulk modulus under ambient pressure and electronic 

structures at both ambient and high pressures. The electronic structures show that they 

are direct band gap at gamma point semiconductors and their energy band gaps vary 

in the same fashion with the increasing pressure, the higher pressure the wider band 

gap. For both alloys, the PDOS analysis shows that, up to 10 GPa, applying pressure 

does not change the atomic state characters of electronic states near the top of valence 

and the bottom of conduction bands, but mainly modifies the dominated Zn-3d atomic 

state of the deep Bloch state at -1 eV below Fermi level. 

For Zn16O1S15, two candidate structure namely Zincblende and Wurtzite 

structures have been investigated at ambient and high pressure up to 20 GPa using the 

GGA as exchange correlation functional. In order to obtain more accurate energy gap, 

the HSE06 hybrid functional were used comparing with GGA. The total enthalpy, 

Phonon dispersions and Born criteria have been used for structural stability 

verification at both ambient and high pressure conditions. The results yield that 

Zincblende structure is the lowest enthalpy at 0 GPa and phase transition between 

Zincblende to Wurtzite occurred around ~42 GPa. This result is alternative path of 

pure ZnS [12]. At 0 GPa condition, the enthalpy difference between Zincblende and 
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Wurtzite was only 0.238 eV. Thus, both structures can be prepared in energetically 

point of view. For Zincblende structure, The phonon dispersion and elastic constants 

show that this structure is mechanical stable at 0 to 10 GPa and unstable at 20 GPa as 

the former reaches negative values and the latter violate the Born criteria. In contrast, 

the Wurzite structure obeys both mechanical stability conditions at a range of pressure 

from 0 to 20 GPa. For electronic properties, both Zincblende and Wurtzite structures 

are direct band gap semiconductors at Gamma point with deep O-3s state located in 

the fundamental band gap of ZnS. This is the local state as described by Yu et al. [13] 

that causes Zn16O1S15 becoming a multiple band gap semiconductor defined by the 

direct energy gaps. DOS and PDOS illustrate that the top of valence band (VB) is 

mainly occupied by S-3p with small contribution of Zn-4s and p-d hybridyzation 

( Zn-4p, Zn-3d, and O-2p ). While the bottom of conduction band is dominated by Zn-

s and 4p orbital with S-s and doped O-3s state. This knowledge on pressure – 

dependent of optical band gap may provide an alternative way for structure 

characterization by observing its optical transition as a function of pressure which 

leads to band gap engineering in optoelectronic device. 
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