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Chapter 1 
INTRODUCTION 

In this chapter, the motivation and significance of the current investigation is first 
addressed. Next, the research objective, scope of work and methodology are 
presented. Finally, the expected outcome and contribution of the present study are 
summarized.  

1.1 General 

Nowadays, most continuum mechanics problems have been performed in 
mathematical equation. For instance, heat conduction, elastic, plastic, viscoelastic, 
piezoelectric and other kinds of behavior of isotropic and non-isotropic materials have 
been expressed by systems of partial differential equations or integral equations. 
Formulations of problems related to new materials, fracture, fatigue, heat and other 
fields are well known. However, almost all of the exact solutions of these formulations 
are unknown. Only some basic problems can be solved in analytical solution when 
they have a simple domain geometry and boundary conditions. To construct a solution 
of the general boundary value problems, approximations of the solution form, 
involved operators, or both may be required. To overcome the limitations, various 
methods of discretization have been proposed by researchers and mathematicians. 
Due to the fast growth of digital computers and computational technology, numerical 
methods have become an efficient tool to investigate all of continuum mechanics 
problems. 

The finite element method (FEM) has become a general tool to solve the 
mathematical formulation in continuum mechanics problems over sixty years (Reddy, 
1993). Nevertheless, FEM is a very general method that can be treated any types of 
solid mechanics problems, there are difficulties to solve problems in certain areas, 
such as dynamic analysis of large or unbounded domains, wage propagation, crack 
propagation, stress concentration, etc. These difficulties have played an important role 
for the appearance of the Boundary Element Method (BEM). In this method, governing 
equations of boundary problems are expressed as boundary integral equations and 
the spatial dimension of the problem is reduced by one. These led to the reduction 
of the computation and data preparation. In addition, the BEM has become a numerical 
tool efficient for the treatment of an unbounded domain where all involved 
fundamental solutions satisfy the remote boundary conditions exactly. The BEM has 
been continuously developed and widely employed as an efficient numerical tool in 



 

 

2 

the area of applied mechanics and modeling. Recently, a scaled boundary finite 
element method (SBFEM) has appeared as a new computational procedure which has 
overcome many difficulties found in standard FEM and combined the advantages of 
both the FEM and the BEM.  

The scaled boundary finite element method is recognized as a semi-analytical 
technique combining features of both analytical schemes and the finite element 
approximation. The SBFEM is achieved in two purposes such with regards to the 
analytical and numerical method and to the standard procedure of the finite element 
and boundary element method within the numerical procedures (Wolf, 2003). This 
method is an order reduction method which links to both finite element and boundary 
element method. It is a semi-analytical method for continuum analysis and no 
fundamental solution is required.   

The scaled boundary finite element method has demonstrated many advantages 
with its own salient features. The SBFEM is based on the standard finite element 
procedure so that it does not require fundamental solutions. Like the BEM, only the 
boundary is discretized and reduced the spatial discretization by one. These led to the 
increase of computational efficiency. On the other hand, the SBFEM can solve the 
difficulties of the FEM very well. For example, analysis of straight interface between 
two materials passing the scaling center, discretization is not required; analysis of 
singularity and stress discontinuities in fracture mechanic that are modeled and 
calculated analytically by analytical solution in the radial direction. Particularly, the 
SBFEM can easily model infinite domain and get the results higher accuracy than other 
approaches. In contrast to the BEM, the property matrices of an unbounded domain 
could be coupled with the structure of formulating equations to analyze problem-
structure interaction by substructure method (Wolf and Song, 1996b; Wolf, 2003). 
Finally, the advantages of the scaled boundary finite element method were compared 
with the finite element and boundary element methods, shown in Table 1.1. 

In last two decades, the SBFEM has been developed for unbounded and 
bounded domains in two and three-dimensional media. The method was originally 
derived to compute the dynamic stiffness of the unbounded domain (Wolf and Song, 
1996b). The SBFEM has proved to be more general than initially investigated, then 
developments has allowed analysis of incompressible material and bounded domain 
(Wolf and Song, 1996a), and inclusion of body loads (Song and Wolf, 1999). The 
complexity of the original derivation of this technique led to develop weighted residual 
formulation (Song and Wolf, 1997; Wolf and Song, 2001). Then Deeks and Wolf (2002) 
and Deeks (2004) commenced with virtual work and novel semi-analytical approach 



 

 

3 

of the scaled boundary finite element method to derive the standard finite element 
method for two dimensional problems in solid mechanics accessibly. 

Table 1.1: Features of SBFEM, FEM and BEM (Wolf, 2003). 

Features FEM BEM SBFEM 

Reduction of the spatial dimension  x x 

Analytical solution completed inside domain   x 

No fundamental solutions and treatment of singular 
integrals 

x  x 

Radiation condition at infinity satisfied exactly for 
modeling unbounded domain 

 x x 

No discretization of free and fixed boundaries and 
interfaces between different materials 

  x 

No approximation other than that of the surface finite 
elements on the boundary 

 x x 

Symmetric stiffness matrices for finite media (super-
element) 

x (x) x 

Symmetric stiffness and unit-impulse response 
matrices for unbounded domain 

x x x 

Body loads processed without additional domain x  x 

Stress concentrations and intensity factors are 
calculated directly based on their definition 

  x 

No fictitious Eigen-frequencies for unbounded media  x  x 

Straightforward coupling by standard assemblage of 
structure with finite elements in unbounded medium 

x  x 

Other recent applications of the SBFEM have been also recognized. This method 
has been applied to treat various problems such as solving problems with 
concentrated load (Vu and Deeks, 2014), modeling elasto-plastic material responses in 
structures (Ooi et al., 2014), treatment electrostatic problems (Liu and Lin, 2012), 
identity parameter of elastic orthotropic (Chen et al., 2013), analysis of fracture 
problem in piezoelectric materials, etc. On the other hand, the SBFEM was also 
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extended to analysis of the temperature for heat conductions fields (Li and Ren, 2016). 
Other published papers investigated the SBFEM in analysis of piezoelectric and 
composites fields. For instance, the SBFEM was applied for fracture analysis of 
piezoelectric composites under thermal load (Li et al., 2015), for semi-analytical 
analysis of piezoelectric plate (Li et al., 2011), and for 2D analysis of crack and interface 
crack in piezoelectric composites (Li et al., 2014). Moreover, the SBFEM has widely 
applied to construct adequate numerical alternatives for the solutions of formulations 
in solid-structure interaction, diffusion, fracture mechanic, piezoelectric, elasto-plastic 
and other fields. 

These presented researches have proposed that SBFEM had more advantages in 
terms of accuracy, simplicity and efficiency. Nevertheless, all of the published 
researches, the formulations of problems developed for specific problems 
corresponding to the features of the SBFEM. These procedures did not solve various 
particular problems as changing the parameters of governing equations; considering 
the influence of the distributed body source, general boundary conditions, and 
contributions of the side face with either prescribed surface flux or prescribed state 
variable; and or general domain. Therefore, the motivation of this study with regards 
of the intention of developing a general algorithm for multi-field problems to solve 
various problems under different scenarios to demonstrate its vast capability, 
computational efficiency and robustness, based on the features of the scaled 
boundary finite element method. 

1.2 Objectives 

The main objectives of the present research are (1) to develop scaled boundary finite 
element method capable of solving general, linear multi-field boundary value 
problems and (2) to investigate the computational performance of the developed 
numerical technique such as the convergence, accuracy and capability of solving a 
variety of problems. 

1.3 Scope of Work 

The present study is limited to following situations: (i) a body is represented by either 
a bounded or an unbounded region in a two-dimensional physical space with its 
geometry completely described by a simple, single region bounded by the constant 
coordinates in the scaled boundary transformation space; (ii) basic equations governing 
all field quantities such as the state variable, the measure of spatial variation of the 
state variable, and body flux are assumed in a linear form, and the final governing 
equations only involve a set of linear, second-order, partial differential equations of 
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an elliptic type and are applicable to various classes of boundary value problems such 
as steady-state heat conduction problems, steady-state Darcy’s flow problems, 
membrane problems, Laplace’s equation, linear elasticity, and problems involving 
multi-field materials such as linear piezoelectric, piezomagnetic and 
piezoelectromagnetic solids; (iii) boundary conditions on the inner and outer 
boundaries can be general whereas either the state variable or the surface flux is 
prescribed on the entire side faces; and (iv) prescribed distributed body source and 
prescribed data on the side-faces are assumed expressible in a polynomial form.  

1.4 Methodology 

Key procedure and methodology proposed for the development of the scaled 
boundary finite element method for general, linear multi-field boundary value 
problems are summarized as follows: 
(1) Fundamental laws of conservations (e.g., conservation of linear and angular 

momentum, conservation of mass, conservation of heat flow, etc.), linear 
constitutive laws (e.g., Darcy’s law, Fourier’s law, Hookes’ law, generalized 
Hookes’ law, etc) and the laws of kinematics (e.g., strain-displacement relations, 
electric potential-field relations, etc.) are used as the basis in the formulation of 
general basic equations governing field quantities of interest. The formulation is 
established in a unified manner allowing the treatment of various classes of 
boundary value problems such as steady-state heat conduction problems, 
steady-state Darcy’s flow problems, membrane problems, Laplace’s equation, 
linear elasticity, and problems involving multi-field materials such as linear 
piezoelectric, piezomagnetic and piezoelectromagnetic solids. 

(2) The standard weighted residual technique along with the integration by parts via 
Gauss-divergence theorem is employed to derive the weak-form equation.  

(3) A scaled boundary coordinate transformation is utilized to describe the geometry 
of bodies and then the formulation is transformed to that involving the scaled 
boundary coordinates. 

(4) Scaled boundary finite element approximation is adapted to approximate the 
weak-form equation. The geometry of the body, the field quantities, and the 
weight function are interpolated from values or functions along the scaling 
coordinate direction using standard basis functions defined in the boundary 
coordinate direction. 

(5) Scaled boundary finite element equations are obtained from the weak-form via 
the use of scaled boundary finite element approximation along with the 
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integration by parts with respect to the scaling coordinate. The original system 
of linear partial differential equations is transformed into a system of linear, non-
homogeneous, second-order, ordinary differential equations of Euler-Cauchy 
type and two sets of boundary conditions on the inner and outer boundaries. 

(6) A standard technique for solving the differential equations of Euler-Cauchy type 
is utilized to determine the homogeneous solution and this process results in an 
equivalent linear eigenvalue problem. All eigenvalues and the corresponding 
eigenvectors are solved using a selected efficient numerical procedure. 

(7) The particular solution of the system of linear differential equations associated 
with the prescribed distributed body source and the prescribed state variable 
and the prescribed surface flux on the side faces is constructed via the well-
known method of undetermined coefficients. 

(8) The final general solution is obtained by enforcing the boundary conditions on 
both inner and outer boundaries of the body. 

(9) All field quantities of interest within the body can be post-processed using the 
nodal basis functions along with the approximate solution obtained along the 
scaling coordinate direction. 

(10) The implemented technique is fully tested by comparing with existing analytical 
and reference solutions for various scenarios.    

1.5 Outcomes and Contributions 

The present investigation offers an alternative, accurate and efficient numerical 
technique (in terms of an in-house computer package) capable of solving a variety of 
two-dimensional, linear boundary value problems commonly encountered in the 
physical modeling. The important contribution and novel aspect of the current work 
stem directly from the key formulation and implementations of the scaled boundary 
finite element method, which are to be established in a general framework allowing 
many governing physics and various scenarios (such as bounded/unbounded bodies, 
external excitations, prescribed boundary conditions) to be treated in a unified fashion. 
The full investigation of the computational performance of the proposed procedure 
should offer its pros and cons in comparison with other existing numerical techniques 
and also provide a general guideline for selecting the SBFEM as an efficient tool in the 
solution search. In addition, the framework of the SBFEM established in the present 
study provides a sufficient and essential basis for its generalization to treat more 
complex/general bodies along with the sub-domain technique and its extension to 
three-dimensional problems.   
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Chapter 2 
BACKGROUND AND REVIEW 

This chapter briefly summarizes the background and relevant literature concerning the 
scaled boundary finite element method in various aspects such as its first 
development, the underlying formulation, numerical implementations, and its 
applications to various classes of boundary value problems. Pros and cons, advantages, 
drawbacks, limitations and possible extensions of existing work are pointed out and 
discussed. Additionally, results from this extensive survey indicate the significance and 
novelty of the present investigation. 

2.1 Background of Scaled Boundary Finite Element Method 

The scaled boundary finite element method was originally developed to solve both 
bounded and unbounded domains during the 1990s. The first derivation of the method 
was presented by the infinitesimal finite element method (Wolf and Song, 1995a), and 
later the consistent infinitesimal finite element cell method (Wolf and Song, 1995b). 
However, the original mechanical-based derivation of the SBFEM in these publications, 
which involved mathematically, may be contributed lower than other engineering 
researchers. On purposes to raise its application and to demonstrate its advantages as 
a computational tool in analysis of dynamic stiffness of an unbounded domain, the 
method was re-derived by using a weighted residual approach. By means of weighted 
residual approaches, a displacement formulation in the frequency domain was derived 
for general problems in elastodynamics in three dimension (Song and Wolf, 1997).  

In the progress of the SBFEM, the first derivation was compared with an example 
application and solution, and then re-derived using a mechanical-based approach to 
obtain the governing equations (Wolf and Song, 2000; Song and Wolf, 2000). This 
solution procedure was illustrated by solving a homogenous bounded medium and an 
unbounded medium. In developments, while the researchers found that the 
complexity of the original derivation technique led to the weighted residual 
formulation for SBFEM, it was still more complex than derivational formulation of the 
finite element method. Therefore, a virtual work derivation was developed for the 
scaled boundary finite element method. A third derivation of the SBFEM was presented 
by Deeks and Wolf (2002). They commenced with a new virtual work derivation of the 
scaled boundary method to develop a standard finite element method for two 
dimensional problems in solid mechanics accessibly. The new formulation treated 
both bounded and unbounded domain involving the stress singularities.  
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In recent years, the SBFEM has also been developed to solve various problems. 
In fracture mechanics, a salient feature of the SBFEM is that whole problem domain is 
generated by the scaling boundary to a single point which is called the scaling center. 
It is defined at the crack tip; the stress field is expressed analytically along the radian 
direction from the crack tip. It can be calculated directly on the obtained solution 
which led to the stress singularity more accurately (Chowdhury et al., 2014; Dai, et al., 
2015). Based on this feature, many fields of fracture mechanics have been modeled 
to validate such as crack propagation, dynamic crack propagation, and transient 
respond of finite biomaterial plates with interface crack (Song et al., 2010).  
Furthermore, the SBFEM has widely investigated in elastic guided waves, water wave, 
an unbounded domain (Gravenkamp et al., 2014; Doherty and Deeks, 2005; Meng and 
Zou, 2013). The researchers applied SBFEM to solve the radiation and diffraction of 
linear water waves in shallow water with sidewall. The results demonstrated that this 
method had more accurate and computational efficient than other published 
approaches.  

2.2 Applications of Scaled Boundary Finite Element Method 

In many engineering applications, the SBFEM has been a new attractive alternative 
computational technique. The desirable features of this method include the reduction 
of the spatial dimension of the key governing equations, combining the advantages of 
both FEM and BEM, and efficient and useful for the analysis of problems concerning 
infinite domains and problems in linear fracture mechanics. It is also a novel-analytical 
method for continuum analysis requiring no fundamental solution. For simple 
geometries, the SBFEM only requires meshing on the boundary of analyzed domain 
and does not need a fundamental solution. For complex problems, the interior of 
domain can be discretized into subdomains to satisfy the scaling requirement. On the 
other hand, the stress singularities and bi-material interfaces can be analyzed by 
definition with no singular integrals (Wolf, 2003). 

The basic concept of employing the SBFEM to model a bounded or an 
unbounded domain is illustrated in Figures 2.1 and 2.2. A scaling centerO , which must 
be chosen either within or outside the domain, is visible in the totally boundary. The 
origin of the Cartesian coordinates {x1, x2} is commonly selected at the scaling center. 
The boundary is represented into one-dimension line elements. The shape functions 
are used to interpolate the geometry of an element on the boundary. The geometry 
of the domain is described by a normalized radial coordinate  which starts from the 
scaling center to its boundary. The values of  is specified as 0 at the scaling center 
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and 1 at the boundary (for a bounded domain). The coordinate system consisting of 
the coordinate  in the radial direction and the coordinate s in the circumferential 
direction can be used to completely describe the geometry of the domain. 




At

AuSu
Su

StSt

 
   (a)                                                    (b) 

 

Figure 2.1: Scaled boundary coordinate system for bounded bodies: (a) the scaling 
center inside body and (b) the scaling center on the boundary and body containing 
side faces. 

 axiss axis



 axis

s axis



 

  (a)      (b) 

Figure 2.2: Scaled boundary coordinate system for unbounded bodies: (a) a body 
without side face and (b) a body with side faces. 

On the domain boundary, the nodal state variable functions are first introduced 
and then interpolated by the nodal basis functions to obtain values at any location. 
The scaled boundary coordinate transformation is utilized to describe the geometry of 
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bodies and the formulation is transformed into that involving the scaled boundary 
coordinates. The SBFEM equations in state variable are obtained by applying the 
weighted residual method or the principle of virtual work for the governing differentials 
in the circumferential direction s. Coefficient matrices of the SBFEM are calculated in 
the same way as the stiffness matrix in the finite element method. For instance, the 
SBFEM equations in the static analysis are reduced to be into of first-order ordinary 
differential equations which can be solved by eigenvalue problem. Thus, the state 
variables and flux fields are represented by semi-analytical solutions which permit the 
boundary at infinity to be satisfied rigorously. Most of the procedures of the SBFEM 
were based on the basic solution above. However, there is a little difference at post 
procedure to determine the state variable field or the flux fields in particular problems. 
For instance, in analysis of fracture problem, the basic concept of the SBFEM solution 
is obtained as the basic procedure above, and then stress intensity factor analysis, 
propagation analysis are simulated basing on its definition (Shrestha and Ohga, 2007). 

Deeks and Wolf (2002) used an h-hierachical adaptive procedure in the SBFEM. 
This technique took the ability of the SBFEM to model stress singularities at the scaling 
center and to avoid discretization of certain adjacent segments of the boundary. Vu 
and Deeks (2006) investigated high-order elements in the SBFEM. The spectral element 
and hierarchical approach were employed in this study. They found that the spectral 
element approach was better than the hierarchical approach. Doherty and Deeks 
(2005) developed a meshless scaled boundary method to model the far field and the 
conventional meshless local Petrov-Galerkin modeling. This combining was general 
and could be employed to other techniques of modeling the far field. Although, the 
SBFEM has demonstrated many advantages in the approach method, it also has had 
disadvantaged in solving problems involving an unbounded domain or stress 
singularities. When the number of degrees of freedom became too large, the 
computational expense was a trouble. So, Vu and Deeks (2008) developed a p-
adaptive in the SBFEM for the two dimensional problem. These authors investigated 
an alternative set of refinement criteria. This led to be maximize the solution accuracy 
and minimizing the cost. Furthermore, He et al. (2012) presented a new Element-free 
Galerkin scaled boundary method to approximate in the circumferential direction. This 
work was applied to a number of standard linear elasticity problems, and the 
technique was found to offer higher and better convergence than the original SBFEM. 
Additionally, He et al. (2014) investigated the possibility of using the Fourier shape 
functions in the SBFEM to approximate in the circumferential direction. This research 
used to solve three elastostactic and steady-state heat transfer problems. They found 
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that the accuracy and convergence were better than using polynomial elements or 
using an element-free Galerkin to approximate on the circumferential direction in the 
SBFEM. These published papers focused on the shape functions and applied in 
individual particular problem to show the advantages of the SBFEM. They may not 
provide the advantages of the using other kinds of shape function for general problem. 
They only used typical function to apply in the SBFEM for each particular problem 
such as using linear shape functions for heat problem, two dimensional problems, etc.        

The computational efficient of the analysis for the piezoelectric materials using 
the SBFEM has been increased significantly by adopting the SBFEM. Li et al. (2013) 
developed and employed SBFEM to analyze two-dimensional problems of 
piezoelectric material. The stress and electric displacement intensity factor in both 
static and dynamic were evaluated by extending SBFEM. No asymptotic solution, local 
mesh refinement or special treatment around a crack tip was required. The author 
provided the highlight, the accuracy, simplicity and efficiency of this method. Dieringer 
and Becker (2015) presented the employment of the SBFEM for problems within the 
framework of classical laminated plate theory. The researcher dedicated to derive the 
scaled boundary finite element equations in displacements for composites and to 
examine stress singularities in a notch. They demonstrated the enhancement of the 
SBFEM that could evaluate the stress singularities field as a function of the notch 
opening for wide variety of composites. On the other hand, they also provided the 
accuracy and efficiency of employed SBFEM for arbitrarily laminated plates. These 
publications provided the improvement of the SBFEM to analyze stress singularities. 
However, they only focused on the individual advantage of the SBFEM, examined each 
particular in piezoelectric field and they could not analyze general problems of 
piezoelectric.         

In recent decades, many researchers have studied the SBFEM. Li et al. (2013a) 
and Li et al. (2013b)  extended the SBFEM to develop a computation model for the 
three-dimensional wave-pile and to investigate both wave behavior and pile group 
responses. This publication employed the basic concept SBFEM equation into the 
Helmholtz equation by separating the vertical-direction component from velocity 
potential. Two dimensional SBFEM investigated at the free surface level of the wave 
field. Li et al. (2011) used SBFEM to analysis of structural behavior of offshore 
monopoles with ocean wave load, the basic concept SBFEM equations were 
implemented to formulate the governing mono-pile’s equation and analytical wave 
equation. These published papers showed the SBFEM in which had high efficiency and 
accuracy in analysis of the wave domain, the wave-structure interaction. Nonetheless, 
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they only focused on the individual particular problem. They could not solve the 
general problem for both wave domain and wave-structure interaction. 

In nearly years, Vu and Deeks (2014) used fundamental solutions in the scaled 
boundary finite element method to solve problems with concentrated loads. Liu and 
Lin (2012) extended the SBFEM to treat electrostatic problems. He et al. (2013) 
presented an approach method to develop for numerical analysis of 2D elastic systems 
with rotationally periodic symmetry under arbitrary load conditions. Ooi et al. (2012) 
and Ooi et al. (2013) developed an efficient methodology for automatic dynamic crack 
propagation simulations using scaled boundary polygon elements.  

The aforementioned works have shown various important progresses to 
implement the SBFEM in analysis of engineering problems. However, the existing 
methods are nearly all focused on the analysis of the structural response through the 
SBFEM. The alternative computational procedure was only solved for individual 
particular problem and presented each advantage of the SBFEM, while less work has 
been conducted for its advantages to apply for general problems. In real structures 
and analysis, many parameters such as material properties, loads or geometrical 
characteristics can be performed. They are very important for problems analysis to 
improve the SBFEM’s applicability in real analysis. Additionally, the multi-field 
problems are analyzed by using the SBFEM; they may be a future topic in applying 
new technique computation instead of employing for an individual problem. 
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Chapter 3  
FORMULATION 

This chapter first summarizes the clear description of the problem, basic governing 
field equations for two-dimensional, linear multi-field problems, and the corresponding 
weak formulation. Then, the scale boundary coordinates transformation and the scale 
boundary finite element approximation are introduced. Finally, the scale boundary 
finite element equations are presented. 

3.1 Problem Description 

 

   

 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1: Schematic of two-dimensional, multi-field body subjected to external 
excitations. 

Let us consider a two-dimensional body occupying a region   in R2 as shown 
schematically in Figure 3.1. The region is assumed smooth in the sense that all involved 
mathematical operators (e.g., integrations and differentiations) can be performed over 
this region. In addition, the boundary of the body , denoted by  , is assumed 
piecewise smooth and an outward unit normal vector at any smooth point on   is 
denoted by 

1 2{   }Tn nn . The interior of the body is denoted by int . More 
restrictions about the geometry of the body   will be placed later in the following 
development of the key formulation.  
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For convenience in further reference and presentations, a two-dimensional, 
reference Cartesian coordinate system 

1 2{ ; , }x x0  is introduced where 0  denotes the 
origin and 

1 2,x x  denote the orthogonal coordinate axes (see Figure 3.1). A symbol ,f   
is used throughout to denote a partial derivative of a function f  with respect to the 
spatial coordinate , {1,2}x    (i.e., , /f f x    ) and, here and in what follows, 
standard indicial notations apply for subscripts with lower case Greek and upper case 
indices. In particular, lower Greek subscripts range from 1 to 2 whereas upper case 
subscripts range from 1 to {1, 2,3,...}  and repeated subscripts imply the summation 
over their range unless stated otherwise. 

The body is made of a homogeneous material with its behavior completely 
characterized by 24  constants denoted by at a set { }IJE   and subjected to a 
prescribed distributed body source field at any point x , denoted by an  -
component vector 1 2( ) { ( )  ( ) ... ( )}Tb b b b b x x x x . In the present study, the 
constants IJE   are assumed to satisfy the following symmetry condition IJ JIE E   

. Responses of the body due to the applied distributed body source ( )b b x  are 
assumed to be completely described by the following three field quantities: the state 
variable ( )u u x , the state-variable gradient ( )ε ε x , and the body flux ( )σ σ x . 
The state variable ( )u u x  contains   components denoted by ( )Ju x  and is 
represented in a vector form by 

 1 1( ) ( ) ( ) ... ( )
T

u x u x u x u x  (3. 1) 

The state-variable gradient ( )ε ε x  and the body flux ( )σ σ x  contain 2  
components denoted by J  and J , respectively and they can also be represented 
in a vector form by 

11 12 1 21 22 2( ) { ( )  ( ) ... ( )  ( )  ( ) ... ( )}T      ε x x x x x x x  (3. 2) 

11 12 1 21 22 2( ) { ( )  ( ) ... ( )  ( )  ( ) ... ( )}T      σ x x x x x x x  (3. 3) 

In addition, the surface flux at any smooth point on the boundary is denoted by an 
-component vector 1 2( ) { ( )  ( ) ... ( )}Tt t t t t x x x x . The boundary of the given body 
  can be decomposed into two disjoint portions; one is denoted by u  where the 
state variable u  is fully prescribed ( 0 ( )u u x

u x  where 0 ( )u x  is a prescribed 
vector) and the other is denoted by t  where the surface flux t  is fully prescribed 
(i.e., 0 ( )t t x  t x  where 0 ( )t x  is a prescribed vector). In the present study, the 
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prescribed vector value functions ( )b x , 0 ( )u x  and 0 ( )t x  are assumed sufficiently 
smooth to ensure the existence of the responses ( )u u x , ( )ε ε x  and ( )σ σ x . 
 The statement of the problem is to find the state variable ( )u u x , the state-
variable gradient ( )ε ε x  and the body flux ( )σ σ x  within the body   associated 
with the prescribed distributed body source ( )b b x , the given material properties 
{ }IJE   and the prescribed boundary conditions 0 ( )u x  and 0 ( )t x  on u  and t , 
respectively. 

3.2 Basic Governing Field Equations 

A set of field equations governing all field quantities described in the problem 
description is formulated within a general framework to allow various classes of linear, 
second-order boundary value problems encountered in many areas (e.g., steady-state 
heat condition problems, steady-state flow in porous media, membrane problems, 
linear elasticity, problems associated with multi-field materials such as piezoelectric 
and piezo-electromagnetic solids, etc.) to be treated in a unified manner. The integer 
  is used as a key parameter to indicate type of the problems. For instance, 1   
represents the heat condition problems, flow in porous media, and membrane 
problems and { ( ), ( ), ( ), ( ), , }IJE u x ε x σ x b x t  denotes {temperature, temperature 
gradient, heat flux, heat source, thermal conductivity, surface heat flux}, {fluid pressure, 
pressure gradient, fluid flux, source or sink, permeability, surface flux}, and {deflection, 
slopes, resultant shear force, distributed transverse load, membrane stiffness, end 
shear force}, respectively; 2  represents linear elasticity problems and { ( )u x , ( )x

( ) x ( ), ,IJE b x t } therefore denotes {displacement, displacement gradient, stress, 
body force, elastic constants, traction}; 3   represents linear piezoelectric and piezo-
magnetic problems and { ( ), ( ), ( ), ( ), , }IJE u x ε x σ x b x t  denotes {displacement and 
electric potential, displacement gradient and potential gradient, stress and electric 
induction, body force and charge, elastic and piezoelectric constants and dielectric 
permittivities, traction and surface charge} and {displacement and magnetic potential, 
displacement gradient and potential gradient, stress and magnetic induction, body 
force and magnetic body source, elastic and piezomagnetic constants and magnetic 
permeabilities, traction and surface magnetic induction}, respectively; and 4 

represents piezoelectromagnetic problems and { ( ), ( ), ( ), ( ), , }IJE u x ε x σ x b x t  
denotes {displacement and electric and magnetic potentials, displacement gradient 
and potential gradients, stress and electric and magnetic inductions, body force and 
body charge and magnetic body source, elastic and piezoelectric and piezomagnetic 
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and electromagnetic constants and dielectric permittivities and magnetic 
permeabilities, traction and surface charge and surface magnetic induction}.  

The fundamental laws of conservation (e.g., conservation of linear and angular 
momentum, conservation of mass, conservation of heat flow, etc.), the linear 
constitutive laws (e.g., Darcy’s law, Fourier’s law, Hooke’s law, generalized Hooke’s 
law, etc.), and the laws of kinematics (e.g., strain-displacement relations, electric 
potential-field relations, etc.) are employed to form the basic governing field equations 
and they are expressed in a single and concise form as indicated below. The body flux 
field ( )σ x  is related to the distributed body source field ( )b x  via a set of  -linear 
partial differential equations:     

, 0 T

J J or     b L b 0    (3. 4) 

where the superscript “T ”denotes the transpose operator and L  represents the 
linear differential operator defined, in terms of a 2 -matrix, by  

1 2 1 2

1 2 1 2

;  ,
x x x x

   

   

          
            

          

I 0 I 0
L L L L L

0 I 0 I
 (3. 5) 

with I  and 0  denoting a  -identity matrix and a  -zero matrix, 
respectively. The body flux ( )σ x  at any point x  is directly related to the state-variable 
gradient ( )ε x  at the same point via a local, linear constitutive law: 

J JK KE or        D    (3. 6) 

where D  is a 2 2  - termed matrix of the modulus matrix. It should be remarked 
that entries of the modulus matrix D  can simply be obtained from the set { }IJE   by 
properly considering the definition of the vectors σ  and ε  (i.e., 

1 1JK JKE D , 

1 2 ,JK J KE D  , 2 1 ,JK J KE D   and 2 1 ,JK J KE D   ) and, due to the symmetry of IJE 

, the modulus matrix D  is essentially symmetric. Finally, the state-variable gradient 
( )ε x  is related to the state variable ( )u x  by 

,K Ku or    Lu       (3. 7) 

By applying the law of conservation at any smooth point x  on the boundary
 , the surface flux ( )t x  can be related to the body flux ( )σ x  and the outward unit 
normal vector 

1 2( ) { ( )  ( )}Tn nn x x x  by 

 1 2Jt n or n n    t I I       (3. 8) 
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where again I  denotes the  -identity matrix. The relations (3.4), (3.6) and (3.7) 
constitute a set of 3  linear partial differential equations and 2  linear algebraic 
equations, involve 5  unknown functions (i.e.,   components of the state variable, 
2  components of the state-variable gradient, and 2  components of the body 
flux), and, as a result, form a complete set of governing equations for determining all 
field quantities. Other useful relations such as that directly relating the body flux and 
the state variable and one connecting the surface flux and the state variable on the 
boundary can readily be established. By combining (3.6) and (3.7), it simply leads to   

, ( )J JK KE u or      D Lu    (3. 9) 

Then, by substituting (3.9) into (3.8), it yields 

 , 1 2 ( )JK K n nt n E u or      t I I D Lu       (3. 10) 

Now, the statement of the problem can be formulated mathematically by: find 
the state variable ( )u u x , the state-variable gradient ( )ε ε x  and the body flux 

( )σ σ x  that satisfies (3.4), (3.6)-(3.7) int  x  and the boundary conditions 
0( ) ( )u x u x

u x  and   0

1 2
( ) ( )n n  t x I I t x  t x . 

3.3 Weak Formulation 

The constitutive law established in a strong form (3.4) (i.e., in terms of partial 
differential equations) is then reformulated in a weak form well suited for the 
development of the scale boundary finite element equation presented further below. 
A standard weighted residual technique is adopted along with the integration by parts 
via the Gauss-divergence theorem to obtain the weak-form equation as follows. 

By taking the inner product between (3.4) and any sufficiently smooth weight 
function 1 2( ) { ( )  ( ) ... ( )}Tw w ww x x x x  and then integrating the result over the 
body , it leads to    

0T T TdA dA
 

  w L σ w b  (3. 11) 

By applying the identity , ( )( ) T T T

J Jw      w L Lw  to the first integral of (3.11), it 
yields  

,( ) ( )T T

J JdA w dA dA 
  

   Lw σ w b  (3. 12) 

From two-dimensional Gauss-divergence theorem, the first integral on the right hand 
side of (3.12) can be replaced by the boundary integral and the final result is given by 
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( ) ( )T T

J JdA w n dl dA 
  

   Lw σ w b  (3. 13) 

where dl  is an infinitesimal arc length. By applying the relation (3.8) to the boundary 
term, it finally yields  

( )T T TdA dl dA
  

   Lw σ w t w b  (3. 14) 

It is worth noting that the resulting weak-form (3.14) for the special case of linear 
elasticity is in fact the principle of virtual work with ( )w x  denoting the virtual 
displacement field. By further replacing the body flux σ  in (3.14) by that associated 
with the state variable via the relation (3.9), it leads to 

( ) ( )T T TdA dl dA
  

   Lw D Lu w t w b  (3. 15) 

It should be apparent from the above formulation that the weak-form equation (3.15) 
is valid for an arbitrary choice of the weight function w . Only restriction placed to the 
weight function is the smoothness requirement to ensure the integrability of all 
integrals appearing in (3.15). This can be achieved by requiring the weight function and 
their first partial derivatives square integrable, i.e. 

( ) ( )T T dA


     Lw Lw w w  (3. 16) 

Now, let W  be a space of all weight functions satisfying the condition (3.16). It can be 
readily verified that satisfaction of (3.4) and (3.9) int  x  implies the weak 
statement (3.15)  w W . The converse is also valid if the data of the problem such 
as D  and the distributed body source b  is sufficiently smooth. Now, the problem 
statement can be formulated in terms of a weak-form equation by: find the state 
variable ( )u u x  such that the weak-form equation (3.15) is satisfied  w W  and 

0( ) ( )u x u x  is satisfied u x  and   0

1 2
( ) ( )( ) n n  I I D Lu t xt x  is satisfied

t x .  

3.4 Scaled Boundary Coordinate Transformation 

Let 0 10 20( , )x xx  be a point in R2 and C  be a simple, piecewise smooth curve in R2 
parameterized by a function 2

10 1 20 2
ˆ ˆ: [ , ] ( ( ), ( ))s a b x x s x x s    r  as shown in 

Figure 3.2. Let ( )s  be the circumferential angle of a point ( )sr  on the curve C  
measured from a straight line passing to 0x  and ( )ar  to a straight line passing to 0x  
and ( )sr  (see Figure 3.2). The simple curve C  considered here can be either closed 
(i.e., ( ) ( )a br r ) or not closed (i.e., ( ) ( )a br r ) and, in addition, it must not contain 
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the point 0x  and satisfies the condition [0, 2 ]   and / 0  ( , )d ds s a b    . Now, 
let us introduce the following coordinate transformation 

0
ˆ ( )s x x x  or  0

ˆ ( )x x x s      (3. 17) 

where 0  . It is evident from the coordinate transformation (3.17) that (i) any straight 
line 0 , a s b     in the s   plane is mapped to a curve S  in the 1 2x x  plane 
which is simply a scaled version of the curve C  about 0x  and (ii) any straight line 

00, [ , ]s s a b     in the s   plane is mapped to a semi-infinite straight line L  in 
the 1 2x x  plane starting from 0x  and passing through the point 0( )sr  on the curve 
C  (also see Figure 3.2). In addition, a straight line 0, a s b     in the s   plane is 
mapped to a single point 0x  which is commonly termed the scaling center and a 
straight line 1, a s b     in the s   plane is mapped directly to the curve C  which 
is termed the defining curve. The coordinates   and s  are termed the scale boundary 
coordinates. Clearly, the transformation (3.17) simply maps the region 0, a s b     
in the s   plane into a region in the 1 2x x  plane bounded by the two straight lines 

aL  and bL  (i.e., a shaded region shown in Figure 3.2). 
 It is apparent from the coordinate mapping (3.17) that the differential line 

{  }Td d dsξ  at any point ( , )s  in the s   plane is related to the differential line 

1 2{  }Td dx dxx  at any point 1 2( , )x x  in the 1 2x x  plane by 

d dx T ξ  (3. 18) 

where T  is the Jacobian matrix of transformation given explicitly by 

1 1

2 2

ˆ ˆ /

ˆ ˆ /
T





 
  
 

x dx ds

x dx ds
 (3. 19) 

The inverse relation of (3.18) is given by 
1d d d ξ T x R x  (3. 20) 

where the matrix R  is the inverse of the Jacobian matrix T  given by 

2 1

2 1

ˆ ˆ/ /1

ˆ ˆ/ /

dx ds dx ds

x xJ  

 
  

 
R  (3. 21) 

with J  denoting 

2 1
1 2

ˆ ˆ
ˆ ˆ

dx dx
J x x

ds ds
   (3. 22) 
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By setting ( )d dξ m  where m  is a unit vector and d  is the length of dξ , it can 
be readily verified that the length of dx , denoted by dl , is given by 

dl dx dx T T m m d         (3. 23) 

For following special cases (i) {1 0}Tm , d d    and (ii) {0 1}Tm , d ds  , the 
relation (3.23) reduces, respectively, to 

2 2 2 2

1 2 1 2
ˆ ˆ ˆ ˆ( ) ,   ( )dl x x d J s d J s x x        (3. 24) 

       
2 2 2 2

1 2 1 2
ˆ ˆ ˆ ˆ/ / ( ) ,   ( ) / /s sdl dx ds dx ds ds J s ds J s dx ds dx ds       (3. 25) 

 
Figure 3.2:  Schematic of a scaling center 0x  and a defining curve C  

Similarly, the differential area d ds  at any point ( , )s  in the s   plane can be 
related to the differential area dA  at any point 1 2( , )x x  in the 1 2x x  plane by 

dA J d ds   (3. 26) 

From the chain rule for differentiations, the partial derivative of any function with 
respect to the coordinate x  can be related to those with respect to   and s  via the 
following relation 

2
2

1

1
1

2

ˆ
ˆ

1

ˆ 1
ˆ

dx
x

x ds

dxJ
x

x sds





     
        

     
     

         

 (3.27) 
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Figure 3.3: Examples of opened bodies: (a) bounded body containing no scaling center, 
(b) unbounded body containing no scaling center, (c) bounded body containing scaling 
center, and (d) unbounded body containing scaling center. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Examples of closed bodies: (a) bounded body containing a hole, (b) 
unbounded body containing a hole, (c) bounded body containing no hole, and (d) 
unbounded body containing no hole.  

The linear differential operator L  given by (3.5) can now be expressed in terms of 
partial derivatives with respect to   and s  by 

1 2

1

s 

 
 

 
L b b  (3. 28) 
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 (c)  (d) 
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where 1b  and 2b  are 2 -matrices defined by 

2

2 1
1 1 2

1

ˆ

ˆ ˆ1 1

ˆ

dx

dx dx ds

dxJ ds ds J

ds





 
  

     
   

  

I

b L L

I

 (3. 29) 

  2

2 1 2 2 1

1

ˆ1 1
ˆ ˆ

ˆ

x
x x

xJ J





 
    

 

I
b L L

I
 (3. 30) 

Now, it is ready to pose the restriction on the geometry of the body   considered in 
the present investigation. For a given body , there must exist the scaling center 0x  
and the defining curve C  such that there exists a region 1 2 1 2[ , ] [ , ]s s    in the s   
plane that is mapped to the region   in the 1 2x x  plane via the coordinate 
transformation (3.17). If the defining curve C  is not closed, the body is said to be 
opened and portions of the boundary   associated with 1s s  and 2s s  are 
termed the side face (see Figure 3.3). If the defining curve is closed, the body is said 
to be closed and the boundary   contains no side face (see Figure 3.4). If 1  is finite, 
the body   is said to be bounded (see Figures 3.3(a), 3.3(c), 3.4(a), 3.4(c)); otherwise 
(i.e., 2   ), it is said to be unbounded (see Figures 3.3(b), 3.3(d), 3.4(b), 3.4(d)). If 

1 0  , the body   contains the scaling center 0x  (see Figures 3.3(c), 3.3(d), 3.4(c), 
3.4(d)); otherwise (i.e., 1 0  ), the body   does not contain the scaling center 0x  
(see Figures 3.3(a), 3.3(b), 3.4(c), 3.4(d)). Portions of the boundary   associated with 

1 0    and 2     are termed the inner and outer boundaries, respectively. It 
is remarked that for an unbounded body with the scaling center located outside, the 
inner boundary is commonly chosen as the defining curve (i.e., 1 1  ) whereas for a 
bounded body containing the scaling center, the outer boundary is chosen as the 
defining curve (i.e., 2 1  ). 

3.5 Scaled Boundary Finite Element Approximation 

In this section, three approximations, one associated with the geometry of the defining 
curve and the other two corresponding to the field quantities and the weight function, 
are introduced. The defining curve C  is discretized into n  elements with the total m  
nodes. The coordinates of points on C, denoted by 0

ˆ ( )s x x x , is approximated by   

0 0 ( ) ( ) 0

1

ˆ ˆ( ) ( ) ( )
m

h h G

i i

i

x s x x s x s x x      


      N X  (3. 31) 
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where the superscript “ h ” is used to indicate the approximate quantities, ( ) ( )i s  is 
the basis function associated with the ith node, ( ) ( ) 0

ˆ
i ix x x     denotes the 

coordinate of the ith node relative to the scaling center 0x , (1) (2) ( )
{ }

G T

m
  N  

stands for a row-matrix containing all nodal basis functions, and 
(1) (2) ( )

ˆ ˆ ˆ{ }
T

m
x x x

   
X  denotes a vector containing all nodal relative 

coordinates in which ( ) ( ) 0
ˆ

i ix x x      represents the coordinate of the ith node 
relative to the scaling center 0x . It should be remarked that the global nodal basis 
function ( ) ( )i s  is constructed in a standard fashion by simply patching the local 
element shape functions associated with the ith node and, as a result, it satisfies the 
Kronecker-delta property, i.e., ( ) ( )( )i j ijs   where ( )js is the value of the boundary 
coordinate s  of the jth node and ij  denotes the Kronecker-delta symbol. The 
resulting discretized (or approximate) defining curve is denoted by hC  and the region 
in the 1 2x x  plane described by the discretized defining curve hC  is then used as the 
approximation for the geometry of the body   and denoted by h . With the relation 
(3.31), the derivative ˆ /dx ds  is then approximated by  

ˆh
Gdx

ds


 B X  (3. 32) 

where (1) (2) ( )
/ { / / / }B N    

G G T

m
d ds d ds d ds d ds . The approximations of J  and 

the matrices 1b  and 2b  are given by 

1 2 2 1( ) ( )h T G T G T G T GJ  X N B X X N B X  (3. 33) 

1 1 2 2( ) ( )h T G T G T G T GJ   X N N X X N N X  (3. 34) 

1 1 2 2( ) ( )sh T G T G T G T GJ  X B B X X B B X  (3. 35) 

2

1

1

1
G

h

GJ





 
  

 

B X I
b

B X I
 (3. 36) 

2

2

1

1
G

h

GJ





 
  

 

N X I
b

N X I
 (3. 37) 

The approximate linear differential operator L  is then given by  

1 2

1h h h

s 

 
 

 
L b b  (3. 38) 

 From the coordinate transformation (3.17) along with the approximation (3.31), 
the state variable u  is now approximated by h

u  in a form  
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( ) ( )

1

( , ) ( ) ( )
m

h h h S h

i i

i

s s  


  u u u N U  (3. 39) 

where ( ) ( )h

i u  denotes the value of the state variable along the line ( )is s  (i.e., a line 
passing through the scaling center and the ith node),  (1)

S



N I  (2) ( )m

 
 

I I

is a m  -matrix containing all basis functions, and  (1)
( )

h h
U u  (2) ( )

( ) ( )
T

h h

m
 u u

,and  (1) ( )
( ) ( )

T
h h h

m
 W w w denote vectors containing all functions 

( )
( )

h

i
u  and 

( ) ( )h

i w , respectively. The approximation of the body flux σ  at any point hx  in 
the 1 2x x  plane (or at any corresponding point ( , )s  in the s   plane), denoted 
by h

σ , can be obtained directly by substituting (3.39) into the relation (3.9) along with 
the approximation (3.38) and the final result is given by   

1 2 1 , 2

1 1
( , ) ( ) ( )h h h h h h S h h hs

s
  

  

    
        

    
D L u D b b N U D BU B U  (3. 40) 

where 1B  and 2B  are given by 

1 1

h SB b N  (3. 41) 

2 2

h SB b B  (3. 42) 

where (1) (2) ( )
/ { / / / }B N I I I  

  
 

S S

m
d ds d ds d ds d ds . It is evident that 

both the matrices 1B  and 2B  are independent of the coordinate. Similarly, the 
weight function w  and its derivatives Lw  can be approximated, in a similar fashion, 
by 

( ) ( )

1

( , ) ( ) ( )
m

h h h S h

i i

i

s s  


  w w w N W  (3. 43) 

1 2 1 , 2

1 1
( , ) ( )h h h h h h S h h hs

s


  

    
       

    
L w L w b b N W BW B W  (3. 44) 

where ( )
( )w 

h

i  denotes an arbitrary function of the coordinate   along the line ( )is s  

and  (1) ( 2) ( )
( ) ( ) ( )

T
h h h h

m
  W w w w  is a vector containing all functions ( )

( ).w 
h

i  

3.6 Scaled Boundary Finite Element Equations 

In this section, a set of scaled boundary finite element equations is established for a 
generic, two-dimensional body   as shown in Figure 3.5. The boundary of the domain 
  is assumed consisting of four parts resulting from the scale boundary coordinate 
transformation with the scaling center 0x  and defining curve C : the inner boundary 
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1 , the outer boundary 2 , the side-face-1 1

s , and the side-face-2 2

s . The 
body is considered in this general setting to ensure that the resulting formulation is 
applicable to various cases. For certain special cases such as closed bodies without 
the side face, bodies containing the scaling center, and unbounded bodies, it simply 
takes 1 2

s s    , 1

s   , and 2

s  , respectively, in the following 
formulation. The approximation of the given body   is achieved via the discretization 
of the defining curve  hC  along with the mapping region 1 2 1 2[ , ] [ , ]s s    in the s   
plane and the approximate body is denoted by h . In particular, the approximate 
inner boundary 1

h , the approximate outer boundary 2

h , the side-face-1 1

s , and 
the side-face-2 2

s  are fully described by a curve 1 1 2, s s s    , a curve 

2 1 2, s s s    , a straight line 1 1 2,s s      , and a straight line 2 1 2,s s     

, respectively. 
As a result of the boundary partition 1 2 1 1

s s      , the weak-
form equation (3.15) can be rewritten for the generic body   as   

1 2 1 1
    

         ( ) ( )
s s

T T T T T T
Lw D Lu dA w tdl w tdl w tdl w tdl w bdA  (3. 45) 

By changing to the , s -coordinates via the transformation (3.17) and using the 
relations (3.24)-(3.26), the weak-form (3.45) becomes  

2 2 2 2 2 2

1 1 1 1 1 1

2 2

1 1

1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( )

                                       ( ) ( ) ( ) ( )

s s s s

T T T s T s

s s s s

s T s s T s

J d ds J d ds s J s ds s J s ds

J d J d

 

 

 

 

 

     

   

  

 

     

 

Lw D Lu w b w t w t

w t w t

 (3. 46) 

where 1w , 2w , 1

s
w , 2

s
w  are restrictions of the weight function w  on the boundaries 

1 , 2 , 1

s , 2

s , respectively; 1t , 2t , 1

st , 2

st are surface flux on the boundaries 1

, 2 , 1

s , 2

s ,respectively; and 1 1
( )J J s




 , 2 2

( )J J s



 . Next, by introducing the 

approximations of the body flux (3.40) and the derivatives of the weight function (3.44) 
along with the domain approximation, the integral on the left-hand side of (3.46), 
denoted for convenience by 1I , becomes 

2 2

1 1

1 1 , 2 1 , 2

1 1
Ts

h h h h h

s

J d ds



 



 
  

   
     

   
  BW B W D B U B UI  (3. 47) 

By manipulating the involved matrix algebra, 1I  can be expressed as 
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2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

1 , 1 1 , , 1 2

2 1 , 2 2

( ) ( )

   ( ) ( )

s s

h T T h h h T T h h

s s

s s h
h T T h h h T T h

s s

J d ds J d ds

J
J d ds d ds

 

  

 

 



 

  

 


 

 

   

   

W B DB U W B DB U

W B DB U W B DB U

I

 (3. 48) 

Further integrating the first two integrals by parts with respect to the coordinate   
results in  

 

 
 

Figure 3.5: Schematic of a generic body   and its approximation h . The dashed lines 
are used to represent the approximation of the defining curve, the inner boundary and 
the outer boundary. 

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2

2 1

1 1

1 1 1 , , 1 2 ,

2 1 , 2 2

2 1 1 , 2 1 1 1 ,

( ) ( ) ( )

   ( ) ( )

   ( ) ( )

s s

h T T h h h T T h h

s s

s s h
h T T h h h T T h

s s

s s

h T T h h h T T h

s s

J d ds J d ds

J
J d ds d ds

J ds

 

  

 

 



 

    

  

 


 
 

  

 

 

   

   

 

W B DB U W B DB U

W B DB U W B DB U

W B DB U W B DB U

I

2 2

2 1

1 1

1

2 1 2 1 1 2   ( ) ( )

h

s s

h T T h h h T T h h

s s

J ds

J ds J d
    

  W B DB U W B DB U

 (3. 49) 

where 
1 1( )h h   W W  and 

2 2( )W W   h h . By recalling that the matrices 1B  and 

2B  are independent of the coordinate  , h
W  and h

U  are independent of the 
coordinate s , and the matrix D  is independent of both   and s , the integral 1I  is 
simplified to  
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   

2

1

2 1

1 0 , 1 1 0 , 2

2 0 , 1 1 0 , 1

1
( ) ( )

   ( ) ( )

h T h T h h

h T h T h h T h T h

d



 



    

 


 
 

 
      

 

   

 W E U E E E U E U

W E U E U W E U E U

I
 (3. 50) 

where the matrices 0E , 1E  and 2E are defined by 
2

1

0 1 1

s

T h

s

J ds E B DB  (3. 51) 

2

1

1 2 1

s

T h

s

J ds E B DB  (3. 52) 

2

1

2 2 2

s

T h

s

J ds E B DB  (3. 53) 

 It is evident from (3.51) and (3.53) that both matrices 0E  and 2E  are symmetric, 
i.e., 0 0( )T E E  and 2 2( )T E E . Now, the boundary integrals appearing on the right-
hand side of (3.46), denoted for convenience by 2I , can also be approximated by  

2 2

1 1

2

1

2 1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( ) ( ) ( )
o

i

s s

h T S T sh h T S T sh

s s

h T S T s h h T S T s h

s J s ds s J s ds

J d J d



 

 

 

   

 

 

 

 

W N t W N t

W N t W N t

I

 (3. 54) 

where 1 1( )S S s s N N  and 2 2( )S S s s N N . By defining the following quantities  
2

1

1 1 1( ) ( ) ( )

s

S T sh

s

s J s ds P N t  (3. 55) 

2

1

2 2 2( ) ( ) ( )

s

S T sh

s

s J s ds P N t  (3. 56) 

1 1 1 1 1( ) ( ) ( )t t S T s hJ   F F N t   (3. 57) 

2 2 2 2 2( ) ( ) ( )t t S T s hJ   F F N t  (3. 58) 

the integral 2I  now becomes 
2 2

1 1

2 1 1 2 2 1 2( ) ( ) ( ) ( )h T h T h T h h T hd d

 

 

     W P W P W F W FI  (3. 59) 
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Without loss of generality, the first node and the last node resulting from the 
discretization of opened bodies are taken as a node on the side-face-1 and a node on 
the side-face-2, respectively, and this applies in what follows. It should be remarked 
from the Kronecker property of the nodal basis functions that (1) 1( ) 1s  , 

( ) 1( ) 0 2j s j     and ( ) 2( ) 1m s  , ( ) 2( ) 0 1j s j m     . Now, both the matrices 

1

S
N  and 2

S
N  clearly contain many zero entries and simply take the form  

1 { }S

  N I 0 0  (3. 60) 

2 { }S

  N 0 0 I  (3. 61) 

Substituting (3. 60) into (3. 57) and (3. 61) into (3. 58) leads to 

1 1 1 1( ) { ( ) }t t h s TJ   F F t 0 0  (3. 62) 

2 2 2 2( ) { ( )}t t h s TJ   F F 0 0 t  (3. 63) 

where0  is a zero  -component vector. Finally, the domain integral associated with 
the distributed body source on the right-hand side of (3. 46), denoted by 3I  can be 
approximated by 

2 2 2

1 1 1

3 ( ) ( )

s

S h T h h T b

s

J d ds d

 

 

      N W b W FI  (3. 64) 

where the matrix b
F  is defined by 

2 2 2 2

1 1 1 1

(1) (2) ( )( ) ( )

T
s s s s

b b S T h h h

m

s s s s

Jds J ds J ds J ds   
  

    
  

   F F N b b b b  (3. 65) 

By combing the results (3.50), (3.59) and (3.64), the weak-form (3.46) is approximated 
by 

   

2

1

2 1

0 , 1 1 0 , 2

2 0 , 1 2 1 0 , 1 1

1
( ) ( )

( ) ( ) 0

h T h T h h

t b

h T h T h h T h T h

d



 



    

  


 
 

 
       
 

         
      

 W E U E E E U E U F F

W E U E U P W E U E U P

 (3. 66) 

where 1 2

t t t F F F . From the arbitrariness of the weight function h
W , it can be 

deduced that  
2 2

0 , 0 1 1 , 2 1 2( )    ( , )h T h h t b

               E U E E E U E U F F 0  (3. 67) 

2 2( )h  Q P  (3. 68) 
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1 1( )h   Q P  (3. 69) 

where the vector ( )h h Q Q  commonly known as the nodal internal flux is defined 
by  

0 , 1( )h h T h

  Q E U E U  (3. 70) 

Equations (3.67)-(3.69) form a set of the so-called scaled boundary finite element 
equations governing the function ( )h h U U  . It can be remarked that (3.67) forms a 
system of linear, second-order, nonhomogeneous, ordinary differential equations with 
respect to the coordinate   whereas (3.68) and (3.69) pose the boundary conditions 
on the inner and outer boundaries of the body. As previously pointed out, the 
governing equations (3.67)-(3.69) are formulated in a general context; as a result, for 
certain special cases, some terms or equations must be eliminated properly. For 
instances, the boundary condition (3.68) is ignored for unbounded bodies; the 
boundary condition (3.69) is ignored for bounded bodies containing the scaling center; 
the term t

F  vanishes for closed bodies; and the term b
F  vanishes for bodies free of 

distributed body source. 
 Now, the statement of an approximate problem can be formulated as follows: 
find the function ( )h h U U  such that a system of linear ordinary differential 
equations (3.67) is satisfied 1 2( , )     and boundary conditions (3.68) and (3.69) are 
satisfied. 

3.7 Treatment of Prescribed Conditions on Side Faces 

It should be evident from (3.67)-(3.69) that the information associated with the 
prescribed distributed body source and the prescribed boundary conditions on both 
inner and outer boundaries can be integrated into the formulation via the term b

F  
and the conditions (3.68) and (3.69), respectively. However, the consideration of the 
prescribed conditions (either the surface flux or state variable) on the side face is still 
not apparent from the current formulation. To circumvent this situation, the system of 
linear differential equations (3.67) is further re-expressed in a form well-suited for the 
treatment of the prescribed state variable and surface flux on the side face. 
 First, bodies considered in the present investigation can be divided into five 
groups as follows: Group-1 corresponding to closed bodies without the side-face, 
Group-2 corresponding to opened bodies with prescribed surface flux on both side 
faces, Group-3 corresponding to opened bodies with prescribed surface flux on the 
side-face-1 and prescribed state variable on the side-face-2, Group-4 corresponding to 
opened bodies with prescribed surface flux on the side-face-2 and prescribed state 
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variable on the side-face-1, and Group-5 corresponding to opened bodies with 
prescribed state variable on both side faces. It should be evident that for bodies in 
Group-1, h

U  contains only unknown functions and 1

s
t , 2

s
t  do not exist or, equivalently, 

vanish; for bodies in Group-2,  h
U  contains only unknown functions and 1

s
t , 2

s
t  are 

fully prescribed; for bodies in Group-3, 1

s
t  and ( ) ( )h

m u  are fully prescribed and 2

s
t  and 

the remaining functions ( ) ( ) 1h

i i m   u  in h
U  are unknown; for bodies in Group-4, 

2

s
t  and (1) ( )h u  are fully prescribed and 1

s
t , and the remaining functions ( ) ( ) 2h

i i  u  
in h

U  are unknown; and for bodies in Group-5, both (1) ( )h u  and ( ) ( )h

m u  are fully 
prescribed whereas 1

s
t , 2

s
t , and the remaining functions ( ) ( ) 2 1h

i i m    u  in h
U  

are unknown. To treat the prescribed conditions on the side-face for all groups of 
bodies as a whole, the vector h

U  is first partitioned and rearranged into known and 
unknown parts as { }h hu hc TU U U  where ( )hu hu U U  contains only unknown 
functions from a collection ( ) ( ), 1,2,...,h

i i m u  and ( )hc hc U U  contains the 
remaining known functions associated with the prescribed state variable on the side 
face. By denoting p  the number of known functions ( ) ( )h

i u  contained in hc
U , the 

number of remaining unknown functions ( ) ( )h

i u  contained in hu
U  is then equal to 

m p . Clearly, the value of p  associated with bodies in Group-1, Group-2, Group-3, 
Group-4, and Group-5 are 0, 0, 1, 1, and 2 respectively. Consistent with the partition of 
the vector h

U , the vector t
F  can also be partitioned into { }t tu tc TF F F  where 

( )tu tu F F  contains many 0  functions and  known functions associated with 
prescribed surface flux on the side face and has the same dimension as that of hu

U  
and ( )tc tc F F  contains unknown functions associated with the unknown surface 
flux on the side face and has the same dimension as that of hc

U . According to the 
this partition, the system of differential equations (3.67) can be expressed as   

, ,2 0 0 0 1 1 0 1 1

, ,0 0 0 1 1 0 1 1

( ) ( )

( ) ( ) ( ) ( )

                                                    

hu huuu uc uu uu T uu uc cu T uc

hc hcuc T cc uc T uc T cu cc cc T cc

 

 

 
            

      
            

U UE E E E E E E E

U UE E E E E E E E

22 2

2 2

    
( )

uu uc hu tu bu

uc T cc hc tc bc
 

       
         

      

E E U F F
0

E E U F F

 (3. 71) 

Similarly, equation (3.70) for the nodal internal flux can also be expressed, in a 
partitioned form, as  

,0 0 1 1

,0 0 1 1

( ) ( )

( ) ( ) ( )

huuu uc uu T cu Thu hu

hcuc T cc uc T cc Thc hc






        

         
        

UE E E EQ U

UE E E EQ U
 (3. 72) 
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Equation (3.71) can be separated into two systems:   
2 2

0 , 0 1 1 , 2( )uu hu uu uu T uu hu uu hu tu bu suu

             E U E E E U E U F F F  (3. 73) 

2tc bc suc scc    F F F F  (3. 74) 

where the vectors suu
F , suc

F , and scc
F  are defined by 

2

0 , 0 1 1 , 2( ( ) )suu uc hc uc cu T uc hc uc hc

      F E U E E E U E U  (3. 75) 
2

0 , 0 1 1 , 2( ) ( ) ( ) ( )suc uc T hu uc T uc T cu hu uc T hu

         F E U E E E U E U  (3. 76) 

2

0 , 0 1 1 , 2( )scc cc hc cc cc T cc hc cc hc

         F E U E E E U E U  (3. 77) 

It can be remarked that suu
F  and scc

F  are known vectors obtained from the 
prescribed state variable on the side face whereas suc

F  is an unknown vector involving 
the unknown vector hu

U . By following the same procedure, the partitioned equation 
(3.72) can also be separated into two systems: 

0 , 1( ) ( ) ( )hu uu hu uu T hu huc

    Q E U E U Q  (3. 78) 

0 , 1( ) ( ) ( ) ( )hc uc T hu uc T hu hcc

    Q E U E U Q  (3. 79) 

where the known vectors ( )huc Q  and ( )hcc Q  are defined by 

0 , 1( ) ( )huc uc hc cu T hc

  Q E U E U  (3. 80) 

0 , 1( ) ( )huc cc hc cc T hc

  Q E U E U  (3. 81) 

 Now, a system of differential equations (3.73) along with the following two 
boundary conditions on the inner and outer boundaries:  

2 2( )hu u Q P  (3. 82) 

1 1( )hu u  Q P  (3. 83) 

is sufficient for determining the general solution of hu
U  for the given boundary value 

problem. The vectors 2

u
P  and 1

u
P  result directly from the partition of the vectors 2P  

and 1P , respectively, i.e., 2 2 2{ }u c TP P P  and 1 1 1{ }u c TP P P . Once hu
U  is solved, 

the unknown vectors tc
F , 1

c
P , and 2

c
P  can be obtained, respectively, by (3.74) and  

2 2( )hc c Q P  (3. 84) 

1 1( )hc c  Q P  (3. 85) 

Details of the solution procedure are provided in the next chapter.  
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Chapter 4 
SOLUTION METHODOLOGY 

This chapter presents the procedure for obtaining the analytical solution of a system 
of linear, second-order, nonhomogeneous, ordinary differential equations (3.73) and 
the boundary conditions (3.82) and (3.83). A corresponding eigenvalue problem is 
solved first to determine the homogeneous solution and the technique of assumed 
solution form is utilized to construct the particular solution associated with the 
distributed body source, the prescribed surface flux on the side face, and the 
prescribed state variable on the side face. Once the general solution is obtained, the 
boundary conditions on the inner and outer boundaries are enforced to determine all 
involved constants. Finally, the post-process for the field quantities such as the state 
variable and body flux is described.  

4.1 Determination of Homogeneous Solution 

In this section, a homogeneous solution of the system of linear differential equations 
(3.73), denoted by 0

hu
U , is derived following standard procedure from the theory of 

differential equations. The homogeneous solution 0

hu
U  must satisfy 

2

0 0, 0 1 1 0, 2 0( )uu hu uu uu T uu hu uu hu

         E U E E E U E U 0  (4. 1) 

The corresponding nodal internal flux, denoted by 0 ( )hu Q , is given by  

0 0 0, 1 0( ) ( )hu uu hu uu T hu

  Q E U E U  (4. 2) 

Since (4.1) is a set of ( )m p   linear, second-order, Euler-Cauchy differential 
equations, the solution 0

hu
U  takes the following form 

2( )

0

1

( ) i

m p
hu u

i i

i

c
 

 



 U ψ  (4. 3) 

where a constant i  is termed the modal scaling factor, iψ  is the ( )m p  -
component vector  representing the ith mode of the state variable, and ic  are arbitrary 
constants denoting the contribution of each mode to the solution. By substituting (4.3) 
into (4.2), it leads to   

2( ) 2( )

0 0 1

1 1

( ) ( )i i

m p m p
hu uu uu T u u

i i i i i

i i

c c
    

   

 

     Q E E ψ q  (4. 4) 

where u

iq  is termed the ith modal internal flux given in terms of u

iψ  by  
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0 1( )    {1,2,..., 2( ) }u uu uu T u

i i i i m p       q E E ψ  (4. 5) 

By substituting (4.3) into (4.1), it results in 

 
2( )

0 0 1 1 2

1

( 1) ( )i

m p
uu uu uu T uu uu u

i i i i i

i

c
   

 



        E E E E E ψ 0  (4. 6) 

Since ic  are arbitrary, (4.6) implies that  

 2

0 1 1 2( )    {1,2,..., 2( ) }uu uu T uu uu u

i i i i m p           E E E E ψ 0  (4. 7) 

By further rearranging terms in (4.5) such that  
1 1

0 1 0( ) ( ) ( )u uu uu T u uu u

i i i i    ψ E E ψ E q  (4. 8) 

where 1

0( )uu 
E  denotes the inverse of 0

uu
E , and then substituting the result into (4.7), 

it gives rise to 
1 1

2 1 0 1 1 0( ) ( ) ( )u uu uu uu uu T u uu uu u

i i i i      q E E E E ψ E E q  (4. 9) 

Now, by introducing a 2( )m p  -component vector iX  such that { }u u T

i i iX ψ q , 
equations (4.8) and (4.9) can be combined into a system of linear algebraic equations 

i i iAX X  (4. 10) 

where the matrix A  is given by 
1 1

0 1 0

1 1

2 1 0 1 1 0

( ) ( ) ( )

( ) ( ) ( )

uu uu T uu

uu uu uu uu T uu uu

 

 

 
  

 

E E E
A

E E E E E E
 (4. 11) 

Determination of all 2( )m p   pairs { , }i i X  is achieved by solving the eigenvalue 
problem (4.10) where i  denote the eigenvalues and iX  are associated eigenvectors. 
It should be remarked that since A  is not symmetric, { , }i i X  can involve complex 
numbers. In fact, only a half of the eigenvalues has the positive real part whereas the 
other half has negative real part. Let 

λ  and 
λ  be ( ) ( )m p m p     diagonal 

matrices containing eigenvalues with the positive real part and the negative real part, 
respectively. Also, let  

Φ  and q
Φ  be matrices whose columns containing, 

respectively, all vectors u

iψ  and u

iq  obtained from the eigenvectors { }u u T

i i iX ψ q  
associated with all eigenvalues contained in 

λ  and let  
Φ  and q

Φ  be matrices 
whose columns containing, respectively, all vectors u

iψ  and u

iq  obtained from the 
eigenvectors { }u u T

i i iX ψ q  associated with all eigenvalues contained in 
λ , i.e.,  
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q q

  



 

   
   

   

Φ Φ
A λ
Φ Φ

 (4. 12) 

q q

  



 

   
   

   

Φ Φ
A λ
Φ Φ

 (4. 13) 

Now, the homogeneous solutions 0

hu
U  and 0 ( )hu Q  are given by 

0 ( ) ( ) ( )hu          U Φ Π C Φ Π C  (4. 14) 

0 ( ) ( ) ( )hu q q        Q Φ Π C Φ Π C  (4. 15) 

where 
Π  and 

Π  are diagonal matrices obtained by simply replacing the diagonal 
entries i  of the matrices 

λ  and 
λ  by the a function i , respectively; and 

C  and 


C  are vectors containing arbitrary constants representing the contribution of each 
mode. It is apparent that the diagonal entries of 

Π become infinite when    
whereas those of 

Π is unbounded when 0  . As a result, 
C  is taken to 0  to 

ensure the boundedness of the solution for unbounded bodies and, similarly, the 
condition  C 0  is enforced for bodies containing the scaling center. 

4.2 Determination of Particular Solution 

In this section, a particular solution of the system of linear differential equations (3.73), 
denoted by 1

hu
U , is established. In the present study, the distributed body source b, 

the surface flux on the side-face-1 1

s
t  (if it is prescribed), the surface flux on the side-

face-2 2

s
t  (if it is prescribed), and the prescribed state variable on the side face hc

U  
are assumed to admit the form 

*

( , ) ( )j

j

js s




 


 b b  (4. 16) 

*

1

1 ( ) j

j

s s

j





 


 t t  (4. 17) 

*

2

2 ( ) j

j

s s

j





 


 t t  (4. 18) 

*

( ) j

j

hc hc

j





 


 U U  (4. 19) 

where *  denotes a set of non-negative real numbers, ( )j sb  are given vectors which 

are a function of s , and 1s

jt , 2s

jt , hc

jU  are given constant vectors. Substituting (4.16) 
into (3.65), (4.17) into (3.62), (4.18) into (3.63), and (4.19) into (3.75) yields  
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*

j

j

b b

j








 F F  (4. 20) 

*

1

1
j

j

t t

j








 F F  (4. 21) 

*

2

2
j

j

t t

j








 F F  (4. 22) 

*

j

j

suu suu

j








 F F  (4. 23) 

where b

jF , 1t

jF , 2t

jF , and suu

jF  are constant vectors defined, in terms of prescribed 
data, by  

(1) (2) ( )( ) ( ) ( )
o o o

i i i

T
s s s

b

j j j m j

s s s

s Jds s Jds s Jds  
  

  
  
  F b b b  (4. 24) 

1 1

1{ }t s

j jJ F t 0 0  (4. 25) 
2 2

2{ }t s T

j jJ F 0 0 t  (4. 26) 

 0 0 1 1 2( 1) ( ( ) )suu uc uc cu T uc uc hc

j j j j j       F E E E E E U  (4. 27) 

The vectors b
F  and 1 2

t t t F F F  can be further partitioned to obtain 
{ }b bu bc TF F F  and 1 1 2 2{ } { } { }t tu tc T tu tc T tu tc T  F F F F F F F  where 

 
* *

;   ;   j j

j j

T
bu bu bc bc b bu bc

j j j j j

 

 

 
 

   F F F F F F F  (4. 28) 

 
* *

1 1 1 1 1

1 1;   ;   j j

j j

T
tu tu tc tc t tu tc

j j j j j

 

 

 
 

   F F F F F F F  (4. 29) 

 
* *

2 2 2 2 2

2 2;   ;   j j

j j

T
tu tu tc tc t tu tc

j j j j j

 

 

 
 

   F F F F F F F  (4. 30) 

Based on this form of prescribed data, the particular solution 1

hu
U  must take the form 

1 2

1 1 1 1 1( ) ( ) ( ) ( ) ( )hu hub hut hut huu       U U U U U  (4. 31) 

where 

*

2

1 ( ) j

j

hub b

j





 




 U c  (4. 32) 
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*

11 1

1 ( ) j

j

hut t

j





 




 U c  (4. 33) 

*

12 2

1 ( ) j

j

hut t

j





 




 U c  (4. 34) 

*

1 ( ) j

j

huu uc

j





 


 U c  (4. 35) 

with b

jc , 1t

jc , 2t

jc , and uc

jc  being vectors of unknown constants. By substituting (4.20)-
(4.23) and (4.31) along with (4.32)-(4.35) into (3.73), it leads to 

 

 

 

*

*

2

0 0 1 1 2

1 1 1

0 0 1 1 2

1 2

0 0 1 1 2

( 2)( 1) ( 2) ( )

( 1) ( 1) ( )

( 1) ( 1) ( )

j

j

j

j

j

uu uu uu T uu uu b bu

j j j j j

uu uu uu T uu uu t tu

j j j j j

uu uu uu T uu uu t

j j j j











   

   

   











            

           

        





E E E E E c F

E E E E E c F

E E E E E c F

 

*

*

2

0 0 1 1 2( 1) ( 1) ( ) 0

j

j

j

tu

j

uu uu uu T uu uu uc suu

j j j j j







   





  
 

           



 E E E E E c F

  (4. 36) 

Equation (4.36) can be satisfied 1 2[ , ]     if and only if 

 0 0 1 1 2( 2)( 1) ( 2) ( )uu uu uu T uu uu b bu

j j j j j             E E E E E c F 0  (4. 37) 

  1 1

0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu t tu

j j j j j            E E E E E c F 0  (4. 38) 

  2 2

0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu t tu

j j j j j            E E E E E c F 0  (4. 39) 

 0 0 1 1 2( 1) ( 1) ( )uu uu uu T uu uu uc suu

j j j j j            E E E E E c F 0  (4. 40) 

A system of linear algebraic equations (4.37)-(4.40) is sufficient for determining all 
unknown constant vectors b

jc , 1t

jc , 2t

jc , and uc

jc . One the particular solution 1 ( )hu U  is 
obtained, the corresponding particular nodal internal flux, denoted by 1 ( )hu Q , is given 
by  

1 0 1, 1 1( ) ( )hu uu hu uu T hu

  Q E U E U  (4. 41) 

4.3 Final General Solution 

The general solution of (3.73) ( )hu U  and the corresponding nodal internal flux 
( )hu Q  are then given by 

0 1 1( ) ( ) ( ) ( ) ( ) ( )hu hu hu hu               U U U Φ Π C Φ Π C U  (4. 42) 
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0 1 1( ) ( ) ( ) ( ) ( ) ( )hu hu hu q q hu              Q Q Q Φ Π C Φ Π C Q  (4. 43) 

To determine the constants contained in 
C  and 

C , the boundary conditions on 
both inner and outer boundaries are enforced. By applying the condition (3.82) and 
(3.83), it results in 

1 1 1 1 1( ) ( ) ( )q q hu u          Φ Π C Φ Π C Q P  (4. 44) 

2 2 1 2 2( ) ( ) ( )q q hu u         Φ Π C Φ Π C Q P  (4. 45) 

It is worth noting that for bounded bodies containing the scaling center, the first system 
(4.44) is ignored with  C 0  whereas, for unbounded bodies, the second system is 
ignored with  C 0 . The two systems (4.44) and (4.45) can be combined to obtain 

1 1 1 1 1

2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

q q u hu

q q u hu

  

  

    

    

       
       

      

Φ Π Φ Π P QC

Φ Π Φ Π P QC
 (4. 46) 

The system (4.46) can be inverted to obtain  
1

1 1 1 1 1

2 2 2 1 2

( ) ( ) ( )

( ) ( ) ( )

q q u hu

q q u hu

  

  


   

   

        
          

        

Φ Π Φ Π P QC

Φ Π Φ Π P QC
 (4. 47) 

From (4.42), it can be readily obtained  

1 1 1 1 1

2 2 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

hu hu

hu hu

 

 

   

   

    

    

      
       

      

U Φ Π Φ Π QC

U Φ Π Φ Π QC
 (4. 48) 

Substituting (4.47) into (4.48) yields 

1 1 1 1 1 1

2 2 1 2 1 2

( ) ( ) ( )

( ) ( ) ( )

hu u hu hu

hu u hu hu

  

  

       
         

       

U P U Q
K K

U P U Q
 (4. 49) 

where the coefficient matrix K , commonly termed the stiffness matrix, is given by 
1

1 1 1 1

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

q q

q q

 

 

   

   


       

       

   
    
   

Φ Π Φ Π Φ Π Φ Π
K

Φ Π Φ Π Φ Π Φ Π
 (4. 50) 

By applying the prescribed surface flux and the state variable on both inner and outer 
boundaries, a system of linear algebraic equations (4.49) is sufficient for determining 
all unknowns contained in the vectors 1 2{ ( ) ( )}hu hu T U U  and 1 2{ }u u TP P . Once 
the unknowns on both inner and outer boundaries are solved, the constant vectors 


C  and 

C  can be obtained from (4.47) and, then, the general solution for both 
( )hu U  and ( )hu Q  are obtained from (4.42) and (4.43), respectively. 
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4.4 Post-process for Field Quantities 

Once the approximate general solution ( )hu U  is obtained, the approximate field 
quantities such as the state variable and the surface flux within the body can be 
determined. For instance, the approximate state variable associated with a point ( , )s  
can be obtained from (3.39) as 

( )
( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

hu

h S h Su Sc Su hu Sc hc

hc
s s s s s s


   



 
      

 

U
u N U N N N U N U

U
 (4. 51) 

where Su
N and Sc

N  are matrices resulting from the partition of S
N . Similarly, the 

approximated body flux can be computed from (3.40) as   

1 , 2

,

1 1 2 2

,

1 , 2 1 , 2

1
( , ) ( ) ( )

( ) ( )1
            ( ) ( ) ( ) ( )

( ) ( )

1 1
            ( ) ( ) ( ) ( ) ( ) ( ) (

h h h

hu hu

u c u c

hc hc

u hu u hu c hc c

s s s

s s s s

s s s







 




 

  

  
 

 
  

 

    
          

    

 
    

 

σ D B U B U

U U
D B B D B B

U U

D B U B U D B U B ) ( )hcs 
 
 
 

U

 (4.52) 

where 1

u
B , 1

c
B  and 2

u
B , 2

c
B  are matrices resulting from the partition of the matrices 

1B  and 2B , respectively. It is emphasized here again that the solutions (4.48) and 
(4.49) also apply to the special cases of bounded and unbounded bodies. For bounded 
bodies containing the scaling center, 

C  simply vanishes and, for unbounded bodies, 
 C 0 . 

4.5 Error of Approximations 

To investigate the error of the scaled boundary finite element approximation, an error 
vector-valued function ( )xe e  is first defined by 

( ) ( ) ( )exact hx  e u x u x                                          (4.53) 

where exact
u  and h

u  denotes the exact solution and scaled boundary finite element 
solution of the state variables, respectively. The following standard 2L -norm is 
employed to measure the magnitude of the error function, i.e.,  

2

1/2

|| || ( ) ( )T

L
x x



 
  
 
e e e                                          (4.54) 
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Note that the evaluation of the above integral can be achieved efficiently in the s   
space. Finally, the relative prevent error, denoted by error , is obtained by normalizing 
the 2L -norm of the error function by the 2L -norm of the exact state variable, i.e.,  

2

2

|| ||
100

|| ||

L

exact

L

error  
e

u
                                         (4.55) 

where  

2

1/2

|| || [ ( )] ( )exact exact T exact

L
x x



 
  
 
u u u                                          (4.56) 

It is remarked that for problems without the exact solution, the converged solution 
obtained from a particular, sufficiently fine mesh can be used to estimate the error for 
any level of meshes used in the approximation. 
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Chapter 5 
NUMERICAL RESULTS 

This chapter presents several numerical examples to verify the proposed technique 
and demonstrate its performance and capabilities. To demonstrate its capability to 
treat a variety of boundary value problems, general boundary conditions, and 
prescribed data on the side faces, three different types of problems associated with 
steady-state heat conduction ( 1  ), linear elasticity ( 2  ), and linear 
piezoelectricity ( 3  ), under various scenarios are considered. In the approximation, 
standard finite element shape functions are employed to discretize both the defining 
curve and the trial and test functions. The accuracy and convergence of numerical 
solutions are confirmed by benchmarking with available analytical solutions and 
carrying out the analysis via a series of meshes.   

5.1 Heat Conduction in Rectangular Domain 

The proposed technique is first tested with a representative problem associated with 
the steady-state heat conduction ( 1  ). Let us consider a two-dimensional 
rectangular domain of dimensions 1l  and 2l  as shown schematically in Figure 5.1 (a). 
The domain is made of a medium with an isotropic heat conductivity 0k  (or, 
equivalently, 

11 22 0 12 21
, 0D D k D D    ) and subjected to a uniform heat source 

1 0
b Q . A zero temperature is prescribed along the boundary AD (i.e., 1 0ADu  ) and a 
uniform surface heat flux 0q  is prescribed along the boundary BC (i.e., 1 0

BCt q ) 
whereas, along the boundaries AB and CD, the surface heat flux vanishes (i.e., 

1 1 0AB CDt t  ). For this particular case, the exact solution for the temperature field (i.e., 

1( )u x ) and body heat flux (i.e., 11( )x  and 21( )x ) is given by   

2

1 0 0 1 1 0 1

0

1 1
( )

2
u q Q l x Q x

k

 
   

 
                                         (5.1) 

11 0 0 1 1 21( ),    0q Q l x                                              (5.2) 

The domain geometry is described by the scaling center at point D and the defining 
curve ABC; as a result, the boundaries AD and CD become the side faces (see Figure 
5.1 (b)). In the numerical study, 

0q  and 
0Q  are chosen such that 

0 1 03Q l q  and the 
defining curve is discretized by a series of N identical linear elements. 

The normalized temperature 1 0 0 1/u k q l  and the non-zero normalized body heat 
flux 11 0/q  along the boundary AB are reported in Tables 5.1 and 5.2 for various values 
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of normalized coordinate 1 1 1/x x l  and meshes. Clearly, computed numerical 
solutions exhibit an excellent convergence behavior as the number of elements 
increases and, in addition, accurate results in comparison with the benchmark solution 
can be obtained even when few elements are employed to discretize the defining 
curve and solution along the boundary direction. The relative percent error of the 
approximate temperature field versus the number of degrees of freedom used in the 
discretization is shown in Figure 5.2. It can be concluded from these results that the 
rate of convergence with respect to the 2L -norm is two when the linear finite 
elements are employed in the discretization. 

 

 

 

 

 

 

 

Figure 5.1: Schematic of (a) rectangular domain under body heat source and mixed 
boundary conditions and (b) scaling center and defining curve used in scale boundary 
finite element analysis. 

Table 5.1: Normalized temperatures along the boundary AB of a rectangular domain 
subjected to body heat source and mixed boundary conditions. 

 1 0 0 1/u k q l  

1x  0.0 0.2 0.4 0.6 0.8 1.0 
SBFEM, N = 4 0.0000 0.7196 1.3287 1.8290 2.2175 2.4684 
SBFEM, N = 8 0.0000 0.7352 1.3520 1.8512 2.2332 2.4950 
SBFEM, N = 16 0.0000 0.7388 1.3580 1.8577 2.2382 2.4986 
SBFEM, N = 32 0.0000 0.7397 1.3595 1.8594 2.2395 2.4996 
Exact solution 0.0000 0.7400 1.3600 1.8600 2.2400 2.5000 
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Table 5.2: Normalized body heat flux along the boundary AB of a rectangular domain 
subjected to body heat source and mixed boundary conditions. 

 11 0/q  

1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 4 3.8735 3.3211 2.7724 2.2297 1.6359 0.8099 

SBFEM, N = 8 3.9709 3.3802 2.7890 2.2037 1.6121 1.0222 

SBFEM, N = 16 3.9929 3.3950 2.7970 2.2005 1.6034 1.0006 

SBFEM, N = 32 3.9982 3.3988 2.7992 2.2001 1.6008 1.0000 

Exact solution 4.0000 3.4000 2.8000 2.2000 1.6000 1.0000 
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Figure 5.2: Relative percent error of temperature field versus number of degrees of 
freedom (DOF) for approximation by linear elements. 
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5.2 Linear Elastic Hollowed Cylinder under Uniform Pressure 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3: Schematic of (a) hollowed cylinder under uniform internal and external 
pressure and (b) quarter of cylinder used in the analysis. 

Consider, next, a hollowed cylinder of the inner radius 
1R  and outer radius 

2R  (see 
Figure 5.3(a)). The cylinder is made of a homogeneous, linearly elastic, isotropic 
material with Young’s modulus E  and Poisson’s ratio   and is subjected to a plane-
strain condition and uniform pressure 

1p  and 
2p  on the inner and outer boundary, 

respectively, (i.e., 2   and the modulus matrix D  with non-zero entries  
11

(1 ) /(1 )(1 2 )D E      , 
44

(1 ) /(1 )(1 2 )D E      , 
14 41

/(1 )(1 2 )D D E      ,

23
/2(1 )D E  ,

22
/2(1 )D E   ,

32
/2(1 )D E   ,

33
/2(1 )D E   ). Due to the 

symmetry, it is sufficient to model this problem using only a quarter of the cylinder 
(see Figure 5.3(b)) with appropriate conditions on both side faces (i.e., the normal 
displacement and tangential traction on the side faces vanish). To describe the 
geometry, the scaling center is chosen at the center of the cylinder whereas the inner 
boundary is treated as the defining curve. In a numerical study, 

2 1/ 1.5R R  , 
2 1/ 2p p 

, 0.3  , and meshes with N  identical linear elements are employed. 
Results for the normalized radial displacement (

1 1/( / )ru p R E ), normalized radial 
stress (

1/rr p ) and normalized hoop stress (
1/p ) are reported along with existing 

analytical solutions (Martin 2014) in Tables 5.3, 5.4 and 5.5, respectively, for four 
meshes (i.e., 4,8,16,32N  ). It is seen that numerical solutions generated by the 
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proposed technique converge and exhibit excellent agreement with the benchmark 
solution. It is worth noting that the discretization with only few linear elements can 
capture numerical solution with sufficient accuracy. The relative percent error of the 
approximate displacement field versus the number of degrees of freedom used in the 
discretization is shown in Figure 5.4. Again, by using linear elements in the 
approximation in the boundary direction, the rate of convergence with respect to the 

2L -norm is the same as that of the previous example. 
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Figure 5.4: Relative percent error of displacement field versus number of degrees of 
freedom (DOF) for approximation by linear elements. 

Table 5.3: Normalized radial displacement of hollowed cylinder under internal and 
external uniform pressure. Results are reported at different values of radial coordinate 

2 2

1 2r x x   for four meshes. 
 1 1/( / )ru p R E  

1/r R  1.0 1.1 1.2 1.3 1.4 1.5 
SBFEM, N = 4 1.0958 0.9864 0.8943 0.8155 0.7473 0.6875 
SBFEM, N = 8 1.1124 1.0014 0.9080 0.8282 0.7590 0.6984 
SBFEM, N = 16 1.1166 1.0052 0.9115 0.8313 0.7619 0.7011 
SBFEM, N = 32 1.1177 1.0061 0.9123 0.8321 0.7627 0.7018 
Exact solution 1.1180 1.0064 0.9126 0.8324 0.7629 0.7020 
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Table 5.4: Normalized radial stress of hollowed cylinder under internal and external 
uniform pressure. Results are reported at different values of radial coordinate 

2 2

1 2r x x   for four meshes. 

 1/rr p  
1/r R  1.0 1.1 1.2 1.3 1.4 1.5 

SBFEM, N = 4 -0.9821 -0.8289 -0.7124 -0.6217 -0.5497 -0.4917 
SBFEM, N = 8 -0.9955 -0.8401 -0.7218 -0.6298 -0.5568 -0.4979 
SBFEM, N = 16 -0.9989 -0.8429 -0.7242 -0.6319 -0.5586 -0.4995 
SBFEM, N = 32 -0.9997 -0.8436 -0.7248 -0.6324 -0.5590 -0.4999 
Exact solution -1.0000 -0.8438 -0.7250 -0.6325 -0.5592 -0.5000 

Table 5.5: Normalized hoop stress of hollowed cylinder under internal and external 
uniform pressure. Results are reported at different values of radial coordinate 

2 2

1 2r x x   for four meshes. 

 1/ p  
1/r R  1.0 1.1 1.2 1.3 1.4 1.5 

SBFEM, N = 4 0.7833 0.6301 0.5136 0.4229 0.3510 0.2929 
SBFEM, N = 8 0.7958 0.6404 0.5222 0.4301 0.3571 0.2982 
SBFEM, N = 16 0.7990 0.6429 0.5243 0.4319 0.3587 0.2996 
SBFEM, N = 32 0.7997 0.6436 0.5248 0.4324 0.3591 0.2999 
Exact solution 0.8000 0.6438 0.5250 0.4325 0.3592 0.3000 

5.3 Pressurized Circular Hole in an Infinite Domain 

Another problem in linear elasticity ( 2  ) is considered, here, to demonstrate the 
capability of the implemented procedure to treat an unbounded body with prescribed 
state variable on the side faces. Consider a pressurized circular hole of radius R1 in an 
infinite domain as shown in Figure 5.5(a). The medium is made of a homogeneous, 
linearly elastic, isotropic material with Young’s modulus E  and Poisson’s ratio   and 
subjected to the uniform pressure 

1p  on the surface of the hole, (the modulus matrix 
D is taken to be same as that employed in section 5.2 for the plane strain condition). 
Due to the symmetry, it is sufficient to model this problem using only a quarter of the 
cylinder (see Figure 5.5(b)) with appropriate conditions on both side faces (i.e., the 
normal displacement and tangential traction on the side faces vanish). To describe the 
geometry, the scaling center is chosen at the center of the cylinder whereas the inner 
boundary is treated as the defining curve. In a numerical study, the Poisson’s ratio 

0.3   and meshes with N  identical linear elements are employed.  
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Figure 5.5: Schematics of (a) pressurized circular hole in linear elastic, infinite medium 
and (b) quarter of domain used in the analysis.  
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Figure 5.6: Relative percent error of displacement field versus number of degrees of 
freedom (DOF) for approximation by linear elements. 

Results for the normalized radial displacement (
1 1/( / )ru p R E ), normalized radial stress 

(
1/rr p ) and normalized hoop stress (

1/p ) are reported along with existing analytical 
solutions (Martin 2014) in Tables 5.6 and Figure 5.7, respectively, for four meshes (i.e., 

4,8,16,32N  ). It is seen that numerical solutions generated by the proposed 
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technique converge and exhibit excellent agreement with the benchmark solution. It 
is worth noting that the discretization with only few linear elements can capture 
numerical solution with the sufficient accuracy. In addition, the relative percent error 
of the approximate displacement field versus the number of degrees of freedom is 
shown in Figure 5.6 for the approximation by linear elements. Clearly, the rate of 
convergence with respect to the 2L -norm, when the linear finite elements are 
employed, is approximately equal to two. 

Table 5.6: Normalized radial displacement of pressurized circular hole in linear elastic, 
infinite medium. Results are reported at different values of radial coordinate 

2 2

1 2r x x   for four meshes. 

 
1 1/( / )ru p R E  

1/r R  1.0 1.8 2.6 3.4 4.2 5.0 
SBFEM, N = 4 1.2750 0.7083 0.4904 0.3750 0.3036 0.2550 
SBFEM, N = 8 1.2937 0.7187 0.4976 0.3805 0.3080 0.2587 
SBFEM, N = 16 1.2984 0.7214 0.4994 0.3819 0.3092 0.2597 
SBFEM, N = 32 1.2996 0.7220 0.4998 0.3822 0.3094 0.2599 
Exact solution 1.3000 0.7222 0.5000 0.3824 0.3095 0.2600 

1 2 3 4 5
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Figure 5.7: Normalized radial and hoop stress components along the radial direction 
of pressurized circular hole in linear elastic, infinite medium. 
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5.4 Linear Elastic Square Plate under Mixed Boundary Conditions 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Schematic of elastic square plate under mixed boundary conditions . 

 

 

 

 

 

 

 

 

 

Figure 5.9: Schematic of (a) defining curve corresponding to scaling center at center of 
plate and (b) defining curve corresponding to scaling center at corner point D.  

Another representative problem in linear elasticity ( 2  ) is chosen to demonstrate 
the capability of the implemented procedure to treat problems with distributed body 
source and prescribed state variable and surface flux on the boundary; the flexibility 
of scaling center and the accuracy of shape function in approximation. Consider a 
plane-strain, square plate ABCD made of a homogeneous, isotropic, linearly elastic 
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material of Young’s modulus E  and Poisson’s ratio   as shown schematically in Figure 
5.8. Note that the modulus matrix D  for this particular problem is the same as the 
previous case. The plate is subjected to a linear body force field 1 0 22 (1 ) b b x ,

2 0 12 (1 ) b b x  with 0b  denoting a constant and 1 1 /x x l , 2 2 /x x l denoting the 
normalized coordinates whereas the non-uniform traction and homogeneous 
displacement boundary conditions are prescribed on its four sides as follows: 

Side AB: 2

1 0 1 1(3 14 )ABt b l x x    and 2

2 0 1 12 ( 4 4 3 )ABt b l x x     
Side BC: 2

1 0 26 ( 2)BCt b l x   and 2

2 0 2 2(1 14 )BCt b l x x    
Side AD: 1 0ADu   and 2

2 0 2 2(2 )ADt b l x x    
Side CD: 2

1 0 1 1( 2 )CDt b l x x   and 2 0CDu   
The exact solution for this particular problem under the plane strain condition can be 
readily obtained from a classical theory of linear elasticity and results are given by 

2 2 2

1 0 1 2 1 2 1 2 12 (1 )(1 2 3 )exactEu b l x x x x x x x          (5.3) 
2 2 2

2 0 1 2 1 2 1 2 22 (1 )( 1 2 3 )exactEu b l x x x x x x x           (5.4) 
2 2

11 22 0 1 2 1 2 1 22 (1 2 2 3 3 2 )exact exact b l x x x x x x            (5.5) 
2 2

12 0 1 2 1 2 1 2( 2 2 12 )exact b l x x x x x x          (5.6) 

In the geometry modeling, two different locations of the scaling center, one at the 
center of the plate (see Figure 5.9(a)) and the other at the corner (see Figure 5.9(b)), 
are considered. The geometry of plate is fully described by the chosen scaling center 
along with the defining curve ABCD for the former case and the defining curve ABC for 
the latter case. As a result, the boundaries AD and CD become the side faces (see 
Figure 5.9(b)) if the corner point D is chosen as the scaling center. In the analysis, 
Poisson’s ration is taken as 0.3   and the defining curve is discretized by N identical 
linear elements. The relative percent errors of the displacement field, defined by 
(4.56), are reported in Table 5.7 for different numbers of degrees of freedom. It is seen 
that the level of accuracy resulting from the two different choices of the scaling center 
is similar. The normalized displacements 2

1 0/Eu b l  and 2

2 0/Eu b l  along the boundaries 
AB and BC are reported in Tables 5.8, 5.9, 5.10 and 5.11 for various locations and 
meshes. It can be seen that the numerical solutions converges to the exact solution 
as the number of elements N used to discretize the defining curve increases and, in 
addition, only few number of degrees of freedom is sufficient to obtain accurate  
displacements. The normalized normal stress components 11 0/b l  and 22 0/b l  along 
the boundaries CD and AD are also reported in Figures 5.11 and 5.12 along with the 
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exact solution. Similar to the displacements, the present method also yields highly 
accurate stress components and the good convergent behavior; in particular, results 
obtained from all meshes are nearly indistinguishable from the benchmark solution. 
The rate of convergence of the approximation is also investigated when linear and 
quadratic elements are employed in the discretization of the defining curve and 
solution. Plots of the relative percent errors versus the number of degrees of freedom 
are reported in Figure 5.10 for both linear and quadratic elements. It can be seen that 
use of quadratic elements in the discretization yield higher rate of convergence in 
comparison with the linear elements. This implies that converged solutions for a 
specified tolerance can be achieved using only few quadratic elements. 

Table 5.7: The relative percent error of displacement field versus number of elements 
(N) and number of degrees of freedom (NDOF) and two locations of scaling center. 

Scaling center at center of plate Scaling center at corner point D 
N NDOF Error (%) N NDOF Error (%) 
16 32 1.04308 8 18 1.34902 
32 64 0.27932 16 34 0.34511 
64 128 0.07193 32 66 0.08687 
128 256 0.01838 64 130 0.02176 

Number DOF

101 102 103

E
rr

o
r(

%
)

10-5

10-4

10-3

10-2

10-1

100

101

Quadratic

Linear

 

Figure 5.10: Relative percent error of displacement field versus number of degrees of 
freedom (DOF) for approximation by linear and quadratic elements. 
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Table 5.8: Normalized displacements along the boundary AB of elastic square plate 
subjected to mixed boundary conditions (scaling center at center of plate). 

 2

1 0/Eu b l  
1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 0.0000 1.8395 3.0895 3.7001 3.5834 2.6139 
SBFEM, N = 16 0.0000 1.8406 3.1545 3.7914 3.6303 2.6042 
SBFEM, N = 32 0.0000 1.8508 3.1573 3.7995 3.6565 2.6012 
SBFEM, N = 64 0.0000 1.8506 3.1612 3.8054 3.6588 2.6004 
Exact solution 0.0000 1.8512 3.1616 3.8064 3.6608 2.6000 
 2

2 0/Eu b l  

1x  0.0 0.2 0.4 0.6 0.8 1.0 
SBFEM, N = 8 -2.6066 -0.7364 1.7603 4.9094 8.6651 12.9104 
SBFEM, N = 16 -2.6034 -0.7190 1.7536 4.8809 8.6551 12.9575 
SBFEM, N = 32 -2.6020 -0.7284 1.7668 4.8886 8.6353 12.9835 
SBFEM, N = 64 -2.6009 -0.7275 1.7671 4.8875 8.6334 12.9929 
Exact solution -2.6000 -0.7280 1.7680 4.8880 8.6320 13.0000 

Table 5.9: Normalized displacements along the boundary BC of elastic square plate 
subjected to mixed boundary conditions (scaling center at center of plate). 

 2

1 0/Eu b l  
2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 -7.8136 -6.9605 -5.5237 -3.4428 -0.7131 2.6139 
SBFEM, N = 16 -7.8108 -6.9534 -5.5275 -3.4480 -0.7138 2.6042 
SBFEM, N = 32 -7.8054 -6.9669 -5.5135 -3.4336 -0.7275 2.6012 
SBFEM, N = 64 -7.8021 -6.9671 -5.5130 -3.4330 -0.7273 2.6004 
Exact solution -7.8000 -6.9680 -5.5120 -3.4320 -0.7280 2.6000 
 2

2 0/Eu b l  
2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 0.0000 3.1272 6.0670 8.7440 11.0633 12.9104 
SBFEM, N = 16 0.0000 3.1050 6.0769 8.7912 11.1201 12.9575 
SBFEM, N = 32 0.0000 3.1015 6.0736 8.7951 11.1436 12.9835 
SBFEM, N = 64 0.0000 3.0997 6.0739 8.7979 11.1470 12.9943 
Exact solution 0.0000 3.0992 6.0736 8.7984 11.1488 13.0000 
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Table 5.10: Normalized displacements along the boundary AB of elastic square plate 
subjected to mixed boundary conditions (scaling center at corner point D). 

 2

1 0/Eu b l  
1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 0.0000 1.7870 3.0433 3.6835 3.5878 2.6008 
SBFEM, N = 16 0.0000 1.8263 3.1420 3.7877 3.6322 2.6012 
SBFEM, N = 32 0.0000 1.8469 3.1542 3.7986 3.6571 2.6006 
SBFEM, N = 64 0.0000 1.8496 3.1604 3.8052 3.6587 2.6143 
Exact solution 0.0000 1.8512 3.1616 3.8064 3.6608 2.6000 
 2

2 0/Eu b l  
1x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 -2.7256 -0.7721 1.8011 4.9689 8.6766 12.8397 
SBFEM, N = 16 -2.6262 -0.7306 1.7661 4.8982 8.6579 12.9369 
SBFEM, N = 32 -2.6051 -0.7310 1.7700 4.8929 8.6363 12.9780 
SBFEM, N = 64 -2.6009 -0.7281 1.7679 4.8886 8.6333 13.0038 
Exact solution -2.6000 -0.7280 1.7680 4.8880 8.6320 13.0000 

Table 5.11: Normalized displacements along the boundary BC of elastic square plate 
subjected to mixed boundary conditions (scaling center at corner point D). 

 2

1 0/Eu b l  
2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 -7.9407 -7.0248 -5.5067 -3.3831 -0.6694 2.6008 
SBFEM, N = 16 -7.8346 -6.9726 -5.5213 -3.4319 -0.7027 2.6012 
SBFEM, N = 32 -7.8086 -6.9716 -5.5119 -3.4297 -0.7246 2.6006 
SBFEM, N = 64 -7.8021 -6.9683 -5.5126 -3.4320 -0.7268 2.6143 
Exact solution -7.8000 -6.9680 -5.5120 -3.4320 -0.7280 2.6000 
 2

2 0/Eu b l  
2x  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 8 0.0000 3.0812 6.0130 8.7017 11.0266 12.8397 
SBFEM, N = 16 0.0000 3.0922 6.0621 8.7806 11.1096 12.9369 
SBFEM, N = 32 0.0000 3.0978 6.0699 8.7924 11.1408 12.9780 
SBFEM, N = 64 0.0000 3.0988 6.0729 8.7973 11.1465 13.0038 
Exact solution 0.0000 3.0992 6.0736 8.7984 11.1488 13.0000 
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Figure 5.11: Normalized normal stress component along the boundary CD of elastic 
square plate subjected to mixed boundary conditions (scaling center at corner point 
D). 
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Figure 5.12: Normalized normal stress component along the boundary AD of elastic 
square plate subjected to mixed boundary conditions (scaling center at corner point 
D). 
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5.5 Linear Piezoelectric Square Plate 

Next, a representative boundary value problem associated with the linear 
piezoelectricity ( 3  ) is investigated to further highlight the capability of the 
proposed technique to treat linear multi-field problems. Let us consider a two-
dimensional square plate of length l  and made of a linear piezoelectric solid with all 
material constants taken from PZT-4 (Li et al., 2013) as shown in Figure 5.13(a). In 
particular, all non-zero entries of the modulus matrix D are given explicitly by

11
139D GPa ,

15 51
74.3D D GPa  , 2

16 61
6.98D D Cm


   ,

22
25.6D GPa ,

24
25.6D GPa ,

42
25.6D GPa , 9 1

33
6.0 10 ( )D C Vm

 
  , 2

34 43
13.44D D Cm


  ,

44
25.6D GPa ,

55
113D GPa , 

2

56 65
13.84D D Cm


  , and 9 1

66
5.47 10 ( )D C Vm

 
  . For a purpose of verification, a set of 

prescribed data such as the distributed body source and boundary conditions on four 
sides is chosen such that the exact solution for the displacements ( 1u and 2u ) and the 
electric potential ( 3u ) takes the following form  

2

1 10 1u u x , 
2

2 20 2u u x , 3 0 2u x   (5.7) 

where 10u , 20u , 0  are given constants and 1 1 /x x l , 2 2 /x x l  are normalized 
coordinates. The corresponding exact stress field ( 11 12 21 22, , ,    ) and electrical 
induction vector ( 13 23,  ) is given by 

11 11 10 1 15 20 2 16 0 12 21(2 2 ) / ,    0D u x D u x D l         (5.8) 

22 15 10 1 55 20 2 56 0(2 2 ) /D u x D u x D l     (5.9) 

13 23 16 10 1 56 20 2 66 00,    (2 2 ) /D u x D u x D l       (5.10) 

The distributed body source that is in equilibrium with the above stress and electric 
induction can readily be obtained from (3.4) as 

2 2 2

1 11 10 2 55 20 3 56 202 / ,    2 / ,    2 /b D u l b D u l b D u l       (5.11) 

In the modeling, the scaling center is chosen at a point D and the prescribed conditions 
on the side faces AD and CD and the boundaries AB and BC are given below 

Side AB: 1 0ABt  , 2 15 10 1 55 20 56 0(2 2 ) /ABt D u x D u D l   ,  
            3 16 10 1 56 20 66 0(2 2 ) /ABt D u x D u D l    
Side BC: 1 11 10 15 20 2 16 0(2 2 ) /BCt D u D u x D l   , 2 0BCt  , 3 0BCt   
Side AD: 1 0u  , 2

2 20 2u u x , 3 0ADt   
Side CD: 1 0CDt  , 2 0u  , 3 0u   
 



 

 

55 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Schematic of (a) linear piezoelectric square plate under mixed boundary 
conditions and (b) scaling center and defining curve used in scale boundary finite 
element analysis. 

It is worth noting that the boundary conditions shown above are chosen to represent 
the general prescribed data on the side faces and boundaries of the domain. In the 
numerical study, a series of meshes with N identical linear elements is constructed to 
discretize the defining curve and solution along the scale boundary direction and

20 10/ 2u u  , 16 0 11 10/ 1D D u   are employed. Computed displacements and electric 
potential along the diagonal line BD are reported in Tables 5.12 and 5.13 for various 
meshes. It is seen for this particular problem that the proposed technique yield highly 
accurate results even when relatively coarse meshes containing only few degrees of 
freedom are employed. In addition, the improvement of solutions as the mesh is 
refined is clearly observed. The good quality of numerical solutions is also confirmed 
for the body flux as indicate in Figures 5.15 and 5.16. Computed stresses and electrical 
induction along the diagonal line BD show an excellent agreement with the exact 
solution; in particular, only slight difference between solutions can be seen for very 
coarse meshes while almost indistinguishable results are obtained for fine meshes. As 
indicated by results in Figure 5.14, the rate of convergence of the state variable is 
about two when linear elements are used in the approximation.  
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Figure 5.14: Relative percent error of displacement and electric potential versus 
number of degrees of freedom (DOF) for approximation by linear elements. 

 
Figure 5.15: Normalized non-zero stress components along the diagonal line BD of a 
piezoelectric square plate subjected to mixed boundary conditions. Results are reports 
as a function of normalized length / 2s s l  where s  is the length along the line 
BD measured from point D. 
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Figure 5.16: Normalized a non-zero electrical induction component along the diagonal 
line BD of a piezoelectric square plate subjected to mixed boundary conditions. Results 
are reports as a function of normalized length / 2s s l  where s  is the length along 
the line BD measured from point D. 

 

Table 5.12: Normalized electrical potential along the diagonal line BD of linear 
piezoelectric square plate subjected to mixed boundary conditions. Results are reports 
as a function of normalized length / 2s s l  where s  is the length along the line 
BD measured from point D.  

 3 0/u   

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 4 0.0000 0.2013 0.4019 0.6013 0.7991 0.9938 

SBFEM, N = 8 0.0000 0.2003 0.4004 0.6003 0.7998 0.9976 

SBFEM, N = 16 0.0000 0.2001 0.4001 0.6001 0.7999 0.9992 

SBFEM, N = 32 0.0000 0.2000 0.4000 0.6000 0.8000 0.9997 

Exact solution 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 
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16 10D lu
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Table 5.13: Normalized displacements along the diagonal line BD of linear 
piezoelectric square plate subjected to mixed boundary conditions. Results are reports 
as a function of normalized length / 2s s l  where s  is the length along the line 
BD measured from point D.  

 1 10/u u  

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 4 0.0000 0.0369 0.1351 0.3278 0.6291 1.0459 

SBFEM, N = 8 0.0000 0.0393 0.1531 0.3503 0.6360 1.0252 

SBFEM, N = 16 0.0000 0.0398 0.1582 0.3574 0.6385 1.0098 

SBFEM, N = 32 0.0000 0.0400 0.1596 0.3593 0.6396 1.0033 

Exact solution 0.0000 0.0400 0.1600 0.3600 0.6400 1.0000 

 2 20/u u  

s  0.0 0.2 0.4 0.6 0.8 1.0 

SBFEM, N = 4 0.0000 0.0821 0.3272 0.7222 1.2554 1.9134 

SBFEM, N = 8 0.0000 0.0803 0.3220 0.7213 1.2739 1.9679 

SBFEM, N = 16 0.0000 0.0801 0.3205 0.7204 1.2786 1.9891 

SBFEM, N = 32 0.0000 0.0800 0.3201 0.7201 1.2797 1.9965 

Exact solution 0.0000 0.0800 0.3200 0.7200 1.2800 2.0000 
 

5.6 Finite Elastic Plate with Edge Notch 

As the last example, a representative boundary value problem associated with a finite 
elastic plate containing an edge notch is considered in order to investigate the 
capability of the proposed technique to treat problems with a singular field. In 
particular, consider a plain-strain, rectangle plate made of a homogeneous, isotropic, 
linearly elastic material of Young’s modulus E  and Poisson’s ratio   and subjected 
to uniform normal traction at both ends as shown schematically in Figure 5.17(a). Note 
that the modulus matrix D  for this particular problem is the same as the previous 
case. Two values of an opening angle of the notch,  =0, 30, are considered in the 
numerical study.  When the opening angle   approaches zero, the notch becomes a 
crack. In this particular case, the reference solution of the mode-I stress intensity factor 
SIF 

IK  is obtained from the work of Brown and Srawley (1966) by 

0 IK C a  (5.12) 
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where C  is a finite geometry factor defined by 
2 3 4

1.12 0.231 10.55 21.72 30.39
a a a a

C
W W W W

       
           

       
 (5.13) 

 
 

 

 

 

 

 

 

 

 

 

 

(a)                                                         (b) 
Figure 5.17: Schematics of (a) finite elastic plate containing edge notch and (b) scaling 
center and defining curve used in scale boundary finite element analysis.  

In the geometry modeling, the scaling center is selected at the notch tip and the 
defining curve is discretized by N identical linear elements. In the numerical study, the 
dimensions of the plate are chosen such that a b and W L . Results for this 
problem are also generated by a reliable finite element program and used as the 
benchmark solutions. In the finite element analysis, the plate is used 6–node triangular 
elements. In the case of crack, numerical results for the mode-I stress intensity factor 

IK  are reported in Table 5.14. It is seen that numerical solutions generated by the 
proposed technique converge and also exhibit excellent agreement with the 
benchmark solution. In addition, IK  obtained from the SBFEM converges faster than 
that obtained from the FEM. The order of singularity (i.e., one of eigenvalues obtained 
from the present method) is also reported in Table 5.15. It is evident that the order of 
singularity converges to the theoretical value (i.e., 0.5) as expected. The normalized 
normal stress 22 0/   along the 1x  direction is plotted in Figure 5.18 along with the 
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FE solution. Clearly, the proposed method yields highly accurate stress in the vicinity 
of the crack tip. When the angle   is equal to 30 degree, the normalized normal stress 

22 0/   along the 1x  direction is reported in Figure 5.19 along with, again, the FE 
solution. As evident from this set of results, the computed near-tip stress shows the 
good convergence behavior and good agreement with the benchmark solution with 
using only few linear elements.   

Table 5.14: Mode-I stress intensity factor of finite elastic plate containing edge crack. 

  IK  
(%) 100




Ref SBFEM

I I

Ref

I

K K
x

K
 (%) 100




FEM SBFEM

I I

FEM

I

K K
x

K
 

SBFEM, N = 11 65.6009 7.4016 7.1926 

SBFEM, N = 21 69.6269 1.7187 1.4969 

SBFEM, N = 41 70.3924 0.6382 0.4139 

SBFEM, N = 81 70.7098 0.1901 0.0352 

Ref solution 70.8445   

FEM, N = 66700 70.6850   
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Figure 5.18: Normalized normal stress component 

22  along x1-direction of finite 
elastic plate containing edge crack (i.e., 0  ) subjected to uniform normal traction at 
both ends. 
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Table 5.15: The first eigenvalue corresponding to the singular stress field when the 
opening angle 0.    

  
1 ( 0  ) 

SBFEM, N = 11 0.49691 

SBFEM, N = 21 0.49998 

SBFEM, N = 41 0.50006 

SBFEM, N = 81 0.50001 

 x
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Figure 5.19: Normalized normal stress component 

22  along x1-direction of finite 
elastic plate containing edge notch (i.e., 30  ) subjected to uniform normal traction 
at both ends.  
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Chapter 6 
CONCLUSIONS 

6.1 Summary 

A numerical technique based upon the scaled boundary finite element method 
(SFBEM) has been successfully developed for solving two-dimensional, multi-field 
boundary value problems. Both the formulation and implementations have been 
established in a general framework allowing various classes of linear boundary value 
problems (e.g., steady-state heat conduction problems, Laplace’s equation, linear 
elasticity, linear piezoelectricity, etc.) and a set of general data such as the domain 
geometry, the prescribed distributed body source, the prescribed boundary conditions, 
and the contribution of the side-face conditions to be treated in a single, unified 
fashion. Results from an extensive numerical study for various scenarios have revealed 
that the proposed SBFEM yields highly accurate numerical solutions with the good 
convergence behavior. Relatively coarse meshes containing only few degrees of 
freedom have been found to accurately capture both the state variable and the body 
flux. In particular, both prescribed state variables and prescribed surface flux along the 
side faces and the general mixed boundary conditions along the scale boundary 
direction have been implemented into the proposed procedure and this, therefore, 
provides the flexibility in the selection of the scaling center and defining curve for 
describing the domain geometry. 

Several numerical examples have been solved and obtained results have been 
compared with analytical solutions to validate the proposed technique. Linear and 
quadratic shape functions have been employed in the approximation of the defining 
curve and the trial and test functions. From the convergence study of numerical 
solutions, it has been found that the rate of convergences resulting from the use of 
quadratic elements in the approximation is higher than that of the linear elements. In 
addition, the capability and robustness of the proposed technique to handle the 
general boundary conditions, general geometry, prescribed state variables, and the 
flexible choices of the scaling center have been demonstrated. Extensive analysis of 
problems in various fields such as steady-state heat conduction problems, linear 
elasticity problems, and linear piezoelectric problems, have also indicated that the 
proposed technique is promising in terms of accuracy and computational efficiency 
and can handle problems in various different scenarios in an efficient and unified 
fashion. 
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6.2 Limitations and Directions of Future Research 

Although the proposed technique has been implemented within the context of two-
dimensional boundary value problems with domains described by a single scaling 
center, its underlying formulation and computational procedure are sufficiently general 
and should provide an essential basis for an extension to treat more general bodies 
such as those requiring multiple scaling centers to fully describe their geometry. 
Another potential extension is to generalize the present unified framework to three-
dimensional multi-field problems. 
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