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CHAPTER I

INTRODUCTION

Most research in fixed point theory is dealing with the existence of a fixed point

for various kinds of self-maps of spaces. Even though some mathematicians are

also interested in geometric features of the fixed-point set itself, more geometric

structures, such as metrizability and linearity, must be imposed on spaces to

facilitate the study. For our research, we try to take a different approach by not

adding those geometric structures to spaces and considering topological features

of the fixed-point set instead. To do this, we introduce the convergence set of a

continuous self-map of a Hausdorff space and study a relationship between the

convergence set and the fixed-point set by considering a special function from the

former set to the latter.

There are four chapters in this thesis. In chapter II, we introduce fundamental

facts used throughout this work. In chapter III, we investigate definitions of the

fixed-point set and the convergence set of a continuous self-map with some basic

properties of them. In chapter IV, we develop some tools to determine the conti-

nuity of the function f∞ corresponding to a continuous self-map f . Moreover, we

encounter certain conditions on a continuous self-map f which make f∞ contin-

uous. As a result, we show that for a continuous quasi-nonexpansive self-map of

a metric space, the fixed-point set is always a retract of the convergence set.



CHAPTER II

PRELIMINARIES

In this chapter, we review some fundamental facts that will be used throughout

this work. A neighborhood is always open. For a set X and a function f : X → X,

fn =

n times︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f (n = 1, 2, . . .) and f 0 is the identity function. If a function f

is continuous, we will simply call it a map.

Definition 2.1. A topological space X is called a Hausdorff space if for each pair

x1 and x2 of distinct points of X, there exist neighborhoods U1 and U2 of x1 and

x2, respectively, such that U1 ∩ U2 = ∅.

Definition 2.2. A sequence (xn) in X is said to converge to a point x of X if for

each neighborhood U of x, there exists a positive integer N such that xi lies in U

for all i ≥ N . In this case, x is called a limit of the sequence (xn), and we write

(xn) → x.

Lemma 2.3. In a Hausdorff space, every convergent sequence has a unique limit

and every subsequence of a convergent sequence is convergent.

Proof The proof can be found in [1]. ¥

Lemma 2.4. (The sequence lemma). Let X be a topological space and A ⊆ X.

If there is a sequence of points of A converging to x, then x ∈ A.

Proof The proof can be found in [1]. ¥

Definition 2.5. Suppose that one-point sets are closed in X. Then X is said to

be regular if for each pair consisting of a point x and a closed set B disjoint from

x, there exist disjoint open sets U and V containing x and B, respectively.
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Lemma 2.6. Let X be a topological space such that one-point sets are closed.

Then X is regular if and only if given a point x of X and a neighborhood U of x,

there is a neighborhood V of x such that V ⊆ U .

Proof The proof can be found in [1]. ¥

Definition 2.7. Let X be a set and f : X → X a function. A point x in X is

said to be a fixed point of f provided that f(x) = x.

Definition 2.8. Let (X, d) be a metric space and f : X → X a function. Then

f is called

(1) a contraction if there is a constant α ∈ [0, 1) such that for each x, y ∈ X,

d(f(x), f(y)) ≤ αd(x, y).

(2) shrinking or contractive if for each x, y ∈ X and x 6= y,

d(f(x), f(y)) < d(x, y).

(3) an isometry if for each x, y ∈ X,

d(f(x), f(y)) = d(x, y).

(4) nonexpansive if for each x, y ∈ X,

d(f(x), f(y)) ≤ d(x, y).

(5) quasi-nonexpansive if for each fixed point x of f and y ∈ X,

d(f(y), x) ≤ d(y, x).
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Remarks 2.9. (1) From the above definitions, we have the implications

(1) ⇒ (2) ⇒ (4) ⇒ (5) and (3) ⇒ (4).

(2) The condition in (4) implies that f is continuous, so (1), (2), and (3) are

also continuous.

(3) A quasi-nonexpansive function need not be continuous as the following

example shows, so (5) does not imply (4).

(4) Every function having no fixed point is always quasi-nonexpansive.

Example 2.10. Let f : [0, 1] → [0, 1] be defined by

f(x) =





x2 if 0 ≤ x < 1

0 if x = 1

Then 0 is the unique fixed point of f . It is easy to see that f is not continuous.

Let x ∈ [0, 1]. If x = 1, then |f(x)− 0| = 0 < |1− 0| = |x− 0|. If 0 ≤ x < 1, then

|f(x)− 0| = |x2 − 0| = x2 ≤ x = |x− 0|. Thus f is quasi-nonexpansive.

Theorem 2.11. (Banach’s Contraction Principle). Let (X, d) be a nonempty

complete metric space and f : X → X a contraction. Then f has a unique fixed

point z ∈ X. Furthermore, for any x ∈ X, we have lim
n→∞

fn(x) = z.

Proof If α = 0, then f is a constant map. Thus the statement holds in this case.

Now we assume that α > 0. Let a = inf{d(x, f(x))|x ∈ X}. We will show that

a = 0. Let ε > 0 and x ∈ X be such that d(x, f(x)) < a + (1−α
α

)ε. Then

a ≤ d(f(x), f 2(x))

≤ αd(x, f(x))

< α(a + (
1− α

α
)ε)

= αa + (1− α)ε.

Thus (1− α)a < (1− α)ε, so a < ε. Hence a = 0, as required.

For each n ∈ N, let Mn = {x ∈ X|d(x, f(x)) ≤ 1
n
}. Then Mn is closed and
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nonempty since the function x 7−→ d(x, f(x)) is continuous and a = 0. For any

x, y ∈ Mn, we have

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(f(y), y)

≤ 2

n
+ αd(x, y).

Thus d(x, y) ≤ 2
(1−α)n

so that diam(Mn) ≤ 2
(1−α)n

→ 0 as n → ∞. Therefore

lim
n→∞

diam(Mn) = 0. By Cantor’s intersection theorem,
∞⋂

n=1

Mn = {z} for some

z ∈ X. Thus d(z, f(z)) ≤ 1
n

for all n ∈ N, so f(z) = z.

To show the uniqueness, let y be a fixed point of f . Then

d(y, z) = d(f(y), f(z)) ≤ αd(y, z).

Thus d(y, z) = 0 since 0 ≤ α < 1. Hence y = z.

For each x ∈ X, we have

d(fn(x), z) = d(fn(x), fn(z)) ≤ αnd(x, z) → 0 as n →∞.

Thus (fn(x)) → z. This completes the proof. ¥

Theorem 2.12. Let (X, d) be a nonempty compact metric space and f : X → X

a shrinking map. Then f has a unique fixed point z ∈ X. Furthermore, for any

x ∈ X, we have lim
n→∞

fn(x) = z.

Proof Let φ : X → R be defined by

φ(x) = d(x, f(x)) for all x ∈ X.

Then φ is continuous. Thus it attains the minimum, says at some z ∈ X, since X

is compact. Next, we show that f(z) = z. Suppose that f(z) 6= z. Then

φ(f(z)) = d(f(z), f 2(z)) < d(z, f(z)) = φ(z).

This contradicts the minimality of φ at z. Therefore f(z) = z, as required.

To show the uniqueness, let y be a fixed point of f . Suppose that y 6= z. Then

d(y, z) = d(f(y), f(z)) < d(y, z),
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which is a contradiction.

Finally, let x ∈ X and an = d(fn(x), z) for each n ∈ N. Then for each n ∈ N,

an+1 = d(fn+1(x), z)

= d(fn+1(x), fn+1(z))

≤ d(fn(x), fn(z))

= d(fn(x), z)

= an.

Thus (an) → a for some a ≥ 0. We shall show that a = 0. Suppose that

a > 0. Since X is compact, there is a subsequence (fnk(x)) of (fn(x)) such that

(fnk(x)) → y for some y ∈ X. Obviously, a = d(y, z) since ank
= d(fnk(x), z) →

d(y, z) as n →∞. Thus

a = lim
k→∞

d(fnk+1(x), z) = d(f(y), z)

= d(f(y), f(z)) < d(y, z) = a.

This is a contradiction. Therefore a = 0 and hence lim
n→∞

fn(x) = z. This completes

the proof. ¥

Definition 2.13. A subspace A of a topological space X is said to be a retract

of X if there is a map r : X → A such that r(x) = x for all x ∈ A. The map r is

called a retraction of X onto A.

For each n ∈ N, let Dn = {x ∈ Rn| ‖x‖ ≤ 1} and Sn = {x ∈ Rn+1| ‖x‖ = 1}.
Dn is called the n-disk (or n-ball) and Sn is called the n-sphere (of radius 1 and

centered at the origin).

Theorem 2.14. If n ≥ 0, then Sn is not a retract of Dn+1.

Proof The proof can be found in [2]. ¥



CHAPTER III

FIXED POINT SETS AND CONVERGENCE SETS

Let X be a Hausdorff topological space and f : X → X a map (= a continuous

function).

Definition 3.1. The fixed-point set of f , denoted by F (f), is defined by

F (f) = {x ∈ X|f(x) = x}.

Definition 3.2. The convergence set of f , denoted by C(f), is defined by

C(f) = {x ∈ X|(fn(x)) converges in X}.

Hence, by definitions above, we obtain a function f∞ : C(f) → F (f) defined

by

f∞(x) = lim
n→∞

fn(x).

Clearly, f∞(C(f)) = F (f) since for each x ∈ C(f), we have

f(f∞(x)) = f( lim
n→∞

fn(x))

= lim
n→∞

fn+1(x)

= f∞(x).
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Example 3.3. Let f : R+ → R+ be defined by f(x) = 1 +
1

x
. Then ω =

1 +
√

5

2

is the unique fixed point of f . For each x ∈ R+ and n ≥ 2, we have

fn(x) =
Fnx + Fn−1

Fn−1x + Fn−2

=

Fn

Fn−1
x + 1

x + Fn−2

Fn−1

where Fn is the nth Fibonacci number. Notice that lim
n→∞

Fn+1

Fn

= ω.

Thus (fn(x)) is convergent and

lim
n→∞

fn(x) = lim
n→∞

Fn

Fn−1
x + 1

x + Fn−2

Fn−1

=
ωx + 1

x + 1
ω

= ω.

Therefore C(f) = R+ and F (f) = {ω}. Note also that f is not a contraction.

Example 3.4. For n ∈ N, let Dn be the unit disk in Rn. Fix i ∈ {1, 2, ..., n} and

let ei be the ith standard basis element of Rn and πi the projection of Rn onto the

ith-factor of Rn. We define f : Dn → Rn by

f(x) = x + (1− ‖x‖)ei.

Clearly, f is continuous and f(Dn) ⊆ Dn since for each x ∈ Dn, we have

‖f(x)‖ = ‖x + (1− ‖x‖)ei‖

≤ ‖x‖+ (1− ‖x‖)‖ei‖

= ‖x‖+ (1− ‖x‖)

= 1.

We can easily see that F (f) = Sn−1, the unit sphere in Rn.
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Next, we will show that C(f) = Dn. Let x ∈ Dn. For each k ∈ N, we have

fk(x) = fk−1(x) + (1− ‖fk−1(x)‖)ei

= fk−2(x) + [2− (‖fk−2(x)‖+ ‖fk−1(x)‖)]ei

...

= x + [k − (‖x‖+ ‖f(x)‖+ · · ·+ ‖fk−1(x)‖)]ei . . . . . . . . . . . . (1)

and πi(f
k(x)) = πi(x + [k − (‖x‖+ ‖f(x)‖+ · · ·+ ‖fk−1(x)‖)]ei)

= πi(x) + [k − (‖x‖+ ‖f(x)‖+ · · ·+ ‖fk−1(x)‖)]πi(ei)

= πi(x) + [k − (‖x‖+ ‖f(x)‖+ · · ·+ ‖fk−1(x)‖)].

Thus we obtain the relation

k − (‖x‖+ ‖f(x)‖+ · · ·+ ‖fk−1(x)‖) = πi(f
k(x))− πi(x) . . . . . . . . . . . . . . . . . . (2)

By substituting (2) in (1), we get

fk(x) = x + (πi(f
k(x))− πi(x))ei for all k ∈ N . . . . . . . . . . . . . . . . . . (3)

Since πi(f
k(x)) = πi(f

k−1(x)) + (1− ‖fk−1(x)‖), we have

πi(f
k(x)) ≥ πi(f

k−1(x)) for all k ∈ N.

This implies that (πi(f
k(x))) is an increasing (and bounded) sequence of real num-

bers and hence it is convergent. Consequently, by (3), (fk(x)) is also convergent.

Therefore C(f) = Dn, as required. Note that f∞ is not continuous since Sn−1 is

not a retract of Dn.

Definition 3.5. For x ∈ F (f), the convergence set of x, denoted by Cx(f), is

defined to be the inverse image of x under f∞; i.e.,

Cx(f) = {y ∈ C(f) | f∞(y) = x}.

Example 3.6. Let f : [0, 1] → [0, 1] be defined by f(x) = xk+1 for k ∈ N. Then

we have F (f) = {0, 1}, C(f) = [0, 1], C0(f) = [0, 1), C1(f) = {1}, and f∞ is
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defined by

f∞(x) =





1 if x = 1

0 if 0 ≤ x < 1

Evidently, f∞ is not continuous.

The following lemma summarizes basic properties of notions discussed above.

Lemma 3.7. Let X be a Hausdorff topological space and f : X → X a map.

Then the following statements hold:

(1) F (f) ⊆ C(f).

(2) F (f) is closed in X.

(3) C(f) is nonempty iff F (f) is nonempty.

(4) Both F (f) and C(f) are invariant under f ; i.e., f(F (f)) ⊆ F (f) and

f(C(f)) ⊆ C(f).

(5) fkf∞ = f∞fk = f∞ for each k ∈ N.

(6) C(f) =
•⋃

x∈F (f)

Cx(f), where
•⋃

denotes the disjoint union.

(7) If f∞ is continuous, then Cx(f) is closed for each x ∈ F (f).

(8) If f∞ is continuous, then F (f) is a retract of C(f).

Proof

(1) Obvious.

(2) If F (f) = X, we are done. Now we assume that F (f) 6= X.

Let x ∈ X r F (f). Then x 6= f(x), so there are disjoint open sets U and V

containing x and f(x), respectively. Thus U ∩ f−1(V ) is a neighborhood of x in

X.

We claim that U ∩ f−1(V ) ⊆ XrF (f). Let y ∈ U ∩ f−1(V ). Then y ∈ U and

f(y) ∈ V . Since U ∩ V = ∅, we have f(y) 6= y. This shows that U ∩ f−1(V ) ⊆
X r F (f). Therefore X r F (f) is open in X and hence F (f) is closed in X.
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(3) Follows from (1) and the definition of f∞.

(4) Follows from Lemma 2.3

(5) Follows directly from Lemma 2.3.

(6) Follows directly from the definition of Cx(f).

(7) Follows immediately from the continuity of f∞ and the definition of Cx(f).

(8) Follows immediately by the continuity of f∞ and the definition of retract. ¥

Example 3.8. Some maps f from the unit disk D2, realized as a subspace of C,

into itself with the fixed-point set, convergence set, and continuity of f∞.

f : D2 → D2 F (f) C(f) Is f∞ continuous?

1. f := a shrinking map {∗} D2 Yes

2. f := the identity map D2 D2 Yes

3. f(z) = eiθz; θ ∈ (0, 2π) {0} {0} Yes

4. f(z) = z [−1, 1] [−1, 1] Yes

5. f(z) = |z| [0, 1] D2 Yes

6. f(z) = zn+1; n ∈ N {0}∪Ω †
n Int(D2) ∪K ‡ No

7. f(z) = |z|z S1 ∪ {0} D2 No

8. f(z) = 1− |z|+ z S1 D2 No

† Ωn = the set of all n-roots of unity.

‡ K = {e2πiθ| θ = m+rn
n(n+1)k for some m ∈ {0, ..., n− 1} , r ∈ Z, and k ∈ N}

Proposition 3.9. If X is a nonempty complete metric space and f is a contrac-

tion, then C(f) = X and F (f) is a one-point set.

Proof Follows directly from Banach’s contraction principle. ¥
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Proposition 3.10. If X is a nonempty compact metric space and f is a shrinking

map, then C(f) = X and F (f) is a one-point set.

Proof Follows directly from Theorem 2.12. ¥

Proposition 3.11. Let (X, d) be a metric space. If fN is an isometry for some

N ∈ N, then C(f) = F (f).

Proof If C(f) = ∅, then F (f) = ∅. Assume that C(f) 6= ∅. Let x ∈ C(f). We

will show that f∞(x) = x. Suppose that f∞(x) 6= x. Then d(x, f∞(x)) > 0 and

there is an M ∈ N such that d(fm(x), f∞(x)) < d(x, f∞(x)) for all m ≥ M . Thus

d(fMN(x), f∞(x)) < d(x, f∞(x)) and

d(x, f∞(x)) = d(fMN(x), fMN(f∞(x)))

= d(fMN(x), f∞(x))

< d(x, f∞(x)),

which is a contradiction. Hence, f(x) = f(f∞(x)) = f∞(x) = x and C(f) = F (f)

as desired. ¥

Example 3.12. Let f : Cr {0} → Cr {0} be defined by

f(z) =
1

z
.

Then f is not nonexpansive but f 2 = I is nonexpansive. By Proposition 3.11, we

have C(f) = F (f) = {−1, 1}. Thus f∞ is continuous.



CHAPTER IV

THE CONTINUITY OF f∞

As before, X is a Hausdorff topological space and f : X → X is a map (=

a continuous function). In this chapter, we develop some tools to determine the

continuity of the function f∞. Certain classes of well-behaved fixed points are

studied in this chapter.

Throughout this chapter, we will assume that F (f) is nonempty, the do-

main of fn (n = 1, 2, ...) is restricted to C(f), and a neighborhood of x is an

open subset of C(f) containing x.

Proposition 4.1. f∞ = f on C(f) if and only if f = f 2 on C(f). In particular,

if f is an idempotent map, then f∞ is continuous.

Proof Assume that f∞ = f on C(f). Then f = f∞ = f ◦ f∞ = f 2 on C(f).

Conversely, assume that f = f 2 on C(f). Then the sequence (fn(x)) = (f(x))

converges to f(x) for all x in C(f). Hence f∞ = f on C(f), as required. ¥

Remark 4.2. f∞ is always an idempotent function.

Example 4.3. Let f : R→ R be defined by

f(x) =





0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1
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Then f is idempotent with F (f) = [0, 1] and C(f) = R. Thus, by Proposition

4.1, f∞ is continuous.

Example 4.4. Let f : R→ R be defined by

f(x) =





x + 2 if x < −3

−1 if − 3 ≤ x < −1

x if − 1 ≤ x < 1

1 if 1 ≤ x < 3

x− 2 if x ≥ 3

Then F (f) = [−1, 1] and C(f) = [−3, 3]. Clearly, f is not idempotent on R.

However, f is idempotent on [−3, 3] = C(f). Thus, by Proposition 4.1, f∞ is

continuous.

Theorem 4.5. (A Continuity Criterion for f∞)

f∞ is continuous iff f∞ is continuous at each point in F (f).

Proof (⇒) Obvious.

(⇐) Let x ∈ C(f) and U a neighborhood of f∞(x). Since f∞ is continuous

at f∞(x), there is a neighborhood V of f∞(x) such that f∞(V ) ⊆ U . Since the

sequence (fn(x)) converges to f∞(x), there is an N ∈ N such that fN(x) ∈ V .

Thus f−N(V ) is a neighborhood of x and

f∞(f−N(V )) = f∞(fN(f−N(V )))

⊆ f∞(V )

⊆ U.

Hence f∞ is continuous at x. ¥
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Now we see that F (f) plays a crucial role in determining the continuity of f∞

by the above theorem. Therefore, we will investigate some kinds of fixed points

that are useful for our purpose.

Definition 4.6. The fixed point x of f is said to be attractive if there is a

neighborhood U of x such that f∞(U) = {x}.

Theorem 4.7. The fixed point x of f is attractive iff Cx(f) is open in C(f).

Proof Let x be an attractive fixed point of f . Let y ∈ Cx(f). Since x is attractive,

there is a neighborhood U of x such that f∞(U) = {x}. Since the sequence

(fn(y)) converges to x, there is an N ∈ N such that fN(y) ∈ U . Thus f−N(U) is

a neighborhood of y and

f∞(f−N(U)) = f∞(fN(f−N(U)))

⊆ f∞(U)

= {x}.

This shows that f−N(U) ⊆ Cx(f) and hence Cx(f) is open in C(f).

Conversely, assume that Cx(f) is open in C(f). Then Cx(f) is a neighborhood

of x and f∞(Cx(f)) = {x}. Hence x is attractive. ¥

Remark 4.8. If f has a unique fixed point, then its fixed point is immediately

attractive.

Example 4.9. From example 3.6 we can see that 0 is an attractive fixed point of

f since C0(f) = [0, 1) is open in [0, 1] but 1 is not attractive since C1(f) = {1} is

not open in [0, 1].
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Proposition 4.10. If x ∈ F (f) is an attractive fixed point, then f∞ is continuous

at x.

Proof This is obvious by the definition of attractive fixed point. ¥

Remark 4.11. The converse of Proposition 4.10 is not true in general as the

identity map on R shows. However, the converse is true if F (f) is finite as we can

see later.

Definition 4.12. A fixed point x of f is said to be isolated if there is a neigh-

borhood U of x such that U ∩ F (f) = {x}.

Example 4.13. From example 3.6 both 0 and 1 are isolated since [0, 1
2
)∩F (f) =

{0} and (1
2
, 1] ∩ F (f) = {1}.

Example 4.9 and Example 4.13 show that an isolated fixed point need not be

attractive but the converse is always true.

Proposition 4.14. Every attractive fixed point of f is isolated.

Proof Follows from Theorem 4.7. ¥

Proposition 4.15. If F (f) is finite, then every fixed point of f is isolated.

Proof This is clear since C(f) is Hausdorff. ¥

Theorem 4.16. Suppose that F (f) is finite. Then f∞ is continuous iff every

fixed point of f is attractive.
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Proof Let x ∈ F (f) and assume that f∞ is continuous. Then, by Proposition

4.15, x is isolated. Thus there is a neighborhood U of x such that U ∩F (f) = {x}.
By the continuity of f∞, there is a neighborhood V of x such that f∞(V ) ⊆ U .

Thus f∞(V ) ⊆ U ∩ F (f) = {x}. Therefore x is attractive.

The converse is true by Proposition 4.10.

Another proof for the ” if ” part By Lemma 3.7(7), C(f) is a disjoint union

of Cx(f) where x ∈ F (f). By Lemma 3.7(6), Cx(f) is closed for all x ∈ F (f).

Thus Cx(f) = C(f)r
⋃

y 6=x

Cy(f) is open for all x ∈ F (f) since F (f) is finite. This

implies that every fixed point of f is attractive by Theorem 4.7. ¥

Corollary 4.17. Let f : C → C be a polynomial map of degree greater than 1.

Then f∞ is continuous iff every fixed point of f is attractive.

Definition 4.18. Let N ∈ N. The fixed point x of f is said to be N-invariant if

for each neighborhood U of x, there is a neighborhood V of x such that V ⊆ U

and fN(V ) ⊆ V .

Theorem 4.19. If C(f) is a regular topological space and x ∈ F (f) is an N -

invariant fixed point of f , then f∞ is continuous at x.

Proof Let x be an N -invariant fixed point of f and U a neighborhood of x. By

the regularity of C(f), there is a neighborhood V of x such that V ⊆ U . Since

x is an N -invariant fixed point of f , there is a neighborhood W of x such that

W ⊆ V and fN(W ) ⊆ W . Thus fkN(W ) ⊆ W for all k ∈ N. For each w ∈ W ,

we have (fkN(w)) converges to a point in W and consequently (fk(w)) converges

to a point in W as well. This gives f∞(W ) ⊆ W ⊆ V ⊆ U . Therefore f∞ is

continuous at x. ¥
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Corollary 4.20. If every fixed point of f is N -invariant, then f∞ is continuous.

Remark 4.21. It is clear that an N -invariant fixed point need not be attractive

as the identity map on R shows.

We will end this chapter by discussing another useful condition on f that

makes f∞ continuous.

Theorem 4.22. Let (X, d) be a metric space and f : X → X a map. If F (f) is

nonempty and fN is quasi-nonexpansive for some N ∈ N, then every fixed point

of f is N -invariant; hence, f∞ is continuous.

Proof Let x ∈ F (f) and let U be a neighborhood of x. Let ε > 0 be such that

V = B(x; ε) ∩ C(f) ⊆ U . For each y ∈ V , we have

d(fN(y), x) ≤ d(y, x) < ε.

Thus fN(V ) ⊆ V . Therefore x is N -invariant. ¥

Corollary 4.23. Let (X, d) be a metric space and f : X → X a map. If F (f) is

nonempty and fN is quasi-nonexpansive for some N ∈ N, then F (f) is a retract

of C(f).

Example 4.24. There is no quasi-nonexpansive map f : Dn → Dn such that

F (f) = Sn−1 and C(f) = Dn.
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Example 4.25. Let f : R→ R be defined by

f(x) =





x
2
sin ( 1

x
) if x 6= 0

0 if x = 0

Then f is continuous and differentiable at every x 6= 0 and F (f) = {0}. Suppose

that f is nonexpansive. Then for each x 6= 1
π
, we have |f(x) − f( 1

π
)| ≤ |x − 1

π
|.

Thus |f ′( 1
π
)| ≤ 1. This is impossible since f ′( 1

π
) = π

2
> 1. Therefore f is not

nonexpansive. However, f is quasi-nonexpansive since for each x 6= 0, we have

|f(x)− 0| = |x
2

sin (
1

x
)|

≤ |x
2
|

=
1

2
|x− 0|

≤ |x− 0|.

Thus, by Corollary 4.23, f∞ is continuous.
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