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CHAPTER 1

INTRODUCTION

Most research in fixed point theory is dealing with the existence of a fixed point
for various kinds of self-maps of spaces. Even though some mathematicians are
also interested in geometric features of the fixed-point set itself, more geometric
structures, such as metrizability and linearity, must be imposed on spaces to
facilitate the study. For our research, we try to take a different approach by not
adding those geometric structures to spaces and considering topological features
of the fixed-point set instead. To do this, we introduce the convergence set of a
continuous self-map of a Hausdorff space and study a relationship between the
convergence set and the fixed-point set by considering a special function from the
former set to the latter.

There are four chapters in this thesis. In chapter II, we introduce fundamental
facts used throughout this work. In chapter III, we investigate definitions of the
fixed-point set and the convergence set of a continuous self-map with some basic
properties of them. In chapter IV, we develop some tools to determine the conti-
nuity of the function f*° corresponding to a continuous self-map f. Moreover, we
encounter certain conditions on a continuous self-map f which make f*° contin-
uous. As a result, we show that for a continuous quasi-nonexpansive self-map of

a metric space, the fixed-point set is always a retract of the convergence set.



CHAPTER II

PRELIMINARIES

In this chapter, we review some fundamental facts that will be used throughout

this work. A neighborhood is always open. For a set X and a function f : X — X,
n times

—_——
ff=fofo--of (m=1,2,...) and f° is the identity function. If a function f

is continuous, we will simply call it a map.

Definition 2.1. A topological space X is called a Hausdorff space if for each pair
21 and x5 of distinct points of X, there exist neighborhoods U; and U, of z; and

To, respectively, such that Uy NU; = @.

Definition 2.2. A sequence (z,,) in X is said to converge to a point x of X if for
each neighborhood U of z, there exists a positive integer /V such that x; lies in U
for all ¢ > N. In this case, x is called a limit of the sequence (z,), and we write

() — .

Lemma 2.3. In a Hausdorff space, every convergent sequence has a unique limit

and every subsequence of a convergent sequence is-convergent.

Proof The proof can be found in [1]. W

Lemma 2.4. (The sequence lemma). Let X be a topological space and A C X.
If there is a sequence of points of A converging to x, then x € A.

Proof The proof can be found in [1]. B

Definition 2.5. Suppose that one-point sets are closed in X. Then X is said to
be reqular if for each pair consisting of a point x and a closed set B disjoint from

x, there exist disjoint open sets U and V' containing x and B, respectively.



Lemma 2.6. Let X be a topological space such that one-point sets are closed.
Then X is regular if and only if given a point z of X and a neighborhood U of =z,
there is a neighborhood V' of x such that V C U.

Proof The proof can be found in [1]. H

Definition 2.7. Let X be a set and f : X — X a function. A point z in X is

said to be a fized point of f provided that f(z) = x.

Definition 2.8. Let (X, d) be a metric space and f: X — X a function. Then

f is called

(1) a contraction if there is a constant « € [0, 1) such that for each z,y € X,

d(f(x), f(y)) < ad(z,y).

(2) shrinking or contractive if for each z,y € X and x # y,

d(f(z), f(y)) < d(z,y).

(3) an isometry if for each z,y € X,

(4) nonexpansive if for each x,y € X

d(f(z), f(y) <d(z,y).

(5) quasi-nonexpansive if for each fixed point z of f and y € X,

d(f(y),z) < d(y, ).



Remarks 2.9. (1) From the above definitions, we have the implications
(1) = (2) = (4) = (5) and (3) = (4).
(2) The condition in (4) implies that f is continuous, so (1), (2), and (3) are
also continuous.
(3) A quasi-nonexpansive function need not be continuous as the following
example shows, so (5) does not imply (4).

(4) Every function having no fixed point is always quasi-nonexpansive.

Example 2.10. Let f:[0,1] — [0, 1] be defined by

2?2 fo<er <1
f(z) =
0 ifz=1

Then 0 is the unique fixed point of f. It is easy to see that f is not continuous.
Let x € [0,1]. If x =1, then |f(z) =0 =0< |1 —=0| = |z —0]. If 0 <z < 1, then

|f(x) — 0] =|2* — 0] = 2* < z = | — 0. Thus f is quasi-nonexpansive.

Theorem 2.11. (Banach’s Contraction Principle). Let (X, d) be a nonempty
complete metric space and f : X — X a contraction. Then f has a unique fixed
point z € X. Furthermore, for any x € X, we have n11—>rgo f(x) = 2.

Proof If o = 0. then f.is a constant map. Thus the statement holds in this case.

Now we assume that o« > 0. Let a = inf{d(z, f(x))|z € X}. We will show that

a=0.-Let e > 0 and @ € X be such that d(z, f(z)) <'a+ (:=2)e. Then

a < d(f(z), f*())

< ad(z, f(z))

1l—«

< afa+(

)e)

=aa+ (1 —a)e.

«

Thus (1 —a)a < (1 — a)e, so a < €. Hence a = 0, as required.

For each n € N, let M,, = {z € X|d(z, f(z)) < £}. Then M, is closed and



nonempty since the function x —— d(x, f(x)) is continuous and a = 0. For any
x,y € M,, we have

d(x,y) < d(z, f(x)) +d(f(x), f(y) +d(f(y),y)

2
< — + ad(z,y).
n

Thus d(z,y) < (1—2a)n so that diam(M,,) < ﬁ — 0 as n — oo. Therefore

lim diam(M,) = 0. By Cantor’s intersection theorem, ﬂ M, = {z} for some

n—oo

z€ X. Thus d(z, f(2)) < r for all n € N, so f(z) = 2.

n=1

To show the uniqueness, let y be a fixed point of f. Then
d(y, 2) = d(f(y), f(2)) < ad(y,2).
Thus d(y, z) = 0 since 0 < a < 1. Hence y = z.
For each x € X, we have
d(f"(x), z) =d(f"(x), f"(2)) < a"d(x,z) — 0 as n — 0.

Thus (f"(x)) — z. This completes the proof. B

Theorem 2.12. Let (X, d) be a nonempty compact metric space and f: X — X
a shrinking map. Then f has a unique fixed point z € X. Furthermore, for any
x € X, we have lim f"(z) = z.

Proof Let ¢ : X — R be defined by
o(x)=d(x, f(x)) forallx e X.

Then ¢ is continuous. Thus it attains the minimum, says at some z € X, since X

is compact. Next, we show that f(z) = z. Suppose that f(z) # z. Then

O(f(2)) = d(f(2), [*(2) < d(z, f(2)) = ¢(2).

This contradicts the minimality of ¢ at z. Therefore f(z) = z, as required.

To show the uniqueness, let y be a fixed point of f. Suppose that y # z. Then

d(y,z) = d(f(y), f(2)) < d(y,2),



which is a contradiction.

Finally, let z € X and a,, = d(f"(x), z) for each n € N. Then for each n € N,

a1 = d(f" (), 2)
= d(f" (@), /" (2))
< d(f"(2), f*(2))
= d(f"(x),2)

i,

Thus (a,) — a for some a > 0. We shall show that a« = 0. Suppose that
a > 0. Since X is compact, there is a subsequence (f™ (z)) of (f"(x)) such that
(f™(z)) — y for some y € X. Obviously, a = d(y, 2) since a,, = d(f"(z),z) —

d(y,z) as n — oo. Thus

a = lim d(f™"H(x),2) = d(f(y), 2)

k—oo

=d(f(y), 1(2)) < dy, 2) = a.

This is a contradiction. Therefore a = 0 and hence lim f"(z) = z. This completes

the proof. B
Definition 2.13. A subspace A of a topological space X is said to be a retract
of X if there is a map r : X — A such that 7(x) =z for all x € A. The map r is

called a retraction of X onto A.

For each n € N, let D" = {z € R"| ||z]| < 1} and S" = {z € R""}| ||z|| = 1}.
D™ is called the n-disk (or n-ball) and S™ is called the n-sphere (of radius 1 and

centered at the origin).

Theorem 2.14. If n > 0, then S™ is not a retract of D",

Proof The proof can be found in [2]. W



CHAPTER III

FIXED POINT SETS AND CONVERGENCE SETS

Let X be a Hausdorff topological space and [ : X — X a map (= a continuous

function).

Definition 3.1. The fized-point set of f, denoted by F'(f), is defined by

F(f) ={z e X|f(x) =}

Definition 3.2. The convergence set of f, denoted by C(f), is defined by

C(f)={z e X|(f"(x)) converges in X }.

Hence, by definitions above, we obtain a function f* : C(f) — F(f) defined
by

f=(@) = lim f"(a).

n—oo

Clearly, f*(C(f)) = F(f) since for each = € C(f), we have

f<(@)) = f(lim f"(x))

n—o0

= lim f""(x)

n—oo

= ().



oo

S

1+
2

1
Example 3.3. Let f: RT — R" be defined by f(z) =1+ —. Then w =
x

is the unique fixed point of f. For each x € Rt and n > 2, we have

n Fnaj + anl
ff(z) = ——F7—
Fn—lx + Fn—2
Fy
7o +1
> T
e
. h 4 s . ; Fn+1
where F,, is the n'" Fibonacci number. Notice that lim = w.
Thus (f™(x)) is convergent and
FF" r+1
lim f"(z) = lim ———
n—00 n—oo g 4 In=2
Fn—l
Cwr+1
)2l 4 %
=t

Therefore C(f) = Rt and F(f) = {w}. Note also that f is not a contraction.

Example 3.4. For n € N, let D™ be the unit disk in R". Fix i € {1,2,...,n} and
let e; be the i'" standard hasis element of R and m; the projection of R™ onto the

ith-factor of R”. We define f : D" — R” by

f(x) ="z + (1 — [lz|)e:.

Clearly, f is continuous and f(D") C D" since for'each x€ D" we have

LF (@)l = Tl + (1= [[z]])esl]
< l2lf + (T = NlzlDlle:l
= [lzll + (1 = ll=[)

=1.

We can easily see that F(f) = S"!, the unit sphere in R".



Next, we will show that C'(f) = D™. Let x € D™. For each k € N, we have

fia) = @) + = 1 (@) De:
= [ 72 (@) + 2= (172 @)+ I @) D]es

=+ [k=(l=ll + I f @)+l @ De o (1)
and  m(f*(z)) = ml@+ [k = (el +If @]+ -+ 1 (@))]e:)
= mi(x) # T (el F @)+ o 1157 @) D]males)

= mi(2)+ [k = (el =1 F@)) + -+ 17 @)

Thus we obtain the relation
E— (lall + 1F @I + 4 @) =R @) =) oo )
By substituting (2) in (1), we get

fi(x) = o+ (m(f¥@) — mi(x))e; forallkeN .................. (3)
Since mi(f4(2)) = w1 (&) + (1 — £ (&)]), we have

7 (f8(x)) > m(f*(z)) for all k€ N.

This implies that (m;(f*(z))) is an increasing (and bounded) sequence of real num-
bers and hence- it is-convergent.. Consequently, by (3); (f*(2)) is also convergent.
Therefore C'(f) = D", as required. Note that f° is not continuous since S™~* is

not a retract of D™

Definition 3.5. For x € F(f), the convergence set of x, denoted by C.(f), is

defined to be the inverse image of z under f*°; i.e.,

Co(f) ={y € C(N [ F*(y) = =},

Example 3.6. Let f : [0,1] — [0,1] be defined by f(x) = 2% for k € N. Then

we have F(f) = {0,1},C(f) = [0,1],Co(f) = [0,1),C1(f) = {1}, and f> is
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defined by

1 ifz=1
fe(x) =
0 ifo<a<l

Evidently, f*° is not continuous.
The following lemma summarizes basic properties of notions discussed above.

Lemma 3.7. Let X be a Hausdorff topological space and f : X — X a map.

Then the following statements hold:

(1) F(f) € C(f).

(2) F(f) is closed in X.

(3) C(f) is nonempty iff F'(f) is nonempty.

(4) Both F(f) and C(f) are invariant under f; i.e., f(F(f)) C F(f) and
fe) o).

(5) fhfe = foofk = f for each k € N,

U C.(f), where U denotes the disjoint union.
zeF(f

(7) If f>is contlnuous then C,(f) is closed for each x € F(f).
(8) If f is continuous, then F'(f)is a retract of C(Jf).

Proof

(1) Obvious.

(2) If F(f) = X, we are done. Now we assume that F(f) # X.

Let z € X ~\ F(f). Then = # f(z), so there are disjoint open sets U and V
containing z and f(z), respectively. Thus U N f~!(V) is a neighborhood of x in
X.

We claim that UN f~ (V) C X N F(f). Lety e UN f~(V). Then y € U and
fly) € V. Since UNV = &, we have f(y) # y. This shows that U N f~1(V) C

X N\ F(f). Therefore X \ F(f) is open in X and hence F(f) is closed in X.
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(3) Follows from (1) and the definition of f*.
(4) Follows from Lemma 2.3

(5) Follows directly from Lemma 2.3.

(6) Follows directly from the definition of C,(f).

(7) Follows immediately from the continuity of f>° and the definition of C,(f).
(8)

8) Follows immediately by the continuity of f°° and the definition of retract. W

Example 3.8. Some maps f from the unit disk D?, realized as a subspace of C,

into itself with the fixed-point, set, convergence set, and continuity of f°°.

f:D?— D? F(f) c(f) Is f* continuous?
1. f:= a shrinking map {x} D? Yes
2. f := the identity map )2 D? Yes
3. f(z) = ez 0 € (0,2n) {0} {0} Yes
4. f(z) =% [—1,1] [—1,1] Yes
5. f(2) = |z 0, 1] D? Yes
6. f(2)=z"t;neN {0JuQ,t | Int(DH) UK} No
7. f(z) = |22 Stu {0} D? No
8 f(A)=1+1) += St D? No

Q) = the set of all n-roots of unity.

PR = {e2mif] g = n?::gk for some m € {0,....n —1} , r € Z, and k € N}

Proposition 3.9. If X is a nonempty complete metric space and f is a contrac-
tion, then C(f) = X and F(f) is a one-point set.

Proof Follows directly from Banach’s contraction principle. B



12

Proposition 3.10. If X is a nonempty compact metric space and f is a shrinking
map, then C(f) = X and F(f) is a one-point set.

Proof Follows directly from Theorem 2.12. B

Proposition 3.11. Let (X, d) be a metric space. If fV is an isometry for some
N € N, then C(f) = F(f)-

Proof If C(f) = @, then F(f) = @. Assume that C(f) # @. Let z € C(f). We
will show that f*(z) = 2. Suppose that f*(x) # x. Then d(z, f*(z)) > 0 and

there is an M € N such that d(f™(x), f*(z)) < d(x, f>(z)) for all m > M. Thus

d(f*(z), f*(x)) < d(@, f2(2)) and

d(w, f2(z)) = d(f¥*(z), FY(f*(2)))
= A" (@), f(2))
< d(z, f*(x)),

which is a contradiction. Hence, f(z) = f(f*(z)) = [*(z) = z and C(f) = F(f)

as desired. B

Example 3.12. Let f: C~ {0} — C ~ {0} be defined by

=1

Then f is not nonexpansive but f2 = I is nonexpansive. By Proposition 3.11, we

have C(f) = F(f) = {—1,1}. Thus f* is continuous.



CHAPTER IV

THE CONTINUITY OF >~

As before, X is a Hausdorff topological space and f : X — X is a map (=
a continuous function). In this chapter, we develop some tools to determine the
continuity of the function f*. Certain classes of well-behaved fixed points are
studied in this chapter.

Throughout this chapter, we will assume that F'(f) is nonempty, the do-
main of f* (n = 1,2,...) is restricted to C(f), and a neighborhood of z is an

open subset of C'(f) containing z.

Proposition 4.1. f* = f on C(f) if and only if f = f*> on C(f). In particular,

if f is an idempotent map, then f* is continuous.

Proof Assume that f* = f on C(f). Then f = f>* = fo f* = f%2 on C(f).
Conversely, assume that f = f2 on C(f). Then the sequence (f"(z)) = (f(z))

converges to f(x) for all z in C(f). Hence f* = f on C(f); as required. W

Remark 4.2. f*°is always an idempotent function.

Example 4.3. Let f : R — R be defined by

0 ifz<0
flx)=9s ifo<z<l1

1 fzxz>1

\
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Then f is idempotent with F'(f) = [0,1] and C(f) = R. Thus, by Proposition

4.1, f*° is continuous.

Example 4.4. Let f: R — R be defined by

r+2 ifx<—3
—1 i —3<a< -1
flx) =142 if =1 <2<l

1 ifl1<z<3

r—2 ifx>3

\

Then F(f) = [-1,1] and C(f) = [-3,3]. Clearly, f is not idempotent on R.
However, f is idempotent on [—3,3] = C(f). Thus, by Proposition 4.1, f* is

continuous.

Theorem 4.5. (A Continuity Criterion for )
f°° is continuous iff f*° is continuous at each point in F'(f).
Proof (=) Obvious.
(<) Let 2 € C(f) and U a neighborhood of f*°(x). Since f°° is continuous
at f°°(xz), there is a neighborhood V' of f*(z) such that f*°(V).C U. Since the
sequence (f™(x)) converges to f*°(z), there is an N € N such that f¥(z) € V.

Thus f~N(V) is a neighborhood of z and

SNV = 2N (N v))
C (V)

cU.

Hence f*° is continuous at x. W
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Now we see that F'(f) plays a crucial role in determining the continuity of f*
by the above theorem. Therefore, we will investigate some kinds of fixed points

that are useful for our purpose.

Definition 4.6. The fixed point x of f is said to be attractive if there is a

neighborhood U of z such that f*(U) = {«}.

Theorem 4.7. The fixed point z of f is attractive iff C,(f) is open in C(f).

Proof Let = be an attractive fixed point of f. Let y € C,(f). Since z is attractive,
there is a neighborhood U of = such that f>*(U) = {z}. Since the sequence
(f™(y)) converges to z, there is an N € N such that f¥(y) € U. Thus f~N(U) is

a neighborhood of y and

FRUR) = RN O)

C f=(U)
=l

This shows that f~(U) € C,(f)and hence C,(f) is open in C(f).
Conversely, assume that Cy(f) is open.in C(f). Then C,(f) is a neighborhood

of x and f(Cx(f)) =4z} Hence x is attractive.-Mll

Remark 4.8. If f has a unique fixed point, then its fixed point is immediately

attractive.

Example 4.9. From example 3.6 we can see that 0 is an attractive fixed point of
f since Cy(f) =1[0,1) is open in [0, 1] but 1 is not attractive since Cy(f) = {1} is

not open in [0, 1].
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Proposition 4.10. If z € F(f) is an attractive fixed point, then f*° is continuous
at x.

Proof This is obvious by the definition of attractive fixed point. B

Remark 4.11. The converse of Proposition 4.10 is not true in general as the
identity map on R shows. However, the converse is true if F'(f) is finite as we can

see later.

Definition 4.12. A fixed point x of f is said to be isolated if there is a neigh-

borhood U of x such that U N F(f) = {z}.

Example 4.13. From example 3.6 both 0 and 1 are isolated since [0, 3) N F(f) =

{0} and (3,1 N F(f) = {1}

Example 4.9 and Example 4.13 show that an isolated fixed point need not be

attractive but the converse is always true.

Proposition 4.14. Every attractive fixed point of f is isolated.

Proof Follows from Theorem 4.7. B

Proposition 4.15. If F(f) is finite, then every fixed point of f is isolated.

Proof This is clear since C(f) is Hausdorff. B

Theorem 4.16. Suppose that F(f) is finite. Then f* is continuous iff every

fixed point of f is attractive.
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Proof Let © € F(f) and assume that f* is continuous. Then, by Proposition
4.15, x is isolated. Thus there is a neighborhood U of x such that UNF(f) = {z}.
By the continuity of f*°, there is a neighborhood V' of x such that f>(V) C U.
Thus f*(V) CUNF(f) ={x}. Therefore = is attractive.
The converse is true by Proposition 4.10.

Another proof for the ” if ” part By Lemma 3.7(7), C(f) is a disjoint union
of C.(f) where xz € F(f). By Lemma 3.7(6), C,(f) is closed for all z € F(f).
Thus C,( U C,(f) is open for all & € F(f) since F(f) is finite. This

implies that every ﬁxed pomt of f is attractive by Theorem 4.7.

Corollary 4.17. Let f : C — C be a polynomial map of degree greater than 1.

Then f°° is continuous iff every fixed point of f is attractive.

Definition 4.18. Let N € N. The fixed point x of f is said to be N-invariant if
for each neighborhood U of z, there is a neighborhood V' of x such that V' C U

and fN(V)CV.

Theorem 4.19. If C(f) is a regular topological space and = € F(f) is an N-
invariant fixed point of f, then f*° is continuous at x.

Proof Let  be an N-invariant fixed point of f and U a neighborhood of z. By
the regularity of C(f), there is a neighborhood V of z such that V' C U. Since
x is an N-invariant fixed point of f, there is a neighborhood W of x such that
W CV and fN(W) CW. Thus f*N(W) C W for all k € N. For each w € W,
we have (f*N(w)) converges to a point in W and consequently (f*(w)) converges
to a point in W as well. This gives f*(W) C W C V C U. Therefore f> is

continuous at z. W
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Corollary 4.20. If every fixed point of f is N-invariant, then f°° is continuous.

Remark 4.21. It is clear that an N-invariant fixed point need not be attractive

as the identity map on R shows.

We will end this chapter by discussing another useful condition on f that

makes f°° continuous.

Theorem 4.22. Let (X, d) be a metric space and f : X — X a map. If F(f) is
nonempty and fV is quasi-nonexpansive for some N € N, then every fixed point
of f is N-invariant; hence, [ is continuous.

Proof Let x € F(f) and let U be a neighborhood of z. Let ¢ > 0 be such that

V = B(z;e)NC(f) CU. Foreach y € V, we have
d(fN(y),z) < d(y,) <e.

Thus f¥(V) C V. Therefore z is N-invariant. B

Corollary 4.23. Let (X, d) be a metric space and f : X — X a map. If F(f) is
nonempty and fV-is quasi-nonexpansive for some N-€ N, then F(f) is a retract

of C(f).

Example 4.24. There is no quasi-nonexpansive map f : D™ — D™ such that

F(f) = 5" and C(f) = D".
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Example 4.25. Let f : R — R be defined by

Zsin(L) ifz#0
fx) =
0 ifx=0

Then f is continuous and differentiable at every x # 0 and F'(f) = {0}. Suppose
that f is nonexpansive. Then for cach  # =, we have |f(z) — f(3)] < |z — 1|
Thus |f'(2)| < 1. This is impossible since f’(X) = 2 > 1. Therefore f is not

nonexpansive. However, f is quasi-nonexpansive since for each x # 0, we have

£ =0)= 2 sin ()

Thus, by Corollary 4.23, f* is continuous.
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