
 

วิธีทางคอมพิวเตอรสําหรับการวิเคราะหสารยับย้ังไวรัสไขเลือดออกเอ็นเอสทูบี/เอ็นเอสทรีโปรทิเอสและวีวัน

ไคเนส 

 

 

 

 

 

 

 

 

 

 

 

นายกนิน วิชาผง 

 

 

 

 

 

 

 

 

 

 

 

 

 

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต 

สาขาวิชาเคมี       ภาควิชาเคมี  

คณะวิทยาศาสตร   จุฬาลงกรณมหาวิทยาลัย 

ปการศึกษา  2552 

ลิขสิทธิ์ของจฬุาลงกรณมหาวิทยาลัย 
 



 
COMPUTER-BASED METHODS FOR ANALYZING INHIBITORS OF DENGUE 

VIRUS NS2B/NS3 PROTEASE AND OF WEE1 KINASE  
 
 
 
 
 
 
 
 
 

 
 

Mr. Kanin Wichapong 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Dissertation Submitted in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy Program in Chemistry 

Department of Chemistry 
Faculty of Science   

Chulalongkorn University 
Academic year 2009 

Copyright of Chulalongkorn University 
 



Thesis Title COMPUTER-BASED METHODS FOR ANALYZING 

INHIBITORS OF DENGUE VIRUS NS2B/NS3 

PROTEASE AND OF WEE1 KINASE  

By Mr. Kanin Wichapong 

Field of Study  Chemistry 

Thesis Advisor Associate Professor Sirirat Kokpol, Ph.D.  

Thesis Co-Advisor Assistant Professor Somsak Pianwanit, Ph.D.  

Thesis Co-Advisor Professor Wolfgang Sippl, Dr. habil.  

  
 Accepted by the Faculty of Science, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Doctoral Degree 
 

 ……………………………………Dean of the Faculty of Science 
  (Professor Supot Hannongbua, Dr. rer. nat.) 
 
THESIS COMMITTEE 

 ……………………………………………….. Chairman 
 (Professor Supot Hannongbua, Dr. rer. nat.) 
 

 ………………………………………….……. Thesis Advisor 
 (Associate Professor Sirirat Kokpol, Ph.D.) 
 

 ……………………………………………….. Thesis Co-Advisor 
 (Assistant Professor Somsak Pianwanit, Ph.D.) 
 

 ……………………………………………….. Thesis Co-Advisor 
 (Professor Wolfgang Sippl, Dr. habil.) 
 

 ……………………………………………….. Examiner 
 (Associate Professor Vudhichai Parasuk, Ph.D.) 
 

 ……………………………………………….. Examiner 
 (Associate Professor Jiraporn Ungwitayatorn, Ph.D.) 
 

 ……………………………………………….. External Examiner 
 (Associate Professor Anan Tongraar, Dr. rer. nat.)  



iv 
 

กนิน วิชาผง: วิธีทางคอมพิวเตอรสําหรับการวิเคราะหสารยับย้ังไวรัสไขเลือดออกเอ็นเอสทูบี/เอ็น

เอสทรีโปรทิเอสและวีวันไคเนส. (COMPUTER-BASED METHODS FOR ANALYZING 

INHIBITORS OF DENGUE VIRUS NS2B/NS3 PROTEASE AND OF WEE1 KINASE) อ. ที่

ปรึกษาวิทยานิพนธหลัก: รศ. ดร. ศิริรัตน กกผล, อ. ที่ปรึกษาวิทยานิพนธรวม: ผศ. ดร. สมศักด์ิ 

เพียรวณิช, ศ. ดร. โวลฟกัง ซิลลป, 172 หนา.  

 

 ไดสรางโครงสรางสามมิติของเอ็นเอสทูบี/เอ็นเอสทรีโปรทิเอสของไวรัสไขเลือดออกที่เปนสาร

เชิงซอนกับตัวยับย้ังเททระเปปไทด แลวนําโครงสรางที่ไดไปทําการคํานวณโมเลคิวลารไดนามิกสซิมุเลชัน 

จากนั้นนําโครงสรางที่เหมาะสมไปทําการคํานวณโมเลคิวลารดอกก้ิงกับสารยับย้ังท่ีมีขนาดเล็กรวมท้ังโม

เลคิวลารไดนามิกสซิมุเลชัน ผลการคํานวณโมเลคิวลารไดนามิกสซิมุเลชันของสารเชิงซอนระหวางเอนไซม

ชนิดนี้กับตัวยับย้ังเททระเปปไทดและสารยับย้ังที่มีขนาดเล็กพบวาเรซิดิวสบริเวณปลายดานซีของสายเอ็น

เอสทูบี (แอสปาติกลําดับที่ 81 ถึง เซอรลีนลําดับที่ 85), บริเวณเอสวัน (ลิวซีนลําดับที่ 128 ถึง ทีโอนีนลําดับ

ที่ 134 ของสายเอ็นเอสทรี), ฮีสทีดีนลําดับที่ 51, แอสปาติกลําดับที่ 75, เซอรลีนลําดับที่ 135, ไกลซีนลําดับ

ที่ 151, แอสปาราจีนลําดับท่ี 152, ไกลซีนลําดับท่ี 153 และ ไทโรซีนลําดับที่ 161 ของสายเอ็นเอสทรีมี

ความสําคัญตอการเกิดอันตรกิริยากับสารยับย้ัง นอกจากนั้นผลการคํานวนยังแสดงใหเห็นวา เอ็นเอสทูบีมี

ความสําคัญตอการทําใหบริเวณการเขาจับเกิดความเสถียรและการเกิดอันตรกิริยากับสารยับย้ัง จากนั้นได

ทําการคัดกรองเสมือนตามลําดับขั้นเพื่อหาสารยับย้ังเอ็นเอสทูบี/เอ็นเอสทรีโปรทิเอสของไวรัสไขเลือดออก 

โดยใชเทคนิคการคนหาฟามาโคฟอรรวมกับโมเลคิวลารดอกก้ิงและตามดวยการคํานวณพลังงานเสรีการยึด

จับ สุดทายไดเสนอโครงสรางของสารจากฐานขอมูลทางการคาท่ีคาดวามีประสิทธภาพในการยับย้ังเอนไซม

ชนิดนี้เพ่ือนําไปทดสอบฤทธิ์ทางชีวภาพ 

                 ในสวนที่สองไดใชเทคนิคคอมฟาในการสรางทรีดีคิวเอสเออารโมเดลสําหรับสารกลุม ไพโร

โรคารบาโซล ซึ่งเปนสารยับย้ังวีวันไคเนส โมเดลที่ไดมีประสิทธิภาพในการทํานายท่ีดี ซึ่งแสดงดวยคาทาง

สถิติตางๆ  (r2 = 0.870, q2LOO = 0.764 และ r2pred. = 0.790) คอมฟาคอนทัวรที่ไดใหขอมูลที่สําคัญเก่ียวกับ

อันตรกิริยาที่สําคัญของสารยังย้ังและบงบอกโครงสรางท่ีสําคัญท่ีจะสงผลตอฤทธิ์ของสารยับย้ัง จากน้ันได

พัฒนาวิธีที่ใชในการทํานายพลังงานเสรีการยึดจับของสารยับย้ังกับเอนไซมวีวันไคเนส โมเดลสําหรับสาร

กลุม ไพโรโรคารบาโซล และสารกลุมพิริโดพิริมีดีน ไดถูกสรางขึ้น ซึ่งโมเดลท่ีไดใหผลการคํานวณพลังงาน

เสรีการยึดจับคลองกับผลการทดลอง นอกจากนี้การศึกษาเอนริชเมนทพบวาเม่ือทําการคัดกรองฐานขอมูล

โดยใชโมเดลท่ีสรางขึ้นนี้ สารยับย้ังที่มีฤทธิ์เกือบจะทั้งหมดอยูใน 10% แรกของผลการคัดกรอง สุดทายได

ทําการคัดกรองเสมือนสําหรับสารยับย้ังวีวันไคเนสและไดเสนอสารที่คาดวามีฤทธในการยับย้ังเอนไซนนี้เพ่ือ

นําไปทดสอบฤทธทางชีวภาพตอไป  

ภาควิชา                   เคมี                        ลายมือชื่อนิสิต........................................................................ 

สาขาวิชา                  เคมี                       ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธหลัก…………………………..   

ปการศึกษา               2552                     ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธรวม………………………….. 

                                                              ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธรวม………………………….. 

             



v 
 

# # 4873801223 : MAJOR  CHEMISTRY 
KEYWORDS : Dengue Virus / NS2B/NS3 Protease / Wee1 Kinase 

KANIN WICHAPONG: COMPUTER-BASED METHODS FOR 
ANALYZING INHIBITORS OF DENGUE VIRUS NS2B/NS3 
PROTEASE AND OF WEE1 KINASE. THESIS ADVISOR: ASSOC. 
PROF. SIRIRAT KOKPOL, Ph. D., THESIS CO-ADVISOR: ASST. 
PROF. SOMSAK PIANWANIT, Ph. D., PROF. WOLFGANG SIPPL, Dr. 
habil., 172 pp.  

 
            Homology models of the Dengue virus (DV) NS2B/NS3 protease 
complexed with a tetra-peptidic inhibitor were constructed. Molecular dynamics 
(MD) simulations of these complexes were carried out to rationalize the ligand 
interaction. The validated model was then used for molecular docking studies of 
small-molecule inhibitors. The results derived from MD simulations of the 
complex between DV NS2B/NS3 protease and the tetra-peptidic inhibitor as well 
as with small-molecule inhibitors revealed that residues at the C-terminus of NS2B 
(Asp81-Ser85), at the S1 pocket (Leu128-Thr134 of NS3), His51, Asp75, Ser135, 
Gly151, Asn152, Gly153 and Tyr161 of NS3 are important for inhibitor 
interaction. Results also demonstrated that NS2B is important for stabilizing the 
binding pocket of NS3 as well as for stabilzing the binding of the tetra-peptidic 
inhibitor. A stepwise virtual screening (VS) for DV NS2B/NS3 protease inhibitors 
was carried out by combining pharmacophore and molecular docking-based 
screening with subsequent binding free energy calculation. Hit compounds were 
selected from commercial compound libraries and proposed for biological testing 
using the DV NS2B/NS3 protease.  
           In the second part, a 3D-QSAR model using the CoMFA approach was 
constructed for pyrrolocarbazole derivatives reported as Wee1 kinase inhibitors. 
The derived model was found to be robust and predictive, indicated by good 
statistical values (r2 = 0.870, q2

LOO = 0.764 and r2
pred. = 0.790). The analysis of the 

graphical CoMFA contour plot provided insight into the relevant interactions of 
the inhibitors and the essential features of potent Wee1 kinase inhibitors. 
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activities of Wee1 kinase inhibitors. Linear interaction energy models for 
pyrrolocarbazole and pyridopyrimidine derivative were established. The obtained 
models yielded a good correlation between the experimental binding affinities and 
the calculated binding free energies. A carried out enrichment study showed that 
most of the true active compounds could be obtained by screening only the first 
10% of compound databases containing actives and decoys. Based on the validated 
linear interaction energy models and VS carried out on different compound 
collections, several hits were selected for biological testing against Wee1 kinase.   

Department :             Chemistry Student’s Signature  

Field of Study :         Chemistry Advisor’s Signature  

Academic Year :          2009 

 

Co-Advisor’s Signature   

Co-Advisor’s Signature   

 



vi 
 

ACKNOWLEDMENTS 
 First of all, I would like to express my deep gratitude to my beloved parents 

and my family for their considerable and unconditional understanding, encouragement 

and support throughout my entire life. 

 I am truly grateful to Assoc. Prof. Sirirat Kokpol, Assist. Prof. Somsak 

Pianwanit and Prof. Dr. Wolfgang Sippl for giving me an opportunity and freedom 

while always pointing me in the right direction to work on this project. I very much 

appreciate their useful guidance, helpful comments and discussion and valuable 

suggestion throughout my study. I would like to additionally sincerely thank Prof. Dr. 

Wolfgang Sippl for his kind hospitality during my stay in Halle(Saale), Germany.  

 I am grateful to my thesis committee: Prof. Dr. Supot Hannongbua, Assoc. 

Prof. Vudhichai Parasuk, Assoc. Prof. Jiraporn Ungwitajatorn and Assoc. Prof. Anan 

Tongraar, for their time to read my dissertation, their advice and their contribution in 

taking part in my examination.  

 I would like to give special thanks to all present and former members of the 

Computation Chemistry Unit Cell (CCUC), Chulalongkorn University for their 

assistance, support and for providing a friendly and nice working atmosphere. I also 

would like to extend my additional thanks to all of my colleagues and friends in 

Halle(Saale) and Leipzig, Germany for assisting me to survive in Germany, sharing 

new ideas at work and supporting me in various ways.  

 Finally, this dissertation cannot be completely finished without financial and 

facilities support. Therefore, I gratefully acknowledge the Thailand Research Fund 

through the Royal Golden Jubilee Ph.D. Program Scholarship for the full financial 

support for my study and the expense for my first time stay in Germany. I also would 

like to acknowledge the DAAD (German Academic Exchange Service) scholarship 

for the expense for my second stay in Germany. The grant from Center of Petroleum, 

Petrochemical and Advanced Material, Chulalongkorn University is appreciated for 

supporting me to participate in an international conference. The CCUC, Department 

of Chemistry, Faculty of Science, Chulalongkorn University, and the Medicinal 

Research Group, Department of Pharmaceutical Chemistry, Martin-Luther University 

Halle-Wittenberg are acknowledged for all their computational support. 



vii 
 

CONTENTS  

 Page 

ABSTRACT IN THAI…...….............................................................................. iv 

ABSTRACT IN ENGLISH….............................................................................. v 

ACKNOWLEDMENTS……............................................................................... vi 

CONTENTS........................................................................................................ 

LIST OF TABLES..............................................................................................  

LIST OF FIGURES............................................................................................. 

LIST OF CHARTS............................................................................................. 

LIST OF ABBREVIATION................................................................................ 

 

CHAPTER I - INTRODUCTION..................................................................... 

1.1. NS2B/NS3 protease of Dengue virus (DV).................................................. 

1.1.1 The Disease and History.............................................................. 

1.1.2 Current Status in the World and in Thailand...............................   

 1.1.3  Structure of Dengue virus............................................................ 

 1.1.4  Replication Cycle of Dengue Virus............................................. 

 1.1.5  Enzyme Target (NS2B/NS3 Protease)......................................... 

 1.1.6    Literature Reviews on DV NS2B/NS3 protease........................ 

1.2 Wee1 Kinase.................................................................................................. 

 1.2.1 Cancer and Cell Cycle.................................................................... 

 1.2.2 Literature Reviews on Wee1 Kinase...............................................  

1.3 Scope of this Research Work......................................................................... 

 

CHAPTER II - THEORY AND COMPUTATIONAL METHODS............. 

2.1 Quantitative Structure-Activity Relationship (QSAR).................................. 

 2.1.1 Comparative Molecular Field Analysis (CoMFA)......................... 

2.2 Homology Model...........................................................................................  

 2.2.1 Template Selection.......................................................................... 

 2.2.2 Sequence Alignment....................................................................... 

vii 

xii 

xiv 

xxii 

xxiii 

 

1 

1 

1 

2 

4 

5 

6 

9 

18 

18 

22 

25 

 

28 

28 

29 

32 

33 

34 



 

 

 

viii 

 2.2.3 Model Generation........................................................................... 

 2.2.4 Model Evaluation and Refinement................................................. 

2.3 Molecular Dynamics (MD) Simulation......................................................... 

 2.3.1 Theoretical Background.................................................................. 

2.4 Binding Free Energy Calculation................................................................... 

 2.4.1 MM/PB(GB)SA.............................................................................. 

2.4.2 Linear Interaction Energy with Continuum Electrostatics 

(LIECE)…………........................................................................... 

2.5 Virtual Screening........................................................................................... 

 2.5.1 Pharmacophore Model and Pharmacophore Search....................... 

 2.5.2 GRID – Molecular Field Calculation.............................................. 

 2.5.3 Molecular Docking and Scoring Function...................................... 

 2.5.4 Similarity Search............................................................................. 

  

CHAPTER III - NS2B/NS3 PROTEASE OF DENGUE VIRUS.................. 

3.1 Homology modeling and MD simulations of DV NS2B/NS3 Protease........ 

 3.1.1 Materials and Computational Methods........................................... 

  3.1.1.1 Sequence Alignment and Homology Modeling............... 

  3.1.1.2 Stereochemical quality..................................................... 

  3.1.1.3 Protein and Inhibitor Preparation.....................................  

  3.1.1.4 Molecular Dynamics Simulations.................................... 

  3.1.1.5 GRID calculations............................................................ 

3.1.2 Results and Discussion.................................................................... 

  3.1.2.1 Model Building and Evaluation....................................... 

  3.1.2.2 Molecular Dynamics Simulations.................................... 

   3.1.2.2.1 Model Stability and Overall Structure.............. 

   3.1.2.2.2 NS2B-NS3 Interaction...................................... 

   3.1.2.2.3 Protease-Inhibitor Interaction........................... 

3.1.2.3 Selectivity profile of the inhibitors Bz-Nle-Lys-Arg- 

Ala-H compared to Bz-Nle-Lys-Arg-Arg-H.................... 

 

36 

36 

38 

38 

42 

43 

 

45 

48 

48 

49 

50 

52 

 

53 

53 

53 

53 

55 

56 

57 

58 

59 

59 

60 

60 

61 

64 

 

69 

 



 

 

 

ix 

3.2 MD simulation of DV NS2B/NS3 protease complex with small-molecule 

inhibitors and Binding Free Energy Calculation........................................... 

 3.2.1 Material and Computational Methods............................................ 

  3.2.1.1 Molecular docking of known small-molecule inhibitors. 

  3.2.1.2 Molecular Dynamics (MD) Simulation...........................  

  3.2.1.3 Binding Free Energy Calculation (MM/PBSA)............... 

 3.2.2 Results and Discussion................................................................... 

  3.2.2.1 Binding Free Energy of known inhibitors....................... 

                        3.2.2.2 Decomposition (DC) Energy per residue Analysis.......... 

3.3 Virtual Screening for inhibitors of Dengue Virus NS2B/NS3 protease........ 

 3.3.1 Material and Computational Methods............................................ 

  3.3.1.1 Databases......................................................................... 

  3.3.1.2 Pharmacophore Model and Pharmacophore Search........ 

  3.3.1.3 Database Filtration........................................................... 

3.3.1.4 Molecular Docking and Energy Minimization of 

docking solution.............................................................. 

  3.3.1.5 MD simulation and Binding Free Energy Calculation.... 

 3.3.2 Results and Discussion................................................................... 

   3.3.2.1 Structure-based Pharmacophore Model…........................ 

3.3.2.1.1 Virtual Screening and Binding Free Energy 

Calculation......................................................     

3.3.2.2 Comparison between Static and Dynamic 

Pharmacophore model..................................................... 

3.3.2.2.1 Pharmacophore Models (static and dynamic 

model) Generation........................................... 

              3.3.2.2.2 Virtual Screening..............................................  

  

CHAPTER IV- Wee1 Kinase............................................................................ 

4.1 3D-QSAR (CoMFA) model of checkpoint Wee1 kinase inhibitors.............. 

 4.1.1 Material and Computational Methods............................................ 

  4.1.1.1 Inhibitor Data Set............................................................  

 

73 

74 

74 

75 

76 

77 

77 

79 

81 

82 

82 

83 

83 

 

83 

84 

85 

85 

 

87 

 

92 

 

92 

94 

 

102 

102 

102 

102 



 

 

 

x 

  4.1.1.2 Ligand Preparation.......................................................... 

  4.1.1.3 Molecular Docking..........................................................  

  4.1.1.4 Ligand Alignment Method.............................................. 

  4.1.1.5 CoMFA Model................................................................ 

  4.1.1.6 Partial Least Square (PLS) Analysis............................... 

 4.1.2 Results and Discussion................................................................... 

  4.1.2.1 Ligand Docking............................................................... 

  4.1.2.2 CoMFA Models............................................................... 

  4.1.2.3 CoMFA Graphical Contour Plot...................................... 

4.2 Structure-based prediction of activities of Wee1 Kinase inhibitors using  

the linear response MM/PBSA approach...................................................... 

4.2.1 Material and Computational methods.......................................... 

4.2.1.1 Inhibitor data set.............................................................. 

4.2.1.2 Ligand preparation and docking...................................... 

  4.2.1.3 Energy minimization of docking poses........................... 

  4.2.1.4 Interaction energy calculation......................................... 

4.2.1.5 Binding free energy calculation using LR-MM/PBSA 

and LIECE models.......................................................... 

 4.2.2 Results and discussion.................................................................... 

  4.2.2.1 Binding mode of pyridopyrimidine derivatives.............. 

  4.2.2.2 LR-MM/PBSA based prediction..................................... 

4.2.2.3 Linear interaction energy with continuum electrostatics 

(LIECE) models............................................................... 

  4.2.2.4 Enrichment Study............................................................ 

4.3 Virtual Screening for novel Wee1 Kinase inhibitors.................................... 

  4.3.1 Materials and Computational Methods.............................. 

  4.3.2 Results and Discussion....................................................... 

   4.3.2.1 Pharmacophore Models Generation.................... 

   4.3.2.2 Virtual Screening................................................. 

 

 

107 

107 

108 

109 

109 

110 

110 

112 

120 

 

123 

124 

124 

126 

126 

127 

 

127 

128 

128 

131 

 

138 

140 

144 

144 

145 

145 

147 

 

 



 

 

 

xi 

CHAPTER V - CONCLUSION....................................................................... 

5.1 DV NS2B/NS3 protease................................................................................ 

5.2 Wee1 Kinase.................................................................................................. 

REFERENCES................................................................................................... 

APPENDIX......................................................................................................... 

VITAE................................................................................................................. 

149 

149 

151 

154 

168 

172 

 



xii 
 

LIST OF TABLES  

 Page 

Table 1.1. RMSD values (Å) of NS2B, NS3, and NS2B/NS3 protease, 

indicated as the first, the second, and the third values, respectively, 

between each pair of different X-ray structures……………………. 

Table 1.2. Chemical Structures and their Ki values of WNV and DV 

NS2B/NS3 protease inhibitors………………………………..……. 

Table 3.1. Comparison of the H-bond occupancy between residues from 

NS2B and NS3. The number of H-bond between each residue pair 

are given in the parenthesis, behind the percentage of H-bond 

occupancy………………………………………………………….. 

Table 3.2. Chemical Structures of the known small-molecule inhibitors and 

their Ki values against NS2B/NS3 protease of DV and WNV……. 

Table 3.3. Components of MM/PBSA and binding free energy of known 

inhibitors……………………………………………………............ 

Table 3.4. Number of Hits derived from each steps of virtual screening using 

the structure-based pharmacophore model……………………….... 

Table 3.5. ΔGbinding of the hit compounds derived from virtual screening using 

the structure-based pharmacophore model……………………….... 

Table 3.6. Number of hits derived from each steps of Virtual Screening using 

PH-1 and PH-2 model……………………………………………… 

Table 3.7. ΔGbinding of hit compounds derived from PH-1……………………... 

Table 3.8. ΔGbinding of hit compounds derived from PH-2……………………... 

Table 3.9. Tanimoto Coefficient of hits compared to known small-molecule 

inhibitors. Ki values of these compounds against the DV 

NS2B/NS3 are also reported………………………………………..  

Table 4.1: RMSD values between crystal structure and the top-ranked 

docking pose using different docking settings................................... 

Table 4.2. Statistics of generated CoMFA models using different alignment 

methods…………………………………………………………….. 

Table 4.3. Statistics of the resulting CoMFA models…………………………. 

 

 

12 

 

16 

 

 

 

61 

 

74 

 

77 

 

87 

 

89 

 

94 

98 

98 

 

 

100 

 

110 

 

114 

114 



 

 

 

xiii 

Table 4.4 List of actual pIC50, predicted pIC50 (derived from leave-one-out 

cross-validation), estimated pIC50 values and residual for the 139 

training set compounds as derived from the CoMFA model 10…... 
Table 4.5. Actual pIC50, predicted pIC50 and residual values of the 30 test set 

compounds……………………………………………………......... 

Table 4.6. Statistical Values of training set of LR-MM/PBSA models……….. 

Table 4.7. Comparison between ΔGexp. and ΔGpred., derived from model 1, of 

compounds in the test set of pyrrolocarbazole data set……………. 

Table 4.8. Comparison between ΔGexp. and ΔGpred., calculated from model 4, 

of compounds in the test set of pyridopyrimidine data set………… 

Table 4.9. Comparison between ΔGexp. and predicted ΔGpred., calculated from 

model 8, of compounds in the test set of the general model………. 

Table 4.10. Statistical values of results derived from applying LIECE models. 

Table 4.11. Enrichment Factor (EF) of each dataset, containing decoys from 

Chembridge KINAset with 6 different sets of active Wee1 kinase 

inhibitors and also decoys from DUD combining with the same 

datasets from active Wee1 kinase inhibitors, at 5% and 10% of 

screened database using LR-MM/PBSA model 6 and LIECE 

model 20…………………………………………………………… 

Table 4.12 Number of hit compounds derived from each pharmacophore 

model……………………………………………………………...... 

 

 

115 

 

119 

131 

 

135 

 

136 

 

136 

138 

 

 

 

 

 

142 

 

146 

  

  

  

  

  

  

  

  

  

  



xiv 
 

LIST OF FIGURES  

 Page 

Figure 1.1 Aedes aegypti distribution in the Americas in 1970, at the end of 

the mosquito control program, and in 2002………........................... 

Figure 1.2 High-risk area for the dengue transmission indicated in yellow 

color……........................................................................................... 

Figure 1.3 Average annual number of DF/DHF cases reported to WHO and 

average annual number of countries reporting dengue….................. 

Figure 1.4 Schematic representation of DV genome organization and 

polyprotein, and sites where host protease (signalase) and DV 

protease (NS2B/NS3 protease) cleave the polyprotein….................. 

Figure 1.5 The replication cycle of Dengue Virus….......................................... 

Figure 1.6 Diagram represents the organization of DV polyprotein and 

NS2B/NS3 prtoease. An essential cofactor domain of NS2B 

(residues 49-95) for activating activity of NS3 protease is 

displayed in the white box. The NS3 protease domain is from 

residue 1 to 179, whereas NS3 Helicase domain locates at residue 

180 to 618 of NS3. Amino acids diagram of the X-ray structure 

(PDB code 2VBC), a full length NS3 complexed with 18 amino 

acid residue of NS2B (residue 49-66), linked with G4-S-G4, is also 

displayed…........................................................................................ 

Figure 1.7 (A) Interaction of the tetrapeptidic inhibitor with the WNV 

NS2B/NS3 protease (taken from the crystal structure 2FP7). (B) 

Schematic representation of the interaction of the inhibitor with the 

substrate pockets of WNV NS2B/NS3….......................................... 

Figure 1.8 An example of patented DV NS3 protease inhibitor......................... 

Figure 1.9 Example of some small-molecule inhibitors of DV NS2B/NS3 

protease……...................................................................................... 

Figure 1.10 Natural compounds as DV NS2B/NS3 protease inhibitor............... 

Figure 1.11 Inhibitors of DV NS2B/NS3 protease and their EC50 and CC50 

values................................................................................................. 

 

2 

 

2 

 

3 

 

 

4 

5 

 

 

 

 

 

 

 

 

7 

 

 

 

10 

14 

 

14 

15 

 

17 



 

 

 

xv 

Figure 1.12 A schematic representation shows cell cycle and CDK-clycin 

complexes which are important in each checkpoint..........................  

Figure 1.13 Checkpoint at each stage in the cell cycle....................................... 

Figure 1.14 A representation of cell cycle at the G2/M checkpoint; (A) 

CDK1(cdc2)-cyclin B complex is phospholylated by Wee1 and 

Myt1 resulting in an inactivated state of this complex, giving time 

for repairing DNA damage. This process, a phosphorylation of 

CDK1(cdc2)-cyclin B complex, is important for preventing the 

DNA damage cell to go into the mitosis phase as displayed in (B) .. 

Figure 1.15 Chemical structure of PD0166285.................................................. 

Figure 1.16 Overall structure of the Wee1 kinase (X-Ray Structure of the 

Wee1/PD0407824 complex, pdb code 1X8B). α-Helices are 

coloured magenta, β-sheets are coloured yellow and loops are 

shown in cyan.................................................................................... 

Figure 1.17 Superimposition of the six solved crystal structures of Wee1-

inhibitor complexes. The pyrrolocarbazole core of the inhibitors 

(colored orange) shows the same interaction at the ATP-binding 

site. Clusters of cocrystallized waters are displayed as balls. 

Hydrogen bonds are shown as dashed green line..............................  

Figure 1.18 (A) Molecular structures of the pyrrolo[3,4-c]carbazole-

1,3(2H,6H)-dione derivatives, and (B) Molecular structures of the 

2-anilio-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones derivatives 

representing as Wee1kinase inhibitors............................................... 

Figure 2.1 Two zones (twilight zone and the safe homology modeling zone) 

of sequence alignments. The homology model would be fine if the 

length and the percentage sequence identity compared to the 

template falls into the “safe” zone..................................................... 

Figure 2.2 The Needleman-Wunsch algorithm gives the global sequence 

alignment between two sequences (on the top and on the left of the 

matrix), (a) scoring the sequence which is identical, (b) and (c) 

partially complete score matrix, (d) scoring the matrix till complete 

 

18 

19 

 

 

 

 

 

20 

21 

 

 

 

22 

 

 

 

 

23 

 

 

 

25 

 

 

 

33 

 

 

 

 



 

 

 

xvi 

(e) traceback route for giving globally optimum alignment. (f) 

Alternate alignment illustrating non-uniqueness. ............................. 

Figure 2.3 Schematic representations for performing a MD simulation............. 

Figure 3.1. Sequence alignment of DV and WNV NS2B and NS3 domains. 

Stars indicate residues that are identical whereas dots and colons 

indicate similar residues. Residues which are drawn italic and 

underlined are missing residues in the X-ray structures. Residues 

located in the S1, S2, S3 and S4 pocket are colored cyan, yellow, 

green and magenta, respectively, and catalytic triad are displayed 

in bold red.......................................................................................... 

Figure 3.2. Detailed view of the interaction of the covalently bound peptidic 

inhibitor (ball and stick) with the catalytic site of WNV NS2B/NS3 

protease (ribbon). The covalent bond (distance 1.36 Å) between the 

C atom of the inhibitor aldehyde warhead and the hydroxyl group 

(OG) of Ser135 of NS3 is shown….................................................... 

Figure 3.3. Superimposition of (A) 2FP7 and 2FOM, (B) 2FOM and DV-1, 

(C) WNV-X and DV-1, (D) WNV-X and DV-2, and (E) DV-1 and 

DV-2. The individual structures are colored as follows: WNV-X 

and 2FP7: NS2B blue, NS3 red, inhibitor cyan; 2FOM: NS2B 

magenta, NS3 white, DV-1: NS2B yellow, NS3 green, inhibitor 

orange; DV-2: NS2B Orange, NS3 gray, inhibitor magenta............. 

Figure 3.4. (A) Comparison of the RMSD plots for the MD simulations of 

WNV-X (black-line) and DV-1 (red line), (B) RMSD plots for the 

simulations of WNV-X (black line) and DV-2 (green line), and (C) 

RMSD plots for the simulations of WNV-X (black line) and DV-3 

(blue line) ........................................................................................... 

Figure 3.5. Comparison of the H-bond occupancy between each residue of the 

inhibitor and the individual binding pockets of the protease; P1-S1 

pocket (A), P2-S2 pocket (B), P3-S3 pocket (C) and P4-S4 pocket 

(D)…….............................................................................................. 

Figure 3.6.  Plot of the salt-bridge distance between Arg-P1 and Asp129 from 

 

35 

40 

 

 

 

 

 

 

54 

 

 

 

 

56 

 

 

 

 

 

59 

 

 

 

 

60 

 

 

 

66 

 



 

 

 

xvii 

NS3 of WNV-X (black), DV-1 (red) and DV-2 (green)..................... 

Figure 3.7. Distance between Oδ-Asn152 (NS3) and Nε-Arg-P2 of the 

inhibitor during the simulation of WNV-X (black), DV-1 (red) and 

DV-2 (green)...................................................................................... 

Figure 3.8. (A) GRID results: N+ probe (magenta contour) at the contour level 

of -5.25 kcal/mol of WNV-X (A-1) and DV-2 (A-2), (B) OH probe 

(green contour) at the contour level of -7.50 kcal/mol of WNV-X 

(B-1) and DV-2 (B-2) and (C) Dry probe (yellow contour) at the 

contour level of -0.50 kcal/mol of WNV-X (C-1) and DV-2 (C-2). 

The inhibitor is shown colored cyan.................................................. 

Figure 3.9. (A) RMSD values of the inhibitor Bz-Nle-Lys-Arg-Arg-H bound 

in WNV-X (black line) and DV-2 (green line). (B) RMSD values 

of the mutated inhibitor Bz-Nle-Lys-Arg-Ala-H bound to WNV-X 

(black line) and DV-2 (green line) .................................................... 

Figure 3.10.  Comparing the conformation of the WNV protease bound 

inhibitor Bz-Nle-Lys-Arg-Arg-H (orange) and the bound inhibitor 

Bz-Nle-Lys-Arg-Ala-H (yellow) at the end of the 5 ns simulation 

time.................................................................................................... 

Figure 3.11.  Comparing the conformation of the DV protease bound inhibitor 

Bz-Nle-Lys-Arg-Arg-H (orange) and the bound inhibitor Bz-Nle-

Lys-Arg-Ala-H (yellow) at the end of the 5 ns simulation time........ 

Figure 3.12. Footprints of (A) van der Waals interaction, (B) electrostatic 

interaction, (C) free energy of solvation and (D) total interaction 

energy of ligand-protein interaction per residue................................ 

Figure 3.13. (A) Molecular docking solution of compound 4 (orange balls and 

stick) with the DV NS2B/NS3 protease. H-bonds are shown as dot 

lines. (B) GRID result of OH probe (yellow) at the contour level -

5.5 kcal/mol, (C) GRID result of N:= probe (N-sp2 with lone pair) 

(cyan) at the contour level -4.0 kcal/mol and (D) The final 

pharmacophore model derived from docking solution of compound 

4 (sphere A, B and C), OH contours of GRID field calculation 

67 

 

 

68 

 

 

 

 

 

71 

 

 

 

71 

 

 

 

73 

 

 

73 

 

 

79 

 

 

 

 

 

 

 



 

 

 

xviii

(sphere D) and N:= contours (sphere D and E). Red spheres 

represent the H-bond acceptor areas, Green sphere means H-bond 

donor areas and, yellow sphere indicates hydrophobic areas and 

magenta sphere denotes H-bond acceptor or donor area...................  

Figure 3.14. (A) Docking solution of compound 4; H-bonds are shown as dot 

lines and ligand is displayed as orange stick. (B) A static 

pharmacophore model (PH-1); Pharmacophore features are 

displayed as yellow sphere = Hydrophobic feature, dark red sphere 

= H-bond acceptor features, dark green sphere = H-bond donor 

features and gray = excluded volumes in all pictures. For clearly 

display, some exclude volume spheres were omitted........................ 

Figure 3.15. (A) All ten different static pharmacophore models derived from 

each representative conformation of each cluster projected on the 

binding pocket of DV NS2B/NS3 protease, and (B) dynamic 

pharmacophore model; Pharmacophore features are displayed as 

yellow sphere = Hydrophobic feature, dark red sphere = H-bond 

acceptor features, dark green sphere = H-bond donor features and 

gray = excluded volumes in all pictures. For clearly display, some 

exclude volume spheres were omitted…........................................... 

Figure 3.16. Chemical Structures of hit compounds derived from PH-1........... 

Figure 3.17. Chemical Structures of hit compounds derived from PH-2........... 

Figure 4.1. (A) Alignment 1 derived from the GOLD docking study, (B) 

Alignment 2 obtained by flexibly aligning the docking poses on 

the template structure of inhibitor 1, (C) Alignment 3 derived by 

minimizing the docking poses in the wee1 active site. Inhibitor 1 is 

shown in green………....................................................................... 

Figure 4.2. Comparison of the docking solution for 1 (colored cyan) 

compared with its position in the crystal structure (colored gray, 

hydrogen-bonds are shown as dashed line, cocrystallized water 

molecules as red balls and the magnesium ion as green ball)........... 

Figure 4.3 (A). GOLD docking solution for the most potent inhibitor 106 

 

 

 

85 

 

 

 

 

 

 

92 

 

 

 

 

 

 

 

93 

96 

97 

 

 

 

 

108 

 

 

 

111 

 



 

 

 

xix 

(orange). Hydrogen bonds are shown as dashed line. (B). 

Schematic representation of the interaction of the most potent 

inhibitor 106 with the residues of the Wee1 binding site. Hydrogen 

bonds are indicated as arrows…….................................................... 

Figure 4.4 (A). Correlation between the actual pIC50 and the predicted pIC50 

obtained with the best CoMFA model 10. (B). Correlation between 

the actual pIC50 and the estimated pIC50 of the best CoMFA model 

10........................................................................................................  

Figure 4.4 (C) Prediction of the external test set containing 30 inhibitors.........  

Figure 4.5 (A). CoMFA steric field projected on the Wee1 binding pocket. 

The docked inhibitor 106 is displayed in ball and stick. The 

Connolly molecular surface of the enzyme is shown in white. 

(Color code: favoured, green (contribution level 80%); disfavoured 

yellow (contribution level 20 %).......................................................  

Figure 4.5 (B). CoMFA electrostatic field overlaid on the docked inhibitor 

169 (colored orange).  The Connolly molecular surface of the 

enzyme is shown in white. (Color code: increase in positive charge 

favoured, blue (contribution level 80%); increase in negative 

charge favoured red (contribution level 20 %)..................................  

Figure 4.6. Docking solutions of all compounds of pyridopyrimidine 

derivatives projected on the binding pocket of Wee1 kinase. 

Hydrogen bonds are shown as dashed line, cocrystallized water 

molecules are presented as red balls. Ligands are displayed as line 

whereas important amino acid residues are shown as balls and 

stick.................................................................................................... 

Figure 4.7. (A) GOLD docking solution for one of the potent inhibitors, 

compound 218, (B) Schematic representation of the interaction of 

compound 218 with the residues at the Wee1 binding site. 

Hydrogen bonds are indicated as arrows........................................... 

Figure 4.8. Correlation between ΔGexp.and GoldScore (A), and ChemScore 

(B) of all 222 compounds applied in this study.................................  

 

 

 

112 

 

 

 

118 

120 

 

 

 

 

121 

 

 

 

 

121 

 

 

 

 

 

128 

 

 

 

130 

 

130 



 

 

 

xx 

Figure 4.9. Correlation between ΔGexp.and ΔGest. of the compounds in the 

training set of (A) pyrrolocarbazole using model 1, (B) 

pyridopyrimidine using model 4, and (C) the general model using 

model 8.............................................................................................. 

Figure 4.10. Correlation between ΔGexp.and ΔGpred. of the compounds in the 

test set of pyrrolocarbazole subset………......................................... 

Figure 4.11. Correlation between ΔGexp.and ΔGpred. of the compounds in the 

test set of pyridopyrimidine subset……............................................ 

Figure 4.12. Correlation between ΔGexp.and ΔGpred. of the compounds in the 

test set of the general model..............................................................  

Figure 4.13. Correlation between ΔGexp.and ΔGpred. of the all 222 compounds 

derived by using LIECE model 20……............................................ 

Figure 4.14. EF curves of datasets of Chembridge Kinaset decoys with 6 

different datasets from active Wee1 kinase inhibitors ranked by 

LR-MM/PBSA model 6 (A) and LIECE model 20 (B), and the EF 

curves of datasets of decoys from DUD with 6 different datasets 

from active Wee1 kinase inhibitors scored by LR-MM/PBSA 

model 6 (C) and LIECE model 20 (D)…………………………….. 

Figure 4.15 Three different pharmacophore models (A) pharmacophore 

model derived from X-ray structure 2IN6 (PH-1), (B) 

pharmacophore model generated from the docking solution of 

compound 106 (PH-2), (C) pharmacophore model (PH-3) built by 

merging the feature at the region A from PH-1 and PH-2. 

Pharmacophore feature represent by magenta sphere = H-

bond/donor feature, yellow sphere = hydrophobic feature, red 

sphere or arrow = H-bond acceptor and green sphere or arrow = H-

bond donor......................................................................................... 

Figure 4.16 EF Curve of the database containing 222 active Wee1 inhibitors 

and 3,037 hit compounds obtained from pharmacophore search 

and drug-like property filtering. The database was ranked by 

GoldScore……............................................................................. 

 

 

 

133 

 

135 

 

136 

 

137 

 

140 

 

 

 

 

 

144 

 

 

 

 

 

 

 

 

145 

 

 

 

147 



 

 

 

xxi 

Figure 4.17 Chemical structures of Hit compounds and their predicted 

binding free energy…….................................................................... 

 

 

 

 

 

 

148 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



xxii 
 

LIST OF CHARTS  

 Page 

Chart 4.1 Molecular structures of the pyrrolo[3,4-c]carbazole-1,3(2H,6H)-

dione derivatives used for the 3D-QSAR 

study……………………………………………………………… 

Chart 4.2. Molecular structures of the 2-anilio-6-phenylpyrido[2,3-
d]pyrimidin-7(8H)-ones derivatives used in this 
study................................................................................................. 

 

 

 

103 

 

125 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



xxiii 
 

LIST OF ABBREVIATION 
2D  = Two Dimension 

3D  = Three Dimension 

Ala(A)  = Alanine 

Arg(R)  = Arginine  

Asn(N) = Asparagine 

Bz  = Benzene 

C  = Capsid Protein 

CDK  = Cyclin Dependent Kinase 

CoMFA = Comparative Molecular Field Analysis 

CoMSIA = Comparative Molecular Similarity Indices Analysis 

Cys(C)  = Cysteine 

DC  = Decomposition 

DF  = Dengue Fever 

DHF  = Dengue Hemorrhagic Fever 

DSS  = Dengue Shock Syndrome 

DUD  = Directory of Useful Decoys 

DV  = Dengue Virus 

E  =  Envelope Protein 

Eele  = Electrostatic Interaction 

ER  = Endoplasmic Reticulum 

EvdW  = van der Waals Interaction 

FEP  = Free Energy Perturbation 

GA  = Genetic Algorithm 

GB  = Generalized Born 

Gele-sol  = Electrostatic Free Energy of Solvation 

Gln(Q)  = Glutamine  

Glu(E)  = Glutamic Acid 

Gly(G)  = Glycine 

Gnonele-sol = Non-Electrostatic Free Energy of Solvation 

GOLD  = Genetic Optimisation for Ligand Docking 

His(H)  = Histidine 



 

 

 

xxiv

HTS  = Hight Throughput Srceening 

Ile(I)  = Isoleucine 

Ki  = Inhibition Constant 

Leu(L)  = Leucine 

LIE  = Linear Interaction Energy 

LIECE  = Linear Interaction Energy with Continuum Electrostatics 

LR  = Linear Response 

Lys(K)  = Lysine 

M  = Membrane 

MD  = Molecular Dynamics 

Met(M) = Methionine 

MM/PBSA = Molecular Mechanic/Possion-Boltzmann Surface Area 

Nle  = Norleucine 

NS  = Non-Structural Protein 

PDB  = Protein Data Bank 

Phe(F)  = Phenylalanine 

PLS  =  Partial Least Square 

Pro(P)  = Proline 

prM  = Precusor Membrane 

QSAR  = Quantitative Structure-Activity Relationship 

RMSD  = Root Mean Square Deviation 

RMSE  = Root Mean Square of Error 

SASA  = Solvent Accessible Surface Area 

SCRs  = Structurally Conserved Regions  

SDEE  = Standard Error of Estimation  

SDEP  = Standard Error of Prediction 

Ser(S)  = Serine 

TI  = Thermodynamic Integration 

Thr(T)  = Threonine 

Trp(W) = Tryptophan 

Tyr(Y)  = Tyrosine 



 

 

 

xxv 

Val(V)  = Valine 

VP  = Vesicle Packets 

VRs  = Variable Regions 

VS  = Virtual Screening 

WHO  =  World Health Organization 

WNV  = West Nile Virus 

XRMSE =  leave-one-out cross-validation Root Mean Square of Error 

 

 

 

 



1 
 

CHAPTER I  

INTRODUCTION 

1.1. NS2B/NS3 protease of Dengue virus (DV)  

1.1.1 The Disease and History 

Dengue virus (DV) is a member of genus Flavivirus, family Flaviviridae. DV 

is transmitted by the bite of infected mosquitoes type Aedes aegypti and Aedes 

albopictus.[1] Infection of all serotypes of DV (DV-1, DV-2, DV-3 and DV-4) results 

in a diversity of illnesses ranking from no apparent symptoms, and mild symptoms 

called dengue fever (DF), to more severe forms, such as dengue hemorrhagic fever 

(DHF) or dengue shock syndrome (DSS). DF causes a high fever, rash, and muscle 

and joint pain, whereas DHF and DSS could be fatal because of the hemorrhaging 

leading to dramatic loss of blood pressure.[2, 3] The first infection of each serotype of 

DV induces long-life immunity for the infected serotype; however, the second 

infection of a different type of DV could result in DHF or DSS.[4] Nowadays, there 

are no specific treatments, drug, or any antiviral therapies, for the DV infection. 

Development of vaccines for DF and DHF is quite difficult because all of four 

serotypes can cause the disease, and a second infection of any different serotypes 

from the protection serotype could result in the more serious disease, such as DSS or 

DHF. Fortunately, from the considerable effort in developing therapeutic treatment 

against DV infection, the number of vaccines candidates for all four serotypes are 

now in clinical trial phase I and phase II testing.[5]  

DF is not a new disease. It was first recorded in a Chinese encyclopedia of 

disease symptoms and remedies published during the Chin Dynasty (265 to 420 

A.D.).[2] DF was distributed worldwide in the tropics during the 18th and 19th 

centuries. The first official record of the outbreak of DHF was in Manila, Philippines 

in 1953-1954, subsequently in Bangkok, Thailand 1958, and then in Malaysia, 

Singapore and Vietnam in the 1960s. During this period the epidemic of DHF was 

located only in Southeast Asia because of the isolation of the Pacific island and the 

success of the program for controlling urban yellow fever, which is also transmitted 

by mosquito type Aedes aegypti, in Americas. However, Aedes aegypti re-invaded in 

the 1970s in most countries in the Americas as shown in Figure 1.1 because of the 

collapse of the mosquito control program.  
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Figure 1.1 Aedes aegypti distribution in the Americas in 1970, at the end of the 

mosquito control program, and in 2002[6] 

Furthermore, modern transportation facilitating the movement of people and 

commodities across continents leads to the spread of the vectors, Aedes aegypti and 

Aedes albopictus, and also the viruses. In addition, there are other factors such as 

global warming, rapid population growth and rural-urban migration that lead to the 

increasing of the epidemic of DV. Moreover, an insufficient basic urban infrastructure 

such as an inadequate water supply resulting in storing water in containers close to 

houses and an enhancing of an amount of solid wastes generate epidemiological 

conditions for the spreading of DV.[7, 8] Consequently, since the 1980s, both the 

mosquito vectors and the viruses continue spreading globally, resulting in the growth 

of the number of DF and DHF cases.[9] 

1.1.2 Current Status in the World and in Thailand    

 
Figure 1.2 High-risk area for the dengue transmission indicated in yellow color[10]  
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Nowadays, the global epidemic of the dengue virus infections is comparable to 

malaria. More than 2.5 billion people in more than 100 countries, mostly in tropical 

and subtropical regions, are living in the risk area of the transmission of the DV[9] as 

indicated in the map displayed in Figure 1.2. The number of the DF cases reported to 

the World Health Organization (WHO) is annually around 1 million with 500,000 

cases of DHF and 22,000 deaths, mostly among children. However, the number of 

infected DV including the cases which are not reported to WHO could be estimated at 

around 50 million in each year. The number of DF cases is increasing significantly 

and continuously, since the first epidemic in 1950 as the graph showed in Figure 

1.3[8].  

 
Figure 1.3 Average annual number of DF/DHF cases (bar graph) reported to WHO 

and average annual number of countries (line) reporting dengue.[8] 

 

The situation of the epidemic of DV infection in Thailand is quite serious. The 

Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health 

of Thailand reported that there are approximately 50,000 - 60,000 DV infected cases 

and 50 – 60 fatality cases in Thailand every year. However, in the year 2008, there 

were a total of 87,494 cases of DV infection (138.80 infected cases per 100,000 

population), and 101 patients died. The number of cases in the year 2008 doubled 

compared with the last few years. In the year 2007, there were 65,581 infected cases 

(104.21 cases per 100,000 population), and 95 patients died, whereas 42,456 infected 

cases (59 case per 100,000 population) and 59 fatal cases were reported in 2006. The 

distribution of the infected patients according to age shows that most of the patients 

are children in the 10-14 age group, around 400 cases per 100,000 population, 
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followed by the 5-9 age group (~315 cases/100,000 population), 15-24 age group 

(~170 cases/100,000 population), 0-4 age group (~110 cases/100,000 population), 25-

34 age group (~55 cases/100,000 population), and older than 35 age group (~20 

case/100,000 population).[11]   

 

 1.1.3 Structure of Dengue virus 

 Three dimension (3D) structure of DV was solved in 2002.[12] Both mature 

and immature particles of the virus are found in infected cells. The mature particle has 

a diameter of about 500 Å, whereas the value of the immature one is about 600 Å. 

Both particles contain the well-defined outer glycoprotein shell consisting of 180 

copies each of an envelope (E) and membrane protein (prM/M) and internal host 

derived lipid bilayer.[13] The positive-strand RNA genome of ~11 kb in length of the 

virus is packaged by the viral capsid protein (C) within the lipid bilayer.[14] The viral 

RNA is capped by a type I methyl-guanosine at the 5’-end but contains no poly-

adenylate tail at the 3’-end. The RNA of DV as shown in Figure 1.4 encodes three 

structural proteins (C, prM and E) which form the components of the virus and seven 

non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) which are 

important for the replication cycle of the virus. [13, 15]  

           
Figure 1.4 Schematic representation of DV genome organization and polyprotein, and 

sites where host protease (signalase) and DV protease (NS2B/NS3 protease) cleave 

the polyprotein[14] 
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 1.1.4 Replication Cycle of Dengue Virus  

 
Figure 1.5 The replication cycle of Dengue Virus.[14] 

 

 The replication cycle of the DV is displayed in Figure 1.5. First, the E protein 

mediates the viruses to bind to the cell-surface attachment molecules and receptor of 

the host cell. Then, the viruses enter into the cell by receptor-mediated endocytosis. 

Upon the acidic condition of the endosome, the viral envelope glycoproteins (E) 

mediate the fusion of the host and virus lipid membranes, allowing disassembly of the 

viruses and release of the viral genomic RNA into the cytoplasm of the host cell.[14] 

The genomic viral RNA, which functions as mRNA, is then translated directly into 

the single polyprotein precursor. After that, both the virus-encoded serine protease, 

NS2B/NS3 protease, and the host-encoded proteases, signalase and furin, cleave co- 

and post-translationally this single polyprotein precursor into three structural and 

seven non-structural proteins which are in the order of C-prM-E-NS1-NS2A-NS2B-

NS3-NS4A-NS4B-NS5. The replication of the viral genomic RNA, taken place in the 

rough endoplasmic reticulum (ER) and in Golgi-derived membranes called vesicle 

packets (VP)[14], occurs after the viral polymerase NS5 is synthesized and released 

from the polyprotein precursor. During this process, a dsRNA transient intermediate 

is formed and separated into its individual strands for accessing to the NS5 
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polymerase for the next round of the viral replication. [15] Then, the newly 

synthesized viral RNA exits from the intermembrane space of the double-membrane 

VPs into the cytoplasm.[16] Next, the assembly of virus develops in the lumen of the 

rough ER from which an immature virus particle buds into the Golgi. [17] The 

cleavage of prM to M by furin, which occurs at the trans-Golgi network, together with 

the conformational rearrangements of E result in the maturation of the virus particle. 

[18-20] Finally, the mature virus particles exit from the host cell by exocytosis. 

 

 1.1.5 Enzyme Target (NS2B/NS3 Protease) 

 From the replication cycle of DV, both structural proteins (Capsid, Membrane 

and Envelope protein) and non-structural proteins (NS2B/NS3 protease, NS3 

NTPase/Helicase, NS5 Methyltransferase and NS5 RNA-dependent RNA polymerase 

(RdRp) can be targeted for inhibiting this cycle. Thus, drugs development against DV 

infection can be developed by targeting these protein targets. However, in this work 

the focus was set on the NS3 protease as the enzyme target for drug development for 

DV infection because, at the beginning, only X-ray structures of NS3 proteases of DV 

were available in the protein data bank. In addition, there are many known inhibitors 

against NS3 protease of DV, while such information for the other protein targets was 

insufficient for using as a starting point. Therefore, all available information about 

DV NS2B/NS3 protease could be a good starting point for searching or developing 

drugs against NS3 protease of DV.  

  A full-length of NS3 containing 618 amino acid residues is a multifunctional 

protein. The N-terminus, one-third of NS3 (approximately 180 residues), functions as 

a serine protein with a classical serine protease catalytic triad (His51, Asp75 and 

Ser135), while the C-terminus, two-third of NS3, represents an RNA helicase and 

RTP/NTPase.[21] The polyprotein precursor, containing three structural proteins (C, 

M and E) and seven non-structural proteins (NS1-NS2A-NS2B-NS3-NS4A-NS4B-

NS5), requires the host protease, such as signalase and furin [22], and the viral 

protease (NS3 protease) for co- and post-translational processing this polyprotein into 

individual functional protein.[23-27] Therefore, NS3 protease plays a vital role in the 

replication cycle of DV. However, the enzymatic activity of NS3 protease is enhanced 

by interacting with the hydrophilic central domain (around 40 amino acid spanning 
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from residue 49-95 as shown in Figure 1.6) of NS2B, which acts as an essential 

cofactor.[28] The NS2B/NS3 protease is responsible to cleave the nonstructural 

protein at the region NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 and also 

the internal site within the capsid protein C, NS3 and NS4A [23, 26, 29-32] as shown 

in Figure 1.6. Mutations in the NS3 cleavage sites of the polyprotein precursor abolish 

viral infectivity, suggesting that the inhibition of NS3 protease by small molecules 

may represent an effective antiviral therapy.[33-35]   

 

 
Figure 1.6 Diagram represents the organization of DV polyprotein and NS2B/NS3 

protease. An essential cofactor domain of NS2B (residues 49-95) for activating 

activity of NS3 protease is displayed in the white box. The NS3 protease domain is 

from residue 1 to 179, whereas NS3 Helicase domain locates at residue 180 to 618 of 

NS3. Amino acids diagram of the X-ray structure (PDB code 2VBC)[36], a full length 

NS3 complexed with 18 amino acid residue of NS2B (residue 49-66), linked with G4-

S-G4, is also displayed.[36] 

 

 NS2B, which is an integral membrane protein[25], comprises of 3 

hydrophobic domains flanking a conserved hydrophilic region. A membrane 

association of the polyprotein precursor rendering the protease sensitive sites in the 

optimal context for cis- and trans-cleavages needs these hydrophobic regions of 

NS2B.[14] However, these hydrophobic regions are not necessary for the cis-cleavage 

of the NS2B-NS3 site in vivo as indicated by the abrogation of the membrane 
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requirement for the NS2B-NS3 cleavage by deletion of these three hydrophobic 

domains.[25] Whereas, the linking of the hydrophilic central domain of the NS2B 

viral cofactor with the NS3 protease (amino acid residue 1-169) of DV via a flexible 

linker (Gly4-Ser-Gly4) results in the expression of soluble and active protease.[37]  

 Recently, two co-crystallized structures of DV NS2B/NS3 protease were 

resolved. The first X-ray structure (PDB code 2FOM) [38] is the complex between the 

NS2B (residue 43-96) with the NS3 protease domain. This structure contains missing 

residues at the residue 77-84 of the NS2B chain. Experimental data [38], NMR 

spectroscopy, revealed that the C-terminus of NS2B directly interacts with the 

substrate-binding site of NS3 protease. Thus, this structure is catalytically inactive 

because the C-terminus of the NS2B of this structure does not interaction with the 

substrate-binding site. The other structure (PDB code 2VBC) [36] is the complex 

between 18 amino acid residues (residue 49-66) with the full-length of NS3 of DV. 

This structure shows that the β-strand N-terminus of NS2B (residue 49-66) inserts 

into the N-terminal β-barrel of the NS3 protease conceal the hydrophobic domain of 

protease from solvent resulting in the stabilization of this domain. This structure 

supports the previous work [38] which was indicated that the truncate NS2B part is 

sufficient to stabilize the NS3 protease. However, the NS3 protease domain of this 

structure is also inactive because this structure lacks the C-terminal part of the NS2B 

which is important for interacting with the substrate-binding site as indicated by the 

NMR spectroscopy [38]. Analysis these two X-ray structures together with the 

experimental data, it indicates that the N-terminal part of NS2B performs a 

chaperone-like role for stabilizing NS3 protease, whereas the C-terminal part of NS2B 

adopts totally different conformation between the free form and in complex with the 

inhibitors or substrates. The NS3 protease domain is wrapped around by the cofactor 

NS2B as a ‘belt-like’ structure and the C-terminal part of NS2B are integral as a part 

of the active site of protease.[13] 

 The NS2B/NS3 protease is an attractive enzyme target for drug development 

for DV infection. HIV-1 protease inhibitors which are currently used in the clinical 

trial as a component of highly active antiretroviral therapy (HAART) are a good 

example of successful drug development targeting the enzyme protease class. 

However, the DV protease inhibitors have to be tested to ensure they are not toxic. 
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That is because the cellular serine protease such as furin also recognizes the dibasic 

amino acid such as Arg or Lys at the P1 and P2 position as the DV protease.[14] 

Nevertheless, inhibitors of NS2B/NS3 protease of WNV, a virus which is in the same 

class as DV and shares high percent sequence identity to DV NS2B/NS3 protease, 

have been recently identified [39]. These compounds exhibit low IC50 and low EC50 

value against this enzyme.[39] Therefore, this result implies that the development of 

DV protease inhibitors with high biological activity and low toxicity is feasible.  

 

 1.1.6 Literature Reviews 

 1.1.6.1 Protein Structures (Homology Models and X-ray Structure) 

 There are several X-ray structures of NS3 protease deposited in the protein 

data bank. Two X-ray structures, DV NS3 protease (PDB code 1BEF) and DV NS3 

protease complex with Mung-Bean Bowman-Birk inhibitor (MbBBI) (PDB code 

1DF9) [40, 41], were first published in 1999 by Murthy et al.. The essential cofactor 

NS2B is missing in these crystal structures; therefore, the analysis of the interaction 

between NS2B and NS3 as well as the interaction between the NS2B/NS3 protease 

and potent inhibitor and the complete structure of NS2B/NS3 protease cannot be 

deduced and is unclear so far. 

 A further crystal structure of the DV NS3 protease complex with its cofactor 

NS2B in the apo-form (PDB code 2FOM) was recently reported.[38] At the same 

time, the structure of the related WNV NS2B/NS3 protease complex with the peptidic 

inhibitor, benzoyl-norleucine(P4)-lysine(P3)-arginine(P2)-arginine(P1)-aldehyde (Bz-

Nle-Arg-Arg-Arg-H), (PDB code 2FP7) was successfully cocrystallized by the same 

working group.[38] The structure (2FP7) of this tetrapeptidic inhibitor projected on 

the binding pocket and its interaction with surrounded residues are displayed in Figure 

1.7. Interestingly, these X-ray structures reveals that the conformation of the cofactor 

NS2B in the inhibitor-complexed WNV protease crystal structure (PDB code 2FP7) 

differs from the conformation of the inhibitor-free structure of the DV protease 

(RMSD=11.59 Å), whereas the NS3 domain shows quite similar conformation in both 

protease complexes (RMSD 2.36 Å as summarized in Table 1.1). It was recently 

reported that the C-terminal domain of DV NS2B shows a direct interaction with the 

substrate-binding site of the NS3 protease, which is not observed in the DV crystal 
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structure in the apo-form (PDB code 2FOM).[42] Thus, the available crystal structure 

of apo DV NS2B/NS3 protease (PDB code 2FOM) does not represent a suitable target 

structure for analyzing the binding mode of potential active site inhibitors.  

 

 

Figure 1.7 (A) Interaction of the tetrapeptidic inhibitor with the WNV NS2B/NS3 

protease (taken from the crystal structure 2FP7). (B) Schematic representation of the 

interaction of the inhibitor with the substrate pockets of WNV NS2B/NS3.  

 

 Recently, two novel X-ray structures of WNV NS2B/NS3 protease complex 

with the inhibitor aprotinin (PDB code 2IJO) and in the apo-form (PDB code 2GGV) 

were resolved.[42] As shown in Table 1.1 that the structure of the NS2B of 2GGV is 

different from 2IJO or 2FP7 (RMSD value between the NS2B of 2GGV and 2IJO is 

11.71 Å and between 2GGV with 2FP7 is 11.39 Å). On the other hand, the NS2B 

chain of 2IJO is similar to 2FP7 (RMSD value between these two structure is 0.69 Å). 

(A) 

(B) 
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The reported data supports the earlier finding that the binding of an active site 

inhibitor results in a rearrangement of the C-terminal domain of NS2B compared to 

the inhibitor-free form. From these observations [42], the conclusion was drawn that 

the NS2B/NS3 protease of flavivirus adopts a ‘‘productive conformation’’ in 

inhibitor-complexed form and a ‘‘non-productive conformation’’ in the apo-form. The 

new structural data also showed that the WNV protease adopts the same conformation 

in complex with different kinds of inhibitors (PDB code 2IJO and PDB code 2FP7; 

RMSD 0.87Å shown in Table 1.1). Moreover, the cofactor NS2B also shows a similar 

conformation in both WNV crystal structures. Table 1.1 also shows that the apo-form 

of DV NS2B/NS3 protease (2FOM) is close to the apo-form of WNV (2GVV), 

RMSD between these two structures for the NS2B part = 2.60 Å, NS3 protease 

domain = 2.20 Å and NS2B/NS3 protease = 2.35 Å. Therefore, based on these data 

and the available experimental data, it is suggested that the active inhibitor-complexed 

form of DV NS2B/NS3 protease should have the conformation which differ from the 

apo-form, especially the C-terminus of the NS2B as it is found in the WNV protease.  

 Besides the experimental structures of DV NS3 protease, there is also the 

homology model of DV NS2B/NS3 protease. The only one reported homology model 

for DV NS2B/NS3 protease [43] was generated using the hepatitis C virus (HCV) 

NS3 protease with cofactor NS4A (PDB code 1JXP) as a template. However, HCV 

NS3/NS4A protease shows only low sequence identity (14.8%) to DV NS2B/NS3 

protease which results in a large deviation of the NS3 protease structure. This could 

be shown by the later solved NS3 crystal structure of DV (PDB code 2FOM). The Ca-

atom RMSD between the NS3 protease domain of HCV protease (PDB code 1JXP) 

and DV (PDB code 2FOM) is 6.57 Å. In addition, the cofactor NS2B of that model 

was built only for a short 12 amino acid segment (residues 70–81). It was proposed 

that the 12 amino acids of the modeled NS2B domain rather than the 40 amino acids 

could be sufficient for activating NS3 protease.[43] However, the recently determined 

DV NS2B structure (PDB code 2FOM)[38] shows that the residues 51–57 (and not 

residues 70–81 as proposed by Brinkworth et al.) of NS2B form a β-strand which 

associates with the NS3 protease. In addition, NS3 protease complexed with a 

truncated NS2B (residues 49–66) resulted in a catalytically inactive enzyme, 

indicating that the short NS2B is not sufficient for activating NS3 protease.[38] The 
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NS3 protease requires at least 40 amino acids of NS2B, expanding from residues 49 

to 95 [28], for enhancing its activity. Thus, this homology model is not suitable to 

represent a complexed structure of DV NS2B/NS3 protease. 
 

Table 1.1. RMSD values (Å) of NS2B, NS3, and NS2B/NS3 protease, indicated as 
the first, the second, and the third values, respectively, between each pair of different 
X-ray structures. 
 
 Structure X-ray structure and DV models 

1BEF 1DF9 2FOM 2FP7 2GGV 2IJO 2VBC

1BEF DV NS3-
protease 

-  
-  
- 

-  
0.23 

 - 

-   
9.52 

 - 

-  
 9.15  

- 

-   
9.81  

- 

-  
 9.52  

 - 

-  
 9.20  

- 

1DF9 

DV NS3-
protease 
complexed with 
Mung-Bean 
Bowman Birk 
inhibitor 

-   
0.23  

 - 

-  
-  
- 

-   
9.51   

- 

-  
 9.15  

- 

-   
9.41   

- 

-  
 9.51  

 - 

-   
9.24  

- 

2FOM DV NS2B/NS3 
protease 

-  
9.52  

- 

-   
9.51 

- 

- 
- 
- 

11.59  
2.36 
10.90 

2.60  
2.20   
2.35 

10.97  
2.41  
10.31 

-  
 1.37  

- 

2FP7 

WNV 
NS2B/NS3 
protease in 
complex with 
tetrapeptidic 
inhibitor 

-   
9.15  

 - 

-   
9.15  

- 

11.59  
2.36   
10.90 

- 
- 
- 

11.39  
1.17  
12.07 

0.69  
0.87  
0.72 

-   
1.79  

- 

2GGV 
WNV 
NS2B/NS3 
protease 

-  
9.81  

- 

-   
9.41 

- 

2.60 
2.20  
2.35 

11.39  
1.17 
12.07 

- 
- 
- 

11.71  
0.85 
12.61 

-  
 1.30  

- 

2IJO 

WNV 
NS2B/NS3 
protease 
complexed with 
Bovine 
Pancreatic 
Trypsin 
Inhibitor 

-   
9.52  

- 

-  
 9.51 

 - 

10.91 
2.41  
10.31 

0.69 
0.87 
0.72 

11.71  
0.85 
12.61 

- 
- 
- 

-   
1.51  

- 

2VBC 

Full length NS3 
(NS3 protease-
Helicase) of 
DEN 

-  
9.20  

 - 

-  
9.24 

 - 

-  
1.37  

 - 

-   
1.79  

- 

-  
 1.30  

 - 

-  
 1.51   

- 

- 
- 
- 

*1BEF and 1DF9 have no NS2B part and 2VBC complexed with only 18 residues of 
NS2B. Therefore, these structures could not be used to superimpose with the NS2B 
and NS2B/NS3protease structures with the other structures. 
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 1.1.6.2 Inhibitors of DV NS2B/NS3 protease 

 Most of the standard serine protease inhibitors are less active against DV 

NS2B/NS3 protease. Thus, these inhibitors cannot be used to inhibit DV NS2B/NS3 

protease. However, aprotinin, the classical serine protease inhibitor, shows activity 

against this enzyme at the nanomolar concentration (IC50 = 65 nM) that could be due 

to this inhibitor is a large peptide. Therefore, it could block the substrate to access the 

binding site by enveloping the enzyme.[37] However, from the drug development 

point of view, this compound is not a good oral drug candidate because this 

compound doesn’t agree with the drug-like properties. From the desirable effort for 

investigating small-molecule inhibitors against DV NS2B/NS3 protease [37, 39, 44-

50], many compounds including peptidic inhibitors, small peptides, small molecules, 

and natural products are identified as inhibitors against DV NS2B/NS3 protease and 

most of these compounds show moderate activity against this enzyme. 

 Starting with peptidic inhibitors, most of them were designed based on the 

substrate specification at the P1 and P2 subsite (Arg or Lys) for DV NS2B/NS3 

protease. The first substrate-based peptidic inhibitor identified as DV NS2B/NS3 

protease inhibitor is Ac-FAAGRR-CHO, Ki = 16 µM.[37] Since then many peptides 

have been developed as DV NS2B/NS3 protease inhibitors. [44, 49, 50] Even though 

the tetrapeptidic inhibitor with aldehyde warhead (Bz-Nle-Arg-Arg-Arg-H) does not 

show the most effective activity against DV NS2B/NS3 protease (Ki = 5.8 μM), this 

compound was used as the template to investigate the substitution at each subsite of 

peptidic inhibitors. That is because the compounds with aldehyde warhead are readily 

amenable to high-throughput synthesis[50]. Results revealed that the P2 subsite is 

more important than P1 subsite for interacting with the enzyme. In addition, the 

replacement at the P1 subsite by neutral groups such as Phe, Phg, (p-Me)Phe or Trp 

resulted in moderate activity implying the possibility for replacing the cation subsite 

at P1 by the neutral group. Moreover, the short peptide (dipeptide (Bz-Arg-Arg-H, Ki 

= 12.0 μM) or tri-peptide (Bz-Lys-Arg-Arg-H, Ki = 1.5 μM)) are active as well as a 

tretrapeptide inhibitor (Bz-Nle-Arg-Arg-Arg-H).[49] These results suggest the 

possibility of development of small-molecule inhibitors against DV NS2B/NS3 

protease, and this information is important to assist the designing potent inhibitors for 
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DV. In addition, one example of patented dipeptide used as viral serine protease 

inhibitor is shown in Figure 1.8. [47] 

 
Figure 1.8 An example of patented DV NS3 protease inhibitor 

 

 Many small molecules representing as DV NS2B/NS3 protease inhibitors have 

been developed. The first reported small-molecule inhibitor for this enzyme was a 

series of compounds containing guanidine groups mimicking Arg, a specific substrate 

at P1 or P2 subsite for DV NS2B/NS3 protease. Many compounds were tested for 

their activities against DV NS2B/NS3 protease; however, only three compounds 

shown in Figure 1.9 are active at the concentration of micromolar whereas the other 

compounds are inactive or less active. [45]  

     
            (Ki = 44 + 5 μM)             (Ki = 23 + 2 μM)                 (Ki = 14 + 2 μM)      

                                    

Figure 1.9 Example of some small-molecule inhibitors of DV NS2B/NS3 protease.  

 

 Moreover, some natural compounds (flavanonoes and cyclones) were 

extracted from fingerroot, Boesenbergia rotunda (L.) Mansf. Kulurpfl. (BR) which is 

a common spice belonging to the ginger family (Zingiberaceae). The cyclohexenyl 

chalcone derivatives (4-hydroxypanduratin A and panduratin A) show a good 

inhibitory activity against DV NS2B/NS3 protease (Ki values are 21 + 6 µM and 25 + 

8 µM, respectively). In addition, the kinetic study of these compounds revealed that 

they bind to DV NS2B/NS3 protease in a competitive mechanism. On the opposite 

site, the pinostrobin and cardamomin are the non-competitive inhibitors and their Ki 
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value are quite high (approximate 350 µM). The chemical structures of these 

compounds are shown in Figure 1.10 [46].  

                                 

Figure 1.10 Natural compounds as DV NS2B/NS3 protease inhibitor 

 

 Furthermore, by applying a high throughput screening (HTS) or a virtual 

screening (VS) method, many compounds were recently identified as potent DV or 

WNV NS2B/NS3 protease inhibitors [39]. For example, HTS was performed to 

screen for novel inhibitors of WNV NS2B/NS3 protease using a database containing 

approximately 32,000 compounds. In addition, some criteria were applied to reduce 

the number of hit compounds. Finally, some compounds were identified as WNV 

NS2B/NS3 protease inhibitor. The compound 1-3 were also tested for their activities 

against DV NS2B/NS3 protease. Interestingly, compound 3 shows a good inhibitory 

activity against this enzyme. Table 1.2 shows the structures and their Ki value for 

WNV and DV NS2B/NS3 protease derived from HTS.[39]  

 

 

 

 

 

 

 

 

 

 

 

R = OMe: Panduratin A 
R = OH: 4-hydroxypanduratin A 
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Table 1.2 Chemical Structures and their Ki values of WNV and DV NS2B/NS3 

protease inhibitors 

Comp. ID Structure 

Ki Value (μM) 
WNV 

NS2B/NS3 
protease 

DV 
NS2B/NS3 

protease 

1 3.2 + 0.3 28.6 + 5.1 

2 3.4 + 0.6 30.2 + 8.6 

3 37.3 + 6.4 17.0 + 4.3 

 

 Recently, novel DV NS2B/NS3 protease inhibitors were identified by 

combining VS method and biological test.[48] A subset of an in-house database 

containing 2.5 million compounds was first filtered out by using cellular uptake and 

cell membrane impermeability to ions properties as criteria. Thus, only neutral non-

zwitterionic compounds were passed these criteria. Then, only compounds which 

could be purchased from highly reputable chemical vendors were selected. 

Consequently, the rest of the compounds were computationally screened using a 

EUDOC docking program. Then, 20 compounds which gave the lowest energy score 

were selected as potent inhibitors and thus were purchased to test for their biological 

activities. Results revealed that only two compounds (ARDP0006 and ARDP009 

whose chemical structure are displayed in Figure 1.11) showed antiviral activity in 

cell culture. In addition, the toxicity was tested and compound ARDP0006 showed no 

toxicity at the concentration tested.  
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 compound ARDP0006,  

 EC50 = 4.2 + 1.9 μM and CC50 = 69 + 4 μM 

 

 

 

  

compound ARDP0009,  

 EC50 = 35 + 8 μM and CC50 > 300 μM 

 

 

Figure 1.11 Inhibitors of DV NS2B/NS3 protease and their EC50 and CC50 values 

 

 1.1.6.3 Molecular Modeling and Molecular Dynamics Simulation 

 There is only one published work[51] applying the molecular dynamics (MD) 

simulation method to elucidate the dynamic motion of DV NS2B/NS3 protease and 

the interaction between NS2B and NS3 protease. In their work, the apo form (NS3 

protease; PDB code 1DF9) and the DV NS3 protease complex with its essential 

cofactor (NS2B) (PDB code 2FOM) were used to perform MD simulations. 

Moreover, in their work, molecular docking between substrates and DV NS2B/NS3 

protease using these X-ray structures was also performed. In addition, several works 

using molecular docking to investigate the interaction between inhibitors with DV 

NS2B/NS3 protease were reported. [44, 52] However, most of these works used the 

X-ray structures, either 1DEF/1BEF or 2FOM, as a representative conformation of 

DV protease. As discussed before, the structure of DV NS3 protease, which is not 

complexed with its essential cofactor (NS2B), deviated substantially from the DV 

NS2B/NS3 protease. Moreover, the C-terminus of NS2B in the apo form of DV NS3 

protease (2FOM) does not interact with the substrate-binding site of the DV NS3 

protease, whereas the experimental data[38] showed clearly that this part of NS2B 

binds directly with the substrate-binding site of the DV NS3 protease. Hence, by 

applying these X-ray structures to perform MD simulation or molecular docking, it 
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could lead to misinterpretation of the interaction between NS2B and NS3 protease and 

the impact of NS2B for enhancing the activity of the protease and also the interaction 

between inhibitors and NS2B/NS3 protease. 

 

1.2 Wee1 Kinase 

 1.2.1 Cancer and Cell Cycle 

 Cancer is a multifaceted disease, but shares a common feature in which a 

cellular proliferation controlled by the cell division cycle displays uncontrolled 

growth. This unrestrained growth of cancer cells interferes with the body at the site of 

their location. Moreover, these cancer cells can also spread to the other organs in the 

body. The effects can result in severe pain or even death.[53] Therefore, 

understanding the cell cycle and cellular proliferation could lead us to understand 

cancer and could find the protein target for drug development for cancer therapy. 

 The cell cycle process of a typical eukaryotic cell undergoes five sequential 

phases, which are G1, S, G2, M and G0 as shown in Figure 1.12. The most important 

phases are the S (synthesis) phase where the DNA replicates itself and the M (mitosis) 

phase in which chromosomes segregate to generate two genetically identical daughter 

cells. There are also two gap phases in between these two major cell cycle events, 

which are the G1 separates mitosis from the S phase, and the G2 in between the S 

phase and the mitosis. In addition, cells can stop cycling after division and then enter 

into the G0 phase which is known as a quiescent state.  

                           
Figure 1.12 A schematic representation shows cell cycle and CDK-clycin complexes 

which are important in each checkpoint.[54]  
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 There are two types of mechanisms which are important for controlling the 

cell cycle. The first type is a cascade of protein phosphorylations involved with the 

highly regulated cyclin dependent kinases (CDKs) family of serine/threonine kinase. 

As the name of CDKs, the activity of CDK totally depends on its association with a 

regulatory subunit which is known as cyclin. From one stage to the next stage of the 

cell cycle, it is controlled by several CDK-cyclin complexes through the 

phosphorylation or dephosphorylation mechanism. Each of these CDK-cyclin 

complexes functions at the specific stages as displayed in Figure 1.13. The cell cycle 

process and a transition from one phase to the next are additionally regulated by the 

second type of mechanism which is known as checkpoint control.[53, 54] 

Checkpoints are defined as a sensor that monitors the cell cycle progression at each 

step to ascertain whether all conditions are already fulfilled before it goes further into 

the next step. There are three major cell cycle checkpoints as displayed in Figure 1.13. 

The first checkpoint in the cell cycle is at the G1/S phase transition which is 

responsible for DNA damage. Then, when a cell passes this phase, it will be checked 

again at the G2/M checkpoint monitoring the fidelity of DNA replication and also the 

sensor for DNA damage as with the G1/S checkpoint. Finally, the spindle checkpoint 

occurs at the M phase in order to ensure that a functional mitotic spindle is formed 

correctly.[53] 

 
Figure 1.13 Checkpoint at each stage in the cell cycle[53] 

  

 These checkpoints not only function by assisting DNA damage to repair itself, 

but they can also promote cell death in the case of unrepaired cells. By targeting at the 
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checkpoints after the exposure of cancer cells, the DNA damage cannot be fixed and 

it results in the death of cancer cell. This strategy is now becoming more interesting in 

the drug development for cancer therapeutics.[55] Many cancer cells lack a functional 

p53 signalling pathway, which means that the significant damage-sensitive checkpoint 

at the G1/S is not controlled. As a result, a cancer cell can pass the G1 phase and 

process to the next step until it meets the next barrier for the cell cycle, which is the 

G2 checkpoint. G2 checkpoint abrogation inhibits cancer cells to repair DNA damage 

and force them to go into the mitosis phase which results in cell death.[55] Therefore, 

the G2 checkpoint is an interesting therapeutic target for anticancer drug 

development.  

(A)       (B) 

       
 
Figure 1.14 A representation of cell cycle at the G2/M checkpoint; (A) CDK1(cdc2)-

cyclin B complex is phospholylated by Wee1 and Myt1 resulting in an inactivated 

state of this complex, giving time for repairing DNA damage. This process, a 

phosphorylation of CDK1(cdc2)-cyclin B complex, is important for preventing the 

DNA damage cell to go into the mitosis phase as displayed in (B) [56] 

 

 The process of phosphorylation at the G2/M checkpoint is displayed in Figure 

1.14 (A) and (B). Before cells go into the mitosis phase, DNA damage and 

unreplicated DNA have to be checked at the G2/M checkpoint. In addition, at this 

phase the genome is also checked to see whether it is replicated once and only once 

per cell cycle. If cells pass these checkpoints, mitosis of cell occurs as usual; 

otherwise, the mitosis phase is prevented by specific G2/M checkpoint events. Cyclin-

dependent kinase CDK1 (Cdc2) in complex with type B cyclin (clyclin B) play a 
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significant role for controlling such events. The activity of the CDK1/clyclin B 

complex is regulated by activating and inhibitory phosphorylation. The activity of the 

CDK1/clyclin B complex is activated by phosphorylation at Thr161 of CDK1, while 

phosphorylation at Thr14 and Tyr15 of CDK1 results in inactivation of the 

CDK1/clyclin B complex. The inactive state of CDK1/clyclin B at the G2 phase is 

one of the major mechanisms in the cell cycle because it creates a pause, giving time 

to repair DNA damage before cell undergoes mitosis in the next step.  

 Wee1, a nuclear kinase, is functionally a serine/threonine kinase. Wee1 kinase 

is a key regulator for controlling the cell cycle progression. The enzymes in the Wee1 

kinase family (Wee1 and Myt1) function for inhibitory inactivation of CDK1 at the 

G2/M checkpoint. The Wee1 phosphorylates at Tyr15, whilst the dual-specifity Myt1, 

a membrane bound, function for phosphorylation at both sites (Thr14 and Tyr15). At 

the late G2 phase, CDK1 is activated by dephosphorylation, which is a function of 

Cdc25 phosphatase. Then, the cell undergoes mitosis. However, if Wee1 or Myt1 

cannot function to phospholylate at Thr14 and Tyr15 of CDK1, the DNA damage of 

cancer cells cannot be repaired. Then, these cancer cells are forced to go into mitosis 

and finally end up with cells death. Therefore, cancer cells cannot replicate 

themselves. Hence, both of the two enzyme are important for the cell cycle and 

present as promising targets for drug development for cancer therapy.[57] Developing 

Wee1 inhibitors as the G2 checkpoint abgorator is a new strategy for designing 

anticancer drugs enhancing conventional cancer therapy. It was found that 

PD0166285 (a pyrido[2,3-d]pyrimidine compound) acts as G2 checkpoint abgorator. 

This compound (Figure 1.15) inhibits the Wee1 in the nanomolar concentration.[58] 

This finding is a good starting point to develop and search for more potent novel 

Wee1 kinase inhibitors which could be further developed as drugs for cancer therapy. 

 
 
 
Figure 1.15 Chemical structure of PD0166285  
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 1.2.2 Literature Reviews on Wee1 Kinase  
  1.2.2.1 Wee1A Kinase Structure 

 

Figure 1.16 Overall structure of the Wee1 kinase (X-Ray Structure of the 

Wee1/PD0407824 complex, pdb code 1X8B). α-Helices are coloured magenta, β-

sheets are coloured yellow and loops are shown in cyan. 

 

Two types of Wee1 (Wee1A and Wee1B), which are different in temporal and 

spatial expression, are found in humans. [57] The somatic Wee1 kinase is Wee1A and 

it is functionally a tyrosine kinase; however, in sequence and structure it most closely 

resembles serine/threonine kinases such as the checkpoint kinase Chk1.[59, 60] The 

first crystal structure of Wee1 was solved in 2005 and showed that although the ATP 

binding pocket closely resembles that of other protein kinases, the activation segment 

contains Wee1-specific features that maintain it in an active conformation.  

One example of the X-ray structure of Wee1 kinase complexed with its 

inhibitor (PDB code 1X8B) is display in Figure 1.16. Wee1A contains 646 amino acid 

residues comprising three major domains, which are N-terminal domain, a central 

kinase domain and C-terminal domain. There are two standard lobes kinase fold (N- 

and C-terminal lobe) at the kinase domain of Wee1A (residue 291-575). [57] The N 

lobe locating above the active site composing a five-strand anti-parallel β sheet and a 

typical glycine-rich loop (residues 306-311). Four helix bundles and the catalytic 
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segment are the components of the C-terminal lobe. A hinge region (residue 377-381) 

connects a strand β5 in the N lobe to helix αD in the C-terminal lobe. The active site, 

where Wee1 inhibitors bind to the enzyme, locates between these two lobes. A short 

section of extended polypeptide referred to a catalytic segment and a large loop which 

is the activation segment position at the active-site region. A catalytic segment 

(residue 422-433) contains the essential catalytic residue which is Asp426. The 

activation segment (residue 462-486) is the region between β8 and β9 at the C-

terminal lobe. This activation segment is important for providing a substrate binding 

platform and controlling the conformation of kinase.[57]  

 

 

Figure 1.17 Superimposition of the six solved crystal structures of Wee1-inhibitor 

complexes. The pyrrolocarbazole core of the inhibitors (colored orange) shows the 

same interaction at the ATP-binding site. Clusters of cocrystallized waters are 

displayed as balls. Hydrogen bonds are shown as dashed green line.  

 

Wee1A kinase can be cocrystallized only when it binds with its high-affinity 

inhibitors, implying that inhibitors may assist in stabilizing and/or changing the 

conformation of the Wee1A into the active state.[57] The complexes provide 

important information about the interaction with the residues of the binding site. The 

X-ray structures of Wee1 (Figures 1.17) in complex with six pyrrolo[3,4-c]carbazole-

1,3(2H,6H)-dione derivatives were analyzed, and they show the same conformation 

in all six crystal structures. All cocrystallized inhibitors form several hydrogen bonds 

between its maleimido ring and the backbone atoms of Glu377 and Cys379 and the 
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sidechain amide of Asn376. These interactions are well known from other kinase 

inhibitors, like staurosporine. Two cocrystallized water molecules mediate a 

hydrogen bond to His350. The phenyl ring of the inhibitors occupies a hydrophobic 

pocket between the side chains of Val313, Lys328 and Ile374. Stabilization of the 

planar aromatic system is provided by Ile305, Val313, Ala326 and Phe433.[57] 

 

 1.2.2.2 Wee1 Kinase Inhibitors and Molecular Modeling  

 In the last few years, a variety of Weel kinase inhibitors, including 

phenylpyrrolocarbazoles and phenylpyridopyrimidine whose core structures are 

shown in Figure 1.18 (A) and (B), respectively, has been described.[61-64] Moreover, 

the X-ray structures of Wee1 kinase complexed with pyrroloindole as a new class of 

Wee1 kinase inhibitor (PDB code 3CQE and 3CR0) are recently available in the 

protein data bank. The compounds in the class of 2-anilino-6-phenylpyrido[2,3-

d]pyrimidin-7(8H)-ones can be used as the inhibitors for several tyrosine kinase 

enzymes. These include the receptor kinase, such as EGFr (erbB1), PDGFr, FGFr, 

and non-receptor kinase (c-Src) [61]. Many of the phenylpyridopyrimidine derivative 

compounds show high activity against Wee1 kinase (IC50 < 100 nM). However, the 

selectivity of the series of these compounds for Wee1 over c-Src is quite low [62]. 

The inhibition of the c-Src results in many other cellcular effect [61]. It was found 

that the phenylpyrrolocarbazole compounds are equally active as in the 

phenylpyridopyrimidine derivatives and the selectivity of these compounds for Wee1 

over c-Scr is quite high. For example, 4-phenylpyrrolocarbazole has IC50 = 97 nM 

against the Wee1 kinase but shows inhibitory activity less than 50 μM against c-Scr 

[62]. Even though the phenylpyrrolocarbazole derivatives are quite high activity 

against Wee1 kinase and high selective for Wee1 kinase over c-Src, these compounds 

have some drawback because they lacks sufficient solubility for in vivo 

development[63]. Therefore, novel inhibitors, which are more potent, selective for 

Wee1 kinase and have sufficient solubility for in vivo testing, have to be developed. 
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                     (A)                                                     (B) 

     

Figure 1.18 (A) Molecular structures of the pyrrolo[3,4-c]carbazole-1,3(2H,6H)-

dione derivatives, and (B) Molecular structures of the 2-anilio-6-phenylpyrido[2,3-

d]pyrimidin-7(8H)-ones derivatives representing as Wee1 kinase inhibitors 

 

 There is only work that reported the 3D-QSAR (CoMFA and CoMSIA) model 

for the phenylpyrrolocarbazole representing as Wee1 kinase inhibitors [65]. The 

models were generated from a set of 97 inhibitors of 4-phenylpyrrolo[3,4-c]carbazole-

1,3(2H,6H)-dione derivatives. Although, a series of the 4- phenylpyrrolocarbazole 

compounds shows high inhibitory activity against Wee1 kinase without concomitant 

C-Src activity, these compounds have some disadvantages about the solubility as 

discussed before [63]. Recently, a new series of the 9-hydroxy-4-phenylpyrrolo[3,4-

c]carbazole-1,3(2H,6H)-dione with a variety of neutral, basic and acidic solubilising 

groups at the N-6 position (w position in Figure 1.18 (A)) and with a variety of 

solubilising side chains at the C-8 position were synthesized and tested activity 

against Wee1 kinase. Most of these compounds are potent inhibitor for Wee1 kinase. 

However, these compounds were not included to construct the previous reported 3D-

QSAR model [65]. Thus, a new 3D-QSAR model including these series of Wee1 

kinase has to be generated. The derived model can provide the information about the 

structural requirement for increasing the activity of Wee1 kinas inhibitors and can 

also guide to synthesis new compounds with no problems about the solubility.  

 

1.3 Scope of this Research Work 

 In this thesis, several computational approaches were applied to design and 

find novel lead compounds as inhibitors against DV NS2B/NS3 protease and Wee1 

kinase. These compounds could be further developed as drugs for DV infection and 
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cancer, respectively. The aims of the research work on each enzyme target are as 

following. 

 1.  DV NS2B/NS3 protease: The main objective of this project is to obtain 

lead compounds as potent inhibitors for DV NS2B/NS3 protease by applying a virtual 

screening approach. However, in order to accomplish this, many computational 

methods had to be employed. Since at the moment no productive conformations of 

DV NS2B/NS3 protease complex with inhibitors are available in the protein data 

bank, this complex had to be constructed using a homology model technique. Many 

models were built using different templates, and these homology models were 

subsequently validated by performing a molecular dynamics (MD) simulation. In 

addition, the interaction between NS2B with NS3 protease and also between inhibitor 

and NS2B/NS3 protease were also investigated. The suitable representative structure 

of DV NS2B/NS3 protease was determined. The derived structure was next applied 

for the structure-based design purpose and virtual screening (VS), which was carried 

out in the hierarchical strategies. The number compounds in the databases were 

screened by applying several criteria such as, drug-like properties filtering, 

phamacophore searching, ranking compounds by using docking score and visual 

inspection and binding free energy calculation. Finally, some compounds were 

selected and suggested for biological testing. 

 Besides obtaining lead compounds for testing their activities against DV 

NS2B/NS3 protease, the interaction between ligand and enzyme would be very 

helpful for understanding the interaction in the molecular level. These results are the 

basic information which can be further applied for drug development against DV 

infection.  

 2. Wee1 Kinase:  A 3D-QSAR model applying the CoMFA methodology was 

constructed for a set of pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione derivatives 

representing Wee1 kinase inhibitors. The derived model can be used to describe the 

relationship between the biological activities of these compounds and their structures. 

In addition, the obtained model provide information about the structural requirement 

for the pyrrolocarbazole compounds used as Wee1 kinase inhibitors which can be 

very useful for designing novel potent inhibitors.  
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 Binding free energy using linear interaction energy with continuum 

electrostatics (LIECE) method was employed to calculate the binding free energy of 

Wee1 kinase inhibitors, including pyrrolocarbazole and pyridopyrimidine derivative, 

of Wee1 Kinase. This method has more advantages than the conventional approach 

such as linear interaction energy (LIE), MM/PB(GB)SA because it requires less 

computational demand, fast and can deal with a large amount of compounds in the 

database with a reasonable real time calculation. Moreover, the calculated biding free 

energy derived by this method correlated well with the biological data, which can be 

very helpful to identified lead compounds retrieved from virtual screening. 

Furthermore, VS was carried out for indentifying lead compounds to test their 

activities against Wee1 Kinase. 
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CHAPTER II 

THEORY AND COMPUTATIONAL METHODS 

 Drug discovery and drug development for any disease is a long and expensive 

process. Therefore, molecular modeling, the method used to mimic the behavior of 

molecules and molecular systems, is nowadays widely used in the chemical and 

pharmaceutical industries in order to reduce time and cost. Currently, molecular 

modeling is regularly accomplished by using computers. The rapid development of 

computational tools, such as hardware and software, gives impetus to the drug 

discovery and drug development process.  

 In this chapter, several molecular modeling techniques, which were applied in 

this work, are described. Firstly, a 3D-QSAR technique using the CoMFA model 

approach (used for lead optimization purpose) is briefly explained. Secondly, a short 

overview of the homology model method, which is applied to construct a protein 

structure for which its three dimensional (3D) structure is not experimentally 

available, is given. The derived homology model is helpful in the structure-based drug 

design strategy. Thirdly, a molecular dynamics simulation providing the basic 

information about the dynamic motion of protein and the protein-ligand interaction, 

which assist in the drug development process, is explained. Finally, a virtual 

screening approach, using several stepwise methods (pharmacophore modeling, 

pharmacophore searching, molecular docking, docking score ranking and binding free 

energy calculation), is described.  

 2.1 Quantitative Structure-Activity Relationship (QSAR) 

  The concept of the quantitative structure-activity relationship (QSAR) method 

is to correlate the binding affinities of inhibitors with their physicochemical properties 

(lipophilicity, polarizablility, electronic and steric properties) or their structural 

properties. The QSAR technique is based on the assumption that compounds which 

have similar physicochemical/structural properties should also have similar biological 

binding affinities to the same protein. Thus, the derived QSAR model can also be 

applied to predict the binding affinities of unknown compounds that have similar 

structure to the compounds which were used to generate the model. The derived 

QSAR model is also very helpful as guidance for novel inhibitors synthesis. 

Hammett[66] was the first person who applied the simple linear regression analysis to 
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correlate electronic properties of organic acids and bases with their equilibrium 

constants and reactivity. Based on the Hammett equation, many classical QSAR 

methodologies were developed. The works of Hansch and Fujita [67], and Free and 

Wilson [68] are considered to be the beginning of the modern QSAR approach. 

Hansch and Fujita [67] applied the multiple linear regressions analysis to generate the 

simple equation to correlate physicochemical properties of compounds with their 

biological activities. Free and Wilson [68], who worked independently from Hansch 

and Fujita, also generated the equation to describe the relationship between the 

biological activity and the additive group. However, neither the 3D structure of 

inhibitors nor their stereochemistries are considered for generating the classical 

QSAR model. Actually, the biological affinities of compounds are affected by its 

interaction with the target protein, and this interaction relies on the 3D structural 

properties of compounds. Thus, the method called 3D-QSAR, in which the 3D 

structure of compounds is taken into account, was developed. Several 3D-QSAR 

approaches have been developed, but the Comparative Molecular Field Analysis 

(CoMFA) technique is the most popular and often used. 

 

 2.1.1 Comparative Molecular Field Analysis (CoMFA) 

 The 3D-QSAR method named Comparative Molecular Field Analysis 

(CoMFA) was first developed in 1988 by Cramer et al. [69]. The CoMFA 

methodology is based on the assumption that a non-covalent interaction between 

ligand and protein (receptor or enzyme), and the shape of compounds correlate with 

their biological activities. The noncovalent ligand-protein interaction is normally 

related with steric and electrostatic interactions which are computed by applying the 

standard potential energies (van der Waals and coulombic potential function). 

Therefore, a difference in these interactions in a set of molecules with the protein 

correlates to a difference in their biological activities. The procedures for constructing 

the CoMFA model can be categorized into four steps; preparation, interaction energy 

calculation, statistical analysis and results interpretation. 

 - Ligand Preparation 

 A set of molecules used to generate the CoMFA model is first selected. These 

selected compounds must interact with the same protein and bind in the same 
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identical manner (the same binding site and the similar binding mode). Then, these 

compounds are divided into two groups, a training set and a test set. The training set is 

a set of molecules which is used to generate the model, whereas the test set is applied 

to validate the reliability and predictive ability of the derived model. Then, the 

structures of these molecules are constructed. The active conformation of these 

compounds represents how they bind to the protein. This can be generated by using 

the related experimental complex structure as a template or by performing molecular 

docking. Subsequently, these molecules are superimposed by using different 

molecular alignment techniques. Since the results of CoMFA depend strongly on the 

alignment of the molecules, this step is very crucial for generating CoMFA model. 

 - Interaction Energy Calculation 

 After all the compounds in the training set are superimposed to each other, a 

box and grid spacing are created to cover the aligned molecules. The default value of 

the grid spacing (2 Å) and a C-sp3 probe atom with +1 charge are normally used. 

Prior to calculating the electrostatic and the steric interaction, charges for each 

molecule must be assigned. Several methods (AM1, PM3, PEOE, Gasteiger etc.) can 

be used for generating charges for the molecules. Subsequently, the interaction is 

calculated by placing the probe atom at each grid point, and computing the steric and 

electrostatic interaction by applying the Lennard-Jones potential function (equation 

(1)) and coulombic potential function (equation (2)), respectively.  
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Aij = repulsive term coefficient, Bij = attractive term coefficient, and rij = distance 
between atom i and probe atom j (Å) 
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qi and qj = atomic charge of atom i and probe atom j, respectively, ε = dielectric 
constrant, and rij = distance between atom i and probe atom j (Å) 
 
 - Statistical Values Analysis 

 To form the basis for a statistical significant model, the method of partial least 

squares (PLS) regression is used to correlate variations in their biological activities 

with variations in their interaction fields. The optimum number of PLS components 
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corresponding to the smallest standard error of prediction (SDEP) is determined by 

the leave-one-out cross-validation procedure. Using the optimal number of 

components, the final PLS analysis is carried out without cross-validation to generate 

a predictive model with a conventional correlation coefficient. Leave-one-out cross-

validation is carried out by removing one compound from the training set. The 

remaining compounds are used to generate the PLS model which is used to predict the 

activity of the compound which was not included in the model. This process is 

repeated until each compound was removed once. The small value of the SDEP and 

the high value of leave-one-out cross-validation correlation coefficient (q2) indicate 

the robustness of the predictability of the derived model. In addition, the quality of the 

model can be determined by other statistical parameters, such as the correlation 

coefficient (r2), the standard error of estimation (SDEE) and the F-value. The r2 value 

represents how well the model reproduces the input data. A high r2 value, close to 1, 

indicates a better fit of the regression. F-value is the ratio of the explained to 

unexplained variance. A high value of the F-value suggests that the derived model is 

statistically significant. 

 Both the r2 and the q2 have to be considered together to determine the quality 

of the derived model since r2 indicates the reproducibility and q2 reflects the 

predictability of the model. However, the leave-one-out cross-validation method 

might lead to high q2 values, which do not necessarily reflect a general predictive 

ability of a model. Therefore, further cross-validation, using five and two groups of 

approximately the same size in which the objects are assigned randomly, are 

performed. In this method 80% or 50% of the compounds are randomly selected and a 

model is generated, which is then used to predict the remaining compounds (leave-

20%-out, leave-50%-out). This cross-validation technique, especially the leave-50%-

out procedure, has been found to be stricter and to give a better estimate of the 

robustness of a model than the normal leave-one-out procedure [70-72]. However, it 

must be stated that there is no qualitative difference between the different cross-

validation procedures. All methods are used to examine the internal predictability, and 

thus they have the problem that they are not able to estimate the external predictability 

of a QSAR model. Therefore, an external test set is used in addition to test the 

predictability of the final derived CoMFA model. 
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 - Result Interpretation 

 The results derived from CoMFA are a regression equation with thousands of 

coefficients which are used for calculating and predicting biological activities of 

compounds. Thus, it is difficult and impossible to use a large number of these 

coefficients for directly interpreting the derived model. In order to facilitate the 

interpretation and make the model easy to understand, these coefficients are therefore 

represented by a set of contour maps. These contour maps show regions around the 

molecule which are favorable and unfavorable areas for a steric group as well as for 

an electrostatic group. These contour maps are helpful for suggesting how to modify 

the compound in order to increase the activity.  

 

 2.2 Homology Modeling  

 The three-dimensional (3D) protein structure is very beneficial in structure-

based molecular design and in the drug discovery process. In addition, the 3D protein 

structure can also be applied to study the dynamic motion, mechanisms and other 

properties such as a ligand-protein interaction. The derived information provides basic 

knowledge and better understanding on an atomic level which could be useful for 

drug development. In the last decade, many protein structures were cocrystallized and 

deposited in the protein data bank (PDB), and the number of experimental protein 

structures in the PDB is still increasing exponentially. However, there are still lots of 

proteins that cannot be experimentally determined by X-ray crystallography or NMR. 

Therefore, the computational technique, called the homology (comparative) model, is 

applied for building an unknown 3D protein structure based on a related available 

structure called a template. The overview steps for constructing a homology model of 

a target protein as follows. First, the template structure(s) which has high amino acid 

sequence identity to a target protein is selected. Secondly, an amino acid sequence of 

a template and of a protein target is compared by sequence alignment. Thirdly, the 

target protein is constructed by taking coordinates of backbone atoms of the 

template(s). The coordinates of the side chain atoms of the template(s) can be directly 

used for residue of the target, only if the residue, located at the same position in the 

target and the template(s), are identical or similar. In the case of residues which are 

different to the templates, a side chain rotamer library is used to generate their 
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coordinates. Finally, the obtained homology model is refined by energy minimization 

in order to relieve the steric strain which is introduced during the model-generating 

process. Moreover, the derived homology model can also be subjected to molecular 

dynamics simulation to adjust the side chain and protein conformation. The details of 

each step are described below. 

 

 2.2.1 Template Selection 

 As the quality of a homology model relies on the template(s), selecting the 

right template(s) is a crucial step for constructing the model. The search techniques, 

such as FASTA [73] and BLAST [74], can be applied to search for the proteins which 

have some degree of sequence similarity to the amino acid sequence of the interested 

protein, as well as search for proteins for which the 3D structure is available. After 

obtaining the template candidates, the decision has to be made whether multiple 

templates or a single template should be used. The accuracy of the derived model is 

affected by selecting the correct template. This step is the most important step for 

constructing the homology model. The template can be selected by determining the 

percent sequence identity value. This value refers to the percentage of the identical 

amino acids that the template and the target have at the same position in the sequence. 

The other options to choose the right template(s) include a percent sequence similarity 

(the percentages of the amino acids at the same position in the two sequences that are 

similar) and the predicted secondary structure of target and the actual secondary 

structure of the template. 

 
Figure 2.1 Two zones (twilight zone and the safe homology modeling zone) of 

sequence alignments. The homology model would be fine if the length and the 

percentage sequence identity compared to the template falls into the “safe” zone.[75]  
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 In general, the target and the template should share at least 30% sequence 

identity [76]. Nevertheless, the higher the percentage of the sequence identity, the 

better quality of a homology model is obtained. However, the percent sequence 

identity selected for constructing a homology model also depends on the length of the 

amino acid sequence as displayed in Figure 2.1. The shorter the peptide, higher 

percent sequence identity is required. In addition, to construct the reliable homology 

model, the sequence identity between two sequences (the target and the template) and 

the length of the amino acid sequence should fall in the “safe homology modeling 

zone” as shown in Figure 2.1. 

 

 2.2.2 Sequence Alignment 

 In order to evaluate the similarity between two sequences and to identify 

which amino acid residues correspond to each other, a method called sequence 

alignment has to be employed. The Needleman and Wunsch algorithm [77] is widely 

used to align the amino acid sequences in proteins. An iterative approach is performed 

in this algorithm starting with all amino acids from both sequences are put in a 2D 

matrix. Then, the pathway through this array is optimized in such a way to obtain the 

maximum score, representing the best alignment between these sequences. The 

strategy for aligning protein sequences using the Needleman-Wunsch algorithm is as 

follows. 

1. A matrix is formed with the two protein sequences; one sequence is placed on 

the top row and the other one is put on the left hand side column. Then, the 

score of 1 is given for the identical amino acid and the score of 0 is assigned 

for mismatched pair as shown in Figure 2.2 (a). 

2. The successive summation of cells is completed by starting at the last cell at 

the lower right corner. Then, the maximum value of two constituent subpaths 

of the considered cell is added to the cell. For example, as demonstrated in 

Figure 2.2 (b), the subpaths of cell (R, R) are highlighted in the blackened 

cells and the maximum value is 1. Thus, this value is added to this cell 

resulting in that the cell (R, R) has a value of 2. The summation of the scores 

is continually added to the cells as shown in Figure 2.2 (c) until every cell is 

added and the scoring of the matrix is complete as displayed in Figure 2.2 (d). 
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3. A traceback is completed as a final step to generate a sequence alignment, 

starting from the highest score at top left corner and following the path of the 

maximum score through the right down as shown in Figure 2.2 (e). In the case 

where there is more than one solution to follow the maximum score, such as 

score of 6 (an expression of non-uniqueness), the best alignments of any 

sublength can be also generated as shown in Figure 2.2 (f). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The Needleman-Wunsch algorithm gives the global sequence alignment 

between two sequences (on the top and on the left of the matrix), (a) scoring the 

sequence which is identical, (b) and (c) partially complete score matrix, (d) scoring 

the matrix till complete (e) traceback route for giving globally optimum alignment. (f) 

Alternate alignment illustrating non-uniqueness.[78] 
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 2.2.3 Model Generation 

 After sequences are completely aligned, the structurally conserved regions 

(SCRs), which in general correspond to the elements of the secondary structure 

(alpha-helices and beta-sheets) and to the binding site, are identified. The regions 

called variable regions (VRs), which are usually the region at the surface or the loop 

regions, also have to be determined. The conformation of these regions (VRs) in 

known protein structures may be different from each other. Therefore, in order to 

construct the VRs of unknown proteins, special techniques have to be used. 

 At the SCRs region, coordinates of the main chain and side chain atoms are 

simply copied from the known protein structure to the unknown protein structure, 

when the amino acid residue type at the same position of the unknown and the 

template is identical or very similar. On the other hand, when the amino acid residues 

are of a different type, only the coordinates of backbone atoms of the template are 

used for the model. A side chain rotamer library in a systematic approach can be 

applied to explore possible side chain conformations of these residues. A variety of 

methods can be performed to generate coordinates of residues located at the VRs 

regions in the unknown structure. If the loop region of the template is well defined, 

then coordinates of main chain atoms of these residues can be used directly for the 

corresponding residues in the unknown structure. The coordinates of the side chain of 

these residues at the VRs can be generated in two different ways; use the same 

coordinates as the template when the residue type is the same or similar, or generate 

from the rotamer libraries when the residue type is different. When a loop region of 

the template cannot be cocrystallized, there will be no coordinates for this region in 

the template. Therefore, a loop search technique has to be applied to search for a 

peptidic fragment in the databases that matches with this sequence of the unknown 

protein structure. Then, coordinates of this peptidic fragment are used for assigning 

coordinates of residues at this loop region of the unknown protein structure. 

 

 2.2.4 Model Evaluation and Refinement 

 Before applying the derived homology model for further analysis, the quality 

and the reliability of the obtained model must be checked. There are several programs 

to accomplish this. For example, PROCHECK[79], 3D-Profiler[80, 81], and 
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PROSA[82] can be applied to evaluate the correctness of the derived homology 

model. The most popular one among these programs is PROCHECK, a suite of 

programs that assess the stereochemistry quality of the protein structure. 

Stereochemical parameters such as phi/psi angles, peptide bond planarity, bond 

lengths, bond angles, hydrogen-bond geometry, and side-chain conformations 

reflecting the geometry of the protein can be checked by using the PROCHECK 

program. The standard values of these parameters, which are described in detail by 

Morris et al.[83], are used to compare with these values derived from the homology 

model to evaluate the geometry of the residues. The Ramachandran plot [84] is the 

useful tool for inspecting the distribution of the main chain torsion angles (phi/psi 

angles), and the results indicate whether the stereochemistry of the backbones are in 

the acceptable areas. However, if some residues are located at the unacceptable 

(disallowed) regions, it doesn’t mean an error. This could be due to the fact that these 

residues are located at the active site, and the torsions of these backbones are distorted 

for binding with ligand or substrate. Nevertheless, these residues have to be checked 

carefully. 

 During the homology model building process, many artifacts such as strained 

peptide bonds, and non-optimum conformation, or even some errors can occur. 

Therefore, the derived homology model should be subjected to further refinemnet by 

performing energy minimization. The aim of energy minimization approach is to find 

the minimum points on the potential energy surface representing the stable state of the 

system. Three main different approaches are always used to find the localization of 

the minimum point representing the local or the global minimum of the potential 

energy surface. These methods are a non-derivative method (the simplex method), a 

first and a second derivative method. Steepest descent and conjugated gradient 

method, which are the first-order minimization algorithms, and the Newton-Rapson 

method (a second derivative method) are frequently used. The difference between 

these two approaches is that the first derivative method provides information of the 

gradient and the new direction for the minimizing step whereas the second derivative 

method provides information about the curvature of the function. Furthermore, energy 

minimization together with the molecular dynamic simulation can also be carried out 

in order to refine the structure. 
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  2.3 Molecular Dynamics (MD) Simulation 

 One of the computational methods often used for studying the biological 

system is molecular dynamics (MD) simulation. This method is nowadays routinely 

applied to elucidate the information such the structural, dynamic, kinetic, and 

thermodynamic behaviors of biological molecules (protein, membrane or nucleic 

acid). In addition, the information like the fluctuations, conformation change, and the 

ligand-protein interaction can also be obtained by performing MD simulation. Results 

derived from MD simulation, especially the ligand-protein interaction, are the basic 

information on an atomic level which is very useful for the further drug development. 

 2.3.1 Theoretical Background 

 - Statistical Mechanics 

 MD simulations provide information at the microscopic level, such as the 

coordinates and velocities of each atom. This derived information can be related to the 

macroscopic properties (the binding free energy of inhibitors with a target protein, the 

conformational change, energies and mechanism) via statistical mechanics. An 

experiment is normally done on the macroscopic sample containing sufficient samples 

(atoms or molecules) with a huge number of conformations. From the statistical 

mechanics point of view, the average of experimental observations is considered as 

the ensemble average. Ensemble is defined as a collection of all possible systems that 

have different microscopic states where the macroscopic or thermodynamic states are 

identical. Therefore, the ensemble average is carried out by averaging the replicas of 

the considered systems. To calculate the ensemble average, MD simulations have to 

pass through all possible states according to the considered thermodynamic state. 

Consequently, MD simulations compute a time average instead of an ensemble 

average. However, the time average can be connected to the ensemble average by 

using the most important axiom in the statistical mechanics-ergodic hypothesis. This 

hypothesis states that the time average is equal to the ensemble average.  

                         The Ergodic Hypothesis 

 <A>ensemble = <A>time 

Ensemble Average = Time Average 

 The fundamental concept of this hypothesis is that all possible states of the 

investigated system can be obtained by allowing that system to evolve in time 
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indefinitely. Therefore, a MD simulation should be performed long enough in order to 

get sufficient representative conformations. When the equality of the ergodic 

hypothesis is satisfied, the related experimental information such as the structural, 

dynamical, and thermodynamic properties can be computed.  

 

 - Newton's Second Law and Classical Mechanics 

 The MD simulation approach is based on the equation of motion known as 

Newton’s Second Law. The formula is written as equation (3) below: 

                                                             iiamF =  ,                                                       (3) 

where Fi is the force acting of the particle, and mi and ai are the mass and the 

acceleration of that particle, respectively. Basically, the acceleration of each atom can 

be computed using equation (3) when the force acting on each atom and the mass are 

known. Then, the velocities and positions (coordinates) of these atoms can be 

obtained by integrating this equation of motion. Finally, when trajectories, containing 

the information of velocity, position and acceleration, are obtained, the average values 

of the interested properties can be calculated. 

 The force can also be expressed as the deviation of the potential function (V) 

as displayed below in equation (4). 

                                      VF i−∇=                                                          (4)                         

By combining equation (3) with (4), the correlation between the deviation of the 

potential function and the changing of positions as a function of time can be expressed 

as equation (5) below: 

                                           2

2

dt
xdm

dt
dv

mamVF i
i

iiii ===−∇=                               (5) 

Finally, by integrating the relationship between acceleration and velocity (
dt
dva i

i = ), 

the equation between the coordinates, time, velocities and accelerations can be written 

as 00
2 xtvatx ++= . When the position and velocity of atoms are once determined 

using this equation, these values and the states of the system at any time (future or 

past) can also be predicted. 
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 Since the biological system is comprised of a large amount of atoms, quantum 

calculations are not possible at the moment for the entire system. Therefore, the 

simple empirical potential function, which requires less computational demand and 

cost, is applied to perform MD simulation. The potential function, V(R), is a sum of 

the internal terms (bonded interaction) and external terms (non-bonded interaction). 

The bonded interaction can be obtained by the summation of the bond energy, angle 

energy and dihedral energy. In contrast, the non-bonded term is comprised of two 

terms, which are the van der Waals interaction and the electrostatic interaction. Thus, 

the potential function (V(R)) can be written as equation (7):  
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where Kr, Kθ are force constant of bond stretching and bond bending, respectively, req 

represents the equilibrium of the bond length; θeq denotes for the equilibrium of the 

bond angle, Vn is the rotational barrier height, n is the periodicity of rotation, γ stands 

for the phase angle, Aij and Bij are the coefficients of the van der Waals interaction, qi, 

qj correspond to atomic charge of atom i and atom j, respectively, ε is a dielectric 

constant, and Rij is a distance between atom i and j.      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Schematic representations for performing a MD simulation 
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 The MD simulation is carried out as in diagram (Figure 2.3) above. However, 

before running a MD simulation, the energy of the structure must be minimized in 

order to remove bad contacts and initial strain, which might disturb the MD 

simulation. According to the equation of motion, in order to obtain the trajectory, first 

the initial atomic positions (coordinates), velocities and accelerations must be 

assigned. The coordinates are obtained from the experimental structure (X-ray 

structure or NMR) or the homology model. On the other hand, the velocity is 

normally randomly selected from the Maxwell-Boltzman or Gaussian distribution at a 

considered temperature. Then, the configurations (atomic positions, velocities and 

accelerations) at the time t+δt can be predicted from the current status by using the 

integration algorithm approximated by a Talyor series expansion as shown in equation 

(8). 
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There are several numerical algorithms, such as the Verlet algorithm, the Leap-frog 

algorithm, the Velocity Verlet algorithm and Beeman's algorithm that can be applied 

for integrating the equation of motion. The details for each of these algorithms are not 

described here. When the energy of the system and force are calculated, the 

acceleration can be determined. After that, the particles (atoms) are moved to their 

new positions according to the force. The equilibrium of the system, measured by the 

stability of the energy and the root mean square deviation (RMSD) values of the 

system, is then checked. When the system is not in equilibrium, the configurations of 

the system are forced to move to a new position until the system becomes equilibrate. 

Even though the system is already in the equilibrium state, the MD simulation is still 

performed and the configurations of each step are collected. Finally, the properties of 

the system can be calculated from the collected trajectories. The longer the 

simulation, the more trajectories (representative microscopic states) are collected, 

leading to more accurate results.  
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2.4 Binding Free Energy Calculation 

 The key to the structure-based drug design is to be able to design ligands and 

predict how strongly they will bind as noncovalent association with the 

pharmaceutical targets (enzymes or receptors). Over the years many approaches have 

been developed and applied for predicting the binding energy of ligands with the 

target. These approaches include the empirical method, the statistical method, and the 

rigorous method based on the molecular force field and the interaction energy. Time 

and computational demand are the main factors that need to be considered for 

selecting which method should be used. Virtual screening always gives hundreds of 

candidates. Therefore, the time requirement for calculating and predicting a binding 

affinity for one compound should be short and the calculation should require less 

computational demand. However, the methods that use more computational demand 

and yield more accurate results can also be applied when the experimental complex 

between the “lead” compound and the target is available. The purpose for performing 

these approaches for the lead optimization is to investigate a limited number of 

chemical modifications of these lead compounds.[85] 

 An empirical method known as the knowledge-based scoring approach is the 

most rapid method for estimating binding affinities of ligands because this method is 

based on the simple energy function. However, this method is much less accurate. The 

details of the scoring function will be discussed later in the molecular docking part. In 

contrast, the time-consuming approaches for calculating binding affinity of ligands 

are based on the potential function of molecular mechanics (or force field) using the 

different sampling conformations derived from MD simulation. By applying these 

approaches many ligand-protein binding free energy calculation studies showed a 

good agreement between the calculated and the actual binding affinities of ligands. 

Nevertheless, there are also several studies that have revealed that these methods 

cannot be used straightforward for predicting binding affinities as expected. 

Consequently, these approaches cannot be applied as a black box tool. Thus, it has to 

be kept in mind that careful attention is needed for setting up the system and 

interpreting results. [85] Several methods, such as free energy perturbation (FEP), 

thermodynamic integration (TI), and molecular mechanic/Possion-Boltzmann 

(Generalized Born) surface area (MM/PB(GB)SA), are used for calculating binding 
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energy based on the MM calculation and MD simulation. Only the MM/PB(GB)SA 

method which was applied in this study is reviewed here. In addition, the linear 

response approach, linear interaction energy with continuum electrostatic (LIECE), is 

also described.  

 

 2.4.1 MM/PB(GB)SA 

 The main objective of these approaches is to calculate the difference of 

binding free energy of the noncovalent association of any two different states. These 

states are normally referred to a ligand-protein complex and a free protein in solution, 

or the same ligand in the same solution but in the different conformation. The general 

idea for calculating the difference of binding free energy is shown as the relation 

below: 

                                                         [ ] [ ] [ ] *
**

aqaqaq BABA ⇔+ ,                                   (9) 

where [A]aq and [B]aq are the dynamic structures of molecule A and B free in the 

solution and [A*B*]aq* refers to the A-B complex structure in the solution. [A*] and 

[B*] represent any structure change and the solvent reorganization upon complex 

formation is denoted by aq*.  

 However, in such a simulation of a biological system, the solvent-solvent 

interactions contribute more interaction than that from the binding energy to the total 

energy of the system. In addition, the MD simulation of the three species, [A*], [B*], 

and [A*B*]aq*, have to be carried out. Therefore, an excessive amount of time is 

required till the calculation is converged. Hence, to reduce the time and cost, the 

binding free energy, computed by the MM/PB(GB)SA approach, is calculated based 

on the thermodynamic quantities. 

 Generally, the binding free energy (ΔGbinding) of the equation above, 

ΔGbinding(A+B       AB), can be written as the difference between the free energy of the 

ligand-receptor complex (Gcpx) and the unbound receptor (Grec) and the ligand (Glig) 

as the following: 

                                         ΔGbinding = Gcplx(AB) - (Grep(B) + Glig(A))                                (10) 

The free energy of any molecule X can be separated into two major components, the 

free energy from solute and from solvent contribution: 

                                         G(X) = Gsolute(X) + Gsolvent(X)                                          (11) 
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The free energy contribution from the solute is obtained by the summation of an 

average energy of molecular mechanic (EMM) interaction and entropy (–TΔS) as 

expressed below: 

                                           Gsolute(X) = <EMM(X)> – TΔS(X),                                   (12) 

where            EMM(X) = Eint+Eele+EvdW,                                                                      (13) 

and                 S(X) = Strans + Srot + Svib + Sconfig                                          (14) 

EMM is normally obtained from the summation of the internal energy (Eint), 

electrostatic energy (Eele), and van der Waals energy (Evdw). T is the temperature of 

the system (K), and S(X) represents the entropy of the system. This is derived by the 

summation of the entropic contribution from the translation (Strans), the rotation (Srot), 

the vibration motion (Svib), and the side chain reorganization (Sconfig). Strans and Srot are 

obtained from classical statistical mechanics whereas Svib is derived from a normal 

mode analysis. In the MM/PB(GB)SA approach, the Sconfig is not considered. 

The free energy contribution from the solvent consists of two components: the 

electrostatic (Gele-sol(X)) and nonelectrostatic (Gnonele-sol(X)) contribution. This can be 

written as: 

                                                Gsolvent(X) = Gele-sol(X) + Gnonele-sol(X),                       (15) 

where Gele-sol(X) is obtained by solving Possion-Boltzmann (PB) or Generalized Born 

(GB) equation. 

 In the PB method, a molecular charge distribution, which is obtained by 

solving the Possion-Boltzmann equation, yields the electrostatic potential. The 

Possion-Boltzmann equation, as shown below, is simply written in the linearized form 

because the salt effects are not considered. 

                                           )()()(4)()( 2 rrrrr m φεκπρφε +−=∇∇ ,                          (16) 

where )(rε is the position-dependent dielectric constant, )(rφ  is the electrostatic 

potential, )(rmρ  represents for the molecular charge distribution, and κ  is the Debye-

Huckel screening parameter to take into account the electrostatic screening effects of 

(monovalent) salt. 

 Once the electrostatic potential is determined, the electrostatic contribution to 

the solvation free energy is computed using the equation, [ ]∑ −
i

vaciii rrq )()( φφ , where 
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iq  represent the partial atomic charges at position ir  making up the molecular charge 

density [ ∑ −=
i

im rrr )()( δρ ] and vacir )(φ is the electrostatic potential calculated for 

the same charge distribution in vacuum. 

 The electrostatic contribution to the solvation free energy can also be solved 

by the GB method, which is an analytical approximation to the PB method: 
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where ijr is the distance between atom i and j, xα are the effective Born radii of the 

atoms, and GBf  is a smooth function, of which a common form is  
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Gnonele-sol(X) is computed by using a linear function of the solvent accessible surface 

area (SASA) which is expressed as equation (19) below: 

                                                Gnonele-sol(X) = γSASA(X) + b                                     (19) 

where γ is a surface tension parameter, set at 0.00542 kcal mol-1Å-2
  for PB method 

and 0.0072 kcal mol-1Å-2
 for GB method. SASA(X) represents the solvent accessible 

surface area of molecule (X) where the surface area is determined by the Molsurf 

program, which is based on analytical ideas developed by Mike Connolly [86], and b 

is a parameterized value which is normally set to 0.00 for both PB and GB 

approaches. 

 

 2.4.2 Linear Interaction Energy with Continuum Electrostatics (LIECE) 

 Although the methods such as FEP, TI and MM/PB(GB)SA give a good 

correlation between the predicted and experimental binding affinity, these methods 

have the disadvantage because of their high computational demand. Thus, these 

methods can usually not be applied to larger compound collections, which are 

analyzed in drug discovery and virtual screening. Therefore, faster and less 
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demanding methods are required to estimate the binding strength of molecules 

coming out from virtual screening studies.  

A variety of linear response (LR) approaches have been developed to overcome 

the limitation of FEP, TI, and MM/PB(GB)SA techniques. One approach used is the 

Linear Interaction Energy method (LIE)[87]. LIE estimates the binding free energy of 

protein-inhibitor complexes by using the following equation: 

       ΔG = α(<EvdW>bound - <EvdW>free) + β(<Eele>bound - <Eele>free) + γ           (20)            

where α and β are coefficients and γ is the constant term which could be additionally 

added when the absolute binding free energy has to be considered[88]. EvdW and Eele 

represent van der Waals and electrostatic interaction energies, respectively, between a 

ligand and its environment (protein bound or free in solution). LIE requires an 

ensemble sampled over trajectories, representing by <> in the equation, which is 

obtained by means of MD simulation [87] or Monte Carlo[89]. The coefficients (α 

and β) can be derived by empirical fitting to experimental data. At the beginning, α 

and β were set to fix values (α = 0.161 and β = 0.50), and they can be transferred 

among the different protein systems[87]. However, from many studies which 

investigated the suitable α and β values, it was found that α and β depend on the 

system studied, the force field applied and the computational methods employed[90]. 

Even though, LIE is faster than FEP, TI and MM/PB(GB)SA for predicting the 

binding free energy, the method still has some limitations. Two different MD systems 

have to be carried out (free ligand in solvent and solvated ligand-protein complex) for 

one system[91]. Therefore, the number of the compound applied for LIE is limited to 

less than 100 compounds. The original method is not suitable for several hundreds or 

thousands of compounds analyzed usually in virtual screening.  

 Thus, another linear response method termed linear interaction energy with 

continuum electrostatics (LIECE), which is faster and requires less computational 

demand than the LIE approach, has been developed [92, 93]. LIECE calculates the 

binding free energy using different models as shown in equation 21, 22 and 23 below. 

 a one-parameter model 

  ΔG = αΔEvdW                                                                                          (21) 

a two-parameter model 

    ΔG = αΔEvdW
 + βΔGele                                               (22)                        
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and a three-parameter model 

                                  ΔG = αΔEvdW
 + β1ΔEele

 + β2ΔGsol                                         (23)         

where EvdW and Eele correspond to a van der Waals and an electrostatic interaction 

energy, respectively. ΔGsol is the free energy of solvation, and ΔGele is the sum of the 

electrostatic interaction between the ligand and the protein in the gas phase and the 

change in the solvation energy upon binding. LIECE is a simple method and more 

appropriate for virtual screening than LIE because LIECE uses only a single snapshot 

obtained from energy-minimized complex whereas LIE requires snapshots sampling 

derived from an explicit water MD simulation (or from Monte Carlo simulation). 

Moreover, a rigorous treatment of solvation within the continuum electrostatics 

approximation such as the numerical solution of the Poisson-Boltzmann (PB) 

equation by the finite-difference technique is applied in LIECE. Thus, this strategy 

can deal with a large database in reasonable time. For example, a LIECE model of 

kinase inhibitors were generated from a training set of 165 compounds (CDK2, Lck 

and p38 inhibitors) and yielded reasonable statistical values for a test set of 128 EGFR 

inhibitors and 37 EphB4 inhibitors[93]. LIECE requires approximately five minutes 

per molecule on a single CPU whereas LIE needs at least 6 hours[93]. In addition, 

novel inhibitors of β-secretase (BACE-1), a membrane-bound aspartic protease, 

which is a promising target for drug development against Alzheimer's disease [94, 

95], EphB4 and CDK2  kinase [93] and West Nile Virus NS2B/NS3 protease[96] 

were discovered by using this approach. 

 Another linear response approach is the LR-MM/PBSA[97-99]. A LR-

MM/PBSA model is generated by linear-regression based optimization of the 

coefficients of EvdW, Eele, solvation energy, and solvent accessible surface area 

(SASA). Then, the derived model is used for predicting the activities of unknown 

compounds. LIECE and LR-MM/PBSA are related to structure-based scoring 

function; however, these two methods perform better than docking-based scoring. 

Recently, docking solutions of Cathepsin B inhibitors were applied to generate a LR-

MM/PBSA model. The derived model showed good correlation (r2 = 0.919) and high 

internal predictivity (q2 = 0.887) [99]. The method is fast and straightforward for 

calculating binding affinities of unknown compounds in large data sets.  
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 2.5 Virtual Screening 

  Two approaches that are widely and frequently used today in the drug 

discovery process are the High-throughput Screening (HTS) and the Virtual Screening 

(VS) approaches. HTS is done by performing an experimental bioassay to test the 

activities of numerous compounds against the target protein. The HTS approach is a 

laborious process that requires lots of time and money. Consequently, the VS 

technique was developed to assist the drug discovery process for identifying lead 

compounds, which have notable possibilities to bind to the target protein. Many 

computational tools are used in the VS strategy for screening compounds in the 

libraries, which are normally made up of more than a hundred thousand compounds. 

Therefore, the number of compounds purchased for testing the activity can be reduced 

by applying the VS approach. This helps in saving time and cost. There are many 

successful examples [48, 96, 100] using VS method as a part to identify compounds 

as novel inhibitors for WNV or DV NS2B/NS3 protease. Many different 

computational chemistry techniques, such as similarity searching, pharmacophore 

searching, and molecular docking, can be implemented as a VS tools. 

 A number of compounds in the focused library can be first filtered out by 

removing unwanted compounds. These compounds include the compounds which 

contain reactive group, toxic or undesirable functional group. In addition, the drug-

like properties according to Lipinski’s rule five [101] can also be applied in order to 

reduce the number of compounds. The rule states that compounds used as orally 

active drugs in humans should not violate one of the following criteria: molecular 

weight less than 500 daltons, no more than 5 H-bond donors, less than 10 H-bond 

acceptors, and log P (an octanol-water partition coefficient) less than 5. 

 

 2.5.1 Pharmacophore Model and Pharmacophore Search 

 A pharmocophore, as defined by IUPAC, is “an ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions 

with a specific biological target and to trigger (or block) its biological response” 

[102]. The basic idea of pharmacophore in drug discovery is that compounds which 

bind to the same binding site of the target protein should have similar interaction. 

Therefore, molecules which have the same essential features for interacting with the 
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target are expected to inhibit the target protein and have similar biological activity. 

Typical pharmacophore features include hydrophobic, aromatic, H-bond acceptor, H-

bond donor, cation, and anion. In addition, the regions where the ligand cannot be 

occupied, normally referred to the molecular surface of the target protein, can also be 

defined as the exclude volume. The exclude volume is helpful for limiting the size of 

the ligand as it cannot be bigger than the binding pocket of the target protein. A 

variety of approaches can be employed to generate the pharmacophore model. If the 

structure of the target protein is not available by either experiment or by the homology 

model, but a set of active compounds against this target is identified, then a ligand-

based pharmacophore model can then be built. This can be accomplshied by 

extracting common features among three-dimensional structures of these compounds 

[103]. On the other hand, the structure-based pharmacophore model can be generated 

when a 3D structure of the target protein is available from either experiment (X-ray or 

NMR) or the homology model. The derived pharmacophore model can then be used 

to search for molecules sharing the identical features which are situated at the same 

positions.  

 

 2.5.2 GRID – Molecular Field Calculation 

 GRID [104] is an approach to predict noncovalent interactions between a 

molecule of known three-dimensional structure and a probe representing chemical 

features of an inhibitor. In principle, the interaction between the probe and the target 

(an interested target protein) at each grid point is calculated by using equation (24) as 

shown below: 

                                             ∑ ∑ ∑++= HBELLJGRID EEEE ,                              (24) 

where ELLJ EE ,  and HBE  represent the Leonnard-Jones energy, the electrostatic term 

and the hydrogen bond interaction, respectively.  The derived results can be visually 

displayed as three-dimensional contour maps which then are projected on the 

structure of the target protein. In addition, the derived results suggest the energetically 

favorable binding regions and can also be applied to generate the structure-based 

pharmacophore model. 
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 2.5.3 Molecular Docking and Scoring Function 

 Molecular docking is a computational tool for a structure-based drug design. 

The molecular docking method is applied to predict a possible binding mode of a 

ligand with a known 3D-structure target protein. Nowadays this technique is 

additionally used as an integral part of virtual screening by ranking compounds 

according to their docking scorings. In the last decade many docking programs using 

different algorithms and scoring functions have been developed. The main concept 

common among these different docking programs is that ligands are free to be flexible 

whereas proteins are normally kept fix or partially fixed during the docking process. 

A comparison among these programs, algorithms, and scoring functions is beyond the 

scope of this thesis. Thus, only the algorithm used in the GOLD docking program and 

the docking scoring function implemented in the GOLD docking program (GoldScroe 

and ChemScore) used in this work are briefly explained. 

 GOLD (Genetic Optimisation for Ligand Docking) [105, 106] uses a genetic 

algorithm (GA) to dock ligands into the binding site of the target protein. A set of 

possible docking solution, known as population, are maintained in the GA. Each 

possible solutions, termed as a chromosome, contains information about the mapping 

of a H-bond pair, hydrophobic contact point between ligand and protein, and the 

conformation around flexible ligand bonds and OH group of protein. The population 

of the solution is first randomly generated and a fitness score of each chromosome is 

calculated. Then, the genetic operations such as crossover, mutation and migration are 

performed in order to get the best possible solution (the highest fitness score). During 

the docking process GOLD allows ligands to be fully flexible. On the opposite site, 

the protein is partially flexible which means that the torsion angles of Ser, Thr, Tyr 

hydroxyl group as well as the NH3
+ of lysine are rotated to optimize the interaction 

with the ligand. 

 Two fitness functions that are normally used in GOLD are GoldScore and 

ChemScore. GoldScore is comprised of four components (H-bond energy (hb_ext), 

external (vdW_ext) and internal van der Waals (vdW_int) and ligand torsional strain 

energy (tor_int)). The equation of the GoldScore fitness function is written as 

equation (25) shown below: 

             GoldScore = S(hb_ext) + 1.3750*S(vdW_ext) + S(tor_int) + 1.0000*S(vdW_int)         (25) 
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Moreover, additional terms such as the internal H-bond, constraint scoring and a 

covalent term can be included into the GoldScore fitness scoring function when a 

constraint and a covalent docking are applied in the docking calculation. To correct 

the protein-ligand hydrophobic contact, the external vdW term is multiplied by 1.375 

in the total fitness function. However, the fitness function is applied to predict the 

binding mode of one particular ligand rather than used to correlate the docking scores 

and their binding affinities.  

 ChemScore [107, 108] was generated by empirically fitting from a set of 82 

protein-ligand complexes for which their experimental binding affinities were 

reported. The ChemScore fitness function, as shown in equation (26) below, estimates 

the free energy of ligand upon the binding with the protein; however, the derived 

ChemScore value cannot be used as the absolute binding energy or binding affinity. 

Although the ChemScore fitness function was created by empirically fitting with 

experimental values, there is no clear indication that this scoring function performs 

better than GoldScore for predicting binding affinities.  

  ChemScore = ΔGbinding + Pclash + Cinternal*Pinternal + (Ccovalent*Pcovalent + Pconstraint) (26) 

where Pclase is clash penalty and Pinternal is internal torsion terms. These two terms are 

included because they militate against close contacts in docking and poor internal 

conformations. In addition, like in the GoldScore, covalent and constraint scores can 

extra be added in the fitness function. 

A ΔGbinding in the ChemScore can be computed from this equation: 

                                   ΔGbinding = ΔG0 + ΔGhbond + ΔGmetal + ΔGlipo + ΔGrot,                          (27) 

where each descriptor in the equation represents the physical properties, such as the 

H-bond, the metal, the lipophilic and the rotatable bonds, that contributes to the free 

energy. Each parameter is multiplied by a scalar factor (a coefficient) which is derived 

from the regression, 

ΔG0 = v0, ΔGhbond = v1 * Phbond, ΔGmetal = v2 * Pmetal, ΔGlipo = v3 * Plipo, ΔGrot = v4 * Prot 

Here, the v terms are the regression coefficients and P term are the various types of 

physical contributions to binding. 
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 2.5.4 Similarity Search 

 Similarity search is one kind of ligand-based virtual screening techniques. The 

fundamental assumption of this approach is that compounds which have similar 

chemical structure should also have similar biological activity. Thus, this approach is 

carried out by searching for compounds in a database that are similar to the query 

compound. Different approaches (2D fingerprints, 3D pharmacophore) can be used 

for performing a similarity search. However, the 2D fingerprints, a binary string 

encoding the substructural fragments, are the most widely used for a similarity-base 

virtual screening because this method is a computational efficiency and also effective 

when compared with the other approaches [109]. The Tanimoto coefficient is often 

used in the 2D fingerprint for indicating the similarity between two molecules (the 

reference structure and the structure in the database). The simple Tanimoto coefficient 

equation is expressed as equation, 
cba

c
−+

, where a and b represent bits set in their 

fragment bit-strings and c is bits set being in both of the fingerprints [109]. 
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CHAPTER III 

NS2B/NS3 PROTEASE OF DENGUE VIRUS 

3.1 Homology modeling and MD simulations of DV NS2B/NS3 Protease 

 Due to lacking a 3D structure of the inhibitor-bound form of DV NS2B/NS3 

protease, a homology model of this complex should be built based on the available 

crystal structures from WNV and DV protease. The high sequence identity between 

WNV and DV NS2B/NS3 (56% over both domains) indicates a high similarity 

between these two structures[110]. Hence, it is reasonable to select the WNV 

NS2B/NS3 protease for modeling the related DV NS2B/NS3 protease.  

 In this present work, we have constructed homology models of DV NS2B/NS3 

protease complexed with the peptidic inhibitor (Bz-Nle-Lys-Arg-Arg-H) by using 

different template structures. In addition, molecular dynamics (MD) simulations of 

the homology models as well as the X-ray structure of WNV NS2B/NS3 protease 

(2FP7) were carried out in order to investigate the stability and flexibility of the 

inhibitor-enzyme complex and to examine the interaction between NS2B and NS3 

affecting the enzyme structure and inhibitor binding. To our knowledge, this is the 

first study focusing on the interaction between inhibitors and WNV/DV NS2B/NS3 

protease by means of MD simulation. Furthermore, the inhibitor-enzyme interaction 

was analyzed by applying the GRID approach to identify key residues important for 

inhibitor binding and protease selectivity. 

 

 3.1.1 Materials and Computational Methods 

 3.1.1.1 Sequence Alignment and Homology Modeling 

 The amino acid sequences of NS2B and NS3 of DV and WNV were taken 

from the National Center for Biotechnology Information (NCBI) Database[111]. A 

modified Needleman and Wunsch [77] method implemented in MOE2006.08[112] 

and the BLOSUM62 substitution matrix[113] was applied for aligning the sequences.  
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Figure 3.1. Sequence alignment of DV and WNV NS2B and NS3 domains. Stars 

indicate residues that are identical whereas dots and colons indicate similar residues. 

Residues which are drawn italic and underlined are missing residues in the X-ray 

structures. Residues located in the S1, S2, S3 and S4 pocket are colored cyan, yellow, 

green and magenta, respectively, and catalytic triad are displayed in bold red. 

 

The sequence alignment of DV NS2B/NS3 protease and the template from 

WNV is shown in Figure 3.1. Experimental data [25, 26, 28, 37] suggest that a central 

part (40 amino acid residues) of the hydrophilic domain of NS2B is sufficient to act as 

the essential cofactor for NS3 protease. Since no structural data is available for both 

terminal parts of the WNV NS2B chain (residue 43 – 48 and 89 – 96) both parts were 

neglected when in the homology modeling. The homology model of DV NS2B was 

constructed by using the residues 49-88 of the template structure from WNV NS2B 

(2FP7). The alignment revealed that this part of WNV NS2B has a sequence identity 

of 40% (85% sequence similarity) with the corresponding sequence from DV NS2B. 

For the NS3 protease, electron densities for residues 1-18 of both DV and WNV were 

not observed in the X-ray structure, due to the flexibility of that region. The entire 

structure of NS3 protease of DV without the NS2B (1BEF[40] or 1DF9[41]) is 

substantially different from that complexed with NS2B[38] (RMSD values are shown 

in Table 1.1). Therefore, the residues 1 to 18 of WNV and DV were also not 

considered for model building. Only amino acids from 19 to 170 of NS3 of WNV and 
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DV were used for the alignment and resulted in 57% sequence identity and 76% 

sequence similarity.  

The homology models of DV NS2B/NS3 protease in complex with a peptidic 

inhibitor were constructed applying the MOE2006.08 program using different 

template structures for each domain. The first model (DV-1) was generated using the 

crystal structures of WNV NS2B/NS3 and DV NS2B/NS3 protease as template 

structures. Coordinates for the NS2B domain and the inhibitor (Bz-Nle-Lys-Arg-Arg-

H) were taken from the WNV crystal structure (2FP7), whereas the coordinates of the 

NS3 domain were directly taken from the DV crystal structure in the apo-form 

(2FOM). In this way, a complex of DV NS2B (2FP7)/NS3(2FOM) protease with the 

inhibitor (Bz-Nle-Lys-Arg-Arg-H) (2FP7) was achieved.  

The second model (DV-2) was built using the WNV crystal structure 2FP7 as 

template for both DV protease domains. Missing residues (28 to 32) of the WNV NS3 

protease were added by taking the coordinates from the DV NS3 protease (2FOM). In 

this way, a complex between DV NS2B(2FP7)/NS3(2FP7) protease and the inhibitor 

(Bz-Nle-Lys-Arg-Arg-H) (2FP7) was derived.  

The comparison between different parts (NS2B, NS3protease and NS2B/NS3 

protease) of the different X-ray structures and DV models (shown in Table 1.1) was 

done by using the superpose module implemented in MOE2006.08. The structural 

alignment was carried out by using a weighted non-linear optimization to determine 

the solid-body transformation which is required to maximize the superposition of the 

protein atomic coordinates. The protein superimposition is based on the derived 

sequence alignment for determining the structurally conserved regions. Mean square 

distance deviation of corresponding backbone atoms was used to optimize the protein 

superposition. 

 

 3.1.1.2 Stereochemical quality 

The geometry and stereochemistry of the models were evaluated by using the 

program PROCHECK [79]. The stereochemical quality of the generated homology 

models as well as the WNV crystal structure was evaluated using Ramachandran 

plots. Results revealed that 92.2% and 7.8% of the residues of WNV-X are located in 

the most favored regions and the additional allowed regions, respectively. The 
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Ramachandran plot of DV-1 and DV-2 exhibited that 90.2% and 90.3%, respectively, 

are located in the most favored region. 9.8% and 9.0% of DV-1 and DV-2 residues, 

respectively, were found in the additional allowed region. There was no residue of 

DV-1 located in the disallowed regions whereas just one residue (Lys63_NS3) of DV-

2 was observed in the disallowed region. However, this residue is located far from the 

binding pocket and is not involved in ligand-enzyme interaction. The obtained results 

indicate that all models possess sufficient stereochemical quality. 

 

 3.1.1.3 Protein and Inhibitor Preparation  

 
Figure 3.2. Detailed view of the interaction of the covalently bound peptidic inhibitor 

(ball and stick) with the catalytic site of WNV NS2B/NS3 protease (ribbon). The 

covalent bond (distance 1.36 Å) between the C atom of the inhibitor aldehyde warhead 

and the hydroxyl group (OG) of Ser135 of NS3 is shown. 

 

 The protease-inhibitor models as well as the X-ray structure of WNV 

NS2B/NS3 protease in complex with the peptidic inhibitor (2FP7) in which the 

missing residues (residue 28-32 of NS3) were already added (named as WNV-X for 

this system) were prepared for the MD simulation. The peptidic inhibitor forms a 

covalent bond between the C-atom of the aldehyde warhead and the OG atom of 

Ser135 of the NS3 protease (shown in Figure 3.2)[114]. Therefore, this covalent bond 

was established in all three protein-inhibitor complexes by removing the atom HG 

from Ser135 and generating a single bond between the atoms C and OG. 

Corresponding parameters for the C-O bond were added to the GROMACS topology 
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file. To mimic the conditions of the tetrahedral intermediate of the bound aldehyde, 

His51, which is involved in the catalytic triad, was protonated at both δ- and ε-

nitrogen positions (HIP-form). Parameters of the amino acid norleucine (Nle-P4 of the 

inhibitor) were generated by considering parameters of the lysine side chain, and 

parameters for the benzene ring of the inhibitor were created by taking parameters 

from the benzene ring of phenylalanine.  

 3.1.1.4 Molecular Dynamics Simulations 

 MD simulations were performed using GROMACS version 3.3.1[115, 116]. 

The G43a1 force field (GROMOS96.1 [117]) was applied for all three complexes. 

Each protein complex was hydrated by 9 Å of the SPC water model[118] applying the 

triclinic periodic box with 9 Å cutoff. Counter ions, Na+ or Cl-, were added by 

replacing water molecules in each system in order to neutralize the system. 

Subsequently, 10000 steps of steepest descent were applied to minimize the energy of 

the system using the GROMOS96 force field. The position of backbone atoms was 

restrained during the first 150 ps with the force constant 1000 kJ/mol in order to allow 

the adjustment of the solvent molecules. After this, free molecular dynamics 

simulations were performed using the NPT ensemble applying a time step of 1 fs. The 

Particle-Mesh-Ewald (PME)[119] method was used to treat the electrostatic 

interactions. The temperature was kept constant at 300 K by using 0.1 ps coupling 

time using the Berendsen algorithm [120]. Pressure was maintained using 1 x 105 Pa 

with a coupling time 0.5 ps and isothermal compressibility of 4.5 x 10-5 Pa-1. The 

system was equilibrated after 1 ns. For all three complexes a free MD were carried out 

for 10 ns. The production phase, snapshots from 1-10 ns, was analyzed using 

subprogram of GROMACS 3.3.1. Results were graphically analyzed using 

MOE2006.08 and VMD [121]. 

A comparison of the H-bond occupancy of the protein-inhibitor complexes 

was done using the GROMACS program. H-bonds were defined by the default values 

given in the GROMACS program: proton donor–acceptor distance ≤ 3.5 Å and 

acceptor-donor–H bond angle ≤ 30°. During the simulation, H-bonds between 

individual residues could be formed in several ways, such as between inhibitor side 

chain with enzyme side chain, between side chain and backbone, and between 

inhibitor backbone and enzyme backbone. Therefore, several H-bonds can occur 
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between individual residue pairs. The percentage H-bond occupancy (shown in Table 

3.1 and Figure 3.5) was calculated taking the snapshots which contained at least one 

intermolecular H-bond between any atom of the two interacting residues divided by 

the total number of snapshots.  

 

 3.1.1.5 GRID calculations 

GRID [104] is an approach to predict noncovalent interactions between a 

molecule of known three-dimensional structure (i.e., DV NS2B/NS3 protease) and a 

probe representing chemical features of an inhibitor. The calculations were performed 

using the GRID program version 22a [122]. The structure of DV and WNV 

NS2B/NS3 protease was taken from the last snapshot of the MD simulations, the most 

equillibrated one, of DV-2 and WNV-X, respectively, the inhibitors were removed, 

and the resulting conformations were used for the GRID analysis. The calculations 

were carried out on a cube of the size 20 x 20 x 20 Å3 with a spacing of 1 Å covering 

the inhibitor binding pocket, to search for binding sites complementary to the 

functional groups of the inhibitors. The following probes were used for the 

calculations: hydroxyl (OH), positively charged amine (N+) and the hydrophobic 

probe (DRY). The OH and N+ probes imply the electrostatic favorable region 

whereas DRY probe indicates the hydrophobic favorable region. Therefore, the 

selectivity between the Arg compared to Ala at the P1 subsite of WNV and DV could 

be explained by applying these probes. The calculated GRID contour maps were then 

projected on the NS2B/NS3 structures of DV and WNV using the MOE program. 
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3.1.2 Results and Discussion 

 3.1.2.1 Model Building and Evaluation 

(A)                                                                     (B) 

 
 
 (C)                                        (D)                                          (E) 

 
 

Figure 3.3. Superimposition of (A) 2FP7 and 2FOM, (B) 2FOM and DV-1, (C) 

WNV-X and DV-1, (D) WNV-X and DV-2, and (E) DV-1 and DV-2. The individual 

structures are colored as follows: WNV-X and 2FP7: NS2B blue, NS3 red, inhibitor 

cyan; 2FOM: NS2B magenta, NS3 white, DV-1: NS2B yellow, NS3 green, inhibitor 

orange; DV-2: NS2B Orange, NS3 gray, inhibitor magenta. 

 

The two DV protease homology models and the WNV protease crystal 

structure were structurally analyzed by superimposing them on their backbone atoms 

of NS2B/NS3 protease (Figure 3.3 (C)-(E)). The analysis revealed that WNV-X and 

DV-2 show a high structural similarity as indicted by a low RMSD value (0.06 Å). 

Since we used two different templates to model the NS3 domain of the two individual 

homology models it is obvious that they show larger structural deviations (RMSD = 

2.10 Å). The DV NS2B/NS3 models represent two different conformations of the 
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protease. The major structural differences between DV-1 and DV-2 can be found 

around two loop regions (Figure 3.3 (C)-(E)). The first loop, denoted as B2B-C2 loop, 

covers the region from residue 114 to 124, whereas the second loop, named as E2B-

F2 loop, involves residues 152 to164.  

In addition, since the X-ray structure of WNV NS2B/NS3 protease complexed 

with the trypsin inhibitor (2IJO) is available, the influence of inhibitor binding on the 

conformation of the NS2B/NS3 protease was analyzed. For this purpose a third model 

of DV NS2B/NS3 (complexed with the trypsin inhibitor) was generated using the 

2IJO structure as template. DV-2 and DV-3 shows a high overall structural similarity. 

Superimposing models DV-2 and DV-3 yielded an RMSD of 0.61 Å indicating that 

the enzyme adopts approximately the same conformation in the productive form even 

when bound to a different inhibitor.  

 In contrast to the former reported DV NS2B/NS3 homology models[43] as 

discussed before in chapter 1 (section 1.4.1), our model represents the first complete 

structure of the protease including the complete cofactor NS2B in the productive 

form. Since our model represents the active productive form of the protease it could 

be applied for target-based design and screening of small molecule inhibitors. 

 

 3.1.2.2 Molecular Dynamics Simulations 

 3.1.2.2.1 Model Stability and Overall Structure 

(A)                                              (B)                                          (C) 

 
Figure 3.4. (A) Comparison of the RMSD plots for the MD simulations of WNV-X 

(black-line) and DV-1 (red line), (B) RMSD plots for the simulations of WNV-X (black 

line) and DV-2 (green line), and (C) RMSD plots for the simulations of WNV-X (black 

line) and DV-3 (blue line) 

The stability of the three protease structures was tested by running MD 

simulations.  In Figure 3.4, the RMSD values between each snapshot with respect to 
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the starting structure is plotted over a period of 10 ns simulation time. The RMSD 

values for WNV-X, DV-1, DV-2 and DV-3 remained at ~1.50 Å, ~2.20 Å, ~2.00 Å 

and ~2.00 Å, respectively, indicating the stability of the three systems.   

 

 3.1.2.2.2 NS2B-NS3 Interaction 

Table 3.1. Comparison of the H-bond occupancy between residues from NS2B and 

NS3. The number of H-bond between each residue pair are given in the parenthesis, 

behind the percentage of H-bond occupancy. 

 

 

 

H-bond Pair between % H-bond occupancy 

NS2B NS3 WNV-X DV-1 DV-2 DV-3 
Residues relating with the mutagenesis data (Leu74, Ile76 and Ile78) 

Val75 Val115  93.3 (1)    
Leu74 Leu115   8.9 (1) 89.2 (1) 82.8 (1) 
Val75 Lys117  95.2 (1)    
Leu74 Lys117   76.1 (1) 91.1 (1) 91.8 (1) 
Val77 Lys117  92.5 (2)    
Ile76 Lys117   93.2 (1) 94.6 (1) 92.1 (1) 
Val77 Pro119  0.00 (0)    
Ile76 Asn119   10.20 (1) 31.30 (1) 0.00 (0) 

Leu79 Pro119 0.00 (0)    
Ile78 Asn119  39.03 (3) 32.36 (3) 1.00 (1) 

Residues locating within 10  Å  around the inhibitor 
Asp81 Lys73 5.61 (4)    
Glu80 Lys73  11.44 (4) 5.72 (3) 0.80 (2) 
Asp82 Asn152 0.00 (0)    
Asp81 Asn152  0.00 (0) 2.78 (3) 0.00 (0) 
Gly83 Asn152 61.40 (1)    
Gly82 Asn152  0.02 (1) 66.44(1) 58.60 (1) 
Asn84 Asn152 1.60 (2)    
Ser83 Asn152  0.00 (0) 1.30 (3) 0.10 (1) 
Phe85 Asn152 17.99 (3)    
Met84 Asn152  0.00 (0) 0.89 (3) 0.60 (2) 
Phe85 Gly153 5.20 (1)    
Met84 Gly153  0.00 (0) 12.70 (1) 0.00 (0) 
Phe85 Ile155 0.00 (0)    
Met84 Val155  22.80 (2) 1.80 (1) 0.10 (1) 
Met88 Pro119 0.00 (0)    
Lys87 Asn119  3.66 (3) 7.83 (3) 0.50 (2) 
Met88 Pro157 0.00 (0)    
Lys87 Arg157  16.88 (6) 0.00 (0) 0.40 (2) 
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The C-terminus of NS2B affects the formation of the active site. This has been 

recently demonstrated by a site directed mutagenesis study[34] reporting that an 

inefficient autoproteolysis is caused by the mutations of the DV NS2B residues L74A, 

I76A, I78A and I76A/I78A. Therefore, the interaction between NS2B, NS3 and the 

inhibitor was focused on these residues (Leu74, Ile76 and Ile78) and other residues 

within a region of 10 Å around the bound peptidic inhibitor including the residues 

from NS2B. NS2-NS3B interaction occurs between the loop domains of NS3, the 

B2B-C2 and E2B-F2 loops, as well as the C-terminus of NS2B. 

We first analyzed the H-bond occupancy within the MD simulations of the 

protease-inhibitor complexes (Table 3.1). The analysis revealed strong H-bonds 

between Leu74 (NS2B) and the two NS3 residues Lys117 and Leu115. The 

percentage of H-bond occupancy between Leu74 and Leu115 was 8.9 % for DV-1 

and 89.2% for DV-2, and between Leu74 and Lys117 76.1% for DV-1 and 91.1% for 

DV-2, respectively. The strong hydrogen bonds observed for model DV-2 are in good 

agreement with the experimental data, whereas such a stable interaction was not 

observed for the simulation of the DV-1 model. Moreover, the strong H-bonds of 

Leu74-Leu115/Lys117 and Ile78-Asn119 observed in the DV-2 model confirms the 

functional role of a ΦX3Φ motif (two hydrophobic residues separated by three 

unspecific amino acid residues, corresponding to 74Leu-Ser-Ile-Thr-Ile78 of the DV 

NS2B) in association with the protease [123]. Also here the DV-2 model is in better 

agreement with the reported experimental data. The low H-bond occupancy of 

Asp81/Glu80 (NS2) and Lys73 (NS3) (5.61% for WNV-X, 11.44% for DV-1 and 

5.72% for DV-2), the absence of a H-bond between Asp82/Asp81 (NS2B) and 

Asn152 (NS3) also agree well with the experimental data [124] suggesting that Asp81 

of NS2B is not involved in a direct interaction with NS3. 

 Further H-bonds were observed between Ile76 (NS2B) with Lys117 and 

Asn119 (NS3) for both DV models.  The observed occupancy was 10.20% for DV-1 

and 31.30% for DV-2 for the Ile76_NS2B with Asn119_NS3 pair, and it was 93.2% 

and 94.6% for DV-1 and DV-2, respectively, for the Ile76 with Lys117_NS3 pair. 

The other H-bond interaction was observed between Ile78 (NS2B) and Asn119 (NS3). 

The observed occupancy was 39.03% for DV-1 and 32.36% for DV-2. According to 

recent experimental work [124], which suggested a strong and direct interaction 
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between amino acid residue 50-80 of NS2B with the NS3 domain of DV, the 

homology models are in agreement with the experimental data. In the original 

work[124], no details about the interaction between NS2B and NS3 were given. 

Therefore, the DV homology model shed light on the molecular level of this 

interaction. The model shows a strong interaction between the β-strand of NS2B and 

the β-barrel of the NS3 protease (between residues 51-57 (NS2B) and 22-28 (NS3) 

and between residues 73-75 (NS2B) and 115-117 (NS3)). Furthermore, the MD 

simulations revealed a strong interaction between Ile76 (NS2B) and Asn119 (NS3) as 

well as between Ile78 (NS2B) and (Asn119). These results indicate the importance of 

the identified residues to stabilize and activate the NS3 protease. Furthermore, the 

observed H-bond interaction between Ile76 and Ile78 from NS2B with Asn119 from 

NS3 is supported by the site-directed mutagenesis study [34]. In the generated Ala-

mutants no H-bond interaction can be established between the residues from NS2B 

and NS3.  

Another strong hydrogen bond which is supported by the experimental 

data[38] was detected for Gly83/Gly82 and Asn152 in the DV-2 model as well as in 

the WNV X-ray structure. In the DV-1 model no such interaction was observed 

during the MD simulation. The DV-1 model lacks the interaction of the C-terminus of 

NS2B and the substrate-binding site around Asn152 of NS3[40]. The observed H-

bond between the C-terminus of NS2B and NS3 is stabilizing the S2 pocket of the 

NS3 protease. Moreover, the MD simulation of the model DV-3, which was generated 

using only the crystal structure 2IJO as template, showed exactly the same H-bond 

interaction pattern as observed for DV-2, except the H-bond interaction between Ile76 

and Ile78 (NS2B) with Asn119 (NS3). In general, DV-2 and DV-3, which were 

generated on the basis of the productive inhibitor-bound form of WNV NS2B/NS3 

protease, are in good agreement with the mutagenesis data of DV NS2B/NS3 

protease. Furthermore, our simulations indicate that the binding of structurally 

different inhibitor does not affect the interaction between the C-terminus of NS2B and 

the NS3 protease.  

Recently, MD simulation of the X-ray structure of DV NS2B/NS3 protease in 

the non-productive form (2FOM)[51] was carried out to investigate the interaction of 

NS2B for stabilizing NS3 protease domain. However, it was stated in the original 
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publication of WNV and DV protease crystal structures[38] that the cofactor NS2B in 

the DV crystal structure, especially the C-terminal domain, does not interact with the 

substrate-binding site. Therefore, the interaction between NS2B and NS3 and its 

impact for enhancing the activity of the protease could not be deduced from this 

structure or models built on that structure [38]. In contrast, our DV protease models 

built on the basis of 2FP7 or 2IJO, where the C-terminal domain of NS2B is bound to 

the substrate-binding site, are more appropriate to study the influence of the cofactor 

NS2B, especially the C-terminal domain, for stabilizing NS3 and enhancing the 

activity.  

It was proposed that the cofactor NS2B functions as a molecular chaperone 

which promotes the folding of the NS3 protease into the active conformation[37]. Our 

MD simulations of the DV-2 model support this hypothesis. The simulations showed 

that the strong interaction between NS2B and NS3 protease; especially, between the 

C-terminus of NS2B and Asn119 and Asn152 of NS3 results in a stable conformation 

of the loop region (both B2B-C2 and E2B-F2 Loop) of NS3. In addition, the results 

revealed that DV-2 is in better agreement with the experimental data[34, 38, 123, 124] 

than DV-1. Thus, the DV-2 represents the NS2B/NS3 protease-inhibitor complex in 

the active form. Therefore, it can be suggested that the productive inhibitor-bound 

conformation of the NS2B/NS3 protease-inhibitor complex of WNV and of DV 

should be similar, as observed for the inhibitor-free form (2GGV and 2FOM, RMSD 

= 2.20 Å).  

 

 3.1.2.2.3 Protease-Inhibitor Interaction 

 Although the overall sequence identity of WNV and of DV is high, there are 

also some differences which can be observed in the sequence alignment shown in 

Figure 3.1. Therefore, the interaction between the peptidic inhibitor and the binding 

pocket was analyzed for both proteases.  
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Figure 3.5. Comparison of the H-bond occupancy between each residue of the 

inhibitor and the individual binding pockets of the protease; P1-S1 pocket (A), P2-S2 

pocket (B), P3-S3 pocket (C) and P4-S4 pocket (D). 

 

 The H-bond interaction between each amino acid residue of the peptidic 

inhibitor and the enzyme was investigated for all three complexes. Results are shown 

in Figure 3.5 (A) – (D). It was reported in literature [125-127] that the P1-S1 pocket 

interaction of both WNV and DV involves only residues from the NS3 protease 

domain. The WNV protease crystal structures (2FP7 [38] and 2IJO [42]) reveal that 

the S1 pocket is formed by Asp129-Ser135, Tyr150, and Tyr161 of the NS3 protease. 

In agreement with this observation, the MD simulation demonstrated that strong H-

bonds between Arg-P1 and the S1 pocket of WNV-X and DV-2 exist (Figure 3.5 (A)). 

The occupancy of the H-bond between Asp129 and Arg-P1 of WNV-X is low. 

However, the salt-bridge interaction between both residues was observed throughout 

the whole simulation time (~4 Å, shown in Figure 3.6). Based on the MD simulations 

it can be suggested that Asp129 of the NS3 protease play a significant role in 

stabilizing the basic inhibitor P1 residue Arg or Lys[128]. 
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Figure 3.6.  Plot of the salt-bridge distance between Arg-P1 and Asp129 from NS3 of 

WNV-X (black), DV-1 (red) and DV-2 (green) 

 

The MD simulation of WNV-X showed a strong H-bond between Arg-P2 and 

Asp82, Gly83, Asn84 of NS2B and Asp75, Asn152 of the NS3 protease. These results 

agree well with the experimental data [38, 42] showing that the S2 pocket is formed 

by these residues. It was reported that the C-terminus of NS2B, Asp75 and Asn152 

(NS3) are part of the S2 pocket of the DV NS3 protease. During the simulation of 

DV-2 the interaction between Arg-P2 and these residues was observed (Figure 3.5 

(B)). The strong H-bond between Gly82 (NS2B) and Asn152 (NS3) resulted in 

increased stability of the E2B-F2 loop, and thus the interaction between Arg-P2 and 

Asn152 can occur. Moreover, these results suggest that the C-terminus of NS2B does 

not only play an important role for stabilizing and preorganizing the NS3 protease but 

also is essential for the interaction with the P2 residue of the inhibitor.  

The results of the MD simulation of WNV-X help to understand the recent 

mutagenesis data [33] of WNV NS2B/NS3 protease. In this study it was shown that 

complete inactivation of WNV NS2B/NS3 protease is achieved by the mutations 

G83A and F85A in NS2B. Our MD simulation of WNV-X reveals H-bonds between 

Gly83 and Phe85 of NS2B with Asn152 (NS3) (Table 3.1). The H-bonds are quite 

stable as indicated by the high percentage of H-bond occupancy during the 

simulation, e.g. 61.40 % for Gly83. In the mutation G83A the H-bond is disfavoured 

by the introduction of the side-chain of the alanine residue. By loosing this hydrogen-

bond network between NS3 and NS2B the activity of the enzyme for cleaving a 
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substrate is totally lost. The stability of the hydrogen bonding network can be 

observed for WNV-X and DV-2 but not for the DV-1 model (Figure 3.7). 

 
Figure 3.7. Distance between Oδ-Asn152 (NS3) and Nε-Arg-P2 of the inhibitor 

during the simulation of WNV-X (black), DV-1 (red) and DV-2 (green). 

 

Figure 3.5 (C) shows that the percentage of occupation for the H-bonds 

between Lys-P3 of the inhibitor and the protease residues. For WNV-X the H-bonds 

between the backbone of Lys-P3 and the side chain of Gly153 and Tyr161 of NS3 are 

observed throughout the simulation time. Interestingly, only the H-bond between Lys-

P3 and the Tyr161 was observed for DV-2. Molecular docking study [129] of 

inhibitors at WNV NS2B/NS3 showed that the Lys-P3 side chain did not bind in the 

S3 pocket of the enzyme which is largely solvent exposed. From the sequence 

alignment it can be detected that the residues forming the S3 pocket which are part of 

the C-terminus of NS2B are not conserved among the flaviviruses. Thus, larger 

differences in the type of interaction between inhibitors and the S3 pocket can be 

expected. In addition, the structure-activity relationship of peptidic inhibitors showed 

that modifying the P3 position of inhibitor from NH to N-CH3 caused a major loss of 

the inhibitor’s activity for both DV[50] and WNV[130]. These data indicate the 

significance of the H-bond between the P3 backbone and the protease. The interaction 

of the N-CH3 group results in a flip of the C=O backbone group into the opposite 

direction and results in losing the H-bond interaction between C=O and Tyr161 or 

Gly153. Furthermore, the replacement of the P3 subsite by a shorter side chain, which 

resulted in higher potency of the inhibitor, indicating that the P3 side chain is less 
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important for the inhibitor-enzyme interaction. In agreement with these experimental 

data [49, 129, 130], our MD simulation results showed that Gly153 and Tyr161 of 

NS3 of WNV and Tyr161 of DV bind to the backbone of the P3 residue of the 

inhibitor and are key residues in the S3 pocket.  

The S4 pocket of the protease is formed by the following residues: Val154, 

Ile155, Met156 and Pro157 (NS3) in case of WNV, whereas Val154, Val155, Thr156 

and Arg157 are the corresponding residues of the S4 pocket in case of the DV 

protease. In general, the S4 pocket is dominated by hydrophobic residues. This is in 

agreement with the preference of norleucine or leucine at the P4 position of the 

peptidic inhibitor [128]. The MD simulation revealed that the hydrogen bond between 

Nle-P4 of the inhibitor and the S4 pocket is very low (Figure 3.5 (D)) implying that 

H-bond interactions in this pocket rarely occur. 

 The visual analysis of the inhibitor-DV2 and inhibitor-WNV-X interactions 

showed that the inhibitor is interacting in a similar way with the corresponding 

residues. A series of tetrapeptidic inhibitors (Bz-P4-P3-P2-P1-H)[49, 130] and non-

peptidic inhibitor [45] were synthesized and tested against WNV and DV NS2B/NS3 

protease. Results showed that the most potent inhibitors of WNV NS2B/NS3 protease 

show also high activity against DV NS2B/NS3 protease. In addition, less active WNV 

NS2B/NS3 protease inhibitors are also less active against DV NS2B/NS3 protease. 

The analysis of the inhibitor-enzyme interaction derived from the MD simulations 

showed more clearly that the similar activity profile of the inhibitor can be explained 

by their similar binding mode.  

 

 3.1.2.3 Selectivity profile of the inhibitors Bz-Nle-Lys-Arg-Ala-H 

compared to Bz-Nle-Lys-Arg-Arg-H 

 In order to rationalize the structure-activity relationships of peptidic WNV and 

DV protease inhibitors, the structure of WNV and DV NS2B/NS3 protease taken 

from the last snapshot of the MD simulation of WNV-X and DV-2, respectively, was 

applied for a GRID field analysis. The calculations were carried out for the inhibitor-

free protease and using several chemical probes (hydroxyl (OH), positively charged 

amine (N+) and the hydrophobic (DRY) probe). The GRID results shown in Figure 

3.8 revealed a favourable field for the N+ (Figure 3.8 (A)) and for the OH (Figure 3.8 
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(B)) probe at the S1 pocket. In case of the DV protease the field is larger compared to 

that of WNV indicating the preference of the DV S1 pocket for a positively charged 

polar group. In contrast, the DRY field (Figure 3.8 (C)) at the S1 pocket of the WNV 

protease is larger than that of DV suggesting the preference of a hydrophobic group at 

this region of the WNV S1 pocket. The GRID results can be used to explain the 

decreased DV protease activity when changing the inhibitor P1 residue from Arg to 

Ala (Ki increased from 5.8 µM to 193.0 µM), whereas the activity of the modified 

inhibitor for WNV is unchanged (IC50 = 4.1 µM vs. 4.6 µM).  

 

 (A-1)                                                   (A-2) 

  
 
(B-1)                                                   (B-2) 
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 (C-1)                                                  (C-2) 

  
 
Figure 3.8. (A) GRID results: N+ probe (magenta contour) at the contour level of -

5.25 kcal/mol of WNV-X (A-1) and DV-2 (A-2), (B) OH probe (green contour) at the 

contour level of -7.50 kcal/mol of WNV-X (B-1) and DV-2 (B-2) and (C) Dry probe 

(yellow contour) at the contour level of -0.50 kcal/mol of WNV-X (C-1) and DV-2 

(C-2). The inhibitor is shown colored cyan.  

 

(A)                                                                      (B) 

  
Figure 3.9. (A) RMSD values of the inhibitor Bz-Nle-Lys-Arg-Arg-H bound in 

WNV-X (black line) and DV-2 (green line). (B) RMSD values of the mutated 

inhibitor Bz-Nle-Lys-Arg-Ala-H bound to WNV-X (black line) and DV-2 (green 

line). 

 

Bz-Nle-Lys-Arg-Ala-H shows the highest selectivity among the reported 

inhibitors for WNV (Ki = 193.0 µM for DV and IC50 = 4.6 µM for WNV). The 

substitution at the P1 position of the inhibitor by hydrophobic amino acids (e.g. 

mutating Arg to Ala) resulted in decreased activity against DV protease whereas it 
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does not affect the activity for WNV protease. Therefore, to test the influence of the 

P1 Arg-Ala mutation MD simulations were carried out for DV and WNV protease in 

complex with the inhibitor Bz-Nle-Lys-Arg-Ala-H. The complexes of WNV and DV 

NS2B/NS3 with Bz-Nle-Lys-Arg-Ala-H were constructed by taking the last snapshot 

from the MD simulation of the WNV-X and DV-2 structures and subsequently 

modifying the P1 residue from Arg to Ala. Then, these two systems were subjected to 

MD simulation for 5 ns using the same conditions as the previous MD simulations. 

The observed interactions of Bz-Nle-Lys-Arg-Arg-H with the WNV enzyme (WNV-

X) and the DV enzyme (DV-2) are similar as discussed above. The conformation of 

the original inhibitor was quite stable in both simulations (WNV-X and DV-2) 

indicated by the low RMSD values (shown in Figure 3.9 (A)). In contrast, the WNV-

selective inhibitor (Bz-Nle-Lys-Arg-Ala-H) gave different results. The conformation 

of this inhibitor bound to the WNV protease is quite stable whereas it changed the 

position in the DV system. This is indicated by a considerable increase in the RMSD 

value of the inhibitor after 3500 ps simulation time (Figure 3.9 (B)). Comparing the 

structure of the WNV protease complexed with the inhibitors Bz-Nle-Lys-Arg-Ala-H 

and Bz-Nle-Lys-Arg-Arg-H after 5 ns simulation time (Figure 3.10) showed clearly 

that the conformation of the two inhibitors in these two complexes is not much 

different from each other. In contrary, the mutated inhibitor Bz-Nle-Lys-Arg-Ala-H 

adopts a different conformation at the end of the 5 ns simulation time (Figure 3.11). 

As a consequence of the mutations Arg to Ala, not only the interaction at the S1 

pocket is different, but also the interaction at the S2 and S3 pocket changed during the 

MD simulation. Especially, the important interactions between Tyr161 (NS3) at the 

S2 pocket and P2 is lost. The lost interactions are able to explain the decreased 

activity against DV (Ki 193.0 µM).  
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Figure 3.10.  Comparing the conformation of the WNV protease bound inhibitor Bz-

Nle-Lys-Arg-Arg-H (orange) and the bound inhibitor Bz-Nle-Lys-Arg-Ala-H 

(yellow) at the end of the 5 ns simulation time. 

 

 
Figure 3.11.  Comparing the conformation of the DV protease bound inhibitor Bz-

Nle-Lys-Arg-Arg-H (orange) and the bound inhibitor Bz-Nle-Lys-Arg-Ala-H 

(yellow) at the end of the 5 ns simulation time. 

 

3.2 MD simulation of DV NS2B/NS3 protease complexed with small-molecule 

inhibitors and Binding Free Energy Calculation 

 In the previous work, we reported the homology models of DV NS2B/NS3 

protease and the MD simulations of this enzyme complex with a tetrapeptidic 

inhibitor (section 3.1)[131]. In this work, we present the MD simulations of 

complexes between small-molecule inhibitors with the DV NS2B/NS3 protease. The 

representative conformation of this enzyme is obtained from the former work [131]. 
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The binding free energies of these compounds with the DV NS2B/NS3 protease are 

reported. In addition, the information about the interaction between these inhibitors 

with the enzyme, which was investigated by means of decomposition (DC) energy 

analysis, is given here. 

 

 3.2.1 Material and Computational Methods 

 3.2.1.1 Molecular docking of known small-molecule inhibitors 

Table 3.2. Chemical Structures of the known small-molecule inhibitors and their Ki 

values against NS2B/NS3 protease of DV and WNV 

Comp. ID Structure 

Ki Value (μM) 
WNV 

NS2B/NS3 
protease 

DV 
NS2B/NS3 

protease 

1 337 + 56 423 + 50 

2 35 + 5 44 + 5 

3 16 + 2 23 + 2 

4 37.3 + 6.4 17.0 + 4.3 

5 13 + 1 14 + 2 

 

 Inhibitors representing the inhibitors of DV NS2B/NS3 protease and showing 

the binding affinities (Ki) at the micromolar concentration were selected from the 

literatures[39, 45]. Other compounds which show an inhibitory concentration lower 

than millimolar, or contain unclear stereochemistry were not included in this study. 
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The chemical structure of the selected compounds and their Ki values are shown in 

Table 3.2. These compounds were docked into the binding site of the DV NS2B/NS3 

protease using the GOLD4.0 program[105, 106]. The default GOLD parameters were 

used except that the ‘flood fill radius’ was set to 20 Å around Asn152 of NS3. All 

types of constraints (H-bond or hydrophobic constraint) were not applied in this 

study. 

 

 3.2.1.2 Molecular Dynamics (MD) Simulation  

 The docking solutions of known inhibitors and hit compounds retrieved from 

virtual screening were subjected to MD simulation using the same parameters for all 

systems. In this study, MD simulations were performed using the AMBER9 

program[132]. The AMBER1999SB force field[133] was applied for the protein, 

whereas the general Amber force field (GAFF)[134] and the restrained electrostatic 

potential (RESP)[135] charges were assigned for ligands. The RESP charges were 

calculated at the Hartee-Fock (HF) level of theory with the basis set 6-31G* (HF/6-

31G*) using Gaussian03 program[136]. The protein-ligand complexes were then 

solvated by the explicit TIP3P[137] water molecules in the radius of 9 Å from the 

molecular surface to the edge of a simulation box (an octahedral box). In order to 

neutralize the system, counter ions (Na+ or Cl-) were added by replacing the water 

molecules in each system. Prior to performing the MD simulation, two different 

energy minimization processes have to be carried out in order to relieve bad steric and 

strain interaction which can cause problems during the MD simulation run. In the first 

process, the energy of the system was minimized by applying 1,000 steps of steepest 

descent and followed by 2,000 steps of conjugate gradient. In this process, a protein-

ligand complex structure was kept fix by the force constant 500 kcal/mol, whereas the 

water molecules and counter ions were relaxed for adjusting their positions. Then in 

the second process, the same protocols as in the first process were also applied, but all 

atoms in the system were not constrained during the energy minimization process.  

 After finishing the energy minimization process, the MD simulation was 

performed by starting at the position-restrained phase which was carried out through 

the first 100 ps. In this step, the positions of the protein and ligands were restrained 

with the weak force constant 10 kcal/mol. The temperature was gradually increased 
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from 0 to 300 K during the first few picoseconds, and then it is kept constant at 300 K 

by using Langevin dynamics[138] with a collision frequency of 1 ps-1. The constant 

volume periodic boundary was set. After finishing this step, free molecular dynamics 

simulations were performed using the NPT ensemble. The free MD simulations were 

completed by dividing into two phases: the equilibrated phase was carried out from 

100 ps – 1ns, the production run was performed from 1ns – 6ns. The same parameters 

as following were applied in all MD simulations. A time step of 2 fs with SHAKE 

algorithm[139] to constrain all bond involving hydrogens was used. A cut-off radius 

was set at 10 Å for the non-bonded interaction. The Particle-Mesh-Ewald (PME)[140] 

method was used to treat the electrostatic interactions. Pressure was maintained at 1 

bar by an isotropic pressure scaling method using a pressure relaxation time of 2 ps. 

Temperature was kept fixed at 300 K using the same protocols as in the position-

restrained phase. The convergence of the energies, temperature, pressure and global 

root mean square deviation (RMSD) were checked for indicating the stability of the 

system. 

 

 3.2.1.3 Binding Free Energy Calculation (MM/PBSA) 

 MD trajectories of each species (complex, protein and ligand) were extracted 

every 50 ps during 4-6 ns of the complex simulation. These trajectories, totaling 40 

snapshots for each species, were used for the binding free energy calculation using 

MM/PBSA approach. The details of the MM/PBSA method are explained in section 

2.4.1. The molecular mechanic energy (the van der Waals (ΔEvdW), the electrostatic 

(ΔEele) and the internal energy (Eint) interaction in the gas phase) was calculated by 

using SANDER module in AMBER9. The ΔGele-sol (electrostatic free energy of 

solvation) was computed by using a numerical solvation of the Possion-Boltzmann 

(PB) equation as implemented in the pbsa program[141] in AMBER9. All default 

parameters for the PB solver (which are the gird spacing at 0.5 Å, dielectric constant 

of 1.0 and 80.0 for solute and solvent, respectively, and ionic strength at 0 M 

concentration) were used. The non-electrostatic free energy of solvation (ΔGnonele-sol) 

was calculated using the linear function of the solvent accessible surface area 

(SASA)[142] (ΔGnonele-sol = γSASA + b).  The SASA was calculated using the solvent 

probe radius at 1.4 Å, whereas the default values of γ (0.00542 kcal/mol*Å2) and b 
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(0.92 kcal/mol) referring to the experimental solvation parameter were applied. The 

temperature of the system is set at 300 K.  

 The entropy of the system (S) is derived by the summation of the entropic 

contribution from translation (Strans), rotation (Srot), and vibration motion (Svib). Strans 

and Srot are obtained from classical statistical mechanics, whereas Svib is derived from 

a normal mode analysis implemented in the NMODE module in Amber 9. The energy 

of each species (complex, protien, and ligand) was minimizetd by the SANDER 

module using a conjugate gradient method. The energy is converged when the root-

mean-square-deviation of the elements of the gradient vector was less than 10-4 

kcal/mol-1Å-1. Then, the normal mode analysis was performed. 

 Decomposition (DC) energy per residue was calculated by using the 

MM/GBSA approach which means that the Generalized Bond (GB) was used instead 

of the PB method for calculating the free energy of solvation. 

 

 3.2.2 Results and Discussion 

 3.2.2.1 Binding Free Energy of known inhibitors 

Table 3.3. Components of MM/PBSA and binding free energy of known inhibitors 
 

 Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 

Ki (µM) 423 + 50 44 + 5 23 + 2 17 + 4.3 14 + 2 

ΔEele -125.54 -157.86 -91.43 -14.84 -55.51 

ΔEvdW -17.22 -22.33 -24.96 -32.32 -25.78 

ΔEMM -142.76 -180.19 -116.39 -47.16 -81.29 

ΔGnonele-sol -1.18 -1.23 -1.19 -1.29 -1.2 

ΔGele-sol 136.28 171.42 103.57 31.37 68.03 

ΔGsol 135.1 170.19 102.38 30.08 66.84 

ΔHtot -7.66 -10 -14.01 -17.09 -14.45 

TΔS -18.98 -18.74 -18.13 -17.43 -18.09 

  

 The binding free energy of these inhibitors and the components of the binding 

free energy are summarized in Table 3.3. Results revealed that the order of the 

enthalpy value (ΔHtot) is compound 1 (-7.66 kcal/mol) > compound 2 (-10.00 



78 
 

kcal/mol) > compound 3 (-14.01 kcal/mol) > compound 5 (-14.45 kcal/mol) > 

compound 4 (-17.09 kcal/mol). On the other hand, the experimental binding affinities 

of these inhibitors are in the order as compound 1 (423 + 50 µM) > compound 2 (44 + 

5 µM) > compound 3 (23 + 2 µM) > compound 4 (17 + 4.3 µM) > compound 5 (14 + 

2 µM). By considering the fact that the binding affinity of each compound has also 

some deviation, therefore the binding affinity of compound 3 can be considered to be 

active as well as compound 4 and compound 5. Thus, it can be concluded that the 

relative binding free energies of these compounds showed a satisfied correlation with 

their experimental values. It is clearly shown in Table 2 that even though the chemical 

structure of compound 4 is not similar to the other compounds, the entropy value of 

this compound (-17.43 kcal/mol) is quite close to the values of the other compounds 

(~ -18 to - 19 kcal/mol). These results indicated that nearly the same amount of 

entropy contributes to the absolute binding free energy, implying that the entropy 

values of these compounds are not significantly different to change the trend of the 

relative binding free energy. Therefore, the relative binding free energy can be 

approximated by considering only the enthalpy term, ΔGbinding ≈ ΔHtot. Since the 

entropy calculated from the normal mode analysis requires high computational 

demand, the relative binding free energy of the hit compounds retrieved from virtual 

screening can be obtained by considering only the enthalpy term. This will help to 

reduce time and cost for the calculation. Moreover, these results indicate that the 

selection of protein conformation and the binding mode of these inhibitors are 

reliable. 
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 3.2.2.2 Decomposition (DC) Energy per residue Analysis 

      (A)                                                       (B) 

   

(C)                                                                (D)      

 

Figure 3.12. Footprints of (A) van der Waals interaction, (B) electrostatic interaction, 

(C) free energy of solvation and (D) total interaction energy of ligand-protein 

interaction per residue. 

 

 The decomposition (DC) energy per residue as shown in Figure 3.12 (D) 

clearly demonstrates that the active compounds such as compound 4 and compound 5 

can interact with residues from NS2B, such as Ser83 and Met84, and also form NS3 

(His51, Asp75, Pro132, Gly151, Asn152 and Tyr161). In the case of compound 4, a 

neutral compound, the van der Waals interaction provides the most interaction 

between this compound and the enzyme as displayed in Figure 3.12 (A) and 3.12 (B), 

3.12(C) and 3.12 (D). This compound also has an electrostatic interaction with Ser83 

of NS2B as shown in Figure 3.12 (B). It is interesting to point out that Pro132 of NS3 

located at the S1 pocket, which showed low percent H-bond occupation with the 

tetrapeptidic inhibitor during the simulation as discussed in the previous work (section 

3.1)[131], can interact with all of these small-molecule inhibitors as demonstrated in 
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Figure 3.12 (D). The main contribution of the interaction energy between 

Pro132_NS3 with these inhibitors comes from the van der Waals interaction as 

displayed in Figure 3.12 (A). Thus, these derived results provide additional 

information from our previous work that Pro132_NS3 is one of the key residues at the 

S1 pocket for the van der Waals interaction with inhibitor. 

 Even though the compound 1 has an interaction with important residues such 

as His51, Ser 135 (two of the catalytic triad), Pro132, Gly151 and Tyr161 of NS3, this 

compound lacks the interaction with residues at the C-terminus of the NS2B as shown 

in Figure 3.12 (D). From our previous work (section 3.1), it showed that residues at 

the C-terminus of the NS2B, such as Asp81, Gly82, and Ser83, are also important for 

binding with the inhibitor. Therefore, the absence of the interaction between the 

compound 1 and these residues results in the low activity of this compound. The 

interaction between compound 2 with Asp81 and Gly82 of NS2B were found as 

shown in Figure 3.12 (D). Gly82 of NS2B plays an important role for stabilizing the 

binding pocket of NS3 protease by interacting with Asn152 of NS3. Therefore, the 

inhibitor, such as compound 2, which can interact with Gly82 of NS2B, can interrupt 

the activity of the NS3 protease resulting in being as a high active compound. Thus, 

compound 2 is approximately 10 times more active than compound 1. Surprisingly, 

DC energy reveals that compound 3, which is quite active (Ki = 23 + 2 µM), has no 

interactions with any residue at the C-terminus of the NS2B as demonstrated in Figure 

3.12 (D). However, by considering each element (van der Waals, electrostatic 

interaction and free energy of solvation as shown in Figure 3.12 (A), 3.12 (B) and 

3.12 (C), respectively) that contributes to the total energy, it is found that compound 3 

has a strong electrostatic interaction with Asp81 of NS2B, Asp75 and Asp129 of NS3 

as shown in Figure 3.12 (B), and also a strong van der Waals interaction with residue 

at the S1 pocket such as Asp129, Pro132, Thr134 and Ser135 of NS3. In addition, 

from Figure 3.12 (D), it is obviously that compound 3 has the highest interaction with 

Gly151 and Tyr161 of NS3. From the previous work (section 3.1), a stable H-bond 

pair (nearly 100% of percent H-bond occupancy) between Tyr161_NS3 with the 

peptidic inhibitor was observed. Thus, Tyr161_NS3 is important for interacting with 

inhibitor. The interaction of compound 3 with Gly151_NS3 and also a strong 

electrostatic interaction with Asp81_NS2B can disturb the Asn82_NS2B – 
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Asn152_NS3 pair interaction (a main interaction for stabilizing the binding pocket). 

Therefore, compound 3 is quite active because of the interaction with Asp81_NS2B, 

Gly151 and Tyr161 of NS3 which can affect the stability of the binding pocket and 

the activity of the enzyme.  

 From Figure 3.12 (A) – (D), it can be concluded that the van der Waals 

interaction as well as the electrostatic interaction are important for interacting with 

small-molecule inhibitors. These derived results support our former work indicating 

that residues located at the C-terminus of NS2B as well as residue from NS3 are 

important for interacting with inhibitors (both peptidic inhibitors and also small-

molecule inhibitors). In addition, residues which play important role for interacting 

with inhibitor are also addressed.    

 

3.3 Virtual Screening for inhibitors of Dengue Virus NS2B/NS3 protease 

 A stepwise virtual screening (VS) was carried out by stating from using three 

different pharmacophore models. First, the docking solution of the most selective 

compound (compound 4) together with the GRID field calculation was used to 

generate a structure-based pharmacophore model. A second pharmacophore model (a 

static model) was built by directly using the docking pose of this compound. The last 

pharmacophore model, a dynamic model, was created by using a representative 

conformation of this compound in complex with the DV NS2B/NS3 protease. The 

static pharmacophore model was created by a conventional method, using a single 

crystal structure or the complex obtained from the molecular docking. The approach 

has some disadvantages because the flexibility of ligand and protein is not taken into 

account. Thus, the dynamic pharmacophore model has been developed to resolve this 

problem and this approach was successful in applying in virtual screening[143-145]. 

The dynamic pharmacophore model was generated by using a series of representative 

conformations of the ligand-protein complex derived from different snapshots of MD 

simulation. Consequently, all of these three pharmacophore models (the structure-

based, the static and the dynamic model) were applied for searching for compounds in 

databases that match with these models. The number of compounds was subsequently 

filtered by applying drug-like properties and molecular docking. Hits compounds 

were then visually inspected and selected for calculating binding free energy. The 
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derived binding free energy of the hit compounds were compared with the values of 

the known inhibitors. Finally, lead compounds as potent inhibitors for NS2B/NS3 

protease of DV are suggested for testing biological activities.  

 

 3.3.1 Material and Computational Methods 

 3.3.1.1 Databases 

 Muti-conformational databases (Chembridge, NCI, Maybridge and drug-like 

ZINC database) were screened for potent hit compounds for the DV NS2B/NS3 

protease. Numbers of compounds and total conformations, indicated in the parenthesis 

of each database, are as following, Chembridge 405,494 compounds (41,829,578 

conformations), NCI 884,439 compounds (55,874,026 conformations), Maybridge 

102,419 compounds (2,463,388 conformations) and drug-like subset of ZINC 

database 1,697,950 compounds (168,586,567 conformations).  

 

 3.3.1.2 Pharmacophore Model and Pharmacophore Search 

        Virtual screening was carried out in a hierarchical strategy starting from the 

pharamcophore search in these focused databases. Even though compound 4 is not the 

most active compound against the DV NS2B/NS3 protease among these potent 

inhibitors, it is the most selective compound for the DV NS2B/NS3 protease because 

it is two-fold effective against this enzyme of DV than that of WNV. This is in 

contrast to compound 5 which is the most active compound against the DV 

NS2B/NS3 protease but less selective, nearly the same activity for the DV and the 

WNV NS2B/NS3 protease. Therefore, the docking solution of compound 4 was 

applied for generating pharmacophore models. The structure-based pharmacophore 

model was built by using the docking solution of compound 4 together with the GRID 

field interaction. The hydroxyl (OH) probe and N-sp2 with lone pair (N:=) probe, 

implying the H-bond donor areas and H-bond acceptor regions, respectively, were 

used for the calculations. On the other hand, the docking solution of compound 4 was 

directly applied to generated the static pharmacophore model using the LigandScout 

software[146]. LigandScout is a program for developing a structure-based 

pharmacophore model based on protein-ligand structures which could be obtained 

from the X-ray structure or docking solution. Beside the important features of ligands 
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(i.e., H-bond donor, H-bond acceptor, and hydrophobic), excluded volumes on the 

basis of the surrounding amino acid residues were also generated. LigandScout 

generated the excluded volumes on the basis of Cα atoms. The pharmacophore was 

exported as a PH4 file and imported into the MOE2008.10 program[112] for 

performing pharmacophore searching.  

 The dynamic pharmacophore model was created by using snapshots from 4-6 

ns of the MD simulation of compound 4. These snapshots were first clustered into ten 

groups by using the K-mean clustering analysis algorithm. The representative 

conformation of each cluster was then used to generate the static pharmacophore 

model. Then, ten different static pharmacophore models were obtained and were 

subsequently projected onto the binding pocket of the enzyme. Finally, the dynamic 

pharmaocophore model was built by creating features to cover all sub-features 

derived from these ten static pharmcophore models. The derived pharmacophore 

models were applied for searching the potential hits in the multi-conformational 

database using pharmacohpore search module implemented in MOE2008.10 

 

 3.3.1.3 Database Filtration 

 Due to multi-conformational databases were already generated and stored in 

our clusters, we first started the virtual screening by applying a pharmacophore search 

approach. This is a fast technique for screening compounds in the databases. Then, a 

number of hit compounds in databases were filtered by using the properties of drug-

like compounds. Lipinski’s rule of five [101], stating that the orally active drug 

should have these properties; H-bond donor < 5, H- bond acceptor < 10, molecular 

weight < 500, and logP < 5, was applied for this objective. In addition, the molecules 

containing the reactive group, based on the reactive group descriptor in the QuaSAR 

module implemented in MOE, were also removed from the databases. 

 

  3.3.1.4 Molecular Docking and Energy Minimization of docking solution 

 The hits derived from pharmacophore search and database filtration were 

subsequently subjected to the molecular docking calculation using two consecutive 

docking runs. The first docking run was carried out by using 10,000 operations of the 

Genetic Algorithm (GA) run. This protocol speeds up the docking calculation for the 
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large amount of compounds in a reasonable computational time. However, the 

binding mode of compounds is less accurate. Therefore, the top 200 compounds 

ranked by GoldScore from the first step of the docking run were consequently 

subjected to the second step of the docking run. In this step, 100,000 operations of the 

GA run and the search efficiency of 100% were used. This protocol leads to a more 

accurate binding mode of compounds. The ‘flood fill radius’ of 20 Å around Asn152 

of NS3 was used and no constraints were applied.  

 After the second step of molecular docking was completed, the first rank (the 

highest GoldScore among ten solutions) of each compound was selected. Then, the 

docking solutions of these 200 compounds were refined by employing energy 

minimization using the MOE2008.10 program. AM1-BCC charges were assigned for 

all ligands whereas the Amber force field 99 charge were applied for the DV 

NS2B/NS3 protease. During the energy minimization process, the DV NS2B/NS3 

protease was constrained by tethering heavy atoms by the force constant 100 kcal/mol 

whereas the ligand structures were relaxed. The energy-minimized docked structures 

were subsequently visually inspected for ligand interaction compared to the DC 

(decomposition) energy analysis (section 3.2.2.2) and ligand-protein interaction 

derived from our previous MD simulation (section 3.1.2.2.3). Finally, the hit 

compounds were selected. The complexes of these hit compounds with DV 

NS2B/NS3 protease were subjected to MD simulation and binding free energy 

calculation using the MM/PBSA method. The derived relative binding free energies 

of the hit compounds were compared to the values of known inhibitors. 

  

 3.3.1.5 MD simulation and Binding Free Energy Calculation 

 MD simulations of the hit compounds complex with DV NS2B/NS3 protease 

were employed using the same protocols as described in the section 3.2.1.2. In 

addition, binding free energies of these hits were also computed using the MM/PBSA 

method and the same protocols as in section 3.2.1.3. 
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 3.3.2 Results and Discussion 

 3.3.2.1 Structure-based Pharmacophore Model 

 
Figure 3.13. (A) Molecular docking solution of compound 4 (orange balls and stick) 

with the DV NS2B/NS3 protease. H-bonds are shown as dot lines. (B) GRID result of 

OH probe (yellow) at the contour level -5.5 kcal/mol, (C) GRID result of N:= probe 

(N-sp2 with lone pair) (cyan) at the contour level -4.0 kcal/mol and (D) The final 

pharmacophore model derived from docking solution of compound 4 (sphere A, B 

and C), OH contours of GRID field calculation (sphere D) and N:= contours (sphere 

D and E). Red spheres represent the H-bond acceptor areas, Green sphere means H-

bond donor areas and, yellow sphere indicates hydrophobic areas and magenta sphere 

denotes H-bond acceptor or donor area.  

 

Comparison the activity of these compounds for DV and WNV NS2B/NS3 

protease, it was found that compound 4 is the most selective compound for DV 

NS2B/NS3 protease among these five compounds. Ki value of compound 4 against 

this enzyme of WNV is 37.2 + 6.4 μM which is approximate two times higher than 

the Ki value of DV (17.0 + 4.3 μM). While, The Ki value of the other compounds 

(A) (B)

(C) (D)
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against NS2B/NS3 protease of DV and WNV are nearly the same. Therefore, the 

docking solution and the MD simulation of compound 4 were selected to generate 

pharmacophore models. Docking solution of compound 4 (Figure 3.13 (A)) into the 

binding pocket of DV NS2B/NS3 protease shows H-bond between this inhibitor with 

Ser83_NS2B and Ser135_NS3 (one of the catalytic triad). In addition, π-π interaction 

between the benzene ring of inhibitor with side chain of the Tyr161_NS3 was also 

observed. Based on the docking result, three features of the structure-based 

pharmocophore model was created as shown in Figure 3.13 (D). First, The yellow 

sphere (region A), which means the hydrophobic feature, was created to demonstrate 

the π-π interaction between the inhibitor and Tyr161_NS3. Second, the dark red 

sphere representing the H-bond acceptor feature was built at the area (region B) where 

the compound forms H-bond with Ser135_NS3. Lastly, the dark green sphere (region 

C) illustrating for the H-bond donor feature was generated to represent the H-bond 

between the compound and Ser83_NS2B.  

From the MD simulations of the previous works (section 3.1 and section 3.2), 

results indicate that the interaction between the S1 pocket of enzyme with the P1 

subsite of inhibitor is one of the important protein-ligand interactions. Moreover, the 

H-bond between the inhibitor with Tyr161_NS3 is quite stable during the simulation, 

indicating by the high percent H-bond occupancy (nearly 100%) between the peptidic 

inhibitor with this residue. This result suggested that the H-bond interaction between 

inhibitor with Tyr161_NS3 is essential. These interactions were not found in the 

docking pose of compound 4. Therefore, the GRID field calculation using hydroxyl 

(OH) probe and N-sp2 with lone pair probe (N:=) probe was additionally computed. 

The OH and N:= probe indicate the H-bond donor and H-bond acceptor region, 

respectively. Thus, the pharmacophore features representing the interaction at the S1 

pocket and also with Tyr161_NS3 residue can be generated by applying these probes. 

The contours of GRID these field calculations, which were projected onto the binding 

pocket of DV NS2B/NS3 protease and also compared with the docking solution of 

compound 4, are displayed in Figure 3.13 (B), H probe, and Figure 3.13 (C), N:= 

probes. Results revealed that the OH and N:= probe were found at S1 pocket of the 

enzyme. These results indicated that inhibitors should contain H-bond donor or 

acceptor features at this region for interacting with residues at the S1 pocket of the 
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enzyme. Thus, the magenta sphere (region D as shown in Figure 3.13 (D)) was 

generated to represent H-bond donor or acceptor at this pocket. The N:= probe was 

also observed between the pyrimidine ring and Tyr161_NS3. This result implied that 

H-bond interaction between inhibitors with side chain of Tyr161_NS3 is one of the 

essential interactions between inhibitors and this residue. Thus, inhibitors should have 

a feature that they can form H-bond with the side chain of Tyr161_NS3. 

Consequently, the dark red sphere at region E (displayed in Figure 3.12 (D)) was 

generated to demonstrate the H-bond acceptor feature of inhibitors. In addition, 

exclude volumes displayed as gray contours were also generated. Exclude volume 

which were generated on the basis Cα atom relates with the conformation of the 

protein and surrounding amino acid residues. To clearly display, only some of 

excluded volumes are shown. Then, this structure-based pharmacophore model, 

containing five pharmacophore features, was applied to screen compounds from the 

multi-conformation database. 

 

 3.3.2.1.1 Virtual Screening and Binding Free Energy Calculation  

Table 3.4. Number of Hits derived from each steps of virtual screening using the 

structure-based pharmacophore model 

Number of Hits 
derived from each step 

Database 

Chembridge Maybridge NCI ZINC  
(drug-like subset) 

Pharmacophore Search 9,899 1,247 128,194 23,168 
Drug like properites  5,826 588 11,170 14,972 
Docking Step 1 5,826 588 11,170 14,972 
Docking step 2 200 200 200 200 
MM/PBSA calculation 5 5 5 5 

 

 Results, which were derived from virtual screening, are summarized in Table 

3.4. These results demonstrated that 9,899 (2.44%) compounds, 1,247 (1.22%) 

compounds, 128,194 (14.49%) compounds and 23,168 (1.36%) compounds, which 

were retrieved from Chembridge, Maybridge NCI, and drug-like ZINC database, 

respectively, are in agreement with the structure-based pharmacophore model. The hit 

compounds should also follow Lipinski’s rule of five and they should contain no 

reactive groups. Thus, compounds that violate these properties were filtered out. By 
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applying these filtering, 5,826, 588, 11,170 and 14,972 compounds were obtained 

from Chembridge, Maybridge, NCI, and drug-like ZINC database, respectively. These 

hits were further docked into the representative conformation of DV NS2B/NS3 

protease. Molecular docking of these hit compounds was carried out in two 

consecutive steps as explained in the method part (section 3.3.1.4). After finishing the 

second docking run, the top-ranked docking solution (the highest docking score) of 

each compound was selected. After that, the energy of these selected compounds 

complex with the enzyme was minimized in the partial fix of binding pocket of the 

enzyme. The results of energy-minimized docked structure were then visually 

inspected. The hit compounds, which show interaction with important residues, were 

selected for performing MD simulation and calculating binding free energy using 

MM/PBSA approach. The essential residues for interacting with inhibitor include 

residues at the C-terminus of NS2B, residues located at the S1, S2 pocket and also 

Gly151, Asn152, Gly153 and Tyr161 of NS3. Finally, 5 compounds from each 

database were selected as potential hit compounds. Thus, the total number of selected 

hit compounds was 20 compounds. These compounds in complex with DV 

NS2B/NS3 protease were subjected to MD simulation and binding free energy 

calculation. Table 3.5 shows the chemical structures of these hit compounds and also 

their binding free energies. As discussed in section 3.2.2.1, the relative binding free 

energy can be approximated by considering only the enthalpy term. Thus, these values 

of these hits were computed only the enthalpy term, and the entropy values were 

neglected. The binding free energies (ΔGbinding) of these hits were compared with 

these values of known inhibitors. As shown in Table 3.5, compound 6641412, 

7658769, JFD02062, ZINC02069320 and ZINC05693897 gave the binding free 

energy lower than the lowest binding free energy (-17.09 kcal/mol) of the known 

inhibitor (compound 4). Thus, these compounds could be potent as the known 

inhibitors and they are suggested for testing their binding affinities for DV NS2B/NS3 

protease.   
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Table 3.5. ΔGbinding of the hit compounds derived from virtual screening using the 

structure-based pharmacophore model 
Cpd.-ID 

(Database) Chemical Strucuture ΔEele ΔEvdW ΔGnonele-sol ΔGele-sol 
ΔGbinding 
 ≈ ΔHtot 

6050086 
(Chembridge) 

 

N N
H

S

N N
H

N
H

OO

OH

O

 
 

-31.53 -32.19 -1.24 48.44 -16.53 

6641412 
(Chembridge) 

 
OH

O

O

N

S

HN

O

O

O

 
 

-44.26 -38.53 -1.33 51.60 -32.53 

6691885 
(Chembridge) 

N
H N

F

S

N

OH

O

O

O

O

O

 
 

-10.28 -42.12 -1.39 40.92 -12.88 

6984064 
(Chembridge) 

 

N

NH

S

HN S NH2

O

O

O

H2N

O

 
 

-29.89 -25.69 -1.23 45.02 -11.79 

7658769 
(Chembridge) 

 
S

N

N

S

HN S

O

O

NH2H2N

O

 
 

-43.50 -47.96 -1.34 52.56 -40.24 

BTB05499 
(Maybridge) 

 

O

N+

HO

O

O

HN

N

N+

O

OH

O

 

-177.50 -35.12 -1.28 204.82 -9.07 
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Table 3.5. (Continue) 

GK03608 
(Maybridge) 

 
N

N

N

N
ON+

O

HO

F

F

F O NH2

O

 
 

-107.06 -44.09 -1.33 138.19 -14.30 

JFD02062 
(Maybridge) 

 

N

N

N
H2

+
OH

HN

+H3N

HO OH

O

 
 

-203.84 -28.51 -1.27 211.74 -21.88 

RJF01462 
(Maybridge) 

 

NH

NH

HN

N

N
N

N N+

OH

O

O

O

 
 

-58.45 -42.67 -1.31 101.49 -0.94 

S04863 
(Maybridge) 

 

N S

O

O

N-

N

OH

+H2N

HO

 
 

-25.28 -23.18 -1.18 38.43 -11.20 

161070 
(NCI) 

 

N N

O

OH

O

O

OH

O

 
 

-42.12 -11.51 -1.12 44.27 -10.49 

212126 
(NCI) 

 

O

NHOH

O

Cl

O

NH2

 
 

6.08 -17.86 -1.17 3.17 -9.78 
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Table 3.5. (Continue) 

39645 
(NCI) 

 

S

O

OO

HO

O

O

O

OH

 

 

4.41 -17.29 -1.15 7.16 -6.87 

713329 
(NCI) 

 

N

N

N
N

N
N

N

N OH

SH

HS

HO

 

 

-17.15 -38.53 -1.28 44.73 -12.23 

720751 
(NCI) 

 
NN

S O
O

S

NN

H2N NH2

 

 

-15.64 -30.22 -1.25 32.04 -15.08 

ZINC00328297 
(ZINC) 

 

N
H

S

N NH3
+

O

H2N

NH2

 

-60.44 -24.87 -1.22 78.69 -7.84 

ZINC02069320 
(ZINC) 

 

N
H

S

N NHO

H2N

NH2

O

 

-134.95 -32.72 -1.28 135.53 -33.41 

ZINC05693897 
(ZINC) 

 

S

N
H

O

O
H2N O

O
OH

 

-16.76 -35.16 -1.31 35.00 -18.23 

ZINC05709590 
(ZINC) 

 
H2N

O
N
H

O

O

H
N O

 

-91.73 -15.31 -1.15 101.40 -6.79 
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Table 3.5. (Continue) 

ZINC06421909 
(ZINC) 

 

S

H2N

O

HN

O

O

O

Cl

NH2  
 

-15.22 -23.27 -1.19 28.45 -11.33 

Hits which gave enthalpy values (ΔHtot) lower than the lowest enthalpy value of the 
known inhibitor (-17.09 kcal/mol) are highlighted in red. 
 
 

 3.3.2.2 Comparison between Static and Dynamic Pharmacophore model 

 3.3.2.2.1 Pharmacophore Models (static and dynamic model) Generation 

 

Figure 3.14. (A) Docking solution of compound 4; H-bonds are shown as dot lines 

and ligand is displayed as orange stick. (B) A static pharmacophore model (PH-1); 

Pharmacophore features are displayed as yellow sphere = Hydrophobic feature, dark 

red sphere = H-bond acceptor features, dark green sphere = H-bond donor features 

and gray = excluded volumes in all pictures. For clearly display, some exclude 

volume spheres were omitted. 

 

 The static pharmacophore model, which is displayed in Figure 3.14 (A), was 

generated based solely on the docking solution of compound 4. Three pharmacophore 

features as displayed in Figure 3.14 (B) were generated to represent the static 

pharmacophore model. The details for generating these features and this model were 

already explained in section 3.3.2.1. This derived static pharmacophore model 

(displayed in Figure 3.14 (B)) is named as PH-1. 

(A) (B) 
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Figure 3.15. (A) All ten different static pharmacophore models derived from each 

representative conformation of each cluster projected on the binding pocket of DV 

NS2B/NS3 protease, and (B) dynamic pharmacophore model; Pharmacophore 

features are displayed as yellow sphere = Hydrophobic feature, dark red sphere = H-

bond acceptor features, dark green sphere = H-bond donor features and gray = 

excluded volumes in all pictures. For clearly display, some exclude volume spheres 

were omitted. 

 

 A dynamic pharmacophore model was generated by taking trajectories during 

4 ns to 6 ns of the MD simulation of compound 4. These trajectories were first 

clustered and a representative complexed structure of each cluster was then applied to 

create a static phomocophore model using the same method and the same program 

(LigandScout) as for generating the PH-1. Ten different static pharmacophore models 

were obtained. These ten static pharmcophore models were then projected on the 

binding pocket of the enzyme. All points as shown in Figure 3.15 (A) represent these 

ten static pharmcophore models. Five pharmacophore features of a dynamic model, 

which is shown in Figure 3.15 (B), were then built as follows. A yellow sphere was 

built as the first feature by creating a sphere to cover all small yellow points near 

Tyr161 of NS3. A yellow sphere and points represent a hydrophobic feature implying 

the π-π interaction between the inhibitor and the side chain of Tyr161_NS3. Second, a 

dark red sphere was created to cover all small red points near Ser135. This feature 

represents a H-bond acceptor of the inhibitor with this residue. Third, a small dark 

sphere was made and this sphere corresponds to a H-bond acceptor between the 

inhibitor with the side chain of Tyr161 of NS3. Fourth, the dark red sphere 

(A) (B) 
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representing a H-bond acceptor feature between inhibitor with Ser83 and Met84 of 

NS2B was built. Finally, the last dynamic pharmacophore feature is illustrated by a 

dark green sphere close to Gly82 and Ser83 of NS3. This feature which is a H-bond 

donor feature represents a H-bond interaction between the inhibitor with these 

residues. The given name PH-2 is used to refer to the final dynamic pharmacaphore 

model as displayed in Figure 3.15 (B). 

 

 3.3.2.2.2 Virtual Screening 

Table 3.6. Number of hits derived from each steps of Virtual Screening using PH-1 

and PH-2 model 

Number of Hits 
in each step 

Pharmacophore model 1 (PH-1) Pharmacophore model 2 (PH-2) 
Database Database 

CB MB NCI ZINC CB MB NCI ZINC 
PH Search  114,667 17,453 306,289 445,063 45,005 5,209 222,920 163,632 
Similarity 6,038 4,469 125,170 4,155 7,534 2,307 119,205 6,986 
drug like 3,005 1,503 2,355 2,385 3,771 1,103 1,039 3,791 
Docking step 1 3,005 1,503 2,355 2,385 3,771 1,103 1,039 3,791 
Docking step 2 200 200 200 200 200 200 200 200 
MM/PBSA 2 3 3 2 2 3 3 2 
CB = Chembridge and MB = Maybridge 

 

 Virtual screening (VS) was carried out as a stepwise approach. The number of 

compound in the multiconfomational databases (Chembridge, Maybridge, NCI and 

ZINC) is first filtered by searching compounds in databases that match with the 

pharamcophore models (PH-1 and PH-2). Table 3.6 shows a number of compounds 

retrieved from each step of virtual screening method. From Table 3.6, it is obvious 

that the PH-2 performs better than PH-1 for reducing the amount of compounds in the 

databases. For instance, the numbers of compounds that pass with the PH-1 model are 

114,667 (28.27%) compounds from Chembridge database, 17,453 (17.04%) 

compounds from Maybridge database, 306,289 (34.63%) compounds from NCI 

database, and 445,063 (26.21%) compounds from drug-like ZINC database. On the 

other hand, 45,005 (11.00%) compounds, 5,209 (5,09%) compounds, 222,920 

(25,20%) compounds and 163,632 (9,64%) compounds, which were retrieved from 

Chembridge, Maybridge NCI, and drug-like ZINC database, respectively, are the 

number of compounds that match with the PH-2 model. The high number of 
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compounds that pass with the PH-1 filter may also contain false-positive compounds. 

These results indicates that the dynamic pharmacophore model performs much better 

than the static pharmacophore model for filtering the number of compounds in 

databases which can also help to reduce the amount of false-positive compounds. The 

compounds that match with the PH-1 and PH-2 were subsequently screened by 

searching for the compounds that are similar to compound 4. Then, the drug-like 

properties according to the Lipinski’s rule of five[101] was applied in order to reduce 

to the number of the hit compounds in the databases. After this, these hit compounds 

were docked into the representative conformation of the DV NS2B/NS3 protease. 

 Molecular docking of these hit compounds, which are total 9,284 and 9,704 

compounds in all databases that pass with PH-1 or PH-2, respectively, was performed 

in two consecutive steps. First, these hits were docked into the representative 

conformation of the DV NS2B/NS3 protease using the protocol for virtual screening 

as discussed in the method part (section 3.3.1.4). Then, the docking results of these hit 

compounds in this step were ranked according to their GoldScore. The top 200 

compounds in each database were selected for the second docking step by applying 

the protocol that leads to obtaining more accurate binding modes as explained before 

in section 3.3.1.4. In both steps of molecular docking, ligands were allowed to be 

flexible, whereas the protein was kept fixed. Direct investigating into the ligand-

protein interaction derived from molecular docking could lead to misinterpreted 

results. Thus, the docking solutions derived from the second step of the docking run 

were subsequently energy minimized in the partial fix of binding pocket of the 

enzyme. The results of the energy-minimized docking solution of these hits 

compounds were then visually inspected for the ligand interaction. Results from the 

ligand-protein interaction in section 3.1.2.2.3 and from the DC energy analysis 

(section 3.2.2.2) indicate that residues at the C-terminus of NS2B, His51_NS3, 

Asp75_NS3, residues at the S1 pocket (Leu128-Thr134 of NS3), Ser135, Gly151, 

Asn152, Gly153 and Tyr161 of NS3 play an important role for interacting with 

inhibitors. Therefore, hit compounds which show interaction with these residues were 

selected. Finally, hits (20 compounds-10 compounds from each of the pharmacophore 

searching (PH-1 and PH-2)) were derived. The chemical structures of hit compounds 

are shown in Figure 3.16 and Figure 3.17.  
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Figure 3.16. Chemical Structures of hit compounds derived from PH-1 
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ZINC03455195 

7421641 

Figure 3.17. Chemical Structures of hit compounds derived from PH-2 
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Table 3.7. ΔGbinding of hit compounds derived from PH-1 

Compound-ID Database ΔEele ΔEvdW ΔGnonele-sol ΔGele-sol ΔGbinding ≈ ΔHtot 
6354267 Chembridge -10.50 -44.55 -1.34 37.70 -18.70 
7377839 Chembridge -8.67 -39.51 -1.30 28.98 -20.50 
HTS00422 Maybridge -28.25 -33.21 -1.28 41.16 -21.58 
HTS10626 Maybridge -53.62 -43.59 -1.34 77.86 -20.69 
SCR00965 Maybridge -12.15 -25.68 -1.20 29.74 -9.30 
153532 NCI -19.31 -23.75 -1.23 42.85 -1.45 
326889 NCI -150.37 -24.82 -1.21 156.30 -20.11 
719925 NCI -32.17 -34.50 -1.28 48.40 -19.55 
ZINC02459482 ZINC -24.46 -52.02 -1.37 54.07 -23.78 
ZINC05255177 ZINC -10.08 -37.18 -1.28 27.27 -21.26 

 Red and bold indicate the compound giving binding free energy lower than the 
lowest enthalpy values of known inhibitors (-17.09 kcal/mol). 
 

Table 3.8. ΔGbinding  of hit compounds derived from PH-2 

Compound-ID Database ΔEele ΔEvdW ΔGnonele-sol ΔGele-sol ΔGbinding ≈ ΔHtot 
6000231 Chembridge -18.28 -33.85 -1.26 41.39 -12.00 
7421641 Chembridge -18.72 -49.25 -1.33 42.44 -26.86 

KM09208 Maybridge -14.13 -35.75 -1.27 28.72 -22.43 
RH00799 Maybridge -139.97 -43.63 -1.35 163.63 -21.32 
SPB06754 Maybridge -19.64 -44.15 -1.37 40.07 -25.08 

339161 NCI -17.13 -42.85 -1.33 37.99 -23.31 
630720 NCI -8.52 -57.20 -1.41 33.70 -33.43 
73468 NCI -17.80 -53.36 -1.41 47.72 -24.85 

ZINC02723161 ZINC -22.26 -36.55 -1.33 42.06 -18.08 
ZINC03455195 ZINC -15.79 -31.10 -1.26 33.51 -14.64 

 Red and bold indicate the compound giving the enthalpy value lower than the 
lowest enthalpy values of known inhibitors (-17.09 kcal/mol). 
  

 Next, the complexes between hit compounds and the DV NS2B/NS3 protease 

were subjected to MD simulations and binding free energy calculations using the 

same protocols as applied for the known small-molecule inhibitors (section 3.2). As 

discussed before, the enthalpy term of the known inhibitors gave a good correlation 

with their experimental binding affinities. By including the entropy term that 

contributes to the binding free energy, the relative binding free energies of these 

compounds were not changed. In addition, the entropy calculation requires high 

computational time and cost. Therefore, the binding free energies of these hit 

compounds were calculated using only the enthalpy term. Then, the binding free 

energies of these hits were compared with these values of known inhibitors. Binding 

free energies of hits are summarized in Table 3.7 and 3.8. The compounds which gave 
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binding free energies lower than those of the known inhibitors are highlighted in bold 

red, indicating that these compounds may be potent inhibitors for the DV NS2B/NS3 

protease. Moreover, results revealed that hits which were derived from PH-1 gave 

binding free energies in the range of -1.45 to -23.78 kcal/mol. On the other hand, the 

binding free energies of hit compounds, which were retrieved from PH-2, were in the 

range of -12.00 to -33.43 kcal/mol. These results pointed out that hit compounds 

retrieved from the dynamic pharmacophore gave binding free energy lower than those 

obtained from the static pharmacophore model, implying that hit compounds derived 

from the dynamic model can be more potent than those derived from the static model. 

The dynamic pharmacophore model is more advantagious than a static 

pharmacophore model because the flexibility of the protein and the ligand were also 

taken into account for generating a dynamic pharmacophore model, whereas this thing 

was not considered in a static pharmacophore model. 
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Table 3.9. Tanimoto Coefficient of hits compared to known small-molecule 

inhibitors. Ki values of these compounds against the DV NS2B/NS3 are also reported.  

 Compound name and their chemical structure 

 

 

 

 
 

 Compound 4 Compound 6 Compound 7 
Compound-ID Ki = 17.0 + 4.3 μM Ki = 28.6 + 5.1μM Ki = 30.2 + 8.6 μM 
Hits derived from PH-1 
6354267 0.75 0.36 0.42 
7377839 0.66 0.46 0.44 
HTS00422 0.50 0.29 0.32 
HTS10626 0.60 0.45 0.35 
SCR00965 0.65 0.45 0.48 
153532 0.54 0.45 0.33 
326889 0.55 0.34 0.35 
719925 0.56 0.43 0.45 
ZINC02459482 0.75 0.35 0.44 
ZINC05255177 0.73 0.50 0.53
Hits derived from PH-2 
6000231 0.69 0.41 0.43 
7421641 0.67 0.50 0.43 
KM09208 0.63 0.34 0.39 
RH00799 0.54 0.32 0.40 
SPB06754 0.60 0.31 0.36 
339161 0.61 0.46 0.39 
630720 0.54 0.42 0.35 
73468 0.50 0.37 0.39 
ZINC02723161 0.65 0.37 0.45 
ZINC03455195 0.68 0.42 0.43 
 

 By considering the chemical structure of these hit compounds, it is found that 

compound 6354267, HTS0042, 719225, ZINC02459482, ZINC05255177, 

KM09208, RH00799, SPB06754, 630720, and ZINC02723161 have a core structure 

similar to compound 4. Moreover, the Tanimoto coefficient (a measure of the 

similarity between two compounds) of these hits compared to the known active 

inhibitors[39] (compound 4, 6 and 7) was also calculated and are summarized in 
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Table 3.9. The chemical structure of these known inhibitors and their Ki value are 

shown in Table 3.9. The compound 6 and compound 7 were not applied for the MD 

simulation because the stereochemistry of these two compounds is unclear. The 

Tanimoto coefficient supports the earlier visual inspection that compound 6354267,  

ZINC02459482, ZINC05255177, KM09208, and ZINC02723161 are structurally 

closer to compound 4. In addition, the Tanimoto coefficient point out that compound 

ZINC05255177 is also quite similar to compound 6 and 7. In the case of compound 

7421641, even though it is not clearly seen that the structure of this compound 

resembles compound 4, 6 and 7, the Tanimoto coefficient reveals that this compound 

has some chemical structure or functional groups that are similar to compound 4 and 

6. In addition, the binding free energy of compound 7421641 is quite low. Therefore, 

this compound might be an active compound for DV NS2B/NS3 protease. In 

conclusion, compound 6354267, ZINC02459482, ZINC05255177, 7421641, 

KM09208, and ZINC02723161 might be active as well as compound 4. For the rest 

of the compounds (HTS0042, 719225, RH00799, SPB06754, and 630720), even 

though they are not really similar to the compound 4, they still contains the similar 

functional group compared the compound 4, compound 6 or compound 7. Therefore, 

it is quite interesting to test the biological activities of these compounds. In summary, 

by considering the relative binding free energies of hits compared with the values of 

known inhibitors and their chemical structures, compound 6354267, HTS0042, 

719225, ZINC02459482, ZINC05255177, 7421641, KM09208, RH00799, 

SPB06754, 630720, and ZINC02723161 are proposed to test the biological activities 

against NS2B/NS3 protease of DV.   
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CHAPTER IV 

WEE1 KINASE 

4.1 3D-QSAR (CoMFA) model of checkpoint Wee1 kinase inhibitors 

 Several studies have been published in which the combination of receptor-

based methods and 3D-QSAR was successfully applied for the design and prediction 

of bioactive compounds[70-72]. The three-dimensional structure of a target protein, 

along with a docking protocol is used to guide alignment selection for comparative 

molecular field analysis. It is quite appealing to combine the accuracy of a receptor-

based alignment with the computational efficiency of a ligand-based method. 

Receptor structures, either experimentally resolved or obtained by homology 

modeling, can provide important information that is critical for an alignment in 

CoMFA[69], while QSAR can provide better prediction of binding energies[70]. 

 In the present work we applied this receptor-based 3D-QSAR technique to a 

set of 174 Wee1 kinase inhibitors which has been recently developed [62-64]. The 

crystal structure of the catalytic domain of Wee1 together with an automatic docking 

program was used to determine the molecular alignment of the ligands.  

 

4.1.1 Material and Computational Methods  

 4.1.1.1 Inhibitor Data Set  

 A set of pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione derivatives representing 

inhibitors of the Kinase Wee1[62-64] was used to generate a 3D-QSAR model 

applying the CoMFA methodology. All inhibitors were developed and tested in the 

same laboratory using the same assay condition, a prerequisite for generating reliable 

QSAR models. Inhibitors with no clear IC50 value (indicated with > 50 μM) and 

inhibitors with undefined stereochemistry, were omitted. The 174 inhibitors were 

divided in training and test set (Chart 4.1). In this way 144 ligands were randomly 

selected to generate the CoMFA model. The IC50 value of each inhibitor was 

converted into pIC50 (-logIC50) in order to use the data as dependent variable in the 

CoMFA model. The structures and the activity values (IC50 and pIC50) of the studied 

inhibitors are displayed in Chart 4.1. 
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Chart 4.1 Molecular structures of the pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione 

derivatives used for the 3D-QSAR study. 

    W

R2

R1

Y
O

8

9
X

Z

 

Training Set (144 compounds) 

Cpd W X Y Z R1 R2 
Activity 

IC50 
(µM) pIC50 

3 NH 9-OH CO NH H I 2.3 5.63 
4 NH 8-OH CO NH H Ph 0.31 6.51 
5 O 9-OH CO NH H Ph 0.43 6.37 
6 S 9-OH CO NH H Ph 0.078 7.11 
8 NH 9-OH CO NH Me Ph 0.13 6.89 
9 NH 9-OH CO NH Et Ph 1.6 5.79 
10 NH 9-OH CO NH Ph Me 9.7 5.01 
11 NH 9-OH CO NH Ph Ph 2.3 5.63 
12 NH 9-OH CO NH Ph H 4.0 5.39 
13 NH 9-OH CH2 NH H Ph 37 4.43 
14 NH 9-OH CO N-NH2 H Ph 3.9 5.40 
15 NH 9-OH CO NH H 2-ClPh 0.011 7.96 
16 NH 9-OMe CO NH H 2-ClPh 0.64 6.19 
17 NMe 9-OH CO NH H 2-ClPh 0.057 7.24 
19 NH 9-OH CO NH H 2-FPh 0.33 6.48 
21 NH 9-OH CO NH H 2-IPh 0.013 7.89 
22 NH 9-OH CO NH H 2-MePh 0.15 6.82 
23 NH 9-OH CO NH H 2-EtPh 0.51 6.29 
24 NH 9-OH CO NH H 2-CF3Ph 0.58 6.24 
25 NH 9-OH CO NH H 2-CH2OHPh 0.45 6.35 
26 NH 9-OH CO NH H 2-CNPh 0.19 6.72 
27 NH 9-OH CO NH H 2-COMePh 0.83 6.08 
28 NH 9-OH CO NH H 2-Ph-Ph 0.57 6.24 
31 NH 9-OH CO NH H 2-OEtPh 0.26 6.59 
32 NH 9-OH CO NH H 2-SMePh 0.033 7.48 
33 NH 9-OH CO NH H 2-SOMePh 0.22 6.66 
34 NH 9-OH CO NH H 2-NO2Ph 0.047 7.33 
35 NH 9-OH CO NH H 2-NH2Ph 0.21 6.68 
36 NH 9-OH CO NH H 3-FPh 0.22 6.66 
37 NH 9-OH CO NH H 3-ClPh 0.055 7.26 
38 NH 9-OH CO NH H 3-MePh 0.23 6.64 
39 NH 9-OH CO NH H 3-CH2OHPh 0.87 6.06 
40 NH 9-OH CO NH H 3-CH2NH2Ph 4.4 5.35 
41 NH 9-OH CO NH H 3-CNPh 0.18 6.74 
42 NH 9-OH CO NH H 3-COMePh 4.3 5.36 
45 NH 9-OH CO NH H 3-OMePh 0.62 6.21 
46 NH 9-OH CO NH H 3-NO2Ph 0.30 6.52 
47 NH 9-OH CO NH H 3-NH2Ph 0.070 7.15 
48 NH 9-OH CO NH H 4-FPh 16 4.80 
49 NH 9-OH CO NH H 4-ClPh 0.73 6.14 
52 NH 9-OH CO NH H 4-CNPh 1.8 5.74 
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53 NH 9-OH CO NH H 4-COMePh 3.6 5.44 
54 NH 9-OH CO NH H 4-OHPh 0.067 7.17 
55 NH 9-OH CO NH H 4-OMePh 12 4.90 
57 NH 9-OH CO NH H 4-SO2MePh 1.1 5.95 
58 NH 9-OH CO NH H 4-NH2Ph 0.15 6.82 

59 NH 9-OH CO NH H 2-Cl,  
3-ClPh 0.028 7.55 

60 NH 9-OH CO NH H 2-Cl,                 
3-OHPh 0.012 7.55 

61 NH 9-OH CO NH H 2-Cl,            
3-NH2Ph 

0.021 7.92 

62 NH 9-OH CO NH H 2-Cl,               
4-OHPh 0.023 7.64 

63 NH 9-OH CO NH H 4-Cl,             
3-NH2Ph 

0.024 7.62 

64 NH 9-OH CO NH H 2-Cl, 
5-ClPh 0.49 6.31 

66 NH 9-OH CO NH H 2-Cl,                
5-NH2Ph 

0.020 7.70 

67 NH 9-OH CO NH H 2-Cl,  
6-ClPh 0.028 7.55 

68 NH 9-OH CO NH H 2-Cl,                
6-OHPh 0.045 7.35 

69 NH 9-OH CO NH H 2-Cl,             
6-OMePh 0.015 7.82 

70 NH 9-OH CO NH H 2-Br,                 
4-NH2Ph 0.020 7.70 

71 NH 9-OH CO NH H 2-Br,  
6-BrPh 0.035 7.46 

72 NH 9-OH CO NH H 2-Me,              
3-MePh 0.27 6.57 

73 NH 9-OH CO NH H 2-Me,          
5-MePh 0.96 6.02 

74 NH 9-OH CO NH H 2-Me,           
6-MePh 0.075 7.12 

75 NH 9-OH CO NH H 2-OMe,  
4-NH2Ph 0.019 7.72 

76 NH 9-OH CO NH H 2-OMe,  
5-NH2Ph 

0.11 6.96 

77 NH 9-OH CO NH H 2-OMe, 
6-OMePh 0.027 7.57 

78 NH 9-OH CO NH H 2-OMe,           
6-FPh 0.029 7.54 

79 NH 9-OH CO NH H 2,6-diCl,  
3-OHPh 0.018 7.74 

81 NH 9-OH CO NH H 2-thienyl 0.14 6.85 
82 NH 9-OH CO NH H 3-thienyl 0.042 7.38 
83 NH 9-OH CO NH H 2-pyrrolyl 0.18 6.74 
84 NH 9-OH CO NH H 3-pyrrolyl 0.038 7.42 
87 NEt 9-OH CO NH H 2-ClPh 0.050 7.30 
88 N-n-Pr 9-OH CO NH H 2-ClPh 0.063 7.20 
89 N-i-Pr 9-OH CO NH H 2-ClPh 0.053 7.28 
90 N-n-Bu 9-OH CO NH H 2-ClPh 0.059 7.23 
91 N(CH2)2i-Pr 9-OH CO NH H 2-ClPh 0.15 6.82 
92 N-n-pentyl 9-OH CO NH H 2-ClPh 0.17 6.77 
93 NH 9-OH CO NH H H 0.097 7.01 
94 NH 9-OH CO NH H 2,6-diClPh 0.028 7.55 
95 NMe 9-OH CO NH H H 0.14 6.85 
96 NMe 9-OH CO NH H 2-ClPh 0.057 7.24 
97 Nn-Bu 9-OH CO NH H 2-ClPh 0.059 7.23 
98 N(CH2)2OH 9-OH CO NH H H 0.025 7.60 
99 N(CH2)2OH 9-OH CO NH H 2-ClPh 0.045 7.35 
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101 N(CH2)3OH 9-OH CO NH H H 0.2 6.70 
102 N(CH2)3OH 9-OH CO NH H 2-ClPh 0.009 8.05 
103 N(CH2)3OH 9-OH CO NH H 2,6-diClPh 0.007 8.15 
104 N(CH2)3OH 9-OH CO NH H 2-OMePh 0.03 7.52 
105 N(CH2)2CONH2 9-OH CO NH H H 0.021 7.68 
106 N(CH2)2CONH2 9-OH CO NH H 2-ClPh 0.006 8.22 
107 N(CH2)2CONH2 9-OH CO NH H 2,6-diClPh 0.33 6.48 
108 N(CH2)2CN 9-OH CO NH H 2-ClPh 0.015 7.82 
109 N(CH2)2COOMe 9-OH CO NH H 2-ClPh 0.03 7.52 
110 N(CH2)3CN 9-OH CO NH H 2-ClPh 0.033 7.48 
112 N(CH2)2NMe2 9-OH CO NH H H 0.2 6.70 
113 N(CH2)2NMe2 9-OH CO NH H 2-ClPh 0.096 7.02 
114 N(CH2)2NMe2 9-OH CO NH H 2,6-diClPh 0.17 6.77 
116 N(CH2)2Nmorpholide 9-OH CO NH H 2-ClPh 0.064 7.19 
117 N(CH2)2Nmorpholide 9-OH CO NH H 2,6-diClPh 0.11 6.96 
118 N(CH2)2Nimidazolide 9-OH CO NH H H 0.23 6.64 
119 N(CH2)2Nimidazolide 9-OH CO NH H 2-ClPh 0.092 7.04 
120 N(CH2)2Nimidazolide 9-OH CO NH H 2,6-diClPh 0.12 6.92 
121 N(CH2)3NHMe 9-OH CO NH H H 0.28 6.55 
122 N(CH2)3NHMe 9-OH CO NH H 2-ClPh 0.069 7.16 
123 N(CH2)3NHMe 9-OH CO NH H 2,6-diClPh 0.11 6.96 
125 N(CH2)3NMe2 9-OH CO NH H 2-ClPh 0.1 7.00 
126 N(CH2)3NMe2 9-OH CO NH H 2,6-diClPh 0.14 6.85 
127 N(CH2)3Nmorpholide 9-OH CO NH H H 0.29 6.54 
128 N(CH2)3Nmorpholide 9-OH CO NH H 2-ClPh 0.071 7.15 
129 N(CH2)3Nmorpholide 9-OH CO NH H 2,6-diClPh 0.064 7.19 
132 N(CH2)3Nimidazolide 9-OH CO NH H 2,6-diClPh 0.059 7.23 
133 N(CH2)3N(4-Mepiperazine) 9-OH CO NH H H 0.3 6.52 
134 N(CH2)3N(4-Mepiperazine) 9-OH CO NH H 2-ClPh 0.082 7.09 
135 N(CH2)3N(4-Mepiperazine) 9-OH CO NH H 2,6-diClPh 0.062 7.21 
136 N(CH2)3NHPh 9-OH CO NH H H 0.093 7.03 
139 N(CH2)2CONH(CH2)2NMe2 9-OH CO NH H H 0.17 6.77 
140 N(CH2)2CONH(CH2)2NMe2 9-OH CO NH H 2-ClPh 0.035 7.46 
141 N(CH2)2CONH(CH2)2NMe2 9-OH CO NH H 2,6-diClPh 0.014 7.85 
142 N(CH2)2COOH 9-OH CO NH H H 0.023 7.64 
143 N(CH2)2COOH 9-OH CO NH H 2-ClPh 0.009 8.05 
144 N(CH2)2COOH 9-OH CO NH H 2,6-diClPh 0.39 6.41 
145 N(CH2)2CONHSO2Me 9-OH CO NH H 2-ClPh 0.012 7.92 
146 N(CH2)2CONHSO2Ph 9-OH CO NH H 2-ClPh 0.007 8.15 
147 N(CH2)2C-tetrazole 9-OH CO NH H 2-ClPh 0.021 7.68 
148 N(CH2)2S-triazole 9-OH CO NH H 2-ClPh 0.024 7.62 
149 N(CH2)2SO-triazole 9-OH CO NH H 2-ClPh 0.009 8.05 
152 N(CH2)3C-tetrazole 9-OH CO NH H 2-ClPh 0.016 7.80 

153 NH 8-(CH2)4-NMe2, 
9-OH CO NH H 2-ClPh 0.049 7.31 

154 NH 8-(CH2)4-Npyrrol, 
9-OH CO NH H 2-ClPh 0.05 7.30 

155 NH 8-(CH2)4-Nmorph, 
9-OH CO NH H 2-ClPh 0.037 7.43 

156 NMe 8-(CH2)4-NMe2, 
9-OH CO NH H 2-ClPh 0.034 7.47 

157 NMe 8-(CH2)4-Npyrrol, 
9-OH CO NH H 2-ClPh 0.036 7.44 

159 N(CH2)2OH 8-(CH2)4-Npyrrol, 
9-OH CO NH H 2-ClPh 0.024 7.62 

160 N(CH2)2OH 8-(CH2)4-Nmorph, 
9-OH CO NH H 2-ClPh 0.019 7.72 

161 NH 8-O(CH2)3-NMe2, 
9-OH CO NH H 2-ClPh 0.026 7.59 

163 NH 8-O(CH2)3-Nmorph, 
9-OH CO NH H 2-ClPh 0.026 7.59 
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164 NMe 8-O(CH2)3-NMe2, 
9-OH CO NH H 2-ClPh 0.058 7.24 

165 NMe 8-O(CH2)3-Npyrrol, 
9-OH CO NH H 2-ClPh 0.075 7.12 

167 N(CH2)2OH 8-O(CH2)3-NMe, 
9-OH 2

CO NH H 2-ClPh 0.018 7.74 

168 N(CH2)2OH 8-O(CH2)3-Npyrrol, 
9-OH CO NH H 2-ClPh 0.024 7.62 

169 N(CH2)2OH 8-O(CH2)3-Nmorph, 
9-OH CO NH H 2-ClPh 0.015 7.82 

170 NMe 8-S(CH2)3-Npyrro, 
9-OH CO NH H 2-ClPh 0.02 7.70 

171 NMe 8-SO(CH2)3-Npyrro, 
9-OH CO NH H 2-ClPh 0.033 7.48 

173 NMe 8-SO2NH(CH2)2-Npyrro, 
9-OH CO NH H 2-ClPh 0.046 7.34 

174 NMe 8-CONH(CH2)2-Npyrro, 
9-OH CO NH H 2-ClPh 0.015 7.82 

 

Test Set (30 compounds) 

Cpd W X Y Z R1 R2 

Activity 

IC50 
(µM) pIC50 

1 NH 9-OH CO NH H Ph 0.097 7.01 
2 NH 9-OH CO NH H H 4.0 5.39 
7 NMe 9-OH CO NH H Ph 0.26 6.59 
18 O 9-OH CO NH H 2-ClPh 0.033 7.48 
20 NH 9-OH CO NH H 2-BrPh 0.023 7.64 
29 NH 9-OH CO NH H 2-OHPh 0.060 7.22 
30 NH 9-OH CO NH H 2-OMePh 0.024 7.62 
43 NH 9-OH CO NH H 4-Biphenyl 40 4.30 
44 NH 9-OH CO NH H 3-OHPh 0.089 7.05 
50 NH 9-OH CO NH H 4-MePh 3.3 5.48 
51 NH 9-OH CO NH H 4-CH2OHPh 1.2 5.92 
56 NH 9-OH CO NH H 4-SMe 29 4.50 
65 NH 9-OH CO NH H 2-Cl, 5-OHPh 0.042 7.38 
80 NH 9-OH CO NH H 2,6-diCl, 4-OHPh 0.049 7.31 
85 NH 9-OH CO NH H 4-pyridyl 0.82 6.09 
86 NH 9-OH CO NH H 3-pyridyl 0.58 6.24 
100 N(CH2)2OH 9-OH CO NH H 2,6-diClPh 0.008 8.10 
111 N(CH2)3OMe 9-OH CO NH H 2-ClPh 0.027 7.57 
115 N(CH2)2Nmorpholide 9-OH CO NH H H 0.14 6.85 
124 N(CH2)3NMe2 9-OH CO NH H H 0.36 6.44 
130 N(CH2)3Nimidazolide 9-OH CO NH H H 0.11 6.96 
131 N(CH2)3Nimidazolide 9-OH CO NH H 2-ClPh 0.054 7.27 
137 N(CH2)3NHPh 9-OH CO NH H 2-ClPh 0.074 7.13 
138 N(CH2)3NHPh 9-OH CO NH H 2,6-diClPh 0.067 7.17 
150 N(CH2)2SO2triazole 9-OH CO NH H 2-ClPh 0.019 7.72 
151 N(CH2)2COOH 9-OH CO NH H 2-ClPh 0.013 7.89 
158 NMe 8-(CH2)4-N-morph, 9-OH CO NH H 2-ClPh 0.03 7.52 
162 NH 8-O(CH2)3-N-pyrrol, 9-OH CO NH H 2-ClPh 0.036 7.44 
166 NMe 8-O(CH2)3-N-morph, 9-OH CO NH H 2-ClPh 0.057 7.24 
172 NMe 8-SO2(CH2)3-N-pyrrol, 9-OH CO NH H 2-ClPh 0.16 6.80 
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 4.1.1.2 Ligand Preparation 

The 3D structures of the inhibitors were built based on the X-ray structure of 

9-hydroxy-4-phenyl-6H-pyrrolo[3,4-C]carbazole-1,3-dinone (ligand number 1), 

which was cocrystallized with human Wee-1 kinase (PDB code 1X8B) [63]. The 

molecular structures of the inhibitors were generated using Sybyl7.2 [147]. The 

structures were energy minimized using the MMFF94s force field[148] and the BFGS 

method[149-152], until the default derivative convergence criterion of 0.05 kcal/mol 

was reached. All compounds were generated in the protonation state at pH 7.1 using 

the MOE protonate 3D method[112].  

 

 4.1.1.3 Molecular Docking  

To predict the appropriate binding orientation of Weel kinase inhibitors the 

molecular docking program GOLD (version 3.2[105, 106]), was employed to 

generate an ensemble of docking conformations. To test whether GOLD is able to 

reproduce the experimental data we selected the six available Wee1-inhibitor 

complexes from the PDB databank (entries 1X8B, 2ZZW, 2IN6, 2IO6, 3BI6, and 

3BIZ). The protein structures were prepared for docking using the Sybyl7.2 

software[147]. The original ligand and all ions were removed from the Weel protein 

complexes. The default GOLD parameters were used except that the ‘flood fill 

radius’ was set to 20 Å around Cys379.  

In the Wee1 crystal structures a variety of cocrystallized water molecules are 

found in close proximity to the bound inhibitors (Figure 1.18). Since the docking of 

the six inhibitors into the corresponding protein structures resulted in low accuracy 

(high RMSD values for the top-ranked docking pose) when no water molecules or 

constraints were used, we tested a variety of further docking settings. First, we used 

the water toggeling mode within the GOLD program. Eight clusters of cocrystallized 

water molecules (shown as red balls in Figure 1.18) which were observed in close 

proximity to the inhibitors in the Wee1 X-ray structures were considered as potential 

interaction sites for the docked inhibitors. 

As second setting, we considered two hydrogen bonds to the Wee1 hinge 

backbone region to be relevant for inhibitor binding. Therefore two protein hydrogen 

bond constraints were defined in GOLD to the backbone oxygen of Glu377 and to the 
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backbone NH of Cys379. The ligands were scored based on the fitness function 

‘GoldScore’. GOLD was run to save up to 10 top-ranked docking solutions for the 

ligands. The results were visually analyzed using MOE2006.8[112].  

Both docking settings resulted in one favourable cluster of docking poses in 

case of the reference inhibitor 1 (RMSD values between 0.347 and 0.520 for the 10 

top-ranked docking poses), whereas for the more flexible inhibitors several individual 

clusters were detected.  In the case of several clusters we selected the ligand 

conformation which showed the higest GoldScore.  

 

 4.1.1.4 Ligand Alignment Method 

 

(A)                                          (B)                                         (C) 

 

Figure 4.1. (A) Alignment 1 derived from the GOLD docking study, (B) Alignment 2 

obtained by flexibly aligning the docking poses on the template structure of inhibitor 

1, (C) Alignment 3 derived by minimizing the docking poses in the wee1 active site. 

Inhibitor 1 is shown in green. 

 

The result of a CoMFA model strongly depends on the quality of the ligand 

alignment. However, when studying a large number of ligands there is no certain 

preferable alignment method. Therefore, we tested three different alignment 

procedures in order to identify the most efficient alignment approach for this data set. 

The first alignment (Alignment 1 as shown in Figure 4.1 (A)) was derived using the 

top-ranked GOLD docking pose for each inhibitor. 

For the ligand-based alignment 2, displayed in Figure 4.1 (B), a flexible 

alignment was carried out using the structure of compound 1 derived from the crystal 

structure 1X8B.pdb and using the flexible alignment tool within MOE2006.8. In this 
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procedure, a ligand-based alignment was derived using the similarity function as 

criteria to align each molecule onto the conformation of the potent inhibitor 1 as 

template structure.  

Alignment 3, illustrated in Figure 4.1 (C), was derived by refining the GOLD 

docking solutions using the Amber force field 99 [153]. The minimization of the 

Wee1-inhibitor complexes was performed using the MOE2006.08 program. PEOE 

charges [154] were assigned for the inhibitors whereas the Amber force field 99 

charges were applied for the kinase. During the energy minimization process, the 

kinase was constrained by tethering heavy atoms (force constant 100 kcal/mol) 

whereas the inhibitor structures were relaxed.  

 

 4.1.1.5 CoMFA Model 

 CoMFA calculations were done by applying the default settings. The standard 

CoMFA fields performing the Lennard-Jones potential for the steric and Coulomb 

potential for the electrostatic were used. A cut-off value for the fields was set at 30 

kcal/mol. Both steric and electrostatic interactions at each grid point were calculated 

by applying the C-sp3 probe atom with +1 charge. Three different grid spacing 

values, 1Å, 1.5Å and 2Å, were employed in order to investigate the influence of the 

grid spacing. The Sybyl7.2 program [147] was used for generating the CoMFA 

models. 

 To extend the scope of CoMFA the region focusing approach was applied. 

Region focusing is a procedure to refine CoMFA models by contributing the weight 

to the lattice points. Several region focusing procedures such as StDev*Coefficients 

(StDev.), Discriminant power (Disc.), Sigma field (Sigma) and PLS coefficient (PLS) 

as implemented in Sybyl 7.2 were tested.  

 

 4.1.1.6 Partial Least Square (PLS) Analysis 

 The method of PLS as explained in section 2.1 was employed in this studies. 

The leave-one-out, leave-20%-out, and leave-50%-out cross-validation were applied 

to test a predictive ability of a model. An external test set containing 30 randomly 

selected inhibitors was used in addition to test the predictivity of the final CoMFA 

model. 
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4.1.2 Results and Discussion 

 4.1.2.1 Ligand Docking  

Table 4.1: RMSD values between crystal structure and the top-ranked docking pose 

using different docking settings. 
Cocrystallized inhibitor PDB code RMSD water (Å) RMSD constr. (Å) 

N
H

ON
H

O

OH

 

1X8B 0.437 0.434 

N

ON
H

O

OH

COOH  

2IN6 1.210 0.793 

N

ON
H

O

OH

O

OH  

2IO6 1.257 0.585 

N
H

ON
H

O

N
H

ClO

 

2Z2W 0.373 0.431 

N

ON
H

O

Cl

O

N
H

N 3BI6 0.637 0.504 

N

ON
H

O

Cl

ON 3BIZ 0.445 0.491 

RMSD water: RMSD observed for the docking using the toggeling water mode in 

GOLD  

RMSD constr.: RMSD observed for the docking using two hydrogen bond 

constraints. 
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Figure 4.2. Comparison of the docking solution for 1 (colored cyan) compared with 

its position in the crystal structure (colored gray, hydrogen-bonds are shown as 

dashed line, cocrystallized water molecules as red balls and the magnesium ion as 

green ball). 

 

We first analyzed, whether GOLD is able to reproduce the position of the 

cocrystallized inhibitors observed in the six Wee1 X-ray structues. Docking of the 

inhibitors into the Wee1 ATP binding site, using two hydrogen bonding constraints 

and without considering the cocrystallized water molecules, yielded slightly lower 

root-mean square deviation (RMSD) values compared to the docking  when ordered 

water molecules were considered to be part of the protein  (toggeling water mode in 

GOLD) (Table 4.1). Superimposition between the docking solution, using these 

hydrogen bonding constraints and toggeling water mode, and the cocrystallized 

structure (PDB code 1X8B) is also shown in Figure 4.2. Results show clearly that by 

applying these protocols for docking, we can reproduce the X-ray structure. Therefore 

we used these two hydrogen bond constraints for all 174 pyrrolocarbazole derivatives. 

Due to the structural similarity of the analyzed data set, it is likely that all active 

compounds possesing the pyrrolocarbazole moiety show a similar interaction at the 

Wee1 ATP-binding pocket. The superimposition of the 174 compounds (Figure 4.1 

(A)) reveals a well conserved overall conformation, particularly for the 

pyrrolocarbazole ring, with slight variations in the orientation of the attached side 

chains. Beside the four hydrogen bonds of the pyrrolocarbazole to Asn376 (sidechain 

amide), Glu377 (backbone CO), Cys379 (backbone NH and CO), the most potent 
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inhibitor 106 forms an additional hydrogen bond between the N6-substituent and the 

backbone CO of Ser430 (Figure 4.3 (A) and 4.3 (B)).  

(A)                                                                  (B) 

 
Figure 4.3 (A). GOLD docking solution for the most potent inhibitor 106 (orange). 

Hydrogen bonds are shown as dashed line. (B). Schematic representation of the 

interaction of the most potent inhibitor 106 with the residues of the Wee1 binding 

site. Hydrogen bonds are indicated as arrows. 

 

Subsequently we analyzed whether the docking scores (top-score and average 

score) can be correlated with the biological data of the inhibitors. Only a low 

correlation was observed for the studied data set of 174 inhibitors (r² = 0.31). To 

counteract the tendency of larger molecules to produce better docking scores, the 

calculated scores were divided by the square root of the number of heavy atoms[155, 

156]. However, this resulted in no significant improvement of the correlation 

coefficient (r² = 0.34). 

 

 4.1.2.2 CoMFA Models 

In this work, statistical models linking the biological activities to the different 

descriptors were built by means of partial least-square (PLS) regression, the degree of 

correlation of experimental vs. predicted values was expressed in terms of the square 

of the correlation coefficient (r2), indicating the fraction of explained variance, and 

the internal predictability was measured in terms of cross validated r2, hereafter 

referred to as q2
LOO, after cross-validation using the leave-one-out method. A first 

CoMFA model was generated by using 144 randomly selected compounds as training 
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set (Chart 4.1). Analyzing the CoMFA model (q2
LOO = 0.474, SDEP = 0.558, r2 = 

0.706 and SDEE = 0.417) we found that ligands 13, 40, 48, 107 and 144 have high 

residual values (actual pIC50 vs. predicted pIC50). Their residual values are 2.0 times 

higher as the SDEP of the model indicating that these five ligands are being truly 

outliers. We visually analyzed the docking solutions of the outliers and tried to find an 

explanation for that. In case of compound 13, which is the only compound without a 

second carbonyl group at the pyrrolidine ring, the 3D-QSAR model is not able to 

cover this difference. In addition, a variety of different possible binding orientations 

were observed for compound 13 in the docking study. This variability was only 

observed for compound 13, whereas all other inhibitors show the conserved binding 

mode due to the further hydrogen bonding possibilities. Compound 40 is the only 

inhibitor which possesses an aliphatic amino group (-CH2NH2) attached to the phenyl 

ring, and it is not clear whether the amino group is protonated or not when interacting 

at the buried hydrophobic part of the binding pocket. To test the influence of the 

protonation state we generated a variety of different CoMFA models (all aliphatic 

amines protonated, all amines neutral, only the amino group of 40 neutral) but 

compound 40 was an outlier in all models. In case of compound 48 it is not clear why 

the Fluoro substituent in position 4 results in a complete loss of activity, also the 

QSAR model is not able to explain this discrepancy. Similar observations were made 

for compound 107 and 144. It was interesting to see that the five compounds were 

also outliers in the CoMFA model derived from the ligand-based alignment (data not 

shown). 
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Table 4.2. Statistics of generated CoMFA models using different alignment methods. 

Model 
Grid 

Spacing 
(Ǻ) 

Leave-one-out 
cross-validation Non cross-validation Field 

contribution 
q2 Comp. SDEP r2 SDEE F-value Steric Elec. 

Alignment 1 (docking-based alignment) 

1 1.0 0.549 6 0.475 0.773 0.337 75.590 0.546 0.454 

2 1.5 0.685 6 0.397 0.836 0.286 113.017 0.570 0.430 

3 2.0 0.624 6 0.433 0.801 0.316 89.120 0.546 0.454 

Alignment 2 (ligand-based flexible alignment) 

4 1.0 0.506 4 0.488 0.625 0.430 56.319 0.565 0.435 

5 1.5 0.502 4 0.495 0.614 0.436 53.769 0.569 0.431 

6 2.0 0.502 5 0.497 0.656 0.413 51.118 0.561 0.439 

Alignment 3 (aligment from protein-inhibitor minimization) 

7 1.0 0.470 5 0.513 0.682 0.397 57.509 0.486 0.514 

8 1.5 0.462 5 0.517 0.672 0.403 54.991 0.485 0.515 

9 2.0 0.462 5 0.517 0.676 0.401 55.890 0.482 0.518 

 

Therefore, were removed the five outliers and generated a CoMFA model for 

the remaining 139 inhibitors. A variety of CoMFA models were generated based on 

three different alignments and testing different CoMFA settings. Table 4.2 

summarizes the statistics derived for the different models. The best CoMFA model 

was obtained from the docking-based alignment 1 (model 2, q2
LOO = 0.685, SDEP = 

0.397, r2 = 0.836 and SDEE = 0.286), whereas the other two alignment procedures 

resulted in lower q2 values. In addition, we applied a region focusing strategy to 

analyze whether reducing the number of variables is able to increase the predictive 

ability of the CoMFA model 2. The resulting CoMFA model of the 139 ligands with 

PLS region focusing method (model 10 exhibited in Table 4.3) gave the model with 

the highest q2
LOO = 0.764. 

 

Table 4.3. Statistics of the resulting CoMFA models. 

Model RF 
Leave-one-out 
cross-validated Non cross-validated Field 

contribution 
q2 Comp. SDEP r2 SDEE F-value Steric Elec. 

Receptor-based CoMFA model 

2 - 0.685 6 0.397 0.836 0.286 113.017 0.570 0.430 

CoMFA model, Region Focusing Method 

10 PLS 0.764 6 0.342 0.870 0.254 148.973 0.478 0.522 
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 The actual pIC50, the predicted pIC50 and the estimated pIC50 of each 

inhibitor, which was calculated from the CoMFA model 10, are compared and listed 

in Table 4.4. Actual pIC50 versus predicted pIC50 and estimated pIC50 values are 

plotted on the graph in the Figure 4.4 (A) and 4.4 (B), respectively. The cross-

validation demonstrates that the predicted pIC50 values are in good agreement with 

the actual pIC50. The leave-one-out cross-validation method might lead to high q2 

values, which do not necessarily reflect a predictivity of a model. Therefore, further 

cross-validation, using five and two groups of approximately the same size in which 

the objects were assigned randomly, was performed. These models have been shown 

in the literature to provide a better quantitative estimate of the robustness of a QSAR 

model. Thus, q2 values for leave-20%-out (0.747) and leave-50%-out (0.737) were 

determined. The high q2 values of the both cross-validation procedures, which are in 

the same range as the leave-one-out value, indicates that even with a limited number 

of molecules robust QSAR models could be derived. In addition, CoMFA model 10 

was also applied to predict the activity of the external test set containing 30 inhibitors 

not used for model generation (Table 4.5). The prediction shows a good correlation 

between the actual and the predicted pIC50 values with r2
pred = 0.790 (Figure 4.4 (C)). 

In addition, CoMFA models 4 and model 7 were also used to predict the activities of 

the test set but resulted in much lower predictive r2 values (r2
pred = 0.551 and 0.501, 

respectively). 

 

Table 4.4 List of actual pIC50, predicted pIC50 (derived from leave-one-out cross-

validation), estimated pIC50 values and residual for the 139 training set compounds as 

derived from the CoMFA model 10. 

Cpd Actual 
pIC50 

Pred. 
pIC50 

Res. Est. 
pIC50

Res.  Cpd Actual  
pIC50

Pred. 
pIC50

Res. Est. 
pIC50 

Res. 

3 5.63 5.81 -0.18 5.71 -0.08  90 7.23 6.94 0.29 7.02 0.21 

4 6.51 6.87 -0.36 6.80 -0.29  91 6.82 7.12 -0.30 7.01 -0.19 

5 6.37 6.77 -0.40 6.62 -0.25  92 6.77 7.33 -0.56 7.16 -0.39 

6 7.11 6.72 0.39 6.83 0.28  93 7.01 7.01 0.00 7.01 0.00 

8 6.89 6.32 0.57 6.42 0.47  94 7.55 7.35 0.20 7.38 0.17 

9 5.79 6.36 -0.57 6.17 -0.38  95 6.85 7.15 -0.30 7.10 -0.25 

10 5.01 5.39 -0.38 5.12 -0.11  96 7.24 7.57 -0.33 7.55 -0.31 

11 5.63 5.64 -0.01 5.60 0.03  97 7.23 7.55 -0.32 7.50 -0.27 
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Cpd Actual 
pIC50 

Pred. 
pIC50 

Res. Est. 
pIC50

Res.  Cpd Actual  
pIC50

Pred. 
pIC50

Res. Est. 
pIC50 

Res. 

12 5.39 5.17 0.22 5.17 0.22  98 7.60 7.33 0.27 7.39 0.21 

14 5.40 5.08 0.32 5.08 0.32  99 7.35 7.72 -0.37 7.63 -0.28 

15 7.96 7.29 0.67 7.36 0.60  101 6.70 7.37 -0.67 7.22 -0.52 

16 6.19 6.79 -0.60 6.52 -0.33  102 8.05 7.52 0.53 7.63 0.42 

17 7.24 7.60 -0.36 7.53 -0.29  103 8.15 7.51 0.64 7.68 0.47 

19 6.48 6.58 -0.10 6.60 -0.12  104 7.52 7.47 0.05 7.47 0.05 

21 7.89 7.35 0.54 7.47 0.42  105 7.68 7.30 0.38 7.47 0.22 

22 6.82 7.39 -0.57 7.29 -0.47  106 8.22 7.57 0.65 7.73 0.49 

23 6.29 6.45 -0.16 6.40 -0.11  108 7.82 7.63 0.19 7.64 0.18 

24 6.24 6.58 -0.34 6.41 -0.17  109 7.52 7.55 -0.03 7.53 -0.01 

25 6.35 6.85 -0.50 6.64 -0.29  110 7.48 7.40 0.08 7.42 0.07 

26 6.72 7.34 -0.62 7.28 -0.56  111 6.70 6.53 0.18 6.61 0.09 

27 6.08 6.41 -0.33 6.23 -0.15  113 7.02 7.01 0.01 6.97 0.05 

28 6.24 6.02 0.22 6.08 0.16  114 6.77 6.97 -0.20 6.86 -0.09 

31 6.59 6.35 0.24 6.44 0.15  116 7.19 7.32 -0.13 7.12 0.07 

32 7.48 7.36 0.12 7.41 0.07  117 6.96 6.85 0.12 6.82 0.14 

33 6.66 6.75 -0.09 6.59 0.07  118 6.64 6.88 -0.24 6.80 -0.16 

34 7.33 7.77 -0.44 7.60 -0.27  119 7.04 7.24 -0.20 7.16 -0.12 

35 6.68 7.35 -0.67 7.26 -0.58  120 6.92 7.11 -0.19 7.01 -0.09 

36 6.66 6.86 -0.20 6.87 -0.21  121 6.55 6.56 -0.01 6.55 0.00 

37 7.26 6.81 0.45 6.89 0.37  122 7.16 6.58 0.58 6.86 0.30 

38 6.64 6.52 0.12 6.57 0.07  123 6.96 7.19 -0.23 6.78 0.18 

39 6.06 6.50 -0.44 6.35 -0.29  125 7.00 6.72 0.28 6.78 0.22 

41 6.74 6.37 0.37 6.44 0.30  126 6.85 6.98 -0.13 6.83 0.02 

42 5.36 6.25 -0.89 5.66 -0.30  127 6.54 6.79 -0.25 6.72 -0.18 

45 6.21 6.38 -0.17 6.31 -0.10  128 7.15 7.10 0.05 7.18 -0.03 

46 6.52 7.05 -0.53 6.97 -0.45  129 7.19 7.09 0.11 7.19 0.00 

47 7.15 7.14 0.01 7.17 -0.02  132 7.23 6.99 0.24 7.07 0.16 

49 6.14 6.75 -0.61 6.65 -0.51  133 6.52 6.76 -0.24 6.65 -0.13 

52 5.74 5.78 -0.04 5.77 -0.03  134 7.09 6.90 0.19 6.99 0.10 

53 5.44 5.30 0.14 5.27 0.17  135 7.21 7.00 0.21 7.12 0.09 

54 7.17 6.94 0.23 6.98 0.19  136 7.03 7.12 -0.09 7.22 -0.19 

57 5.95 6.27 -0.32 6.10 -0.15  140 7.46 7.41 0.05 7.68 -0.22 

58 6.82 6.97 -0.15 6.99 -0.17  141 7.85 8.01 -0.16 8.05 -0.20 

59 7.55 7.16 0.39 7.25 0.30  142 7.64 7.89 -0.25 7.75 -0.11 

60 7.55 7.16 0.39 7.37 0.18  143 8.05 8.16 -0.11 8.08 -0.03 

61 7.92 7.18 0.74 7.28 0.64  145 7.92 7.38 0.54 7.63 0.30 
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Cpd Actual 
pIC50 

Pred. 
pIC50 

Res. Est. 
pIC50

Res.  Cpd Actual  
pIC50

Pred. 
pIC50

Res. Est. 
pIC50 

Res. 

62 7.64 7.14 0.50 7.25 0.39  146 8.15 8.04 0.11 8.31 -0.16 

63 7.62 7.21 0.41 7.30 0.32  147 7.68 7.45 0.23 7.52 0.16 

64 6.31 6.86 -0.55 6.77 -0.46  148 7.62 7.75 -0.13 7.74 -0.12 

66 7.70 7.00 0.70 7.14 0.56  149 8.05 7.71 0.34 7.94 0.11 

67 7.55 7.46 0.09 7.49 0.06  152 7.80 7.47 0.33 7.57 0.24 

68 7.35 7.52 -0.17 7.50 -0.15  153 7.31 7.39 -0.08 7.31 0.00 

69 7.82 7.42 0.40 7.55 0.27  154 7.30 7.39 -0.09 7.31 -0.01 

70 7.70 7.44 0.26 7.51 0.19  155 7.43 7.28 0.15 7.27 0.16 

71 7.46 7.25 0.21 7.29 0.17  156 7.47 7.66 -0.19 7.44 0.03 

72 6.57 7.24 -0.67 7.06 -0.49  157 7.44 7.21 0.23 7.34 0.11 

73 6.02 6.23 -0.21 6.02 0.00  159 7.62 7.74 -0.12 7.71 -0.09 

74 7.12 6.84 0.29 6.85 0.27  160 7.72 7.57 0.15 7.58 0.14 

75 7.72 7.93 -0.21 7.92 -0.20  161 7.59 7.55 0.04 7.61 -0.02 

76 6.96 6.97 -0.01 6.96 0.00  163 7.59 7.66 -0.07 7.67 -0.08 

77 7.57 7.38 0.19 7.51 0.06  164 7.24 7.43 -0.19 7.37 -0.13 

78 7.54 7.73 -0.19 7.72 -0.18  165 7.12 7.55 -0.43 7.29 -0.17 

79 7.74 7.44 0.30 7.61 0.13  167 7.74 7.50 0.24 7.72 0.02 

81 6.85 6.90 -0.05 6.91 -0.06  168 7.62 7.68 -0.06 7.75 -0.13 

82 6.32 6.92 -0.60 7.05 -0.73  169 7.82 7.94 -0.12 7.97 -0.15 

83 6.74 6.62 0.12 6.68 0.06  170 7.70 7.69 0.01 7.69 0.01 

84 7.42 6.67 0.75 6.88 0.54  171 7.48 7.28 0.20 7.72 -0.24 

87 7.30 7.56 -0.26 7.54 -0.24  173 7.34 7.53 -0.19 7.31 0.03 

88 7.20 7.50 -0.30 7.44 -0.24  174 7.82 7.62 0.20 7.96 -0.14 

89 7.28 7.57 -0.29 7.51 -0.23        
*Cpd = Compound Number, Pred. pIC50 = Predicted pIC50, Est. pIC50 = Estimated pIC50 and Res. = 

Residual Value 

 

 

 

 

 

 

 

 

 

 



118 
 

(A) 

 

 

 

 

 

 

(B)  

 

 

 

 
 
 
 
 
 
 
 
 
Figure 4.4 (A). Correlation between the actual pIC50 and the predicted pIC50 obtained 
with the best CoMFA model 10. (B). Correlation between the actual pIC50 and the 
estimated pIC50 of the best CoMFA model 10.  
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Table 4.5. Actual pIC50, predicted pIC50 and residual values of the 30 test set 
compounds. 

Cpd Actual pIC50 Predicted pIC50 Residual 
1 7.01 6.98 0.03 
2 5.39 5.92 -0.53 
7 6.59 7.17 -0.58 
18 7.48 7.18 0.30 
20 7.64 7.47 0.17 
29 7.22 7.44 -0.22 
30 7.62 7.73 -0.11 
43 4.30 5.37 -1.07 
44 7.05 7.03 0.02 
50 5.48 5.70 -0.22 
51 5.92 6.64 -0.72 
56 4.50 5.29 -0.79 
65 7.38 7.39 -0.01 
80 7.31 7.37 -0.06 
85 6.09 6.70 -0.61 
86 6.24 6.76 -0.53 
100 8.10 7.51 0.58 
111 7.57 7.57 0.00 
115 6.85 6.75 0.10 
124 6.44 6.81 -0.37 
130 6.96 6.79 0.17 
131 7.27 7.15 0.12 
137 7.13 7.38 -0.25 
138 7.17 7.23 -0.05 
150 7.72 7.68 0.04 
151 7.89 7.63 0.25 
160 7.52 7.47 0.05 
162 7.46 7.03 0.42 
166 7.24 7.55 -0.31 
172 6.80 7.56 -0.77 
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Figure 4.4 (C) Prediction of the external test set containing 30 inhibitors.  

   

  4.1.2.3 CoMFA Graphical Contour Plot 

 The subsequent PLS analysis, using the energy fields as descriptors and the 

biological activity as the dependent variable, can highlight the relative importance for 

affinity of certain types of interaction and certain regions around the compounds. 

Since the structure of the Wee1 kinase is known, the results obtained by the 3D-

QSAR analysis were compared with the geometry and properties of the binding 

pocket. It is necessary to note, that in general, such comparison should be attempted 

carefully. In receptor-based 3D-QSAR models, the variance observed in the field 

values reflects both the structural diversity of the ligands and their diverse location 

within the binding site. The PLS coefficient contour maps can by no means be 

regarded as a set of low resolution picture of the binding site, since the contour maps 

reflect only those regions in space, where the ligand-probe interaction energy is 

correlated with a variance of the biological activity. However, it provides an 

opportunity to interpret features indicated in the contour maps with respect to the 

protein environment and to check whether the variance in the field values corresponds 

to regions known to be important for inhibitor binding. We superimposed the 

coefficient contour maps and the Wee1 ATP binding pocket. Figures 4.5 (A) and 4.5 
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(B) show the plot of the PLS coefficients for the steric and electrostatic field, 

respectively. 

 

Figure 4.5 (A). CoMFA steric field projected on the Wee1 binding pocket. The 

docked inhibitor 106 is displayed in ball and stick. The Connolly molecular surface of 

the enzyme is shown in white. (Color code: favoured, green (contribution level 80%); 

disfavoured yellow (contribution level 20 %).  

 

Figure 4.5 (B). CoMFA eletstrostatic field overlaid on the docked inhibitor 169 

(colored orange).  The Connolly molecular surface of the enzyme is shown in white. 

(Color code: inrease in positive charge favoured, blue (contribution level 80%); 

increase in negative charge favoured red (contribution level 20 %).  
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 The steric interaction is represented by green and yellow contours, in which 

green-coloured regions indicate areas where increased steric bulk is associated with 

enhanced activity, and yellow regions suggest areas where increased steric bulk is 

unfavourable. Electrostatic interaction is indicated by red and blue contours, among 

which blue-coloured regions show areas where more positively charged groups are 

favoured, and red regions highlight areas where groups with more negative partial 

charges are favoured. 

 A large favourable steric field (green) is observed around Ala326 and Asn376 

next to the ortho position of the phenyl ring. Potent inhibitors without further activity-

increasing substituents at the pyrrolocarbazole core, such as 21, 29, 30, 32, 34, and 69 

possess substituents at the ortho position of the phenyl ring. A second smaller 

favourable PLS region is found nearby the para position of the phenyl ring. However, 

the size of the hydrophobic pocket is restricted by His350, Glu346 and Leu464. 

Compounds with too large substituents at position 3, 4 and 5 of the phenyl ring (42, 

43, 55, 56 and 57) are able to interact with the hydrophobic pocket but show no 

optimal position to make the important hydrogen bonds to the hinge backbone region. 

Based on these results we suggest that adding a smaller electronegative substitutent in 

position 6 of the phenyl ring would be favourable when combinded with the 2-Cl 

substitutent. The prediction of the fluoro analog of 106 (2-Cl, 6-FPhe) resulted in a 

higher pIC50 value compared to the original inhibitor. The same positive effect was 

observed when adding the 6-F group to the phenyl ring of compound 103.  

 An additional favourable region is located nearby Ser430 and Ser383. This 

result agrees well with the experimental data which show that adding a substituent to 

the nitrogen atom of the pyrrolo ring results in highyl active inhibitors. The 

unfavourable regions are located above and behind the phenyl substituent, indicating 

that the conformational preference of the phenyl ring is important for high activity.  

A favourable electrostatic field (Figure 4.5 (B), colored blue) for positively 

charged groups is found close to the positions 4 and 5 of the phenyl ring, indicating 

that more positively charged groups can favourably interact with the surounding 

residues Glu346 and Asp463. Glu346 and Asp463 mainly contribute to the negative 

electrostatic potential in that region of the binding pocket. This observation is in 

agreement with the experimental data; compounds 44, 47, 54, 58, 65, 66, 70, 75 and 
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80 bearing a substituent at position 4 or 5 of the phenyl with partial positive charge 

show higher pIC50 values compared to compounds 3, 6, 8, 10-15, 42, 43, 59, 60, 64 

and 75 which possess neutral or more negatively charged substituents. Based on the 

contour plots, we suggest that inhibitors with 2-Cl, 4-OH, 6-FPhe or 2-F, 4-OH, 

6FPhe ring attached to the pyrrolocarbazole core represent interesting compounds for 

future synthesis. 

A second favourable electrostatic field for posively charged groups can be 

observed nearby Ser307 and Ser430. The docking of the potent inhibitor 106 showed 

that the amide group in the sidechain of 106 is donating a hydrogen bond to Ser430 

(Figure 4.3 (A)).  In addition, the highly active inhibitors 147, 148, 149, 150 and 152, 

show also a hydrogen bond with Ser307. These results imply that the side chain of the 

phenylpyrrolocarbazole core play as key role in the interaction with Wee1. Inhibitors 

122, 130-132, 136, 137 and 138 which contain partially positive charged groups in 

this region show high pIC50 values, whereas on the other site compounds 117, 118, 

124-126, 127 and 133 bearing a neutral substituent at this position show lower pIC50 

values. From the GOLD docking and the established CoMFA model, we suggest that 

partial positively charged groups at this position are favourable to establish strong 

interactions with Ser307 and Ser430.  

A favourable electrostatic field for electronegative substituents (Figure 4.5 

(B), colored red) is found nearby Tyr378 and Cys379. This is in agreement with the 

observation that the 9-OH substituent is important for the interaction with these two 

amino acid residues. Another favourable electrostatic field is observed above and 

below the planar pyrrolocarbazole ring system. These two fields result from the 

slightly different position of the aromatic system as derived from the docking study. 

 

4.2 Structure-based prediction of activities of Wee1 Kinase inhibitors using the 

linear response MM/PBSA approach 

In the present work, we used the LR-MM/PBSA approach to establish a model 

for predicting the binding free energies of Wee1 kinase inhibitors. Instead of using an 

ensemble of protein-ligand complexes derived from MD simulation[98], a single 

protein-inhibitor complex derived from refined docking solutions was used for 

generating the LR equation. In addition, the LIECE model[93] generated originally 
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for CDK2, Lck and p38 inhibitors were applied to evaluate whether it could also be 

applied to predict the binding free energies of other series of kinase inhibitors (i.e. 

Wee1 kinase inhibitors used in this study) which were not used to set up the original 

model. 

 

4.2.1 Material and Computational methods 

 4.2.1.1 Inhibitor data set 

A set of pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione derivatives [62-64] (174 

compounds) and of 2-anilio-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones derivatives 

[61] (48 compounds) which represent Wee1 kinase inhibitors were considered in this 

study. The IC50 values of inhibitors were converted into the experimental binding free 

energy (ΔGexp.) by using equation ΔGexp. = -RTln(IC50). The structures of the 

inhibitors together with biological activities (IC50 and pIC50) and the ΔGexp  are shown 

in Chart 4.1 and Chart 4.2. The compounds were randomly separated into training set 

and test set. For the pyrrolocarbazole dataset, the same training set (144 compounds) 

and test set (30 compounds) as in our previous work (section 4.1)[157] were used. 

For the pyridopyrimidine derivatives 38 compounds were selected as training set and 

10 compounds as test set. 
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Chart 4.2. Molecular structures of the 2-anilio-6-phenylpyrido[2,3-d]pyrimidin-
7(8H)-ones derivatives used in this study 

 

Test Set (38 compounds) 

Cpd. X Y Z 
Activity 

ΔGexp. IC50 
(µM) pIC50 

175 O(CH2)2NEt2 H 2‘,6‘-diCl 0.165 6.78 -9.31 
176 H H 2‘,6‘-diCl 2.6 5.59 -7.66 
177 H H 2‘,6‘-diF 9.7 5.01 -6.88 
179 H H 2‘,6‘-diMe 0.99 6.00 -8.24 
180 H H 2‘,6‘-diCF3 41 4.39 -6.02 
181 H H 2‘,6‘-diOH 27 4.57 -6.27 
182 H H 2‘-Cl, 6‘-F 2.4 5.62 -7.71 
183 H H 2‘-Cl, 6‘-Me 1.9 5.72 -7.85 
186 H H 2‘-Me, 6‘-Br 4.5 5.35 -7.34 
189 H H 2‘,6‘-diCl, 3‘-CH2OH 3.5 5.46 -7.49 
190 H H 2‘,6‘-diCl, 3‘-CH2NH2 31 4.51 -6.19 
191 H H 2‘,6‘-diCl, 3‘-COOH 3.2 5.49 -7.54 
192 H H 2‘,6‘-diCl, 3‘-CONH2 8.6 5.07 -6.95 
193 H H 2‘,6‘-diCl, 3‘-OH 0.074 7.13 -9.79 
194 H H 2‘,6‘-diCl, 3‘-NH2 2.6 5.59 -7.66 
195 H H 2‘,6‘-diCl, 4‘-Cl 8.6 5.07 -6.95 
196 H H 2‘,6‘-diCl, 4‘-OH 0.22 6.66 -9.14 
198 H H 2‘,6‘-diCl, 4‘-NH2 3.7 5.43 -7.45 
199 H H 2‘,6‘-diCl, 4‘-NHAc 36 4.44 -6.10 
201 H H 2‘,6‘-diMe, 3‘,5‘-diOMe 33 4.48 -6.15 
202 H H 2‘,6‘-diMe, 3‘,5‘-diOH 0.14 6.85 -9.41 
203 CH2CONH2 H 2‘,6‘-diCl 0.12 6.92 -9.50 
205 (CH2)4CONH2 H 2‘,6‘-diCl 0.26 6.59 -9.04 
206 OCH2CONH2 H 2‘,6‘-diCl 0.25 6.60 -9.06 
207 O(CH2)2NEt2 H 2‘,6‘-diMe 0.99 6.00 -8.24 
208 O(CH2)3COOH H 2‘,6‘-diCl 0.086 7.07 -9.70 
209 (CH2)3COO(CH2)2Nmorph H 2‘,6‘-diCl 0.095 7.02 -9.64 
210 (CH2)3COO(CH2)2NMe2 H 2‘,6‘-diCl 0.124 6.91 -9.48 
211 (CH2)3COO(CH2)2Npip H 2‘,6‘-diCl 0.142 6.85 -9.40 
212 (CH2)3COOH H 2‘,6‘-diCl 0.032 7.49 -10.29 
213 CH2CH(NH2)COOH H 2‘,6‘-diCl 0.09 7.05 -9.67 
214 (CH2)3tetrazole H 2‘,6‘-diCl 0.069 7.16 -9.83 
215 O(CH2)2NEt2 H 2‘,6‘-diCl, 3‘-OH 0.15 6.82 -9.36 
218 O(CH2)3COOH H 2‘,6‘-diCl, 4‘-OH 0.04 7.40 -10.15 
219 H Me 2‘-Cl 0.41 6.39 -8.77 
220 O(CH2)2NEt2 Me 2‘-Cl 0.55 6.26 -8.59 
221 H Me 2‘,6‘-diMe 1.2 5.92 -8.13 
222 O(CH2)2NEt2 Me 2‘,6‘-diMe 0.54 6.27 -8.60 
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Test Set (10 compounds) 

Cpd. 
 

Y Z Activity ΔGexp. X IC50 (µM) pIC50 
178 H H 2‘,6‘-diBr 0.41 6.39 -8.77 
184 H H 2‘-Cl, 6‘-OMe 3.4 5.47 -7.50 
185 H H 2‘-Cl, 6‘-OH 1.5 5.82 -7.99 
187 H H 2‘-OMe, 6‘-OH 11 4.96 -6.80 
188 H H 2‘,6‘-diCl, 3‘-Me 50 4.30 -5.90 
197 H H 2‘,6‘-diMe, 4‘-OH 0.58 6.24 -8.56 
200 H H 2‘,6‘-diCl, 3‘,5‘-diOH 0.14 6.85 -9.41 
204 (CH2)2CONH2 H 2‘,6‘-diCl 0.19 6.72 -9.22 
216 O(CH2)3COOH H 2‘,6‘-diCl, 3‘-OH 0.04 7.40 -10.15 
217 O(CH2)2NEt2 H 2‘,6‘-diCl, 4‘-OH 0.08 7.10 -9.74 

 

4.2.1.2 Ligand preparation and docking 

 Molecular docking of the pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione 

derivatives and of 2-anilio-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones derivatives 

was carried out as described in our previous work (section 4.1.1.3)[157] where we 

could show that GOLD[105, 106] is able to correctly predict the binding model of 

Wee1 kinase inhibitors. All ligands were generated using Sybyl 7.2[147] and energy 

minimized using the MMFF94s force field[148] and the BFGS optimization 

method[149-152] with a convergence criteria of 0.05 kcal/mol. Protonation states of 

all ligands were assigned for pH7.1 using the protonate-3D method in 

MOE2008.10[112]. The compounds were docked into the X-ray structure of Wee1 

kinase (PDB code 1X8B) using program GOLD (version 3.2)[105, 106]. The binding 

site was defined by a setting a radius of 20 Å around Cys379. As in our previous 

docking of Wee1 kinase inhibitors[157] the influence of including eight co-

crystallized water molecules within the binding pocket was considered using the 

‘water toggle-mode’ within GOLD 

 

 4.2.1.3 Energy minimization of docking poses 

 All docking poses were energy minimized using a combination of steepest 

descent, and conjugate gradient algorithm with a room mean square of gradient at 

0.001 kcal/mol with the MOE2008.10[112] program. AM1-BCC charges[158] were 

assigned for inhibitors whereas the Amber99[153] force field was applied for the 

protein. The non-bonded cutoff was set at 16 Å. All heavy atoms of Wee1 kinase 

were tethered with a force constant 100 kcal/mol, whereas the inhibitors were relaxed 
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during the energy minimization process. The energy-minimized protein-inhibitor 

complex was subsequently used for calculating the van der Waals and electrostatic 

interaction energy as well as the solvation energy.  

 

 4.2.1.4 Interaction energy calculation 

 The minimized complexes were prepared for calculating the interaction 

energy using the LEaP module in AMBER10[159] by applying AM1-BCC[158] 

charges. The parameters fron the general Amber force field (GAFF)[134] were used 

for the ligands while the Amber1999SB force field was used for Wee1 kinase. Then, 

van der Waals (EvdW) and electrostatic (Eele) interaction between ligand and protein in 

gas phase were calculated with an infinite cutoff using the SANDER module in 

AMBER10. The electrostatic free energy of solvation (Gele-sol) was calculated with 

numerical solvation of the Possion-Boltzmann (PB) equation as implemented in the 

pbsa program[141] in AMBER10. Default parameters for the PB solver such as a grid 

spacing at 0.5 Å, dielectric constants of 1.0 for solute and 80.0 for implicit PB 

solvent, solvent probe radius at 1.4 Å were used. The non-electrostatic free energy of 

solvation (Gnonele-sol) was calculated using the linear function of the solvent accessible 

surface area (SASA)[142]; ΔGnonele-sol = γSASA + b where γ and b were set at the 

default values (γ = 0.00542 kcal/mol*A2 and b = 0.92 kcal/mol). 

 

 4.2.1.5 Binding free energy calculation using LR-MM/PBSA and LIECE 

models 

 Two different approaches were applied for calculating the binding free 

energies of Wee1 kinase inhibitors. First, binding free energies were calculated by 

applying the LR-MM/PBSA method using the two following equations: 

a four-parameter model: 

                            ΔG = αΔEvdW + βΔEele + β1ΔGele-sol+β2ΔGnonele-sol + γ                   (1) 

a three-parameter model: 

                                  ΔG = αΔEvdW + βΔEele + β1ΔGsol + γ                                       (2) 

ΔGsol is the summation of ΔGele-sol
 and ΔGnonele-sol. The coefficients (α, β, β1, and β2) 

of LR-MM/PBSA model were generated by empirical fitting with the experimental 

binding free energy (ΔGexp.). Second, LIECE models taken from the literature[93] 
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were applied for predicting the binding free energies of the same Wee1 kinase 

inhibitors. These LIECE models were orignially generated for predicting CDK2, Lck 

and p38 inhibitors using the CHARMM22 force field and the PBEQ method within 

CHARMM. The entropy contribution was not taken into account for both methods 

because of its high computational demand. Since only the relative binding free 

energies should be analyzed, this approach is acceptable. In addition, the previous 

work[93] has shown that an improvement could not be obtained when including the 

the entropy contribution. 

 

 4.2.2 Results and discussion 

 4.2.2.1 Binding mode of pyridopyrimidine derivatives 

 
Figure 4.6. Docking solutions of all compounds of pyridopyrimidine derivatives 

projected on the binding pocket of Wee1 kinase. Hydrogen bonds are shown as 

dashed line, cocrystallized water molecules are presented as red balls. Ligands are 

displayed as line whereas important amino acid residues are shown as balls and stick. 

 

 In a previous docking study we could already show that GOLD is able to 

correctly reproduce the available X-ray structures of Wee1 in complex with inhibitors 

[157]. Therefore in the next step we analyzed the docking solutions of all 

pyridopyrimidine derivatives studied in the present work. Most compounds gave only 

one binding mode (Figure 4.5), showing a bidentate H-bond between N-3 and N-2 of 

the aminopyrimidine ring with backbone atoms (NH and CO) of Cys379, locating at 
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the hinge region. In this binding mode, the attached phenyl ring is interacting with the 

hydrophobic pocket surrounded by His350, Lys328, Glu346 and Asp463 as displayed 

in Figure 4.6. This orientation is also observed in the crystal structure of compound 1 

in 1X8B.pdb. Therefore, the docking solutions which showed this binding mode were 

selected.  

 Superimposition of the selected docking solution of all compounds is shown 

in Figure 4.6. All compounds show a conserved binding mode, including a bidentate 

H-bond interaction with Cys379 and the interaction with residues of the hydrophobic 

pocket. In addition, the interaction of an active compound (e.g. compound 218) was 

investigated. Besides of the H-bond interaction with Cys379, the OH at position 4 of 

phenyl ring form H-bond with Glu346 as showed in Figure 4.7 (A) and 4.7 (B). 

Moreover, π-π interaction between ligand and Phe433 was also found. The 

cocrystallized water molecules located at the binding pocket are also involved in a H-

bond network between ligand and enclosed residue such as Ile305 (Figure 4.7 (A)). 

We then examined whether the calculated docking scores, (GoldScore and 

ChemScore) show a correlation with the experimental binding data. However, neither 

GoldScore nor ChemScore show significant correlation with ΔGexp. as shown in 

Figure 4.8 (A) and 4.8 (B) (r2 = 0.14 for GoldScore, and r2 = 0.02 for ChemScore). 

Therefore, we applied the LR-MM/PBSA approach to predict the binding strength of 

inhibitors.  
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Figure 4.7. (A) GOLD docking solution for one of the potent inhibitors, compound 

218, (B) Schematic representation of the interaction of compound 218 with the 

residues at the Wee1 binding site. Hydrogen bonds are indicated as arrows. 

 

(A)                                                                  (B) 

 

Figure 4.8. Correlation between ΔGexp.and GoldScore (A), and ChemScore (B) of all 

222 compounds applied in this study  

(A) 

(B) 
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 4.2.2.2 LR-MM/PBSA based prediction 

 The LR-MM/PBSA method was used to generate three different models: i.) 

model for the pyrrolocarbarzole subset, ii). model for the pyridopyrimidine subset and 

iii.) a general model for both subsets. A first LR-MM/PBSA model was generated 

using the four parameters, ΔEvdW, ΔEele, ΔGele-sol and ΔGnonele-sol. Nevertheless, we 

found that the coefficient of the term ΔGnonele-sol contributed quite small to the models. 

So we used only one descriptor for the solvation energy term which is ΔGsol, a 

summation of ΔGele-sol and ΔGnonele-sol.  

 

Table 4.6. Statistical Values of training set of LR-MM/PBSA model 

Num. of comps. = Number of compounds, RMSE = root mean square of error, 
XRMSE = root mean square of error derived from leave-one-out cross validation 
 

The LR-MM/PBSA model for the pyrrolocarbarzole subset was generated using 

144 compounds as a training set which are the same as in the section 4.1. The 

statistical value obtained from this data set (model 1) are r2 = 0.64, root mean square 

of error (RMSE) = 0.61 kcal/mol, q2
LOO = 0.62 and leave-one-out cross validated root 

mean square of error (XRMSE) = 0.64 kcal/mol as summarized in Table 4.6. We 

found that compound 13, 48, 71 and 107 have high residual values (ΔGexp. - ΔGest.), 

and their residual values are 2.0 time higher than RMSE value of the model 1. 

Compound 13, 48, and 107 were also the outlier as in our previous work (section 

4.1)[157] where a 3D-QSAR model was established on the same data set. Therefore, 

a reduced model was generated by removing these four outliers. However, the 

statistical values derived from this data set (model 2) showed only a slight 

Model Num. of 
comps. outliers Statistical values 

RMSE r2 XRMSE q2 
Pyrrolocarbazole model 

1 144 - 0.61 0.64 0.64 0.62 
2 140 13, 48, 71, 107 0.55 0.67 0.57 0.65 

Pyridopyrimidine model 
3 38  0.86 0.52 0.97 0.41 
4 35 177, 181, 199 0.65 0.67 0.76 0.58 

General Model 

5 182 - 0.74 0.61 0.77 0.58 

6 175 13, 48, 71, 107, 
177, 181, 199 0.64 0.67 0.66 0.64 
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improvement (r2 = 0.67, RMSE = 0.55 kcal/mol, q2
LOO = 0.65 and XRMSE = 0.57 

kcal/mol). Therefore, the suitable model for the pyrrolocarbarzole subset is model 1 

The derived equation (model 1) of the pyrrolocarbarzole subset is shown below. 

            ΔG = 0.10877ΔEvdW + 0.06786ΔEele + 0.06239ΔGsol
 - 10.91832            (3)               

The LR-MM/PBSA model for the pyridopyrimidine subset was built in the same 

way as described for the pyrrolocarbarzole subset. A three-parameter model was 

initially generated using 38 compounds as a training set (chart 4.2). The correlation 

between observed and calculated data (model 3) yielded the following values: r2 = 

0.52, RMSE = 0.86 kcal/mol, q2
LOO = 0.41 and XRMSE = 0.91 kcal/mol. Thus, the 

model for the pyridopyrimidine derivatives shows lower accuracy in calculating the 

binding data. We also removed for this data set the outliers (compounds 177, 181 and 

199) having residual values higher than 2.0 times of the RMSE value. We analyzed 

why these compounds are outliers by visual inspection of their docking solutions. In 

case of compounds 177 and 181, it is not clear why a fluoro substitution at position 2 

(compound 177) or a hydroxy group (compound 181) results in lower activities. In 

contrast, several compounds such as 175, 176, 178, 179, 182, 183, 184, and 185 

contain an electron withdrawing group (-Cl, -F, -Br, or -OH) at the same position but 

show high activity. Therefore, the docking solutions and the calculated binding free 

energies of these compounds are not able to explain this behavior. Finally, a reduced 

model from the remaining 35 compounds was generated. The obtained model (model 

4) gave significant improvement of the statistical values (r2 = 0.67, RMSE = 0.65 

kcal/mol, q2
LOO = 0.58 and XRMSE = 0.76 kcal/mol). The final equation for this 

reduced data set is shown below: 

             ΔG = 0.09395ΔEvdW - 0.00187 ΔEele + 0.00726ΔGsol
 - 8.60966             (4) 

In the last step, an unified model was built using all 182 compounds (144 

pyrrolocarbarzoles and 38 pyridopyrimidines, respectively). Also here, the seven 

outliers were omitted. The statistical values of the final model 6 are: r2 = 0.67, RMSE 

= 0.64 kcal/mol, q2
LOO = 0.64 and XRMSE = 0.66 kcal/mol. The r2 value indicates a 

good correlation between the ΔGexp. and ΔGest. In addition, the obtained q2
LOO value 

suggests the robustness of the model for predicting novel compounds. The derived 

unified model is shown in equation 5 below: 

          ΔG = 0.10505ΔEvdW + 0.05267ΔEele + 0.05176 ΔGsol
 - 10.74762            (5)  
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The correlation between the ΔGexp. and ΔGest. derived from LR-MM/PBSA model 

1, 4 and 6 are shown in Figure 4.9 (A), 4.9 (B) and 4.9 (C), respectively. A good 

correlation was observed in all three models, and most compounds show low residual 

values in the range of + 1.0 kcal/mol (indicated by the dashed lines in Figure 4.9 (A), 

(B) and (C)). 

 

 

 

Figure 4.9. Correlation between ΔGexp.and ΔGest. of the compounds in the training set 

of (A) pyrrolocarbazole using model 1, (B) pyridopyrimidine using model 4, and (C) 

the general model using model 6 

 

(A) 

(B) 

(C) 
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 In the next step, the LR-MM/PBSA models (model 1, 4 and 6) were used to 

predict the binding free energies of external test compounds. Therefore, 30 

pyrrolocarbazoles and 10 pyridopyrimidines were predicted. The ΔGexp. and ΔGpred. 

and residual values of each compound corresponding to the test set of 

pyrrolocarbazole subset, the pyridopyrimidine subset, and the general model are 

listed in Table 4.7, 4.8 and 4.9, respectively. ΔGexp. shows a good correlation with 

ΔGpred., yielding r2 = 0.54, 0.42 and 0.57 for pyrrolocarbazole subset, 

pyridopyrimidine subset, and the unified data set as plotted in Figure 4.10, 4.11 and 

4.12, respectively. The r2 value of the test set of the pyridopyrimidine subset was 

found to be quite low. However, by considering the residual value (ΔGexp. - ΔGpred.) of 

all compounds in the test set, we found that only compound 187 shows a high 

residual value (1.90, displayed as red point in Figure 4.11), whereas the remaining 

compounds yielded ΔGpred. close to ΔGexp. Thus, this result shows that there is only 

one compound in the test set of pyridopyrimidine subset that was not correctly 

predicted. The derived result indicates the reliability of the model for predicting and 

ranking the relative binding free energies of related compounds. In addition, the 

results of the pyrrolocarbazole subset, and the unified data set demonstrate that 

ΔGpred. of the test set compounds are in a good agreement with the actual values. In 

summary, the results derived for the test sets point out that the derived models are 

reliable and robust. 
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Table 4.7. Comparison between ΔGexp. and ΔGpred., derived from model 1, of 
compounds in the test set of pyrrolocarbazole data set 

Cpd. ΔGexp ΔGpred. Residual 
1 -9.62 -9.28 -0.34 
2 -7.41 -9.47 2.06 
7 -9.04 -9.53 0.49 

18 -10.27 -9.89 -0.38 
20 -10.48 -10.35 -0.13 
29 -9.91 -9.16 -0.75 
30 -10.46 -9.73 -0.72 
43 -6.04 -8.27 2.24 
44 -9.68 -9.00 -0.68 
50 -7.52 -8.17 0.65 
51 -8.13 -8.88 0.76 
56 -6.23 -7.57 1.34 
65 -10.12 -9.51 -0.62 
80 -10.03 -8.48 -1.55 
85 -8.35 -8.80 0.45 
86 -8.56 -8.94 0.38 
100 -11.11 -10.16 -0.95 
111 -10.39 -10.59 0.20 
115 -9.41 -9.13 -0.28 
124 -8.84 -9.79 0.95 
130 -9.55 -9.82 0.27 
131 -9.97 -10.26 0.28 
137 -9.79 -10.33 0.55 
138 -9.85 -9.93 0.09 
150 -10.60 -10.26 -0.34 
151 -10.82 -9.97 -0.85 
158 -10.32 -10.75 0.43 
162 -10.23 -10.69 0.46 
166 -9.94 -11.37 1.43 
172 -9.33 -9.45 0.12 

 

 Figure 4.10. Correlation between ΔGexp.and ΔGpred. of the compounds in the test set 

of pyrrolocarbazole subset. 
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Table 4.8. Comparison between ΔGexp. and ΔGpred., calculated from model 4, of 

compounds in the test set of pyridopyrimidine data set 

 
Cpd. ΔGexp. ΔGpred. Residual 
178 -8.77 -7.67 -1.09 
184 -7.50 -8.29 0.79 
185 -7.99 -8.73 0.73 
187 -6.80 -8.70 1.90 
188 -5.90 -6.96 1.05 
197 -8.56 -7.97 -0.59 
200 -9.41 -8.49 -0.92 
204 -9.22 -9.03 -0.19 
216 -10.15 -9.60 -0.55 
217 -9.74 -8.68 -1.06 

 

 

Figure 4.11. Correlation between ΔGexp.and ΔGpred. of the compounds in the test set of 

pyridopyrimidine subset. 

 

Table 4.9. Comparison between ΔGexp. and predicted ΔGpred., calculated from model 6, 
of compounds in the test set of the general model 
 

Cpd. ΔGexp. ΔGpred. Residual 
1 -9.62 -9.27 -0.36 
2 -7.41 -9.30 1.89 
7 -9.04 -9.48 0.45 

18 -10.27 -9.81 -0.45 
20 -10.48 -10.19 -0.29 
29 -9.91 -9.19 -0.72 
30 -10.46 -9.69 -0.76 
43 -6.04 -8.42 2.38 
44 -9.68 -9.05 -0.63 
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50 -7.52 -8.42 0.90 
51 -8.13 -8.85 0.72 
56 -6.23 -7.81 1.58 
65 -10.12 -9.48 -0.64 
80 -10.03 -8.64 -1.39 
85 -8.35 -8.89 0.54 
86 -8.56 -9.03 0.47 
100 -11.11 -10.09 -1.02 
111 -10.39 -10.49 0.11 
115 -9.41 -9.19 -0.21 
124 -8.84 -9.68 0.84 
130 -9.55 -9.89 0.34 
131 -9.97 -10.21 0.24 
137 -9.79 -10.38 0.60 
138 -9.85 -10.13 0.29 
150 -10.60 -10.31 -0.28 
151 -10.82 -10.08 -0.74 
158 -10.32 -10.44 0.12 
162 -10.23 -10.48 0.25 
166 -9.94 -10.93 0.99 
172 -9.33 -9.34 0.02 
178 -8.77 -7.95 -0.81 
184 -7.50 -8.33 0.83 
185 -7.99 -8.75 0.76 
187 -6.80 -8.60 1.79 
188 -5.90 -6.86 0.96 
197 -8.56 -8.81 0.25 
200 -9.41 -8.47 -0.93 
204 -9.22 -9.42 0.19 
216 -10.15 -8.40 -1.76 
217 -9.74 -9.85 0.11 

 

 

Figure 4.12. Correlation between ΔGexp.and ΔGpred. of the compounds in the test set of 

the general model  
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 4.2.2.3 Linear interaction energy with continuum electrostatics (LIECE) 

models 

Table 4.10. Statistical values of results derived from applying LIECE models 

Model 
Data Set of Inhibitor of 
which Protein used for 

generating Model 
α β or β1 β2 r2 RMSE 

One-Parameter Model 

7 CDK2 0.2338 - - 0.39 0.96 

8 Lck 0.277 - - 0.39 0.96 

9 p38 0.2377 - - 0.39 0.96 

10 CDK2+ Lck 0.251 - - 0.39 0.96 

11 CDK2+ p38 0.2383 - - 0.39 0.96 

12 Lck+ p38 0.2513 - - 0.39 0.96 

13 CDK2+ Lck+ p38 0.2463 - - 0.39 0.96 

Two-Parameter Model 

14 CDK2 0.2866 0.0525 - 0.51  0.85 

15 Lck 0.2735 0.0046 - 0.40 0.95 

16 p38 0.2699 0.0264 - 0.46 0.90 

17 CDK2+ Lck 0.3072 0.0657 - 0.54 0.84 

18 CDK2+ p38 0.2632 0.0235 - 0.45 0.91 

19 Lck+ p38 0.3033 0.0508 - 0.51 0.86 

20 CDK2+ Lck+ p38 0.2898 0.0442 - 0.50 0.86 

Three-Parameter Model 

21 CDK2 0.2395 0.075 0.0294 0.41 0.94 

22 Lck 0.2446 0.1528 0.0076 0.27 1.05 

23 p38 0.1827 0.1584 -0.0013 0.24 1.07 

24 CDK2+ Lck 0.3118 0.044 0.062 0.50 0.87 

25 CDK2+ p38 0.219 0.0439 0.0006 0.36 0.98 

26 Lck+ p38 0.2939 0.1186 0.0584 0.43 0.92 

27 CDK2+ Lck+ p38 0.2961 0.0325 0.0454 0.48 0.88 
 

 First we analyzed whether the already published parameters (Table 4.10)  by 

Kolb P. et al.[93], can also be used to predict the ΔGexp. values of the studied Wee1 

kinase inhibitors. Those parameters were generated from datasets of CDK2, Lck and 

p38 inhibitors using the CHARM22 force field and the PBEQ method included in the 

CHARMM program. The Wee1 inhibitors can thus be considered as test set to 

evaluate the efficiency of the original LIECE models/parameters.  
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 All one-parameter models (model 7-13, shown in Table 4.10) using different 

α values taken from the work of Kolb et al. gave more or less the same correlation 

coefficient (r2 = 0.39) and RMSE values (0.96 kcal/mol). The high similarity of the 

results of model 7-13 is due to the small deviation of the α coefficient among the 

different models (0.2338 -2.770). In general, all one-parameter models (model 7-13) 

yielded quite low correlation coefficients and high RMSE values. Interestingly, the 

correlation increases obviously when the electrostatic term is taken into account. For 

example, the two-parameter model (model 14-20), in which the electrostatic free 

energy (ΔGele) is included, yielded r2 values in the range of 0.40-0.54 and RMSE 

values between 0.84 and 0.95 kcal/mol. The three-parameter models (model 21-27), 

in which ΔGele
 is decomposed into two terms (electrostatic interaction and solvation 

energy), showed lower r2 values (0.24-0.50) and higher RMSE values (0.87 to 1.07 

kcal/mol).  

 By applying the LIECE models for predicting the binding free energies of the 

222 Wee1 kinase inhibitors, we observed similar accuracy as in the published 

work[93]. The two-parameter model (model 20) based on three different kinases gave 

slightly higher correlation coefficients (r2 = 0.50) than the three-parameter model 

(model 27, r2 = 0.48) generated from the same data set of kinases. However, the 

highest correlation (r2 = 0.54) between ΔGpred. and  ΔGexp. was observed by using 

model 17, a two-parameter model using two proteins (CDK2 and Lck data set) to 

generate the model. This might be due to the chemical similarity of the inhibitors of 

CDK2 and Lck, which were applied for generating the LIECE model, and Wee1 

kinase inhibitors, used in this study. However, two-parameter model based on three 

kinases (model 20) was generated using inhibitors covering more chemical space of 

the kinase inhibitors than model 17. In addition, r2 derived from model 20 and model 

17 are not much significant different. Therefore, the LIECE model 20 is more 

appropriate to use as a general model to predict binding free energies of other kinase 

inhibitors. Noted that even though the correlation between the ΔGexp. and ΔGpred. of 

Wee1 kinase inhibitors using model 20 shows a good correlation (r2 = 0.50, RMSE = 

0.86 kcal/mol), most ΔGpred. values derived from model 20 are positive and have high 

residual values as demonstrated in Figure 4.13. This might be due to the difference 

between the force field and method that was used in this study and for which applied 
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to generate the LIECE models. These results imply that these LIECE models can be 

applied to rank a relative binding free energy (not the absolute binding free energy) or 

can be called as LIECE score for ranking other kinases inhibitors which can be useful 

for ranking compounds retrieved from virtual screening for kinase inhibitors.  

 
Figure 4.13. Correlation between ΔGexp.and ΔGpred. of the all 222 compounds derived 

by using LIECE model 20. 

 

 4.2.2.4 Enrichment Study 

 In the previous section, the correlation between the estimated binding free 

energies derived from LR-MM/PBSA and LIECE model, with their experimental data 

was investigated. Beside the good correlation between the estimated and the 

experimental values, the usefulness and the effectiveness of these models for virtual 

screening were also examined. Therefore, enrichment factors, showing the fraction of 

the active compounds recovered in respect to the fraction of the screened database, 

were calculated. This approach tests the ability of these derived models to 

discriminate true hits from decoys of the databases. Two different databases were 

used for the validation study: the first database contains 980 randomly selected 

compounds from the Chembridge KINAset collection (Chembridge Corporation, San 

Diego, USA). This kinase library is a computationally selected collection of 11,000 

compounds utilizing a ligand-based pharmacophore selection method and thus 

represents a kinase-focussed library. The second dataset contains 980 compounds 

randomly selected from the directory of useful decoys (DUD)[160]. Here we took all 

decoy sets available for kinase inhibitors which includes EGFR, FGFR1, P38, 

PDGFR, SRC, TK, VEGFR2 [160]. Then, these two databases were filled with six 
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different datasets of active Wee1 kinase inhibitors. One dataset contains the 20 most 

active inhibitors and the other 5 datasets were generated by randomly selecting 20 

actives from the large dataset of 222 Wee1 inhibitors. In total, 12 different datasets, 

each of them contain 1,000 compounds, were applied for the enrichment study. The 

DUD provides a well-defined, unbiased set of active and decoy compounds, and the 

chemical structures of the KINAset library have been designed using known kinase 

inhibitor scaffolds. To discriminate actives from inactive compounds with similar 

chemical structure is a challenge and non-trivial task in virtual screening. Therefore, 

the chosen compounds represent suitable datasets to evaluate the performance of LR-

MM/PBSA and LIECE models. The enrichment factor (EF)[161] for each dataset was 

calculated according to the formula shown below; 

                                   EF = {Ntotal/Nsampled} * {Hitssampled/Hitstotal} 

where Ntotal and Nsamples represent the total number of compounds in the database 

(1,000 compounds) and the number of the screened compounds, respectively. 

Hitssampled and Hitstotal are the number of found actives and the total number of actives 

(20 compounds). The selection of compounds from the set of known active inhibitors 

of Wee1 kinase can lead to artificially high EF values. Thus, to avoid this bias, 

different databases containing different active compounds were used to calculate the 

EF value, and the average value of EF was also considered. The enrichment factors 

were considered at 5% and 10% of the screened databases. Note that the maximum 

values of EF are 20 and 10 at the 5% and 10% of the screened databases, respectively. 

When these maximum values are obtained, it means that all active compounds are 

recovered at the considered fraction of the screened database.  
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Table 4.11. Enrichment Factor (EF) of each dataset, containing decoys from 

Chembridge KINAset with 6 different sets of active Wee1 kinase inhibitors and also 

decoys from DUD combining with the same datasets from active Wee1 kinase 

inhibitors, at 5% and 10% of screened database using LR-MM/PBSA model 6 and 

LIECE model 20 
 LR-MM/PBSA (Model 6) LIECE (Model 20) 

5%  10%  5% 10%  
Chembridge Kinaset enriched with Wee1 inhibitors  
Top 20 actives 20.0 10.0 16.0 9.5 
Dataset 1 13.0 9.0 13.0 8.0 
Dataset 2 15.0 9.0 11.0 7.5 
Dataset 3 15.0 8.5 13.0 8.5 
Dataset 4 16.0 9.5 14.0 9.0 
Dataset 5 16.0 9.5 13.0 7.5 
Average 15.8 9.3 13.3 8.3 
DUD enriched with Wee1 inhibitors 
Top 20 actives 19.0 10.0 16.0 9.5 
Dataset 1 12.0 8.5 13.0 8.0 
Dataset 2 12.0 9.0 11.0 7.5 
Dataset 3 15.0 8.5 12.0 8.5 
Dataset 4 15.0 9.0 13.0 9.0 
Dataset 5 15.0 9.5 13.0 7.5 
Average 14.7 9.1 13.0 8.3 

 

 The enrichment factors are summarized in Table 4.11. Results revealed that 

most of the top 20 actives were recovered within 5% of the database by using the LR-

MM/PBSA model 6. On the other hand, the LIECE model 20 was able to identify 16 

active compounds within the first 5%. At 10% of the screened database, it was found 

that all active compounds were recovered by using the LR-MM/PBSA model 6, and 

19 compounds were received by using LIECE model 20. In general, the LR-

MM/PBSA model yielded slightly better EFs compared to the LIECE model when 

considering all 12 datasets. Furthermore, the derived results indicate that most of the 

actives can be found within the first 10% of database screened. The percentage of the 

screened database versus the percentage of the actives found are displayed in Figure 

4.14 (A) – (D). From Figure 4.14, it can be clearly seen that all depicted EF curves 

for model 6 and model 20 are well above the curve for random selection. The 

obtained results imply that the LR-MM/PBSA model and the LIECE model show a 

good performance for ranking and separating active compounds from decoys. 
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Figure 4.14. EF curves of datasets of Chembridge Kinaset decoys with 6 different 

datasets from active Wee1 kinase inhibitors ranked by LR-MM/PBSA model 6 (A) 

and LIECE model 20 (B), and the EF curves of datasets of decoys from DUD with 6 

different datasets from active Wee1 kinase inhibitors scored by LR-MM/PBSA model 

6 (C) and LIECE model 20 (D) 

 

4.3 Virtual Screening for novel Wee1 Kinase inhibitors 

 4.3.1 Materials and Computational Methods 

 Virtual screening was carried out using the same approach as in section 3.3. 

The pharmacophore model was also generated using LigandScout program [146]. The 

derived model was then used to search for compounds in the Chembridge database 

that match with this pharmacophore model. The hit compounds were further screened 

by using Lipinski’s rule of five [101], ranking by docking score and calculating 

binding free energy LR-MM/PBSA model. The Lipinski’s rule of five was already 

explained in section 3.3.1.3. Molecular docking was performed using all the same 

protocols as described in section 4.1.1.3 and 4.2.1.1. Finally, binding free energy of 

these hit compounds were computed using the same approach as explained in section 

4.2. The LR-MM/PBSA model 6 (the general model) was used to predict and rank the 

binding free energy of the hit compounds. 

   

 

(D) 
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 4.3.2 Results and Discussion 

 4.3.2.1 Pharmacophore Models Generation 

                         

           
Figure 4.15 Three different pharmacophore models (A) pharmacophore model 

derived from X-ray structure 2IN6 (PH-1), (B) pharmacophore model generated from 

the docking solution of compound 106 (PH-2), (C) pharmacophore model (PH-3) 

built by merging the feature at the region A from PH-1 and PH-2. Pharmacophore 

feature represent by mangeta sphere = H-bond/donor feature, yellow sphere = 

hydrophobic feature, red sphere or arrow = H-bond acceptor and green sphere or 

arrow = H-bond donor 

 Among the six X-ray structures of the pyrrolocarbazole-Wee1 kinase 

complexes (PDB code 1X8B, 2ZZW, 2IN6, 2IO6, 3BI6 and 3BIZ), 2IN6 is the most 

active inhibitor among these six structures. The PDB structure 2IN6 (compound 103, 

pIC50 = 7.64) was then used to generated pharmacophore model using LigandScout 

program. By using this cocyrstallized structure, pharmacophore feature at the region 

A as shown in Figure 4.15 (A) is represented as the H-bond acceptor. However, by 

applying the docking solution of the most active inhibitor (compound 106, pIC50 = 

(A) (B) 

(C) 
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8.22) to create pharmacophore model, result reveals that the H-bond donor feature 

was created at the region A (displayed in Figure 4.15 (B)) to represent the important 

pharmacophore feature for Wee1 kinase inhibitors. Therefore, a pharmacophore 

feature at this region was merged, and the H-bond acceptor/donor feature (magenta 

sphere) was built at the region A as shown in Figure 4.15 (C). Note that the 

pharmacophore model generated from the PDB 2IN6 is named PH-1 (Figure 4.15 

(A). The model built from the docking solution of compound 106 is called PH-2 

(Figure 4.15 (B), and the pharmacophore model created by merging the feature at 

region A from PH-1 and PH-2 is named PH-3 (Figure 4.15 (C). These three 

pharmacophore models were applied to evaluate the performance of these models for 

recovering the active compounds. The multi-conformation database containing all of 

174 active compounds of pyrrolocarbazole dataset was applied for this objective. 

Results as summarized in Table 4.12 showed that 60 active compounds were 

recovered by using PH-3, whereas 43 and 29 compounds were obtained by using PH-

1 and PH-2, respectively. Moreover, results also revealed that all of active 

compounds (7 compounds) which contain pIC50 > 8.00 were retrieved by applying 

PH-3. On the other hand, by using P-1, 5 compounds that have pIC50 > 8.0 were 

recovered and 3 compounds having pIC50 > 8.00 were obtained by using PH-2. From 

these results, it can be concluded that PH-3 performs better that PH-1 and PH-2.  

 

Table 4.12 Number of hit compounds derived from each pharmacophore model 

Pharmacophore 
Model  

Number of 
Hit founds  

% Hits pIC50 of Hits  Hit of compound 
pIC50 > 8.00 

(7compounds)  
PH1  43  24.57  6.40-8.22  5  
PH2  29  16.67  6.40-8.22  3  
PH3  60  34.48 6.40-8.22 7  

 

 Therefore, this pharmacophore model (PH-3) was used later in the virtual 

screening. The magenta sphere (implying H-bond donor or acceptor area) at the 

region A of PH-3 as shown in Figure 4.15 (C) indicates the interaction between 

inhibitor with Ser430 or Ser307. Two red spheres, meaning the H-bond acceptor 

feature, demonstrate the H-bond interaction with residues located at the hinge region. 
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For example, sphere B denotes the H-bond between inhibitor and Cys379 and sphere 

C illustrate the H-bond between inhibitor and Asn376. The green sphere D (a H-bond 

acceptor feature) presents the inhibitor-Glu377 interaction. Yellow sphere E and F 

represent the hydrophobic interaction between inhibitor and Wee1 kinase.  

 

 4.3.2.2 Virtual Screening 

 
Figure 4.16 EF Curve of the database containing 222 active Wee1 inhibitors and 

3,037 hit compounds obtained from pharmacophore search and drug-like property 

filtering. The database was ranked by GoldScore. 

 

 Mulit-conformation Chembrige database, containing 405,494 compounds and 

41,829,578 conformations, was used in the VS study. Results show that 3,980 

compounds pass with the PH-3. The number of the hit compounds was further 

screened by using LOF, which is resulting in that 3,037 compounds are in agreement 

with this rule. These compounds were subsequently docked into the binding pocket of 

Wee1 kinase using the same protocols as in section 4.1.1.3 and 4.2.1.2. These hit 

compounds and the known inhibitors, pyrrolocarbazole and pyridopyrimidine dataset 

(totally 222 compounds), were ranked according to their docking scores (GoldScore). 

ROC curve as displayed in Figure 4.16 shows that after 20% of the screened database 

and ranked by GoldScore, most of the active compounds were recovered. This result 

suggests that among the top 20% of the ranked database, they may also contain some 

other active compounds. Therefore, top-rank 500 compounds were selected and 

applied for binding free energy calculation using LR-MM/PBSA method as explained 

in section 4.2. The LR-MM/PBSA model 8 (the general model generated from both 
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subsets) was used to calculate the predicted binding free energy of these hit 

compounds. These hit compounds were then ranked according to their binding free 

energies and were also visual inspected for their interaction with Wee1 kinase. 

Finally, some hit compounds as shown in Figure 4.17 are proposed as potent 

inhibitors for Wee1 kinase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Chemical structures of Hit compounds and their predicted binding free 

energy 

Cpd. ID 9001327 (ΔGpred. = -9.89 kcal/mol) 

HN

N N

N

S

N

O

O

S

HN

O

O

O

O O

Cpd. ID 6637182 (ΔGpred. = -9.58 kcal/mol) 

Cpd. ID 7771055 (ΔGpred. = -9.15 kcal/mol) 

N

O

N
H

N

N

O

O

S

S

N

N

Cpd. ID 6208874 (ΔGpred. = -9.43 kcal/mol) 

S

HN

O

HN

O

O

O
S

HN

O

O
O

S

O

Cpd. ID 6377276 (ΔGpred. = -9.24 kcal/mol) 

O

HN

S

NN

S

H
N

N
H

O

O

Cpd. ID 7754261 (ΔGpred. = -9.00 kcal/mol) 

Cpd. ID 7166121 (ΔGpred. = -8.80 kcal/mol) 

S
O

O
HN

S

N
N

O

Cpd. ID 5849759 (ΔGpred. = -8.33 kcal/mol) 

O
N

S

NH

O ClO



149 
 

CHAPTER V 

CONCLUSION 

5.1 DV NS2B/NS3 protease 

 We have generated and validated a homology model of the inhibitor-bound 

form of DV NS2B/NS3 protease. The DV-2 homology model which was built based 

solely on the X-ray structure of the homolog WNV NS2B/NS3 protease-inhibitor 

complex gave results which are in nice agreement with the experimental data. On the 

other site, the DV-1 model, which was based on two different templates, was not able 

to explain all site-directed mutatgenesis data. Thus, we suggest that the DV-2 model 

represents the DV NS2B/NS3 protease in the productive form. The obtained model 

and the MD simulations showed high similarity to the results obtained for the WNV 

protease crystal. The MD simulations revealed that strong interactions between the C-

terminal domain of NS2B and NS3 assist the stability of the loop regions of the NS3 

protease. This interaction also involved the binding of the Arg-P2 residue of the 

inhibitor and the residues of the S2 pocket. These results indicate that the C-terminal 

domain of NS2B is not only important for binding to the NS3 protease but also plays 

a significant role for the interaction with the P2 residue of the inhibitor.  

In addition, our work shows that the interaction of the inhibitor with the S1 

pocket involves only residues from the NS3 domain. On the other hand, both residues 

from the C-terminal domain of NS2B as well as Asp75 and Asn152 from NS3, are 

important for maintaining the interaction with the P2 residue of the inhibitor at the S2 

pocket. At the S3 pocket, the main interactions are observed between the backbone of 

the P3 residue and Gly153 as well as Tyr161 from NS3. The interaction of the 

inhibitor at the S4 pocket of the NS3 is maintained only by hydrophobic interaction. 

The detailed analysis of the interaction of two peptidic inhibitors with the productive 

conformation of DV NS2B/NS3 protease, as well as the comparison with the related 

complex from WNV, provided useful information concerning the selectivity of the 

inhibitor Bz-Nle-Lys-Arg-Ala-H. 

 The productive form of DV protease can now be used as starting point for 

structure-based design in order to identify potent and drug-like inhibitors. The process 

for indentifying novel inhibitors for DV NS2B/NS3 protease was started by docking 

small-molecule inhibitors of DV NS2B/NS3 protease into the representative 
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conformation of this enzyme. Then, the binding free energies of these inhibitors were 

computed using MM/PBSA approach. The ligand-protein interaction was also 

investigated by applying decomposition (DC) energy analysis method. The calculated 

binding free energies of these known inhibitors gave a good correlation with their 

binding affinities. Interestingly, only the enthalpy value can be used to correlate with 

the experimental data by considering as a relative value. Therefore, the entropy 

calculation can be neglected. This can be very helpful for calculating the binding free 

energies of compounds retrieved from virtual screening in order to reduce to 

calculation time. The DC energy analysis reveals that residues from NS2B as well as 

from NS3 are important for interacting with inhibitors. In addition, results show that 

not only the electrostatic interaction that mainly contributes to the total energy, the 

van der Waals interaction is also important as well for interacting with inhibitors. 

Moreover, Pro132 located at the S1 pocket is a key residue for interacting as van der 

Waals interaction with inhibitors. In addition, residues which are important for 

interacting with inhibitors are addressed. 

 Virtual screening (VS) was carried out by starting from using three different 

pharmacophore models (a structure-based model, a static and a dynamic 

pharmacophore model). These models were applied to search for compounds in the 

multi-conformational databases that pass with these models. A number of hit 

compounds were then filtered by using several techniques. Finally, the binding free 

energies of hit compounds derived from VS (40 compounds) were calculated. Hit 

compounds which were gave binding free energy lower than the lowest binding free 

energy of know inhibitor were suggested for testing their biological activities against 

DV NS2B/NS3 protease. In addition, results revealed that the binding free energies of 

hits obtained from a dynamic pharmacophore model are lower than those retrieved 

from the static pharmcophore model. These results indicate that the dynamic 

pharmacophore model could lead to obtain inhibitors which could be more potent than 

those derived by using the conventional method such as the static pharmacophore 

model.  
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5.2 Wee1 Kinase 

 The 3D-QSAR and molecular docking study was initially undertaken to 

explore the structural features needed for high inhibitory activity at the Wee1 kinase. 

The availability of crystal structures of Wee1 complexed with an inhibitor enabled us 

to establish and analyze a model of the binding site. The good match of predicted and 

experimental structures gave confidence that the docking method is able to provide 

relevant information abouut the inhibitor interaction. The docking study revealed that 

the most potent inhibitors (103, 106 and 146) establish hydrogen bonds to the 

backbone atoms of the hinge region (Asn376, Glu377, Cys379). In addition the 

sidechain group of the most potent inhibitors interacts with Ser307 or Ser430. 

Inhibitors bearing a substituted tetrazole or triazole ring in the sidechain are also able 

to form a hydrogen bond to Ser307, resulting in good inhibitory activity.  

Using a combination of receptor-based alignment and 3D-QSAR yielded a 

significant and predictive model, indicated by the high cross-correlation coefficient 

and the low SDEP value. Beside the docking-based alignment, two other alignment 

methods were tested which resulted in models with lower predictive quality. It was 

shown that the docking scores could not be used to establish a reliable QSAR model, 

whereas the receptor-based 3D-QSAR model gave a significant correlation and can be 

used to point out which interaction sites in the binding pocket might be responsible 

for the variance in biological activities.  

 We also applied molecular docking for studying the interaction and binding 

mode between pyridopyrimidine derivatives with Wee1 kinase. Docking solutions 

show a conserved binding mode, which is the bidentate H-bond between N-3 of 

pyrimidine ring with NH backbone atom of Cys379 and 2-NH atom of ligand with 

CO backbone atom of the same residue. In addition, the substituted phenyl ring 

interacts with residues at the hydrophobic pocket such as His350, Lys328, Glu346 

and Asp463. The molecular docking of a high activity compound revealed 

additionally a π-π interaction between the pyrimidine ring and the Phe430. Moreover, 

water molecules locating at the binding pocket are important for mediating H-bond 

network between the side chain of ligand and residues at the binding pocket. No 

correlation between docking scores, either applying GoldScore or ChemScore, with 
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experimental binding free energies of compounds was observed. Therefore, the linear 

response approach such as LR-MM/PBSA and LIECE were performed. 

 The LR-MM/PBSA model based on the energy-minimized docked complexes 

was developed for predicting the relative binding free energies of Wee1 kinase 

inhibitors. All of the derived models (model for pyrrolocarbazole, pyridopyrimidine 

and the general model for both chemical spaces) gave a significant and predictive 

model, indicated by the high correlation coefficient, leave-one-out cross-correlation 

coefficient and low RMSE of the training set. In addition, the obtained model was 

applied to predict the binding free energies of compounds in the external test set and 

resulted in satisfied statistical values. This approach has more advantages because it 

is simple, fast, less computational demand because only the single snapshot got from 

the energy minimization of the docked complex was used. In addition, this method is 

similar to docking scoring function, which is a linear equation of the interaction 

energy. However, this approach performs more efficient because the energy-

minimized docked complexes were used for the interaction energy calculation and a 

linear equation of specific coefficients of each parameter for individual protein was 

generated. Moreover, results show obviously that the correlation between the ΔGexp. 

with ΔGest. derived from the LR-MM/PBSA model is higher than the correlation 

between the ΔGexp. and the docking score.  

The LIECE models which were generated from data sets of inhibitors of CDK2, 

Lck and p38 were applied to correlate the predicted and experimental binding 

affinities of inhibitors of Wee1 kinase. The two-parameter model of the LIECE model 

based on three proteins gave slightly higher correlation than the three-parameter 

model generated from the same data set. However, it has to be noted that ΔGexp. of 

these Wee1 kinase inhibitors calculated from this LIECE model have quite high 

residual values. This might be due to force fields and methods that we have used in 

our study are different from the original publication. However, a good correlation (r2 

= 0.50) derived by using this LIECE model suggests that it is possible to use this 

LIECE model for calculating and then ranking the relative binding free energies of 

other kinase inhibitors which could be helpful for ranking compounds retrieved from 

virtual screening for kinase inhibitors. In addition, the derived LR-MM/PBSA and 

LIECE models were also analyzed for their performance to separate actives from 
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decoys. The obtained results showed that most of known active compounds were 

indentified among the first 10% of the database screened and are ranked correctly by 

these models. A stepwise virtual screening for Wee1 kinase inhibitors was also 

performed by applying pharmacophore searching, molecular docking and binding 

free energy calculation using LR-MM/PBSA model (the general model). Finally, 

candidate compounds for testing biological activities against Wee1 kinase are 

proposed.  
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1.   Kanin Wichapong, Somsak Pianwanit, Sirirat Kokpol and Wolfgang Sippl; 

Molecular dynamics simulations of homology models of protease of dengue virus 

complexed with its inhibitor; The 33rd Congress on Science & Technology, 

Thailand (STT33), Walailak University, Nakhon Si Thammarat, Thailand, 

October 18-20, 2007. 

2.   Kanin Wichapong, Somsak Pianwanit, Wolgang Sippl and Sirirat Kokpol; 

Insight into the role of Cofactor NS2B for activating NS3 Protease of Dengue and 

of West Nile Virus and for interacting with inhibitors; The 12th Annual 

Symposium on Computational Science and Engineering (ANSCSE12), Ubon 

Rajathanee University, Ubonratchathani, Thailand, March 27-29, 2008. 

3.   Kanin Wichapong, Somsak Pianwanit, Sirirat Kokpol and Wolfgang Sippl; 

Generating Homology Models of NS2B/NS3 protease of Dengue Virus for 

Molecular Docking; The 9th Ph.D.- RGJ Congress, Pattaya, Chonburi, Thailand, 

April 4-6, 2008 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



172 
 

 

VITAE 
 

Name; Kanin Wichapong  

Date of Birth; May 2nd, 1982 

Place of Birth; Roi-Et, Thailand 

Nationality; Thai 

E-mail address; kanin@daad-alumni.de, kanin.wichapong@gmail.com 

 

EDUCATION; 

2001 - 2005;  Bachelor Degree (2nd class Honor B.Sc.) in Chemistry; 

   Faculty of Science, Chulalongkorn University, Bangkok, Thailand 

2005 – Present; Ph.D. Candidate, Physical Chemistry, Computational Chemistry 

Unit Cell, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 

            

SCHOLARSHIPS;  

June 2005 – Present; Royal Golden Jubilee Ph.D. Program, Thailand Research Fund 

June 2008 – September 2009; Deutscher Akademischer Austausch Dienst (DAAD) 

 

PUBLICATIONS; 

1. Kanin Wichapong, Marc Linder, Somsak Pianwanit, Sirirat Kokpol and Wolfgang 

Sippl; Receptor-based 3D-QSAR studies of checkpoint Wee1 kinase inhibitors. 

Eur. J. Med. Chem. 44 (2009), 1383-1395. 

2. Kanin Wichapong, Somsak Pianwanit, Wolfgang Sippl and Sirirat Kokpol; 

Homology Modeling and Molecular Dynamics Simulations of Dengue Virus 

NS2B/NS3 Protease: Insight into Molecular Interaction. J. Mol. Recognit. In press. 

3. Kanin Wichapong, Michael Lawson, Somsak Pianwanit, Sirirat Kokpol and 

Wolfgang Sippl; Structure-based prediction of activities of Wee1 Kinase inhibitors 

using linear response approach; in preparation 

4. Kanin Wichapong, Somsak Pianwanit, Wolfgang Sippl, and Sirirat Kokpol; 

Dynamic Pharmacophore model of Dengue Virus NS2B/NS3 protease inhibitors; 

in preparation 

 


	1_Cover-Thai.pdf
	2_Cover-Eng
	3_approval-Eng_new
	6_Acknowledgement
	7_CONTENT-format
	8_List-Table
	9_List-Figures
	10_List-Charts
	11_List-ABBREV
	12_CHAPTER_I-V_Final-version
	13_CHAPTER-VI_REFs_NEW
	14_APPENDIX-1



