ผลของฟิลแลนทิน และไฮโปฟิลแลนทินต่อแรงตึงตัวของหลอดเลือดแดงใหญ่ที่แยกจากกาย หนูแรท

นางสาว มาริสา อินทร์ชู

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา วิทยาศาสตรมหาบัณฑิต สาขาวิชาเภสัชวิทยา (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF PHYLLANTHIN AND HYPOPHYLLANTHIN ON VASCULAR TENSION OF ISOLATED RAT AORTA

Miss Marisa Inchoo

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Pharmacology (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

Thesis Title	EFFECTS OF PHYLLANTHIN AND HYPOPHYLLANTHIN ON
	VASCULAR TENSION OF ISOLATED RAT AORTA
Ву	Miss Marisa Inchoo
Field of Study	Pharmacology
Thesis Advisor	Assistant Professor Suree Jianmongkol, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

..... Dean of the Graduate

School

(Associate Professor Pornpote Piumsomboon, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Assistant Professor Wacharee Limpanasithikul, Ph.D.)

...... Thesis Advisor

(Assistant Professor Suree Jianmongkol, Ph.D.)

..... Examiner

(Assistant Professor Naowarat Suthamnatpong, Ph.D.)

..... External Examiner

(Associate Professor Prasan Dhumma-upakorn, Ph.D.)

มาริสา อินทร์ชู : ผลของฟิลแลนทิน และ ไฮโปฟิลแลนทิน ต่อแรงตึงตัวของหลอด เลือดแดงใหญ่ที่แยกจากกายหนูแรท . (EFFECTS OF PHYLLANTHIN AND HYPOPHYLLANTHIN ON VASCULAR TENSION OF ISOLTED RAT AORTA) อ. ที่ปรึกษา วิทยานิพนธ์หลัก : ผศ. ดร. สุรีย์ เจียรณ์มงคล ,98 หน้า.

การศึกษาครั้งนี้ได้ศึกษาผลของฟิลแลนทิน และไฮโปฟิลแลนทินต่อแรงตึงของหลอดเลือด แดงใหญ่ที่แยกจากายหนแรท ผลการศึกษาพบว่าฟิลแลนทิน และไฮโปฟิลแลนทิน (1-100 µM) ทำ ให้หลอดเลือดที่ถูกกระตุ้นด้วย phenylephrine (PE) คลายตัวได้แบบ concentration-dependent manner นอกจากนี้การบูคเซลล์เยื่อบุผิวออกไม่มีผลต่อการกลายตัวของหลอดเลือดที่เป็นผลจากสาร ทดสอบทั้ง 2 ชนิด ซึ่งผลของฟิลแลทิน และไฮโปฟิลแลนทิน (100 µM) ที่ทำให้หลอดเลือดที่ไม่มี เซลล์เยื่อบุผิวคลายตัวนั้นไม่ถูกยับยั้งโดย atropine (1 µM), BaCl₂ (10 µM), glybenclamide (10 μ M), indomethacin (10 μ M), L-NAME (100 μ M), methylene blue (10 μ M), propranolol (10 μM), 4-aminopyridine (100 μM) และ TEA (10 μM) ผลการทดลองแสดงให้เห็นว่า ลิกแนนทั้ง 2 ้ชนิคมีผลเหนี่ยวนำให้หลอดเลือดหดตัว และถูกยับยั้งได้โดย tyramine หรือ prazosin นอกจากนี้ สารทั้ง 2 ชนิดยับยั้งการหดตัวของกล้ามเนื้อเรียบหลอดเลือดที่ถูกกระตุ้นด้วย PE และ KCI ได้แบบ concentration-dependent manner และสารทั้ง 2 ชนิด (100 µM) ยังสามารถยับยั้ง การหดตัวของ ้กล้ามเนื้อเรียบที่เหนี่ยวนำด้วยแคลเซียม ที่เกิดจากแคลเซียมภายในเซลล์ถกไล่ออกหมด อย่างไรก็ ตามฟิลแลนทินเท่านั้นมีผลยับยั้งการหดตัวของกล้ามเนื้อเรียบหลอดเลือด ในสภาวะที่มี K⁺ สูงและ ปราศจาก Ca²⁺ แต่ไฮโปฟิลแลนทินไม่มีผลยับยั้งการตอบสนองนี้ นอกจากนี้ สารทั้ง 2 ชนิด (100 µM) ยับยั้งการหดตัวของกล้ามเนื้อเรียบหลอดเลือดที่ถกกระต้นด้วย PE ในสภาวะที่ปราศจาก Ca²⁺ แต่ไม่มีต่อการหดตัวของกล้ามเนื้อเรียบหลอดเลือดที่ถกกระต้นด้วย caffeine ซึ่งผลการทดลอง ทั้งหมดแสดงให้เห็นว่าฟิลแลนทิน และ ไฮโปฟิลแลนทินมีผลต่อแรงตึงตัวของหลอดเลือดผ่านกลไก ้ที่ไม่เกี่ยวข้องกับเซลล์เยื่อบผิว โดยอาจเกี่ยวข้องกับการยับยั้งการเคลื่อนที่ของ Ca²⁺ จากภายนอกเข้า ้สู้ภายในเซลล์ และการยับยั้งหลั่ง Ca²⁺ จาก sarcoplasmic reticulum ผ่านทางการกระตุ้นด้วย PE

สาขาวิชา	เภสัชวิทยา	ลายมือชื่อนิสิต			••••
ปีการศึกษา	ו <u>2553</u>	ลายมือชื่อ อ.ที่	ปรึกษา วิทยานิข	พนธ์หลัก	

5187238020 : MAJOR PHARMACOLOGY KEYWORDS : VASORELAXATION / PHYLLANTHIN / HYPOPHYLLANTHIN

MARISI INCHOO : EFFECTS OF PHYLLANTHIN AND HYPOPHYLLANTHIN ON VASCULAR TENSION OF ISOLATED RAT AORTA. THESIS ADVISOR : ASST. PROF. SUREE JIANMONGKOL, Ph.D., 98 pp.

The purpose of this study was to investigate the modulating effects of phyllanthin and hypophyllanthin on vascular tension, using in the *in vitro* model of isolated rat aorta. The results indicated that both phyllanthin and hypophyllanthin (1-100 µM) significantly relaxed the sustained contraction induced by phenylephrine (PE) in a concentration-dependent manner. In addition, endothelial removal had no significant influence on the vasorelaxation responses of the aortic rings toward these two compounds. In endothelium-denuded rings, vasorelaxant inhibitors [atropine (1 μM), BaCl₂ (10 μM), glybenclamide (10 μM), indomethacin (10 μM), L-NAME (100 μ M), methylene blue (10 μ M), propranolol (10 μ M), 4-aminopyridine (100 μ M) and TEA (10 μ M)] did not inhibit the vasorelaxation responses induced by either phyllanthin or hypophyllanthin (100 μ M). The data also demonstrated that the two lignans were able to induce aortic contraction which could be suppressed by either tyramine or prazosin. In addition, both compounds inhibited the PE- and KCI-mediated contraction of aortic muscle in concentration-dependent manner. Furthermore, these two compounds (100 μ M) also significantly inhibited the Ca²⁺- induced contraction of aortic muscles that were depleted of Ca²⁺. However, only phyllanthin (100 µM), but not hypophyllanthin was able to inhibit the Ca^{2+} - mediated contraction in high K⁺ - Ca^{2+} - free condition. Both compounds (100 µM) significantly inhibited PE-induced contraction in Ca²⁺- free condition, but could not affect caffeine-induced contraction. Taken together, phylanthin and hypophyllanthin could modulate the vascular tension via the endothelium-independent mechanisms. The modulating effect of the test compounds were likely involved with the inhibition of Ca²⁺ influx as well as with the inhibition of PE-mediated Ca²⁺ release from sarcoplasmic reticulum.

Field of Study : <u>Pharmacology</u>	Student's Signature
Academic Year : <u>2010</u>	Advisor's Signature

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to my advisor, Assistant Professor Suree Jianmongkol, Ph.D. for her openness to new ideas, readiness to listen to any opinion, valuable advice, guidance, kindess and encouragement during the course of experimental work, making and presentation of this thesis. In addition, I would like to express my great thanks to the committee member: Assistant Professor Wacharee Limpanasithikul, Ph.D, Assistant Professor Naowarat Suthamnatpong, Ph.D. and Associate Professor Prasan Dhumma-upakorn, Ph.D. for their worth comments and suggestions.

I also thank to the Graduate School of Chulalongkorn University for Graduate School Thesis Grant supporting this research.

I thank to all staff members and all officers of Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, for providing laboratory facilities.

I would like to thank Associate Professor Pornpen Pramyoyhin, Ph.D. and Miss Hemvala Chirdchupunseree, Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalonghorn University, for kindly supplying the test compounds in this study.

Finally, I would like to thanks and indescribable gratitude goes to my family and my friends for their love and care, this inspired me to succeed my academic achievement and I am very appreciated to all experiment animals for their valuable life

CONTENTS

Page

ABSTRACT (THAI)	iv
ABSTRACT (ENGLISH)	
ACKNOWNLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	xvii
CHAPTER I BACKGROUND AND INTRODUCTION	1
Background and Introduction	1
Hypothesis	2
Objective	2
Expected Benefit and Application	2
Study design	4
CHAPTER II LITERATURE REVIEWS	5
Lignans	5
Phyllantus amarus	8
Control of vascular tone: contraction and relaxation	
Vascular contraction	
- The Ca ²⁺ influx from an extracellular source	10
- The release of intracellular Ca ²⁺ from the sarcoplasmic	
reticulum (SR)	12
Smooth muscle relaxation	14
CHAPTER III MATERIALS AND METHODS	
Animals	18
Chemicals	18
Test compounds	19

viii

Page

Preparation of aortic rings	19
Experimental procedures	20
1. Vasorelaxation effects of the test compounds	20
2. Effects of the test compounds on vascular contractions	22
2.1 Vasopressive actions of the test compounds	22
2.2 Agonist-induced aortic contraction	23
2.3 Spontaneous contraction	24
2.4 Aortic contraction in high K ⁺ - Ca ²⁺ - free depolarizing	
Solution	25
2.5 Aortic contraction in Ca ²⁺ - free solution	26
Statistical Data Analysis	27
CHAPTER IV RESULTS	28
1. Vasorelaxation effects of the test compounds	28
2. Effects of the test compounds on vascular contractions	33
2.1 Vasopressive actions	33
2.2 Agonist-induced aortic contraction	37
2.3 Spontaneous contraction	40
2.4 Aortic contraction in high K^+ - Ca ²⁺ - free depolarizing	
Solution	44
2.5 Aortic contraction in Ca ²⁺ - free solution	48
CHAPTER V DISCUSSION AND CONCLUSION	52
REFERENCES	57
APPENDIX	63
BIOGRAPHY	98

LIST OF TABLES

Table	Page
1. Compound of Physiological solution (mM)	89
2. Vasorelaxation effects of the test compounds in endothelium-intact and	
endothelium-denuded aortic rings	90
3. The apparent EC_{50} of the test compounds on vasorelaxation	91
4. Effects of inhibitors on vasorelaxation induced by the test compounds in	
endothelium-denuded aortic rings	91
5. Effect of the test compounds on vascular contraction induced by PE (1 μM)	
in endothelium-denuded aortic rings	92
6. Effect of the test compounds on vascular contraction induced by KCI	
(40 mM) in endothelium-denuded aortic rings	93
7. The apparent IC $_{\rm 50}$ of the test compounds on vasoconstriction	94
8. The apparent percentage inhibition of the spontaneous contraction	94
9. Effect of the test compounds on vascular contraction induced by $CaCl_2$	
(10 μ M - 10 mM) in high K ⁺ - Ca ²⁺ - free depolarizing solution	95
10. The apparent pD_2 values of the test compounds	95
11. Table 11 Effect of the test compounds on vascular contraction induced by	
either PE (1 μ M) or caffeine (10 mM) in Ca ²⁺ - free solution	96

LIST OF FIGURES

Figur	-e	Page
1.	Structure of phyllanthin and hypophyllanthin	3
2.	Basic structures of lignans	6
3.	Chemical structures of lignans	7
4.	Phyllanthus amarus Schum. and Thonn	8
5.	Spontaneous contraction or increase in the resting tone	12
6.	Pathways involving the control of Ca ²⁺ entry through Ca ²⁺ channels and	
	release of Ca ²⁺ from sarcoplasmic reticulum (SR)	13
7.	Pathways to illustrate signaling in smooth muscle contraction	14
8.	Mechanism of smooth muscle relaxation	16
9.	$K^{\!\!\!\!\!}$ channels and vascular tone	17
10.	Experimental diagram for testing the vasorelaxation responses of the	
	test compounds	21
11.	. Experimental diagram for testing the vasoactive effects of the test	
	compounds	22
12.	Experimental diagram for testing the effects of the test compounds on	
	agonist-induced aortic contraction	23
13.	Experimental diagram for testing the effects of the test compounds on	
	spontaneous contraction	24
14.	Experimental diagram for testing the effects of the test compounds on	
	aortic contraction in high K ⁺ - Ca ²⁺ - free depolarizing solution	25
15.	Experimental diagram for testing the effects of the test compounds on	
	aortic contraction in Ca ²⁺ - free solution	26
16	. Representative tracing showed the relaxation induced by cumulative	
	addition of DMSO 0.2% v/v on PE-induced contraction of endothelium-	
	intact (a) and endothelium-denuded aortic rings (b)	29

17. Representative tracing showed the relaxation induced by cumulative	
addition of phyllanthin on PE-induced contraction of endothelium-intact (a)	
and endothelium-denuded aortic rings (b). Phyllanthin concentrations	
were 1=1, 2=10, 3=50, 4=100 µM	30
18. Representative tracing showed the relaxation induced by cumulative	
addition of hypophyllanthin on PE-induced contraction of endothelium-	
intact (a) and endothelium-denuded aortic rings (b). Hypophyllanthin	
concentrations were 1=1, 2=10, 3=50, 4=100 µM	31
19. Vasorelaxation effects of phyllanthin and hypophyllanthin (1-100 μM) in	
endothelium-intact and -denuded aortic rings that were precontracted with	
PE (1 μM)	32
20. Representative tracing showed the contraction induced by cumulative	
addition of phyllanthin (a) and hypophyllanthin (b) on resting tension in	
KHS. Phyllanthin and hypophyllanthin concentrations were 1=1, 2=10,	
3=50, 4=100 μM	34
21. Representative tracing showed the effect of tyramine on phyllanthin (a)	
and hypophyllanthin (b) induced contraction in KHS. Phyllanthin and	
hypophyllanthin concentrations were 1=1, 2=10, 3=50 μM	35
22. Representative tracing showed the effect of prazosin on phyllanthin (a)	
and hypophyllanthin (b) induced contraction in KHS. Phyllanthin and	
hypophyllanthin concentrations were 1=1, 2=10, 3=50 μM	36
23. Effects of phyllanthin and hypophyllanthin (1-200 μM) on vascular	
contraction induced by PE (1 μM) in endothelium-denuded aortic rings	38
24. Effects of phyllanthin and hypophyllanthin (1-200 μ M) on vascular	
contraction induced by KCI (40 mM) in endothelium-denuded aortic rings.	39
25. Representative tracing showed the effect of DMSO 0.2% (v/v) on	
spontaneous contraction in Ca ²⁺ - containing KHS	41

Page

gure	9	Page
26.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (100 μ M) on spontaneous contraction in Ca ²⁺ -	
	containing KHS	42
27.	Effects of phyllanthin and hypophyllanthin (100 μM) on spontaneous	
	contraction in Ca ²⁺ - containing KHS	43
28.	Representative tracing showed the effect of DMSO 0.2% (v/v) on	
	CaCl ₂ -induced contraction of endothelium-denuded aortic rings in high	
	K^{+} - Ca ²⁺ - free depolarizing solution. CaCl ₂ concentrations were	
	$1=10^{-5}$, $2=5\times10^{-5}$, $3=10^{-4}$, $4=5\times10^{-4}$, $5=10^{-3}$, $6=5\times10^{-3}$, $7=10^{-2}$ µM	45
29.	Representative tracing showed the effect of nifedipine (positive control)	
	on CaCl ₂ -induced contraction of endothelium-denuded aortic rings in	
	high K^+ - Ca ²⁺ - free depolarizing solution. CaCl ₂ concentrations were	
	$1=10^{-5}$, $2=5\times10^{-5}$, $3=10^{-4}$, $4=5\times10^{-4}$, $5=10^{-3}$, $6=5\times10^{-3}$, $7=10^{-2}$ µM	45
30.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (100 μM) on CaCl $_2$ -induced contraction of	
	endothelium-denuded aortic rings in high K ⁺ - Ca ²⁺ - free depolarizing	
	solution. CaCl ₂ concentrations were 1=10 ⁻⁵ , 2=5x10 ⁻⁵ , 3=10 ⁻⁴ , 4=5x10 ⁻⁴ ,	
	$5=10^{-3}$, $6=5\times10^{-3}$, $7=10^{-2}$ µM	46
31.	Effects of phyllanthin and hypophyllanthin (100 μM) on vascular	
	contraction induced by cumulative addition of $CaCl_2$ in high K ⁺ - Ca ²⁺ - free	
	depolarizing solution	47
32.	Representative tracing showed the effects of DMSO 0.2% (v/v) (a),	
	phyllanthin (b) and hypophyllanthin (c) (100 μM) on PE-induced	
	contraction of endothelium-denuded aortic rings in Ca^{2+} - free solution	49
22	Decrementatives the single shows of the effects of $DMCO(0.00)(1,1/1)(1)$	

33. Representative tracing showed the effects of DMSO 0.2% (v/v) (a), phyllanthin (b) and hypophyllanthin (c) (100 μM) on caffeine-induced contraction of endothelium-denuded aortic rings in Ca²⁺ - free solution..... 50

gure	2	Page
34.	Effects of phyllanthin and hypophyllanthin (100 μM) on vascular	
	contraction induced by PE (a) and caffeine (b) in Ca^{2+} - free solution	51
35.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (a) and hypophyllanthin (b) (100 μM) on PE- induced	
	contraction of endothelium-denuded aortic ring in the presence of	
	L-NAME (100 µM)	64
36.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (a) and hypophyllanthin (b) (100 μM) on PE-induced	
	contraction of endothelium- denuded aortic ring in the presence of	
	atropine (1 μM)	65
37.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (a) and hypophyllanthin (b) (100 μM) on PE-induced	
	contraction of endothelium-denuded aortic ring in the presence of	
	propranolol (10 μM)	66
38.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (a) and hypophyllanthin (b) (100 μM) on PE-induced	
	contraction of endothelium-denuded aortic ring in the presence of	
	indomethacin (10 μM)	67
39.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (a) and hypophyllanthin (b) (100 μM) on PE-induced	
	contraction of endothelium-denuded aortic ring in the presence of	
	methylene blue (10 µM)	68
40.	Representative tracing showed the relaxation induced by addition of	
	phyllanthin (100 μM , a) and hypophyllanthin (100 μM , b) on PE-induced	
	contraction of endothelium-denuded aortic ring in the presence of	
	glibenclamide (10 μM)	69

Figure	Page
41. Representative tracing showed the relaxation induced by addition of	
phyllanthin (100 μM a) and hypophyllanthin (100 μM b) on PE-induced	
contraction of endothelium-denuded aortic ring in the presence of 4-AP	
(100 µM)	70
42. Representative tracing showed the relaxation induced by addition of	
phyllanthin (100 μM , a) and hypophyllanthin (100 μM , b) on PE-induced	
contraction of endothelium-denuded aortic ring in the presence of BaCl_2	
(10 µM)	71
43. Representative tracing showed the relaxation induced by addition of	
phyllanthin (100 μM , a) and hypophyllanthin (100 μM , b) on PE-induced	
contraction of endothelium-denuded aortic ring in the presence of TEA	
(10 µM)	72
44. The effects of vasodilator inhibitors: ATP (atropine), PP (propranolol),	
IND (indomethacin), MB (methylene blue), GLIBEN (glibenclamide), 4-AP	
(4-aminipyridine), BaCl ₂ (barium chloride), TEA (tetraethylammonium) on	
phyllanthin (100 μ M) induced relaxation of endothelium-denuded aortic	
rings precontracted with PE (1 μM)	73
45. The effects of vasodilator inhibitors: ATP (atropine), PP (propranolol),	
IND (indomethacin), MB (methylene blue), GLIBEN (glibenclamide), 4-AP	
(4-aminipyridine), BaCl ₂ (barium chloride), TEA (tetraethylammonium) on	
hypophyllanthin (100 μM) induced relaxation of endothelium-denuded	
aortic rings precontracted with PE (1 μM)	74
46. Representative tracing showed the PE-induced contraction of	
endothelium-denuded aortic rings in KHS containing tyramine	75
47. Representative tracing showed the effect of DMSO 0.2% (v/v) on PE-	
induced contraction of endothelium-denuded aortic rings in KHS	
containing tyramine	75

xiv

gure	9	Page
48	. Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (1 μM) on PE-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	76
49	. Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (10 μM) on PE-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	77
50.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (50 μM) on PE-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	78
51.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (100 μM) on PE-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	79
52.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (200 μM) on PE-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	80
53.	Representative tracing showed the KCI-induced contraction of	
	endothelium-denuded aortic rings in KHS containing tyramine	81
54.	Representative tracing showed the effect of DMSO 0.2% (v/v) on KCI-	
	induced contraction of endothelium-denuded aortic rings in KHS	
	containing tyramine	81
55.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (1 μM) on KCI-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	82
56.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (10 μM) on KCI-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	83

XV

57.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (50 μM) on KCl-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	84
58.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (100 μM) on KCI-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	85
59.	Representative tracing showed the effects of phyllanthin (a) and	
	hypophyllanthin (b) (200 μM) on KCI-induced contraction of endothelium-	
	denuded aortic rings in KHS containing tyramine	86
60.	Representative tracing showed the effects of KCI (40 mM) on	
	spontaneous contraction in Ca ²⁺ - containing KHS	87
61	. The effects of phyllanthin and hypophyllanthin on spontaneous	
	contraction in Ca ²⁺ - containing KHS	88

Page

LIST OF ABBREVIATIONS

4-AP	4-aminipyridine
AC	adenylate cyclase
ACh	acetylcholine
ANOVA	one-way analysis of mean
ATP	adenosine 5'-triphosphate
BaCl ₂	barium chloride
Ca ²⁺	calcium ion
cAMP	cyclic adenosine 3', 5' monophosphate
cGMP	cyclic guanosine 3', 5' monophosphate
cm	centimeters
COX	cycloxygenase
DG	diacylglycerol
DMSO	dimethyl sulfoxide
EDHF	endothelium-derived hyperpolarizing factor
GTP	guanosine 5'-triphosphate
IC ₅₀	50% Inhibitory concentration
IP ₃	inositol 1, 4, 5-trisphosphate
IP ₃ R	inositol 1, 4, 5-trisphosphate receptor
IRT	increase in the resting tone
KHS	Krebs-Henseleit solution
K^{+}	potassium ion
KCI	potassium chloride
L-NAME	N ^G -nitro-L-arginine methyl ester
Μ	molar
MLC	myosin light chain
MLCK	myosin light chain kinase
ml	milliltre
mm	millimeters

xvii

mM	millimolar
μΜ	micromolar
NO	nitric oxide
NOS	nitric oxide synthase
PE	phenylephrine
PGI_2	prostacyclin
PIP ₂	phosphatidylinositol bis-phosphate
PKA	protein kinase A
PKG	protein kinase G
PLC	phospholipase C
RhoGEF	guanine nucleotide exchange factor
ROC	receptor-operated Ca ²⁺ channel
RyR	ryanodine receptor
S.E.M.	standard error of the mean
sGC	soluble guanylyl cyclase
SR	sarcoplasmic recticulum
TEA	tetraethylammonium
VOC	voltage-operated Ca ²⁺ channel

CHAPTER I

BACKGROUND AND INTRODUCTION

Lignans are a group of dimeric phenylpropanoids (Figure 1) found in various plants such as flaxseed, soybeans, cereals, gains, oats, garlic, carrot, tomato, vegetables and fruits. Examples of lignans are secoisolariciresinol, matairesinol, eudesmin and sesamin. These compounds were reported to induce vasorelaxation in various isolated organ systems and hypotension in rat and rabbit models (Nakano *et al.* 2006; Prasad, 2004; Raimundo *et al.*, 2009). The modes of actions of these compounds were linked to activation NO/cGMP pathway (Nakano *et al.* 2006; Prasad, 2004) as well as activation of histamine H₁ receptors in endothelial cells (Raimundo *et al.*, 2009).

and hypophyllanthin (aryltetrahydronapthalene) Phyllanthin (diarylbutane) (Figure 1) are major components found in *Phyllantus amarus* Schum. and Thonn. (Euphorbiaceae) [also known as "Luk Tai Bai" in Thai] (Bagalkotkar et al., 2006). In Thailand, this plant has been used in traditional medicine for a number of diseases in cardiovascular and gastrointestinal tract systems (Abdulla et. al., 2010; Shokunbi and Odetola, 2008; Thippeswamy et al., 2011). It has been reported that the alcoholic extract of *P. amarus* induced smooth muscle relaxation in various tissues including vascular system, uterine, intestine, stomach and trachea (Kitisin, 1952). In addition, the aqueous extract from its leaves exerted its myocardial suppression and hypotensive effects in rabbits, which was possibly linked to muscarinic receptor-mediated mechanism and calcium channel ion blockade (Amaechina and Omogbai, 2007). It was likely that either phyllanthin or hypophyllanthin, which were the two major lignans isolated from this plant, possessed the intrinsic pharmacological actions similar to those of the P. amarus extracts. However, a few researches have been conducted to investigate the modulating effects of these two lignans on vascular tension and the involved mechanism.

The purpose of this study was to investigate the modulating effects of phyllanthin and hypophyllanthin on vascular tension. Furthermore, the involvement of endothelium in its vascular actions was also examined.

Hypothesis

Phyllanthin and hypophyllanthin modulated the vascular tension via both endothelium-dependent and endothelium-independent pathways. In endothelium-dependent pathway, these two compounds exerted its effects via activation of the NO/cGMP pathway. In addition, these two compounds could affect the alteration of cytosolic Ca²⁺ in smooth muscle, independently from the endothelium.

Objectives

1. To investigate the modulating effects of phyllanthin and hypophyllanthin on vascular tension.

2. To investigate the mechanisms and influence of endothelium on either phyllanthin or hypophyllanthin mediated-contractility of vascular smooth muscle. In addition, it was possible that the endothelium-independent effects of these two compounds involved with alteration in extracellular Ca^{2+} entry and intracellular Ca^{2+} release in the smooth muscle.

Expected Benefits and Application

This study provided the new pharmacological effects on vascular tension of phyllanthin and hypophyllanthin and the involved mechanisms of action. The information would be useful for further application in herbal and traditional medicine development.

Phyllanthin

Hypophyllanthin

Figure 1 Structure of phyllanthin and hypophyllanthin (http://www.alibaba.com/product-tp/11106_hin.html)

Study design

CHAPTER II

LITERATURE REVIEWS

Lignans are a group of phytochemicals found in various herbal plants such as Phyllanthus species, Forsythia intermedia, Valeriana species, Arctium lappa, Schisandra chinensis (Bagalkotkar et al., 2006; Park et. al., 2009; Rahman et al., 1990). In addition, lignans can be counted as a class of secondary plant metabolites, which are produced by oxidative dimerization of two phenylpropanoid units (Sok et al., 2009). The aromatic rings of lignans can be oxygenated and bear hydroxyl, methoxyl, or methylenedioxy groups (Hearon and MacGregor, 1955). The basic molecular structure of lignans was shown in Figure 2. Lignans can be further modified by cyclization to tetrahydrofuran or tetrahydronaphthalene derivatives (Hearon and MacGregor, 1955). Examples of lignans include secoisolariciresinol diglucoside (SDG), pinoresinol-4, 40-di-O-b-D-glucoside (PDG), pinoresinol, pinoresinol glycoside, podophyllotoxin, picropodophyllin, eudesmin and sesamin (Figure 3). Several pharmacological studies have demonstrated the beneficial effects of lignans such as antioxidant, antitumour, antimitotic, antiviral, antimicrobial and hepatoprotective effects (Macrae and Towers, 1984; Sung and Kim, 2000). In addition, pinoresinol-4, 40-di-O-b-D-glucoside (PDG) was reported to stimulate calcium mobilization and chemotactic migration of mouse embryo fibroblasts (Do et al., 2009). Moreover, lignans also have protective effects on the cardiovascular system (Miyawaki et al., 2009; Oh et al., 2008) and antihypertensive effect (Oh et al., 2008; Prasad, 2004; Raimundo et al., 2009). For example, secoisolariciresinol diglucoside (SDG) exerted its antihypertensive effect through activation of guanylate cyclase enzyme (GC). This effect was not due to nitric oxide synthase (NOS) activity (Prasad, 2004). Saucerneol and saucerneol D, which were lignans from the ethanol extract of the roots of S. chinensis, caused vasorelaxation via NO/cGMP pathway (Oh et al., 2008). Furthermore, sesamin, another lignan from sesame seeds and oil, could also induce vasorelaxation through activation of NO/cGMP pathway (Nakano et al, 2006). The vasorelaxant activity of certain lignans such as eudesmin may involve activation of histamine H_1 receptors in endothelial cells, leading to synthesis and release nitric oxide (NO) and prostracyclin (PGI₂) (Raimundo *et al.*, 2009).

Secoisolariciresinol

Matairesinol

Figure 2 Basic structures of lignans

Figure 3 Chemical structures of lignans (Do et al., 2009; Macrae and Towers, 1984).

Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae; synonym: *Phyllanthus nanus* Hook. f. and *Phyllanthus niruri* Thw.) [also known as "Luk Tai Bai" in Thai], is a small herb, found in most tropical and subtropical regions, including Amazon rainforest, South East Asia, Southern India and China. *P. amarus* has been used in herbal medicine such as Ayurveda, Traditional Chinese Medicine and Indonesian Jamu (Bagalkotkar *et al.*, 2006). The whole plant is also useful for tradition medicine to treat several diseases. In Thailand, this plant has been used in traditional medicine for a number of diseases in cardiovascular and gastrointestinal tract systems (Abdulla *et. al.*, 2010; Shokunbi and Odetola, 2008; Thippeswamy *et al.*, 2011).

The plants grow up to 10-60 cm tall. Its branchlet is 2-6 cm long with 10-20 leaves arranging in alternate fashion. The leaves can be elliptic, oblong to ovate and obtuse or apiculate at apex. This plant has small off-white-greenish flowers. The fruits are tiny, smooth capsules containing seeds. (Figure 4) (Khatoon *et al.*, 2006; Bagalkotkar *et al.*, 2006).

P. amarus has a number of constituents such as lignans, terpenoids, alkaloids, flavonoids, phenols and tannins (Bagalkotkar *et al.*, 2006). Phyllanthin and hypophyllanthin are the two major lignans found in this plant.

Figure 4 *Phyllanthus amarus* Schum. and Thonn. (http://www.learners.in.th/moo_lita/list; http://www.stuartxchange.org/SampaSampa_kan.html).

The yield of phyllanthin (a diarylbutane type lignan) and hypophyllanthin (a aryltetrahydronaphthalene type lignans) were approximately 0.5% and 0.3% of dried whole plant, respectively (Tripathi *et al.*, 2006). Other lignans included niranthin, nirtetralin, phyltetralin, lintetralin, isolintetralin, 2, 3-desmethoxy seco-isolintetralin, 2, 3-des-methoxy seco-isolintetralin diacetate, linnanthin, demethylenedi-oxyniranthin, nirphyllin and phyllnirurin. Other identified compounds in *P. amarus* are flavonoids [rutin, quercetin, quercitrin, astragalin, gallocatechin, nirurin, quercetol, niruriflavone], terpenes [limonene, p-cymene, lupeol], coumarins [ellagic acid, methyl brevifolincarboxylate], tannins [repandusinic acid, geraniin, corilagin], saponins, alkaloids [norsecurinine], 1-O-galloyl-6-O-luteoyl-a-D-glucose and b-glucogallin (Bagalkotkar *et al.*, 2006)

Major lignans compounds from *P. amarus* such as phyllanthin and hypophyllanthin have been shown to reverse the plasma uric acid level of hyperuricemic animals to its normal level (Murugaiyah and Chan, 2006). In addition, it was reported that the antioxidative and hepatoprotective activities of phyllanthin and hypophyllanthin were able to protect CCI_4 - and galactosamine-induced cytotoxicity in primary cultured rat hepatocytes and HepG2 cell line. The data showed that these compounds could prevent leakage of cytosolic enzyme [alanine aminotransferase (ALT); lactate dehydrogenase (LDH)], could reduce lipid peroxidation and improve glutathione status of the cell treated with either CCI_4 or galactosamine (Krithika *et al.*, 2009; Syamasundar *et al.*, 1985). Moreover, phyllanthin could protect against ethanol-induced oxidative stress in rat liver cells. Consequently, cellular damages could be prevented (Chirdchupunseree, 2009). In other studies, phyllanthin and hypophyllanthin were effective multidrug resistance reversing agents, as evidenced by its inhibition p-glycoprotein function *in vitro* cancer cell lines (Leite *et al.*, 2006; Somanabandhu, 1993).

It has been reported that the alcoholic extract of *P. amarus* could induce relaxation in smooth muscles of various organs including vascular smooth muscle, uterus, intestine, stomach and trachea (Kitisin, 1952). In addition, the aqueous extract from its leaves reduced mean arterial pressure significantly (Etuk, 2006). The aqueous extract of leaves of *P. amarus* suppressed the myocardial function and caused

hypotensive effects in rabbits and rat. These effects were possibly linked to muscarinic receptor-mediated mechanisms and calcium channel ion blockade (Amaechina and Omogbai, 2007). Methyl brevifolincarboxylate from the leaves of *Phyllanthus niruri* inhibited NE-induced vasocontraction which, in part, was due to inhibition of intracellular Ca²⁺ flux through ROC (lizuka, Moriyama and Nagai, 2006). Furthermore, n-butanol extract from leaves of *Phyllanthus acidus* induced vasorelaxation via NO/cGMP pathway and opening of K_{ATP} and BK_{Ca} channels in the vascular smooth muscle of isolated rat thoracic aorta (Leeya *et al.*, 2010).

Control of vascular tone: contraction and relaxation Vascular contraction

Vascular tone is regulated by a number of factors such as endothelium-derived factors, autonomic nervous system, neurohormone and local mechanisms (Taohjian *et al.*, 2008). As known, contraction of vascular smooth muscle largely depends on the levels of intracellular Ca²⁺. The rising of free cytosolic Ca²⁺ depends on the influx of Ca²⁺ from the extracellular environment and the release of Ca²⁺ from sarcoplasmic reticulum (SR) stores (van Breemen and Saida, 1989; Carl, Lee and sanders, 1996). The pathways of Ca²⁺ entry and the release from SR stores were described below (Figure 6).

The Ca²⁺ influx from an extracellular source

The Ca²⁺ influx into smooth muscle cell occurs mainly through two types of transmembrane Ca²⁺ channels: voltage-operated calcium channels (VOC) and receptor-operated calcium channels (ROC) (van Breemen and Saida, 1989). In smooth muscle cells, the L-type Ca²⁺ channels, which can be either VOC or ROC, are considered to be a major Ca²⁺ influx. As the VOC, the channels open by changes in action potential of plasma membrane, leading to depolarization and open of the channels (Karaki *et al.*, 1997; McFadzean and Gibson, 2002). Generally, the *in vitro* models have provided evidence of a principal role of membrane depolarization by using, high potassium

solution to depolarize plasma membrane. Consequently, contraction of smooth muscle can be observed due to Ca²⁺ influx through the open VOC (McFadzean and Gibson, 2002). For the ROC, the channels open through activation of receptor coupled to signaling cascade that eventually activate the channels. In vascular smooth muscle, an activation of α_1 - adrenoceptor stimulates the formation of inositol 1, 4, 5-trisphosphate (IP₃) and diacylglycerol (DG). Subsequently, IP₃ binds to its receptors on SR stores, leading to the release Ca²⁺ from SR whereas DG activates protein kinase C (PKC) and its signaling cascade. Consequently, the phosphorylation of these L-type Ca²⁺channels occurs and the channels open (van Breemen and Saida, 1989; McFadzean and Gibson, 2002).

In general, either a number of receptor agonists or depolarizing solution are used to open of ROC or VOC in order to provoke vascular contraction in the vitro model of isolated organ preparation (van Breemen and Saida, 1989). There is another mechanism to induce the Ca²⁺ movement across plasma membrane in the absence of any contractant, as described by other investigators (Noguera et al., 1992, 1993, 1997). In this model of spontaneous contraction, Ω -1 agonist was used repetitively to induce contraction in Ca²⁺- free condition until the contractile response was not observed. As known, the α -1 agonist-mediated contraction contains two phases which include an initial phasic response and a tonic contraction. The initial phasic response is triggered by a rising of Ca²⁺ released from SR via inositol 1, 4, 5-trisphosphate (IP₂) pathway. The tonic contraction subsequently maintained by an influx of extracellular Ca²⁺ (van Breemen and Saida, 1989; McFadzean and Gibson, 2002). Thus, the depletion of intracellular Ca²⁺ pools can be obtained in the muscle repetitively treated with α -1 agonists in Ca²⁺- free solution. Moreover, it was hypothesized that in this specific condition, Ca²⁺- depleted capacitative Ca²⁺ stores triggered the signaling cascade to activate membrane Ca²⁺ channels. The presence of extracellular Ca²⁺ then could rapidly flux into the cells in order to replenish the capacitative Ca²⁺ stores. Hence, spontaneous contraction or increase in the resting tone could be observed in this pnenomenon (Figure 5) (Noguera *et al.*, 1997).

Figure 5 Spontaneous contraction or increase in the resting tone (Noguera et al., 1997).

The release of intracellular Ca²⁺ from the sarcoplasmic reticulum (SR)

SR is a major storage of Ca²⁺ within the smooth muscle cells. The Ca²⁺ release from SR is generally signaled by activation of either inositol 1, 4, 5-trisphosphate receptor (IP₃R) or ryanodine receptor (RyR). Caffeine is a known RyR agonist, which can mediate the release of Ca²⁺ from SR through RyR activation (van Breemen and Saida, 1989; Hill *et al.*, 2001). The IP₃-induced Ca²⁺ release occurs from the production of IP₃, a second messenger in the activation of α -adrenergic receptor. The binding of IP₃ to IP₃R on SR stores leads to the release Ca²⁺ from SR (van Breemen and Saida, 1989; Hill *et al.*, 2001; Harnett and Biancani, 2003). Furthermore, the Ca²⁺ release from SR can be resulted from extracellular through voltage-operated Ca²⁺ channel (VOC), receptoroperated calcium channels (ROC) and Na⁺/Ca²⁺ exchanger, leading to the increase of intracellular Ca²⁺ and release Ca²⁺ from SR (Karaki *et al.*, 1997).

Figure 6 Pathways involving the control of Ca²⁺ entry through Ca²⁺ channels and release of Ca²⁺ from sarcoplasmic reticulum (SR) (Carl, Lee and sanders, 1996).

As increasing of intracellular Ca²⁺ and then, Ca²⁺ binds to calmodulin to form a Ca²⁺ - calmodulin complex, an activator of myosin light chain kinase (MLCK). Subsequently, MLCK phosphorylates myosin light chain (MLC) to enable myosin-actin interaction, which leads to cross-bridge cycling and contraction (Webb, 2003). At the same time, RhoA is activated by guanine nucleotide exchange factor (RhoGEF) via small GTP-binding protein RhoA, leading to migration of RhoA to the plasma membrane. Then, RhoA activates Rho kinase and lead to inhibit of myosin phosphatase activity and this promotes the contraction (Webb. 2003). This event was simply illustrated by the diagram in Figure 7.

Figure 7 Pathways to illustrate signaling in smooth muscle contraction (Webb, 2003)

Smooth muscle relaxation

Generally, the vasorelaxation can be governed by either endothelium-dependent or endothelium-independent mechanisms. The mechanisms that involve with smooth muscle relaxation were shown in Figure 8.

The endothelium-dependent relaxation has been linked to the production of endothelium-derived relaxing factors (Suzuki, Chen and Yamamoto, 1992). The activation of the specific receptor such as muscarinic receptor on endothelial cell, can eventually lead to an increase of intracellular Ca²⁺ and an activation of endothelial cells synthesis and secretion of various vasodilators such as nitric oxide (NO), prostacyclin

(PGI₂), epoxyeicosatrienoic acids and endothelium-derived hyperpolarizing factor (EDHF) (Ignarro, 2002; Stankevicius *et al.*, 2003; Vallance, 1992).

Endogenous NO is generated in endothelium cells via the enzyme nitric oxide synthase (NOS). After production, NO diffuses to vascular smooth muscle and activates soluble guanylyl cyclase (sGC) to generate cyclic quanosine monophosphate (cGMP) (Denninger and Marletta, 1999). As known, cGMP activates cGMP-dependent protein kinase/protein kinase G (PKG), which subsequently phosphorylates Ca²⁺- activated K⁺channels (K_{Ca} channels) and ATP-sensitive K⁺channels (K_{ATP} channels) (Ko *et al.*, 2008). The phosphorylation causes an open of these K⁺ channels and K⁺ efflux, followed by membrane hyperpolarization, closure of voltage-operated Ca²⁺ channel, decrease in intracellular Ca²⁺ and vasorelaxation (Lee and Severson, 1994; Hecker, 2000; Ignarro, 2002; Stankevicius *et al.*, 2003).

Other vasorelaxing substances released from endothelium cells are prostacyclin (PGI₂) and endothelium-derived hyperpolarizing factor (EDHF). Prostracyclin (PGI₂) is product of arachidonic acid from cyclooxygenase (COX) catalysis. In smooth muscle cell, PGI₂ activates adenylate cyclase (AC) and increases cyclic adenosine monophosphate (cAMP). Subsequently, cAMP activates cGMP-dependent protein kinase/protein kinase A (PKA), resulting in phosphorylation of Ca²⁺- dependent K⁺ (K_{Ca}) channels, ATP-sensitive K⁺ (K_{ATP}) channels, voltage-dependent K⁺ (K_v) channels, inward rectifier K⁺ (K_{IR}) channels and vasorelaxation eventually (Ko *et al.*, 2008). Substrate of Endothelium-derived hyperpolarizing factor (EDHF) has yet known, but its production involve with Ca²⁺- dependent process in the endothelial cell. Although the mechanism of action is unclear, it is likely that EDHF mediates vasorelaxation via suppression of intracellular Ca²⁺ in smooth muscle (Suzuki, Chen and Yamamoto 1992; Stankevicius *et al.*, 2003).

Figure 8 Mechanism of smooth muscle relaxation (Stankevicius et al., 2003)

The endothelium-independent pathways involve with β -adrenoceptor and K⁺ channels in smooth muscle. Stimulation of β -adrenoceptor in vascular smooth muscle leads to the activation of adenylate cyclase (AC) and production of cyclic adenosine monophosphate (cAMP). As known, an increasing of cAMP further activates protein kinase A (PKA), which subsequently phosphorylates K⁺ channels and vasorelaxation (Baloglu *et. al.*, 2007; Ericsson and Lundholm, 1975).

 K^{+} channels play important roles in the regulation of the membrane potential in vascular smooth muscle cells. To date, four distinct types of K^{+} channel have been identified in vascular smooth muscle: ATP-sensitive potassium (K_{ATP}) channels, voltage-dependent K^{+} (K_{ν}) channels, Ca^{2+} - activated K^{+} (BK_{Ca}) channels and inward rectifier K^{+} (K_{IR}) channels. Each of K^{+} channels is responsive to protein kinase G (PKG) and protein kinase A (PKA). The activation of these K^{+} channel leads to the membrane hyperpolarization, closure of voltage-operated Ca^{2+} channels, decrease in intracellular Ca^{2+} and vasodilation. Whereas K^{+} channels are closed, decreased efflux of K^{+} leads to membrane depolarization and vasoconstriction (Figure 9) (Jackson, 2000; Ko *et al.*, 2008).

Figure 9 K⁺ channels and vascular tone (Jackson, 2000)

CHAPTER III

MATERIALS AND METHODS

Animals

Adult male Wistar rats of body weight between 250-300 g were obtained from National Laboratory Animal center, Mahidol University, Salaya, Nakornpathom. The animals were acclimatized for 1-2 week before the experimentation in animal care facility at the Faculty of Pharmaceutical Sciences, Chulalongkorn University. Animals were housed under environment-controlled conditions: at room temperature 25 ± 2 °C with 12-hours light/dark cycle, and 60% humidity. The animals received standard rat pellets and tap water *ad libitum*. This study was approved by the Ethics Committee of Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand. (Approval number 10-33-004)

Chemicals

Major chemicals in this study included phenylephrine (PE), potassium chloride (KCI), acetylcholine (ACh), caffeine, calcium chloride (CaCl₂), atropine, nifedipine, tyramine, prozosin, barium chloride (BaCl₂), glibenclamide, indomethacin, methylene blue, N^{G} -nitro-L-arginine methyl ester (L-NAME), propranolol, tetraethylammonium (TEA), 4-aminopyridine (4-AP), dimethyl sulfoxide (DMSO) 99.5%. All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO, U.S.A.). The high K⁺- Ca²⁺- free depolarizing solution contains (mM): NaCl 27; KCl 100; NaHCO₃ 14; KH₂PO₄ 14; D-glucose 10 and MgCl₂ 0.54. The Ca²⁺- free solution contains (mM): NaCl 119; KCl 4.7; NaHCO₃ 25; D-glucose 11.1; MgSO₄ 1.0; KH₂PO₄1.2 and EDTA 0.2. All chemicals were analytical grades.
Test compounds

Phyllanthin and hypophyllanthin were kindly provided by Assoc. Prof. Pornpen Pramyothin, Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkom University. The isolation and purification were described in Chirdchupunseree (2009). In brief, the two compounds were isolated from the fresh aerial part of *Phyllanthus amarus* which was collected in and around Faculty of Pharmaceutical Sciences, Chulalongkom University. After pulverization and extraction with hexane, the compounds were isolated and further purified by column chromatography, using n-hexane and ethyl acetate as mobile phase. Phyllanthin and hypophyllanthin were identified by IR spectrum and HPLC, comparing with standard references (Chromadex, Inc., U.S.A). The purities of these two compounds were at least 98%.

Phyllanthin and hypophyllanthin were dissolved in 99.5% DMSO throughout the studies. The final concentration of DMSO in the system was less than 0.2% (v/v). At this concentration, DMSO had no vasoactive effects on rat vascular smooth muscle.

Preparation of aortic rings

Rats were anaesthetized by carbon dioxide (CO_2) and sacrificed by cervical dislocation. The thoracic aorta was carefully removed and placed in petri-dish containing Krebs-Henseleit solution (KHS) of the following composition (mM): NaCl 119; KCl 4.7; CaCl₂ 2.5; KH₂PO₄1.2; NaHCO₃ 25; D-Glucose 11.1 and MgSO₄ 1.0. Then, the thoracic aorta was cleaned and cut into 4 segments of approximately 2-3 mm long. Each segment was suspended in double walled organ baths (Harvard type Organ bath) which contained 10 ml of KHS bubbled with carbogen gas, pH 7.4 ± 0.5 at 37°C. The vascular tension was recorded with an isometric force transducer model MLT 050/A (ADInstruments, Australia) that was connected to computer equipped with Software Chart 5.0 of PowerLab 4/SP data acquisition system (ADInstruments, Australia). During an initial stabilization period of approximately 60 min, KHS was replaced every 15 min.

In some preparations, the endothelium was removed by gently rubbing the lumen with cotton swab. Generally, the aortic rings were tested for the presence of functional endothelium by addition of acetylcholine (ACh 10 μ M). The preparations were considered as endothelium-intact when the relaxation responses to ACh were greater than 60%. The endothelium-denuded preparations were applied when the relaxation responses were less 10%.

Experimental procedures

1. Vasorelaxation effects of the test compounds

The aortic rings were pre-contracted with PE (1 μ M). At plateau state, both phyllanthin and hypophyllanthin were added cumulatively in the concentration ranges of 1-100 μ M (Figure 10). In another experiments, a number of known vasodilation inhibitors [atropine (1 μ M), BaCl₂ (10 μ M), glibenclamide (10 μ M), indomethacin (10 μ M), L-NAME (100 μ M), methylene blue (10 μ M), propranolol (10 μ M), 4-aminopyridine (100 μ M) and TEA (10 μ M)] were added 10 minutes prior to the test compounds. In separated experiments, the effect of DMSO was also determined, and used as control group. The relaxation responses were calculated in relative to the tensions developed from addition of PE (1 μ M) in the absence of the test compounds. The data were expressed as the percentages of the PE-induced contraction.

Experiment 1

Figure 10 Experimental diagram for testing the vasorelaxation responses of the test compounds.

2. Effects of the test compounds on vascular contractions

2.1 Vasopressive actions of the test compounds

The aortic rings were suspended in normal KHS until the baseline tension was stable. Then, the test compounds (in the concentration range of 1 μ M -100 μ M) were added cumulatively to induce contraction. After washing, either tyramine (1 μ M), its can release NE from presynaptic storage vesicles, leading to muscle contraction (Krishnamurty and Grollmax, 1972) or prazosin (1 μ M), a known α_1 -adrenoceptor antagonist was added to the test system for 10 minutes prior to addition of either phyllanthin or hypophyllanthin (Figure 11)

Experiment 2.1

Figure 11 Experimental diagram for testing the vasopressive effects of the test compounds.

2.2 Agonist-induced aortic contraction

The aortic rings were suspended in normal KHS containing tyramine (1 μ M) until the baseline tension was stable. Then, vasoactive agonist [either PE (1 μ M) or KCI (40 mM)] was added to provoke contraction. The tension was recorded for 15 minutes. The effect of the test compounds (phyllanthin and hypophyllanthin) on agonist-induced contraction were determined by incubating the compound at a selected concentration (ranging 1-200 μ M) for 20 minutes prior to addition of either agonist (Figure 12). The residual tension in the presence of the test compound was expressed as a percentage of the maximal contraction induced by each specific agonist. In separated experiments, the effect of DMSO was also determined, and used as control group.

Experiment 2.2

Figure 12 Experimental diagram for testing the effects of the test compounds on agonist-induced aortic contraction.

2.3 Spontaneous contraction

The spontaneous contraction could be induced under certain specific condition (Noguera and D'Ocon, 1992). A spontaneous rising of the resting tension could be obtained in the rings that were depleted of intracellular Ca^{2+} by PE (10 μ M), as previously described by Noguera et al., 1997. In brief, PE (10 µM) was added into Ca2+containing solution to provoke aortic contraction for 15 minutes. Then, the rings were washed with Ca^{2+} free KHS, and incubating in this Ca^{2+} -free buffer for another 15 minutes. Next, either PE (10 µM) or KCI (40 mM) was repetitively applied until no contraction was observed. Then, upon changing the bathing solution from Ca²⁺- free to Ca²⁺- containing KHS, a spontaneous contraction of the aortic rings were observed (Figure 13). The effect of the test compounds (phyllanthin and hypophyllanthin) on spontaneous contraction was examined by addition the test compounds at concentration of 100 μ M for 5 minutes in Ca²⁺- free KHS prior to changing it to normal KHS. The spontaneous contraction was expressed as percentage residual contraction which was calculated as the percentage of PE-induced contraction in normal KHS. In separated experiments, the effect of DMSO was also determined, and used as control group.

Figure 13 Experimental diagram for testing the effects of the test compounds on spontaneous contraction.

2.4 Aortic contraction in high K^+ - Ca²⁺- free depolarizing solution

The aortic rings were suspended in normal KHS until the baseline tension was stable. Next, the normal KHS was replaced by high K^+ - Ca²⁺- free depolarizing solution and further incubated until the baseline tension was stable. Then, CaCl₂ (in the concentration range of 10 μ M-10 mM) were added cumulatively to induce contraction (Figure 14). The effect of the test compounds (phyllanthin and hypophyllanthin) was examined by addition the test compound at concentration of 100 μ M for 10 minutes prior to addition of CaCl₂. The contraction was expressed as a percentage of the maximum contraction induced by CaCl₂. In separated experiments, the effect of DMSO (solvent control) and nifedipine (positive control) were also determined.

The pD_2 value was calculated according to van Rossum (1963).

 $pD_2 = -log[B] + log([E_{AM}] / [E_{AMB}]-1)$

[B] was concentration of non competitive antagonist

 $[E_{AM}]$ and $[E_{AMB}]$ were maximum contraction in the presence of antagonist and absence of antagonist.

Experiment 2.4

Figure 14 Experimental diagram for testing the effects of the test compounds on aortic contraction in high K⁺- Ca²⁺- free depolarizing solution.

2.5 Aortic contraction in Ca^{2+} free solution

After the baseline tension was stable in normal KHS, PE (1 μ M) was added to induce aortic contraction for 15 minutes. Then, the aortic ring was washed with Ca²⁺-free KHS 3 times, followed by incubating the ring in Ca²⁺- free KHS for 15 minutes prior to addition of either PE (1 μ M) or caffeine (10 mM). The effect of the test compounds (phyllanthin and hypophyllanthin) on contraction in Ca²⁺- free KHS were studied by addition of the compound at concentration of 100 μ M for 10 minutes prior to addition of either PE (1 μ M) or caffeine (10 mM) (Figure 15). The response was expressed as a percentage of either PE- or caffeine-induced contraction in Ca²⁺- free KHS in the absence of the test compounds. In separated experiments, the effect of DMSO was also determined, and used as control group.

Experiment 2.5

Figure 15 Experimental diagram for testing the effects of the test compounds on aortic contraction in Ca^{2+} free solution.

Statistical Data Analysis

The results were expressed as the mean \pm standard error of the mean (S.E.M.) for 4-6 separated experiments. The individual IC₅₀ values were calculated from dose-response curves by linear regression. Statistical significances were tested by one-way analysis of variance (ANOVA) followed by post-hoc Dunnett *t*-test, where appropriate. The *p* values less than 0.05 were considered statistically significant.

CHAPTER IV

RESULTS

1. Vasorelaxation effects of the test compounds

The relaxation profiles of endothelium-intact and endothelium-denuded aortic rings were demonstrated in Figure 16-18. In this study, both phyllanthin and hypophyllanthin (1-100 μ M) significantly induced vasorelaxation in the aortic rings that were pretreated with PE (1 μ M). The vasorelaxation effects of these two compounds were concentration-dependent. In addition, the relaxation responses to each compound in either endothelium-intact or endothelium-denuded aortic rings were comparable (Figure 19), suggesting that removal of the functional endothelium had no significant influence on the intrinsic vasorelaxing activity of these compounds. The results also revealed that phyllanthin was more potent than hypophyllanthin in modulating the vascular tension, as evidenced by the apparent EC₅₀ values of phyllanthin and hypophyllanthin induced relaxation were 56.55 ± 2.91 μ M and 80.08 ± 5.05 μ M in endothelium-intact aortic rings, respectively and 55.40 ± 5.50 μ M and 84.02 ± 5.93 μ M in endothelium-duded aortic rings, respectively.

In parallel studies, a number of known vasorelaxant inhibitors [atropine (1 μ M), BaCl₂ (10 μ M), glybenclamide (10 μ M), indomethacin (10 μ M), L-NAME (100 μ M), methylene blue (10 μ M), propranolol (10 μ M), 4-aminopyridine (100 μ M) and TEA (10 μ M)] were preincubated with the endothelium-denuded rings prior to the relaxation experiment as abovementioned. The results showed that none of these inhibitors could influence the vasorelaxation responses induced by both phyllanthin and hypophyllanthin (Figure 35-45 in appendix).

Figure 16 Representative tracing showed the relaxation induced by cumulative addition of DMSO 0.2% v/v on PE-induced contraction of endothelium-intact (a) and endothelium-denuded aortic rings (b).

Figure 17 Representative tracing showed the relaxation induced by cumulative addition of phyllanthin on PE-induced contraction of endothelium-intact (a) and endothelium-denuded aortic rings (b). Phyllanthin concentrations were 1=1, 2=10, 3=50, 4=100 μM.

Figure 18 Representative tracing showed the relaxation induced by cumulative addition of hypophyllanthin on PE-induced contraction of endotheliumintact (a) and endothelium-denuded aortic rings (b). Hypophyllanthin concentrations were 1=1, 2=10, 3=50, 4=100 μM.

Figure 19 Vasorelaxation effects of phyllanthin and hypophyllanthin (1-100 μ M) in endothelium-intact and -denuded aortic rings that were precontracted with PE (1 μ M).

Data were presented as mean \pm S.E.M., n = 6 *p<0.05 showed significant difference from DMSO control group. #p<0.05 showed significant difference between phyllanthin and hypophyllanthin.

2. Effects of the test compounds on vascular contractions

2.1 Vasopressive actions

The contraction profiles of endothelium-denuded aortic rings upon cumulative addition of phyllanthin or hypophyllanthin (1-100 µM) in normal KHS were shown in Figure 20. The results demonstrated that phyllanthin and hypophyllanthin at concentration 10 and 50 µM were able to induce aortic contraction. Further addition of these two compounds at the concentration of 100 μ M did not increase or sustain the contractility, instead it relaxed the vascular tension. In another experiment, preincubation of the aortic muscle with tyramine caused transient, but significant contraction with the tension of 0.31 ± 0.04 g (n=20). The results were in agreement with other reports (Krishnamurty and Grollmax, 1972) on tyramine-mediated release of NE and muscle contraction, suggesting that there were presynaptic storage vesicles of NE in the aortic preparations. It was interesting that the vasopressive effects of the test compounds observed in this study could be abolished in the presence of tyramine (1 uM) (Figure 21). Furthermore, preincubation with prazosin (1 uM), a known Ω_{4} adrenoceptor antagonist, could also prevent the vasopressive actions of both phyllanthin and hypophyllanthin (Figure 22). Taken together, the vasopressive action of both phyllanthin and hypophyllanthin were not directly from its intrinsic property. It was likely that these two compounds were able to release NE from endogenous presynaptic storages which consequently induced muscle contraction.

Figure 20 Representative tracing showed the contraction induced by cumulative addition of phyllanthin (a) and hypophyllanthin (b) on resting tension in KHS. Phyllanthin and hypophyllanthin concentrations were 1=1, 2=10, 3=50, $4=100 \mu$ M.

Figure 21 Representative tracing showed the effect of tyramine on phyllanthin (a) and hypophyllanthin (b) induced contraction in KHS. Phyllanthin and hypophyllanthin concentrations were 1=1, 2=10, 3=50 µM.

Figure 22 Representative tracing showed the effect of prazosin on phyllanthin (a) and hypophyllanthin (b) induced contraction in KHS. Phyllanthin and hypophyllanthin concentrations were 1=1, 2=10, 3=50 μ M.

36

2.2 Agonist-induced aortic contraction

The contraction profiles of endothelium-denuded aortic rings in responses to PE (1 μ M) were similar to those of KCI (40 mM) induced contraction (Figure 46, 53 in appendix). The magnitude of the developed tension provoked by PE (1 μ M) was 1.41 ± 0.06 g (n = 45) and that provoked by KCI (40 mM) was 1.21 ± 0.05 g (n=58), respectively. In addition, tyramine did not interfere with the aortic contraction provoked by either PE or KCI. The developed tensions in the presence of tyramine (1 μ) were 1.27 ± 0.08 g (n=15) for PE-mediated contraction and 1.22 ± 0.08 g (n=23) for KCI-mediated contraction, respectively. Pretreatment of aortic rings with phyllanthin and hypophyllanthin were able to inhibit the aortic contraction provoked by either PE or KCI in concentration-dependent manner (Figure 47-52, 54-59 in appendix). It was interesting that hypophyllanthin at concentration 200 μ M did not significantly inhibit the KCI-mediated contraction instead it significantly increased the aortic tension.

The inhibitory effects of the test compounds on vascular tension were summarized in Figure 23, 24. The inhibition profiles suggested that phyllanthin was more potent than hypophyllanthin in suppressing the contractile responses of vascular smooth muscle upon challenges with either PE or KCI. The apparent IC₅₀ values of phyllanthin were 57.67 ± 8.85 μ M for PE-mediated contraction, and 63.30 ± 2.69 μ M for KCI-mediated contraction (Table 7 in appendix).

Figure 23 Effects of phyllanthin and hypophyllanthin (1-200 μ M) on vascular contraction induced by PE (1 μ M) in endothelium-denuded aortic rings.

Data were present as mean \pm S.E.M., n = 4-6 *p<0.05 showed significant difference from DMSO control group. #p<0.05 showed significant difference between phyllanthin and hypophyllanthin.

Figure 24 Effects of phyllanthin and hypophyllanthin (1-200 µM) on vascular contraction induced by KCI (40 mM) in endothelium-denuded aortic rings.

Data were present as mean \pm S.E.M., n = 4-6 *p<0.05 showed significant difference from DMSO control group. #p<0.05 showed significant difference between phyllanthin and hypophyllanthin.

39

2.3 Spontaneous contraction

Upon changing of the physiological solution from Ca²⁺- free solution to Ca²⁺- containing solution, a spontaneous contraction was observed, suggesting the Ca²⁺ flux into the smooth muscle through the membrane Ca²⁺ channel as previously reported by other investigators (Noguera *et al.*, 1997). In this study, the maximum of spontaneous contraction was 52.82 ± 2.30 % (n=16) in relative to the contractile responses to PE (1 μ M) in Ca²⁺- containing normal KHS. On the contrary, a spontaneous contraction was not observed under similar condition, except that KCl (40 mM) was used to provoke the contraction (Figure 60 in appendix). Pretreatment of aortic rings with DMSO (0.2% v/v) did not affect on spontaneous contraction in this experimental condition (Figure 25).

The results showed that both phyllanthin and hypophyllanthin (100 μ M) significantly inhibited a spontaneous contraction of the Ca²⁺- depleted rings upon changing Ca²⁺- free KHS to Ca²⁺- containing buffer (Figure 26, 27). The inhibition profiles suggested that these two compounds might affect capacitative Ca²⁺ entry and refilling of Ca²⁺- internal stores.

Figure 25 Representative tracing showed the effect of DMSO 0.2% (v/v) on spontaneous contraction in Ca^{2+} - containing KHS.

0.2 g

hypophyllanyhin

Figure 26 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (100 μM) on spontaneous contraction in $\text{Ca}^{2^+}\text{-}$ containing KHS.

0.25 g

Data were present as mean \pm S.E.M., n = 5-6

p<0.05 showed significant difference from DMSO control group.

2.4 Aortic contraction in high K^+ - Ca²⁺ - free depolarizing solution

The contraction profiles of endothelium-denuded aortic rings upon cumulative addition of CaCl₂ (10 μ M – 10mM) in high K⁺ - Ca²⁺- free depolarizing solution were shown in Figure 28-30. In this study, nifedipine, a known Ca²⁺ blocker, was used as a positive control in inhibiting the CaCl₂-mediated contraction of depolarized aortic muscle. The results demonstrated that phyllanthin (100 μ M) and nifedipine (10 μ M) significantly inhibited the CaCl₂-induced contraction (Figure 31), with the apparent pD₂ values of 2.53 ± 0.13 and 2.78 ± 0.09 for phyllanthin and nifedipine, respectively. In addition, the inhibitory effect of phyllanthin was surmountable with the cumulative addition of CaCl₂, suggesting its reversibility. By contrast, the contractile responses in the presence of hypophyllanthin at the equimolar concentration were not significantly different from those of DMSO control group. These findings suggested that phyllanthin, but not hypophyllanthin, was able to directly inhibit Ca²⁺ influx to the smooth muscle through voltage-operated Ca²⁺ channels (VOC).

Figure 28 Representative tracing showed the effect of DMSO 0.2% (v/v) on $CaCl_2$ -induced contraction of endothelium-denuded aortic rings in high K⁺- Ca²⁺- free depolarizing solution. CaCl₂ concentrations were $1=10^{-5}$, $2=5\times10^{-5}$, $3=10^{-4}$, $4=5\times10^{-4}$, $5=10^{-3}$, $6=5\times10^{-3}$, $7=10^{-2}$ µM.

Figure 29 Representative tracing showed the effect of nifedipine (positive control) on CaCl₂ -induced contraction of endothelium-denuded aortic rings in high K⁺- Ca²⁺- free depolarizing solution. CaCl₂ concentrations were $1=10^{-5}$, $2=5\times10^{-5}$, $3=10^{-4}$, $4=5\times10^{-4}$, $5=10^{-3}$, $6=5\times10^{-3}$, $7=10^{-2}$ µM

Figure 30 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on CaCl₂ -induced contraction of endothelium-denuded aortic rings in high K⁺- Ca²⁺- free depolarizing solution. CaCl₂ concentrations were 1=10⁻⁵, 2=5x10⁻⁵, 3=10⁻⁴, 4=5x10⁻⁴, 5=10⁻³, 6=5x10⁻³, 7=10⁻² μ M.

46

Figure 31 Effects of phyllanthin and hypophyllanthin (100 μ M) on vascular contraction induced by cumulative addition of CaCl₂ in high K⁺- Ca²⁺free depolarizing solution.

Data were present as mean \pm S.E.M., n = 5-6 *p<0.05 showed significant difference from DMSO control group.

2.5 Aortic contraction in Ca^{2+} free solution

The contraction profiles of endothelium-denuded aortic rings in Ca²⁺- free solution upon addition of specific contraction were shown in Figure 32. PE (1 μ M) produced a biphasic contractile response whereas caffeine (10 mM) produced a small transient contraction. In Ca²⁺- free buffer, PE could increase intracellular Ca²⁺ by activating IP₃ receptor at sarcoplasmic reticulum. The tension induced by PE in this Ca²⁺ - free condition was 0.24 ± 0.03 g (n = 15). The results showed that both phyllanthin and hypophyllanthin at concentration of 100 μ M significantly inhibited PE-induced contraction to 24.08 ± 1.29% and 55.72 ± 2.89% (n=4-5), respectively (Figure 34). The findings suggested that both compounds could interfere the smooth muscle contraction involving with the IP₃-mediated release of Ca²⁺ from its internal stores.

The effect of the test compounds on the caffeine-mediated contraction was also investigated (Figure 33). As known, caffeine could increase intracellular Ca²⁺ by activating ryanodine receptor at sarcoplasmic reticulum (SR). In this study, the tension induced by caffeine was 0.12 ± 0.02 g (n = 12). As shown in Figure 34, both phyllanthin and hypophyllanthin at concentration of 100 µM had any effect on caffeine-induced contraction. The results suggested that both test compounds had any influcence on the release of Ca²⁺ from SR via activation of ryanodine receptor.

Figure 32 Representative tracing showed the effects of DMSO 0.2% (v/v) (a), phyllanthin (b) and hypophyllanthin (c) (100 μ M) on PE-induced contraction of endothelium-denuded aortic rings in Ca²⁺ - free solution.

Figure 33 Representative tracing showed the effects of DMSO 0.2% (v/v) (a), phyllanthin (b) and hypophyllanthin (c) (100 μ M) on caffeine-induced contraction of endothelium-denuded aortic rings in Ca²⁺ - free solution.

Figure 34 Effects of phyllanthin and hypophyllanthin (100 μ M) on vascular contraction induced by PE and caffeine in Ca²⁺ - free solution.

Data were present as mean \pm S.E.M., n = 4-5 *p<0.05 showed significant difference from DMSO control group

CHAPTER V

DISCUSSION AND CONCLUSION

The purpose of this study was to investigate the effects of phyllanthin and hypophyllanthin on vascular tension. The study was also examined the influence of endothelium on the vascular actions of these two compounds.

The effects of phyllanthin and hypophyllanthin induced vasorelaxation were determined in endothelium-intact and endothelium-denuded aortic rings. In this study, both phyllanthin and hypophyllanthin significantly induced vasorelaxation in the aortic rings that were pretreated with PE. The relaxation responses of aortic muscle to each compound in the presence and absence of endothelium appeared to be comparable. These findings suggested that the intrinsic vasorelaxing activity of these two compounds was independent of functional endothelium. As known, endothelial cells released a number of vasodilators such as nitric oxide (NO), prostacyclin (PGI₂) and endothelium-derived hyperpolarizing factor (EDHF) (Ignarro, 2002; Stankevicius *et al.*, 2003; Suzuki, Chen and Yamamoto, 1992). It was unlikely that both phyllanthin and hypophyllanthin could enhance the release of these endothelium derived relaxing factors (EDRFs). Moreover, treatment the aortic muscles with methylene blue and specific K⁺ channel inhibitors such as glibenclamide, tetraethylammonium, 4-aminopyridine and barium chloride had no influence on the relaxation mediated by these two lignans.

As known, the key action of endothelial derived NO is to activate soluble quanylyl cyclase (sGC) in smooth muscle cells, leading to relaxation. In this study, methylene blue, a known sGC inhibitor had no significant effects on the relaxation induced by both phyllanthin and hypophyllanthin. These results suggested that the actions of the two lignans were not related to activation of the NO/cGMP pathway. These findings distinguished the modes of action of phyllanthin and hypophyllanyhin from those of other lignans such as secoisolariciresinol diglucoside (SDG) is a lignan isolated from flaxseed which has the molecular structure similar to phyllanthin and hypophyllanthin (Figure 1). It was reported that the hypotensive effect of SDG was mediated through NO/cGMP pathway (Prasad, 2004). Furthermore, n-butanol extract from leaves of *Phyllanthus acidus* induced vasorelaxation via NO/cGMP pathway (Leeya *et al.*, 2010). In addition, the vasorelaxation effects of these two compounds could not be inhibited by atropine, a muscarinic receptor antagonist. The findings supported that the two compounds had no influence on the NO/cGMP pathways.

The effects of both phyllanthin and hypophyllanthin on K^+ channel were also determined in this study. It is well established that K⁺ channels play important roles in the regulation of membrane potential in vascular smooth muscle cells. The open of K^+ channels causes the membrane hyperpolarization, leading to the closure of voltageoperated Ca²⁺ channels and decrease of intracellular Ca²⁺ and vasodilation (Jackson, 2000; Ko et al., 2008). To date, four distinct types of K^{\dagger} channel have been identified in vascular smooth muscle: including ATP-sensitive potassium (K_{ATP}) channels, voltagedependent K^{+} (K_v) channels, Ca²⁺- activated K^{+} (BK_{ca}) channels and inward rectifier K^{+} (K_{IR}) channels. (Jackson, 2000; Ko et al., 2008). It was shown that n-butanol extract from leaves of Phyllanthus acidus induced vasorelaxation via opening of K_{ATP} and BK_{Ca} channels in the vascular smooth muscle of isolated rat thoracic aorta (Leeya et al., 2010). In this study, treatment with various K channels blockers including gli benclamide (an ATP-sensitive K^+ blocker), tetraethylammonium (a Ca²⁺- activated K^+ blocker), 4aminopyridine (a voltage-dependent K^{\dagger} blocker) and barium chloride (an inward rectifier K^{+} blocker) had no significant inhibitory effect against vasorelaxation induced by both phyllanthin and hypophyllanthin. Hence it might be concluded that the mechanisms of action of these two lignans were not related to K^+ channels. Furthermore, the vasorelaxant effects of these two compounds could not be blocked by propranolol, a non-selective β -adrenoceptor antagonist, suggesting that these lignans had no interaction with β_2 -adrenoceptors.

It was interesting that phyllanthin and hypophyllanthin were able to induce aortic contraction in the absence of endothelium. This vasoconstriction effect was transient and reached maximum values at the cumulative concentration of the lignans up to 50 μ M. Further addition of these two compounds at the concentration of 100 μ M did not

increase or sustain the contraction. In order to determine whether the two lignans contain the intrinsic vasoconstrictive activity, pretreatment the aortic muscle with tyramine prior to the test compounds were performed. Tyramine can release NE from presynaptic storage vesicles, leading to muscle contraction (Krishnamurty and Grollmax, 1972). In this study, tyramine treatment caused transient, but significant contraction of aortic muscle, suggesting the presence of presynaptic storage vesicles of NE in the aortic preparations. It was interesting that the vasopressive effects of both phyllanthin and hypophyllanthin could be abolished in the presence of tyramine. Furthermore, prazosin, a known α_1 -adrenoceptor antagonist, could also prevent the vasopressive actions of these two lignans. Taken together, the vasopressive action of both phyllanthin and hypophyllanthin were not directly mediated from its intrinsic property. It was likely that these two compounds were able to release NE from endogenous presynaptic storages, which consequently resulted in muscle contraction.

It is widely known that the influx of extracellular $Ca^{2+}occur$ through transmembrane Ca^{2+} channels, which can be either receptor-operated Ca^{2+} channel (ROC) or voltage-operated Ca^{2+} channel (VOC), leading to vasoconstriction (van Breemen and Saida, 1989; Karaki *et al.*, 1997). Activation of α_{1-} receptors eventually results in activation of receptor-operated Ca^{2+} channel (ROC) whereas KCI-induced depolarization of plasma membrane causes Ca^{2+} influx through voltage-gated Ca^{2+} channel (VOC) (Ko *et al*, 2008; Nelson and Quayle, 1995). In this study, both phyllanthin and hypophyllanthin were able to inhibit the aortic contraction provoked by either PE or KCI in concentration-dependent manner. These findings suggested that these two lignans might be able to interfere a rising of cytosolic Ca^{2+} which is a key element of muscle contraction. One possibility was that the two compounds might affect extracellular Ca^{2+} influx through plasma membrane Ca^{2+} channels including both ROC and VOC.

This hypothesis was tested in mechanistic entry of Ca²⁺ across plasma membrane in the absence of agonist in the spontaneous contraction model (or increase in the resting tone; IRT) as previously described by other investigators (Noguera *et al.*,
1992, 1993, 1997). In this IRT model, the Ca^{2+} flux through plasma membrane Ca^{2+} channels can occur in order to replenish capacitative Ca²⁺ stores in the Ca²⁺ depleted smooth muscle. The depletion of intracellular Ca²⁺ pools caused by repetitive stimulation the muscle with α_1 -adrenoceptor agonists in Ca²⁺ free condition. Upon addition of Ca²⁺ back to the test system. Ca²⁺ influx from the extracellular environment occur rapidly. resulting in the spontaneous contraction or IRT. In this study, both phyllanthin and hypophyllanthin were able to inhibit spontaneous contraction under this specific condition. Hence, the mechanical refilling process of Ca2+ in this condition was disrupted by these two lignans. It was quite certain that membrane Ca²⁺ channels coupled to α_{1} - adrenoceptor could be affected by these two compounds. Furthermore, the effects of the two compounds on VOC were demonstrated in the CaCl_a-mediated contraction in high K^{\dagger} depolarizing solution. The principle of method involved the influx of Ca²⁺ from extracellular environment into intracellular pool through the fully open VOC induced by membrane depolarization. In this condition, phyllanthin, but not hypophyllanthin, significantly inhibited the CaCl₂-induced contraction. The results demonstrated that the contractile response in the presence of hypophyllanthin at the equimolar concentration to that of phyllanthin were not significantly different from DMSO control group. Hence, it might be concluded that phyllanthin was more effective than hypophyllanthin in inhibiting Ca²⁺ movement through the VOC. As described above, phyllanthin and hypophyllanthin had the inhibitory effects on both PE- and KCI-induced contraction. Therefore it could be suggested that two compounds may directly disrupt the increase of intracellular Ca²⁺ in vascular smooth muscle. Phyllanthin was able to block both VOC and ROC effectively whereas hypophyllanthin preferred ROC to VOC.

The potential effects of these two compounds on intracellular release of Ca²⁺ were also investigated in the experimental contraction model in Ca²⁺- free solution. It is well established that PE and caffeine produced a small transient contraction of smooth muscle in Ca²⁺- free solution through Ca²⁺- release from SR. The mechanism of PE - induced Ca²⁺- release from SR is mediated through the binding of IP₃ to and the IP₃ receptor (IP₃R) on the SR, resulting in a release internal Ca²⁺ from SR (Noguera and

D'Ocon, 1992). Caffeine-induced a transient contraction through the binding to the ryanodine receptor (RyR), leading to stimulation of Ca^{2+} - release from SR (Herrmann-Frank *et al.*, 1991; Meissner, 1994). Both phyllanthin and hypophyllanthin were able to inhibit the PE-induced transient contraction, but it had no effect on caffeine-induced contraction in Ca^{2+} - free solution. These findings suggested that these two lignans could interfere the smooth muscle contraction involving with the IP₃-mediated release of Ca²⁺ from its internal stores.

In conclusion, phyllanthin and hypophyllanthin induced aortic relaxation via endothelium-independent mechanism. Its direct actions on vascular smooth muscle may be linked to non-specific inhibition of Ca^{2+} influx and inhibition of PE-mediated Ca^{2+} release from SR.

REFFERENCES

- Abdulla, M. A., Ahmed, K. A A., AL-Bayaty, F. H., and Masood, Y. Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats. <u>African Journal of Pharmacy and Pharmacology</u> 4(5) (2010): 226-230.
- Amaechina, F. C., and Omogbai, E. K. Hypotensive effect of aqueous extract of the leaves of *Phyllanthus amarus* Schum. and Thonn. (Euphorbiaceae). <u>Acta Poloniae</u> <u>Pharmaceutica - Drug Research</u> 64(6) (2007): 547-552.
- Baloglu, E., Kiziltepe, O., and Gurdal, H. The role of Gi proteins in reduced vasorelaxation response to β -adrenoceptor agonists in rat aorta during maturation. <u>European</u> <u>Journal of Pharmacology</u> 564 (2007): 167–173.
- Bagalkotkar, G., Sagineedu, S. R., Saad, M. S., and Stanslas, J. Phytochemicals from *Phyllanthus niruri* Linn. and their pharmacological properties : a review. <u>Journal</u> <u>of Pharmacy and Pharmacology</u> 58 (2006): 1559-1570.
- Carl, A., Lee, H. K., and Sanders, K. M. Regulation of ion channels in smooth muscles by calcium. <u>American Journal of Physiology</u> 271 (1996): C9-C34.
- Cassidy, A., Hanley, B., and Lamuela-Raventos, R. M. Isoflavones, lignans and stilbenes origins, metabolism and potential importance to human health. <u>Journal of the</u> <u>Science of Food and Agriculture</u> 80 (2000): 1044-1062.
- Chirdchupunseree, H. <u>Protective activity of phyllanthin in ethanol-treated primary culture</u> <u>of rat hepatocytes.</u> Doctor's Thesis, Faculty of Pharmaceutical Sciences. Chulalongkorn University, 2009.

Cos, P., et al. Phytoestrogen: Recent Develoments. Planta Medica 69 (2003): 589-599.

- Dai-Eun Sok, D.-E., Hui S. Cui, H. S., and Kim, M. R. Isolation and Boactivities of Furfuran Type Lignan Compounds from Edible Plants. <u>Recent Patents on Food, Nutrition &</u> <u>Agriculture</u> 1 (2009): 87-95.
- Denninger, J. W., and Maretta, M. A. Guanylate cyclase and the NO/cGMP signaling pathway. <u>Biochimica et Biophysica Acta</u> 1411 (1999): 334-350.

- Do, K. H., *et al.* Pinoresinol-4,40-di-O-b-D-glucoside from Valeriana officinalis root stimulates calcium mobilization and chemotactic migration of mouse embryo fibroblasts. <u>Phytomedicine</u> 16 (2009): 530–537.
- Ericsson, E., and Lundholm, L. Adrenergic β -receptor activity and cyclic APM metabolism in vascular smooth muscle; Variations with age. <u>Mechanisms of Ageing and</u> <u>Development</u> 4 (1975): 1-6.
- Etuk, E.U. A Review of Medicinal Plants with Hypotensive or Antihypotensive effects. Journal Medical Science 6(6) (2006): 894-900.
- Harnett, K. M., and Biancani, P. Calcium-Dependent and Calcium-Independent Contractions in Smooth Muscles. <u>The American Journal of Medicine</u> 115(3A) (2003): 24S-30S.
- Hearon, W. M., and MacGregor, W.S. The Naturally Occurring Lignans. <u>Chemical reviews</u>. 55(5) (1955): 957-1068.
- Hecker, M. Endothelium-derived hyperpolarizing factor-fact or fiction?. <u>News In</u> <u>Physiological Sciences</u> 15 (2000): 1-5.
- Herrmann-Fran, Darling, E., and Meissner, G. Functional characterization of the Ca²⁺gated Ca²⁺ release channel of vascular smooth muscle sarcoplasmic reticulum. <u>European Journal of Physiology</u> 418 (1991): 353-359.
- Hill, M. A., Zou, H., Potocnik, S. J. Meininger, G. A., and Davis, M. J. Signal Transduction in Smooth Muscle. Invited Review: Arteriolar smooth muscle mechanotransduction: Ca²⁺ signaling pathways underlying myogenic reactivity. <u>Journal of Applied Physiology</u> 93 (2001): 973-983.
- Hypohyllanthin [Online] Available from : http://www.alibaba.com/producttp/11106_hin.html [2011, March 29]
- Ignarro, L. J. Nitric Oxide as a unique signaling molecular in the vascular system: A Historical Overview. <u>Journal of Physiology and Pharmacology</u> 53(4) (2002): 503-514.

Iizuka, T., Moriyama, H., and Nagai, M. Vasorelaxant Effects of Methyl Brevifolincarboxylate from the Leaves of *Phyllanthus niruri*. <u>Biological &</u> <u>Pharmaceutical Bulletin</u> 29(1) (2006): 177-179.

Jackson, W. F. lon channels and vascular tone. <u>Hypertension</u> 35 (2000): 173-178.

- Karaki, H., *et al.* Calcium Movements, Distribution, and Functions in Smooth Muscle. <u>The</u>
 <u>American Society for Pharmacology and Experimental Therapeutics</u> 49 (1997):
 157-230.
- Khatoon, S., Rai, V., Rawat, A. K. S., and Mehrotra, S. Comparative pharmacognostic studies of three Phyllanthus species. <u>Journal of Ethnopharmacology</u> 104 (2006): 79–86.
- Kitisin, T. Pharmacological studies 3. *Phyllanthihus niruri*. <u>Siriraj Hospital Gazette</u> 4 (1952): 641-649.
- Ko, E. A., Han, J., Jung, I. D., and Park, W. S. Physiological roles of K⁺channels in vascular smooth muscle cells. <u>Journal Smooth Muscle Research</u> 44(2) (2008): 65-81.
- Krishnamurty, V. S. R., and Grollmax, A. Contractile response of rat aorta to norepinephrine and tyramine. <u>The Journal of pharmacology and Experimental</u> <u>Therapeutics</u> 182(2) (1972): 264-272.
- Krithika, R., *et al.* Isolation, characterization and antioxidative effect of phyllanthin against CCI₄-induced toxicity in HepG2 cell line. <u>Chemico-Biological Interactions</u> 181 (2009): 351-358.
- Lee, M. W., and severson, D. L. Signal transduction in vascular smooth muscle: diacylglycerol second messengers and PKC action. <u>American journal of</u> <u>Physiology</u> 267 (1994): C659-C678.
- Leeya, Y., *et al.* Hypotensive activity of an n-butanol extract and their purified compounds from leaves of Phyllanthus acidus (L.) Skeels in rats. <u>European Journal of</u> <u>Pharmacology</u> 649 (2010): 301–313.
- Leite, D. F. P., *et al.* The cytotoxic effect and the multidrug resistance reversing action of lignans from *Phyllanthus amarus*. Journal of Planta Medica 72 (2006): 1353-1385.

- Lucas, K. A., *et al.* Guanylyl Cyclases and Signaling by Cyclic GMP. <u>Pharmacological</u> <u>Reviews</u> 52(3) (2000): 375-413.
- Macrae, W. D., and T.owers G. H. N. Biological avtivities of lignans. <u>Phytochemistry</u> 23(6) (1984): 1207-1220.
- Mann, G. E., Rowlands, D. J., Li, F. Y. L., Winter, P. d., and Siow, R. C. M. Activation of endothelial nitric oxide synthase by dietary isoflavones:Role of NO in Nrf2mediated antioxidant gene expression. <u>Cardiovascular Research</u> 75 (2007): 261-274.
- McFadzean, I., and Gibson, A. The developing relationship between receptor-operated andstore-operated calcium channels in smooth muscle. <u>British Journal of</u> <u>Pharmacology</u> 135 (2002): 1-13.
- Meissner, G. Rynodine receptor/Ca²⁺ release Channels and their regulation by endogeneous effectors. <u>Annual Reviews Physiology</u> 56 (1994): 485-508.
- Murugaiyah, V., and Chan, K.-L. Antihyperuricemic lignans from leaves of *Phyllanthus amarus*. Journal of Planta Medica 72 (2006): 1262-1267.
- Nakano, D., *et al.* Sesamin Metabolites Induce an Endothelial Nitric Oxide-Dependent
 Vasorelaxation through Their Antioxidative Property-Independent Mechanisms:
 Possible Involvement of the Metabolites in the Antihypertensive Effect of Sesamin.
 <u>The Journal of Pharmacology and Experimental Therapeutics</u> 318 (2006): 328-335.
- Nelson, M. T., and Quqyle, J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. <u>American Journal of Physiology</u> 37 (1995): C799-C822.
- Noguera, M. A., and D'Ocon, M. P. Different and common intracellular calcium-stores mobilized by noradrenaline and caffeine in vascular smooth muscle. <u>Naunyn-Schmiedeberg's Archives of Pharmacology</u> 345 (1992): 333-341.
- Noguera, M. A., and D'Ocon, M. P. Evidence that depletion of internal calcium stores sensitive to noradrenaline elicits a contractile response dependent on extracellular calcium in rat aorta. <u>British Journal Pharmacology</u> 110 (1993): 861-867.

- Noguera, M. A., D'Ocon, P., Ivorra, M. D., and Chulia, S. Capacitative Ca²⁺ entry associated with a1-adrenoceptors in rat aorta. <u>Naunyn-Schmiedeberg's Archives</u> <u>of Pharmacology</u> 356 (1997): 83-89.
- Oh, K.-S., *et al.* Cardiovascular Effects of Lignans Isolated from *Saururus chinensis*. <u>Planta Medica</u> 74 (2008): 233-238.
- Park, J. Y., *et al.* The mechanism of vasorelaxation induced by Schisandra chinensis extract in rat thoracic aorta. <u>Journal of Ethnopharmacology</u> 121 (2009): 69–73.
- Phyllanthin [Online] Available from : http://www.alibaba.com/product-tp/11106_hin.html [2011, March 29]
- *Phyllanthus amarus* [Online] Available from : http://www.learners.in.th/moo_lita/list [2010, December 25]
- Phyllanthus amarus [Online] Available from :

http://www.stuartxchange.org/SampaSampa_kan.html [2010, December 25]

- Prasad, K. Antihypertensive Activity of Secoisolariciresinol Diglucoside (SDG) isolated from Flaxseed: Role of Guanylate Cyclase. <u>International Journal of Angiology</u> 13 (2004): 7-14.
- Rahman, M. M. A., Dewick, P. M., Jackson, D. E., and Lucas, J. A. Lignans of Forsythia intermedial. <u>Phytochemistry</u> 29(6) (1990): 1971-198.
- Raimundo, J. M., *et al.* The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. <u>European</u> <u>Journal of Pharmacology</u> 606 (2009): 150-154.
- Rasmussen, H., Takuwa, Y., and Park, S. Protein kinase C in the regulation of smooth muscle contraction. <u>FASEB Journal</u> 1 (1987): 177-185.
- Shokunbi, O. S., and Odetola, A. A. Gastroprotective and antioxidant activities of *Phyllanthus amarus* extracts on absolute ethanolinduced ulcer in albino rats. <u>Journal of Medicinal Plants Research</u> 2(10) (2008): 261-267.
- Somanabandhu, A. 1H- and 13C-NMR assignments of phyllanthin and hypophyllanthin: lignans that enhance cytotoxic response with cultured multidrug-resistant cells. <u>Journal of Natural Product</u> 56(2) (1993): 233-239.

- Stankevicius, E., Kevelaitis, E., Vainorius, E., and Simonsen, U. Role of nitric oxide and other endothelium-derived factors. <u>Medicina</u> 39(4) (2003): 333-341.
- Sung, S. H., and Kim, Y. C. Hepatoprotective Diastereomeric Lignans from Saururus chinensis Herbs. Journal of Natural Products 63(7) (2000): 1019-1021.
- Suzuki, H., Chen, G., and Yamamoto, Y. Endothelium-Derived Hyperpolarizing Factor (EDHF). <u>Japanese Circulation Journal</u> 56 (1992): 170-174.
- Syamasundar, K. V., *et al.* Antihepatotoxic principles of *Phyllanthus niruri* herbs. <u>Journal</u> <u>of Ethnopharmacology</u> 14 (1985): 41-44.
- Taohjian, G., and Armstrong, J. Principles of Pharmacology. The Pathophysiology Basic of Drug Therapy. In Chong, D. Y. and Michel T. 2nded. <u>Pharmacology of Vascular</u> <u>Tone</u>. pp. 367-383. United states of America, 2008.
- Thippeswamy, A. H. M., *et al.* Protective role of *Phyllanthus niruri* extract in doxorubicininduced myocardial toxicity in rats. <u>Research Article</u> 43 (1) (2011): 31-35.
- Tripathi, A. K., Verma, R. K., Gupta, A. K., Gupta, M. M., and Khanuja, S. P. S. Quantitative determination of phyllanthin and hypophyllanthin in phyllanthus species by high-performance thin layer chromatography. <u>Phytochemical Analysis</u> 17 (2006): 394-397.
- Vallance, P. Endothelial regulation of vascular tone. <u>Postgraduate Medicine Journal</u> 68 (1992): 697-701.
- van Breemen, C., Saida, K. Cellular mechanisms regulating [Ca²⁺]_ismooth muscle. <u>Annual</u> <u>Reviews Physiology</u> 52 (1989): 315-329.
- van Rossum, J. M., Hurkmans, J. A., and Wolters, C. J. J. Cumulative dose-response curves. <u>Archives Internationales de Pharmacodynamie et de Therapie</u> 143 (1963): 299–330.
- Webb, R. C. Smooth muscle contraction and relaxation. <u>Advances In Physiology</u> <u>Education</u> 27 (2003): 201-206.

APPENDIX

Figure 35 Representative tracing showed the relaxation induced by addition of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE- induced contraction of endothelium-denuded aortic ring in the presence of L-NAME (100 μ M)

Figure36 Representative tracing showed the relaxation induced by addition of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE-induced contraction of endothelium- denuded aortic ring in the presence of atropine (1 μ M).

Figure 37 Representative tracing showed the relaxation induced by addition of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE-induced contraction of endothelium-denuded aortic ring in the presence of propranolol (10 μ M).

Figure 38 Representative tracing showed the relaxation induced by addition of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE-induced contraction of endothelium-denuded aortic ring in the presence of indomethacin (10 μ M).

Figure 39 Representative tracing showed the relaxation induced by addition of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE-induced contraction of endothelium-denuded aortic ring in the presence of methylene blue (10 μ M).

Figure 40 Representative tracing showed the relaxation induced by addition of phyllanthin (100 μ M, a) and hypophyllanthin (100 μ M, b) on PE-induced contraction of endothelium-denuded aortic ring in the presence of glibenclamide (10 μ M).

Figure 41 Representative tracing showed the relaxation induced by addition of phyllanthin (100 μ M. a) and hypophyllanthin (100 μ M, b) on PE-induced contraction of endothelium-denuded aortic ring in the presence of 4-AP (100 μ M).

Figure 42 Representative tracing showed the relaxation induced by addition of phyllanthin (100 μ M, a) and hypophyllanthin (100 μ M, b) on PEinduced contraction of endothelium-denuded aortic ring in the presence of BaCl₂ (10 μ M).

Figure 43 Representative tracing showed the relaxation induced by addition of phyllanthin (100 μ M, a) and hypophyllanthin (100 μ M, b) on PE-induced contraction of endothelium-denuded aortic ring in the presence of TEA (10 μ M).

Data were presented as mean \pm S.E.M., n = 4-6

Data were presented as mean \pm S.E.M., n = 4-6

Figure 46 Representative tracing showed the PE-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 47 Representative tracing showed the effect of DMSO 0.2% (v/v) on PEinduced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 48 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (1 μ M) on PE-induced contraction of endotheliumdenuded aortic rings in KHS containing tyramine.

Figure 49 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (10 μM) on PE-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

a)

Figure 50 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (50 μM) on PE-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 51 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (100 μ M) on PE-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine .

Figure 52 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (200 μM) on PE-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 53 Representative tracing showed the KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 54 Representative tracing showed the effect of DMSO 0.2% (v/v) on KClinduced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 55 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (1 μ M) on KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 56 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (10 μM) on KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 57 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (50 μM) on KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 58 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (100 μM) on KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 59 Representative tracing showed the effects of phyllanthin (a) and hypophyllanthin (b) (200 μM) on KCI-induced contraction of endothelium-denuded aortic rings in KHS containing tyramine.

Figure 60 Representative tracing showed the effects of KCI (40 mM) on spontaneous contraction in Ca^{2+} containing KHS.

Figure 61 The effects of phyllanthin and hypophyllanthin on spontaneous contraction in Ca^{2+} containing KHS.

Data were present as mean \pm S.E.M., n = 5-6

p<0.05 showed significant difference from DMSO control group.

	Physiological solution				
Chemical	Kreb Henseleit	Ca ²⁺ -free Solution	High K [⁺] - Ca ²⁺ - free		
			Depolarizing Solution		
NaCl	119	119	27		
KCI	4.7	4.7	100		
CaCl ₂	2.5	-	-		
$MgSO_4$	1.0	1.0	-		
NaHCO ₃	25	25	14		
$\rm KH_2PO_4$	1.2	1.2	14		
Glucose	11.1	11.1	10		
EDTA	-	0.2	-		
MgCl ₂	-	-	0.54		

Teble1 Compound of Physiological solution (mM)

Test compounds	Concentration (µM)	% Relaxation		
		Endothelium-intact	Endothelium-denuded	
Phyllanthin	1	3.28 ± 1.63	3.57 ± 1.53	
	10	16.53 ± 2.42 13.73 ± 2.54		
	50	46.67 ± 5.24* 47.08 ± 7.82*		
	100	82.88 ± 1.73*,#	81.51 ± 6.83*,#	
Hypophyllanthin	1	6.55 ± 1.47 4.58 ± 2.04		
	10	13.78 ± 2.32 12.06 ± 2.70		
	50	35.87 ± 2.61* 32.43 ± 3.57*		
	100	60.25 ± 3.01*,# 59.03 ± 3.90*,#		
DMSO	0.2% (v/v)	6.20 ± 1.32 3.64 ± 0.64		
Positive control (Ach)	10	61.85 ± 3.64 3.00 ± 0.73		

Table 2	Vasorelaxation	effects o	of the test	compounds	in endotheliu	m-intact
	and endotheliu	m-denud	ed aortic	rings.		

Data were present as mean \pm S.E.M., n = 6

p<0.05 showed significant difference from DMSO control group.

#p<0.05 showed significant difference between phyllanthin and hypophyllanthin.
	EC ₅₀ values (µM)		
Test compounds	Endothelium-intact	Endothelium-denuded	
Phyllanthin	56.55 ± 2.91	55.40 ± 5.5	
Hypophyllanthin	80.08 ± 5.05	84.02 ± 5.93	

Table 3 The apparent $\mathsf{EC}_{\mathrm{50}}$ of the test compounds on vasorelaxation

Data were presented as mean \pm S.E.M., n=6

Table 4	Effects	of inhibitors	on	vasorelaxation	induced	by the	test	compound	s in
	endothe	elium-denude	ed a	aortic rings.					

Vasodilation inhibitors	% Relaxation			
	Phyll	anthin	Hypoph	yllanthin
	control	inhibitor	control	inhibitor
L-NAME (100 µM)	54.19 ± 7.29	56.87 ± 5.39	43.98 ± 4.69	48.14 ± 7.48
Atropine (10 µM)	52.54 ± 5.67	53.09 ± 3.58	45.60 ± 2.47	47.83 ± 2.46
Propranolol (10 µM)	58.51 ± 2.40	56.33 ± 4.39	39.92 ± 3.62	45.21 ± 3.72
Indomethacin (10 µM)	43.48 ± 4.89	54.99 ± 2.25	51.51 ± 5.01	58.78 ± 6.37
Methylene blue (10 µM)	50.27 ± 7.71	54.70 ± 2.47	40.80 ± 7.05	43.86 ± 7.17
Glibenclamide (10 µM)	53.06 ± 4.33	52.77 ± 3.04	42.79 ± 2.10	43.28 ± 3.42
4-AP (10 µM)	53.75 ± 4.99	63.29 ± 1.17	23.66 ± 4.43	28.56 ± 1.20
BaCl ₂ (100 μM)	53.81 ± 4.49	67.62 ± 2.53	43.87 ±1.59	40.60 ± 3.44
TEA (100 μM)	70.05 ± 2.39	61.22 ± 4.16	46.17 ± 1.80	49.66 ± 7.74

Data were present as mean \pm S.E.M., n = 4-6

Test compounds	Concentration	% Contraction
	(μM)	РЕ 10 Д М
	1	100.38 ± 2.51
	10	90.22 ± 2.27
Phyllanthin	50	52.09 ± 3.19*,#
	100	41.70 ± 5.54*
	200	28.22 ± 5.63 *,#
	1	98.81 ± 3.37
	10	78.92 ± 2.80*
Hypophyllanthin	50	75.98 ± 1.45*,#
	100	65.81 ± 2.13*
	200	64.48 ± 2.46 *,#
DMSO	0.2% (v/v)	104.04 ± 1.53

Table 5 Effect of the test compounds on vascular contraction induced by PE $(1 \ \mu M)$ in endothelium-denuded aortic rings.

Data were present as mean \pm S.E.M., n = 4-6

*p<0.05 showed significant difference from DMSO control group.

#p<0.05 showed significant difference between phyllanthin and hypophyllanthin.

Test compounds	Concentration	% Contraction
	(μM)	KCI 40 mM
	1	94.43 ± 1.45
	10	72.75 ± 4.32*
Phyllanthin	50	43.45 ± 1.45*,#
	100	19.44 ± 3.14*
	200	2.31 ± 0.66 *
	1	102.53 ± 7.71
	10	99.20 ± 6.56
Hypophyllanthin	50	81.42 ± 4.14 *,#
	100	24.93 ± 1.45*
	200	44.44 ± 5.84 *
DMSO	0.2% (v/v)	109.40 ± 2.70

Table 6 Effect of the test compounds on vascular contraction induced by KCI(40 mM) in endothelium-denuded aortic rings.

Data were present as mean \pm S.E. M., n = 4-6

p<0.05 showed significant difference from DMSO control group.

#p < 0.05 showed significant difference between phyllanthin and hypophyllanthin.

	IC ₅₀ values (µM)		
Test compounds	PE-mediated contraction	KCI-mediated contraction	
Phyllanthin	57.67 ± 8.85	63.30 ± 2.69	
Hypophyllanthin	N/D	N/D	

Table 7 The apparent $\mathrm{IC}_{\mathrm{50}}$ of the test compounds on vasoconstriction

Data were presented as mean \pm S.E.M., n= 4-6

Table 8 The apparent percentage inhibition of the spontaneous contraction

Test compounds	% Inhibition of spontaneous contraction
DMSO 0.2 % (v/v)	3.18 ± 3.94
Phyllanthin	36.98 ± 2.65*
Hypophyllanthin	28.01 ± 3.50*

Data were present as mean \pm S.E.M., n = 5-6

p<0.05 showed significant difference from DMSO control group.

CaCl ₂			% Contraction		
concentration	Control	Phyllanthin	Hypophyllanthin	DMSO 0.2%	Nifedipine
(M)		(100 µM)	(100 µM)	(v/v)	(10 µM)
10 ⁻⁵	6.21 ± 1.33	1.26 ± 0.32	1.68 ± 0.58	3.14 ± 1.01	2.18 ± 0.94
5x10 ⁻⁵	19.54±2.43	2.91 ± 0.49*	9.60 ± 4.76	14.77 ± 2.53	5.28 ± 3.36
10 ⁻⁴	29.29±2.23	5.17 ± 0.92*	17.12 ± 4.73	24.56 ± 4.64	10.76 ± 3.82
5x10 ⁻⁴	45.51±3.02	8.17 ± 1.31*	28.09 ± 3.88	35.88 ± 7.07	12.15 ± 3.67*
10 ⁻³	54.98±1.70	14.47 ± 1.75*	42.67 ± 2.95	52.33 ± 6.00	15.37 ± 3.71*
5x10 ⁻³	83.52±2.01	38.82 ± 6.06*	68.54 ± 5.13	78.82 ± 4.14	18.23 ± 3.48*
10 ⁻²	100 ± 0	63.36 ± 8.49	87.49 ± 8.28	108.94 ± 7.08	20.51 ± 3.99*

Table 9 Effect of the test compounds on vascular contraction induced by $CaCl_2$ (10 μ M - 10 mM) in high K⁺- Ca²⁺- free depolarizing solution.

Data were present as mean \pm S.E.M., n = 5-6

p<0.05 showed significant difference from DMSO control group.

Table 10 The apparent pD_{2} values of the test compounds

Test compounds	The pD ₂ values
Phyllanthin	2.53 ± 0.13
Hypophyllanthin	N/D
Nifedipine	2.78 ± 0.09

Data were present as mean \pm S.E.M., n = 5-6

Agonist	% Contraction		
	DMSO 0.2%(v/v)	Phyllanthin	hypophyllanthin
PE 1 μM	92.11 ± 8.42	24.08 ± 1.29*	55.72 ± 2.89*
Caffeine 10 mM	114.99 ± 14.96	90.22 ± 5.42	85.23 ± 4.89

Table 11 Effect of the test compounds on vascular contraction induced by either PE (1 μ M) or caffeine (10 mM) in Ca²⁺- free solution.

Data were present as mean \pm S.E.M., n = 4-5

p<0.05 showed significant difference from DMSO control group.

Chulalongkorn University Animal Care and Use Committee

Certificate of Project Approval	🗆 Original 🛛 🗆 Renew
Animal Use Protocol No. 10-33-004	Approval No. 10-33-004
Protocol Title Effects of phyllanthin and hypophyllanthin on	vascular tension of isolated rat aorta
Principal Investigator Suree Jianmongkol, Ph.D.	
Certification of Institutional Animal Care a This project has been reviewed and appro- and policies governing the care and use of documented in Ethical Principles and Guidelin National Research Council of Thailand.	nd Use Committee (IACUC) oved by the IACUC in accordance with university regulations of laboratory animals. The review has followed guidelines uses for the Use of Animals for Scientific Purposes edited by the
Date of Approval March 31, 2010	Date of Expiration March 31, 2011
Applicant Faculty/Institution Faculty of Pharmaceutical Sciences, Chulalong BKK-THAILAND, 10330	gkorn University, Phyathai Rd., Pathumwan
Signature of Chairmonson	Signature of Authorized Official
or Jew Allanon	have consiste

This approval is subjected to assurance given in the animal use protocol and may be required for future investigations and reviews.

BIOGRAPHY

NAME	Miss Marisa Inchoo
DATE OF BIRTH	April 4, 1985
PLACE OF BIRTH	Lumpang
HOME ADDRESS	543/14, Moo 2, Kolak District, Aumphoe Mueang,
	Prachuapkhirikhan Province, 77000
EDUCATION	Bachelor of Science (Veterinary Technology) with
	Second Class Honours
	Kasetsart University, 2008