

BIOLOGICAL-LIKE MEMORY ALLOCATION SCHEME SIMULATION

Mr. Gasydech Lergchinnaboot

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information

Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2017
Copyright of Chulalongkorn University

การจ าลองแผนจัดสรรหน่วยความจ าคล้ายเชิงชีววิทยา

นายกษิดิ์เดช ฤกษ์ชินบุตร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2560
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title BIOLOGICAL-LIKE MEMORY ALLOCATION SCHEME
SIMULATION

By Mr. Gasydech Lergchinnaboot
Field of Study Computer Science and Information Technology
Thesis Advisor Associate Professor Peraphon Sophatsathit, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Professor Chidchanok Lursinsap, Ph.D.)

 Thesis Advisor

(Associate Professor Peraphon Sophatsathit, Ph.D.)

 External Examiner

(Assistant Professor Kriengkrai Porkaew, Ph.D.)

 iv

THAI ABSTRACT

กษิดิ์ เดช ฤกษ์ชินบุตร : การจ าลองแผนจัดสรรหน่วยความจ าคล้ายเชิงชีววิทยา
(BIOLOGICAL-LIKE MEMORY ALLOCATION SCHEME SIMULATION) อ .ที่ ป รึ ก ษ า
วิทยานิพนธ์หลัก: รศ. ดร. พีระพนธ์ โสพัศสถิตย์{, หน้า.

เมื่อ กอร์ดอน มัวร์ ได้สังเกตุรูปแบบการเพ่ิมขึ้นของจ านวนทรานซิสเตอร์ และได้พบว่า
ความกว้างของแถบความถี่ของหน่วยความจ า ไม่สามารถที่จะพัฒนาให้ตามทันกับประสิทธิภาพของ
หน่วยประมวลผลได้ อัตราความแตกต่างนี้ค่อยๆเพ่ิมข้ึนอย่างต่อเนื่อง จึงส่งผลให้เกิดปัญหา “ก าแพง
ของหน่วยความจ า” และผลกระทบนี้ได้ก่อให้เกิดปัญหาประสิทธิภาพคอขวดขนาดใหญ่ หลากหลาย
วิธีการก าจัดคอขวดได้ถูกจัดท าขึ้น วิธีการเหล่านี้ได้มีการใช้ทรัพยากรและมีความความซับซ้อนสูง
การวิจัยนี้ได้เสนอแผนการจองหน่วยความจ าแบบใหม่ที่ได้ใช้หลักการพ้ืนฐานของพฤติกรรมทาง
ชีววิทยาของสิ่งมีชีวิต ขณะที่เซลล์ได้ถูกสร้างมาด้วยข้อจ ากัดทางทรัพยากร แต่ทว่ายังสามารถ
ปฏิบัติงานได้อย่างต่อเนื่องโดยใช้ทรัพยากรเพียงเล็กน้อย วิธีการที่น าเสนอเลียนแบบลักษณะพิเศษ
ของสิ่งมีชีวิตเซลล์เดียวที่จะท างาน 1 งาน ต่อ 1 ช่วงเวลา และได้ใช้หลักการท างานแบบเข้าก่อนออก
ก่อน (ไฟโฟ) การประมวลผลสามารถควบคุมได้โดยการใช้นาฬิกาโลกที่จะอนุญาต 1 งาน ต่อ 1
ช่วงเวลา จึงส่งผลให้เกิดแผนการจัดสรรหน่วยความจ าที่ใช้ทรัพยากรน้อยและสามารถท าให้บรรลุล่วง
ได้ โดยที่ไม่ต้องใช้ขั้นตอนวิธีการท างานที่ซับซ้อน และยังส่งผลให้แผนการจัดการนี้สามารถน าไป
ประยุกต์ใช้ได้บนฮาร์ดแวร์ซึ่งจะบรรเทาปัญหาก าแพงของหน่วยความจ าไปที่สุด

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และเทคโนโลยี
สารสนเทศ

ปีการศึกษา 2560

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5872601123 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: FIFO QUEUE / MEMORY ALLOCATION / SIMULATION / BIOLOGICAL-LIKE

GASYDECH LERGCHINNABOOT: BIOLOGICAL-LIKE MEMORY ALLOCATION
SCHEME SIMULATION. ADVISOR: ASSOC. PROF. PERAPHON SOPHATSATHIT,
Ph.D.{, pp.

When Gordon Moore observed the number of transistor increasing pattern
while memory bandwidth could not catch up with processing unit performance, this
diverging rate kept stretching out to create what eventually transpired to be “Memory
Wall.” This consequence becomes a major performance bottleneck. Many bottleneck
elimination approaches have been attempted. They incorporate considerable
overhead and high complexity. This research proposes a novel memory allocation
scheme that employs biological behavioral principles of the living creatures. At the
principal construct of their life form lives the cells having limited resources, yet
passively operates with little overhead. The proposed method imitates this unicellular
characterization that operates on one task at a time, thereby memory occupation is
reduced to First-In-First-Out activation discipline. Processing can thus be regulated by
a global clock that permits one active task at any given time to reside in memory.
Consequently, low overhead memory allocation scheme can be achieved without the
need for elaborate algorithms. The most anticipatory benefit is technological transfer
of the proposed scheme to hardware that will eventually alleviate the Memory Wall
problem.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2017

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

I would like to first and foremost express my sincere appreciation to my
supervising adviser Associate Professor Dr. Peraphon Sophatsathit. Dr. Peraphon was
always there for supporting me with great advices, patient guidance and constant
encouragement throughout our two and a half years of working together. Also,
when discussions were needed, he was always available to exchange ideas and
consistently pushed me further. Besides these helps, Dr. Peraphon had taught me
to work under pressure. Without him this thesis could not have been done.

I also would like to thank to my committee, Professor Dr. Chidchanok
Lursinsap, and Assistant Professor Dr. Kriengkrai Porkaew, for their valuable times,
valuable advice, every suggestion during examination period and my thesis book.

Thank to Graduate School Chulalongkorn University for their 60/40 Support
for Tuition Fee and AVIC research center for providing such a stunning working
environment and excellent facilities. I would also like to thank all supportive words
from my colleagues in AVIC research center, especially Mr. Thitiwat Piyatamrong
and Miss Satanat Kitsiranuwat.

Special thanks to very supportive developer community from PyCharm
and Stackoverflow that helped me went through struggle and made it here.

Finally, my sincere gratitude goes to my parents who are my life-long
loving, caring, and supporting mentors.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

CONTENT OF TABLES .. x

CONTENT OF FIGURES ... xi

Chapter 1 INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Statements of the problems. ... 3

1.3 Objectives ... 3

1.4 Scope of this thesis ... 3

1.5 Organization of this thesis ... 4

Chapter 2 BACKGROUND KNOWLEDGES AND LITERATURE REVIEWS 5

2.1 Motivation ... 5

2.2 Unicell biological structure ... 5

2.3 Operating systems background knowledge ... 6

2.3.1 Process states .. 6

2.3.2 Scheduling .. 8

2.3.2.1 First-In First-out (FIFO) .. 8

2.3.2.2 Shortest Remaining Time First (SRTF) .. 8

2.3.2.3 Round Robin (RR) ... 9

2.4 Literature Reviews ... 9

 viii

 Page

2.4.1 Memory Bandwidth Limitation ... 9

2.4.2 Scheduling Policies ... 10

2.4.3 Object Table introduction ... 10

2.4.4 End of Moore’s law .. 11

Chapter 3 METHOD .. 12

3.1 Observation .. 12

3.2 System Architecture .. 13

3.2.1 Schematic operations .. 13

3.2.2 Memory Architecture Design .. 16

3.3.3 Modified Process States ... 18

3.3.4 Policies .. 20

3.3.4.1 Incoming .. 20

3.3.4.2 Execution ... 20

3.3.4.3 Overflow .. 22

Chapter 4 EXPERIMENTAL RESULTS .. 24

4.1 Experimental Setup .. 24

4.1.1 Hardware Specification .. 24

4.1.2 Software Used ... 24

4.1.2.1 Programming language and Tools .. 24

4.2 Input Specification .. 25

4.3 Results ... 27

Chapter 5 DISCUSSION ... 33

5.1 Discussion .. 33

 ix

 Page

Chapter 6 CONCLUSION AND FUTURE WORK ... 34

6.1 Conclusion .. 34

6.2 Future work .. 34

REFERENCES ... 36

VITA .. 38

CONTENT OF TABLES

Table 3.1 Tick indication ... 17

Table 4.1 Operation used ... 27

Table 4.2 Execution time in clock ticks ... 28

CONTENT OF FIGURES

Figure 1.1 Job distribution... 4

Figure 2.1 Body structure .. 6

Figure 2.2 Process states ... 7

Figure 2.3 First-In First-Out (FIFO) .. 8

Figure 2.4 Shortest Remaining Time First (SRTF) .. 8

Figure 3.1 Reference architecture ... 12

Figure 3.2 Class Diagram .. 13

Figure 3.3 Memory Architecture .. 16

Figure 3.4 Process States ... 18

Figure 3.5 Memory pool layout for execution .. 20

Figure 3.6 1 User and 1 system process .. 21

Figure 3.7 Only user processes, but pointed has not yet moved 21

Figure 3.8 Only user processes, pointers move to user space ... 21

Figure 3.9 Multiple system processes .. 22

Figure 3.10 User space is flooded ... 22

Figure 3.11 System space is flooded .. 23

Figure 4.1 10,000 pre-generated inputs ... 25

Figure 4.2 10,000 pre-generated inputs (enlarged) .. 26

Figure 4.3 Process classes ... 26

Figure 4.4 Average waiting time ... 30

Figure 4.5 Average waiting time between FIFO and the proposed scheme 30

Figure 4.6 Average waiting time between SRTF and the proposed scheme 31

xii

Figure 4.7 Average waiting time between RR and the proposed scheme 31

Chapter 1 INTRODUCTION

1.1 Introduction

Calculation has been around since prehistoric age. Since then, the advancement
of calculation technologies has consistently developed. The development rate was
incredibly fast, starting from abacus and counting to the introduction of computer.
During that time computer technology was not as powerful as it is today. Computer’s
components such as processing units and memory units were developed to fulfil the
customer and manufacturing needs. However, these 2 units did not progress at the
same pace. In 1970s, Gordon Moore noticed these phenomena. His observation led to
the conclusion that “the number of transistors in circuit will doubling themselves every
24 months”[1] [2]. This statement stayed merely half a decade. In 1975, David House
rewrote the statement into 18 months[3]. Moore’s law has proven itself to be accurate
enough to use as a reference for chipset manufacturer. The law can be translated into
numeric form as follows: CPUs grow approximately 60 percent per year, while memory
speed improves just 10 percent per year. This gap keeps widening 50 percent per year
that subsequently is known by the infamous “Memory Wall”[4]. The problem must be
eliminated to maximize overall resources utilities.

There were several attempts to conquer Memory Wall problem. Two possible
solutions are:

1. Provide more memory performance to matching CPUs performance. This

solution aims to replace existing components with faster, more effective, and

more efficient ones. The system could gain a performance boost ranging from

slightly change or could be huge jump depending on the available budget.

However, there are drawbacks listed below:

- Costs fortune to replace annually or decennially.

- New configurations must be involved whenever hardware changes.

2

2. Hardware advancement that keeps no end in improvement. Employ more

efficient memory allocation scheme. This solution aims to utilize existing

hardware by deploying better replacement memory allocation scheme. Thus,

the existing system remains reusable, no hardware changes except some fine-

tuning in memory control unit procedures.

There were many experiments to solve the Memory Wall problem with efficient
memory allocation scheme. To date, some of the approaches have worsen the
problem with different techniques, performing look ahead techniques which end up
to be a miss, not to mention extra memory usage from look up table. The performance
gap between CPUs and memory remains.

This research introduces biological knowledge as an innovative approach to
mitigate the memory wall problem. One approach to be considered is to exploit a
unicellular life form as the basis for design and implementation of a memory allocation
scheme. This proposed scheme has to be simple, yet efficient in its own right. The
unicellular life form hereafter is alternately referred to as unicellular animal, or unicell
fits this desired philosophy and consequently is chosen as the reference architectural
model of the proposed memory allocation scheme.

Alongside the simplicity, the unicellular animal can live in various surfaces, extreme
weather conditions, survive in their limited resources in enclosing environment. The
provision of nature establishes some of their predominant characteristics [5] as follows:
independence, self-contain, autonomous, and versatile.

By virtue of the above unicell properties, the reference architectural model must
be laid out straightforwardly to preserve the simplicity. In other words, memory
arrangement must be organized to permit easy, fast access and retrieval using the
simplest algorithm. A viable candidate is First-In, First-Out (FIFO) method. Its
straightforward operational construct lends itself to hardware realization which, in
terms of the proposed scheme, represents a single unit memory package imitating the
unicell structure.

3

It is envisioned that the proposed scheme will help mitigate the memory wall
problem. Detail on how it is derived, designed, and implemented will be discussed in
the remaining chapters of this work.

1.2 Statements of the problems.

A number of problems are set up to be explored in this research.
1. How can a biological scheme be imitated in memory context?

2. How can the unicellular animal characteristics be deployed to help solve the

memory wall problem?

1.3 Objectives

1. Addressing performance gap between processing units and memory units to

solve the memory wall problem with a biological-like memory allocation

scheme.

2. Devising efficient algorithms based on the unicellular characteristics to support

the proposed memory allocation scheme.

3. Pursuing the hardware-implementable on this work by reducing the process

state complexity with operation and space usage reduction.

1.4 Scope of this thesis

1. Define potential existing problems and solutions.

2. Propose a new memory allocation scheme based on unicellular life form.

3. Focus on memory allocation of job distribution as shows in Figure 1.1.

4. Evaluate results, compare proposed scheme to well-known algorithms.

4

Figure 1.1 Job distribution

1.5 Organization of this thesis

Chapter 2 recaps the background on how unicell biological structure help shape
the reference architectural model, the transformations from unicell to process states.
Some related works including memory bandwidth limitation, process reordering, single
high-performance processor issues, and logical limit problems are described.

The proposed scheme will be explained in Chapter 3. The reference architectural
model is presented, as well as modified process states to suit the proposed scheme.
In addition to these design elements, management policies will also be described.

Chapter 4 carries out research experimental simulation. Environment set up of both
hardware and software will be defined, as well as inputs for this simulation. The
experimental results are measured to gauge the viability of proposed scheme by
comparing with related benchmarking methods.

Some inferences precipitated from this study will be discussed in Chapter 5,
particularly, why the proposed scheme is viably more efficient than other comparable
methods. Chapter 6 concludes the thesis along with future improvement on the
proposed scheme.

Task Distributer

Memory Allocation

Result Integrator

Chapter 2 BACKGROUND KNOWLEDGES AND LITERATURE REVIEWS

2.1 Motivation

As mentioned earlier, there were problems regarding performance gap between
CPUs and Memory units. These problems had been around for ages due to their
different pace where the CPUs were growing 60 percent a year and memory units were
progressing merely 10 percent yearly.

Inconveniently, performance gap kept stretching out as time went by. There were
numbers of researches attempted to conquer “Memory wall.” Various techniques had
involved, namely, reorganizing memory structure, perform look ahead technique, or
even put extra physical components. But most of successful ones had shared one
similarity, being involved with fancy techniques, which caused extra operations and
memory usages.

In this research, different perspectives were investigated about conventional
approach to see if conventional approaches would worsen the memory wall problem.
Numerous observations were performed including nature, human, animal, also artificial
living form that involved from their properties, functionality, as well as behaviors.
These mentioned life forms were managed to operate their living basis with and
without help depending on activities. Some activities were tough to achieve, the rest
were effortless as these activities usually involved resources to accomplish. Even
though these life forms had limited functionalities and resources, yet they managed
to carry out their living activities.

2.2 Unicell biological structure

Since previous works were not working as expected, alternative solution was
investigated. This work was targeting to employ non-computer science knowledge to
work alongside with conventional knowledge.

Biology was one choice of the solution. It was found that there were plentiful life
forms ranging from well-developed ones to the simplest ones. Well-developed life

6

forms consist of functions, they can work flawlessly through array of routines, but the
complexity is also come with. The inspection has gone down to lower level animals.
Multicellular animal’s body consists of multi-level structures as illustrate in Figure 2.1.

Figure 2.1 Body structure

According to Figure 2.1 multicellular animals are consisting of sophisticated
components that work together and become a living body. However, unicell animals
consist of only single cell in their boy. Every activity is done by this single cell[5], i.e.
digestion, excretion, reproduction, etc. Considering all of resources that are limited,
the outcome is astonishingly performed.

Aside from their stunning performance, their other abilities are also impressive as
well. Unicell animals are capable of living through variety places even on other
animals. Summarizing these properties together, unicellular animal becomes a
reference model in this work.

2.3 Operating systems background knowledge

2.3.1 Process states

Processes are program in execution. They are part of the entire system. There are
several of process types based on events, CPU bound and I/O bound processes. No
matter which type of processes, they could be concurrently handled by the operating
systems. Every process will be assigned to one of the states, typically consisting of the
following 5 states[6]: new, ready, running, blocked, and terminated as depicted in
Figure 2.1.

Cell Tissue Organ

Organ system Body

7

Figure 2.2 Process states

1. New: freshly created process yet to settle or grant a permission to specific

resources.

2. Ready: processes that settle in memory yet to execute. Processes in this state

are waiting to their execution iteration.

3. Running: processes that are executing.

4. Blocked: Interrupted processes by events which caused by insufficient

resources, high priority process, or waiting for I/O devices.

5. Terminated: processes completed from Running, occasionally, from ready or

blocked state. Some processes remain in memory even the corresponding jobs

are finished.

Terminate
d

Running

Blocked

Ready

New

8

2.3.2 Scheduling

2.3.2.1 First-In First-out (FIFO)

Figure 2.3 First-In First-Out (FIFO)

FIFO is the simplest and most straightforward method that serves the oldest entry
first and runs until the job has finished. Then the second oldest is run and so on until
no process is left in process queue as demonstrated in Figure 2.2. No extra operations
are required to operate this scheduling method.

2.3.2.2 Shortest Remaining Time First (SRTF)

Figure 2.4 Shortest Remaining Time First (SRTF)

5 8 10

5 8 10

10 8 5

9

SRTF picks the shortest remaining time process first to run. The next iteration will
sort all remaining processes. Then the procedure repeats until no process is left in the
queue. This is demonstrated in Figure 2.3.

2.3.2.3 Round Robin (RR)

The first two approaches could face starvation problem. For FIFO, if the queue is
long, the processes at the end of the queue would never get their turn to execute.
For SRTF, if all incoming processes are smaller than the current one, it also never be
granted resources. RR fixes this problem by granting limited time window for execution.
When the time window expires, the resource will be shifted to the next process and
so on.

2.4 Literature Reviews

2.4.1 Memory Bandwidth Limitation

Kagi et al. [7] addressed upcoming memory-related problems that would occur
within decades. With present technology, the numbers of instructions that could be
executed per unit time was already high. If the development trends kept increasing,
CPUs utilization would decrease. Unfortunately, the research trends remained the
same by trying to push as many instructions as possible through memory bandwidth.
This would worsen memory problems because CPUs took less time to complete its
jobs. Consequently, memory bandwidth would increase its usage that was already
limited. Whenever this problem occurred, it was hard to determine whether the
problem was originated from memory-related processors stalled or insufficient
memory bandwidth.

They attempted to solve this problem by focusing on hit/miss rate at cache level.
They tried to utilize loaded instructions and avoid missed load instructions by helping
lookup-free cache, software and hardware prefetching techniques. However, this
technique did not live up to the expectancy, memory stall problems still occurred but
had slightly decreased.

10

2.4.2 Scheduling Policies

This research also focused on hardware utilization which was manageable on
existing hardware components particularly on DRAM level. Rixner et al. [8] declared
that memory access scheduling could be used to optimize memory system
performance by rearranging operations in DRAM. It could make a big impact on both
memory throughput and latency. To rearrange operations in DRAM encompassing pre-
charge, activate, read, and write, the policies had to support the following
arrangements: (1) in-order, (2) priority, (3) open, (4) close, (5) most pending, and (6)
fewest pending. These policies were interacted with memory references, which
represented by 6 parameters as follows: (1) valid (2) load and store (3) row address (4)
column address (5) data and (6) additional state if required any.

2.4.3 Object Table introduction

This time strategy was moved to physical components by focusing on hardware
architecture. Making high performance machine with only single high-performance was
not applicable any more. Single process was not scalable in performance-wise and
also could face parallelism issues eventually. If attempting to squeeze out
performance from single processor, overclocking was the only choice. Nevertheless, it
could potentially end up with throttling problems, only air-cooled unit could not
handle.

Therefore Liu et al. [9] introduced triplet-based architecture. Naturally, this
architecture style was already multi-core ready, and easy to expand in every aspect.
In addition, triplet-based architecture had performance boost when problem structure
matched with communication structure. However, triplet-based required hardware
object table (OT) for implementation to communicate with indirect addressing which
was questionable.

11

2.4.4 End of Moore’s law

Kish [10] mentioned about shrinking of transistor sizes, while further computer chips
density increment would face a physical limit. The expected range problem immerged
at 40 nanometers. The miniaturization would face energy dissipation when sizes were
met at certain point. Thermal noise would result which caused crossing of logic
threshold voltage. Consequently, it could create false bit flip. However, in their
experiment safe range was defined with fractions of threshold amplitude limit and
thermal noise voltage was less than 12, where threshold amplitude limit was equal to
0.6.

Chapter 3 METHOD

3.1 Observation

The unicellular animals lead us to a new level of operating process and memory
functions ranging from basic living to reproduction. This characteristic offers a few
distinctive properties, namely, Versatility, Self-contained, Autonomous, and Simplicity.
For versatility, unicellular animals can live everywhere from the ocean, forest, boiling
hot desert, or even on other animals as parasite. Various varieties are adaptable
through climate changes or even diverse terrains.

Unicellular animals can reproduce by asexual reproduction. Reproduction process
can be done by fission, budding, fragmentation, etc. Thus, it expands the limited
resources to be unlimited. This principle will be exploited in the proposed scheme
design by reusing memory blocks without removal or involving sophisticated
replacement algorithms.

Simplicity property of unicellular animals allows them to live and perform all the
necessary activities. This property will be a mandate for the reference architecture
design and implementation.

To obtain the most benefits from these mentioned properties, FIFO queue is
employed to reduce memory usage and memory reference as many as possible. This
will benefit for several reasons. First, processes are stored in memory in the FIFO
manner. Second, it requires no extra operation to handle these processes. Third,
starvation can be avoided with the help of a threshold Time-to-Live (TTL) to keep the
processes rolling. The reference architecture is depicted in Figure 3.1

Figure 3.1 Reference architecture

x

B

A y

z

TTL

w

S U

13

3.2 System Architecture

3.2.1 Schematic operations

The following sections describe software design, development, and pertaining
deployment policies of the proposed system. Figure 3.2 shows the class diagram of
overall system design.

Figure 3.2 Class Diagram

To achieve minimal memory usage as less as possible, the number of operations
and variables usage must be minimized. This system consists of 2 packages, namely,
Clock and Memory. Clock is made up of process generator and global clock classes.
Clock package focuses on pre-execution phase, dealing with input and time keeping.
The memory architecture package describes the resource pool, the size of memory
pool, status of each processes and its handlers.

14

The process generator class encompasses these operations to manage process
operation, namely, genFrequency, genTimeConsumption, genClass, genProc, and clock
tick.

When the main function triggers process generator, the sequence of operations

starts with genFrequency having the burst number running from 1 to 5.

Then genTimeConsumption is invoked to set up the duration of requested time for
each sub processes. The value ranges from 1 to 50 clock ticks.

Next, genClass is started to mark individual process as user and system, indicated
by Boolean. This operation takes one parameter “val” to determine the number of
members to be generated for the process list.

def genFrequency(self):
 frequency = randint(1, 5)
 return frequency

def genTimeConsumption(self):
 time = randint(1, 50)
 return frequency

def genClass(self, val):
 usr = [True, True, True, True, True, True, True, True, True]
 sys = [False]
 type = sample(usr+sys, val)
 return type

15

These three operations generate samples for simulation. The first two methods
randomly pick numbers in pre-determined range. While genClass randomly generates
system and user weighted range of 1:9. To comply with unicell biological construct,
the processes to be created consist of 2 types, namely, voluntary or user process and
involuntary or system process. Voluntary process is a controllable process type. It will
respond under conscious decision depending on the actors that carrying out a task (in
this context human behaviors will be used as a reference) i.e. walking, eating,
performing body movements, etc. On the other hand, involuntary is unmanageable
type of process that is not under controlled by will. It is automatically committed. The
required resources will be spontaneously fed to these processes when the resources
are available. Resources that are held when the process finishes using will be released
to the resource pool. For this reason, there is no proper parameter value for this weight
distribution. The value depends on body rigidity, health, age, and other attributes that
are not considered here as they are beyond the scope of this work. In this research,
for the sake of simplicity, 1 and 9 are chosen to represent these 2 given classes

Finally, genProc will initiate the generating sequence with the help of the
previously mentioned parameters and freq which specifies the number of sequence
occurrences. Once this generating sequence is completed, the list of inputs will be
marked and matched to the corresponding pre-generated input processes.

After the input process is set up simulation will commence. This will be described
in the next section.

def genProc(self, freq):
 proclist = []
 for i in range(freq):
 proclist.append(self.genTimeConsumption())
 self.numberOfProc += 1
 return proclist

16

3.2.2 Memory Architecture Design

Figure 3.3 Memory Architecture

Consider living the unicell as model that has no clear cut as to how resource pool
in their body is managed. The memory will be treated as one uniform block are as
illustrated in Figure 3.3. The user process starts from one end while the system process
starts from the opposite end.

The 2 types of processes share the above resources pool. Memory allocation is
divided as follows: 10% belongs to system process space, and the remaining 90%
belongs to user process space. The parameters of this memory pool are defined below:

- Uf indicates next free slot in user reserve spaces.

- Ue indicates process that currently executing in user reserved space.

- Un indicates total user reserve space.

- Sf indicates next free slot in system reserve spaces.

- Se indicates process that currently executing in system reserve space.

- Sn indicates total system reserve space.

As mentioned earlier, FIFO scheme serves several benefits. However, FIFO scheme
has infamous starvation problem. There are many starvation solutions. In this work,
time slice is chosen in the form of TTL. TTL will grant only limited execution time to
each process. When TTL expires, the resource will be shifted to the next process until
no process left.

Ue Se

User System

Sn Un

Sf Uf

17

At this point, the proposed scheme might look similar to Round-Robin (RR) scheme.
However, they are not identical, RR has only escape criterion, which occurs when their
time slice runs out. On the other hand, the proposed scheme is mimicking life form
behaviors. When human executes their routines, they can either finish or abort it. The
same goes for this simulation. When the currently executing process is finished, it will
leave. Otherwise, abort will take place when TTL expires. In both scenarios, the next
waiting process will run.

Comparing conventional RR with the proposed method, suppose the quantum
time is set to 8 clock ticks. Given a job requests 16 clock ticks to finish that task, to
finish 16 clock ticks task both RR and the proposed scheme need 7 execution iteration.
Assume that during 4 iterations, there is no interruption. However, during execution
iteration, not all of 8 ticks are allowed to execution, only 5 ticks are executable, full
detail will be described later on.

RR holds entire execution iteration since RR will not release resource at any time
except when time quantum runs out. While the proposed scheme utilizes its resource
by spend only 3 entire iterations and 4 ticks on last iteration. Since the proposed
scheme has 1 additional exit condition which the process can exit immediately after it
finished. In this experiment, TTL timer is set to 8 ticks, each tick denotes the followings:

Table 3.1 Tick indication

Tick Description Instruction

1 Preload upcoming instruction Load target process, and assign to

closest available space.

2-6 perform task execution Process that pointed with either Se or Ue

will be executed.

7 perform accumulation Progress that previously accomplished will

be stored in this iteration.

8 perform transformation to

next process

Advance pointer by one and reset TTL timer

to initial value.

18

3.3.3 Modified Process States

Figure 3.4 Process States

Process execution states are arranged as follows:
- Incoming handles freshly arrived processes yet to assign a certain address.

When incoming state is flooded and there are no resources left to be used.

The system will shift those processes into Waiting, which are place where those

overflow processes are stored. Processes that are stored in Waiting will be

transferred to Incoming either an entering execution iteration or resources pool

become available.

- Executing manages execution procedure while those processes will be held

only certain amount of time.

- Blocked holds processes that are being transferred from executing list as urgent

task has arrived.

Notice that process execution states are somewhat different comparing to
conventional approaches. Since this work aims to solve the memory wall problem,
modification is done to simplify the process states. The first two states, incoming and
executing, are designed to be hardware-implementable ready components. However,
the rests are more complicated components since additional code are needed to
control the actual hardware, making it more complex. The following sections will
describe each process state in detail.

19

Incoming
1. Freshly generated process has arrived at incoming list.

2. Look for a slot in the list.

3. Perform availability checking.

4. Place those processes in available spaces of the executing list.

5. Push into Waiting list if no space is available.

Waiting
1. Place the process in waiting list.

2. Perform availability checking.

3. Push process back to executing list one process at a time if there is available

space.

4. Repeat until there is no process left in waiting list.

5. Hold until next iteration. If no space is available, repeat step 2-5 again.

Executing
1. Enter the executing list.

2. Grant a permission to qualified process for execution.

3. Check whether currently executing process is finished.

4. Push that process executing, if it is finished, Mark it and advance pointer by 1.

5. Check for interruption in next iteration. If it is not finished.

6. Push currently executing process on to blocked list if there is an interrupt.

7. Repeat 2-6 again, if otherwise.

Blocked
1. Shift process to Blocked list if urgent task arrives.

2. Perform checking for urgent tasks.

3. Hold current task for next iteration if there is urgent task.

4. Place process back to Executing list otherwise.

20

3.3.4 Policies

Placement of process in memory pool requires policies to handle every state as
follows:

3.3.4.1 Incoming

When process generator launches a number of processes, the process handler will
manage those processes by placing them one by one until the reserved spaces are
exhausted. The order of placement starts with executing list to be filled first, followed
by waiting list.

3.3.4.2 Execution

There are 2 groups of pointers associated with user and system processes. User
pointers consist of Ue and Uf denoting user free space and user currently executing,
respectively. System pointers also have 2 pointers, Sf and Se, denoting system free
space and currently executing operating system task, respectively. There are 4 sub-
policies governing in the execution process:

Figure 3.5 Memory pool layout for execution

1. Both user processes and system processes are not present.

This situation occurs at the very beginning and the end of simulation. When the
simulation starts, no user and system processes exist in the resource pool
simultaneously. The simulation system will be waiting for new arriving process one at
a time as illustrated in Figure 3.5. Similarly, at the end of simulation, all jobs must be
completed, leaving no process in the system.

21

2. there is 1 user process with 1 or more system processes at any given time.

Figure 3.6 1 User and 1 system process

When simulation encounters this circumstance, both system and user pointers will
be pointed at the top of both executing lists. The normal execution will start from
system side as demonstrated in Figure 3.6.

3. There is no system process but several user processes.

When the system list is empty, execution control is transferred to user process side
as demonstrated in Figure 3.7.

Figure 3.7 Only user processes, but pointed has not yet moved

This deployment helps minimize executing time by reducing context switches as

demonstrated in Figure 3.8.

Figure 3.8 Only user processes, pointers move to user space

4. System processes fill up their space and some user processes.

This situation is similar to situation 3, except, there are system processes. In this
case, the user processes will be ignored. Execution control is shifted to system side as

22

demonstrated in Figure 3.9. The time utilization is not a main concern so as to achieve
the system objectives. The previously executing user process will be suspended.

Figure 3.9 Multiple system processes

3.3.4.3 Overflow

At some point, overflow situation might occur.

Figure 3.10 User space is flooded

The first scenario occurs when the user reserve space is flooded with user
processes. The incoming user processes will be rejected as demonstrated in Figure
3.10. The simulation will not allow to executing partial result that could be erroneous.

23

Figure 3.11 System space is flooded

On the other hand, when the system side is flooded and there is incoming process
waiting to enter as demonstrated in Figure 3.11, simulation will halt and perform restart
procedure.

Since this implementation is developed by using living creature as a reference, the
policies are adopted from their behaviors. Take the last policy as an example, suppose
the system process hold an illness and user processes hold daily routines. Once illness
starts human body is capable of sustaining certain amount of illnesses. When the limit
is reached, the body will collapse.

Chapter 4 EXPERIMENTAL RESULTS

Since there was no supporting environment that work in the same manner as the
proposed scheme, implementing a simulation was viable. This section will explain
hardware specifications, software used, as well as techniques used in the experiments.

4.1 Experimental Setup

Experimental set up is described in the following sections.

4.1.1 Hardware Specification

This simulation was developed and simulated on 2 machines. The primary machine
handled the simulation and its environment by Intel core I7 4790, 8GB DDR3 DRAM
and running on Ubuntu 16.04LTS. The secondary machine concurrently ran the
application tasks using Intel core m3, 8 GB DDR3 DRAM on OS X 10.12.6.

4.1.2 Software Used

Several software tools were used in this implementation such as Integrated
development environment (IDE), design tools, and programming language tool.

4.1.2.1 Programming language and Tools

Python was chosen to be the programming language. Its simplicity made the
development easy to fix, add, or update source code, and less number of lines of
code. Consequently, the program was readable and easy to understand.

The support IDE also made the development task easy by means of PyCharm. Its
distinctive structural type color coding provided built-in code completion, code
hinting, and local version control. In addition to these handy features, many add-on

25

configuration issues were solved by the suggestive assistance of the development
community.

4.1.2.2 Operating Systems
This implementation employed 2 operating systems, namely, OS X and Ubuntu.

These two operating systems were used in development phase for three reasons:
stability, functionality, and popularity.

- Stability-Ubuntu is a freeware, cross operating system that also support

command line tools that makes it easy to manage a number of source files.

- Functionality-the command line tools provide more efficient and effortless to

manage the development process. Plenty of version control software are

available through command line.

- Popularity-the more users use, the more suggestions and pointers are revealed

and solved.

4.2 Input Specification

Figure 4.1 10,000 pre-generated inputs

26

Figure 4.2 10,000 pre-generated inputs (enlarged)

Figure 4.3 Process classes

In this simulation, both user and system processes combined to create 10,000
instances as input references. Each process consisted of 2 values, requested time and
class. Each requested time interval was spread relatively equal as shows in Figure 4.1
and Figure 4.2. The mean value of requested time was approximately 25.1642. The
minimum and maximum were set at 1 and 50, respectively. User and system processes

27

were initiated by 8,991 and 1,009, respectively, according to the pre-determined ratio
of 9:1.

4.3 Results

This experiment was organized to verify the contributions of this work. Three well-
known algorithms were chosen to compare with the proposed scheme, namely, First-
in, First-out (FIFO), Shortest remaining time first (SRTF), and Round-Robin (RR).

Mandatory operations were chosen to measure the number of operations used
during process execution. Sort was required by SRTF only, as it needed to obtain least
remaining time process to execute first. Transfer of control was involved for shifting
resource between processes. Since the proposed scheme employed TTL time slice
concept, it was similar to RR that needed more resources to perform context switch
when the process quantum time ran out. Remove expelled processes from the
resources at certain states, from waiting queue to execution, and from execution to
finished. This simulation performed 10,000 processes. The results are shown in Table
4.1 and Table 4.2.

Table 4.1 Operation used

 FIFO SRTF RR Proposed Scheme

Sort 0 ∑ T𝑖
𝑁
𝑖=0 0 0

Transfer of

control
Tn Tn

⌈ (Tn % t) ⌉ ⌈ (Tn % TTL) ⌉

Remove Tn Tn 0 0

28

Table 4.1 shows the number of operations performed during execution process.
Notice that only SRTF required sorting operation to looks for the shortest process first
in every execution iteration. While the other 2 candidate algorithms and the proposed
scheme did not required sorting. This sorting operation costed ∑ T𝑖

𝑁
𝑖=0 with very

optimistic approximation.
FIFO and SRTF transferred execution grant when currently executing process was

finished, so they required only total number of process (Tn). On the other hand, RR
and the proposed method involved time slicing. Hence, the number of operations
used by these two methods were significantly high. However, theses prevented the
starvation problem. Hence, these two methods shared the resources evenly.

Remove performed when FIFO and SRTF finished their tasks. The number of
removes was equal to the number of incoming inputs. Unlike RR and the proposed
scheme, they just simply replaced the outgoing process with a new incoming one.

Table 4.2 Execution time in clock ticks

Table 4.2 reveals time consumption and differences among the chosen methods

and the proposed scheme. FIFO took the least time complexity, followed by the
proposed method, RR, and SRTF, respectively.

Approach Time Result Difference

FIFO 𝑛 × (�̅� + 3) 26815 -31.061%

SRTF N LOG 𝑁+ ∑ 𝑛 × (�̅� + 3)𝑁
𝑖=0 74340 +91.120%

RR ∑ ⌈𝑝𝑖 ÷ 5𝑁
𝑖=0 ⌉ × 8 41631 +7.0288%

Proposed

Method
∑ ⌊𝑝𝑖 ÷ 5𝑁

𝑖=0 ⌋ × 8 + (𝑷𝒊 ÷ 5) + 3) 38897 ±0%

29

FIFO used only 26815 to finished 10,000 processes, spent only 60 percent of the
proposed method’s time consumption. SRTF required sorting operation before
allocating the designated process to memory which cost extra N LOG 𝑁 assuming merge
sort was deployed in this component. This sorting cost extra runtime.

Besides runtime speed, FIFO and SRTF might encounter starvation problem when
very long processes arrived in waiting list. RR and the proposed scheme were free from
this predicament by virtue of the time slice.

RR was almost on par with proposed method, yet slightly slower. Notice that this
simulation executed only 10,000 processes, where RR already gained an extra 10
percent. In practice, the number of processes would be much higher than this.

Finally, the proposed method outperformed SRTF and slightly quicker than RR by
gaining from last execution iteration for each process. Traditional RR would release the
resources when time quantum ran out, while the proposed method could exit as soon
as it finished.

In addition to execution time, average waiting was also measuring in this
experiment. The results will be shown in following figures.

30

Figure 4.4 Average waiting time

Figure 4.5 Average waiting time between FIFO and the proposed scheme

31

Figure 4.6 Average waiting time between SRTF and the proposed scheme

Figure 4.7 Average waiting time between RR and the proposed scheme

32

These measurement figures are chosen to measure the accessibility of resources.
In this measurement also deploy 10,000 processes.

Figure 4.4 shows all of candidate methods compare with the proposed scheme.
Results are divided into 2 groups separated by their characteristics. For the first group,
FIFO and SRTF, neither of these methods is employing time slice concept which mean
entire process will be done in one execution. Obviously, processes in waiting queue
have to wait as illustrated in Figure 4.5 and Figure 4.6.

On the other hand, RR and the proposed method are imposed by time slice
concept. Every process that is executing with these approaches will be serviced evenly.
Since, resources are limited, once they are filled up, the rest of the processes have to
wait. As can be seen in Figure 4.7, there are many steep rises in the graph which reflect
the memory pool is overflowing.

Consider the results from this experiment, the proposed scheme took more time
to finished the jobs than FIFO queue. When average waiting time is considered, the
proposed scheme is better than FIFO, SRTF, and RR.

Chapter 5 DISCUSSION

5.1 Discussion

The proposed method ran only single-thread per process type. In case the number
of execution threads increases, the running time could be improved. However, with
trade-off issues between complexity and simplicity, further investigation still is
required.

From the performance standpoint, tightening the gap with FIFO arrangement is
important. The rationale why modified FIFO was adopted was because this work was
aimed to benefit the simplest existing placement scheme by employing TTL time
slicing to overcome starvation problem.

Notice that none of these algorithms uses every candidate operation. SRTF requires
sorting to find the smallest processes, while FIFO requires none of these excepts
remove operation when currently executing process is finished.

While RR and the proposed method do not have to perform removal, they just
simply replace new process to the old one’s place. No sorting is needed. In transfer
of control, there is difference in time computations. RR rounds up so the ceiling
function is used since the process could only be taken out of the memory when time
slice is up. The proposed method truncates and add extra value because the process
could exit when it is either finished or TTL is expired.

This small refinement could lead to high performance boost. In reality, single
program could be decomposed into several processes. Consider Table 4.2 for 10,000
processes, the proposed method gains approximate 7 percent. In a real production
environment, the more processes run, the higher gain on processing time.

Chapter 6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, unicellular animal biological structure and life form’s behaviors were
employed to create a novel memory allocation scheme and to combine with known
computer science knowledge. FIFO was chosen to be the basis of allocation scheme.
As a consequence, several memory related parameters and operations were deemed
unnecessary for memory allocation scheme to achieve simplicity and hardware-
implementable ready scheme. Certain policies were precipitated as the by-product.
Ultimately, memory placement and new allocation methods could be performed
directly. This array of refinements permitted the proposed scheme to operate with
minuscule overhead and in reasonable time. The memory wall problem would
methodically be mitigated as more memory spaces were made available. This could
fulfil necessary functions and remained competitive to other well-established
algorithms.

6.2 Future work

Further development will focus on current memory allocation scheduling
techniques such as runtime and effectiveness. Runtime efficiency improvement can
be handled by multithread processing. Care must be taken on extra operations that
complicate the supporting algorithm, not to mentioned parallelism issues. In addition,
new evaluation approaches are needed to justify between simplicity and performance,
as the performance gain will be the extra operations and runtime efficiency.

Hardware implementation is another challenging point to be explored. Preparation
has been made from the outset. A number of unique characteristics have also gathered
from unicellular animals to be adapted.

Simplicity swiftly becomes a schematic idea of this research. The process state
reduction is mimicking unicellular life form to system structure, which in turn is utilizing

35

well-developed life form’s behaviors to administer process placement and execution
policies. Both incoming and executing states as shown in Figure 3.4 are already
hardware implementable. The instructions in these two components can be
straightforwardly operated but waiting and blocked still need further minimization to
run at hardware level.

REFERENCES

[1] E. Mollick, “Establishing Moore’s law,” IEEE Ann. Hist. Comput., vol. 28, no. 3,
pp. 62–75, 2006.

[2] C. A. Mack, “Keynote: Moore’s Law 3.0,” Microelectron. Electron Devices
(WMED), 2013 IEEE Work., p. xiii, 2013.

[3] Intel, “Moore’s Law and Intel Innovation,” Intel, 2012. [Online]. Available:
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-
law.html. [Accessed: 01-Mar-2017].

[4] S. Derrien and S. Rajopadhye, “FCCMs and the memory wall,” IEEE Symp.
FPGAs Cust. Comput. Mach. Proc., vol. 2000–Janua, no. ii, pp. 329–330, 2000.

[5] H. Nozaki, Sexual Reproduction in Animals and Plants. 2014.

[6] W. Stallings, Operating Systems: Internals and Design Principles. 2008.

[7] A. Kagi, J. R. Goodman, D. Burger, J. R. Goodman, A. Kagi, and W. D. Street,
“Memory Bandwidth Limitations of Future Microprocessors,” 23rd Annu. Int.
Symp. Comput. Archit. ISCA96, vol. 24, no. 2, pp. 78–89, 1996.

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory
access scheduling,” Proc. 27th Int. Symp. Comput. Archit. (IEEE Cat.
No.RS00201), vol. 27, no. c, pp. 1–11, 2000.

[9] M. Liu, W. Ji, Z. Wang, J. Li, and X. Pu, “High performance memory
management for a multi-core architecture,” Proc. - IEEE 9th Int. Conf. Comput.
Inf. Technol. CIT 2009, vol. 1, pp. 63–68, 2009.

[10] L. B. Kish, “End of Moore ’ s law  : thermal (noise) death of integration in
micro and nano electronics,” Phys. Lett. A, vol. 305, pp. 144–149, 2002.

APPENDIX

38

VITA

VITA

Name: Mister Gasydech Lergchinnaboot

Country: Bangkok, Thailand

Education: B.Eng. (Software Engineering); King Mongkut's Institute of
Technology Ladkrabang, 2014

Affiliation: Advanced Virtual and Intelligent Computing (AVIC) Center,
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University.

Publication: G. Lergchinnaboot and P. Sophatsathit, "A Biological-like
Memory Allocation Scheme Using Simulation", 2nd International Conferences on
Information Technology, Information Systems and Electrical Engineering (ICITISEE
2017) Yogyakarta, Indonesia 2017: 426-429.

39

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	CONTENT OF TABLES
	CONTENT OF FIGURES
	Chapter 1 INTRODUCTION
	1.1 Introduction
	1.2 Statements of the problems.
	1.3 Objectives
	1.4 Scope of this thesis
	1.5 Organization of this thesis

	Chapter 2 BACKGROUND KNOWLEDGES AND LITERATURE REVIEWS
	2.1 Motivation
	2.2 Unicell biological structure
	2.3 Operating systems background knowledge
	2.3.1 Process states
	2.3.2 Scheduling
	2.3.2.1 First-In First-out (FIFO)
	2.3.2.2 Shortest Remaining Time First (SRTF)
	2.3.2.3 Round Robin (RR)

	2.4 Literature Reviews
	2.4.1 Memory Bandwidth Limitation
	2.4.2 Scheduling Policies
	2.4.3 Object Table introduction
	2.4.4 End of Moore’s law

	Chapter 3 METHOD
	3.1 Observation
	3.2 System Architecture
	3.2.1 Schematic operations
	3.2.2 Memory Architecture Design
	3.3.3 Modified Process States
	3.3.4 Policies
	3.3.4.1 Incoming
	3.3.4.2 Execution
	3.3.4.3 Overflow

	Chapter 4 EXPERIMENTAL RESULTS
	4.1 Experimental Setup
	4.1.1 Hardware Specification
	4.1.2 Software Used
	4.1.2.1 Programming language and Tools

	4.2 Input Specification
	4.3 Results

	Chapter 5 DISCUSSION
	5.1 Discussion

	Chapter 6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future work

	REFERENCES
	VITA

