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THAI ABSTRACT 

กษิดิ์ เดช  ฤกษ์ชินบุตร  : การจ าลองแผนจัดสรรหน่วยความจ าคล้ายเชิงชีววิทยา 
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When Gordon Moore observed the number of transistor increasing pattern 
while memory bandwidth could not catch up with processing unit performance, this 
diverging rate kept stretching out to create what eventually transpired to be “Memory 
Wall.” This consequence becomes a major performance bottleneck. Many bottleneck 
elimination approaches have been attempted. They incorporate considerable 
overhead and high complexity. This research proposes a novel memory allocation 
scheme that employs biological behavioral principles of the living creatures. At the 
principal construct of their life form lives the cells having limited resources, yet 
passively operates with little overhead. The proposed method imitates this unicellular 
characterization that operates on one task at a time, thereby memory occupation is 
reduced to First-In-First-Out activation discipline. Processing can thus be regulated by 
a global clock that permits one active task at any given time to reside in memory. 
Consequently, low overhead memory allocation scheme can be achieved without the 
need for elaborate algorithms. The most anticipatory benefit is technological transfer 
of the proposed scheme to hardware that will eventually alleviate the Memory Wall 
problem. 
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Chapter 1 INTRODUCTION 

1.1 Introduction 

Calculation has been around since prehistoric age. Since then, the advancement 
of calculation technologies has consistently developed. The development rate was 
incredibly fast, starting from abacus and counting to the introduction of computer. 
During that time computer technology was not as powerful as it is today. Computer’s 
components such as processing units and memory units were developed to fulfil the 
customer and manufacturing needs. However, these 2 units did not progress at the 
same pace. In 1970s, Gordon Moore noticed these phenomena. His observation led to 
the conclusion that “the number of transistors in circuit will doubling themselves every 
24 months”[1] [2]. This statement stayed merely half a decade. In 1975, David House 
rewrote the statement into 18 months[3]. Moore’s law has proven itself to be accurate 
enough to use as a reference for chipset manufacturer. The law can be translated into 
numeric form as follows: CPUs grow approximately 60 percent per year, while memory 
speed improves just 10 percent per year. This gap keeps widening 50 percent per year 
that subsequently is known by the infamous “Memory Wall”[4]. The problem must be 
eliminated to maximize overall resources utilities. 

There were several attempts to conquer Memory Wall problem. Two possible 
solutions are:  

1. Provide more memory performance to matching CPUs performance. This 

solution aims to replace existing components with faster, more effective, and 

more efficient ones. The system could gain a performance boost ranging from 

slightly change or could be huge jump depending on the available budget. 

However, there are drawbacks listed below: 

- Costs fortune to replace annually or decennially. 

- New configurations must be involved whenever hardware changes. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

2. Hardware advancement that keeps no end in improvement. Employ more 

efficient memory allocation scheme. This solution aims to utilize existing 

hardware by deploying better replacement memory allocation scheme. Thus, 

the existing system remains reusable, no hardware changes except some fine-

tuning in memory control unit procedures. 

There were many experiments to solve the Memory Wall problem with efficient 
memory allocation scheme. To date, some of the approaches have worsen the 
problem with different techniques, performing look ahead techniques which end up 
to be a miss, not to mention extra memory usage from look up table. The performance 
gap between CPUs and memory remains. 

This research introduces biological knowledge as an innovative approach to 
mitigate the memory wall problem. One approach to be considered is to exploit a 
unicellular life form as the basis for design and implementation of a memory allocation 
scheme. This proposed scheme has to be simple, yet efficient in its own right. The 
unicellular life form hereafter is alternately referred to as unicellular animal, or unicell 
fits this desired philosophy and consequently is chosen as the reference architectural 
model of the proposed memory allocation scheme. 

Alongside the simplicity, the unicellular animal can live in various surfaces, extreme 
weather conditions, survive in their limited resources in enclosing environment. The 
provision of nature establishes some of their predominant characteristics [5] as follows: 
independence, self-contain, autonomous, and versatile.  

By virtue of the above unicell properties, the reference architectural model must 
be laid out straightforwardly to preserve the simplicity. In other words, memory 
arrangement must be organized to permit easy, fast access and retrieval using the 
simplest algorithm. A viable candidate is First-In, First-Out (FIFO) method. Its 
straightforward operational construct lends itself to hardware realization which, in 
terms of the proposed scheme, represents a single unit memory package imitating the 
unicell structure.  
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It is envisioned that the proposed scheme will help mitigate the memory wall 
problem. Detail on how it is derived, designed, and implemented will be discussed in 
the remaining chapters of this work. 
 
1.2 Statements of the problems. 

A number of problems are set up to be explored in this research. 
1. How can a biological scheme be imitated in memory context? 

2. How can the unicellular animal characteristics be deployed to help solve the 

memory wall problem? 

1.3 Objectives 

1. Addressing performance gap between processing units and memory units to 

solve the memory wall problem with a biological-like memory allocation 

scheme. 

2. Devising efficient algorithms based on the unicellular characteristics to support 

the proposed memory allocation scheme. 

3. Pursuing the hardware-implementable on this work by reducing the process 

state complexity with operation and space usage reduction. 

1.4 Scope of this thesis 

1. Define potential existing problems and solutions. 

2. Propose a new memory allocation scheme based on unicellular life form. 

3. Focus on memory allocation of job distribution as shows in Figure 1.1. 

4. Evaluate results, compare proposed scheme to well-known algorithms. 
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Figure 1.1 Job distribution 

1.5 Organization of this thesis 

Chapter 2 recaps the background on how unicell biological structure help shape 
the reference architectural model, the transformations from unicell to process states. 
Some related works including memory bandwidth limitation, process reordering, single 
high-performance processor issues, and logical limit problems are described.  

The proposed scheme will be explained in Chapter 3. The reference architectural 
model is presented, as well as modified process states to suit the proposed scheme. 
In addition to these design elements, management policies will also be described. 

Chapter 4 carries out research experimental simulation. Environment set up of both 
hardware and software will be defined, as well as inputs for this simulation. The 
experimental results are measured to gauge the viability of proposed scheme by 
comparing with related benchmarking methods. 

Some inferences precipitated from this study will be discussed in Chapter 5, 
particularly, why the proposed scheme is viably more efficient than other comparable 
methods. Chapter 6 concludes the thesis along with future improvement on the 
proposed scheme.
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Chapter 2 BACKGROUND KNOWLEDGES AND LITERATURE REVIEWS 

2.1 Motivation 

As mentioned earlier, there were problems regarding performance gap between 
CPUs and Memory units. These problems had been around for ages due to their 
different pace where the CPUs were growing 60 percent a year and memory units were 
progressing merely 10 percent yearly.  

Inconveniently, performance gap kept stretching out as time went by. There were 
numbers of researches attempted to conquer “Memory wall.” Various techniques had 
involved, namely, reorganizing memory structure, perform look ahead technique, or 
even put extra physical components. But most of successful ones had shared one 
similarity, being involved with fancy techniques, which caused extra operations and 
memory usages.  

In this research, different perspectives were investigated about conventional 
approach to see if conventional approaches would worsen the memory wall problem. 
Numerous observations were performed including nature, human, animal, also artificial 
living form that involved from their properties, functionality, as well as behaviors. 
These mentioned life forms were managed to operate their living basis with and 
without help depending on activities. Some activities were tough to achieve, the rest 
were effortless as these activities usually involved resources to accomplish. Even 
though these life forms had limited functionalities and resources, yet they managed 
to carry out their living activities. 

2.2 Unicell biological structure 

Since previous works were not working as expected, alternative solution was 
investigated. This work was targeting to employ non-computer science knowledge to 
work alongside with conventional knowledge.  

Biology was one choice of the solution. It was found that there were plentiful life 
forms ranging from well-developed ones to the simplest ones. Well-developed life 
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forms consist of functions, they can work flawlessly through array of routines, but the 
complexity is also come with. The inspection has gone down to lower level animals. 
Multicellular animal’s body consists of multi-level structures as illustrate in Figure 2.1. 
 

 

 

 

 

Figure 2.1 Body structure 

According to Figure 2.1 multicellular animals are consisting of sophisticated 
components that work together and become a living body. However, unicell animals 
consist of only single cell in their boy. Every activity is done by this single cell[5], i.e. 
digestion, excretion, reproduction, etc. Considering all of resources that are limited, 
the outcome is astonishingly performed.  

Aside from their stunning performance, their other abilities are also impressive as 
well. Unicell animals are capable of living through variety places even on other 
animals. Summarizing these properties together, unicellular animal becomes a 
reference model in this work. 

2.3 Operating systems background knowledge 

2.3.1 Process states 

Processes are program in execution. They are part of the entire system. There are 
several of process types based on events, CPU bound and I/O bound processes. No 
matter which type of processes, they could be concurrently handled by the operating 
systems. Every process will be assigned to one of the states, typically consisting of the 
following 5 states[6]: new, ready, running, blocked, and terminated as depicted in 
Figure 2.1.  
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Figure 2.2 Process states 

1. New: freshly created process yet to settle or grant a permission to specific 

resources. 

2. Ready: processes that settle in memory yet to execute. Processes in this state 

are waiting to their execution iteration. 

3. Running: processes that are executing. 

4. Blocked: Interrupted processes by events which caused by insufficient 

resources, high priority process, or waiting for I/O devices. 

5. Terminated: processes completed from Running, occasionally, from ready or 

blocked state. Some processes remain in memory even the corresponding jobs 

are finished.  
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2.3.2 Scheduling 

2.3.2.1 First-In First-out (FIFO) 

 
 
 
 
 
 
 
 

Figure 2.3 First-In First-Out (FIFO) 

FIFO is the simplest and most straightforward method that serves the oldest entry 
first and runs until the job has finished. Then the second oldest is run and so on until 
no process is left in process queue as demonstrated in Figure 2.2. No extra operations 
are required to operate this scheduling method. 

 
2.3.2.2 Shortest Remaining Time First (SRTF) 

 
 
 
 
 
 
 
 
 

Figure 2.4 Shortest Remaining Time First (SRTF) 
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SRTF picks the shortest remaining time process first to run. The next iteration will 
sort all remaining processes. Then the procedure repeats until no process is left in the 
queue. This is demonstrated in Figure 2.3. 

2.3.2.3 Round Robin (RR) 

The first two approaches could face starvation problem. For FIFO, if the queue is 
long, the processes at the end of the queue would never get their turn to execute. 
For SRTF, if all incoming processes are smaller than the current one, it also never be 
granted resources. RR fixes this problem by granting limited time window for execution. 
When the time window expires, the resource will be shifted to the next process and 
so on. 

2.4 Literature Reviews 

2.4.1 Memory Bandwidth Limitation 

Kagi et al. [7] addressed upcoming memory-related problems that would occur 
within decades. With present technology, the numbers of instructions that could be 
executed per unit time was already high. If the development trends kept increasing, 
CPUs utilization would decrease. Unfortunately, the research trends remained the 
same by trying to push as many instructions as possible through memory bandwidth. 
This would worsen memory problems because CPUs took less time to complete its 
jobs. Consequently, memory bandwidth would increase its usage that was already 
limited. Whenever this problem occurred, it was hard to determine whether the 
problem was originated from memory-related processors stalled or insufficient 
memory bandwidth.  

They attempted to solve this problem by focusing on hit/miss rate at cache level. 
They tried to utilize loaded instructions and avoid missed load instructions by helping 
lookup-free cache, software and hardware prefetching techniques. However, this 
technique did not live up to the expectancy, memory stall problems still occurred but 
had slightly decreased. 
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2.4.2 Scheduling Policies  

This research also focused on hardware utilization which was manageable on 
existing hardware components particularly on DRAM level. Rixner et al. [8] declared 
that memory access scheduling could be used to optimize memory system 
performance by rearranging operations in DRAM. It could make a big impact on both 
memory throughput and latency. To rearrange operations in DRAM encompassing pre-
charge, activate, read, and write, the policies had to support the following 
arrangements: (1) in-order, (2) priority, (3) open, (4) close, (5) most pending, and (6) 
fewest pending. These policies were interacted with memory references, which 
represented by 6 parameters as follows: (1) valid (2) load and store (3) row address (4) 
column address (5) data and (6) additional state if required any. 

2.4.3 Object Table introduction 

This time strategy was moved to physical components by focusing on hardware 
architecture. Making high performance machine with only single high-performance was 
not applicable any more. Single process was not scalable in performance-wise and 
also could face parallelism issues eventually. If attempting to squeeze out 
performance from single processor, overclocking was the only choice. Nevertheless, it 
could potentially end up with throttling problems, only air-cooled unit could not 
handle.  

Therefore Liu et al. [9] introduced triplet-based architecture. Naturally, this 
architecture style was already multi-core ready, and easy to expand in every aspect. 
In addition, triplet-based architecture had performance boost when problem structure 
matched with communication structure. However, triplet-based required hardware 
object table (OT) for implementation to communicate with indirect addressing which 
was questionable. 
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2.4.4 End of Moore’s law 

Kish [10] mentioned about shrinking of transistor sizes, while further computer chips 
density increment would face a physical limit. The expected range problem immerged 
at 40 nanometers. The miniaturization would face energy dissipation when sizes were 
met at certain point. Thermal noise would result which caused crossing of logic 
threshold voltage. Consequently, it could create false bit flip. However, in their 
experiment safe range was defined with fractions of threshold amplitude limit and 
thermal noise voltage was less than 12, where threshold amplitude limit was equal to 
0.6.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Chapter 3 METHOD 

3.1 Observation 

The unicellular animals lead us to a new level of operating process and memory 
functions ranging from basic living to reproduction. This characteristic offers a few 
distinctive properties, namely, Versatility, Self-contained, Autonomous, and Simplicity.  
For versatility, unicellular animals can live everywhere from the ocean, forest, boiling 
hot desert, or even on other animals as parasite. Various varieties are adaptable 
through climate changes or even diverse terrains. 

Unicellular animals can reproduce by asexual reproduction. Reproduction process 
can be done by fission, budding, fragmentation, etc. Thus, it expands the limited 
resources to be unlimited. This principle will be exploited in the proposed scheme 
design by reusing memory blocks without removal or involving sophisticated 
replacement algorithms. 

Simplicity property of unicellular animals allows them to live and perform all the 
necessary activities. This property will be a mandate for the reference architecture 
design and implementation.  

To obtain the most benefits from these mentioned properties, FIFO queue is 
employed to reduce memory usage and memory reference as many as possible. This 
will benefit for several reasons. First, processes are stored in memory in the FIFO 
manner. Second, it requires no extra operation to handle these processes. Third, 
starvation can be avoided with the help of a threshold Time-to-Live (TTL) to keep the 
processes rolling. The reference architecture is depicted in Figure 3.1 

 
 
 
 

 
Figure 3.1 Reference architecture 
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3.2 System Architecture 

3.2.1 Schematic operations  

The following sections describe software design, development, and pertaining 
deployment policies of the proposed system. Figure 3.2 shows the class diagram of 
overall system design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Class Diagram 

To achieve minimal memory usage as less as possible, the number of operations 
and variables usage must be minimized. This system consists of 2 packages, namely, 
Clock and Memory. Clock is made up of process generator and global clock classes. 
Clock package focuses on pre-execution phase, dealing with input and time keeping. 
The memory architecture package describes the resource pool, the size of memory 
pool, status of each processes and its handlers. 
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The process generator class encompasses these operations to manage process 
operation, namely, genFrequency, genTimeConsumption, genClass, genProc, and clock 
tick. 

 
 
 
 

 
When the main function triggers process generator, the sequence of operations 

starts with genFrequency having the burst number running from 1 to 5. 

Then genTimeConsumption is invoked to set up the duration of requested time for 
each sub processes. The value ranges from 1 to 50 clock ticks. 

Next, genClass is started to mark individual process as user and system, indicated 
by Boolean. This operation takes one parameter “val” to determine the number of 
members to be generated for the process list. 
  

def genFrequency(self): 
      frequency = randint(1, 5) 
      return frequency 

def genTimeConsumption(self): 
      time = randint(1, 50) 
      return frequency 

def genClass(self, val): 
      usr = [True, True, True, True, True, True, True, True, True] 
      sys = [False] 
      type = sample(usr+sys, val) 
      return type 
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These three operations generate samples for simulation. The first two methods 
randomly pick numbers in pre-determined range. While genClass randomly generates 
system and user weighted range of 1:9. To comply with unicell biological construct, 
the processes to be created consist of 2 types, namely, voluntary or user process and 
involuntary or system process. Voluntary process is a controllable process type. It will 
respond under conscious decision depending on the actors that carrying out a task (in 
this context human behaviors will be used as a reference) i.e. walking, eating, 
performing body movements, etc. On the other hand, involuntary is unmanageable 
type of process that is not under controlled by will. It is automatically committed. The 
required resources will be spontaneously fed to these processes when the resources 
are available. Resources that are held when the process finishes using will be released 
to the resource pool. For this reason, there is no proper parameter value for this weight 
distribution. The value depends on body rigidity, health, age, and other attributes that 
are not considered here as they are beyond the scope of this work. In this research, 
for the sake of simplicity, 1 and 9 are chosen to represent these 2 given classes 

Finally, genProc will initiate the generating sequence with the help of the 
previously mentioned parameters and freq which specifies the number of sequence 
occurrences. Once this generating sequence is completed, the list of inputs will be 
marked and matched to the corresponding pre-generated input processes. 

After the input process is set up simulation will commence. This will be described 
in the next section. 
  

def genProc(self, freq): 
      proclist = [] 
      for i in range(freq): 
          proclist.append(self.genTimeConsumption()) 
          self.numberOfProc += 1 
      return proclist 
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3.2.2 Memory Architecture Design 

 
 
 
 
 
 
 
Figure 3.3 Memory Architecture 

Consider living the unicell as model that has no clear cut as to how resource pool 
in their body is managed. The memory will be treated as one uniform block are as 
illustrated in Figure 3.3. The user process starts from one end while the system process 
starts from the opposite end.  

The 2 types of processes share the above resources pool. Memory allocation is 
divided as follows: 10% belongs to system process space, and the remaining 90% 
belongs to user process space. The parameters of this memory pool are defined below:  

- Uf indicates next free slot in user reserve spaces. 

- Ue indicates process that currently executing in user reserved space. 

- Un indicates total user reserve space. 

- Sf indicates next free slot in system reserve spaces. 

- Se indicates process that currently executing in system reserve space. 

- Sn indicates total system reserve space. 

As mentioned earlier, FIFO scheme serves several benefits. However, FIFO scheme 
has infamous starvation problem. There are many starvation solutions. In this work, 
time slice is chosen in the form of TTL. TTL will grant only limited execution time to 
each process. When TTL expires, the resource will be shifted to the next process until 
no process left. 
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At this point, the proposed scheme might look similar to Round-Robin (RR) scheme. 
However, they are not identical, RR has only escape criterion, which occurs when their 
time slice runs out. On the other hand, the proposed scheme is mimicking life form 
behaviors. When human executes their routines, they can either finish or abort it. The 
same goes for this simulation. When the currently executing process is finished, it will 
leave. Otherwise, abort will take place when TTL expires. In both scenarios, the next 
waiting process will run. 

Comparing conventional RR with the proposed method, suppose the quantum 
time is set to 8 clock ticks. Given a job requests 16 clock ticks to finish that task, to 
finish 16 clock ticks task both RR and the proposed scheme need 7 execution iteration. 
Assume that during 4 iterations, there is no interruption. However, during execution 
iteration, not all of 8 ticks are allowed to execution, only 5 ticks are executable, full 
detail will be described later on. 

RR holds entire execution iteration since RR will not release resource at any time 
except when time quantum runs out. While the proposed scheme utilizes its resource 
by spend only 3 entire iterations and 4 ticks on last iteration. Since the proposed 
scheme has 1 additional exit condition which the process can exit immediately after it 
finished.  In this experiment, TTL timer is set to 8 ticks, each tick denotes the followings: 

Table 3.1 Tick indication 

Tick Description Instruction 

1 Preload upcoming instruction Load target process, and assign to  

closest available space. 

2-6 perform task execution  Process that pointed with either Se or Ue  

will be executed. 

7 perform accumulation Progress that previously accomplished will  

be stored in this iteration. 

8 perform transformation to  

next process 

Advance pointer by one and reset TTL timer  

to initial value. 
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3.3.3 Modified Process States 

Figure 3.4 Process States 

Process execution states are arranged as follows: 
- Incoming handles freshly arrived processes yet to assign a certain address. 

When incoming state is flooded and there are no resources left to be used. 

The system will shift those processes into Waiting, which are place where those 

overflow processes are stored. Processes that are stored in Waiting will be 

transferred to Incoming either an entering execution iteration or resources pool 

become available. 

- Executing manages execution procedure while those processes will be held 

only certain amount of time. 

- Blocked holds processes that are being transferred from executing list as urgent 

task has arrived.  

Notice that process execution states are somewhat different comparing to 
conventional approaches. Since this work aims to solve the memory wall problem, 
modification is done to simplify the process states. The first two states, incoming and 
executing, are designed to be hardware-implementable ready components. However, 
the rests are more complicated components since additional code are needed to 
control the actual hardware, making it more complex.  The following sections will 
describe each process state in detail. 
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Incoming 
1. Freshly generated process has arrived at incoming list. 

2. Look for a slot in the list. 

3. Perform availability checking. 

4. Place those processes in available spaces of the executing list. 

5. Push into Waiting list if no space is available. 

Waiting 
1. Place the process in waiting list. 

2. Perform availability checking. 

3. Push process back to executing list one process at a time if there is available 

space. 

4. Repeat until there is no process left in waiting list. 

5. Hold until next iteration. If no space is available, repeat step 2-5 again. 

Executing  
1. Enter the executing list. 

2. Grant a permission to qualified process for execution. 

3. Check whether currently executing process is finished. 

4. Push that process executing, if it is finished, Mark it and advance pointer by 1. 

5. Check for interruption in next iteration. If it is not finished. 

6. Push currently executing process on to blocked list if there is an interrupt. 

7. Repeat 2-6 again, if otherwise. 

Blocked 
1. Shift process to Blocked list if urgent task arrives. 

2. Perform checking for urgent tasks. 

3. Hold current task for next iteration if there is urgent task. 

4. Place process back to Executing list otherwise. 
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3.3.4 Policies 

Placement of process in memory pool requires policies to handle every state as 
follows: 

 
3.3.4.1 Incoming 

When process generator launches a number of processes, the process handler will 
manage those processes by placing them one by one until the reserved spaces are 
exhausted. The order of placement starts with executing list to be filled first, followed 
by waiting list. 

 
3.3.4.2 Execution  

There are 2 groups of pointers associated with user and system processes. User 
pointers consist of Ue and Uf denoting user free space and user currently executing, 
respectively. System pointers also have 2 pointers, Sf and Se, denoting system free 
space and currently executing operating system task, respectively. There are 4 sub-
policies governing in the execution process: 

 
 

 
Figure 3.5 Memory pool layout for execution 

 
1. Both user processes and system processes are not present. 

This situation occurs at the very beginning and the end of simulation. When the 
simulation starts, no user and system processes exist in the resource pool 
simultaneously. The simulation system will be waiting for new arriving process one at 
a time as illustrated in Figure 3.5. Similarly, at the end of simulation, all jobs must be 
completed, leaving no process in the system.  
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2. there is 1 user process with 1 or more system processes at any given time. 

 

 

Figure 3.6 1 User and 1 system process 

When simulation encounters this circumstance, both system and user pointers will 
be pointed at the top of both executing lists. The normal execution will start from 
system side as demonstrated in Figure 3.6. 

3. There is no system process but several user processes. 

When the system list is empty, execution control is transferred to user process side 
as demonstrated in Figure 3.7. 
 

 

 

Figure 3.7 Only user processes, but pointed has not yet moved 

 
This deployment helps minimize executing time by reducing context switches as 

demonstrated in Figure 3.8. 
 
 

 
 
Figure 3.8 Only user processes, pointers move to user space 

 
4. System processes fill up their space and some user processes. 

This situation is similar to situation 3, except, there are system processes. In this 
case, the user processes will be ignored. Execution control is shifted to system side as 
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demonstrated in Figure 3.9. The time utilization is not a main concern so as to achieve 
the system objectives. The previously executing user process will be suspended.  

 

 

 

       

 

Figure 3.9 Multiple system processes 

 
3.3.4.3 Overflow 

At some point, overflow situation might occur. 
 

 

 

 

 

 
 
Figure 3.10 User space is flooded 

The first scenario occurs when the user reserve space is flooded with user 
processes. The incoming user processes will be rejected as demonstrated in Figure 
3.10. The simulation will not allow to executing partial result that could be erroneous. 
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Figure 3.11 System space is flooded 

On the other hand, when the system side is flooded and there is incoming process 
waiting to enter as demonstrated in Figure 3.11, simulation will halt and perform restart 
procedure.  

Since this implementation is developed by using living creature as a reference, the 
policies are adopted from their behaviors. Take the last policy as an example, suppose 
the system process hold an illness and user processes hold daily routines. Once illness 
starts human body is capable of sustaining certain amount of illnesses. When the limit 
is reached, the body will collapse. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Chapter 4 EXPERIMENTAL RESULTS 

Since there was no supporting environment that work in the same manner as the 
proposed scheme, implementing a simulation was viable. This section will explain 
hardware specifications, software used, as well as techniques used in the experiments. 

 
4.1 Experimental Setup 

Experimental set up is described in the following sections. 

4.1.1 Hardware Specification 

This simulation was developed and simulated on 2 machines. The primary machine 
handled the simulation and its environment by Intel core I7 4790, 8GB DDR3 DRAM 
and running on Ubuntu 16.04LTS. The secondary machine concurrently ran the 
application tasks using Intel core m3, 8 GB DDR3 DRAM on OS X 10.12.6. 

 
4.1.2 Software Used 

Several software tools were used in this implementation such as Integrated 
development environment (IDE), design tools, and programming language tool. 

 
4.1.2.1 Programming language and Tools 

Python was chosen to be the programming language. Its simplicity made the 
development easy to fix, add, or update source code, and less number of lines of 
code. Consequently, the program was readable and easy to understand. 

The support IDE also made the development task easy by means of PyCharm. Its 
distinctive structural type color coding provided built-in code completion, code 
hinting, and local version control. In addition to these handy features, many add-on 
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configuration issues were solved by the suggestive assistance of the development 
community. 

4.1.2.2 Operating Systems 
This implementation employed 2 operating systems, namely, OS X and Ubuntu. 

These two operating systems were used in development phase for three reasons: 
stability, functionality, and popularity.   

- Stability-Ubuntu is a freeware, cross operating system that also support 

command line tools that makes it easy to manage a number of source files. 

- Functionality-the command line tools provide more efficient and effortless to 

manage the development process. Plenty of version control software are 

available through command line. 

- Popularity-the more users use, the more suggestions and pointers are revealed 

and solved. 

4.2 Input Specification 

 

 

 

 

 

 

 

 

 

Figure 4.1 10,000 pre-generated inputs 
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Figure 4.2 10,000 pre-generated inputs (enlarged) 

Figure 4.3 Process classes 

In this simulation, both user and system processes combined to create 10,000 
instances as input references. Each process consisted of 2 values, requested time and 
class. Each requested time interval was spread relatively equal as shows in Figure 4.1 
and Figure 4.2. The mean value of requested time was approximately 25.1642. The 
minimum and maximum were set at 1 and 50, respectively.  User and system processes 
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were initiated by 8,991 and 1,009, respectively, according to the pre-determined ratio 
of 9:1. 
 
4.3 Results 

This experiment was organized to verify the contributions of this work. Three well-
known algorithms were chosen to compare with the proposed scheme, namely, First-
in, First-out (FIFO), Shortest remaining time first (SRTF), and Round-Robin (RR). 

Mandatory operations were chosen to measure the number of operations used 
during process execution. Sort was required by SRTF only, as it needed to obtain least 
remaining time process to execute first. Transfer of control was involved for shifting 
resource between processes. Since the proposed scheme employed TTL time slice 
concept, it was similar to RR that needed more resources to perform context switch 
when the process quantum time ran out. Remove expelled processes from the 
resources at certain states, from waiting queue to execution, and from execution to 
finished. This simulation performed 10,000 processes. The results are shown in Table 
4.1 and Table 4.2. 

 
Table 4.1 Operation used 

 

 

 FIFO SRTF RR Proposed Scheme 

Sort 0 ∑ T𝑖
𝑁
𝑖=0   0 0 

Transfer of 

control 
Tn Tn 

⌈ (Tn % t) ⌉ ⌈ (Tn % TTL) ⌉ 

Remove Tn Tn 0 0 
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Table 4.1 shows the number of operations performed during execution process. 
Notice that only SRTF required sorting operation to looks for the shortest process first 
in every execution iteration. While the other 2 candidate algorithms and the proposed 
scheme did not required sorting. This sorting operation costed ∑ T𝑖

𝑁
𝑖=0  with very 

optimistic approximation.   
FIFO and SRTF transferred execution grant when currently executing process was 

finished, so they required only total number of process (Tn). On the other hand, RR 
and the proposed method involved time slicing. Hence, the number of operations 
used by these two methods were significantly high. However, theses prevented the 
starvation problem. Hence, these two methods shared the resources evenly.  

Remove performed when FIFO and SRTF finished their tasks. The number of 
removes was equal to the number of incoming inputs. Unlike RR and the proposed 
scheme, they just simply replaced the outgoing process with a new incoming one. 

 
Table 4.2 Execution time in clock ticks 

 
Table 4.2 reveals time consumption and differences among the chosen methods 

and the proposed scheme. FIFO took the least time complexity, followed by the 
proposed method, RR, and SRTF, respectively. 
 

Approach Time Result Difference 

FIFO 𝑛 × (�̅� + 3) 26815 -31.061% 

SRTF N LOG 𝑁+ ∑ 𝑛 × (�̅� + 3)𝑁
𝑖=0  74340 +91.120% 

RR ∑ ⌈𝑝𝑖 ÷ 5𝑁
𝑖=0 ⌉ × 8  41631 +7.0288% 

Proposed 

Method 
∑ ⌊𝑝𝑖 ÷ 5𝑁

𝑖=0 ⌋ × 8 + (𝑷𝒊 ÷ 5) + 3)  38897 ±0% 
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FIFO used only 26815 to finished 10,000 processes, spent only 60 percent of the 
proposed method’s time consumption. SRTF required sorting operation before 
allocating the designated process to memory which cost extra N LOG 𝑁 assuming merge 
sort was deployed in this component. This sorting cost extra runtime.  

Besides runtime speed, FIFO and SRTF might encounter starvation problem when 
very long processes arrived in waiting list. RR and the proposed scheme were free from 
this predicament by virtue of the time slice. 

RR was almost on par with proposed method, yet slightly slower. Notice that this 
simulation executed only 10,000 processes, where RR already gained an extra 10 
percent. In practice, the number of processes would be much higher than this. 

Finally, the proposed method outperformed SRTF and slightly quicker than RR by 
gaining from last execution iteration for each process. Traditional RR would release the 
resources when time quantum ran out, while the proposed method could exit as soon 
as it finished. 

In addition to execution time, average waiting was also measuring in this 
experiment. The results will be shown in following figures. 
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Figure 4.4 Average waiting time 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.5 Average waiting time between FIFO and the proposed scheme 
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Figure 4.6 Average waiting time between SRTF and the proposed scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.7 Average waiting time between RR and the proposed scheme 
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These measurement figures are chosen to measure the accessibility of resources. 
In this measurement also deploy 10,000 processes.  

Figure 4.4 shows all of candidate methods compare with the proposed scheme. 
Results are divided into 2 groups separated by their characteristics. For the first group, 
FIFO and SRTF, neither of these methods is employing time slice concept which mean 
entire process will be done in one execution. Obviously, processes in waiting queue 
have to wait as illustrated in Figure 4.5 and Figure 4.6. 

On the other hand, RR and the proposed method are imposed by time slice 
concept. Every process that is executing with these approaches will be serviced evenly. 
Since, resources are limited, once they are filled up, the rest of the processes have to 
wait. As can be seen in Figure 4.7, there are many steep rises in the graph which reflect 
the memory pool is overflowing. 

Consider the results from this experiment, the proposed scheme took more time 
to finished the jobs than FIFO queue. When average waiting time is considered, the 
proposed scheme is better than FIFO, SRTF, and RR.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Chapter 5 DISCUSSION 

5.1 Discussion 

The proposed method ran only single-thread per process type. In case the number 
of execution threads increases, the running time could be improved. However, with 
trade-off issues between complexity and simplicity, further investigation still is 
required. 

From the performance standpoint, tightening the gap with FIFO arrangement is 
important. The rationale why modified FIFO was adopted was because this work was 
aimed to benefit the simplest existing placement scheme by employing TTL time 
slicing to overcome starvation problem. 

Notice that none of these algorithms uses every candidate operation. SRTF requires 
sorting to find the smallest processes, while FIFO requires none of these excepts 
remove operation when currently executing process is finished. 

While RR and the proposed method do not have to perform removal, they just 
simply replace new process to the old one’s place. No sorting is needed. In transfer 
of control, there is difference in time computations. RR rounds up so the ceiling 
function is used since the process could only be taken out of the memory when time 
slice is up. The proposed method truncates and add extra value because the process 
could exit when it is either finished or TTL is expired.  

This small refinement could lead to high performance boost. In reality, single 
program could be decomposed into several processes. Consider Table 4.2 for 10,000 
processes, the proposed method gains approximate 7 percent. In a real production 
environment, the more processes run, the higher gain on processing time.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Chapter 6 CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

In this thesis, unicellular animal biological structure and life form’s behaviors were 
employed to create a novel memory allocation scheme and to combine with known 
computer science knowledge. FIFO was chosen to be the basis of allocation scheme. 
As a consequence, several memory related parameters and operations were deemed 
unnecessary for memory allocation scheme to achieve simplicity and hardware-
implementable ready scheme. Certain policies were precipitated as the by-product. 
Ultimately, memory placement and new allocation methods could be performed 
directly. This array of refinements permitted the proposed scheme to operate with 
minuscule overhead and in reasonable time. The memory wall problem would 
methodically be mitigated as more memory spaces were made available. This could 
fulfil necessary functions and remained competitive to other well-established 
algorithms. 
 
6.2 Future work 

Further development will focus on current memory allocation scheduling 
techniques such as runtime and effectiveness. Runtime efficiency improvement can 
be handled by multithread processing. Care must be taken on extra operations that 
complicate the supporting algorithm, not to mentioned parallelism issues. In addition, 
new evaluation approaches are needed to justify between simplicity and performance, 
as the performance gain will be the extra operations and runtime efficiency.  

Hardware implementation is another challenging point to be explored. Preparation 
has been made from the outset. A number of unique characteristics have also gathered 
from unicellular animals to be adapted.  

Simplicity swiftly becomes a schematic idea of this research.  The process state 
reduction is mimicking unicellular life form to system structure, which in turn is utilizing 
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well-developed life form’s behaviors to administer process placement and execution 
policies. Both incoming and executing states as shown in Figure 3.4 are already 
hardware implementable. The instructions in these two components can be 
straightforwardly operated but waiting and blocked still need further minimization to 
run at hardware level. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

REFERENCES 
 

 

[1] E. Mollick, “Establishing Moore’s law,” IEEE Ann. Hist. Comput., vol. 28, no. 3, 
pp. 62–75, 2006. 

[2] C. A. Mack, “Keynote: Moore’s Law 3.0,” Microelectron. Electron Devices 
(WMED), 2013 IEEE Work., p. xiii, 2013. 

[3] Intel, “Moore’s Law and Intel Innovation,” Intel, 2012. [Online]. Available: 
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-
law.html. [Accessed: 01-Mar-2017]. 

[4] S. Derrien and S. Rajopadhye, “FCCMs and the memory wall,” IEEE Symp. 
FPGAs Cust. Comput. Mach. Proc., vol. 2000–Janua, no. ii, pp. 329–330, 2000. 

[5] H. Nozaki, Sexual Reproduction in Animals and Plants. 2014. 

[6] W. Stallings, Operating Systems: Internals and Design Principles. 2008. 

[7] A. Kagi, J. R. Goodman, D. Burger, J. R. Goodman, A. Kagi, and W. D. Street, 
“Memory Bandwidth Limitations of Future Microprocessors,” 23rd Annu. Int. 
Symp. Comput. Archit. ISCA96, vol. 24, no. 2, pp. 78–89, 1996. 

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory 
access scheduling,” Proc. 27th Int. Symp. Comput. Archit. (IEEE Cat. 
No.RS00201), vol. 27, no. c, pp. 1–11, 2000. 

[9] M. Liu, W. Ji, Z. Wang, J. Li, and X. Pu, “High performance memory 
management for a multi-core architecture,” Proc. - IEEE 9th Int. Conf. Comput. 
Inf. Technol. CIT 2009, vol. 1, pp. 63–68, 2009. 

[10] L. B. Kish, “End of Moore ’ s law  : thermal ( noise ) death of integration in 
micro and nano electronics,” Phys. Lett. A, vol. 305, pp. 144–149, 2002. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38 

 

 

 

 
VITA 
 

VITA 

 

Name: Mister Gasydech Lergchinnaboot 

Country: Bangkok, Thailand 

Education: B.Eng. (Software Engineering); King Mongkut's Institute of 
Technology Ladkrabang, 2014 

Affiliation: Advanced Virtual and Intelligent Computing (AVIC) Center, 
Department of Mathematics and Computer Science, Faculty of Science, 
Chulalongkorn University. 

Publication: G. Lergchinnaboot and P. Sophatsathit, "A Biological-like 
Memory Allocation Scheme Using Simulation", 2nd International Conferences on 
Information Technology, Information Systems and Electrical Engineering (ICITISEE 
2017) Yogyakarta, Indonesia 2017: 426-429. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	CONTENT OF TABLES
	CONTENT OF FIGURES
	Chapter 1 INTRODUCTION
	1.1 Introduction
	1.2 Statements of the problems.
	1.3 Objectives
	1.4 Scope of this thesis
	1.5 Organization of this thesis

	Chapter 2 BACKGROUND KNOWLEDGES AND LITERATURE REVIEWS
	2.1 Motivation
	2.2 Unicell biological structure
	2.3 Operating systems background knowledge
	2.3.1 Process states
	2.3.2 Scheduling
	2.3.2.1 First-In First-out (FIFO)
	2.3.2.2 Shortest Remaining Time First (SRTF)
	2.3.2.3 Round Robin (RR)


	2.4 Literature Reviews
	2.4.1 Memory Bandwidth Limitation
	2.4.2 Scheduling Policies
	2.4.3 Object Table introduction
	2.4.4 End of Moore’s law


	Chapter 3 METHOD
	3.1 Observation
	3.2 System Architecture
	3.2.1 Schematic operations
	3.2.2 Memory Architecture Design
	3.3.3 Modified Process States
	3.3.4 Policies
	3.3.4.1 Incoming
	3.3.4.2 Execution
	3.3.4.3 Overflow



	Chapter 4 EXPERIMENTAL RESULTS
	4.1 Experimental Setup
	4.1.1 Hardware Specification
	4.1.2 Software Used
	4.1.2.1 Programming language and Tools


	4.2 Input Specification
	4.3 Results

	Chapter 5 DISCUSSION
	5.1 Discussion

	Chapter 6 CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future work

	REFERENCES
	VITA

