สารที่มีฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสและเอนไซม์ไลเปสจากเอื้องเงินหลวง

นางสาวปรัชญาพร อินทองแก้ว

GHULALONGKORN UNIVERSITY

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ALPHA-GLUCOSIDASE AND LIPASE INHIBITORS

FROM DENDROBIUM FORMOSUM

Miss Prachyaporn Inthongkaew

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

Thesis Title	ALPHA-GLUCOSIDASE AND LIPASE INHIBITORS
	FROM DENDROBIUM FORMOSUM
Ву	Miss Prachyaporn Inthongkaew
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Boonchoo Sritularak, Ph.D.
Thesis Co-Advisor	Professor Kittisak Likhitwitayawuid, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

>Dean of the Faculty of Pharmaceutical Sciences (Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.)

THESIS COMMITTEE

Chairman
(Associate Professor Rutt Suttisri, Ph.D.)
(Associate Professor Boonchoo Sritularak, Ph.D.)
(Professor Kittisak Likhitwitayawuid, Ph.D.)
Examiner
(Chaisak Chansriniyom, Ph.D.)
External Examiner
(Associate Professor Supachoke Mangmool, Ph.D.)

ปรัชญาพร อินทองแก้ว : สารที่มีฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสและเอนไซม์ไลเปส จากเอื้องเงินหลวง (ALPHA-GLUCOSIDASE AND LIPASE INHIBITORS FROM DENDROBIUM FORMOSUM) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ภก. ดร.บุญชู ศรีตุลา รักษ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ภก. ดร.กิตติศักดิ์ ลิขิตวิทยาวุฒิ, 185 หน้า.

การศึกษาทางพฤกษเคมีของสารสกัดหยาบด้วยเมทานอลจากต้นเอื้องเงินหลวง (วงศ์ Orchidaceae) สามารถแยกสารบริสุทธิ์ที่เคยมีรายงานมาแล้วได้ทั้งหมด 12 ชนิด ได้แก่ สารกลุ่ม phenanthrenes 2 ชนิด (confusarin, nudol), สารกลุ่ม dihydrophenanthrenes 5 ชนิด coelonin, 2,5,7-trihydroxy-4-methoxy-9,10-(hircinol. erianthridin, lusianthridin, dihydrophenanthrene), สารกลุ่ม dihydrophenanthrenequinones 1 ชนิด (5-methoxy-7hydroxy-9,10-dihydro-1,4-phenanthrenequinone), สารกลุ่ม bibenzyls 3 ชนิด (gigantol, batatasin III, moscatilin) และสารกลุ่ม phenylpropanoids 1 ชนิด (dihydroconiferyl dihydrop-coumarate) พิสูจน์โครงสร้างทางเคมีของสาร โดยการวิเคราะห์ข้อมูลสเปกโตรสโคปี (NMR และ HRS-ESI-MS) จากการศึกษาฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดส และเอนไซม์ไลเปสของสารบริสุทธิ์ ทั้งหมดที่แยกได้พบว่า 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone มี ถุทธิ์ยับยั้งเอนไซม์สูงที่สุด โดยมีค่าความเข้มข้นที่สามารถยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสและ เอนไซม์ไลเปสได้ 50% (IC₅₀) คือ 126.88 และ 69.45 ไมโครโมลาร์ ตามลำดับ เมื่อศึกษาข้อมูล จลนพลศาสตร์ของเอนไซม์โดยการเขียนรูปกราฟตามวิธีการของ Lineweaver-Burk plot พบว่า 5methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone เป็นตัวยับยั้งแบบไม่แข่งขันต่อ เอนไซม์แอลฟา-กลูโคซิเดสและเอนไซม์ไลเปส

Chulalongkorn University

ภาควิชา	เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต
สาขาวิชา	เภสัชเวท	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2559	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5876115233 : MAJOR PHARMACOGNOSY

KEYWORDS: DENDROBIUM FORMOSUM / ALPHA-GLUCOSIDASE INHIBITORS / LIPASE INHIBITORS / BIBENZYLS / DIHYDROPHENANTHRENES

> PRACHYAPORN INTHONGKAEW: ALPHA-GLUCOSIDASE AND LIPASE INHIBITORS FROM *DENDROBIUM FORMOSUM*. ADVISOR: ASSOC. PROF. BOONCHOO SRITULARAK, Ph.D., CO-ADVISOR: PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., 185 pp.

Phytochemical investigation of the methanol extract from *Dendrobium* formosum (Orchidaceae) resulted in the isolation of twelve known compounds, which included two phenanthrenes (confusarin, nudol), five dihydrophenanthrenes (hircinol, erianthridin. lusianthridin. coelonin. 2,5,7-trihydroxy-4-methoxy-9,10dihydrophenanthrene), a dihydrophenanthreneguinone (5-methoxy-7-hydroxy-9,10dihydro-1,4-phenanthrenequinone), three bibenzyls (gigantol, batatasin III, moscatilin), and a phenylpropanoid (dihydroconiferyl dihydro-p-coumarate). These structures were determined by analysis of their NMR and HRS-ESI-MS data. The isolates were evaluated for $\mathbf{\alpha}$ -glucosidase and lipase inhibitory activities. Among the isolates, 5-methoxy-7hydroxy-9,10-dihydro-1,4-phenanthrenequinone showed the highest α -glucosidase and lipase inhibitory effects with IC₅₀ values of 126.88 μ M and 69.45 μ M, respectively. An enzyme kinetics study conducted by the Lineweaver-Burk plot method revealed 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone was a that noncompetitive inhibitor of $\mathbf{\alpha}$ -glucosidase and lipase enzymes.

Department:	Pharmacognosy and	Student's Signature
	Pharmaceutical Botany	Advisor's Signature
Field of Study:	Pharmacognosy	Co-Advisor's Signature
Academic Year:	2016	

ACKNOWLEDGEMENTS

I wish to express my appreciation to my thesis advisor, Associate Professor Dr. Boonchoo Sritularak and my thesis co-advisor, Professor Dr. Kittisak Likhitwitayawuid, for their valuable advice, endless support, patience and encouragement throughout the course of this study.

I am grateful for all beneficial advice and assistance from the members of my thesis committee and wish to express my thanks to all staff members of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for assistance and facilities.

I also wish to express my thanks to all staffs of Department of Medical Sciences, Ministry of Public Health, for invaluable advice and support.

Finally, I would like to express my special gratitude to my family and friends for their love, understanding, supporting and encouragement.

จุพาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	1
LIST OF FIGURES	3
LIST OF SCHEMES	6
ABBREVIATIONS & SYMBOLS	7
CHAPTER I INTRODUCTION	10
CHAPTER II HISTORICAL	19
1. Chemical constituents of <i>Dendrobium</i>	19
2. Traditional uses and biological activities of <i>Dendrobium</i> species	91
	93
1. Source of plant materials	93
2. General techniques	93
2.1 Analytical thin-layer chromatography (TLC)	93
2.2 Column chromatography	94
2.2.1 Vacuum liquid chromatography (VLC)	94
2.2.2 Flash column chromatography (FCC)	94
2.2.3 Gel filtration chromatography	95
2.3 Spectroscopy	95
2.3.1 Mass spectra	95

Page

2.3.2 Proton and carbon-13 nuclear magnetic resonance (¹ H and95
¹³ C-NMR) spectra95
2.4 Solvents
3. Extraction and isolation96
3.1 Extraction
3.2 Isolation96
3.2.1 Isolation of compound DFM-1 (confusarin)
3.2.2 Isolation of compound DFM-2 (hircinol)97
3.2.3 Isolation of compound DFM-3 (erianthridin)97
3.2.4 Isolation of compound DFM-4 (gigantol)97
3.2.5 Isolation of compound DFM-5 (nudol)97
3.2.6 Isolation of compound DFM-6 (lusianthridin)
3.2.7 Isolation of compound DFM-7 (coelonin)
3.2.8 Isolation of compound DFM-8 (dihydroconiferyl dihydro-p- coumarate)98
3.2.9 Isolation of compound DFM-9 (batatasin III)
3.2.10 Isolation of compound DFM-10 (2,5,7-trihydroxy-4-methoxy-
9,10-dihydrophenanthrene)98
3.2.11 Isolation of compound DFM-11 (moscatilin)
3.2.12 Isolation of compound DFM-12 (5-methoxy-7-hydroxy-9,10-
dihydro-1,4-phenanthrenequinone)
4. Physical and spectral data of isolated compounds105
4.1 Compound DFM-1 (confusarin)105
4.2 Compound DFM-2 (hircinol)105

viii

Page

4.3 Compound DFM-3 (erianthridin)	. 105
4.4 Compound DFM-4 (gigantol)	. 105
4.5 Compound DFM-5 (nudol)	. 106
4.6 Compound DFM-6 (lusianthridin)	. 106
4.7 Compound DFM-7 (coelonin)	. 106
4.8 Compound DFM-8 (dihydroconiferyl dihydro- <i>p</i> -coumarate)	. 106
4.9 Compound DFM-9 (batatasin III)	. 107
4.10 Compound DFM-10 (2,5,7-trihydroxy-4-methoxy-9,10-	
dihydrophenanthrene)	
4.11 Compound DFM-11 (moscatilin)	. 107
4.12 Compound DFM-12 (5-methoxy-7-hydroxy-9,10-dihydro-1,4-	
phenanthrenequinone)	. 107
5. $lpha$ -Glucosidase and lipase enzyme inhibitory activity assays	. 108
5.1 $lpha$ -Glucosidase enzyme inhibitory activity assay	. 108
5.1.1 Materials and instruments	. 108
5.1.2 Determination of $lpha$ -glucosidase enzyme inhibitory activity	. 108
5.2 Lipase enzyme inhibitory activity assay	. 109
5.2.1 Materials and instruments	. 110
5.2.2 Determination of lipase enzyme inhibitory activity	. 110
CHAPTER IV RESULTS AND DISCUSSION	. 112
1. Structure determination of isolated compounds	. 112
1.1 Structure determination of compound DFM-1	. 112
1.2 Structure determination of compound DFM-2	. 115

Page

1.3 Structure determination of compound DFM-3	17
1.4 Structure determination of compound DFM-411	19
1.5 Structure determination of compound DFM-5	21
1.6 Structure determination of compound DFM-6	23
1.7 Structure determination of compound DFM-7	25
1.8 Structure determination of compound DFM-8	27
1.9 Structure determination of compound DFM-9	29
1.10 Structure determination of compound DFM-10	31
1.11 Structure determination of compound DFM-11	33
1.12 Structure determination of compound DFM-12	35
2. $lpha$ -Glucosidase and lipase inhibitory activities	37
CHAPTER V CONCLUSION	12
REFERENCES	13
VITA	35

CHULALONGKORN UNIVERSITY

LIST OF TABLES

Table 1 Distribution of bibenzyls and derivatives in the genus Dendrobium20
Table 2 Distribution of flavonoids in the genus Dendrobium 55
Table 3 Distribution of terpenoids in the genus Dendrobium 62
Table 4 Distribution of miscellaneous compounds in the genus Dendrobium72
Table 5 NMR spectral data of compound DFM-1 (in acetone- d_6) and confusarin(in CDCl3)
Table 6 NMR spectral data of compound DFM-2 (in acetone- d_6) and hircinol(in CDCl3)
Table 7 NMR spectral data of compound DFM-3 (in acetone- d_6) and erianthridin(in CD ₃ OD)
Table 8 NMR spectral data of compound DFM-4 and gigantol (in acetone- d_6) 120
Table 9 NMR spectral data of compound DFM-5 and nudol (in acetone- d_6) 122
Table 10 NMR spectral data of compound DFM-6 and lusianthridin(in acetone- d_6)
Table 11 NMR spectral data of compound DFM-7 (in acetone- d_6) and coelonin(in CD ₃ OD)
Table 12 NMR spectral data of compound DFM-8 (in acetone- d_6) anddihydroconiferyl dihydro- p -coumarate (in CDCl3)
Table 13 NMR spectral data of compound DFM-9 (in acetone- d_6) and batatasin III(in CDCl ₃)
Table 14 NMR spectral data of compound DFM-10 and 2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene (in acetone- d_6)132
Table 15 NMR spectral data of compound DFM-11 and moscatilin (in CDCl ₃) 134

Table 16 NMR spectral data of compound DFM-12 (in acetone-d $_6$) and 5-
methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (in CDCl ₃)136
Table 17 $lpha$ -Glucosidase and lipase inhibitory activities screening from MeOH
extract
Table 18 Glucosidase and lipase inhibitory activities screening from EtOAc
extract
Table 19 IC_{50} values of compounds DFM-1 to DFM-12 for $lpha$ -glucosidase and
lipase inhibitory activities
Table 20 Kinetic parameters of $lpha$ -glucosidase and lipase enzymes in the
presence of 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone 140

Chulalongkorn University

LIST OF FIGURES

Figure 1 Dendrobium formosum Roxb. ex Lindl. 18
Figure 2 Structures of bibenzyls and derivatives previously isolated from
Dendrobium species
Figure 3 Structures of flavonoids previously isolated from <i>Dendrobium</i> species .58
Figure 4 Structures of terpenoids previously isolated from <i>Dendrobium</i> species.66
Figure 5 Structures of miscellaneous compounds previously isolated from
Dendrobium species
Figure 6 Mass spectrum of compound DFM-1
Figure 7 ¹ H-NMR (300 MHz) spectrum of compound DFM-1 (in acetone- d_6) 155
Figure 8 13 C-NMR (75 MHz) spectrum of compound DFM-1 (in acetone- d_6) 156
Figure 9 HSQC spectrum of compound DFM-1 (in acetone- d_6)
Figure 10 HMBC spectrum of compound DFM-1 (in acetone- d_6)
Figure 11 NOSEY spectrum of compound DFM-1 (in acetone- d_6)
Figure 12 Mass spectrum of compound DFM-2 158
Figure 13 ¹ H-NMR (300 MHz) spectrum of compound DFM-2 (in acetone- d_6) 158
Figure 14 13 C-NMR (75 MHz) spectrum of compound DFM-2 (in acetone- d_6) 159
Figure 15 HSQC spectrum of compound DFM-2 (in acetone- d_6)
Figure 16 NOESY spectrum of compound DFM-2 (in acetone- d_6)
Figure 17 Mass spectrum of compound DFM-3
Figure 18 ¹ H-NMR (300 MHz) spectrum of compound DFM-3 (in acetone- d_6) 161
Figure 19 ¹³ C-NMR (75 MHz) spectrum of compound DFM-3 (in acetone- d_6) 161
Figure 20 DEPT 135 spectrum of compound DFM-3 (in acetone- d_6) 162

Figure 21 HMBC spectrum of compound DFM-3 (in acetone- d_6)	162
Figure 22 NOESY spectrum of compound DFM-3 (in acetone- d_6)	163
Figure 23 Mass spectrum of compound DFM-4	163
Figure 24 ¹ H-NMR (300 MHz) spectrum of compound DFM-4 (in acetone- d_6)	164
Figure 25 ¹³ C-NMR (75 MHz) spectrum of compound DFM-4 (in acetone- d_6)	164
Figure 26 NOSEY spectrum of compound DFM-4 (in acetone- d_6)	165
Figure 27 Mass spectrum of compound DFM-5	165
Figure 28 ¹ H-NMR (300 MHz) spectrum of compound DFM-5 (in acetone- d_6)	166
Figure 29 ¹³ C-NMR (75 MHz) spectrum of compound DFM-5 (in acetone- d_6)	166
Figure 30 HMBC spectrum of compound DFM-5 (in acetone- d_6)	167
Figure 31 NOESY spectrum of compound DFM-5 (in acetone- d_6)	167
Figure 32 Mass spectrum of compound DFM-6	168
Figure 33 ¹ H-NMR (300 MHz) spectrum of compound DFM-6 (in acetone- d_6)	168
Figure 34 ¹³ C-NMR (75 MHz) spectrum of compound DFM-6 (in acetone- d_6)	169
Figure 35 HSQC spectrum of compound DFM-6 (in acetone- d_6)	169
Figure 36 NOESY spectrum of compound DFM-6 (in acetone- d_6)	170
Figure 37 Mass spectrum of compound DFM-7	170
Figure 38 ¹ H-NMR (300 MHz) spectrum of compound DFM-7 (in acetone- d_6)	171
Figure 39 ¹³ C-NMR (75 MHz) spectrum of compound DFM-7 (in acetone- d_6)	171
Figure 40 HMBC spectrum of compound DFM-7 (in acetone- d_6)	172
Figure 41 NOESY spectrum of compound DFM-7 (in acetone- d_6)	172
Figure 42 Mass spectrum of compound DFM-8	173
Figure 43 ¹ H-NMR (300 MHz) spectrum of compound DFM-8 (in acetone- d_6)	173
Figure 44 ¹³ C-NMR (75 MHz) spectrum of compound DFM-8 (in acetone- d_6)	174

Figure 45 DEPT 135 spectrum of compound DFM-8 (in acetone- d_6) 174
Figure 46 HMBC spectrum of compound DFM-8 (in acetone- d_6)
Figure 47 NOESY spectrum of compound DFM-8 (in acetone- d_6)
Figure 48 Mass spectrum of compound DFM-9 176
Figure 49 ¹ H-NMR (300 MHz) spectrum of compound DFM-9 (in acetone- d_6) 176
Figure 50 13 C-NMR (75 MHz) spectrum of compound DFM-9 (in acetone- d_6) 177
Figure 51 NOESY spectrum of compound DFM-9 (in acetone- d_6)
Figure 52 Mass spectrum of compound DFM-10
Figure 53 ¹ H-NMR (300 MHz) spectrum of compound DFM-10 (in acetone- d_6) 178
Figure 54 13 C-NMR (75 MHz) spectrum of compound DFM-10 (in acetone- d_6) 179
Figure 55 Mass spectrum of compound DFM-11 179
Figure 56 ¹ H-NMR (300 MHz) spectrum of compound DFM-11 (in CDCl ₃)
Figure 57 ¹³ C-NMR (75 MHz) spectrum of compound DFM-11 (in CDCl ₃) 180
Figure 58 NOESY spectrum of compound DFM-11 (in CDCl ₃)
Figure 59 Mass spectrum of compound DFM-12
Figure 60 ¹ H-NMR (300 MHz) spectrum of compound DFM-12 (in acetone- d_6) 182
Figure 61 13 C-NMR (75 MHz) spectrum of compound DFM-12 (in acetone- d_6) 182
Figure 62 NOESY spectrum of compound DFM-12 (in acetone- d_6)
Figure 63 $lpha$ -Glucosidase inhibition at different concentrations of 5-methoxy-7-
9,10-dihydro-1,4-phenanthrenequinone183
Figure 64 Lipase inhibition at different concentrations of 5-methoxy-7-hydroxy-
9,10-dihydro-1,4-phenanthrenequinone

LIST OF SCHEMES

Scheme 1 Separation of the MeOH extract of Dendrobium formosum	00
--	----

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ABBREVIATIONS & SYMBOLS

Acetone- d_6	=	Deuterated acetone		
α	=	Alpha		
β	=	Beta		
br s	=	Broad singlet (for NMR spectra)		
°C	=	Degree celsius		
СС	=	Column chromatography		
CDCl ₃	=	Deuterated chloroform		
CH ₂ Cl ₂	=	Dichloromethane		
cm	=	Centimeter		
¹³ C-NMR	=	Carbon-13 Nuclear Magnetic Resonance		
1-D NMR	=	One-dimensional Nuclear Magnetic Resonance		
2-D NMR	=	Two-dimensional Nuclear Magnetic Resonance		
d	= 3 14	Doublet (for NMR spectra)		
dd	€HUI	Doublet of doublets (for NMR spectra)		
δ	=	Chemical shift		
DEPT	=	Distortionless Enhancement by Polarization Transfer		
ESI-MS	=	Electrospray Ionization Mass Spectrometry		
EtOAc	=	Ethyl acetate		
FCC	=	Flash Column Chromatography		
g	=	Gram		
GF	=	Gel Filtration		
Glc	=	Glucose		

НМВС	=	¹ H-detected Heteronuclear Multiple Bond Correlation
HR-ESI-MS	=	High Resolution Electrospray Ionization Mass
		Spectroscopy
¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HSQC	=	¹ H-detected Heteronuclear Single Quantum Coherence
Hz	=	Hertz
IC ₅₀	=	Concentration exhibiting 50% inhibition
IR	=	Infrared
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
λ max	=	Wavelength at maximal absorption
$[M]^+$	=	Molecular ion
[M+Na] ⁺	=	Sodium-adduct molecular ion
[M-H] ⁻	= จุห	Pseudomolecular ion
т	Сни	Multiplet (for NMR spectra)
MeOH	=	Methanol
mg	=	Milligram
μg	=	Microgram
min	=	Minute
mL	=	Milliliter
μL	=	Microliter
μΜ	=	Micromolar
mm	=	Millimeter

mM	=	Millimolar
MS	=	Mass spectrum
MW	=	Molecular weight
m/z	=	Mass to charge ratio
nm	=	Nanometer
NMR	=	Nuclear Magnetic Resonance
NOESY	=	Nuclear Overhauser Effect Spectroscopy
ppm	=	Part per million
Rha	=	Rhamnose
5	=	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV-VIS	=	Ultraviolet and Visible spectrophotometry
VLC	=	Vacuum Liquid Column Chromatography

จุหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

CHAPTER I

Diabetes mellitus (DM) is a metabolic disease characterized by high blood glucose level (hyperglycemia) which is resulted from a defect in insulin secretion and/or insulin action. Sustained hyperglycemia leads to diabetic complications such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, cardiovascular disease and stroke, which causes morbidity and mortality among those affected (American Diabetes Association, 2010)

The two major types of diabetes are type 1 and type 2 diabetes. Type 1 diabetes is characterized by a specific destruction of the pancreatic β cells commonly associated with immune-mediated damage. Type 2 diabetes display a gradual change in glucose homeostasis due to insulin resistance and/or decreased insulin secretion. Besides, there are minor types of diabetes such as gestational diabetes (GDM) and specific types of diabetes due to other causes. GDM is diabetes that is first diagnosed in the second or third trimester of pregnancy that is not clearly either pre-existing type 1 or type 2 diabetes. Specific types of diabetes are due to other causes such as exocrine pancreas disease (such as cystic fibrosis) and drug- or chemical-induced diabetes (such as with glucocorticoid use, in the treatment of HIV/AIDS, or after organ transplantation), monogenic diabetes syndromes (such as neonatal diabetes and maturity-onset diabetes of the young [MODY]) (American Diabetes Association, 2017)

Treatment of diabetic as well as oral antidiabetic drugs can be classified by mechanism of action such as (Grant *et al.*, 2015)

Insulin secretagogues	: Sulfonylureas (glibenclamide, gliclazide, glipizide)		
	:	Rapid-acting prandial insulin releasers (repaglinide,	
		nateglinide)	
Insulin sensitisers	:	Biguanides (metformin)	
	:	Thiazolidinediones (pioglitazone, rosiglitazone)	

lpha-Glucosidase inhibitors	: Acarbose, voglibose, miglitol
DPP-4 inhibitors	: Sitagliptin, linagliptin, Alogliptin
GLP-1 receptor agonists	: Exenatide, liraglutide, albiglutide
SGLT2 inhibitors	: Canagliflozin, dapagliflozin, empagliflozin

 α -Glucosidase is an enzyme that secrete from intestinal chorionic epithelium, which is association for degradation of carbohydrates. This enzyme can delay the carbohydrates digestion and absorption by blocking the activity of glucosidase competitively (Yin *et al.*, 2014).

α-Glucosidase inhibitors derived from medicinal plants such as terpenes, alkaloids, quinines, flavonoids, phenols, phenylpropanoids, steroids and other types of compounds (Yin *et al.*, 2014) includes isolated compounds from *Dendrobium spp*. For example *D. loddigesii* (Lu *et al.*, 2014), *D. devonianum* (Sun *et al.*, 2014) and *D. totile* (Limpanit *et al.*, 2016).

An alternative approach to prevent postprandial hyperglycemia involves the use drugs that function as competitive inhibitors of small intestinal brush-border alphaglucosidases. By inhibiting these enzymes the digestion of nonabsorbable, poly- and oligosaccharides (starch, sucrose) is prevented and thus the formation of absorbable monosaccharides (glucose, fructose) is delayed (De Ruiter, 2003).

Type 2 diabetes can also be caused by progressive β -cells dysfuction from excessive accumulation of lipids in the pancrease, which might damage to pancreatic β -cells and could effect to insulin resistance (Tushuizen *et al.*, 2007).

Pancreatic lipase is the key enzyme responsible for lipid digestion of triglycerides into monoacylglycerides and free fatty acids (Sergent *et al.*, 2012). Interestingly, pancreatic lipase inhibitors can also reduce the lipid absorption and prevent the pancrease β -cells able to produce normal level of insulin (You *et al.*, 2012). However, the pancreatic lipase inhibitors of *Dendrobium* species have not been reported previously. The active form of the enzyme is a non-covalent homodimer which contains multiple functional domains required for normal hydrolytic activity

including a catalytic domain, as well as sites involved in co-factor heparin and lipid binding (Santamarina-Fojo and Brewer, 1994).

Dendrobium is one of the largest and most important genera in the family Orchidaceae with approximately 1,100 species (Lam *et al.*, 2015). There are 80 species in China have been used as a traditional Chinese medicine (Chen *et al.*, 2015). There are several bioactive components of *Dendrobium* plants such as alkaloids, bibenzyls, phenanthrenes, dihydrophenanthrenes, phenanthrenequinones, fluorenones, sesquiterpenoids and polysaccharides (Chen *et al.*, 2014b; Zhao *et al.*, 2016) which showed various biological activities including neuroprotective activity, anticancer activity, anti-angiogenesis activity, immunomodulatory activity, antioxidant, antisenescence activity, antiplatelet aggregation activity and nitric oxide production inhibitory activity (Lam *et al.*, 2015).

In Thailand, more than 90 species of *Dendrobium* have been identified as follows (Smitinand, 2001):

Dendrobium acerosum Lindl.	กล้วยไม้มีอนาง Kluai mai mue nang (Chumphon)
D. acinaciforme Roxb.	เอื้องยอดสร้อย Ueang yot soi (Northern)
D. albosanguineum Lindl.	เอื้องตางัว Ueang ta ngua (Mae Hong Son)
<i>D. aloifolium</i> (Blume) Rchb.f.	เอื้องมณี Ueang mani (Bangkok)
D. anosmum Lindl.	เอื้องสาย Ueang sai (Chiang Mai, Peninsular)
D. aphyllum (Roxb.) C.E.C.Fisch.	เอื้องงวงช้าง Ueang nguang chang (Mae Hong
	Son)
D. bellatulum Rolfe	เอื้องแซะภู Ueng sae phu
D. bicameratum Lindl.	เอื้องเข็ม Ueang khem (Northern)
D. bilobulatum Seidenf.	กล้วยไม้ก้างปลา Kluai mai kang pla (General)
D. binoculare Rchb.f.	เอื้องคำสาย Ueang kham sai (Northern)
D. brymerianum Rchb.f.	เอื้องคำฝอย Ueang kham foi (Northern)
D. capillipes Rchb.f.	เอื้องคำกิ่ว Ueang kham kio (Lampang, Phrae)

- D. ellipsophyllum Tang & Wang
- *D. exile* Schltr.
- D. falconeri Hook.
- D. farmeri Paxton

เอื้องกาจก Ueang kachok (Chiang Mai) เอื้องแซะภูกระดึง Ueang sae phu kradueng (Loei) เอื้องสายมรกต Ueang sai morakot (Bangkok) เอื้องคำ Ueang kham (Northern) เอื้องข้าวตอก Ueang khao tok (Northern) หางเปีย Hang pia (Narathiwat) เอื้องสายน้ำเขียว Ueang sai nam khiao (General) เอื้องนางนวล Ueang nang nuan (Peninsular) เอื้องนกแก้ว Ueang nok kaeo (Bangkok) หวายตะมอย Wai tamoi (Central, Peninsular) เอื้องนางฟ่อน Ueang nang fon (Chiang Mai) เอื้องสายสี่ดอก Ueang sai si dok (Northern, Southeastern)

เอื้องเข็ม Ueang khem (Chiang Mai) เอื้องมอนไข่ Ueang mon khai (Northern) เอื้องเมี่ยง Ueang miang (Chiang Mai) เอื้องเคี้ยะ Ueang khia (Chiang Mai) หวายกลัก Wai klak (Bangkok) เอื้องเทียน Ueang thian (Northern) เอื้องเงิน Ueang ngoen (Northern) เอื้องพอง Ueang thong (Genaeral) เอื้องเสี้ยน Ueang sian (General) เอื้องสายวิสูตร Ueang sai wisut (Bangkok)

- D. fimbriatum Hook. D. findlayanum Parish & Rchb.f. D. formosum Roxb. ex Lindl. D. friedericksianum Rchb.f.
- D. fuerstenbergianum Schltr.
- D. gibsonii Lindl.
- D. grande Hook.f
- D. gratiosissimum Rchb.f.
 D. gregulus Seidenf.
 D. griffithianum Lindl.
 D. harveyanum Rchb.f.
 D. hendersonii Hawkes & Heller
 D. hendersonii Hawkes & Heller
 D. heterocarpum Lindl.
 D. indivisum (Blume) Miq.
 var. indivisum
 D. indivisum (Blume) Miq.
 var. pallidum Seidenf.
 D. infundibulum Lindl.
 D. intricatum Gagnep.
 D. jenkinsii Wall. ex Lindl.
- D. kanburiense Seidenf.

เอื้องคำน้อย Ueang kham noi (Chiang Mai) พวงหยก Phuang yok (Bangkok) เอื้องเงินหลวง Ueang ngoen luang (Chiang Mai) เอื้องเหลืองจันทบูร Ueang lueang chantabun (Bangkok) เอื้องแซะภูกระดึง Ueang sae phukradueng (Loei) เอื้องคำสาย Ueang kham sai (Northern) เอื้องแผงใบใหญ่ Ueang pheang bai yai (Peninsular) เอื้องกิ่งดำ Ueang king dam (Bangkok) เอื้องมะต่อม Ueang matom (Chiang Mai) เอื้องมัจฉาณุ Ueang matchanu (Bangkok) เอื้องคำฝอย Ueang kham foi (Chiang Mai) หวายตะมอยน้อย Wai tamoi noi (Peninsular) เอื้องดอกมะเขือ Ueang dok ma kuea (Bangkok) เอื้องสีตาล Ueang si tan (Chiang Mai) ตานเสี้ยนไม้ Tan sian mai (Chumphon)

ก้างปลา Kang pla (General)

เอื้องตาเหิน Ueang ta hoen (General) เอื้องชมพู Ueang chom phu (Chanthaburi) เอื้องผึ้งน้อย Ueang phueng noi(Chiang Mai) หวายเมืองกาญจน์ Wai muang kan (Kanchanaburi) D. lindleyi Steud.

D. lituiflorum Lindl.

D. moschatum (Buch.-Ham.) Sw.

D. nathanielis Rchb.f.

D. nobile Lindl.

D. ochreatum Lindl.

D. oligophyllum Gagnep.

D. pachyglossum

D. pachyphyllum (Kuntze) Bakh.f. *D. palpebrae* Lindl.

D. parcum Rchb.f. D. parishii Rchb.f. D. pendulum Roxb.

D. pensile Ridl.
D. porphyrophyllum Guillaumin
D. primulinum Lindl.
D. pulchellum Roxb. ex Lindl.

D. pychnostachyum Lindl.

เอื้องตะขาบใหญ่ Ueang ta khap yai (General) เอื้องผึ้ง Ueang phueng (Northern) เอื้องสายม่วง Ueang sai muang (Bangkok, Northern) เอื้องจำปา Ueang champa (Northern) เกล็ดนิ่ม Klet nim (Chantaburi) เอื้องเค้ากิ่ว Ueang khao kio (Nortern) เอื้องตะขาบ Ueang ta khap (Chiang Mai) ข้าวตอกปราจีน Khao tok prachin (General) เอื้องขนหมู Ueang khon mu (Mae Hong C.S.P.Parish & Rchb.f Son) เอื้องน้อย Ueang noi (General) เอื้องมัจฉา Ueang mat cha, เอื้องมัจฉาณ Ueang mat chanu (Bangkok) เอื้องก้านกิ่ว Ueang kan kio (Bangkok) เอื้องครั่ง Ueang khrang (Northern) เอื้องไม้เท้าฤาษี Ueang mai thao ruesi (Bangkok, Chiang Mai) หวาย Wai (Narathiwat) เอื้องลิ้น Ueang lin (Lampang) เอื้องสายประสาท Ueang sai prasat (Bangkok) เอื้องคำตาควาย Ueang kham ta khwai (Mae Hong Son) เศวตสอดสี Sawet sot si (Chiang Mai)

- D. salaccense (Blume) Lindl.
- D. scabrilingue Lindl.
- D. secundum (Blume) Lindl.
- D. seidenfadenii Rchb.f.
- D. senile Parish & Rchb.f.
- D. signatum Rchb.f.
- D. stuposum Lindl.
- D. sulcatum Lindl.
- D. superbiens Rchb.f.
- D. sutepense Rolfe ex Downie
- D. terminale Parish & Rchb.f
- D. thyrsiflorum Rchb.f
- D. tortile Lindl.
- D. trigonopus Rchb.f.
- D. trinervium Ridl.
- D. unicum Seidenf.
- D. uniflorum Griff.
- D. venustum Teijsm. & Binn
- D. villosulum Lindl.
- D. virgineum Rchb.f.
- D. wardianum Warner
- D. wattii (Hook.f.) Rchb.f.
- D. ypsilon Seidenf.

เอื้องใบไผ่ Ueang bai phai (Chiang Mai) เอื้องแซะ Ueang sae (Mae Hong Son) เอื้องแปรงสีฟัน Ueang preang si fan (Bangkok) เอื้องเกี้ยะ Ueang kia (Chiang Mai) เอื้องซะนี Ueang chani (Bangkok) เอื้องเค้ากิ่ว Ueang khao kio (Chiang Mai) เอื้องสาย Ueang sai (Chiang Mai) เอื้องจำปาน่าน Ueang champa nan (Bangkok) หวายคิง Wai khing (Bangkok) เอื้องมะลิ Ueang mali (Chiang Mai) เอื้องแผงโสภา Ueang phaeng sopha (Peninsular) เอื้องมอนไข่ใบมน Ueang mon khai bai mon (Northern) เอื้องไม้ตึง Ueang mai tueng (Mae Hong Son) เอื้องคำเหลี่ยม Ueang kham liam (Chiang Mai) เทียนลิง Thian ling (Chumphon) เอื้องครั้งแสด Ueang krang saet (General) เอื้องทอง Ueang thong (Pattani) ข้าวเหนียวลิง Khao niao ling (Central) กล้วยหญ้านา Kluai ya na (Bangkok) เอื้องเงินวิลาศ Ueang ngoen wilat (Northern) เอื้องมณีใตรรงค์ Ueang mani trai rong (Northern)

เอื้องแซะ Ueang sae (Northern)

เอื้องแบนปากตัด Ueang baen pak tat (General)

D. formosum Roxb. ex Lindl. is known in Thai as "Ueang ngoen luang" (เอื้องเงิน หลวง). It is a rare orchid with thin or fleshy stems. It produces large flowers of white sepals and petals, white lip with yellow blotch and sepals in the size 10 cm. This species is distributed throughout Thailand. The flowering period is in October to December (Smitinand, 2001; Vaddhanaphuti, 2005).

Even though *D. formosum* Roxb. ex Lindl. has been reported of antitumor activity from ethanol extract (IC₅₀ = 350 µg/mL) (Prasad and Koch, 2014) but this plant has not been phytochemically studied. In a preliminary study, evaluations for α glucosidase and lipase inhibitory activities were conducted on a methanol crude extract of *D. formosum*. This extract at 100 µg/mL exhibited 95.64% α -glucosidase and 98.97% lipase inhibitory activities. This study attempts to investigate the chemical compositions and α -glucosidase and lipase inhibitory activities of *D. formosum*, which might be useful for the development anti-diabetic and anti-obesity drugs.

The major objectives of this study are as follows.

- 1. To isolate and purify the chemical constituents from *Dendrobium formosum*.
- 2. To characterize the chemical structures of the isolated compounds.
- 3. To investigate the α -glucosidase and lipase enzyme inhibitory activities of the isolated compounds.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 1 Dendrobium formosum Roxb. ex Lindl.

CHAPTER II HISTORICAL

1. Chemical constituents of Dendrobium

Plants of the genus *Dendrobium* have been reported on chemical constituents of various classes, for example, bibenzyls and derivatives, flavonoids, terpenoids and miscellaneous compounds (**Figures 2-5**).

Bibenzyls and derivatives, as shown in **Table 1**, are member of stilbenes. Stilbenoids derive from cinnamic acid (via the shikimic pathway) and three acetate units from malonyl coenzyme A (Gorham, 1989). The first part of the pathway is common to stilbenoids and flavonoids. They diverge at the point of a styryl-3,5,7triketoheptanoic acid : an aldol condensation gives a stilbene 2-carboxylic acid generally unstable and intermediate to several structures such as stilbenoids (bibenzyls, bis-bibenzyls, stilbenes, phenanthrenes, 9,10-dihydrophenanthrenes); an acylation produces a chalcone, which is subsequently modified to give flavonoids (Orsini and Verotta, 1999) as shown in **Table 2**.

Terpenoids, as shown in **Table 3**, can occur via two pathways, the mevalonate pathway and mevalonate-independent pathway, through deoxyxylulose phosphate. They are derived from C5 isoprene units. Characteristic structures have carbon skeletons represented by (C5)n, which are called hemiterpenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30) and tetraterpenes (C40) (Dewick, 2002).

Miscellaneous compounds including aliphatic compounds, benzoic acid derivatives, phenylpropanoids, fluorenones, coumarins, lignans and neolignans, which are several minor compounds are grouped together in **Table 4**.

Compounds	Plant	Plant part	Reference
Dendrocandin A [1]	D. candidum	Stem	Li <i>et al.,</i> 2008
Dendrocandin B [2]	D. candidum	Stem	Li <i>et al.,</i> 2008
	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
Dendrocandin C [3]	D. candidum	Stem	Li <i>et al.,</i> 2009a
Dendrocandin D [4]	D. candidum	Stem	Li <i>et al.,</i> 2009a
Dendrocandin E [5]	D. candidum	Stem	Li <i>et al.,</i> 2009a
Dendrocandin F [6]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrocandin G [7]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrocandin H [8]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrosinen A [9]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen B [10]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen C [11]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen D [12]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Aloifol I [13]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Amoenylin [14]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
Batatasin [15]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. plicatile	Stem	Yamaki and Honda, 1996

 Table 1 Distribution of bibenzyls and derivatives in the genus Dendrobium

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Batatasin III [16]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
		Stem	Yang <i>et al.</i> , 2015
	D. cariniferum	Stem	Chen <i>et al.,</i> 2008
	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
	D. draconis	Stem	Sritularak <i>et al.,</i>
			2011a
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Stem	Ito <i>et al.</i> , 2010
	D. venustum	Whole plant	Sukphan <i>et al.,</i>
	-//b&A		2014
Brittonin A [17]	D. secundum	Stem	Sritularak <i>et al.,</i>
			2011b
Chrysotobibenzyl [18]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum	3	
	D. capillipes	Stem	Phechrmeekha <i>et</i>
	จุหาลงกรณ์มหาวิ	ทยาลัย	al., 2012
C	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006b
	D. chryseum	Stem	Ma <i>et al.</i> , 1998
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
	D. pulchellum	Stem	Chanvorachote <i>et</i>
			al., 2013

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Chrysotoxine [19]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
	var. denneanum		
	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006b
	D. chryseum	Stem	Ma et al., 1998
	D. nobile	Stem	Zhang <i>et al</i> ., 2007a
	D. pulchellum	Stem	Chanvorachote <i>et</i>
			al., 2013
Crepidatin [20]	D. aurantiacum	Whole plant	Liu <i>et al.</i> , 2009a
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha <i>et</i>
			al., 2012
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. crepidatum	Whole plant	Majumder and
	จุหาลงกรณ์มหา	วิทยาลัย	Chatterjee, 1989
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
	D. pulchellum	Stem	Chanvorachote <i>et</i>
			al., 2013
Cumulatin [21]	D. cumulatum	Whole plant	Majumder and Pal,
			1993
Dendrobin A [22]	D. nobile	Stem	Wang <i>et al.</i> , 1985;
			Ye and Zhao, 2002a

Table 1 (continued)

Compounds	Plant	Plant part	Reference
3,3 [′] -Dihydroxy-4,5- dimethoxybibenzyl [23]	D. williamsonii	Whole plant	Rungwichaniwat <i>et</i> <i>al.,</i> 2014
3,4 ' -Dihydroxy-5- methoxybibenzyl [24]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
3,4 [′] -Dihydroxy-5,5 [′] - dimethoxydihydro stilbene [25]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
4,5-Dihydroxy-3,3'- dimethoxybibenzyl [26]	D. nobile	Stem	Ye and Zhao, 2002a
Erianin [27]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Gigantol [28]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
	D. aurantiacum var. denneanum	Whole plant	Liu <i>et al.,</i> 2009a
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et al.,</i> 2015
	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
	D. devonianum	Whole plant	Sun <i>et al.</i> , 2014
	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Gigantol [28]	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
	D. venustum	Whole plant	Sukphan <i>et al.,</i>
			2014
4-Hydroxy-3,5,3'-	D. nobile	Stem	Ye and Zhao,
trimethoxybibenzyl			2002a
[29]			
5-Hydroxy-3,4,3',4',5'-	D. secundum	Stem	Phechrmeekha
pentamethoxybibenzyl	A. 127 2012	2	et al., 2012
[30]			
Isoamoenylin [31]	D. amoenum	Whole plant	Majumder <i>et a</i> l.,
Ci	IULALONGKORN UN	IIVERSITY	1999
Moscatilin [32]	D. amoenum	Whole plant	Majumder <i>et a</i> l.,
			1999
	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006b

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Moscatilin [32]	D. densiflorum	Stem	Fan <i>et al</i> ., 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Whole plant	Chen <i>et al.,</i> 1994;
			Ito <i>et al.,</i> 2010
	D. longicornu	Stem	Hu <i>et al</i> ., 2008a
	D. moscatum	Whole plant	Majumder and Sen, 1987
	D. nobile	Stem	Miyazawa <i>et al.,</i> 1999;
		N.	Yang <i>et al.</i> , 2007
<i>র্ম</i>	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
CHU	D. pulchellum	Stem	Chanvorachote <i>et</i> al., 2013
	D. secundum	Stem	Sritularak <i>et al</i> ., 2011b
3,3 ' ,4-Trihydroxy bibenzyl [33]	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
3,3 ' ,5-Trihydroxy bibenzyl [34]	D. cariniferum	Whole plant	Liu <i>et al.</i> , 2009b

Table 1 (continued)

Compounds	Plant	Plant part	Reference
3,5,4 [′] -Trihydroxy	D. gratiosissimum	Stem	Zhang <i>et al.</i> ,
bibenzyl [35]			2008a
4,5,4'-Trihydroxy-3,3'-	D. secundum	Stem	Sritularak <i>et al.,</i>
dimethoxy bibenzyl [36]			2011b
	D. ellipsophyllum	Whole plant	Tanagornmeatar
	S. 112.		et al., 2014
Tristin [37]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. gratiosissimum	Stem	Zhang <i>et al.,</i>
		~	2008a
	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Dendromoniliside E [38]	D. nobile	Stem	Miyazawa et al.,
			1999
Dendrophenol [39]	D. candidum	Stem	Li <i>et al.,</i> 2008
3,4-Dihydroxy-5,4 ' -	D. candidum	Stem	Li <i>et al.,</i> 2008
dimethoxybibenzyl [40]	D. signatum	Whole plant	Mittraphab <i>et al.,</i>
			2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
			2010

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,4 ' -Dihydroxy-3,5-	D. candidum	Stem	Li <i>et al.</i> , 2008;
dimethoxybibenzyl [41]	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014
Loddigesiinol C [42]	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
3-O-Methylgigantol [43]	D. candidum	Stem	Li <i>et al.,</i> 2008
	D. plicatile	Stem	Yamaki and Honda, 1996
Dendrocandin I [44]	D. candidum	Stem	Li <i>et al.</i> , 2009b
	D. signatum	Whole plant	Mittraphab <i>et al.</i> ,
	A RECEIVE		2016
Densiflorol A [45]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Longicornuol A [46]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Trigonopol A [47]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Trigonopol B [48]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Crepidatuol A [49]	D. crepidatum	Stem	Li <i>et al.,</i> 2013
Crepidatuol B [50]	D. crepidatum	Stem	Li <i>et al.,</i> 2013
Loddigesiinol D [51]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Dencryol A [52]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Dencryol B [53]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Dengraol A [54]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Dengraol B [55]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4-[2-(3-Hydroxyphenol)-1-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
methoxyethyl]-2,6-			
dimethoxy phenol [56]			
Nobilin A [57]	D. nobile	Stem	Zhang <i>et al.,</i> 2006b
Nobilin B [58]	D. nobile	Stem	Zhang <i>et al.,</i> 2006b
Nobilin C [59]	D. nobile	Stem	Zhang <i>et al.,</i> 2006b
Nobilin D [60]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Nobilin E [61]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendrofalconerol A [62]	D. falconeri	Stem	Sritularak and
			Likhitwitayawuid, 2009
9	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Dendrofalconerol B [63]	D. falconeri	Stem	Sritularak and
GHU	ALONGKORN U	INIVERSITY	Likhitwitayawuid, 2009
Dendrosignatol [64]	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
2,2'-Dihydroxy-	D. nobile	Stem	Yang <i>et al.,</i> 2007
3,3',4,4',7,7-			
hexamethoxy-9,9',10,10'-			
tetrahydro-1,1'-			
biphenanthrene [65]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,2'-Dimethoxy-4,4',7,7'-	D. plicatile	Stem	Yamaki and
tetrahydroxy-9',10,10'-			Honda, 1996
tetrahydro-1,1'-			
biphenanthrene [66]			
Flavanthrin [67]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
Phoyunnanin C [68]	D. venustum	Whole plant	Sukphan <i>et al.,</i>
			2014
Phoyunnanin E [69]	D. venustum	Whole plant	Sukphan <i>et al.,</i>
			2014
(S)-3,4, $lpha$ -trihydroxy-5,4 $^{\prime}$	D. candidum	Stem	Li et al., 2015
dimethoxybibenzyl [70]	Allower		
Amoenumin [71]	D. amoenum	Whole plant	Veerraju <i>et al.,</i>
<u>ৰ</u> ম	าลงกรณ์มหาวิทย	าลัย	1989
Crystalltone [72]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Chrysotoxol A [73]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Chrysotoxol B [74]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Confusarin [75]	D. chryseum	Stem	Ma et al., 1998
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. nobile	Stem	Zhang et al.,
			2008b

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,6-Dihydroxy-1,5,7- trimethoxyphenanthrene [76]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Dendrochrysanene [77]	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
Bulbophyllanthrin [78]	D. nobile	Stem	Yang <i>et al.</i> , 2007
Denthyrsinin [79]	D. thyrsiforum	Stem	Zhang <i>et al.</i> , 2005
5-Hydroxy-2,4-dimethoxy	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
phenanthrene [80]			
3-Hydroxy-2,4,7- trimethoxyphenanthrene [81]	D. nobile	Stem	Yang <i>et al.,</i> 2007
Cypripedin [82]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Densiflorol B [83]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
จุพา Chula	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Denbinobin [84]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
	D. nobile	Stem	Yang <i>et al.,</i> 2007
Fimbriatone [85]	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
	D. pulchellum	Stem	Chanvorachote <i>et al.</i> , 2013
Loddigesiinol B [86]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Dendronone [87]	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Ephemeranthoquinone [88]	D. plicatile	Stem	Yamaki and Honda, 1996
5-Methoxy-7-hydroxy- 9,10-dihydro-1,4- phenanthrenequinone [89]	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
Moniliformin [90]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
Moscatin [91]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
จม	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
Сни	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
Coelonin [92]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
	D. nobile	Stem	Yang <i>et al.,</i> 2007
9,10-Dihydromoscatin [93]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
9,10-Dihydrophenan threne-2,4,7-triol [94]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,5-Dihydroxy-2,3-	D. ellipsophyllum	Whole plant	Tanagornmeatar
dimethoxy-9,10-			et al., 2014
dihydrophenanthrene	D. sinense	Whole plant	Chen <i>et al.,</i> 2013
[95]			
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	Hu <i>et al.</i> , 2012
dimethoxy-9,10-	. 544.4		
dihydrophenanthrene			
[96]			
4,5-Dihydroxy-3,7-	D. nobile	Stem	Ye and Zhao, 2002a
dimethoxy-9,10-			
dihydrophenanthrene			
[97]	A Constanting of the second		
4,5-Dihydroxy-2-	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
methoxy-9,10-			
dihydrophenanthrene	หาลงกรณ์มหาวิทย	าลัย	
[98]	JLALONGKORN UNIV	ERSITY	
Lusianthridin [99]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. plicatile	Stem	Yamaki and Honda,
			1996
	D. venustum	Whole plant	Sukphan <i>et al.,</i>
			2014

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,7-Dihydroxy-3,4,6-	D. densiflorum	Stem	Yang <i>et al.</i> , 2007
trimethoxy-9,10-			
dihydrophenanthrene [100]			
2,8-Dihydroxy-3,4,7- trimethoxy-9,10-	D. nobile	Stem	Fan <i>et al.,</i> 2001
dihydrophenanthrene [101]			
4,7-Dihydroxy-2,3,6-	D. rotundatum	Whole plant	Majumder and Pal,
trimethoxy-9,10-			1992
dihydrophenanthrene [102]			
Ephemeranthol A [103]	D. nobile	Stem	Yang <i>et al.,</i> 2007;
			Hwang <i>et al.,</i> 2010
Ephemeranthol C [104]	D. nobile	Stem	Yang <i>et al.,</i> 2007;
9 W 18	งกรณ์มหาวิทย	าลัย	Hwang et al., 2010
Erianthridin [105]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
	D. plicatile	Stem	Yamaki and Honda, 1996
Flavanthridin [106]	D. nobile	Stem	Hwang <i>et al.</i> , 2010
Hircinol [107]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007
trimethoxy-9,10-			
dihydrophenanthrene [108]			

Table 1 (continued)

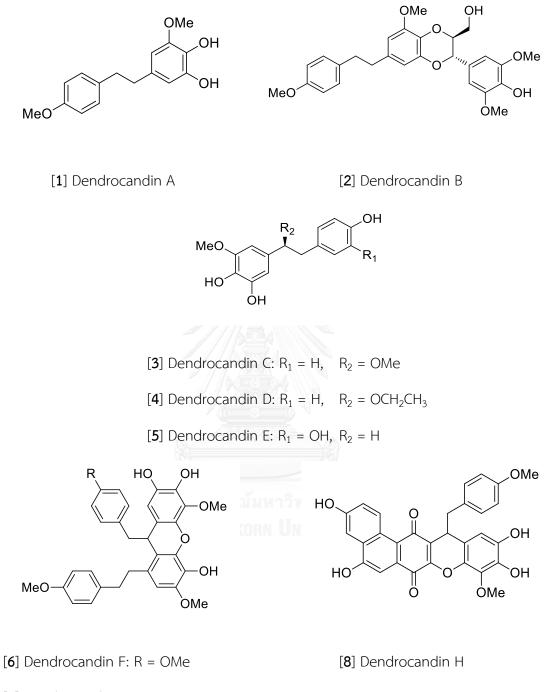
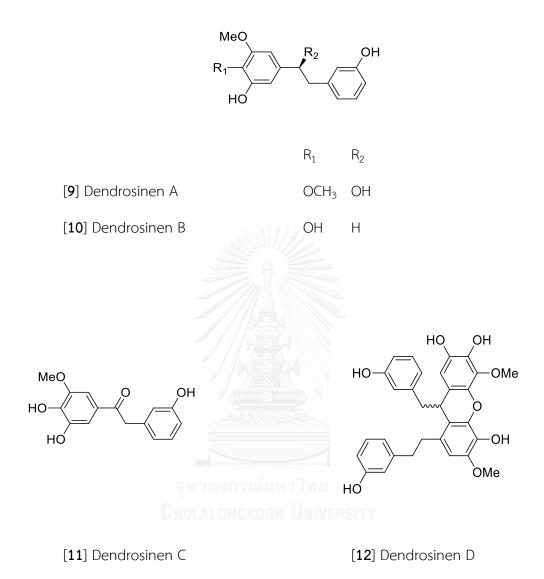
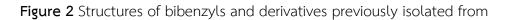

Compounds	Plant	Plant	Reference
		part	
2-Hydroxy-4,7-dimethoxy-9,10-	D. nobile	Stem	Yang <i>et al.</i> , 2007
dihydrophenanthrene [109]			
7-Methoxy-9,10-	D. draconis	Stem	Sritularak <i>et al.</i> ,
dihydrophenanthrene-			2011a
2,4,5-triol [110]	s and at a		
2,5,7-Trimethoxy-4-	D. longicornu	Stem	Hu <i>et al.,</i> 2008
methoxy-9,10-			
dihydrophenanthrene [111]			
Plicatol C [112]	D. plicatile	Stem	Honda and
			Yamaki, 2000
Rotundatin [113]	D. rotundatum	Whole	Majumder and Pal,
		plant	1992
2,5-Dihydroxy-3,4	D. nobile	Stem	Yang <i>et al.</i> , 2007
dimethoxyphenanthrene [114]	IGKORN UNIVERS	ITY	
2,5-Dihydroxy-4,9-	D. nobile	Stem	Zhang <i>et al.,</i>
dimethoxyphenanthrene [115]			2008b
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007
trimethoxyphenanthrene [116]			
Epheranthol B [117]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. plicatile	Stem	Yamaki and
			Honda, 1996

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Fimbriol B [118]	D. nobile	Stem	Yang <i>et al.,</i> 2007;
			Hwang <i>et al.,</i> 2010
Flavanthrinin [119]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
	D. venustum	Whole plant	Sukphan <i>et al.,</i>
	· · · · · · · · · · · · · · · · · · ·		2014
Loddigesiinol A [120]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Nudol [121]	D. nobile	Stem	Yang <i>et al.</i> , 2007
-	D. rotundatum	Whole plant	Majumder and Pal,
1			1992
Plicatol A [122]	D. nobile	Stem	Yang <i>et al.,</i> 2007
Q.	D. plicatile	Stem	Honda and Yamaki,
2			2000
Plicatol B [123]	D. plicatile	Stem	Honda and Yamaki,
CHUL	longkorn Univ	ERSITY	2000
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	Yang <i>et al.,</i> 2007
dimethoxyphenanthrene			
[124]			
3,4,8-Trimethoxy	D. nobile	Stem	Hwang <i>et al.,</i> 2010
phenanthrene-2,5-diol			
[125]			
Aphyllone [126]	D. nobile	Stem	Hwang <i>et al.,</i> 2010

Table 1 (continued)


Compounds	Plant	Plant part	Reference
(S)-2,4,5,9-tetrahydroxy-9,10-	D. fimbriatum	Stem	Xu <i>et al.,</i> 2014
dihydrophenanthrene [127]			
1,5,7-trimethoxyphenanthren-	D. nobile	Stem	Kim <i>et al.</i> , 2015
2-ol [128]			
9,10-dihydrophenanthrene,1,5-	D. moniliforme	Whole plant	Zhao <i>et al.</i> , 2016
dihydroxy-3,4,7-trimethoxy-			
9,10-dihydrophenanthrene	SULLIN .		
[129]			
2,4,5,95-tetrahydroxy-9,10-	D. primulinum	Whole plant	Ye <i>et al.,</i> 2016
dihydrophenanthrene			
4-O-β-D-glucopyranoside [130]			
Loddigesiinol G [131]	D. loddigesii	Stem	Lu <i>et al.</i> , 2014
Loddigesiinol H [132]	D. loddigesii	Stem	Lu <i>et al.</i> , 2014
Loddigesiinol I [133]	D. loddigesii	Stem	Lu <i>et al.</i> , 2014
Loddigesiinol J [134] CHULALO	D. loddigesii	Stem	Lu <i>et al.,</i> 2014



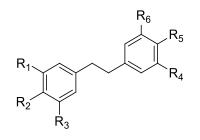
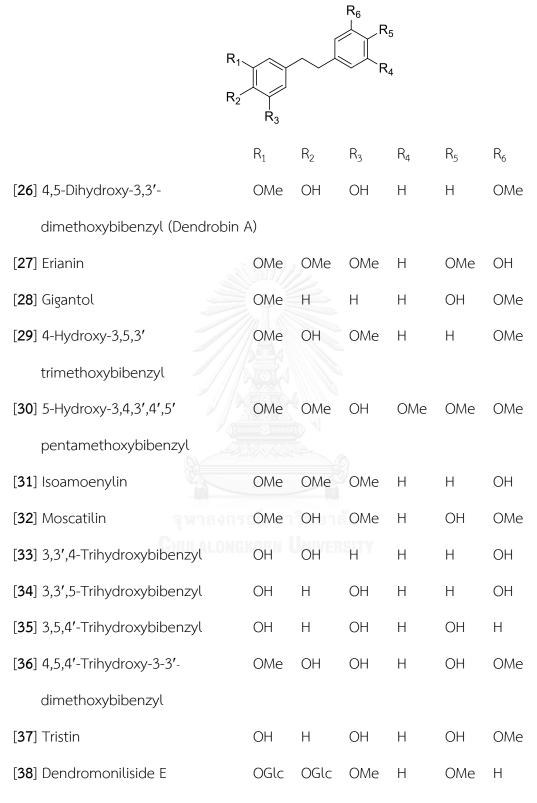
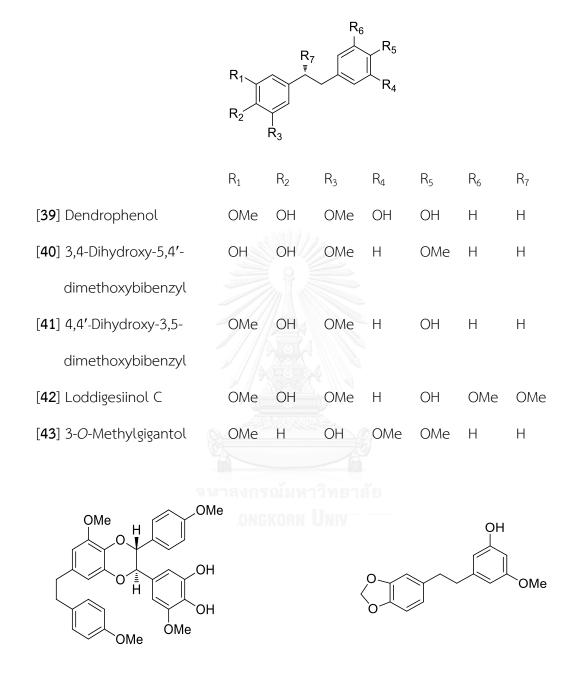

[7] Dendrocandin G: R= OH

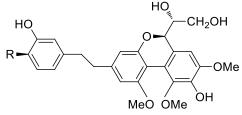
Figure 2 Structures of bibenzyls and derivatives previously isolated from

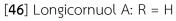
Dendrobium species

	R_1	R_2	R_3	R_4	R_5	R_6
[13] Aloifol I	OMe	OH	OMe	OH	Н	Н
[14] Amoenylin	OMe	OH	OMe	Н	OMe	Н
[15] Batatasin	OMe	н	Н	OH	Н	OH
[16] Batatasin III	ОН	Н	OMe	Н	Н	OH
[17] Brittonin A	ОМе	OMe	OMe	OMe	OMe	OMe
[18] Chrysotobibenzyl	OMe	OMe	OMe	OMe	OMe	Н
[19] Chrysotoxine	OMe	ОН	OMe	OMe	OMe	Н
[20] Crepidatin	OMe	OMe	OMe	OMe	ОН	Н
[21] Cumulatin	OMe	OMe	ОН	ОН	OMe	OMe
[22] Dendrobin A	OH	ОН	OMe	Н	Н	OMe
[23] 3,3'-Dihydroxy-4,5-	OMe	OMe	ОН	Н	Н	OH
dimethoxybibenzyl						
[24] 3,4'-Dihydroxy-5-	OH	Н	OMe	Н	ОН	Н
methoxybibenzyl						
[25] 3,4'-Dihydroxy-5,5'-	OH	Н	OMe	OMe	ОН	Н
dimethoxydihydrostilbene						

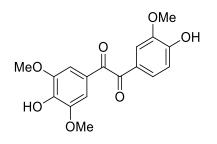
Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

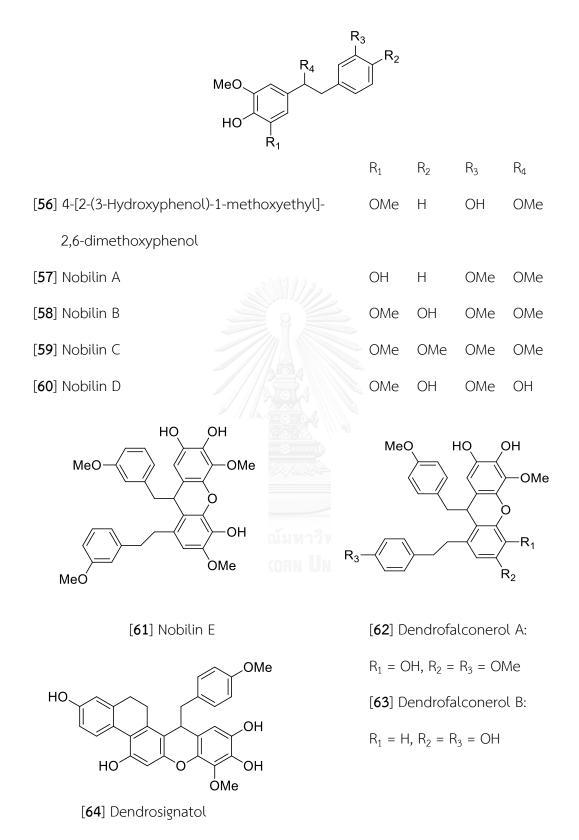

Figure 2 Structures of bibenzyls and derivatives previously isolated from



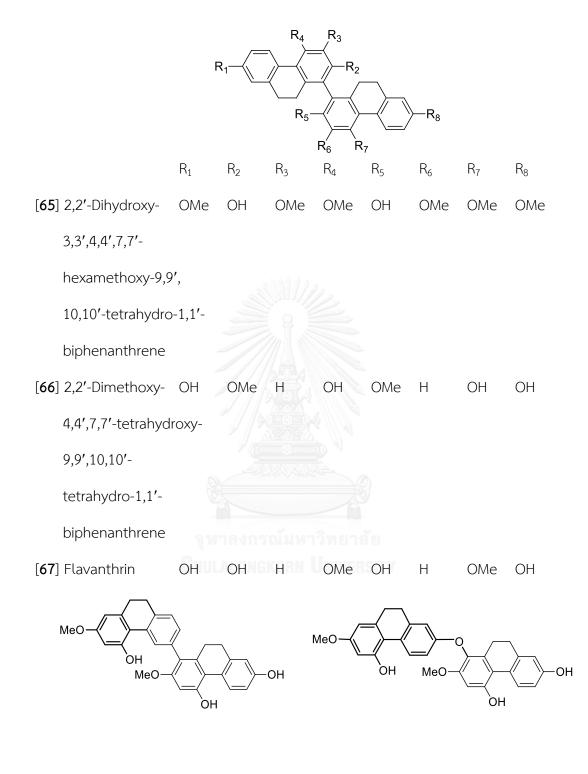
[45] Densiflorol A

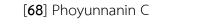

Figure 2 Structures of bibenzyls and derivatives previously isolated from

[47] Trigonopol A: R = OMe

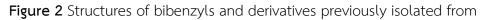


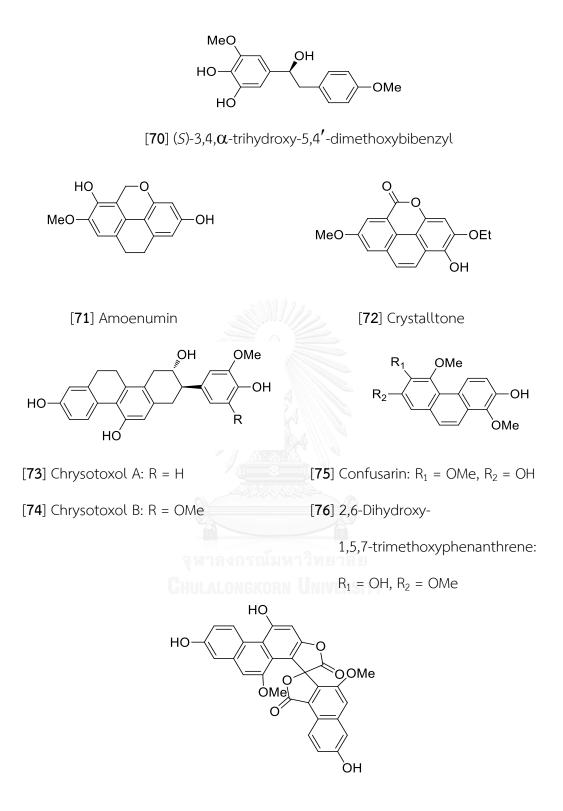
[**51**] Loddigesiinol D

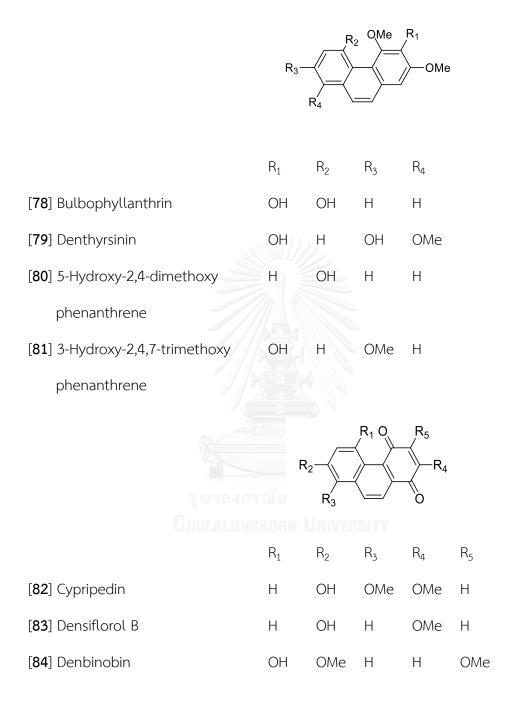


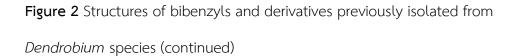

[**50**] Crepidatuol B

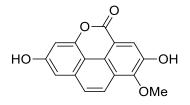
previously isolated from *Dendrobium* species

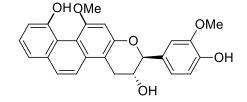


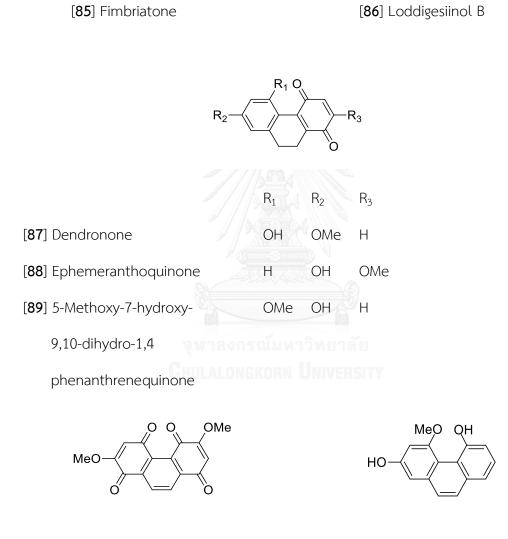

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

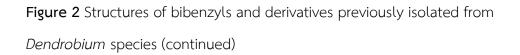

[69] Phoyunnanin E

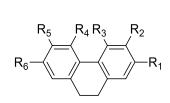




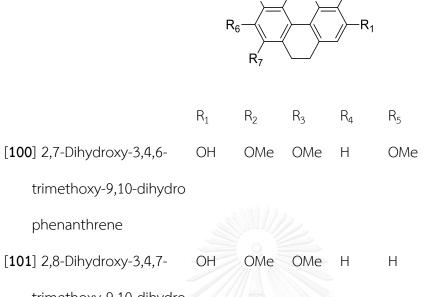

[77] Dendrochrysanene


Figure 2 Structures of bibenzyls and derivatives previously isolated from





[**90**] Moniliformin



	R_1	R_2	R_3	R_4	R_5	R_6
[92] Coelonin	OH	Н	OMe	Н	Н	OH
[93] 9,10-Dihydromoscatin	Н	Н	OH	OMe	Н	OH
[94] 9,10-Dihydrophenan	OH	Н	OH	Н	Н	OH
threne-2,4,7-triol						
[95] 4,5-Dihydroxy-2,3-	OMe	OMe	ОН	OH	Н	Н
dimethoxy-9,10-dihydro						
phenanthrene						
[96] 4,5-Dihydroxy-2,6-	OMe	Н	OH	OH	OMe	Н
dimethoxy-9,10-dihydro						
phenanthrene						
[97] 4,5-Dihydroxy-3,7-	H	OMe	ОН	OH	Н	OMe
dimethoxy-9,10-dihydro						
phenanthrene						
[98] 4,5-Dihydroxy-2-	OMe	Н	OH	OH	Н	Н
methoxy-9,10-dihydro						
phenanthrene						
[99] Lusianthridin	OMe	Н	OH	Н	Н	ОН

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

 $R_4 R_3$

 R_2

 R_6

OH

 R_7

Н

 R_5

pl	henanthrene							
[101]]	2,8-Dihydroxy-3,4,7-	OH	OMe	OMe	Н	Н	OMe	ОН
tr	imethoxy-9,10-dihydro							
pl	henanthrene							
[102]	4,7-Dihydroxy-2,3,6-	OMe	OMe	ОН	Н	OMe	OH	Н
1	trimethoxy-9,10-dihydro	0						
	phenanthrene							
[103]	Ephemeranthol A	OH	ณ์มหา H KORN I	วิทยาล H ไมเทศ	ОН	OMe	OMe	Н
[104]	Ephemeranthol C	OH	OH	OMe	OH	Н	Н	Н
[105]	Erianthridin	OH	OMe	OMe	Н	Н	OH	Н
[106]	Flavanthridin	OH	Н	Н	OMe	OH	OMe	Н
[107]	Hircinol	OH	Н	OMe	OH	Н	Н	Н
[108]	3-Hydroxy-2,4,7-	OMe	OH	OMe	Н	Н	OMe	Н

trimethoxy-9,10-dihydro

phenanthrene

Figure 2A Structures of bibenzyls and derivatives previously isolated from

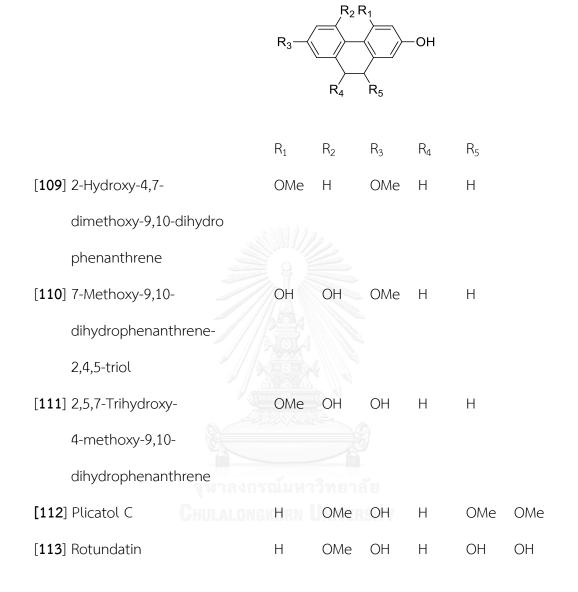
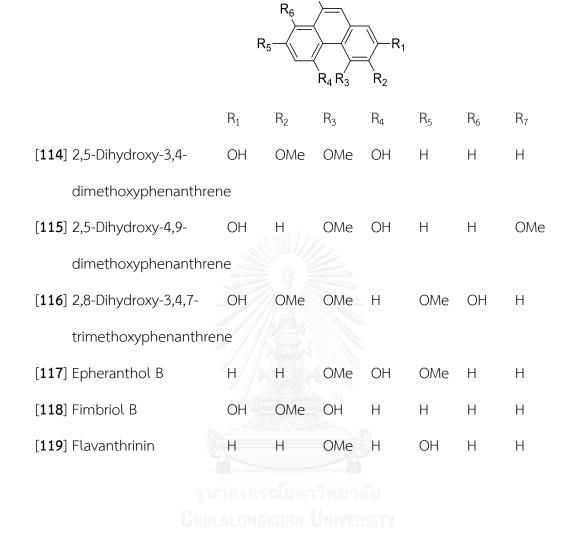
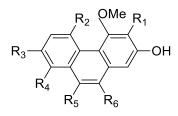
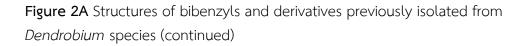




Figure 2 Structures of bibenzyls and derivatives previously isolated from



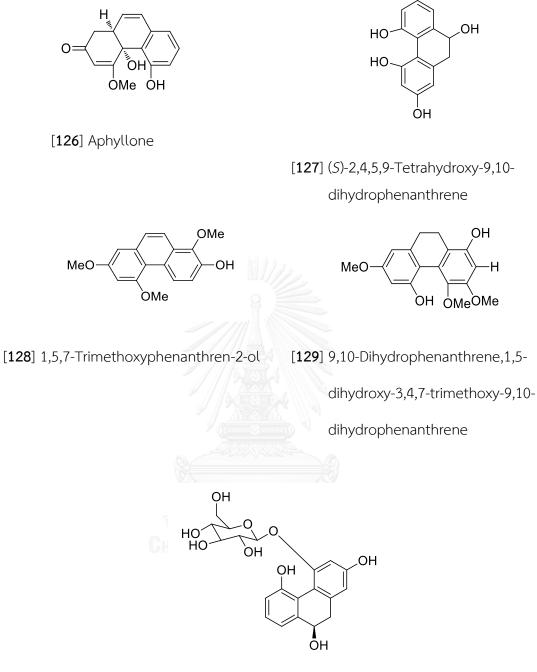
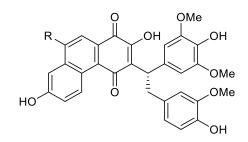

 R_7

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

	R_1	R_2	R_3	R_4	R_5	R_6
[120] Loddigesiinol A	Н	OMe	Н	Н	ОН	Н
[121] Nudol	OMe	Н	ОН	Н	Н	Н
[122] Plicatol A	H	ОН	Н	Н	OMe	OMe
[123] Plicatol B	Н	ОН	Н	Н	Н	Н
[124] 2,3,5-Trihydroxy-	ОН	ОН	Н	Н	OMe	Н
4,9-dimethoxyphenanthrene						
[125] 3,4,8-Trimethoxy	OMe	ОН	н	OMe	Н	Н
phenanthrene-2,5-diol						



[130] 2,4,5,9S-Tetrahydroxy-9,10-dihydrophenanthrene

 $4-O-\beta-D$ -glucopyranoside

Figure 2 Structures of bibenzyls and derivatives previously isolated from

[**131**] Loddigesiinol G: R = H

[**132**] Loddigesiinol H: R = OH

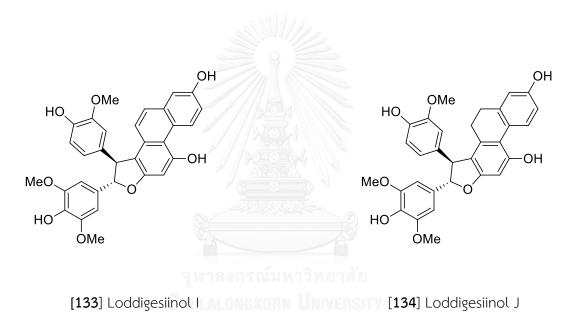
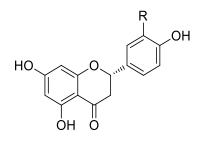
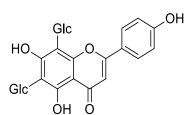


Figure 2 Structures of bibenzyls and derivatives previously isolated from

Table 2 Distribution	of flavonoids in the	genus Dendrobium
----------------------	----------------------	------------------


Compounds	Plant	Plant part	Reference
(25)-Homoeriodictyol [135]	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.</i> , 2014
Naringenin [136]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
(2 <i>S</i>)-Eriodictyol [137]	D. trigonopus	Stem	Hu <i>et al.</i> , 2008b
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014
0	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Vicenin-2 [138]	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
ູ່ພາ	var. denneanum	ลัย	
Apigenin [139]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
	D. williamsonii	Whole plant	Rungwichaniwat
			et al., 2014
5,6-Dihydroxy-4 ' -	D. chrysotoxum	Stem	Hu <i>et al.</i> , 2012
methoxy-flavone [140]			
Chrysoeriol [141]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014


Table 2 (continued)

Compounds	Plant	Plant part	Reference
Luteolin [142]	D. aurantiacum	Whole	Liu <i>et al.,</i> 2009a
	var. denneanum	plant	
	D. ellipsophyllum	Whole	Tanagornmeatar
		plant	et al., 2014
6-C-(α-Arabinopyranosyl)-8-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
C-[(2-O-α-rhamnopyranosyl)	5 11/100		
$-\beta$ -galactopyranosyl]			
apigenin [143]			
6-C-(α -Arabinopyranosyl)-8- C-[(2-O- α -rhamnopyranosyl)	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
-β-glucopyranosyl] apigenin			
[144]			
6 ^{'''} -Glucosyl-vitexin [145]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Isoschaftoside [146]	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
Isoviolanthin [147]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
6-C-[(2-O-α-Rhamno	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
pyranosyl)-β-gluco			
pyranosyl]-8-C-(α-			
arabinopyranosyl)			
apigenin [148]			

Table 2 (continued)

Compounds	Plant	Plant part	Reference
6-C-(β-Xylopyranosyl)-8-C-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
[(2-O- $lpha$ -rhamnopyranosyl)-			
β -glucopyranosyl] apigenin			
[149]			
Kaempferol [150]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
Kaempferol-3-O-α-L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [151]			al., 2012
Kaempferol-3,7-O-di-α-L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [152]			al., 2012
Kaempferol-3-O-α-L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1 \rightarrow 2)- β -	(income Summer in the		al., 2012
D-gluco pyranoside [153]	B		
Kaempferol-3- <i>Ο</i> -α-L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1 \rightarrow 2)- β -	เกรณมหาวทยาล พละคอม ไม่มะกร	EJ	al., 2012
D-xylo pyranoside [154]	JNGKURN UNIVERS	NI T	
Quercetin-3-0-L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [155]			al., 2012
Quercetin-3-0- a -L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1′2)-β-D-			al., 2012
xylopyranoside [156]			
5-Hydroxy-3-methoxy-	D. devonianum	Stem	Sun <i>et al.,</i> 2014
flavone-7-O-[β-D-apiosyl-			
(1 → 6)]- β -D-glucoside [157]			

[138] Vicenin-2

- [135] (2S)-Homoeriodictyol: R = OMe
- [136] Naringenin: R = H
- [137] (25)-Eriodictyol; R = OH

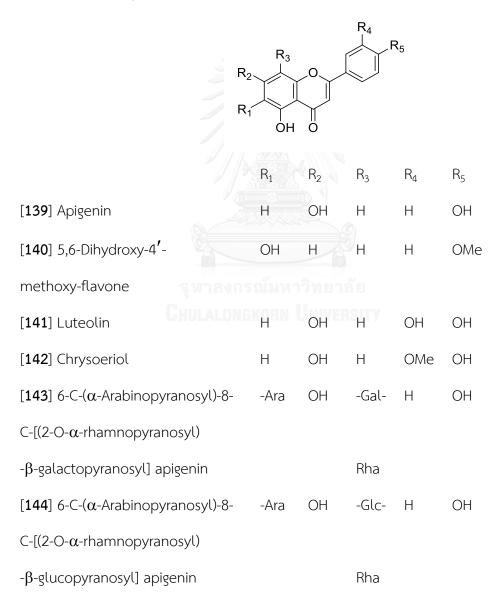
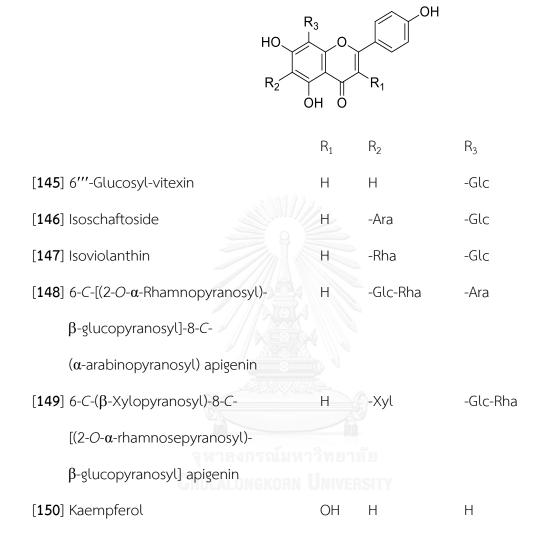
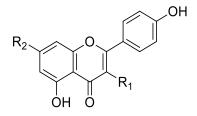
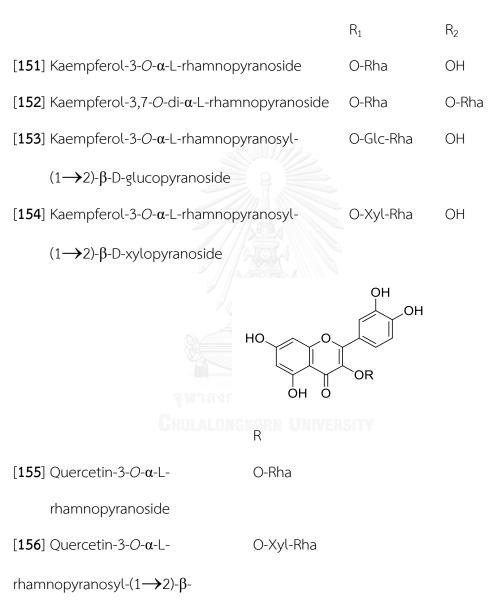
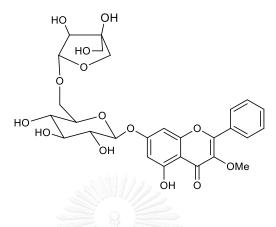





Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species


Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species (continued)

D-xylopyranoside

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species (continued)

[157] 5-Hydroxy-3-methoxy-flavone-7-O-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species (continued)

Compounds	Plant	Plant part	Reference
Aduncin [158]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Amoenin [159]	D. aduncum	Whole plant	Gawell and
			Leander, 1976
Amotin [160]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
α -Dihydropicrotoxinin [161]	D. amoenum	Whole plant	Majumder <i>et al.</i> ,
			1999
Dendrobane A [162]	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
Dendronobilin A [163]	D. nobile	Stem	Zhang et al.,
			2007a
Dendronobilin B [164]	D. wardianum	Stem	Zhang <i>et al.,</i>
	ALLAND		2007b
	D. nobile	Stem	Wang <i>et al.,</i> 2009
Dendronobilin C [165]	D. crystallium	Stem	Wang <i>et al.,</i> 2009
Dendronobilin D [166]	D. nobile	Stem	Zhang et al.,
			2007b
Dendronobilin E [167]	D. nobile	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin F [168]	D. nobile	Stem	Zhang <i>et al.</i> ,
			2007b
Dendronobilin G [169]	D. nobile	Stem	Zhang <i>et al.</i> ,
			2007b

 Table 3 Distribution of terpenoids in the genus Dendrobium

Compounds	Plant	Plant part	Reference
Dendronobilin H [170]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin I [171]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin J [172]	D. nobile	Stem	Zhang <i>et al.</i> , 2007b
Dendronobilin K [173]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Dendronobilin L [174]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin M [175]	D. nobile	Stem	Zhang <i>et al.</i> , 2008c
Dendronobilin N [176]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol A [177]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol B [178]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol C [179]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Corchoionoside C [180]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Crystallinin [181]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Findlayanin [1 82]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
3-Hydroxy-2-oxodendrobine [183]	D. findlayanum	Whole plant	Qin <i>et al.</i> , 2011

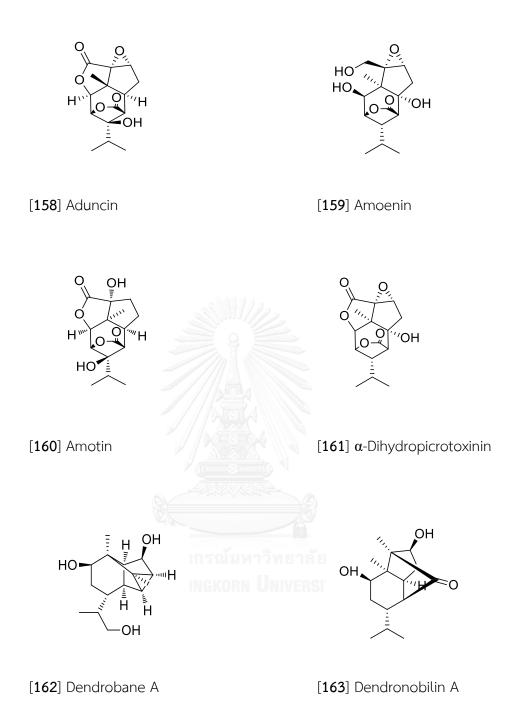
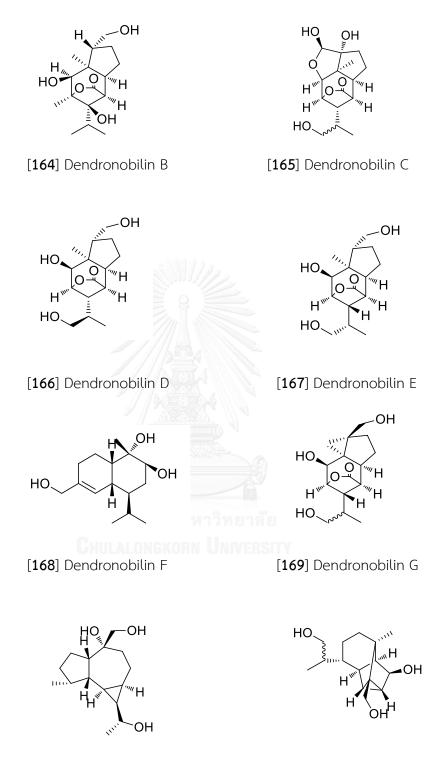
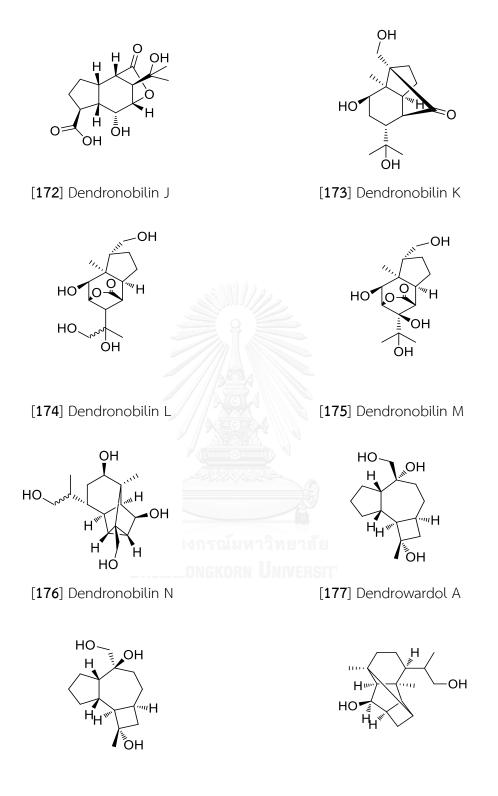
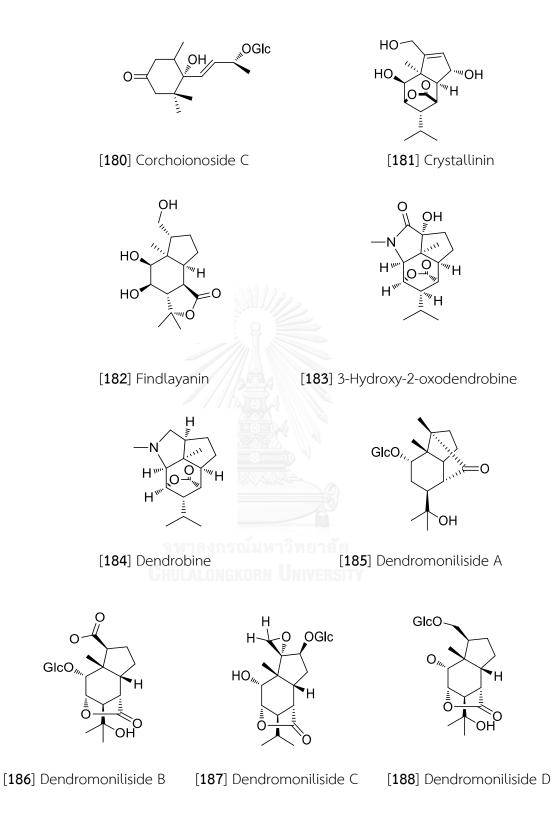

Compounds	Plant	Plant part	Reference
Dendrobine [184]	D. nobile	Stem	Wang <i>et al.</i> , 1985
Dendromoniliside A [185]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendromoniliside B [186]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
Dendromoniliside C [187]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendromoniliside D [188]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendronobiloside A [189]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendronobiloside B [190]	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendronobiloside C [191]	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
		X ³	Ye and Zhao, 2002a
Dendronobiloside D [192]	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
Сни	alongkorn Un	IVERSITY	Ye and Zhao, 2002a
Dendronobiloside E [193]	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendroside A [194]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendroside B [195]	D. nobile	Stem	Ye and Zhao, 2002a
			Zhao <i>et al.,</i> 2003

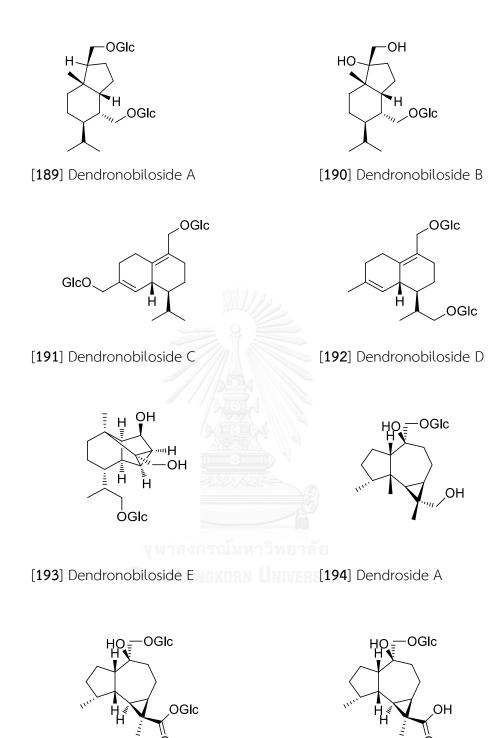
Table 3 (continued)


Compounds	Plant	Plant part	Reference
Dendroside C [196]	D. moniliforme	Stem	Zhao et al., 2003
	D. nobile	Stem	Ye and Zhao, 2002a
Dendroside D [197]	D. nobile	Stem	Ye and Zhao, 2002a
Dendroside E [198]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Dendroside F [199]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendroside G [200]	D. nobile	Stem	Ye <i>et al.,</i> 2002b

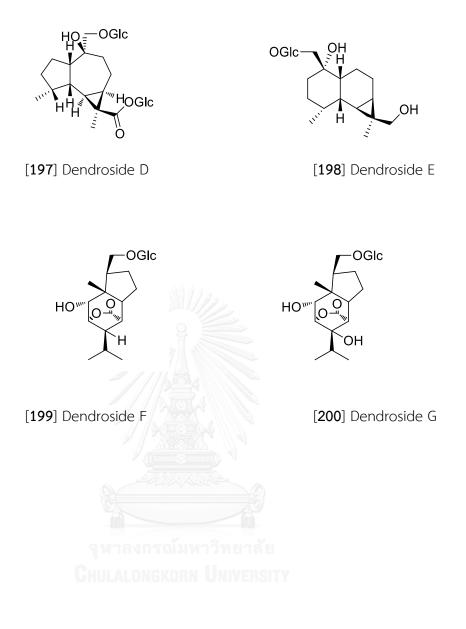
จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University







[178] Dendrowardol B


[179] Dendrowardol C

[196] Dendroside C

[195] Dendroside B

Category and	Plant	Plant part	References
Compound			
Aliphatic acid derivative	25		
Aliphalic acids [201]	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
	aurantiacum		
Aliphatic alcohols [202]	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
	aurantiacum		
Malic acid [203]	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2001
Dimethyl malate [204]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
(-)-Shikimic acid [205]	D. fuscescens	Whole plant	Tarapatra <i>et al.,</i> 1989
	D. huoshanense	Aerial part	Chang <i>et al</i> ., 2010
	D. longicornu	Stem	Hu <i>et al.,</i> 2008
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
	E.	15	2013
Isopentyl butyrate [206]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
Benzoic acid derivatives	and phenolic cor	npounds	
3-Hydroxy-2-methoxy-	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
5,6-dimethylbenzoic			
acid [207]			
Salicylic acid [208]	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
Vanilloside [209]	D. denneanum	Stem	Pan <i>et al.,</i> 2012
Gallic acid [210]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
Syringic acid [211]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009

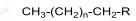
 Table 4 Distribution of miscellaneous compounds in the genus Dendrobium

Category and	Plant	Plant part	Reference
Compound			
Vanillic acid [212]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
	D. williamsonii	Whole plant	Rungwichaniwat <i>et</i> al., 2014
Antiarol [213]	D. chrysotoxum	Stem	Hu et al., 2012
Ethylhaematommate [214]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
<i>p</i> -Hydroxybenzaldehyde [215]	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
	D. falconeri	Stem	Sritularak and
			Likhitwitayawuid,
			2009
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Methyl β -orsellinate	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
[216] CHU	alongkorn Uni	VERSITY	
Protocatechuic acid [217]	D. nobile	Stem	Ye and Zhao, 2002a
Tachioside [218]	D. denneanum	Stem	Pan <i>et al.,</i> 2012
Alkyl 4 ⁴ -hydroxy- <i>trans-</i> cinnamates [219]	D. clavatum var. aurantiacum	Stem	Chang <i>et al.,</i> 2001
Alkyl <i>trans</i> -ferulates [220]	D. clavatum var. aurantiacum	Stem	Chang <i>et al.,</i> 2001

Category and	Plant	Plant part	Reference
Compound			
Defuscin [221]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
	var. denneanum		
	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
n-Octacosyl ferulate	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
[222]	var. denneanum		
	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
<i>n</i> -Triacontyl <i>p</i> -hydroxy-	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
cis-cinnamate [223]	ALL CONTRACTOR		
Tetratriacontanyl-trans-	D. williamsonii	Whole plant	Rungwichaniwat <i>et</i>
<i>p</i> -coumarate [224]		Ĩ.	al., 2014
n-Docosyl <i>trans</i> -ferulate	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
[225]			
	D. williamsonii	Whole plant	Rungwichaniwat <i>et</i>
			al., 2014
<i>trans-</i> Tetracosyl	D. tortile	Whole plant	Limpanit <i>et al.,</i>
ferulate [226]			2016
<i>cis</i> -Hexacosanoyl	D. tortile	Whole plant	Limpanit <i>et al.,</i>
ferulate [227]			2016
Ferulaldehyde [228]	D. longicornu	Whole plant	Li <i>et al.</i> , 2009d

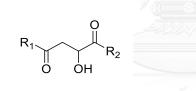
Category and	Plant	Plant part	Reference
Compound			
Ferulic acid [229]	D. secundum	Stem	Sritularak <i>et al.,</i>
			2011b
2-(p-Hydroxyphenyl)	D. falconeri	Stem	Sritularak and
ethyl <i>p</i> -coumarate			Likhitwitayawuid,
[230]			2009
Dihydroconiferyl	D. nobile	Stem	Zhang <i>et al.,</i> 2006b
dihydro- <i>p</i> -coumarate			
[231]			
1-[4-(β-D-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
Lucopyranosyloxy)-3,5- dimethoxyphenyl]-1-	var. denneanum		
propanone [232]			
Coniferyl alcohol [233]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
<i>p</i> -Hydroxyphenyl	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
propionic methyl ester	JLALONGKORN UNI	VERSITY	
[234]			
Phloretic acid [235]	D. candidum	Whole plant	Li et al., 2010
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
			al., 2014)
Dihydroconiferyl	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
alcohol [236]			
Salidrosol [237]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012

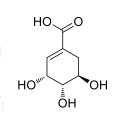
Category and	Plant	Plant part	Reference
Compound			
Shashenoside [238]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Syringin [239]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Tetracosyl(Z)-p-	D. falconeri	Whole plant	Sritularak and
coumarate [240]			Likhitwitayawuid,
			2009
Coumarins	7/100		
Ayapin [241]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Coumarin [242]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
୍	aurantiacum	ยาลัย	
Denthyrsin [243]	D. thyrsiflorum	Stem	Zhang <i>et al.</i> , 2005
Scoparone [244]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. thyrsiflorum	Stem	Zhang <i>et al.</i> , 2005
Scopoletin [245]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Lignans and neolignans			
Dehydrodiconiferyl	D. chrysanthum	Stem	Ye <i>et al.</i> , 2004
alcohol-4- 0- β-D-			
glucoside [246]			


Category and	Plant	Plant part	Reference
Compound			
Episyringaresinol [247]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
Episyringaresinol 4''-O-	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
β-D-glucopyranoside [248]			
(-)-(7 <i>S</i> ,8 <i>R</i> ,7′ <i>E</i>)-4-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
Hydroxy-3,3',5,5'- tetramethoxy-8,4'-	var. denneanum		
oxyneolign-7'-ene-7,9'-			
triol-7,9′-bis- <i>O</i> -β-D-	(1	A.	
glucopyranoside [249]			
Lyoniresinol [250]	D. chrysanthum	Stem	Ye <i>et al.</i> , 2004
(-)-Syringaresinol-4,4'-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
bis- <i>O</i> -β–D- glucopyranoside [251]	var. denneanum	liversity	
Syringaresinol-4-O-D-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
monoglucopyranoside [252]	var. denneanum		
(-)-Medioresinol [253]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
(-)-Pinoresinol [254]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Syringaresinol [255]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b

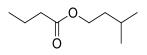
Category and Compound	Plant	Plant part	Reference
Erythro-1-(4- <i>Ο</i> -β-D-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
glucopyranosyl-			
3-methoxyphenyl)-2-[4-(3-			
hydroxypropyl)-2,6-			
dimethoxyphenoxy]-1,3-			
propanediol [256]			
Acanthoside B [257]	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004
Liriodendrin [258]	D. brymerianum	Whole plant	Chen <i>et al.</i> ,
		2 2	2014b
	D. pulchellum	Stem	Chanvorachote <i>et</i>
			al., 2013
(-)-(8 <i>R</i> ,7 [′] <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5'-tetramethoxy-8,4'-	Lange and	2	
oxyneolign-7'-ene-9,9'-diol			
4,9-bis-O-β-D-	งกรณ์มหาวิทยา	ลัย	
glucopyranoside [259]	ongkorn Unive	RSITY	
(-)-(8 <i>5</i> ,7 ' <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5'-tetramethoxy-			
8,4'-oxyneolign-7'-ene-			
9,9 ' -diol 4,9-bis-O-β-D-			
glucopyranoside			
[260]			

Category and Compound	Plant	Plant part	Reference
(-)-(8 <i>R</i> ,7 ' <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5',9'-pentamethoxy-			
8,4'-oxyneolign-7'-ene-9-ol			
4,9-bis-O-β-D-			
glucopyranoside [261]			
Fluorenones	. रेजेने जे र		
Denchrysan A [262]	D. chrysotoxum	Whole	Li <i>et al.,</i> 2009c
		plant	
Denchrysan B [263]	D. brymerianum	Whole	Klongkumnuankarn
	A GA	plant	et al., 2015
J	D. chrysotoxum	Whole	Chen <i>et al.,</i> 2008a
		plant	
Dendroflorin [264]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
จุพาะ	var. denneanum	ลัย	
CHULAI	D. brymerianum	Whole	Klongkumnuankarn
		plant	et al., 2015
Dengibsin [265]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. chrysotoxum	Whole	Li <i>et al.,</i> 2009c
		plant	


Category and	Plant	Plant part	Reference
Compound			
Nobilone [266]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015)
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
1,4,5-Trihydroxy-7-	D. chrysotoxum	Whole plant	Chen <i>et al.,</i> 2008a
methoxy-9H-fluoren-9-			
one [267]			
2,4,7-Trihydroxy-5-	D. chrysotoxum	Stem	Yang <i>et al.,</i> 2004
methoxy-9-fluorenone			
[268]			
2,4,7-Trihydroxy-1,5-	D. chrysotoxum	Stem	Yang <i>et al.,</i> 2004
dimethoxy-9-	Alteres Suma	A.	
fluorenone [269]			
Others			
3,6,9-Trihydroxy-3,4-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
dihydroanthracen-1-	JLALONGKORN UI	IIVERSITY	
(2 <i>H</i>)-one [270]			
Palmarumycin JC2	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
[271]			
Dehydrovomifoliol	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
[272]			
2,6-Dimethoxy	D. chryseum	Stem	Ma et al., 1998
Benzoquinone [273]			

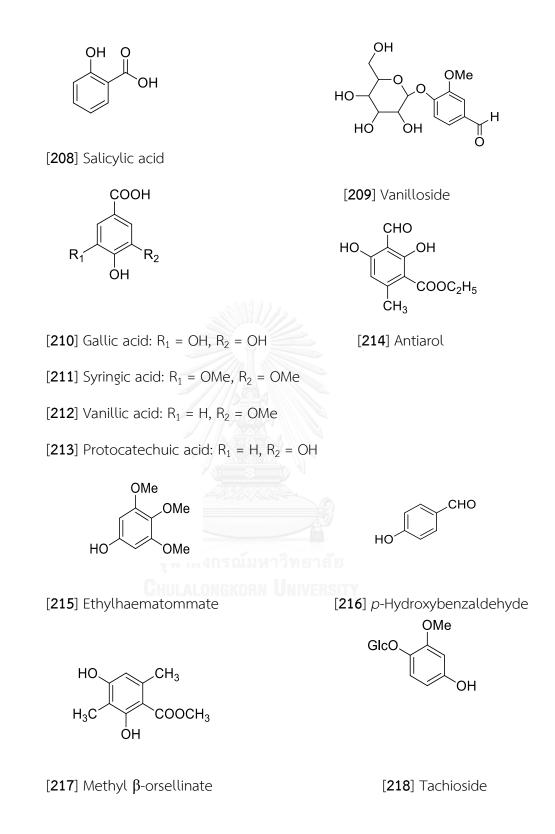

Category and	Plant	Plant	Reference
Compound		part	
4-(2-Hydroxypropyl)-	D. tortile	Whole	Limpanit <i>et al.,</i> 2016
2(5 <i>H</i>)-furanone [274]		plant	
5,7-Dihydroxy-chromen-	D. ellipsophyllum	Whole	Tanagornmeatar <i>et</i>
4-one [275]		plant	al., 2014

[**201**] Aliphatic acids: R = COOH, n = 19-31

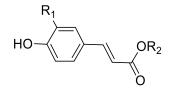

[**202**] Aliphatic alcohol: R = OH, n = 22-32

[203] Malic acid: $R_1 = R_2 = OH$

[204] Dimethyl malate: $R_1 = R_2 = OMe$



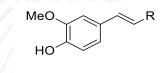
[206] Isopentyl butyrate


[**205**] (-)-Shikimic acid

[**207**] 3-Hydroxy-2-methoxy-5,6dimethylbenzoic acid

Figure 5 Structures of miscellaneous compounds previously isolated from *Dendrobium* species (continued)

[**219**] Alkyl 4'-hydroxy-trans-cinnamates: $R_1 = H$, $R_2 = C_nH_{2n+1}$, n = 22-32

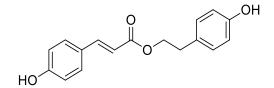

[**220**] Alkyl *trans*-ferulates: $R_1 = OMe$, $R_2 = C_nH_{2n+1}$, n = 18-28, 30

[221] Defuscin: $R_1 = OMe$, $R_2 = (CH_2)_{27}CH_3$

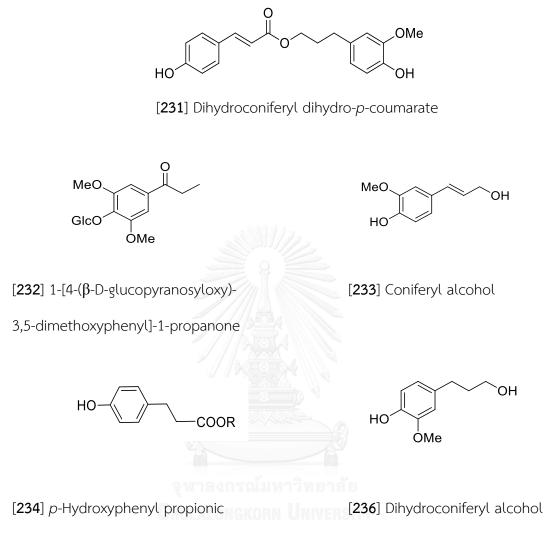
[222] *n*-Octacosyl ferulate: $R_1 = OMe$, $R_2 = (CH_2)_{28}CH_3$

[223] *n*-Triacontyl *p*-hydroxy-*cis*-cinnamate: $R_1 = H$, $R_2 = C_nH_{2n+1}$, n = 30

[224] Tetratriacontanyl-trans-p-coumarate: $R_1 = H$, $R_2 = (CH_2)_{33}CH_3$

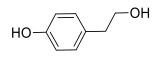

[225] *n*-Docosyl trans-ferulate: $R = COOCH_2(CH_2)_{20}CH_3$

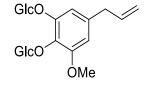
[226] trans-Tetracosylferulate: R = COOCH₂(CH₂)₂₂CH₃


[227] *cis*-Hexacosanoyl ferulate: $R = COOCH_2(CH_2)_{24}CH_3$

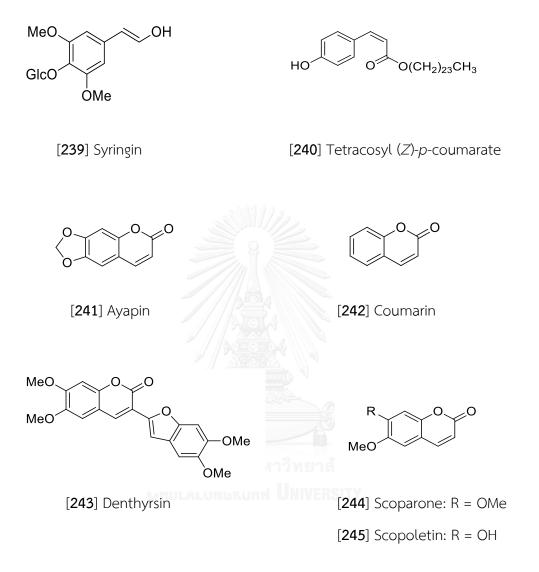
[228] Ferulaldehyde: R = CHO

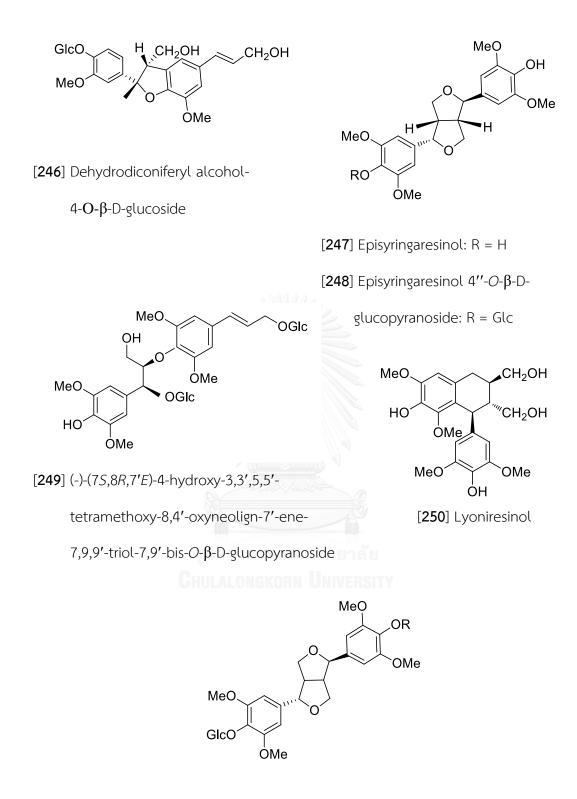
[229] Ferulic acid: R = COOH



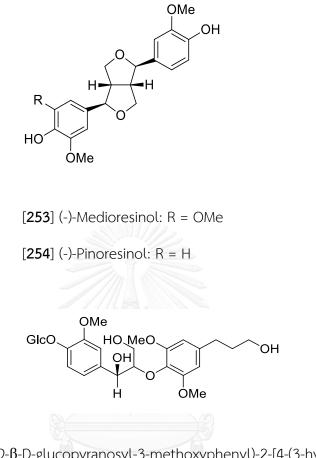

[230] 2-(p-Hydroxyphenyl) ethyl p-coumarate

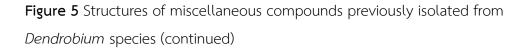
Methyl ester: $R = CH_3$

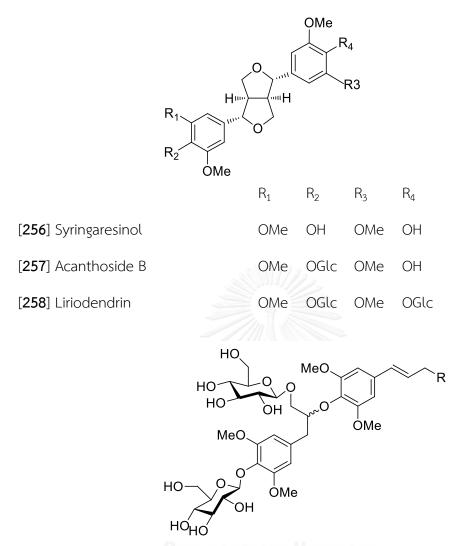

[235] Phloretic acid: R = OH



[237] Salidrosol



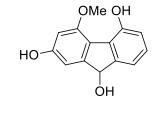

Figure 5 Structures of miscellaneous compounds previously isolated from *Dendrobium* species (continued)



[251] (-)-Syringaresinol-4,4'-bis-O- β -D-glucopyranoside: R = Glc [252] Syringaresinol-4-O-D-monoglucopyranoside: R = H

[**255**] Erythro-1-(4-*O*-β-D-glucopyranosyl-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6dimethoxyphenoxy]-1,3-propanediol

[259] (-)-(8R,7'E)-4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol


4,9-bis-O- β -D-glucopyranoside: R = OH; 8R

[260] (-)-(85,7'E)-4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol

4,9-bis-O- β -D-glucopyranoside: R = OH; 8S

[261] (-)-(8R,7'E)-4-hydroxy-3,3',5,5',9'-pentamethoxy-8,4'-oxyneolign-7'-ene-9-ol

4,9-bis-O- β -D-glucopyranoside: R = OMe; 8*R*

[263] Denchrysan B

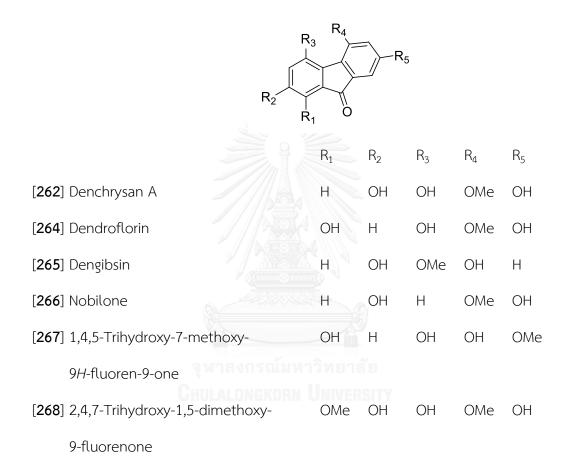
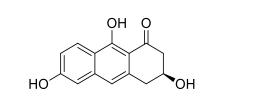
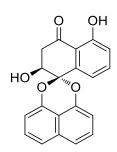
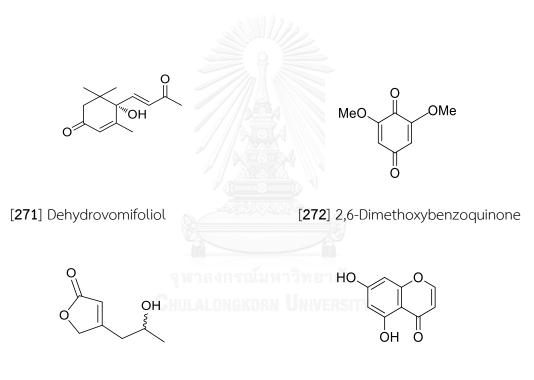




Figure 5 Structures of miscellaneous compounds previously isolated from

Dendrobium species (continued)



dihydroanthracen-1-(2H)-one

[269] 3,6,9-Trihydroxy-3,4-

[270] Palmarumycin JC2

[**273**] 4-(2-Hydroxypropyl)-2(5*H*)-furanone

[**274**] 5,7-Dihydroxy-chromen-4-one

2. Traditional uses and biological activities of Dendrobium species

Medicinal plants of the *Dendrobium* species have been used to treat for several indications as traditional Chinese medicine (TCM). For instance, promote the production of body fluid, swelling, red tounge, dry mouth, reduce fever, hyperglycemia, diabetes. They are also used to medicate stomach disease, kidney, lung disorders and relived symptoms such as dryness of the throat and thirst with blurred vision (Ng *et al.*, 2012); (Rungwichaniwat *et al.*, 2014)

Many bioactive constituents from *Dendrobium* plants exhibited various pharmacological properties, for example, anticancer activity, antiangiogenic activity, immunomodulating activity, antidiabetic activity, inhibition of cataractogenesis, neuroprotective activity, hepatoprotective activity, anti-inflammatory activity, antioxidant activity, antibacterial activity, antimalarial activity, antiviral activity, hemagglutininating activity, antiplatelet aggregation, effect on water channels, effect on colonic health, effect on hyperthyroidism and beneficial action on bones. (Teixeira da Silva and Ng, 2017).

In antidiabetic activity, the extract of *D. candidum* have been shown to decrease blood glucose concentration in epinephrine-induced hyperglycemia in mice and streptozotocin-induced diabetes in rats by inhibiting glucagon secretion, stimulating insulin secretion from β -cells, glycogen synthesis and glycogenolysis (Jiang *et al.*, 2014). The compounds (loddigesiinols G-J [131, 132, 133, 134] and crepidatuol B [50]) from stem of *D. loddigesii* were tested for α -glucosidase inhibitory activity, and the compounds showed stronger activity (IC₅₀ values = 16.7, 10.9, 2.7, 3.2, and 18.9 μ M, respectively) than *trans*-resveratrol (positive control, IC₅₀ values = 27.9 μ M) (Lu *et al.*, 2014). Another study, isolated compounds from *D. tortile*, dendrofalconerol A [62] and (25)-eriodictyol [137] also expressed inhibitory activity on α -glucosidase enzyme with IC₅₀ values = 18.0 and 276.2 μ M, respectively. In addition, there is research pertaining to diabetic complication, cataract formation, such as the stem of *D. aurantiacum* var. *denneanum* can protect galactose-induced cataract formation in rats by decreasing aldose reductase and inducible NO synthase (NOS) activities (Fang *et al.*, 2015).

There are several compounds from *Dendrobium* plants exhibited anticancer activity. For example, denbinobin [84] from D. nobile, can decrease the expression level of decoy receptor-3 and synergized with Fas ligand to bring about apoptotic cell death in pancreatic adenocarcinoma cells (Yang et al., 2010) and also inhibit Rac1 activity which forestalled lamellipodial formation that cause the migration of prostate cancer (Lu et al., 2014a). The bibenzyls and related compounds from D. brymerianum such as gigantol [28], moscatilin [32], lusianthridin [99] showed cytotoxic effect against human lung cancer cell lines with IC₅₀ values of 23.4, 196.7 and 65.0 µg/mL, respectively (Klongkumnuankarn et al., 2015). Furthermore, dendrofalconerol A [62], dendrocandin B [2], dendrocandin I [44], 3,4-dihydroxy-5,4'-dimethoxybibenzyl [40] and dendrosignatol [94] from the whole plant of D. signatum, manifested cytotoxic activity against colorectal cancer HT-29 cells and hepatoma HepG and breast cancer MDA-23 1 (Mittraphab et al., 2016). Besides, 4,4'-dihydroxy-3,5-dimethoxybibenzyl [41], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [36], chrysoeriol [142] and luteolin [141] from D. ellipsophyllum demonstrated anoikis-sensitizing, apoptosis-inducing, antimetastatic and cytotoxic activities on H292 human lung cancer cells (Tanagornmeatar et al., 2014).

In platelet aggregation-inhibitory activity, moscatin [**91**] and moscatilin [**32**] from *D. loddigesii* stems inhibited arachidonic acid and collagen-induced platelet aggregation (Chen *et al.*, 1994). Moscatilin [**32**] from *D. densiflorum* also displayed antiplatelet aggregation activity on rat platelets *in vitro* (Fan *et al.*, 2001). Additionally, trigonopol A [**47**], a bibenzyl from *D. trigonopus* exhibited antiplatelet aggregation activity *in vitro* (Hu *et al.*, 2008b).

In relation to antimalarial activity, densifloral B [83] and phoyunnanin E [69] from *D. venustum* exhibited stronger activity than gigantol [28], batatasin III [16] and phoyunnanin C [68] from the same plant (Sukphan *et al.*, 2014).

CHAPTER III EXPERIMENTAL

1. Source of plant materials

The whole plant of *Dendrobium formosum* Roxb. ex Lindl. was purchased from Chatuchak market, Bangkok, in September 2015. Authentication was performed by Associate Professor. Thatree Phadungcharoen (Faculty of Pharmacy, Rangsit University) and comparison with database of the Botanical Garden Organization. A voucher specimen (BS-DF-092558) has been deposited at the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General techniques

2.1 Analytical thin-layer chromatography (TLC)

Technique :	One dimension ascending
Absorbent :	Silica gel 60 F254 (E. Merck) precoated plate
Layer thickness :	0.2 mm
Distance :	6.5 cm
Temperature :	Laboratory temperature (30-35 °C)
Detection :	1. Ultraviolet light at wavelengths of 254 and 365 nm.
	2. Spraying with anisaldehyde reagent (0.5 ml <i>p</i> -anisaldehyde in
	50 ml glacial acetic acid and 1 ml 97% sulfuric acid) and heating
	at 105 °C for 10 min.

2.2 Column chromatography

2.2.1 Vacuum liquid chromatography (VLC)

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063-0.200 mm		
		(E. Merck)		
Packing method	:	Dry packing		
Sample loading	:	The sample was dissolved in a small amount of organic		
		solvent, mixed with a small quantity of the adsorbent,		
		triturated, dried and then gradually placed on top of the column.		
Detection	:	Each fraction was examined by TLC under UV light at the		
		wavelengths of 254 and 365 nm.		
2.2.2 Flash column chromatography (FCC)				
Adsorbent	:	Silica gel 60 (No. 9385) particle size 0.040-0.063 mm		
		(E. Merck)		
Packing method	: จุห	Dry packing		
Sample loading	Сни	The sample was dissolved in a small amount of organic		
		solvent, mixed with a small quantity of the adsorbent,		
		triturated, dried and then gradually placed on top of the column.		
Detection	:	Fractions were examined as described in section 2.2.1		

2.2.3 Gel filtration chromatography

Adsorbent	:	Sephadex LH-20 (GE Healthcare)	
Packing method	:	The appropriate organic solvent was used as the	
		eluent. Gel filter was suspended in the eluent, left standing about 24 hours prior to use and then poured into the column and left to set tightly.	
Sample loading	:	The sample was dissolved in a small amount of the	
		eluent and then gradually distributed on top of the column.	
Detection	:	Fractions were examined in the same way as described	
		in section 2.2.1	

2.3 Spectroscopy

2.3.1 Mass spectra

Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-MS) (Department of Chemistry, Faculty of Sciences, Mahidol University).

2.3.2 Proton and carbon-13 nuclear magnetic resonance (¹H and

¹³C-NMR) spectra

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University)

Solvents for NMR spectra were deuterated acetone (acetone- d_6) and deuterated chloroform (CDCl₃). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.4 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and isolation

3.1 Extraction

The dried whole plants of *D. formosum* (2.0 kg) were ground and then macerated with methanol (3×10 L) for 72 hours three times. The organic solvent was evaporated under reduced pressure to give 115 g of methanol crude extract. This material was suspended in water and partitioned with EtOAc and then *n*-butanol to give an EtOAc extract (57 g), a *n*-butanol extract (25 g), and an aqueous extract (30 g). All three extracts were tested for α -glucosidase and lipase inhibitory activities. The EtOAc extract showed the highest activity with 96.31% and 83.94% inhibition at 100 µg/mL, respectively. Therefore the EtOAc extract was selected for further studies

(Scheme 1).

3.2 Isolation

The EtOAc extract (57 g) was initially fractionated by vacuum liquid chromatography (VLC) as described in section 2.2.1. (**Scheme 2**) Silica gel (No.7734, 600 g) was used as the stationary phase and a step gradient of hexane-EtOAc (1:0 to 0:1) as the mobile phase. The eluates were collected about 500 mL per fraction and examined by TLC (silica gel, hexane-EtOAc 7:3) to give eight fractions (A-H). Fractions A (2.4 g), B (3.2 g), C (4.2 g), D (1.1 g), E (3.2 g), F (6.8 g), G (10 g) and H (2.0 g).

3.2.1 Isolation of compound DFM-1 (confusarin)

Fraction F (6.8 g) was further separated by FCC using silica gel (No. 9385) as the stationary phase with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give nine fractions (FI-FIX).

Fraction FII (271 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase with a gradient of hexane- CH_2Cl_2 to give 4 fractions (FII1-

FII4). Fraction FII2 was purified on a Sephadex LH-20 column, eluted with methanol, to give compound DFM-1 as yellow amorphous solid. (3 mg, $R_f 0.46$, silica gel, hexane-CH₂Cl₂ = 1:9). It was identified as confusarin.

3.2.2 Isolation of compound DFM-2 (hircinol)

Fraction FII4 (21.5 mg) was separated on a Sephadex LH-20 (methanol) to give compound DFM-2. (15 mg, R_f 0.29, silica gel, 100% CH_2Cl_2). It was identified as hircinol.

3.2.3 Isolation of compound DFM-3 (erianthridin)

Fraction FIII (85.2 mg) was subjected to a Sephadex LH-20 (methanol) to give three fractions (FIII1-FIII3). Fraction FIII2 afforded erianthridin (45 mg, R_f 0.42, silica gel, hexane-EtOAc = 7:3).

3.2.4 Isolation of compound DFM-4 (gigantol)

Fraction FV (648.9 mg) was chromatographed by FCC using silica gel (No. 9385) as the stationary phase with a step gradient mixture of hexane- CH_2Cl_2 (1:0 to 0:1). Six fractions (FV1-FV6) were obtained and combined according to the similarity of their TLC patterns. Compound DFM-4 was obtained from fraction FV3 as a brown amorphous solid (94 mg, R_f 0.38, silica gel, hexane- CH_2Cl_2 = 1:9) and was later identified as gigantol.

3.2.5 Isolation of compound DFM-5 (nudol)

Fraction FV2 (16.9 mg) was purified on Sephadex LH-20 (methanol) to give compound DFM-5 as a yellow amorphous solid (10 mg, R_f 0.45, silica gel, hexane-EtOAc = 7:3) and it was identified as nudol.

3.2.6 Isolation of compound DFM-6 (lusianthridin)

Fraction FV5 (193 mg) was subjected to FCC over silica gel (No. 9385) as the stationary phase, eluted with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give compound DFM-6 as a brown amorphous solid (8 mg, R_f 0.18, silica gel, 100% CH₂Cl₂) and was identified as lusianthridin.

3.2.7 Isolation of compound DFM-7 (coelonin)

Fraction FVI (361.7 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase, using gradient mixture of hexane- CH_2Cl_2 (1:0 to 0:1) to afford five subfractions (FVI1-FVI5). DFM-7 was obtained from fraction FVI2 as a brown amorphous solid (75 mg, R_f 0.27, silica gel, CH_2Cl_2 -EtOAc = 9.5:0.5) and was later identified as coelonin.

3.2.8 Isolation of compound DFM-8 (dihydroconiferyl dihydro-*p*-coumarate)

Fraction FVI4 (58 mg) was separated on a Sephadex LH-20 column, eluted with methanol, to give compound DFM-8 as a yellow amorphous solid (25 mg, R_f 0.22, silica gel, 100% CH₂Cl₂). This compound was identified as dihydroconiferyl dihydro-*p*-coumarate.

3.2.9 Isolation of compound DFM-9 (batatasin III)

Fraction FVI5 (29 mg) was subjected to a Sephadex LH-20 column (MeOH), to give compound DFM-9 as a brown amorphous solid (18 mg, $R_f 0.26$, silica gel, CH_2Cl_2 -EtOAc = 9.5:0.5). It was identified as batatasin III.

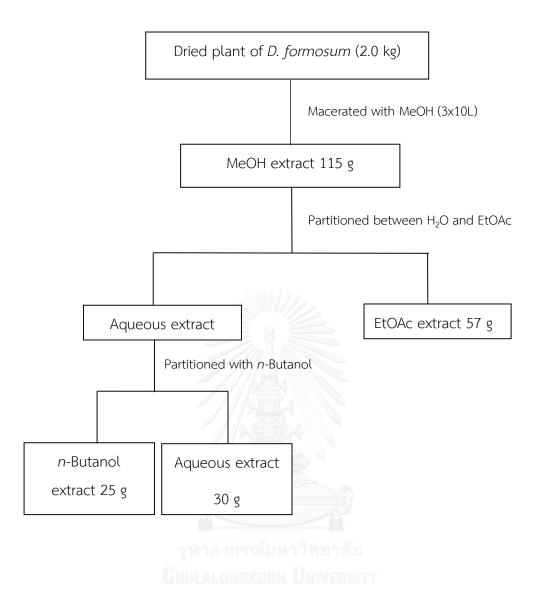
3.2.10 Isolation of compound DFM-10 (2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene)

Fraction FVIII (272 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase with CH_2Cl_2 -EtOAc gradient to afford three fractions (FVIII1-FVIII3).

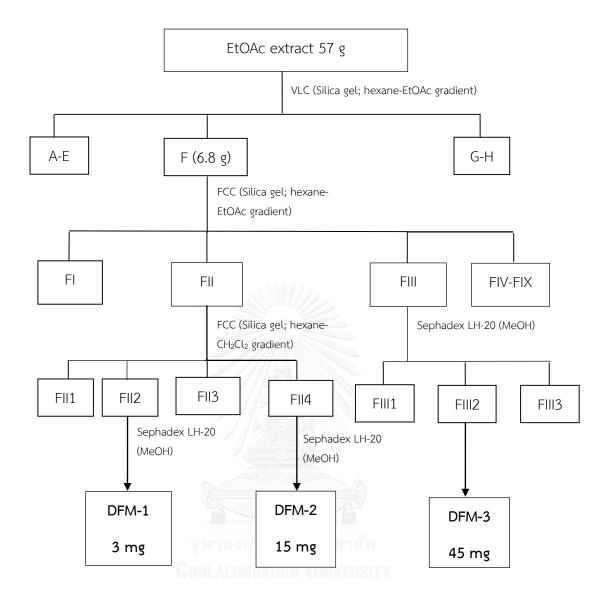
Fraction FVIII2 was separated on a Sephadex LH-20 column, eluted with methanol, to give compound DFM-10 as a brown amorphous solid (22 mg, R_f 0.42, silica gel, CH_2Cl_2 -EtOAc = 9:1). This compound was identified as 2,5,7-trihydroxy-4- methoxy-9,10-dihydrophenanthrene.

3.2.11 Isolation of compound DFM-11 (moscatilin)

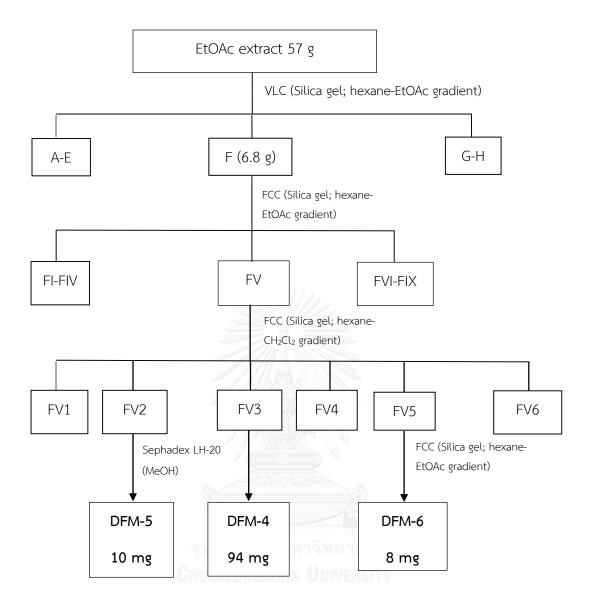
Fraction G (10 g) was separated by FCC using silica gel (No. 9385) as the stationary phase, eluted with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give seven fractions (GI-GVII).

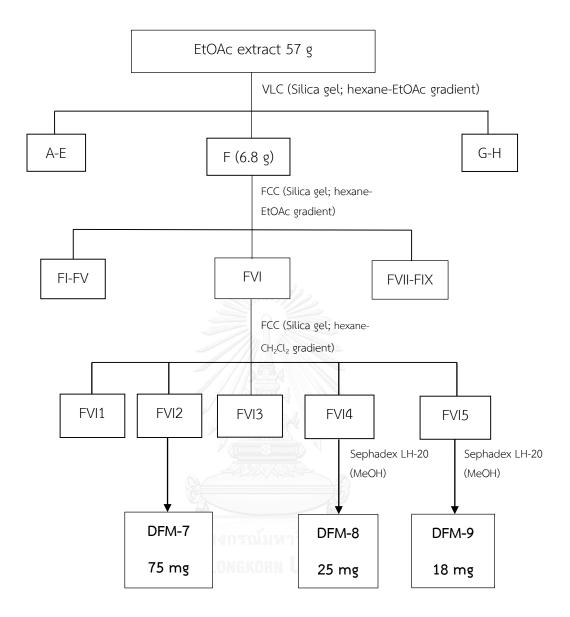

Fraction GIII (508 mg) was further separated on a Sephadex LH-20 column, eluted with methanol, to give eight fractions (GIII1-GIII8).

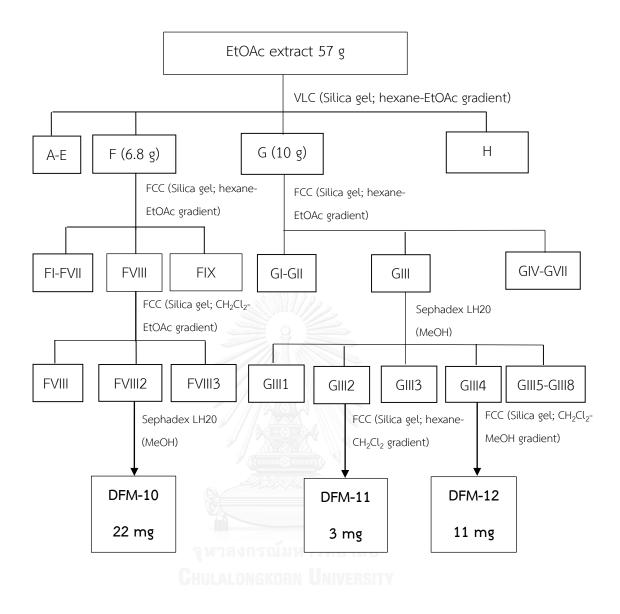
Fraction GIII2 (51 mg) was purified by FCC using silica gel (No. 9385) as the stationary phase with a gradient of CH_2Cl_2 -hexane to give compound DFM-11 as brown amorphous solid (3 mg, R_f 0.40, silica gel, CH_2Cl_2 -hexane = 9:1). It was identified as moscatilin.


3.2.12 Isolation of compound DFM-12 (5-methoxy-7-hydroxy-9,10dihydro-1,4-phenanthrenequinone)

Fraction GIII4 (52 mg) was purified by FCC using silica gel (No. 9385) as the stationary phase with gradient elution of CH_2Cl_2 -methanol to give compound DFM-12 as red amorphous solid. (11 mg, R_f 0.44, silica gel, CH_2Cl_2 methanol = 49 : 1) and it was later identified as 5-methoxy-7-hydroxy-9,10dihydro-1,4-phenanthrenequinone.


Chulalongkorn University


Scheme 1 Separation of the MeOH extract of Dendrobium formosum


Scheme 2 Separation of the EtOAc extract of Dendrobium formosum

Scheme 2 Separation of the EtOAc extract of Dendrobium formosum (continued)

Scheme 2 Separation of the EtOAc extract of Dendrobium formosum (continued)

4. Physical and spectral data of isolated compounds

4.1 Compound DFM-1 (confusarin)

Compound DFM-1 was obtained as a yellow amorphous solid, soluble in acetone (3.0 mg, 0.00015 % based on dried weight of whole plant).

HR-ESI-MS : $[M-H]^{-}$ ion at m/z 299.0919 (C₁₇H₁₅O₅); Figure 6

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 5, Figure 7

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 5, Figure 8

4.2 Compound DFM-2 (hircinol)

Compound DFM-2 was obtained as a yellow amorphous solid, soluble in acetone (15.0 mg, 0.00075 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 265.0847 (C₁₅H₁₄O₃Na); Figure 12

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 6, Figure 13
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 6, Figure 14

4.3 Compound DFM-3 (erianthridin)

Compound DFM-3 was obtained as a yellow amorphous solid, soluble in acetone (45.0 mg, 0.00225 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 295.0949 (C₁₆H₁₆O₄Na); Figure 17

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 7, Figure 18

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 7, Figure 19

4.4 Compound DFM-4 (gigantol)

Compound DFM-4 was obtained as a brown amorphous solid, soluble in acetone (94.0 mg, 0.0047 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 297.1111 (C₁₆H₁₈O₄Na); Figure 23

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 7, Figure 24

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 7, Figure 25

4.5 Compound DFM-5 (nudol)

Compound DFM-5 was obtained as a yellow amorphous solid, soluble in acetone (10.0 mg, 0.005 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 293.0793 (C₁₆H₁₄O₄Na); Figure 27

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 8, Figure 28
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 8, Figure 29

4.6 Compound DFM-6 (lusianthridin)

Compound DFM-6 was obtained as a brown amorphous solid, soluble in acetone (8.0 mg, 0.004 % based on dried weight of whole plant).

- **HR-ESI-MS** : $[M+Na]^+$ ion at m/z 265.0847 ($C_{15}H_{14}O_3Na$); Figure 32
- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 9, Figure 33
- **13C NMR** : δ ppm, 75 MHz, in acetone- d_6 ; see **Table 9**, Figure 34

4.7 Compound DFM-7 (coelonin)

Compound DFM-7 was obtained as a brown amorphous solid, soluble in acetone (75.0 mg, 0.00375 % based on dried weight of whole plant).

- **HR-ESI-MS** : $[M+Na]^+$ ion at m/z 265.0845 (C₁₅H₁₄O₃Na); Figure 37
- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 10, Figure 38
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 10, Figure 39

4.8 Compound DFM-8 (dihydroconiferyl dihydro-p-coumarate)

Compound DFM-8 was obtained as a yellow amorphous solid, soluble in acetone (25.0 mg, 0.00125 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 353.1368 (C₁₉H₂₂O₅Na); Figure 42

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 11, Figure 43

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 11, Figure 44

4.9 Compound DFM-9 (batatasin III)

Compound DFM-9 was obtained as a brown amorphous solid, soluble in acetone (18.0 mg, 0.009 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 267.0955 (C₁₅H₁₆O₃Na); **Figure 48**

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 12, Figure 49

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 12, Figure 50

4.10 Compound DFM-10 (2,5,7-trihydroxy-4-methoxy-9,10-

dihydrophenanthrene)

Compound DFM-10 was obtained as a brown amorphous solid, soluble in acetone (22.0 mg, 0.0011 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 281.0791 (C₁₅H₁₄O₄Na); Figure 52

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 13, Figure 53

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 13, Figure 54

4.11 Compound DFM-11 (moscatilin)

Compound DFM-11 was obtained as a brown amorphous solid, soluble in chloroform (5.0 mg, 0.00025 % based on dried weight of whole plant).

HR-ESI-MS : [M+Na]+ ion at m/z 327.1219 ($C_{17}H_{20}O_5Na$); Figure 55

- ¹H NMR : δ ppm, 300 MHz, in CDCl₃; see Table 14, Figure 56
- ¹³C NMR : δ ppm, 75 MHz, in in CDCl₃; see Table 14, Figure 57

4.12 Compound DFM-12 (5-methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone)

Compound DFM-12 was obtained as a red amorphous powder, soluble in acetone (11.0 mg, 0.00055 % based on dried weight of whole plant).

HR-ESI-MS : $[M+Na]^+$ ion at m/z 279.0633 (C₁₅H₁₂O₄Na); Figure 60

¹ H NMR	: δ ppm, 300 MHz, in acetone- d_6 ; see Table 15, Figure 61
¹³ C NMR	: δ ppm, 75 MHz, in acetone- d_6 ; see Table 15, Figure 62

5. α -Glucosidase and lipase enzyme inhibitory activity assays

5.1 α -Glucosidase enzyme inhibitory activity assay

 α -Glucosidase is the most important enzyme for carbohydrate digestion. α -Glucosidase inhibition reach to protect excess glucose absorption at the small intestine (Xiao *et al.*, 2013). Many constituents from medicinal plants have been reported as α glucosidase inhibitors such as flavonoids, terpenes, phenylpropanoids, phenol, and alkaloids (Yin *et al.*, 2014). Structure-Activity Relationship have been studied in some secondary metabolites groups as well as flavonoids, stilbenes and tannins (Xiao *et al.*, 2013).

5.1.1 Materials and instruments

- p-Nitrophenyl- α -D-glucopyranoside (pNPG) (Sigma-Aldrich, USA)

- α -Glucosidase enzyme (Sigma-Aldrich, USA)

- Na₂CO₃ (Sigma-Aldrich, USA)

- Microplate reader (Wallac1420 Multilevel counter, Victor3,

PerkinElmer)

- Ultrasonic bath (Transsonic 570/H, Elma)

- Vortex mixer (Vortex-Genie2, Scientific industries)

5.1.2 Determination of α -glucosidase enzyme inhibitory activity

The α -glucosidase enzyme inhibitory activity was assayed by monitoring the release of *p*-nitrophenol from *p*-nitrophenyl- α -D-glucopyranoside (*p*NPG). In the assay, 10 µl of test sample and 40 µl of 0.1 U/ml α -glucosidase were mixed in a 96well plate and pre-incubated at 37 °C for 10 min. Then, 50 µl of 2 mM *p*NPG was added to the mixture and incubated at 37 °C for 20 min. Eventually, 100 µL of 0.1 mM Na₂CO₃ solution were added to stop the reaction. The absorbance was then measured at 405 nm using a microplate reader. The percentage of α -glucosidase inhibitory activity was calculated by the following formula:

% α -glucosidase inhibitory activity = [(A_{control} - A_{sample}) / A_{control}] x 100

Where $A_{control}$ and A_{sample} are the absorbance. The experiment was performed in triplicate. 50%DMSO was used as a negative control. Acarbose was used as a positive control and treated under the same condition as the samples.

The enzyme kinetics was performed by analyzing the double reciprocal Lineweaver-Burk plot. The experiment was operated by varying the concentration of pNPG (0.125, 0.25, 0.5, 1.0, 2.0 mM) in the absence and presence of different test sample concentrations (80 and 160 μ M) and the reaction were allowed to react at 37 °C for 5, 10, 15, 20, 25 and 30 min. Data were displayed as mean ± SD. The statistical analysis was done by student's t test (Sun *et al.*, 2014).

5.2 Lipase enzyme inhibitory activity assay

Lipase enzyme is a predominant lipolytic enzyme in humans responsible for the absorption of dietary fats through the hydrolysis of triacylglycerols into monoacylglycerols and free fatty acids in the intestinal lumen (Yang *et al.*, 2014). The lipase enzyme inhibitors from natural products such as polysaccharides, dietary fibers from wheat bran and cholestyramine, soya proteins and synthetic compounds have been investigated for their lipase enzyme inhibition. All of these products have a significant role to decrease dietary fat absorption and help to prevention obesity. (Seyedan *et al.*, 2015).

5.2.1 Materials and instruments

- 4-Methylumbelliferyl oleate (4-MUO) (Sigma-Aldrich, USA)

- Pancreatic lipase enzyme (Sigma-Aldrich, USA)

- Sodium citrate (Merck)

- Microplate reader (Wallac1420 Multilevel counter, Victor3, PerkinElmer)

- Ultrasonic bath (Transsonic 570/H, Elma)

- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.2.2 Determination of lipase enzyme inhibitory activity

The lipase enzyme inhibitory activity was determined by measuring the release of 4-methylumbelliferone (4-MU) from 4-methylumbelliferyl oleate (4-MUO) (Sergent *et al.*, 2012). In 96-well plate, 25 μ l of test sample, 50 μ l of 0.25 mM 4MUO and 25 μ l of 0.125 mg/mL pancreatic lipase were mixed and incubated at room temperature for 30 min. After that, 100 μ L of 0.1 mM sodium citrate were added to terminate the reaction. Orlistat was used as the positive control. Fluorescence from the release of 4-MU was measured by using a microplate reader with excitation and emission wavelengths of 355 and 460 nm, respectively. The percentage of lipase enzyme inhibitory activity was calculated by the following formula:

% lipase enzyme inhibitory activity = $[(A_{control} - A_{sample}) / A_{control}] \times 100$

Where $A_{control}$ and A_{sample} are the absorbance. The experiment was performed in triplicate. 20%DMSO was used as a negative control. Orlistat was used as a positive control and treated under the same condition as the sample.

The enzyme kinetics was performed by analyzing the double reciprocal

Lineweaver-Burk plot. The experiment was examined by varying the concentration of 4-MUO (0.0625, 0.125, 0.25, 0.5, 1.0 mM) in the absence and presence of different test sample concentrations (40 and 80 μ M) and the reaction were allowed to react at room

temperature for 5, 10, 15, 20, 25 and 30 min. Data were displayed as mean \pm SD. The statistical analysis was done by student's t test (Sun *et al.*, 2014).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER IV RESULTS AND DISCUSSION

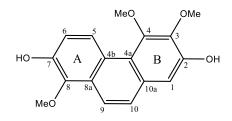
In this study, the dried and powdered whole plants of Dendrobium formosum (2.0 kg) were macerated with methanol. The methanol extract was concentrated under reduced pressure to give 115 g. This methanol extract exhibited approximately 95.60% and 98.97% inhibition of α -glucosidase and lipase inhibitory activities at a concentration of 100 µg/mL. It was further partitioned with EtOAc, Aqueous and nbutanol. The EtOAc extract showed the most potent α -glucosidase and lipase inhibitory activities with approximately 96.31% and 83.94% inhibition, respectively. The EtOAc extract was further separated using several chromatographic techniques to give 12 compounds including two phenanthrenes (DFM-1 and DFM-5) together with five (DFM-2, dihydrophenanthrene DFM-3, DFM-6, DFM-7 and DFM-10), а dihydrophenanthrenequinone (DFM-12), three bibenzyls compounds (DFM-4, DFM-9 and DFM-11) and a phenylpropanoid derivative (DFM-8). The structures of these compounds were determined by spectroscopic techniques, including MS and NMR. They were also investigated for their α -glucosidase and lipase inhibitory activities.

กลงกรณมหาวัทยาลโ

1. Structure determination of isolated compounds

1.1 Structure determination of compound DFM-1

Compound DFM-1 was obtained as a yellow amorphous solid. The HR-ESI-MS spectrum (**Figure 6**) showed a pseudomolecular ion $[M-H]^-$ at m/z 299.0919 (calcd. for $C_{17}H_{15}O_5$; 299.0919), suggesting the molecular formula $C_{17}H_{16}O_5$.


The ¹H-NMR spectrum (**Figure 7** and **Table 5**) indicated the presence of *ortho*coupled aromatic protons at $\delta_{\rm H}$ 7.60 (1H, *d*, *J*=9.0 Hz, H-10) and 7.90 (1H, *d*, *J*=9.0 Hz, H-9) and two aromatic carbons at $\delta_{\rm C}$ 119.4 (C-9) and 126.8 (C-10). In addition, the ¹H-NMR spectrum, in the aromatic region of ring A, showed two doublet proton signals at $\delta_{\rm H}$ 9.14 (1H, *d*, *J*=9.3 Hz, H-5) and $\delta_{\rm H}$ 7.25 (1H, *d*, *J*=9.3 Hz, H-6). For ring B, the ¹H-NMR spectrum showed one singlet proton at $\delta_{\rm H}$ 7.18 (*s*, H-1). The ¹H-NMR spectrum also exhibited signals for three methoxyls at $\delta_{\rm H}$ 3.94 (*s*, 8-OMe), $\delta_{\rm H}$ 3.98 (*s*, 4-OMe) and $\delta_{\rm H}$ 4.10 (*s*, 3-OMe).

The ¹³C-NMR spectrum (**Figure 8** and **Table 5**) and HSQC (**Figure 9**) spectral data displayed seventeen carbon signals, including three signals for three methoxyl groups at $\delta_{\rm C}$ 59.2, 60.4 and 60.5. The other fourteen carbon signals of DFM-1 could be differentiated into five methine carbon signals at 108.9 (C-1), 117.3 (C-6), 119.4 (C-9), 123.1 (C-5) and 126.8 (C-10) and nine quaternary carbon signals at 118.4 (C-4a), 124.3 (C-4b), 127.1 (C-8a), 129.3 (C-10a), 141.5 (C-8), 142.1 (C-3), 146.4 (C-7), 149.2 (C-2) and 151.5 (C-4).

The HMBC correlations (**Figure 10**) from 3-OCH₃ to C-3, 4-OCH₃ to C-4, 8-OCH₃ to C-8 supported the position of the methoxyls assigned to C-3, C-4 and C-8, respectively.

In the NOESY spectrum (**Figure 11**), the methoxy protons at $\delta_{\rm H}$ 3.94 (8-OCH₃) and 3.98 (4-OCH₃) revealed a correlation peak with H-9 and H-5, respectively, confirmed the location of the methoxyls at C-8 and C-4. Another methoxyl was attached at C-3, as supported by the HMBC correlations of C-3 to 3-OCH₃ and H-1.

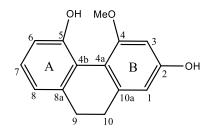
Based on the above data and through comparison of its ¹H, ¹³C-NMR and MS with previously reported data (Majumder and Kar, 1987), DFM-1 was identified as confusarin [**75**]. The first report of confusarin [**75**] in family Orchidaceae has been from *Eria confusa* (Majumder and Kar, 1987). Moreover, this compound also has been found in other *Dendrobium* species such as *D. chryseum* (Ma *et al.*, 1998), *D. chrysotoxum* (Hu *et al.*, 2012) and *D. nobile* (Zhang *et al.*, 2008b).

Confusarin [75]

Position	Compound DF	M-1	Confusarin [®]	1 <u> </u>
-	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c	$\delta_{\!\scriptscriptstyle extsf{H}}$ (mult., J in Hz)	δ _c
1	7.18 (<i>s</i>)	108.9	7.11 (<i>s</i>)	107.6
2		149.2	-	147.1
3	-	142.1	-	140.4
4	-	151.5	-	150.2
4a	-	118.4	-	118.5
4b	- 8	124.3	- 3	124.3
5	9.14 (d, 9.3)	123.1	9.12 (<i>d</i> , 10.0)	123.4
6	7.25 (d, 9.3)	117.3	7.22 (<i>d</i> , 10.0)	116.6
7	-	146.4	-	144.9
8	-	141.5	-	140.4
8a	-	127.1	-	125.7
9	7.90 (d, 9.0)	119.4	7.79 (<i>d</i> , 10.0)	118.8
10	7.60 (d, 9.0)	126.8	7.51 (<i>d</i> , 10.0)	126.8
10a	-	129.3	-	128.7
3-OMe	4.01 (<i>s</i>)	60.4	4.03 (<i>s</i>)	60.7
4-OMe	3.98 (s)	59.2	3.89 (<i>s</i>)	59.2
8-OMe	3.94 (<i>s</i>)	60.5	3.89 (<i>s</i>)	61.4

Table 5 NMR spectral data of compound DFM-1 (in acetone- d_6) and confusarin (in CDCl₃)

^a(Majumder and Kar, 1987)


1.2 Structure determination of compound DFM-2

Compound DFM-2 was obtained as a yellow amorphous solid. The HR-ESI-MS spectrum (**Figure 12**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 265.0847 (calcd. for C₁₅H₁₄O₃Na; 265.0840), suggesting the molecular formula C₁₅H₁₄O₃.

The appearance of methylene protons at $\delta_{\rm H}$ 2.67 (2H, *br s*, H-9) and $\delta_{\rm H}$ 2.67 (2H, *br s*, H-10), which showed HSQC correlations (**Figure 15**) to carbon atoms at $\delta_{\rm C}$ 30.7 (C-9) and 31.2 (C-10), respectively, two methylene indicated a dihydrophenanthrene skeleton (Fisch *et al.*, 1973). Additionally the ¹H-NMR data (**Figure 13** and **Table 6**) of ring A showed proton signals at $\delta_{\rm H}$ 6.87 (1H, *br d*, *J*=7.8 Hz, H-8), $\delta_{\rm H}$ 6.92 (1H, *br d*, *J*=7.8 Hz, H-6) and $\delta_{\rm H}$ 7.10 (1H, *t*, *J*=7.8 Hz, H-7). For ring B, the ¹H-NMR spectrum showed two protons at $\delta_{\rm H}$ 6.53 (1H, *d*, *J*=2.4 Hz, H-1) and $\delta_{\rm H}$ 6.49 (1H, *d*, *J*=2.4 Hz, H-3). The ¹H-NMR spectrum also showed methoxyl group at $\delta_{\rm H}$ 3.80 (1H, *s*, 4-MeO). This methoxyl group was placed at C-4 from its NOESY cross peak with H-3 (**Figure 16**).

The ¹³C-NMR (**Figure 14** and **Table 6**) and HSQC (**Figure 15**) spectra of DFM-2 revealed the presence of one methoxyl at δ_c 54.6, two methylenes at δ_c 30.7 (C-9) and 31.2 (C-10), five methines at δ_c 101.3 (C-3), 106.3 (C-1), 116.1 (C-6), 119.7 (C-8) and 127.1 (C-7) and seven quaternary carbons at δ_c 113.9 (C-4b), 121.2 (C-4a), 140.8 (C-8a), 142.5 (C-10a), 152.2 (C-4), 154.4 (C-5) and 159.7 (C-2).

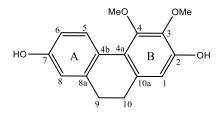
Based on the above mentioned spectroscopic properties, compound DFM-2 was identified as hircinol [**107**], which was previously isolated from *D. draconis* (Sritularak *et al.*, 2011a) and *D. aphyllum* (Yang *et al.*, 2015).

Hircinol [107]

Table 6 NMR spectral data of compound DFM-2 (in acetone- d_6) and hircinol (in CDCl₃)

	Compound	DFM-2	Hircinol ^a	
Position	$\delta_{\!\scriptscriptstyle extsf{H}}$ (mult., J in Hz)	δ _c	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ _c
1	6.53 (d, 2.4)	106.3	6.51 (s)	109.9
2	- //	159.7	- -	158.4
3	6.49 (d, 2.4)	101.3	6.51 (<i>s</i>)	100.0
4	_	152.2	_	154.6
4a	-	121.1	-	128.7
4b	- 6	113.9	5	114.7
5	จุหาลงก	154.4	สัย -	156.3
6	6.92 (br d, 7.8)	116.1	RHITY	118.2
7	7.10 (t, 7.8)	127.1	6.77-7.32 (m)	128.1
8	6.87 (br d, 7.8)	119.7		120.0
8a	-	140.8	-	141.3
9	2.67 (br s)	30.7	2.64 (br s)	31.6
10	2.67 (br s)	31.2	2.64 (br s)	31.8
10a	-	142.5	-	144.1
4-OMe	3.80 (<i>s</i>)	54.6	3.89 (s)	57.3

^a(Fisch *et al.*, 1973)


1.3 Structure determination of compound DFM-3

Compound DFM-3 was isolated as a yellow amorphous solid. The HR-ESI-MS spectrum (**Figure 17**) showed a sodium-adduct molecular ion $[M+Na]^+ m/z$ at 295.0949 (calcd. for C₁₆H₁₆O₄Na; 295.0946). Its molecular formula was determined as C₁₆H₁₆O₄.

The ¹H-NMR spectrum of compound DFM-3 (**Figure 18** and **Table 7**) exhibited two methoxyl groups at $\delta_{\rm H}$ 3.72 (1H, *s*, 4-MeO) and 3.86 (1H, *s*, 3-MeO). In addition, ¹H-NMR signals were observed for two methylene protons at $\delta_{\rm H}$ 2.64 (2H, *s*, H₂-9) and 2.64 (2H, *s*, H₂-10). Compound DFM-3 had a dihydrophenanthrene structure similar to DFM-2. On ring A, the ¹H-NMR spectrum showed three proton signals at $\delta_{\rm H}$ 6.72 (1H, *br s*, H-8), 6.75 (1H, *br d*, *J*=7.8 Hz, H-6) and 8.08 (1H, *d*, *J*=7.8 Hz, H-5). For ring B, the ¹H-NMR spectrum showed one proton at $\delta_{\rm H}$ 6.58, assignable to H-1 (1H, *s*) based on its HMBC correlation with C-10.

The ¹³C-NMR (**Figure 1**9 and **Table 7**) and DEPT 135 (**Figure 20**) spectra showed signals of 4 aromatic methines at δ_c 111.0 (C-1), 113.2 (C-6), 114.4 (C-8) and 128.2 (C-5), 8 aromatic quaternary carbons at δ_c 119.7 (C-4a), 124.4 (C-4b), 134.2 (C-10a), 139.3 (C-8a), 139.9 (C-3), 148.8 (C-2), 151.2 (C-4) and 155.7 ppm (C-7), two methoxyls at δ_c 59.3 and 60.1) ppm. The locations of the two methoxyls were determined by HMBC (**Figure 21**) and NOESY experiments (**Figure 22**). The first methoxyl (δ_H 3.72) was located at C-4 according to its NOESY correlation peak with H-5. The second methoxyl (δ_H 3.68) was placed at C-3 based on the HMBC correlations of C-3 with 3-OMe and H-1.

On the basis of the ¹H- and ¹³C-NMR evidence, coumpound DFM-3 was determined to be erianthridin [**105**]. This compound has earlier been isolated from *D. nobile* (Hwang *et al.*, 2010).

Erianthridin [105]

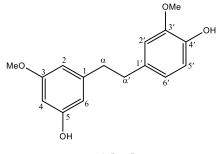
Table 7 NMR spectral data of compound DFM-3 (in acetone- d_6) and erianthridin (inCD₃OD)

Position	Compound DFM-3		Erianthridin ^a	
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	6.58 (<i>s</i>)	111.0	6.56 (<i>s</i>)	118.8
2	-	148.8		149.6
3	- 7/	139.9	-	140.1
4	- ///	151.2		152.1
4a	-	119.7	-	120.6
4b	-	124.4	-	125.4
5	8.08 (<i>d</i> , 7.8)	128.2	8.08 (d, 9.2)	129.1
6	6.75 (br d, 7.8)	113.2	6.68-6.79 (m)	114.1
7	CHULALON	155.7	ERSITY	156.6
8	6.72 (br s)	114.4	6.68-6.79 (m)	115.3
8a	-	139.3	-	135.1
9	2.64 (<i>s</i>)	29.8	2.63 (<i>s</i>)	*
10	2.64 (<i>s</i>)	29.9	2.63 (<i>s</i>)	*
10a	-	134.2	-	129.1
3-OMe	3.86 (<i>s</i>)	60.1	3.85 (<i>s</i>)	61.2
4-OMe	3.72 (s)	59.3	3.71 (s)	61.0

^a(Shimizu *et al.*, 1988) * = Not report

118

1.4 Structure determination of compound DFM-4


Compound DFM-4 was obtained as a brown amorphous solid. The HR-ESI-MS of this compound (**Figure 23**) showed an $[M+Na]^+$ peak at m/z 297.1111 (calcd. for $C_{16}H_{18}O_4Na$; 297.1103), suggesting the molecular formula $C_{16}H_{18}O_4$.

The ¹H-NMR spectrum of compound DFM-4 (**Figure 24** and **Table 8**) revealed a pair of methylene proton signals at $\delta_{\rm H}$ 2.80 (4H, *m*, H₂- α , H₂- α') and the ¹³C-NMR spectrum (**Figure 25**) showed two methylene carbons at 38.2 (C- α) and 37.1 (C- α'), suggesting that compound DFM-4 was a bibenzyl derivative. The ¹H-NMR spectrum also showed two methoxy protons at $\delta_{\rm H}$ 3.71 (3H, *s*, 3-MeO) and 3.79 (3H, *s*, 3'-MeO). In addition, the ¹H-NMR spectrum exhibited signals for six aromatic protons at $\delta_{\rm H}$ 6.28 (1H, *t*, *J*=2.0 Hz, H-4), 6.32 (1H, *br t*, *J*=2.0 Hz, H-2), 6.35 (1H, *br t*, *J*=2.0 Hz, H-6), 6.67 (1H, *dd*, *J*=8.1, 1.5 Hz, H-6'), 6.75 (1H, *d*, *J*=8.1 Hz, H-5') and 6.80 (1H, *d*, *J*=1.5 Hz, H-2').

The NOESY spectrum (**Figure 26**) showed correlations of 3-OMe with H-2 and H-4, and 3'-OMe with H-2'. Thus, the two methoxyl groups were placed at C-3 and C-3', respectively.

From ¹³C-NMR data (**Figure 25** and **Table 8**), sixteen carbon signals were observed, including two methoxyls, two methylenes, six aromatic methines and six aromatic quaternary carbons.

From the above data, and through comparison of its ¹H-NMR and ¹³C-NMR spectra with the previously reported data (Chen *et al.*, 2008a), compound DFM-4 was identified as gigantol [**28**]. This compound is a bibenzyl frequently found in *Dendrobium spp.*, such as *D. chrysanthum* (Yang *et al.*, 2006b), *D. aurantiacum* var. *denneanum* (Liu *et al.*, 2009a), *D. loddigesii* (Ito *et al.*, 2010), *D. brymerianum* (Klongkumnuankarn *et al.*, 2015) and *D. venustum* (Sukphan *et al.*, 2014).

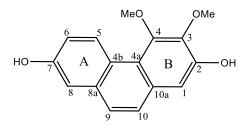
Gigantol [**28**]

Table 8 NMR spectral data of compound DFM-4 and gigantol (in acetone- d_6)

	Compound DFM-4		Gigantol ^a	
Position _	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
1		144.4	-	145.4
2	6.32 (br t, 2.0)	108.1	6.22 (<i>t</i> , 2.0)	108.8
3	- /////	160.9	-	159.1
4	6.28 (t, 2.0)	98.9	6.30 (<i>dd</i> , 2.0, 2.0)	99.6
5	_ //*	160.9	-	161.7
6	6.35 (br t, 2.0)	105.5	6.30 (<i>t</i> , 2.0)	106.2
α	2.80 (m)	38.2	2.79 (m)	39.0
α′	2.80 (m)	37.1	2.78 (m)	37.9
1′	CHULALONGK	133.3	ERSITY -	134.0
2′	6.80 (<i>d</i> , 1.5)	114.7	6.80 (<i>d</i> , 2.0)	115.4
3'	-	147.2	-	147.9
4 ′	-	144.6	-	145.1
5 ′	6.75 (<i>d</i> , 8.1)	112.1	6.74 (<i>d</i> , 8.0)	112.8
6'	6.67 (<i>dd</i> , 8.1, 1.5)	120.8	6.66 (<i>dd</i> , 8.0, 2.0)	121.5
3 ' -OMe	3.79 (<i>s</i>)	55.3	3.82 (<i>s</i>)	55.2
3-OMe	3.71 (<i>s</i>)	54.5	3.73 (s)	54.3

^a(Klongkumnuankarn *et al.,* 2015)

120


1.5 Structure determination of compound DFM-5

Compound DFM-5 was isolated as a yellow amorphous solid. Its HR-ESI-MS (**Figure 27**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 293.0793 (calcd. for C₁₆H₁₄O₄Na; 293.0790), suggesting the molecular formula C₁₆H₁₄O₄.

The ¹H-NMR data (**Figure 28** and **Table 9**) of DFM-5 showed signals similar to those of DFM-1, except for the absence of the methoxy at position 8. The ¹H-NMR spectrum displayed signals for a pair of *cis* olefinic protons at $\delta_{\rm H}$ 7.49 (1H, *d*, *J*=9.0 Hz, H-10) and 7.53 (1H, *d*, *J*=9.0 Hz, H-9). In the aromatic region of ring A, the ¹H-NMR spectrum exhibited an ABM spin system at $\delta_{\rm H}$ 7.20 (1H, *dd*, *J*=9.0, 2.4 Hz, H-6), 7.25 (1H, *d*, *J*=2.4 Hz, H-8) and $\delta_{\rm H}$ 9.33 (1H, *d*, *J*=9.0 Hz, H-5). For ring B, the ¹H-NMR spectrum showed one singlet signal at $\delta_{\rm H}$ 7.16 (*s*, H-1). Furthermore, the ¹H-NMR spectrum also revealed the presence of two methoxyls at 3.98 and 4.01. The locations of the two methoxyls were deduced by HMBC and NOESY experiments (**Figure 30** and **Figure 31**). The first methoxy at $\delta_{\rm H}$ 4.01 was placed at C-3 according to the HMBC correlations of C-3 with H-1 and 3-OMe. The second methoxy at $\delta_{\rm H}$ 3.98 was located at C-4 based on its NOESY cross-peak with H-5.

The ¹³C-NMR spectrum (**Figure 29** and **Table 9**) displayed sixteen carbon signals, including two signals for two methoxyl groups at δ_c 59.2 and 60.3. The other fourteen carbon signals of DFM-5 could be differentiated into six methine carbon signals at δ_c 108.8 (C-1), 111.6 (C-8), 116.7 (C-6), 126.1 (C-9), 126.7 (C-10) and 128.0 (C-5) and eight quaternary carbon signals at 118.3 (C-4a), 124.3 (C-4b), 129.4 (C-10a), 133.4 (C-8a), 141.9 (C-3), 149.0 (C-2), 151.3 (C-4) and 154.9 (C-7).

On the basis of the ¹H- and ¹³C-NMR data, compound DFM-5 was identified as nudol [**121**], which was previously reported from *D. nobile* (Yang *et al.*, 2007) and *D. rotundatum* (Majumder and Pal, 1992).

Nudol [**121**]

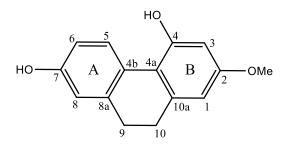
Table 9 NMR spectral data of compound DFM-5 and nudol (in acetone- d_6)	
--	--

	Compound DFM-5		Nudolª	
Position	$\delta_{\!\scriptscriptstyle extsf{H}}$ (mult., J in Hz)	δ_{c}	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ_{c}
1	7.16 (s)	108.8	7.15 (s)	108.9
2	-	149.0	- 	149.0
3	/	141.9		142.0
4	-	151.3	-	151.3
4a	_	118.3	_	118.3
4b	-	123.4	-	123.5
5	9.33 (<i>d</i> , 9.0)	128.0	9.33 (d, 9.2)	128.0
6	7.20 (<i>dd</i> , 9.0, 2.4)	116.7	7.19 (dd, 9.2, 2.8)	116.7
7	CHULALON	154.9	ERSITY -	155.0
8	7.25 (<i>d</i> , 2.4)	111.6	7.24 (d, 2.8)	111.6
8a	-	133.7	-	133.7
9	7.53 (d, 9.0)	126.1	7.53 (d, 8.9)	126.2
10	7.49 (<i>d</i> , 9.0)	126.7	7.50 (<i>d</i> , 8.9)	126.8
10a	-	129.4	-	129.4
3-OMe	4.01 (<i>s</i>)	60.3	-	60.4
4-OMe	3.98 (s)	59.2	-	59.2

^a(Chen *et al.*, 2015)

122

1.6 Structure determination of compound DFM-6


Compound DFM-6 was obtained as a brown amorphous solid. Its HR-ESI-MS (**Figure 32**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 265.0847 (calcd. for C₁₅H₁₄O₃Na; 265.0841), suggesting the molecular formula C₁₅H₁₄O₃.

The ¹H-NMR spectrum (**Figure 33** and **Table 10**), showed signals of aliphatic protons at $\delta_{\rm H}$ 2.67 (*m*, H₂-9, H₂-10), suggesting a dihydrophenanthrene nucleus. The ¹H-NMR also exhibited signals of five aromatic protons at $\delta_{\rm H}$ 6.37 (*d*, *J*=2.4 Hz, H-1), 6.44 (*d*, *J*=2.4 Hz, H-3), 6.69 (*br d*, *J*=9.3 Hz, H-6), 6.71 (*br s*, H-8), and 8.23 (*d*, *J*=9.3 Hz, H-5) and one methoxy group at $\delta_{\rm H}$ 3.74 (*s*, 2-OMe).

The ¹³C-NMR (**Figure 34** and **Table 10**) and HSQC (Figure 35) spectra displayed 15 signals, consisting of one methoxy carbon at δ_c 54.4, two methylene carbons at δ_c 29.8 and 30.6, five methine carbons (δ_c 100.7, 105.0, 112.6, 114.1 and 129.0) and seven quaternary carbons (δ_c 114.9, 125.0, 138.9, 140.5, 155.1, 155.2 and 158.4).

In the NOESY spectrum (Figure 36), the methoxy proton at $\delta_{\rm H}$ 3.74 showed correlation peaks with H-1 and H-3 supporting the substitution of this methoxyl at C-2.

From the data mentioned above, compound DFM-6 was identified as lusianthridin [**99**] which was isolated earlier from *D. brymerianum* (Klongkumnuankarn *et al.*, 2015) and *D. venustum* (Sukphan *et al.*, 2014).

Lusianthridin [99]

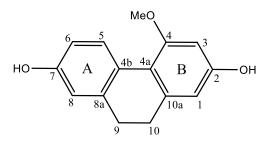
Position	Compound DFM-6		Lusianthrid	inª
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
1	6.37 (<i>d</i> , 2.4)	105.0	6.37 (<i>d</i> , 2.6)	106.0
2	-	158.4	-	159.3
3	6.44 (<i>d</i> , 2.4)	100.7	6.44 (<i>d</i> , 2.6)	101.6
4	_	155.1	-	155.9
4a	-	114.9	-	115.9
4b	-	125.0	-	125.9
5	8.23 (d, 9.3)	129.0	8.22 (<i>d</i> , 7.5)	129.9
6	6.69 (br d, 9.3)	112.6	6.68 (dd, 7.5, 2.7)	113.5
7	-	155.2	a -	156.1
8	6.71 (br s)	114.1	6.69 (m)	115.0
8a	-	138.9	- -	139.8
9	2.67 (m)	29.8	2.67 (m)	30.8
10	2.67 (m)	30.6	2.67 (m)	31.5
10a	GHULALON	140.5	RSITY	141.4
2-OMe	3.74 (s)	54.4	3.74 (<i>s</i>)	55.3

Table 10 NMR spectral data of compound DFM-6 and lusianthridin (in acetone- d_6)

^a(Guo *et al.*, 2007)

1.7 Structure determination of compound DFM-7

Compound DFM-7 was isolated as a brown amorphous solid. Its HR-ESI-MS (**Figure 37**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 265.0845 (calcd. for C₁₅H₁₄O₃Na; 265.0841), suggesting the molecular formula C₁₅H₁₄O₃.


Comparison of the ¹H-NMR data of DFM-7 with DFM-6, revealed their structural similarity, excepted for the location of a methoxyl.

The ¹H-NMR spectrum (**Figure 38** and **Table 11**) showed signals for four methylene protons at $\delta_{\rm H}$ 2.65 (*s*, H₂-9 and H₂-10), five methine protons at $\delta_{\rm H}$ 6.39 (*d*, *J*=2.4 Hz, H-1), 6.46 (*d*, *J*=2.4 Hz, H-3), 6.67 (*br d*, *J*=2.7 Hz, H-6), 6.70 (*br s*, H-8), and 8.06 (*d*, *J*=9.0 Hz, H-5) and one methoxy group at $\delta_{\rm H}$ 3.84 (*s*, 4-MeO).

The ¹³C-NMR spectrum (**Figure 39** and **Table 11**) showed 15 carbons, corresponding to one methoxy carbon (δ_c 54.8), two methylene carbons (δ_c 29.9 and 30.5), five methine groups (δ_c 98.3, 107.3, 112.6, 114.1 and 129.0) and seven quaternary carbons (δ_c 115.4, 124.8, 139.1, 140.4, 155.1, 156.4 and 157.8).

In the NOESY spectrum (**Figure 41**), the methoxy protons at δ 3.84 displayed a NOESY interaction with the proton signal at $\delta_{\rm H}$ 6.46 (*s*, H-3) suggested the placement of a methoxyl at C-4. The HMBC spectrum (**Figure 40**) confirmed the proposed structure of DFM-7, demonstrating correlations from the signal of H-3 to C-2, C-4a from H-8 to C-4b, C-6, C-7 and C-9; from H-9 to C-4b, C-8.

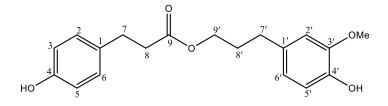
On the basis of the ¹H- and ¹³C-NMR data, compound DFM-7 was identified as coelonin [**92**]. Coelonin [**92**] is a dihydrophenanthrene which was previously reported from *D. aphyllum* (Chen *et al.*, 2008a) and *D. nobile* (Yang *et al.*, 2007).

Coelonin [92]

Position	Compound DFM-7		Coelonin	a
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
1	6.39 (<i>d</i> , 2.4)	107.3	6.26 (<i>d</i> , 2.5)	104.8
2	-	156.4	-	155.4
3	6.46 (<i>d</i> , 2.4)	98.3	6.30 (<i>d</i> , 2.5)	100.1
4	-	157.8	-	158.3
4a	-	115.4	-	114.8
4b	-	124.8	-	125.2
5	8.06 (<i>d</i> , 9.0)	129.0	8.13 (<i>d</i> , 8.4)	128.6
6	6.67 (br d, 2.7)	112.6	6.62 (dd, 8.3, 2.7)	112.2
7		155.1	a _	154.8
8	6.70 (br s)	114.1	6.61 (<i>d</i> , 2.6)	113.8
8a	- 8	139.1		139.8
9	2.65 (s)	29.9	2.59 (<i>s</i>)	30.1
10	2.65 (<i>s</i>)	30.5	1618 2.59 (<i>s</i>)	30.8
10a	CHULALON	140.4	RSITY	138.7
4-OMe	3.84 (<i>s</i>)	54.8	3.67 (s)	54.2

Table 11 NMR spectral data of compound DFM-7 (in acetone- d_6) and coelonin (inCD₃OD)

^a(Rueda *et al.*, 2014)


1.8 Structure determination of compound DFM-8

Compound DFM-8 was obtained as a yellow amorphous powder. Its HR-ESI-MS (**Figure 42**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 353.1368 (calcd. for C₁₉H₂₂O₅Na; 353.1365), suggesting the molecular formula C₁₉H₂₂O₅.

The ¹H-NMR spectrum (**Figure 43** and **Table 12**), exhibited five methylene protons at $\delta_{\rm H}$ 1.88 (*m*, H-8'), 2.60 (*t*, *J*=7.5 Hz, H-8), 2.60 (*t*, *J*=7.5 Hz, H-7'), 2.83 (*t*, *J*=7.5 Hz, H-7) and 4.04 (*t*, *J*=7.5 Hz, H-9') and seven aromatic protons at $\delta_{\rm H}$ 6.63 (*br d*, *J*=8.1 Hz, H-6'), 6.73 (*br d*, *J*=8.1 Hz, H-5'), 6.76 (2H, *d*, *J*=8.1 Hz, H-3), 6.81 (*br s*, H-2'), 7.07 (2H, *d*, *J*=8.1 Hz, H-2, H-6) and one methoxy group at $\delta_{\rm H}$ 3.83 (*s*, 3'-OMe).

The ¹³C-NMR (Figure 44 and Table 12) and DEPT 135 (Figure 45) spectra showed nineteen signals, corresponding to five aliphatic methylene carbons at δ_c 29.9 (C-7), 30.5 (C-8'), 31.4 (C-7'), 35.9 (C-8) and 63.2 (C-9'); seven aromatic CH carbons at δ_c 111.9 (C-2'), 114.8 (C-8'), 115.2 (C-3), 115.2 (C-4), 120.7 (C-5'), 129.2 (C-2) and 129.2 (C-6); five aromatic quaternary carbons at δ_c 131.5 (C-1), 132.7 (C-1'), 144.8 (C-4'), 147.4 (C-3'), 155.8 (C-4), one methoxy carbon at δ_c 55.3 (3'-OMe) and one carboxylic carbon at δ_c 172.3 (C-9). The NOESY spectrum (Figure 47) displayed correlations from the methoxyl group at δ_H 3.83 to H-2' suggesting the location of a methoxyl at C-3'. Key HMBC correlations (Figure 46) were observed from C-9 to H-7 and H-9'; from C-1 to H-3, H-5, H-7, and from C-1' to H-5' and H-8'.

Based on the above spectral evidence, compound DFM-8 was identified as dihydroconiferyl dihydro-*p*-coumarate [**231**]. This compound has been previously isolated from *D. nobile* (Zhang *et al.*, 2006a).

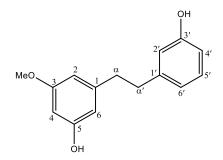
Dihydroconiferyl dihydro-p-coumarate [231]

Position	Compound DFM-8		Dihydroconiferyl c	lihydro- <i>p</i> -
			coumarateª	
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	_	131.5	-	132.7
2	7.07 (<i>d</i> , 8.1)	129.2	7.06 (<i>d</i> , 8.4)	129.4
3	6.76 (<i>d</i> , 8.1)	115.2	6.74 (<i>d</i> , 8.4)	115.3
4	-	155.8	-	154.0
5	6.76 (<i>d</i> , 8.1)	115.2	6.74 (<i>d</i> , 8.4)	115.3
6	7.07 (d, 8.1)	129.2	7.06 (<i>d</i> , 8.4)	129.4
7	2.83 (t, 7.5)	29.9	2.88 (t, 7.6)	30.2
8	2.60 (t, 7.5)	35.9	2.59 (t, 7.6)	36.2
9	-	172.3	_	173.1
1 ′	-	132.7	<u>-</u>	133.1
2′	6.81 (br s)	111.9	6.65 (br s)	111.0
3'	- จุฬาลงก	147.4	าลัย -	146.4
4 ′	CHULALON	144.8	ERSITY	143.8
5 '	6.73 (d, 8.1)	114.8	6.82 (<i>d</i> , 8.6)	114.3
6 '	6.63 (br d, 8.1)	120.7	6.64 (<i>dd</i> , 8.8, 1.8)	121.0
7 ′	2.60 (<i>t</i> , 7.5)	31.4	2.56 (t, 7.4)	31.8
8′	1.88 (m)	30.5	1.89 (m)	30.5
9'	4.04 (<i>t</i> , 7.5)	63.2	4.08 (<i>t</i> , 6.5)	63.8
3 ' -OMe	3.83 (<i>s</i>)	55.3	3.87 (s)	55.9

Table 12 NMR spectral data of compound DFM-8 (in acetone- d_6) and

dihydroconiferyl dihydro-*p*-coumarate (in CDCl₃)

^a(Zhang *et al.*, 2006a)


1.9 Structure determination of compound DFM-9

Compound DFM-9 was obtained as a brown amorphous solid. Its HR-ESI-MS (**Figure 48**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 267.0955 (calcd. for C₁₅H₁₆O₃Na; 267.0957), suggesting the molecular formula C₁₅H₁₆O₃.

The ¹H-NMR spectrum (**Figure 49** and **Table 13**) of compound DFM-9 showed two pairs of methylene proton signals at $\delta_{\rm H}$ 2.80 (4H, *s*, H₂- α , H₂- α') and the ¹³C-NMR spectrum showed two methylene carbons at $\delta_{\rm C}$ 37.4 (C- α') and 37.7 (C- α) which was showed a close resemblance to those of DFM-4, a bibenzyl derivative. In addition, the ¹H-NMR spectrum exhibited signals for seven aromatic protons at $\delta_{\rm H}$ 6.25 (1H, *t*, *J*=2.1 Hz, H-4), 6.33 (1H, *br t*, *J*=2.1 Hz, H-2), 6.34 (1H, *br t*, *J*=2.1 Hz, H-6), 6.65 (1H, *dd*, *J*=7.8, 2.1 Hz, H-4'), 6.70 (1H, *br d*, *J*=7.8 Hz, H-6'), 6.73 (1H, *br s*, H-2') and 7.09 (1H, *t*, *J*=7.8 Hz, H-5') and a methoxy proton signal at 3.72 (3H, *s*, 3-OMe).

The ¹³C-NMR data (Figure 50 and Table 13) showed fifteen carbon signals, including one methoxyl carbons at δ_c 54.4, two methylene carbons at δ_c 37.4 and 37.7, seven methine carbons at δ_c 98.9 (C-4), 105.4 (C-2), 107.9 (C-6), 112.7 (C-4'), 115.3 (C-2'), 119.5 (C-6') and 129.2 (C-5'), and five quaternary carbons at δ_c 143.5 (C-1'), 144.2 (C-1), 157.4 (C-3'), 158.4 (C-5) and 161.0 (C-3). The methoxyl group was located at C-3 due to its NOESY correlations with H-2 and H-4 (Figure 51).

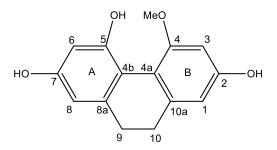
Through comparison of ¹H, ¹³C-NMR and MS properties of this compound with previously reported data (Sachdev and Kulshreshtha, 1986), compound DFM-9 was identified as batatasin III [**16**]. Batatasin III [**16**] is a bibenzyl frequently found in *Dendrobium* species, for example, *D. aphyllum* (Yang *et al.*, 2015), *D. chrysotoxum* (Li *et al.*, 2009c), *D. draconis* (Sritularak *et al.*, 2011a) and *D. venustum* (Sukphan *et al.*, 2014).

Batatasin III [16]

Table 13 NMR spectral data of com	pound DFM-9 (in acetone- d_6) and batatasin III
(in CDCl ₃)	

Position	Compound DFM-9		Batatasin I	ll ^a
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}
1		144.2	<u> </u>	144.4
2	6.33 (br t, 2.1)	105.4	6.29 (dd, 1.4, 1.4)	106.9
3	-	161.0	_	160.7
4	6.25 (t, 2.1)	98.9	6.37 (dd, 1.4, 1.4)	99.3
5	- 2	158.4	-	156.4
6	6.34 (br t, 2.1)	107.9	6.34 (dd, 1.4, 1.4)	108.2
α	2.80 (s)	37.7	ERSITY 2.83 (m)	36.9
α	2.80 (<i>s</i>)	37.4	2.83 (m)	37.3
1'	-	143.5	-	143.4
2'	6.73 (br s)	115.3	6.64 (dd, 2.4, 2.4)	115.4
3′	-	157.4	-	155.4
4 ′	6.65 (<i>dd</i> , 7.8, 2.1)	112.7	6.67 (<i>dd,</i> 8, 2.4)	112.9
5 ′	7.09 (<i>t</i> , 7.8)	129.2	7.12 (<i>dd</i> , 8, 8)	129.3
6'	6.70 (br d, 7.8)	119.5	6.74 (<i>d</i> , 8)	120.8
3-OMe	3.72 (s)	54.4	3.73 (s)	55.2

^a(Chen *et al.*, 2008a)


1.10 Structure determination of compound DFM-10

Compound DFM-10 was obtained as a brown amorphous solid. Its HR-ESI-MS (**Figure 52**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 281.0791 (calcd. for C₁₅H₁₄O₄Na; 281.0790), suggesting the molecular formula C₁₅H₁₄O₄.

The ¹H-NMR spectrum (**Figure 53** and **Table 14**) of DFM-10 showed a close resemblance to compound DFM-2, except for the presence of an additional hydroxyl at position 7. The ¹H-NMR spectrum of this compound exhibited two pairs of methylene groups at $\delta_{\rm H}$ 2.60 (*m*, H₂-9, H₂-10) and the ¹³C-NMR showed two methylene carbon signals ($\delta_{\rm C}$ 31.1 and 31.2), confirming the dihydrophenanthrene nucleus. Moreover, signals of four aromatic protons at $\delta_{\rm H}$ 6.34 (*d*, *J*=2.4 Hz, H-6), 6.37 (*d*, *J*=2.4 Hz, H-8), 6.55 (*d*, *J*=2.1 Hz, H-1) and 6.59 (*d*, *J*=2.1 Hz, H-3) and one methoxy groups at $\delta_{\rm H}$ 3.96 (*s*, 4-OMe) were observed.

The ¹³C-NMR spectrum (**Figure 54** and **Table 14**) displayed 15 carbon signals, corresponding to four methine carbons (δ_c 99.2, 103.8, 107.3 and 109.1), eight quaternary carbons (δ_c 112.7, 114.3, 141.6, 142.5, 154.7, 155.1, 156.8 and 157.0), one methoxy carbon (δ_c 56.5) and two methylene carbons (δ_c 31.1 and 31.2).

On the basis of the ¹H and ¹³C-NMR data, compound DFM-10 was identified as 2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene [**111**] which was previously isolated from *D. longicornu* (Hu *et al.*, 2008a)

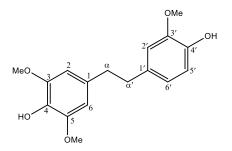
2,5,7-Trihydroxy-4-methoxy-9,10-dihydrophenanthrene [111]

Position	Compound DFM-10		2,5,7-Trihydroxy-4-methoxy-9,10- dihydrophenanthrene ^a	
	$\delta_{\scriptscriptstyle \! H}$ (mult., J in Hz)	δ _c	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c
1	6.55 (<i>d</i> , 2.1)	109.1	6.35 (d,2.5)	109.9
2	-	156.8	-	157.6
3	6.59 (<i>d</i> , 2.1)	99.2	6.31 (<i>d</i> , 2.5)	100.0
4	-	154.7	-	155.5
4a		114.3	-	115.1
4b	-	112.7	-	113.6
5		155.1	-	155.9
6	6.34 (<i>d</i> , 2.4)	103.8	6.52 (d, 2.3)	104.6
7	_	157.0	-	157.9
8	6.37 (<i>d</i> , 2.4)	107.3	6.57 (d, 2.3)	108.1
8a	- 2	141.6	- J	142.4
9	2.60 (m)	31.1	2.56 (m)	31.9
10	2.60 (m)	31.2	ERSITY 2.56 (m)	32.0
10a	-	142.5	-	143.3
4-OMe	3.96 (s)	56.5	3.94 (<i>s</i>)	57.3

Table 14 NMR spectral data of compound DFM-10 and 2,5,7-trihydroxy-4-methoxy-9,10-dihydrophenanthrene (in acetone- d_6)

^a(Hu *et al.*, 2008)

1.11 Structure determination of compound DFM-11


Compound DFM-11 was obtained as a brown amorphous solid. Its HR-ESI-MS (**Figure 55**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 327.1219 (calcd. for C₁₇H₂₀O₅Na; 327.1208), suggesting the molecular formula C₁₇H₂₀O₅.

The ¹H-NMR spectrum of compound DFM-11 (**Figure 56** and **Table 15**) exhibited signals of four methylene protons at $\delta_{\rm H}$ 2.84 (4H, *m*, H₂- α , H₂- α'), and also displayed three methoxy protons at $\delta_{\rm H}$ 3.85 (6H, *s*, 3'-OMe) and 3.86 (3H, *s*, 3-OMe, 5-OMe) and five aromatic protons at $\delta_{\rm H}$ 6.38 (2H, *s*, H-2, H-6), 6.64 (1H, *br s*, H-2'), 6.70 (1H, *br d*, *J*=7.8 Hz, H-6') and 6.85 (1H, *d*, *J*=7.8 Hz, H-5').

In the NOESY spectrum (**Figure 58**), the methoxyl signal at $\delta_{\rm H}$ 3.85 (3'-OMe) exhibited a cross peak with H-2'. Two methoxyl groups at $\delta_{\rm H}$ 3.86 (3, 5-OMe) showed a cross peak with H-2 (H-6) suggesting that the methoxyl groups were located at C-3', C-3 and C-5, respectively.

The ¹³C-NMR spectrum (**Figure 57** and **Table 15**) showed seventeen carbon signals, including three methoxyls (δ_c 55.9 and 56.3), two methylene carbons (δ_c 37.9 and 38.5), five methines (δ_c 105.2, 111.3, 114.2 and 121.1) and seven quaternary carbons at δ_c 132.9 (C-1, C-4), 133.7 (C-1'), 143.8 (C-4'), 146.3 (C-3') and 146.9 (C-3, C-5).

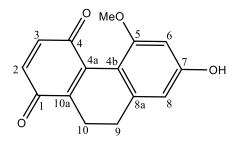
By comparing ¹H, ¹³C-NMR and MS data of this compound with previously published data (Majumder and Sen, 1987), DFM-11 was comfirmed as moscatilin [**32**]. This compound has been frequently found in *Dendrobium* plants, such as *D. amoenum* (Majumder *et al.*, 1999), *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), *D. densiflorum* (Fan *et al.*, 2001), *D. moscatum* (Majumder and Sen, 1987) and *D. secundum* (Sritularak *et al.*, 2011b).

Moscatilin [**32**]

	Compound DFM-11		Moscatilin ^a	
Position	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c	$\delta_{_{ m H}}$ (mult., J in Hz)	δ
1	- ///	132.9	- -	132.8
2	6.38 (<i>s</i>)	105.2	6.36 (<i>s</i>)	105.2
3	- /////////////////////////////////////	146.9	- -	146.8
4	- // 8	132.9	-	133.5
5	-	146.9	-	146.8
6	6.38 (<i>s</i>)	105.2	6.36 (s)	105.2
α	2.84 (m)	38.5	2.89 (s)	38.3
α	2.84 (m)	37.9	2.89 (<i>s</i>)	37.7
1'	-	133.7	-	132.8
2'	6.64 (br s)	111.3	6.65 (d, 2.0)	111.2
3'	-	146.3	-	146.1
4 '	-	143.8	-	143.7
5'	6.85 (d, 7.8)	114.2	6.94 (<i>d</i> , 8.0)	114.1
6 '	6.70 (br d, 7.8)	121.1	6.75 (<i>dd</i> , 8.0, 2.0)	121.0
3 ' -OMe	3.85 (<i>s</i>)	55.9	3.81 (s)	55.8
3,5-OMe	3.86 (s)	56.3	3.81 (s)	56.1

Table 15 NMR spectral data of compound DFM-11 and moscatilin (in Cl

^a(Majumder and Sen, 1987)


1.12 Structure determination of compound DFM-12

Compound DFM-12 was isolated as a red amorphous powder. Its HR-ESI-MS (**Figure 59**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 279.0642, (calcd. for C₁₅H₁₂O₄Na; 279.0633), suggesting the molecular formula C₁₅H₁₂O₄.

The presence of two carbonyl carbons at δ_{c} 184.8 and δ_{c} 185.1 indicated a dihydrophenanthrenequinone structure for DFM-12. The ¹H-NMR spectrum (**Figure 60** and **Table 16**) exhibited proton signals for a methoxy group at δ_{H} 3.72 (1H, *s*, 5-OMe), a pair of methylene proton signals at δ_{H} 2.49 (*m*, H₂-10) and 2.63 (*m*, H₂-9) and four methines at δ_{H} 6.43 (1H, *s*, *J*=2.1 Hz, H-8), 6.45 (1H, *d*, *J*=2.1 Hz, H-6), 6.72 (1H, *d*, *J*=9.9 Hz, H-2), and 6.83 (1H, *d*, *J*=9.9 Hz, H-3).

The ¹³C-NMR spectrum (**Figure 61** and **Table 16**) displayed 15 signals, consisting of one methoxy carbon at δ_c 55.1, two methylene carbons at δ_c 19.9 and 29.7, four methine carbons at δ_c 98.5, 107.3, 135.1 and 137.1, eight quaternary carbons at δ_c 111.5, 138.9, 140.8, 142.9, 159.3, 160.7, 184.8 and 185.1. The location of the methoxyl group was determined by a NOESY experiment (**Figure 62**). The NOE interaction of the methoxyl signal at δ_H 3.72 with H-6 placed this methoxyl group at C-5.

Through comparison of the ¹H- and ¹³C-NMR data with previously reported data, compound DFM-12 was identified as 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [**89**] which was firstly isolated from *D. draconis* (Sritularak *et al.,* 2011a).

5-Methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89]

Position	Compound DI	Compound DFM-12		5-Methoxy-7-hydroxy-9,10-dihydro-		
			1,4-phenanthrene	equinoneª		
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c		
1	-	184.8	-	185.4		
2	6.72 (<i>d</i> , 9.9)	135.1	6.68 (d, 10.0)	135.1		
3	6.83 (<i>d</i> , 9.9)	6.83 (<i>d</i> , 9.9) 137.1 6.78 (<i>d</i> , 10.0)		137.2		
4		185.1	-	185.7		
4a	-	140.8	-	140.9		
4b		111.5	-	112.3		
5	- 7/	159.3		158.9		
6	6.45 (<i>d</i> , 2.1)	98.5	6.33 (d, 2.0)	98.6		
7	- 1	160.7 -		158.8		
8	6.43 (<i>d</i> , 2.1)	107.3	6.31 (<i>d</i> , 2.0)	107.4		
8a	-	142.9	-	143.1		
9	2.63 (m)	29.7	2.60 (<i>m</i>)	28.5		
10	2.49 (m)	19.9	2.55 (m)	20.1		
10a	-	138.9	-	139.8		
5-OMe	3.72 (s)	55.1	3.73 (s)	55.8		

Table 16 NMR spectral data of compound DFM-12 (in acetone- d_6) and 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (in CDCl₃)

^a(Sritularak *et al.*, 2011a)

2. α -Glucosidase and lipase inhibitory activities

The MeOH extract of *D. formosum* was evaluated for α -glucosidase and lipase inhibitory activities, and showed 95.30% and 98.97% inhibition at 100 µg/mL respectively (**Table 17**). For EtOAC extract was selected for further study on α glucosidase and lipase inhibitory activities (**Table 18**). For pure compounds, each was first tested at a concentration of 100 µg/mL. An IC₅₀ value was determined if the compound showed more than 50% inhibition (**Table 19**).

Table 17 α -Glucosidase and lipase inhibitory activities screening from MeOH extract

Extracts	%Inhibition		
	α -Glucosidase (µM)	Lipase (µM)	
Methanol	95.30	98.97	
EtOAc	96.31	83.94	
<i>n</i> -Butanol	NA	53.73	
H ₂ O	NA	NA	
Positive control	70.55 (Acarbose)	94.24 (Orlistat)	

Table 18 Glucosidase and lipase inhibitory	y activities screening from EtOAc extract
--	---

Fractions	Masalumaane %Inhibition			
Chulai	α -Glucosidase (μM)	Lipase (µM)		
A	10.47	74.69		
В	92.06	82.20		
С	98.01	82.96		
D	99.63	74.57		
E	97.63	67.19		
F	80.89	75.72		
G	99.85	90.26		
Н	94.73	69.91		
Positive control	70.55 (Acarbose)	94.24 (Orlistat)		

Compounds	α -Glucosidase (μM)	Lipase (µM)	
Confusarin [DFM-1, 75]	189.78 ± 1.11	154.61 ± 8.58	
Hircinol [DFM-2, 107]	NA	NA	
Erianthridin [DFM-3, 105]	NA	NA	
Gigantol [DFM-4, 28]	NA	NA	
Nudol [DFM-5, 121]	NA	NA	
Lusianthridin [DFM-6, 99]	NA	NA	
Coelonin [DFM-7, 92]	NA	NA	
Dihydroconiferyl dihydro-p-coumarate	NA	NA	
[DFM-8, 231]			
Batatasin III [DFM-9, 16]	NA	NA	
2,5,7-Trihydroxy-4-methoxy-9,10-	NA	NA	
dihydrophenanthrene [DFM-10, 111]			
Moscatilin [DFM-11, 32]	NA	NA	
5-Methoxy-7-hydroxy-9,10-dihydro-1,4-	126.88 ± 0.66	6 69.45 ± 10.14	
phenanthrenequinone [DFM-12, 89]			
Acarbose	745.9 ± 88.4	-	
Orlistat Chulalongkorn U	IIVERSITY -	0.013 ± 0.004	

Table 19 IC_{50} values of compounds DFM-1 to DFM-12 for $\alpha\text{-glucosidase}$ and lipase inhibitory activities

*NA = no inhibitory activity

As shown in **Table 19**, twelve pure compounds were evaluated for α -glucosidase and lipase enzyme inhibitory activities. Confusarin [**75**] and 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [**89**] exhibited α -glucosidase inhibitory activities (IC₅₀ values 189.78 and 126.88 μ M, respectively) compared with acarbose, the positive control. For lipase enzyme inhibitory activity the two compounds showed IC₅₀ values of 154.61 and 69.45 μ M, respectively, compared with orlistat, the positive control.

5-Methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89] showed stronger inhibitory activities than confusarin [75], therefore, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89] was selected for further study on the mechanisms of enzyme inhibitions. In the enzyme kinetic studies, we used *p*-nitrophenyl- α -d-glucopyranoside (*p*NPG) and 4-methylumbelliferyl oleate (4-MUO) as the substrates for α -glucosidase and lipase, respectively.

Kinetics studies of α -glucosidase and lipase inhibition by of 5-methoxy-7hydroxy-9,10-dihydro-1,4-phenanthrenequinone [**89**] were conducted using double reciprocal Lineweaver-Burk analysis. This analysis plotted the velocity against the substrate concentration (0.25, 0.5, 1.0, 2.0 and 4.0 mM) with or without two concentrations of the inhibitor (80 and 160 μ M) (Figure 63) for α -glucosidase. For lipase, we used the substrate concentration (0.125, 0.25, 0.5, 1.0 and 2.0 mM) with or without two concentration of the inhibitor (40 and 80 μ M) (Figure 64). Kinetic constants for the inhibition of α -glucosidase and lipase are listed in Table 20.

	Q -Glucosidase			Lipase		
Inhibitor	Dose	Vmax	Km	Dose	Vmax	Km
	(µM)	(Δ A405/min)	(mM)	(µM)	(Δ Α355,	(mM)
					460/min)	
None	-	7.10 × 10 ⁻³	0.3	-	1.35 x 10 ⁵	0.4
DFM-12	80	2.70 × 10 ⁻³	0.3	40	9.60 × 10 ⁴	0.4
	160	7.35 × 10 ⁻⁴	0.3	80	7.60 × 10 ⁴	0.4

Table 20 Kinetic parameters of α -glucosidase and lipase enzymes in the presence of 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone

 α -Glucosidase showed the maximum velocity (V_{max}) value of 7.10 x 10⁻³ ΔA_{405} /min for *p*NPG hydrolysis, and the Michaelis-Menten constant (K_m) value of 0.3 mM. While lipase showed the V_{max} value of 1.35 x $10^5 \Delta A_{355,460}$ /min for an oleate ester hydrolysis from 4-MUO substrate, and the K_m value of 0.4 mM. Figure 63 shows the Linewaver-Burk plots of 1/V value with different pNPG concentrations of 5-methoxy-7-5-Methoxy-7-hydroxy-9,10hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89]. dihydro-1,4-phenanthrenequinone [89] was employed at different concentrations (80 and 160 μ M). It is interesting to note that when the increase of concentration reduced the V_{max} value (2.70 x 10⁻³ to 7.35 x 10⁻⁴) but did not influence the K_m value (0.3 mM) of the enzyme. Figure 64 displays the Linewaver-Burk plots of 1/V value with different 4-MUO concentrations of 5-methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone [89]. The presence of 5-methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone [89] at different concentration (40 and 80 µM) showed similar affects with the α -glucosidase inhibition, which decreased the V_{max} value (9.60 x 10⁴ to 7.60 x 10^4), but did not change the K_m value (0.4 mM) of the enzyme.

The results showed that 5-methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone [89] is a non-competitive inhibitor of both α -glucosidase and lipase, which implied that the substrate and inhibitor do not compete for the binding at the active site of enzyme.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER V

In this study, from the methanol extract of *Dendrobium formosum* Roxb. ex Lindl. (Orchidaceae) twelve known compounds were isolated, consisting of confusarin [75], hircinol [107], erianthridin [105], gigantol [28], nudol [121], lusianthridin [99], coelonin [92], dihydroconiferyl dihydro-p-coumarate [231], batatasin III [16], 2,5,7trihydroxy-4-methoxy-9,10-dihydrophenanthrene [111], moscatilin [32] and 5methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89]. All of isolated compounds were investigated for α -glucosidase and lipase inhibitory activities. 5methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89] exhibited significant activity against both α -glucosidase and lipase enzymes. Therefore, this compound was selected for mechanism study of enzyme inhibition. The results suggested that 5methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [89] exhibited noncompetitive type of inhibition for both enzymes. Phytochemical information in this study should be useful for the chemotaxonomic study of Dendrobium plants. The data on α -glucosidase and lipase inhibitory activities of the isolated compounds should be of interest to the natural product research community.

จุฬาลงกรณมหาวทยาลย

Chulalongkorn University

REFERENCES

- American Diabetes Association. (2010). Diagnosis and classification of diabetes mellitus. <u>Diabetes Care</u> 33: 62-64.
- American Diabetes Association. (2017). Standards of medical care in diabetes. <u>Diabetes</u> <u>Care</u> 40: 1-135.
- Bi, Z. M., Wang, Z. T. and Xu, L. S. (2004). Chemical constituents of *Dendrobium moniliforme*. <u>Acta Botanica Sinica</u> 46(1): 124-126.
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M. and Wong, C. H. (2010). 6,8-DiC-glycosyl flavonoids from *Dendrobium huoshanense*. <u>Journal of Natural</u> <u>Products</u> 73(2): 229-232.
- Chang, S. J., Lin, T. H. and Chen, C. C. (2001). Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. <u>Journal of Chinese Medicine</u> 12(3): 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghrin, T., Sritularak, B., Mungmee, C. and Likhitwittayawuid, K. (2013). Anti-metastatic activities of bibenzyl from *Dendrobium pulchellum*. <u>Natural Product Communications</u> 8(1): 115-118.
- Chen, C. C., Wu, L. G., Ko, F. N. and Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. Journal of Natural Products 57(9): 1271-1274.
- Chen, X. G., Mei, W. L., Zuo, W. J. and Zeng, Y. B. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. <u>Journal of Asian Natural</u> <u>Products Research</u> 15(1): 67-70.
- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q. and Dai, H. F. (2014). Four new bibenzyl derivatives from *Dendrobium sinense*. <u>Phytochemistry Letters</u> 9: 107-112.
- Chen, Y., Li, J., Wang, L. and Liu, Y. (2008a). Aromatic compounds from *Dendrobium aphyllum*. <u>Biochemical Systematics and Ecology</u> 36(5-6): 458-460.
- Chen, Y. G., Lui, Y., Jiang, J. H., Zhang, Y. and Yin, B. L. (2008). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. <u>Food Chemistry</u> 111(1): 11-12.

- Chen, Y. G., Yu, H. and Lian, X. (2015). Isolation of stilbenoids and lignans from *Dendrobium hongdie*. <u>Tropical Journal of Pharmaceutical Research</u> 14(11): 2055-2059.
- Chen, Y. G., Yu, H. and Liu, Y. (2014b). Chemical constituents from *Dendrobium brymerianum* Rchb. f. <u>Biochemical Systematics and Ecology</u> 57: 175-177.
- De Ruiter, J. (2003). Overview of the antidiabetic agents. <u>Endocrine Pharmacotherapy</u> <u>Module</u>: 1-33.
- Dewick, P. 2002. Medicinal Natural Products: A biosynthetic approach. England: John Wiley and Sons.
- Fan, C., Wang, W., Wang, Y., Qin, G. and Zhao, W. (2001). Chemical constituents from *Dendrobium densiflorum*. <u>Phytochemistry</u> 57(8): 1255-1258.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q., Zhou, J. and Hu, J. M. (2013). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. <u>Natural Products and Bioprospecting</u> 3(3): 89-92.
- Fisch, M. H., Flick, F. H. and Arditti, J. (1973). Structure and antifungal activity of hircinol, loroglossol and orchinol. <u>Phytochemistry</u> 12(2): 437-441.
- Gawell, L. and Leander, K. (1976). The constitution of aduncin, a sesquiterpene related to picrotoxinin, found in *Dendrobium aduncum*. <u>Phytochemistry</u> 15: 1991-1992.
- Gorham, J. 1989. Stilbenes and Phenanthrenes, Methods in Plant Biochemistry. London: Academic press.
- Grant, R. W., Donner, T. W., Fradkin, J. E., Hayes, C., Herman, W. H., Hsu, W. C., Kim, E., Laffel, L., Pop-Busui, R., Rasouli, N., Schatz, D., Stankaitis, J. A., Taveira, T. H. and Wexler, D. J. (2015). <u>Diabetes Care</u> 38: 1-94.
- Guo, X. Y., Wang, J., Wang, N. L., Kitanaka, S. and Yao, X. S. (2007). 9,10-Dihydrophenanthrene derivatives from *Pholidota yunnanensis* and scavenging activity on DPPH free radical. <u>Journal of Asian Natural Products Research</u> 9(2): 165-174.
- Honda, C. and Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u> 53(8): 987-990.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u> 74(5): 535-539.

- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008b). Two novel bibenzyls from *Dendrobium trigonopus*. <u>Journal of Asian Natural Products Research</u> 10(7): 653-657.
- Hu, J. M., Fan, W. W., Dong, F. W., Miao, Z. H. and Zhou, J. (2012). Chemical components of *Dendrobium chrysotoxum*. <u>Chinese Journal of Chemistry</u> 30(6): 1327-1330.
- Hu, J. M., Zhao, Y. X., Miao, Z. H. and Zhou, J. (2009). Chemical components of *Dendrobium polyanthum*. <u>Bulletin of the Korean Chemical Society</u> 30(9): 2098-2010.
- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S., J.,, Lee, D., Kim, Y., Hong, J., T.,, Lee, M. K. and Hwang, B. Y. (2010). Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 2647 cells. <u>Bioorganic & Medicinal Chemistry Letters</u> 20(12): 3785-3787.
- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S. and Kitanaka, S. (2010). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical and Pharmaceutical Bulletin</u> 58(5): 628-633.
- Jiang, W., Jiang, B., Mantri, N., Wu, Z., Mao, L., Lu, H. and Tao, Z. (2014). Comparative ecophysiological analysis of photosynthesis, biomass allocation, polysaccharide and alkaloid content in three *Dendrobium candidum* cultivars <u>Plant Omics</u> <u>Journal</u> 7(2): 117-122.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y. and Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPSstimulated murine macrophages. <u>Archives of Pharmacal Research</u> 38(6): 117– 1126.
- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert,
 V. and Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of
 phenolic compounds from *Dendrobium brymerianum*. <u>Evidence-Based</u>
 <u>Complementary and Alternative Medicine</u> 2015: 1-9.
- Lam, Y., Ng, T. B., Yao, R. M., Shi, J., Xu, K., Sze, S. C. W. and Zhang, K. Y. (2015). Evaluation of chemical constituents and important mechanism of

pharmacological biology in *Dendrobium* plants. <u>Evidence-Based</u> <u>Complementary and Alternative Medicine</u> 2015: 1-25.

- Li, C. B., Wang, C., Fan, W. W., Dong, F. W., Xu, F. Q., Wan, Q. L., Lou, H. R., Liu, Y. Q., Hu, J. M. and Zhou, J. (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. <u>Natural Products and</u> <u>Bioprospecting</u> 3(2): 70-73.
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q. and Chen, Y. G. (2009d). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u> 45(2): 234-236.
- Li, X. H., Guo, L., Yang, L., Peng, C., He, C. J., Zhou, Q. M., Xiong, L., Liu, J. and Zhang,
 T. M. (2014). Three new neolignan glucosides from the stems of *Dendrobium* aurantiacum var. denneanum <u>Phytochemistry Letters</u> 9: 37-40.
- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S. and Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. <u>Chemical and Pharmaceutical Bulletin</u> 56(10): 1477-1479.
- Li, Y., Wang, C. L., Wang, F. F., Dong, H. L., Guo, S. X., Yang, J. S. and Xiao, P. G. (2010). Phenolic components and flavanones from *Dendrobium candidum*. <u>Chinese</u> <u>Pharmaceutical Journal</u> 45(13): 975-979.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M. and Xiao, P. G. (2009a). Three new bibenzyl derivatives from *Dendrobium candidum*. <u>Chinese</u> <u>Pharmaceutical Journal</u> 57(2): 218-219.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M. and Xiao, P. G. (2009b). Four new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin</u> 57(9): 997-999.
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y. and Chen, Y. G. (2009c). Chemical constituents of *Dendrobium chrysotoxum*. <u>Chemistry of Natural Compounds</u> 45(3): 414-416.
- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V. and Sritularak, B. (2016). **α**-Glucosidase inhibitors from *Dendrobium tortile*. <u>Records of Natural</u> <u>Products</u> 10(5): 609-616.

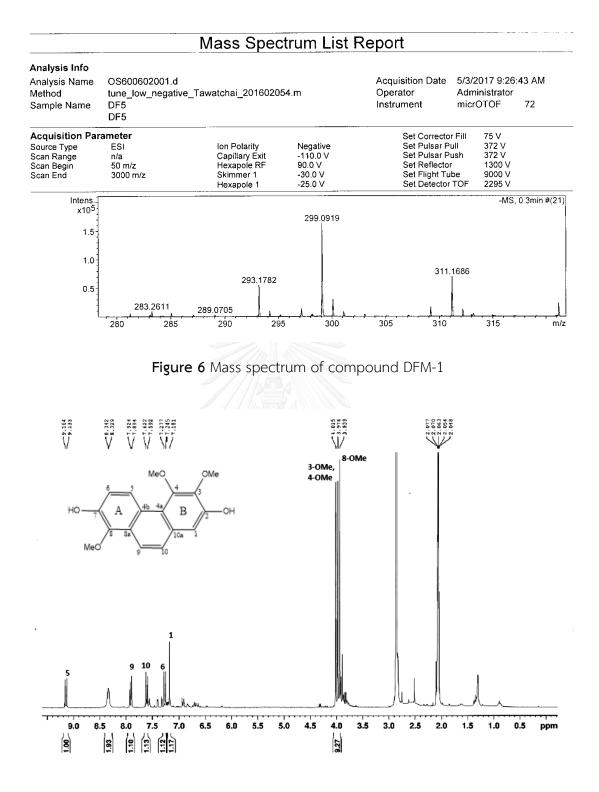
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P. and Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u> 64(8): 1084-1086.
- Liu, Y., Jiang, J. H., Yin, B. L. and Chen, Y. G. (2009b). Chemical constituents of *Dendrobium cariniferum*. <u>Chemistry of Natural Compounds</u> 45(2): 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y. and Chen, Y. G. (2009a). Chemical constituents of *Dendrobium aurantiacum* var. *denneanum*. <u>Chemistry of Natural Compounds</u> 45(4): 525.
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L. and Lin, Y. C. (2014). Loddigesiinols G-J: **α**-Glucosidase inhibitors from *Dendrobium loddigesii*. <u>Molecules</u> 19(6): 8544-8555.
- Ma, G. X., Wang, T. S., Yin, L., Pan, Y., Xu, G. J. and Xu, L. S. (1998). Studies on chemical constituents of *Dendrobium chryseum*. <u>Journal of Chinese Pharmaceutical Sciences</u> 7(1): 52-54.
- Majumder, P.L. and Joardar, M. (1985). Erianthridin, a new 9,10-dihydrophenanthrene derivative from the orchids *Eria carinata* & *Eria sticta*. <u>Indian Journal of</u> <u>Chemistry</u> 24(11): 1192-1194.
- Majumder, P. L. and Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u> 28(7): 1986-1988.
- Majumder, P. L., Guha, S. and Sen, S. (1999). Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u> 52(7): 1365-1369.
- Majumder, P. L. and Kar, A. (1987). Confusarin and confusaridin, two phenanthrene derivatives of the orchid *Eria confusa*. <u>Phytochemistry</u> 26(4): 1127-1129.
- Majumder, P. L. and Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum* <u>Phytochemistry</u> 31(9): 3225-3228.
- Majumder, P. L. and Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. <u>Phytochemistry</u> 52(6): 1561-1565.
- Majumder, P. L. and Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. <u>Phytochemistry</u> 26: 2121-2124.

- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2016). A new bibenzyl-phenanthrene derivative from *Dendrobium signatum* and its cytotoxic activity. <u>Natural Product Communications</u> 11(5): 657-659.
- Miyazawa, M., Shimamura, H., Nakamura, S. I., Sugiura, W., Kosaka, H. and Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. <u>Journal of Agricultural and</u> <u>Food Chemistry</u> 47(5): 2163–2167.
- Ng, T. B., Liu, J., Wong, J. H., Ye, X., Sze, S. C. W., Tong, Y. and Zhang, K. Y. (2012). Review of research on *Dendrobium*, a prized folk medicine. <u>Applied Microbiology and</u> <u>Biotechnology</u> 93(5): 1795–1803.
- Orsini, F. and Verotta, L. 1999. Stilbenes and bibenzyls with potential anticancer or chemopreventive activity. New York: Plenum Publishers.
- Pan, H., Chen, B., Li, F. and Wang, M. (2012). Chemical constituents of *Dendrobium denneanum*. <u>Chinese Journal Application Environmental Biology</u> 18(3): 378-380.
- Phechrmeekha, T., Sritularak, B. and Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. Journal of Asian Natural Products Research 14(8): 748-754.
- Prasad, R. and Koch, B. (2014). Antitumor activity of ethanolic extract of *Dendrobium* formosum in T-cell lymphoma: An *in vitro* and *in vivo* study. <u>BioMed Research</u> <u>International</u> 2014: 1-11.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K. and Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. <u>Journal of Asian Natural</u> <u>Products Research</u> 13(11): 1047-1050.
- Rueda, D. C., Schöffmann, A., Mieri, M. D., Raith, M., Jähne, E. A., Hering, S. and Hamburger, M. (2014). Identification of dihydrostilbenes in *Pholidota chinensis* as a new scaffold for GABA_A receptor modulators. <u>Bioorganic & Medicinal</u> <u>Chemistry</u> 22(4): 1276-1284.
- Rungwichaniwat, P., Sritularak, B. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. <u>Pharmacognosy Journal</u> 6(3): 36-41.
- Sachdev, K. and Kulshreshtha, D. K. (1986). Phenolic constituents of *Coelogyne ovalis*. <u>Phytochemistry</u> 25(2): 499-502.

- Santamarina-Fojo, S. and Brewer, H. B. (1994). Lipoprotein lipase: Structure, function and mechanism of action. <u>International Journal of Clinical and Laboratory</u> <u>Research</u> 24(3): 143-147.
- Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P. and Schneider, Y. J. (2012). Phenolic compounds and plant extracts as potential natural anti-obesity substances. <u>Food Chemistry</u> 135(1): 68-73.
- Seyedan, A., Alshawsh, M. A., Alshagga, M. A., Koosha, S. and Mohamed, Z. (2015). Medicinal plants and their inhibitory activities against pancreatic lipase: A review. <u>Evidence-Based Complementary and Alternative Medicine</u> 2015: 1-13.
- Shimizu, M., Shogawa, H., Hayashi, T., Arisawa, M., Suzuki, S., Yoshizaki, M., Morita, N., Ferro, E., Basualdo, I. and Berganza, L. H. (1988). Anti-inflammatory constituents of topically applied crude drugs. III. Constituents and anti-inflammatory effect of Paraguayan crude drug "Tamandá cuná" (*Catasetum barbatum* Lindle). <u>Chemical and Pharmaceutical Bulletin</u> 36(11): 4447-4452.
- Smitinand, T. (2001). Thai plant names (Botanical names-vernacular names). Revised edition. Bangkok: The Forest Herbarium, Royal Forest Department
- Sritularak, B., Anuwat, M. and Likhitwitayawuid, K. (2011a). A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural Products Research 13(3): 251-255.
- Sritularak, B., Duangrak, N. and Likhitwitayawuid, K. (2011b). A new bibenzyl from *Dendrobium secundum*. <u>Zeitschrift Naturforschung</u> 66: 205-208.
- Sritularak, B. and Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica Chimica Acta</u> 92(4): 740-744.
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. <u>Natural Product Communications</u> 9(6): 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R., Li, L. and Chen, Y. (2014). Isolation of **α**-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. <u>Natural Product Research</u> 28(21): 1900-1905.

- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K. and Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum* <u>Anticancer Research</u> 34(11): 6573-6580
- Tarapatra, B., Das, A. K. and Tarapatra, S. K. (1989). Defuscin, a new phenolic ester from *Dendrobium fuscescens*: Conformation of shikimic acid. <u>Phytochemistry</u> 28(1): 290-292.
- Teixeira da Silva, J. A. and Ng, T. B. (2017). The medicinal and pharmaceutical importance of *Dendrobium* species. <u>Applied Microbiology</u> and <u>Biotechnology</u> 101(6): 2227–2239
- Tushuizen, M. E., Bunck, M. C., Pouwels, P. J., Bontemps, S., Waesberghe, J. K. V., Schindhelm, R. K., Mari, A., Heine, R. J. and Diamant, M. (2007). Pancreatic fat content and β -cell function in men with and without type 2 diabetes. <u>Diabetes</u> <u>Care</u> 30: 2916–2921.
- Vaddhanaphuti, N. 2005. A field guide to the wild orchids of Thailand fourth and expanded edition: p. 102. Chiang Mai: Silkworm Books.
- Veerraju, P., Rao, N. S. P., Rao, L. J., Rao, K. V. J. and Rao, P. R. M. (1989). Amoenumin, a 9,10-dihydro-5*H*-phenanthro-(4,5-b,c,d)-pyran from *Dendrobium amoenum*. <u>Phytochemistry</u> 28(3): 950-951.
- Wang, H., Zhao, T. and Che, C. T. (1985). Dendrobine and 3-hydroxy-2-oxodendrobine from *Dendrobium nobile*. Journal of Natural Products 48(5): 796-801.
- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M. and Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. <u>Journal of Asian Natural Products Research</u> 11(11): 903-911.
- Xiao, J., Kai, G., Yamamoto, K. and Chen, X. (2013). Advance in dietary polyphenols as **α**-glucosidase inhibitors: A review on structure-activity relationship aspect. <u>Critical Reviews in Food Science and Nutrition</u> 53(8): 818-836.
- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M., Zhou, Q. M., Yang, L. and Guo, L. (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. *denneanum* and their bioactivities. <u>Molecules</u> 18(6): 6153-6160.

- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y., Dong, F. W., Liu, Y. Q., Sheng, J., Zuo, Z. L. and Hu, J. M. (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. <u>Bioorganic & Medicinal Chemistry Letters</u> 24(22): 5268-5273.
- Yamaki, M. and Honda, C. (1996). The stilbenoids from *Dendrobium plicatile*. <u>Phytochemistry</u> 43(1): 207-208.
- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T., Dong, F. W., Zhou, J., Ding, Z. T. and Hu, J. M. (2015). Five new phenolic compounds from *Dendrobium aphyllum*. <u>Fitoterapia</u> 100: 11-18.
- Yang, H., Chou, G. X., Wang, Z. T., Guo, Y. W., Hu, Z. B. and Xu, L. S. (2004). Two new compounds from *Dendrobium chrysotoxum*. <u>Helvetica Chimica Acta</u> 87(2): 394-399.
- Yang, H., Sung, S. H. and Kim, Y. C. (2007). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. <u>Journal of Natural Products</u> 70(12): 1925-1929.
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M., Wang, Z. T. and Xu,
 L. S. (2006b). A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. <u>Bioorganic & Medicinal</u> <u>Chemistry</u> 14(10): 3496-3501.
- Yang, M. H., Chin, Y. W., Yoon, K. D. and Kim, J. (2014). Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (*Dioscorea opposita*). Journal of Enzyme Inhibition and Medicinal Chemistry 29(1): 1-6.
- Yang, Y., Wang, Z. and Xu, L. (2006a). Phenols and a triterpene from *Dendrobium auranticum* var. *denneanum* (Orchidaceae). <u>Biochemical Systematics and</u> <u>Ecology</u> 34: 658-600.
- Ye, Q., Mei Y., Yang, P., Cheng, L. and Kong, D. (2016). A new 9,10-dihydrophenanthrene glycoside from *Dendrobium primulinum*. <u>Chemistry of Natural Compounds</u> 52(3): 381-383.
- Ye, Q., Qin, G. and Zhao, W. (2002b). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. <u>Phytochemistry</u> 61(8): 885-890.


- Ye, Q. and Zhao, W. (2002a). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile*. <u>Planta Medica</u> 68(8): 723-729.
- Ye, Q. H., Zhao, W. M. and Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research 6(1): 39-43.
- Yin, Z., Zhang, W., Feng, F., Zhang, Y. and Kanga, W. (2014). Q-Glucosidase inhibitors isolated from medicinal plants. <u>Food Science and Human Wellness</u> 3(3-4): 136-174.
- You, Q., Chen, F., Wang, X., Jiang, Y. and Lin, S. (2012). Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. <u>LWT-Food Science Technology</u> 46(1): 164-168.
- Zhang, C. F., Wang, M., Wang, L., Linuma, M., Zhang, M., Xu, L. S. and Wang, Z. T. (2008a). Chemical constituents of *Dendrobium gratiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u> 47B(6): 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W. A., Guo, Y. L., Zhang, C. F., Zhang, M., Wang, Z. T. and Xu, L. S. (2005). Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*. <u>Phytochemistry</u> 66(10): 1113-1120.
- Zhang, X., Gao, H., Han, H. Y., Liu, H. W., Wang, N. L., Yao, X. S. and Wang, Z. (2007b). Sesquiterpenes from *Dendrobium nobile*. <u>Chinese Traditional and Herbal Drugs</u> 38(12): 1771-1774.
- Zhang, X., Gao, H., Wang, N. and Yao, X. (2006a). Phenolic components from *Dendrobium nobile*. <u>Chinese Traditional and Herbal Drugs</u> 37(5): 652-655.
- Zhang, X., Gao, H., Wang, N. L. and Yao, X. S. (2006b). Three new bibenzyl derivatives from *Dendrobium nobile*. <u>Journal of Asian Natural Products Research</u> 8(1-2): 113-118.
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z. and Yao, X. S. (2008c). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical and Pharmaceutical Bulletin</u> 56(6): 854-857.
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S. and Yao, X. S. (2007a). Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. Journal of Natural Products 70(1): 24-28.

- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H. and Yao, X. S. (2008b). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> <u>Pharmaceutical Science</u> 17: 314-318.
- Zhao, C., Liu, Q., Halaweish, F., Shao, B., Ye, Y. and Zhao, W. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterphene glycosides and phenolic glycosides from *Dendrobium moniliforme*. <u>Journal of Natural Products</u> 66(8): 1140-1143.
- Zhao, N., Yang, G., Zhang, Y., Chen, L. and Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. <u>Natural Product</u> <u>Research</u> 30(2): 174-179.
- Zhao, W., Ye, Q., Tan, X., Jiang, H., Li, X., Chen, K. and Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. Journal of Natural Products 64(9): 1196-1200.

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

APPENDIX

CHULALONGKORN UNIVERSITY

Figure 7 ¹H-NMR (300 MHz) spectrum of compound DFM-1 (in acetone- d_6)

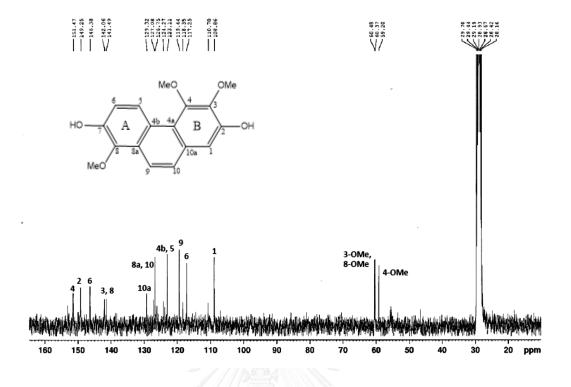


Figure 8 13 C-NMR (75 MHz) spectrum of compound DFM-1 (in acetone- d_6)

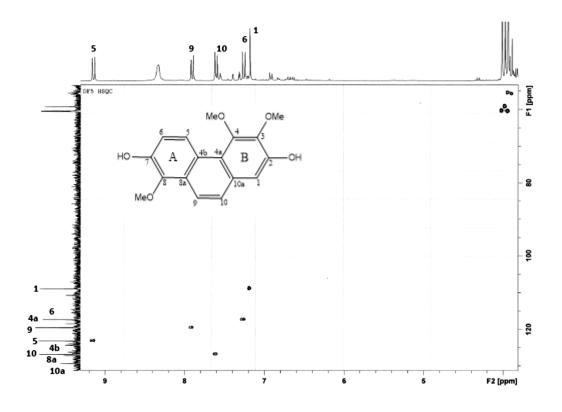


Figure 9 HSQC spectrum of compound DFM-1 (in acetone- d_6)

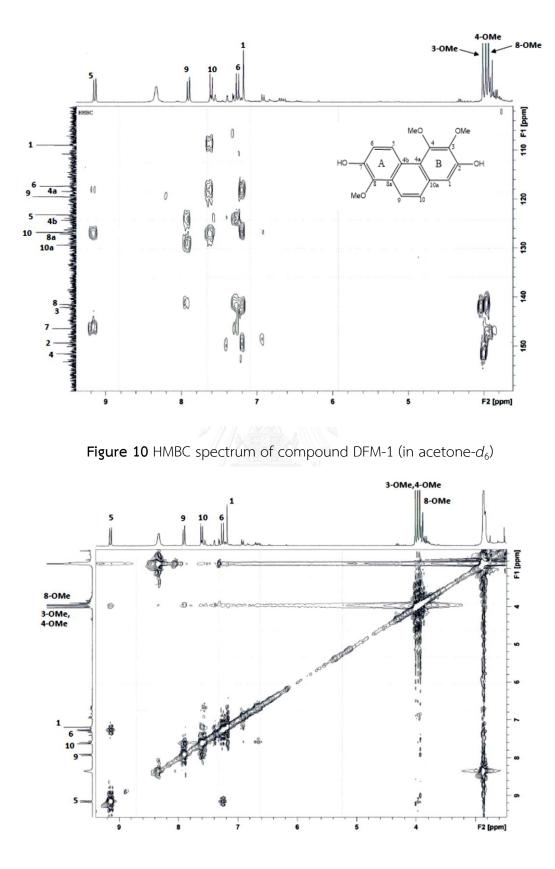


Figure 11 NOSEY spectrum of compound DFM-1 (in acetone- d_6)

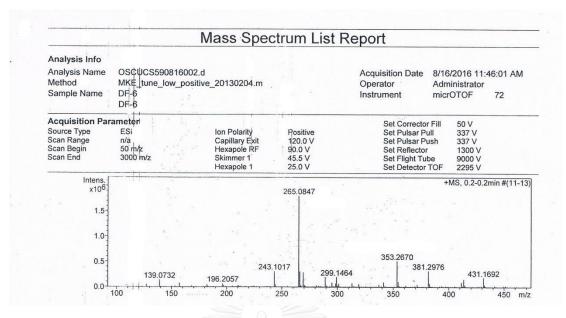


Figure 12 Mass spectrum of compound DFM-2

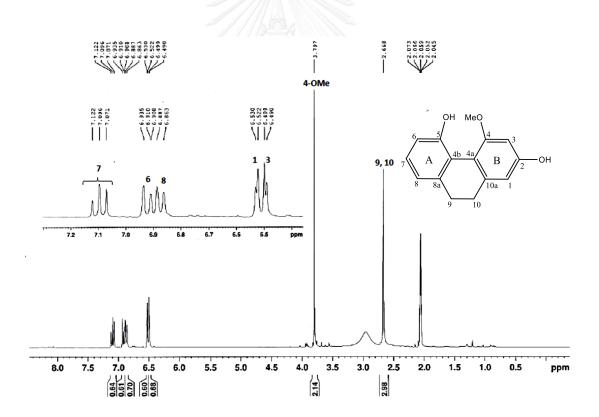


Figure 13 ¹H-NMR (300 MHz) spectrum of compound DFM-2 (in acetone- d_6)

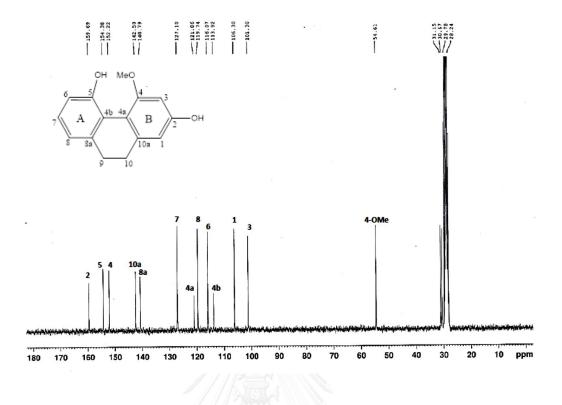


Figure 14 13 C-NMR (75 MHz) spectrum of compound DFM-2 (in acetone- d_6)

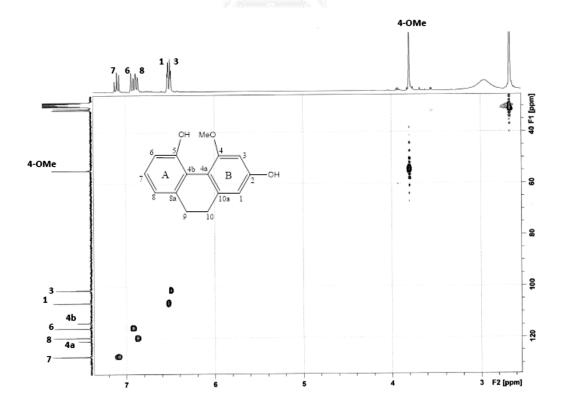


Figure 15 HSQC spectrum of compound DFM-2 (in acetone- d_6)

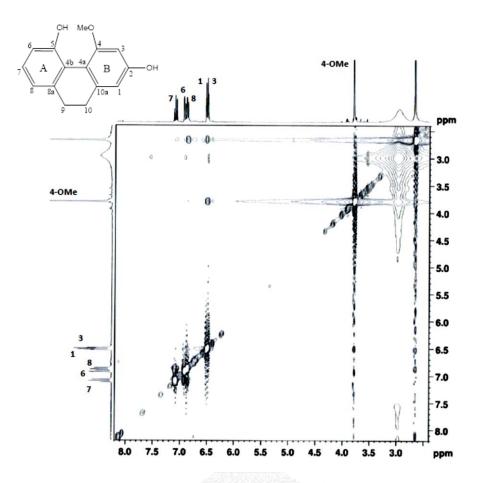


Figure 16 NOESY spectrum of compound DFM-2 (in acetone- d_6)

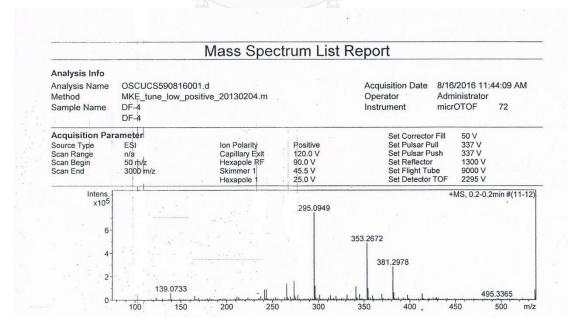


Figure 17 Mass spectrum of compound DFM-3

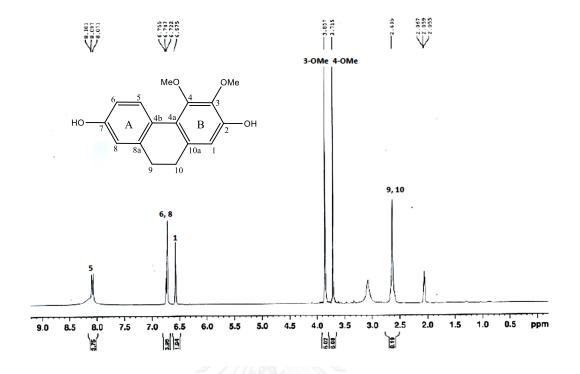


Figure 18 ¹H-NMR (300 MHz) spectrum of compound DFM-3 (in acetone- d_6)

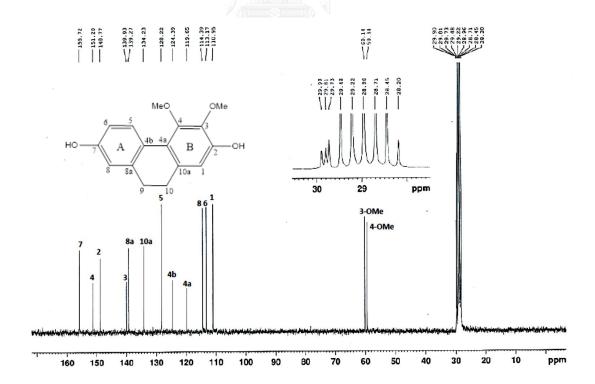


Figure 19 13 C-NMR (75 MHz) spectrum of compound DFM-3 (in acetone- d_6)

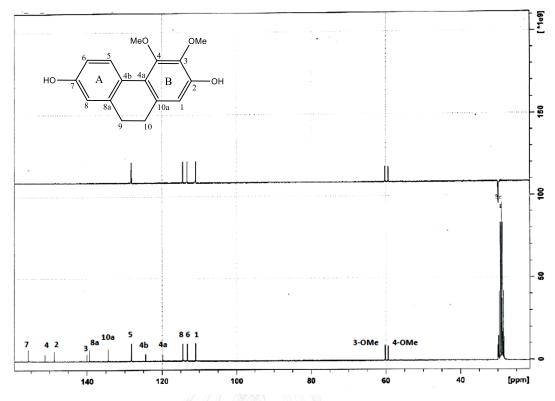


Figure 20 DEPT 135 spectrum of compound DFM-3 (in acetone- d_6)

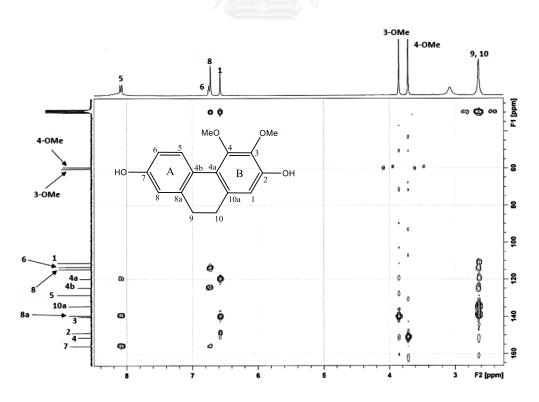


Figure 21 HMBC spectrum of compound DFM-3 (in acetone- d_6)

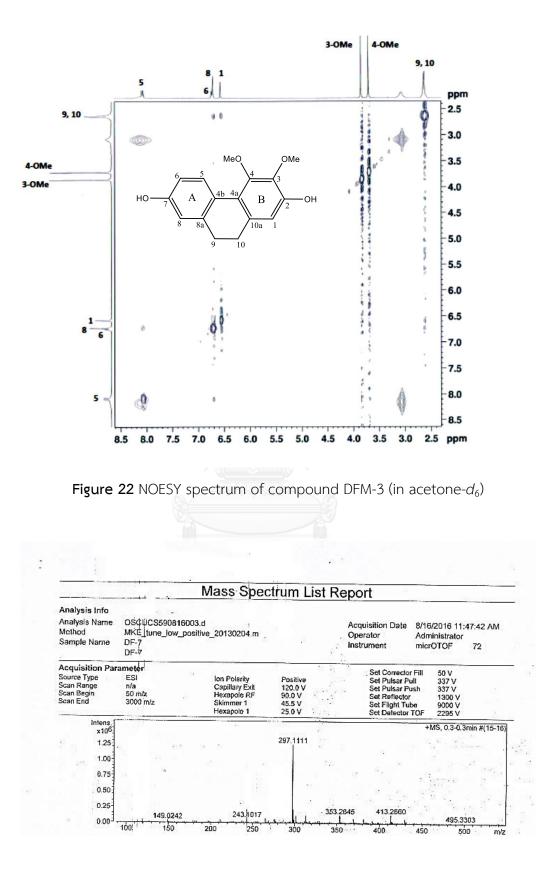


Figure 23 Mass spectrum of compound DFM-4

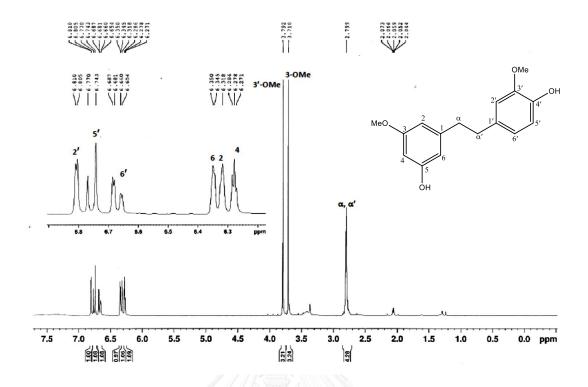


Figure 24 ¹H-NMR (300 MHz) spectrum of compound DFM-4 (in acetone- d_6)

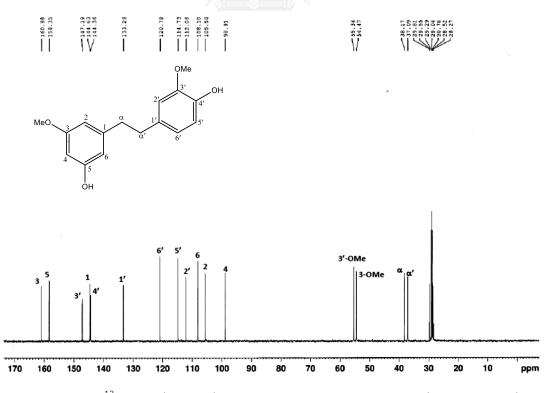


Figure 25 13 C-NMR (75 MHz) spectrum of compound DFM-4 (in acetone- d_6)

Figure 26 NOSEY spectrum of compound DFM-4 (in acetone- d_6)

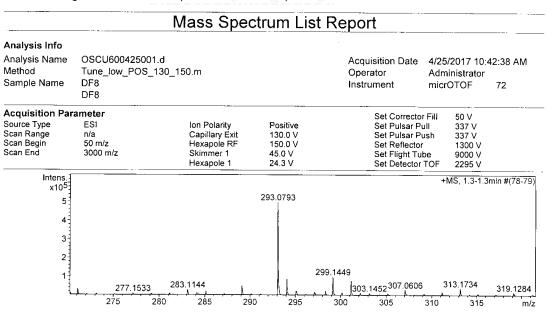


Figure 27 Mass spectrum of compound DFM-5

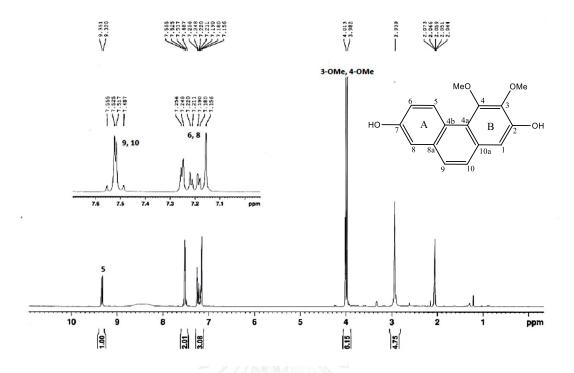


Figure 28 1 H-NMR (300 MHz) spectrum of compound DFM-5 (in acetone- d_{6})

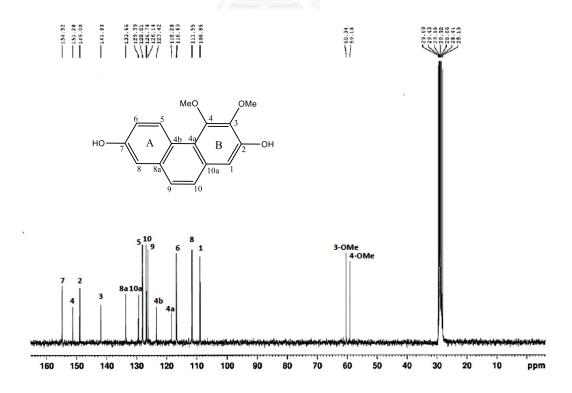


Figure 29 13 C-NMR (75 MHz) spectrum of compound DFM-5 (in acetone- d_6)

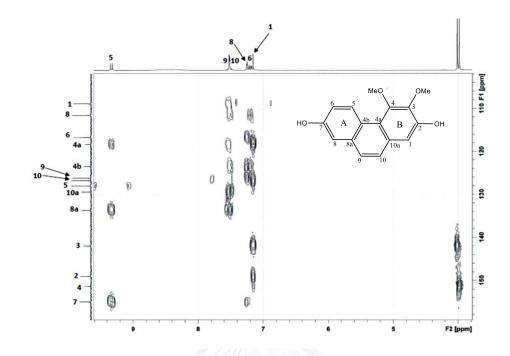


Figure 30 HMBC spectrum of compound DFM-5 (in acetone- d_6)

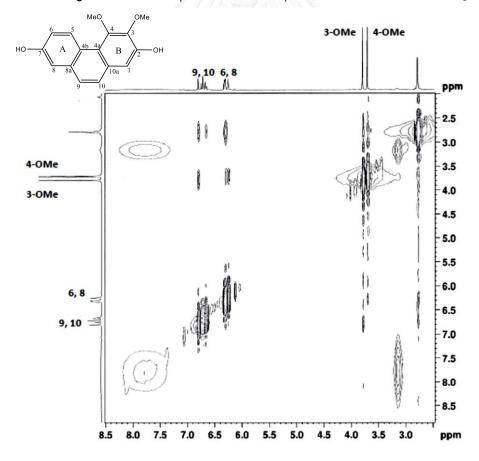


Figure 31 NOESY spectrum of compound DFM-5 (in acetone- d_6)

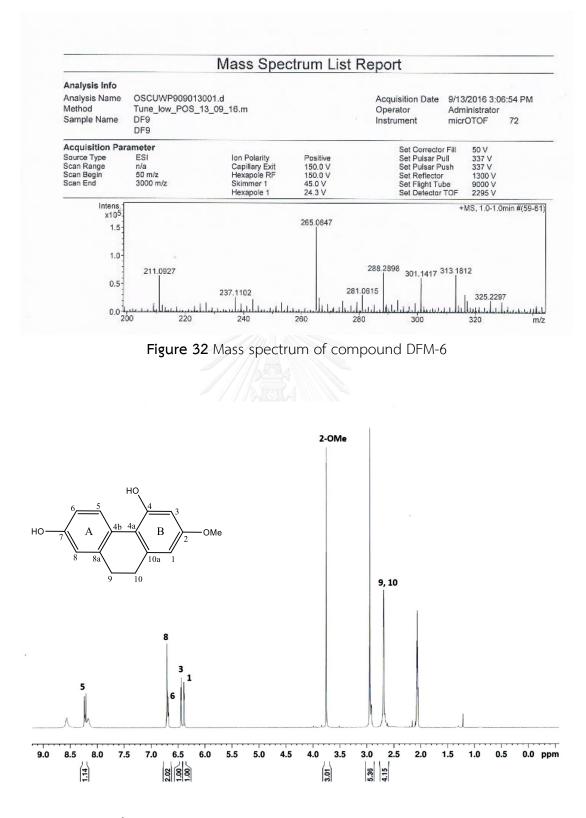


Figure 33 ¹H-NMR (300 MHz) spectrum of compound DFM-6 (in acetone- d_6)

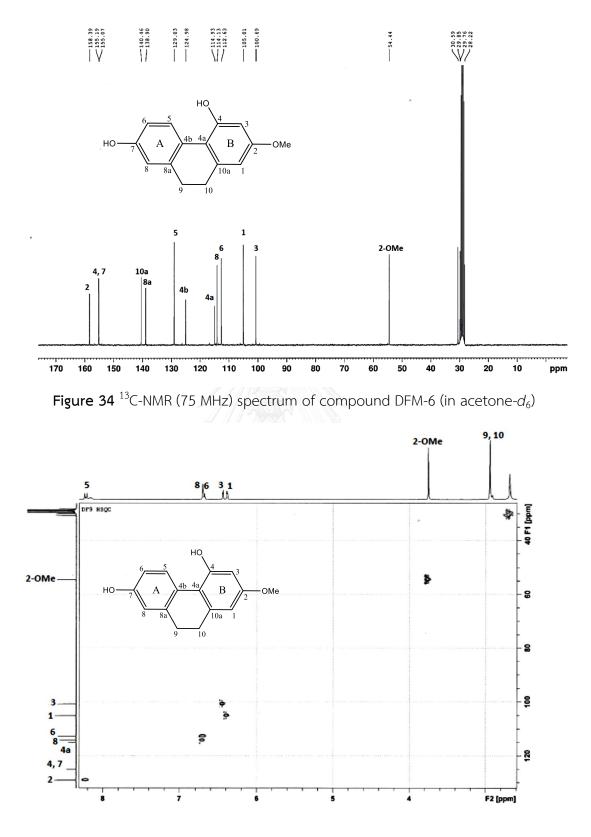


Figure 35 HSQC spectrum of compound DFM-6 (in acetone- d_6)

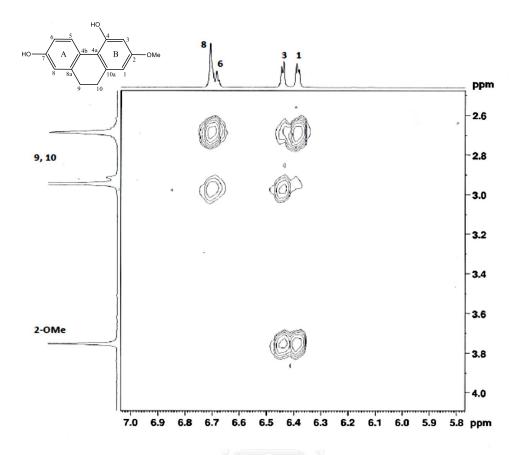


Figure 36 NOESY spectrum of compound DFM-6 (in acetone- d_6)

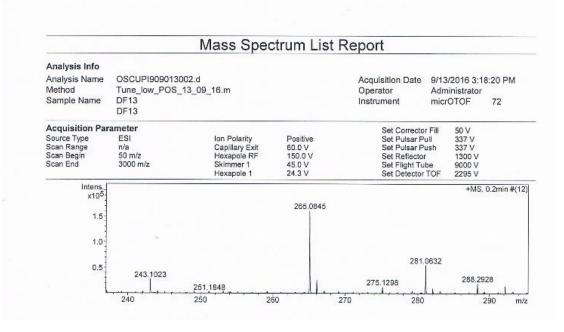


Figure 37 Mass spectrum of compound DFM-7

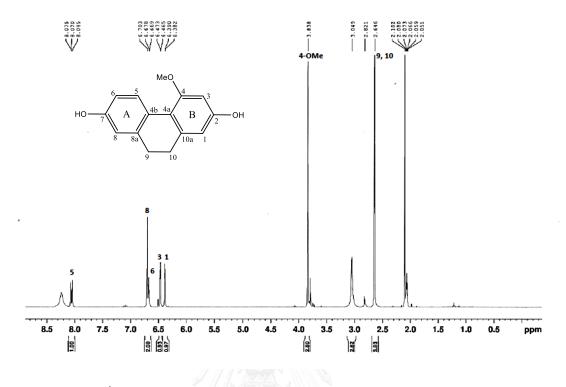


Figure 38 ¹H-NMR (300 MHz) spectrum of compound DFM-7 (in acetone- d_6)

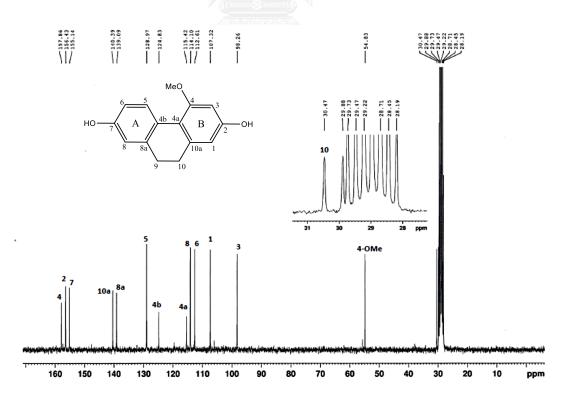
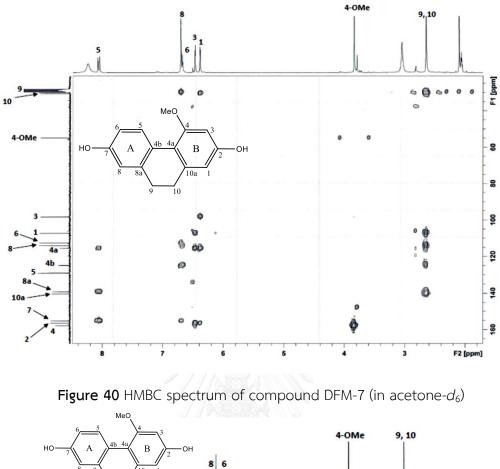



Figure 39 13 C-NMR (75 MHz) spectrum of compound DFM-7 (in acetone- d_6)

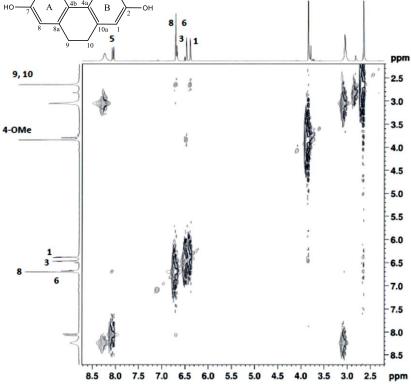
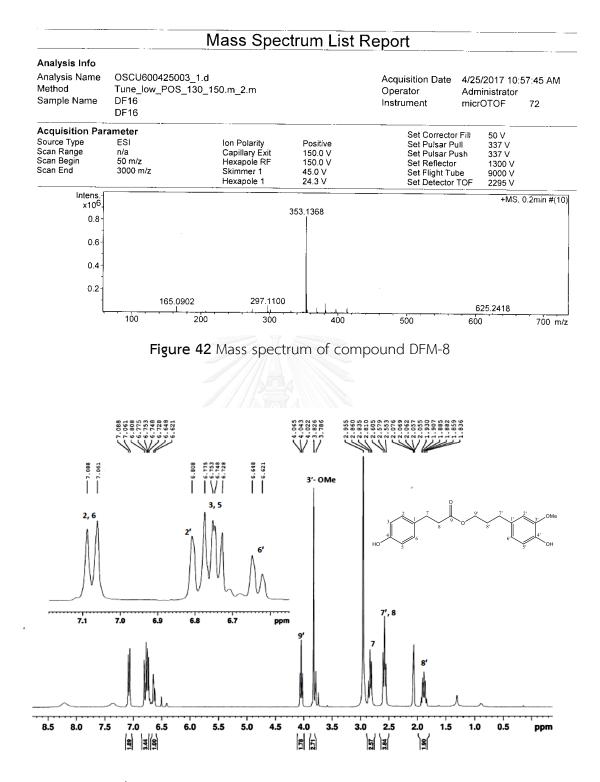



Figure 41 NOESY spectrum of compound DFM-7 (in acetone- d_6)

Figure 43 ¹H-NMR (300 MHz) spectrum of compound DFM-8 (in acetone- d_6)

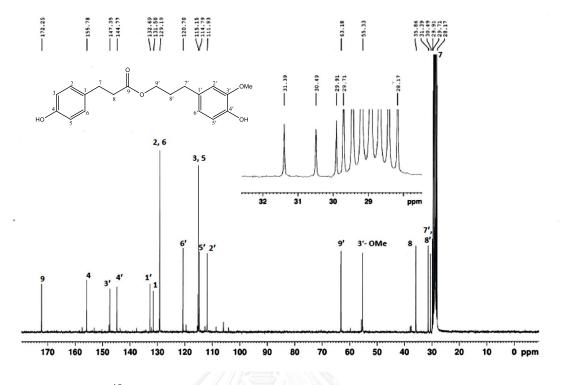


Figure 44 13 C-NMR (75 MHz) spectrum of compound DFM-8 (in acetone- d_6)

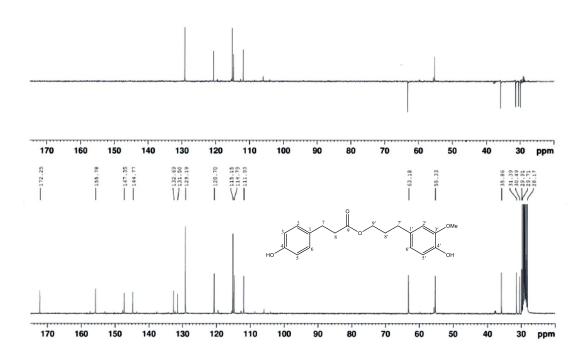


Figure 45 DEPT 135 spectrum of compound DFM-8 (in acetone- d_6)

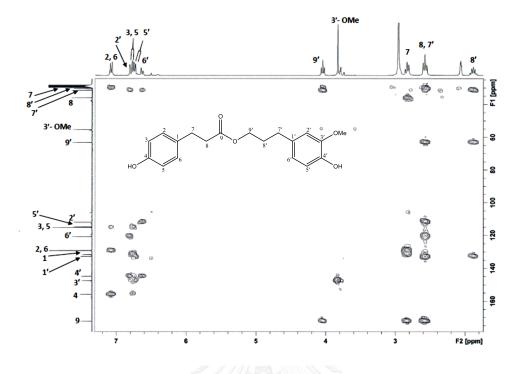


Figure 46 HMBC spectrum of compound DFM-8 (in acetone- d_6)

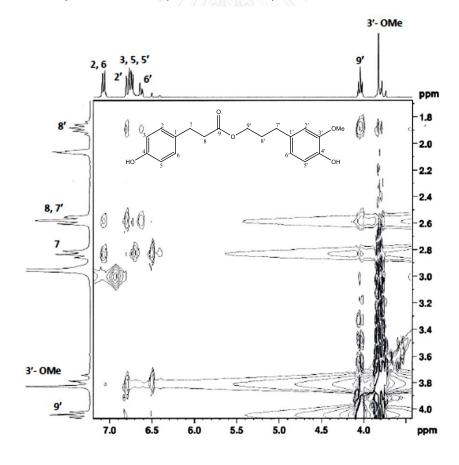
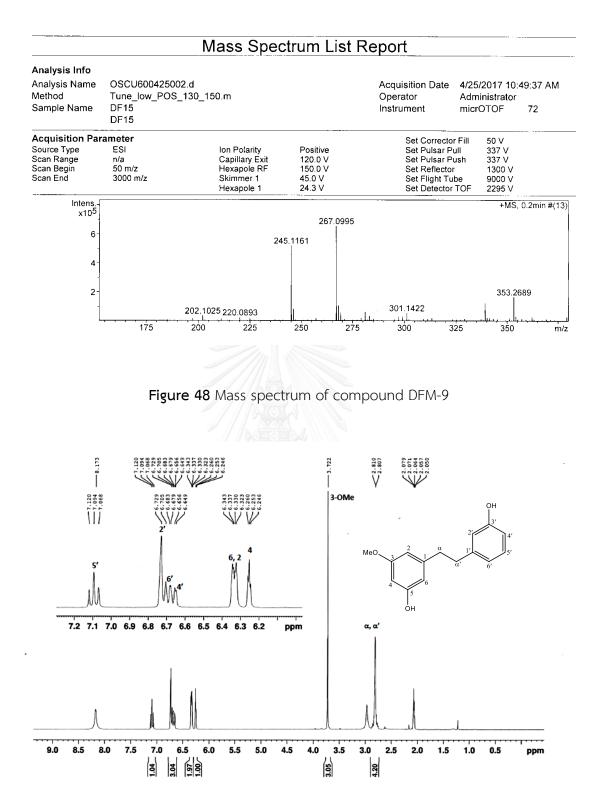



Figure 47 NOESY spectrum of compound DFM-8 (in acetone- d_6)

Figure 49 ¹H-NMR (300 MHz) spectrum of compound DFM-9 (in acetone- d_6)

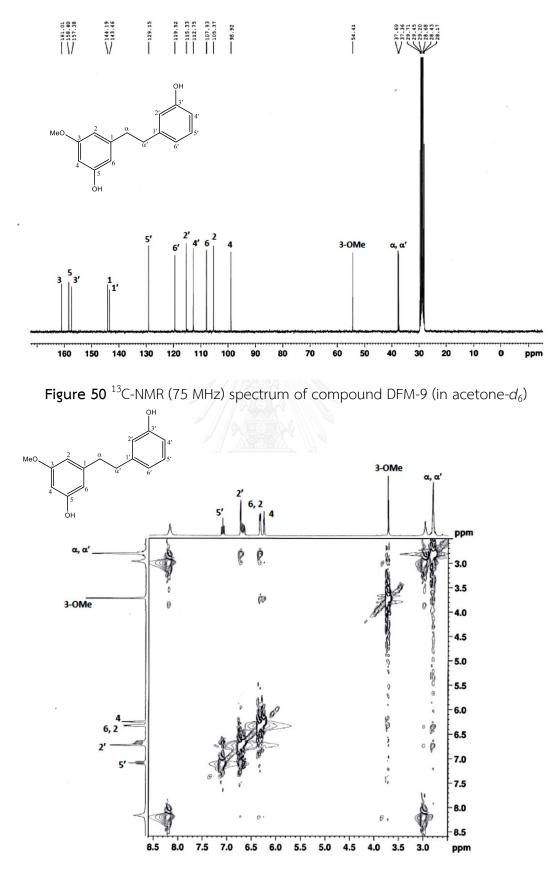


Figure 51 NOESY spectrum of compound DFM-9 (in acetone- d_6)

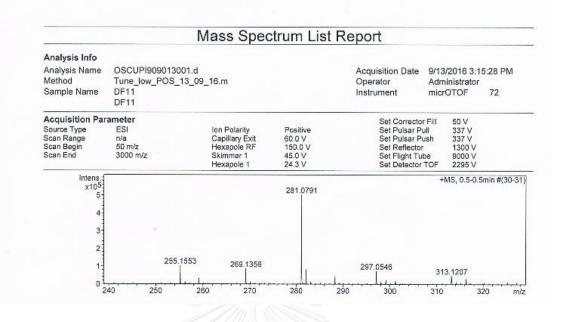


Figure 52 Mass spectrum of compound DFM-10

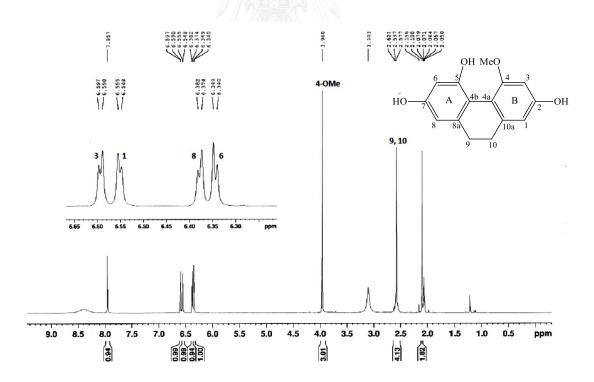
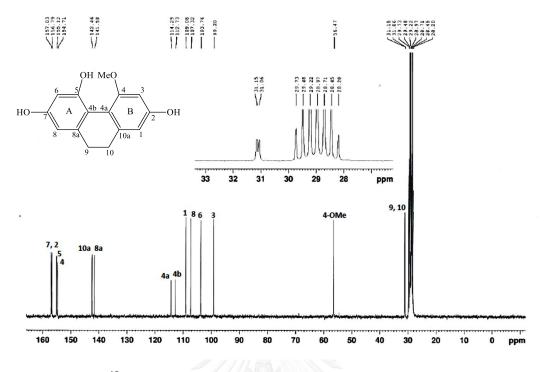
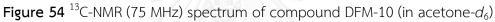




Figure 53 ¹H-NMR (300 MHz) spectrum of compound DFM-10 (in acetone- d_6)

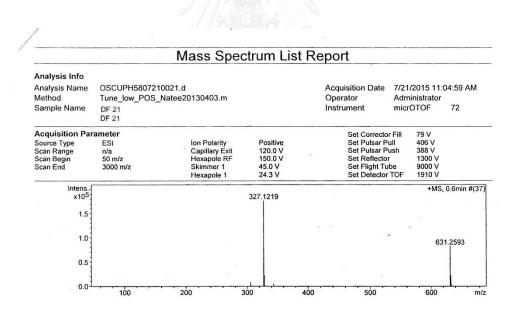
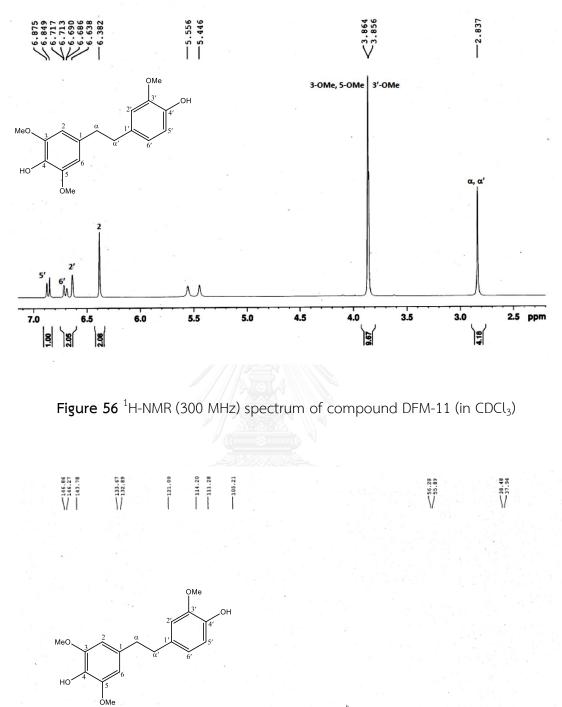



Figure 55 Mass spectrum of compound DFM-11

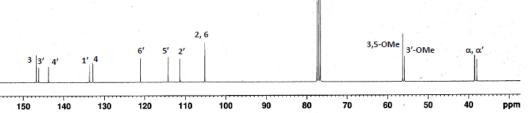


Figure 57 ¹³C-NMR (75 MHz) spectrum of compound DFM-11 (in CDCl₃)

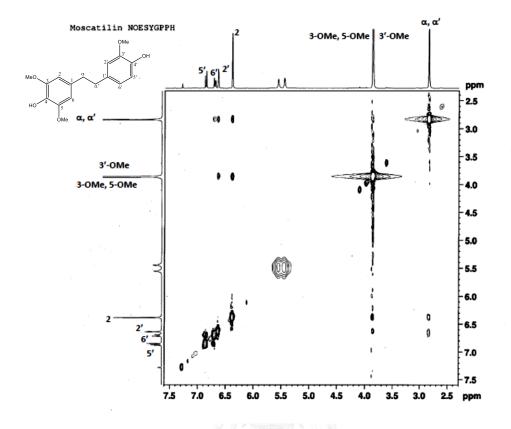


Figure 58 NOESY spectrum of compound DFM-11 (in CDCl₃)

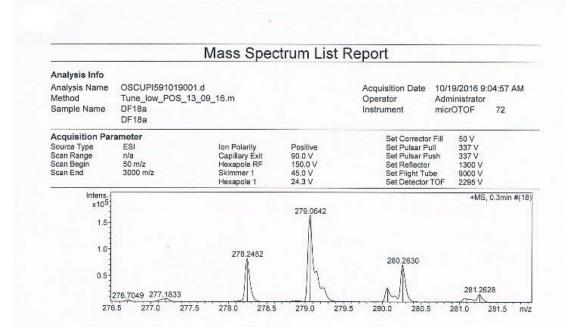


Figure 59 Mass spectrum of compound DFM-12

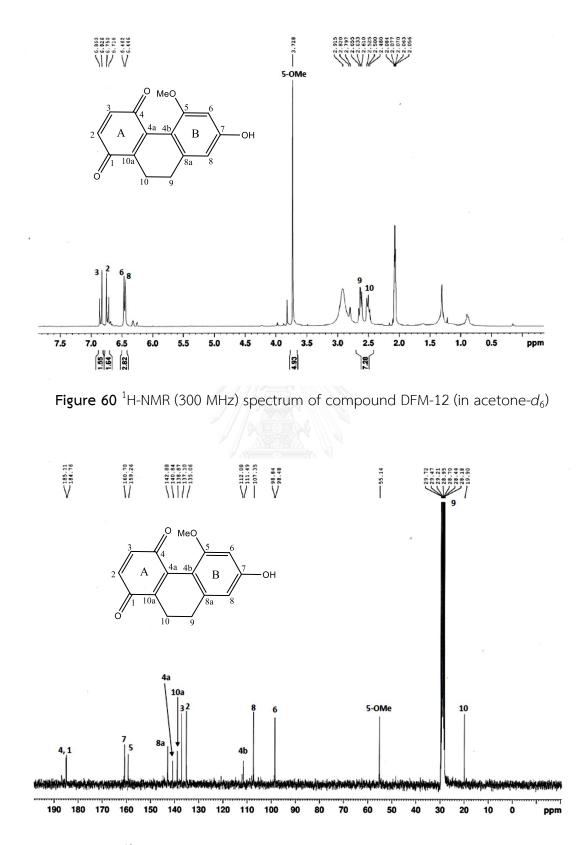


Figure 61 13 C-NMR (75 MHz) spectrum of compound DFM-12 (in acetone- d_6)

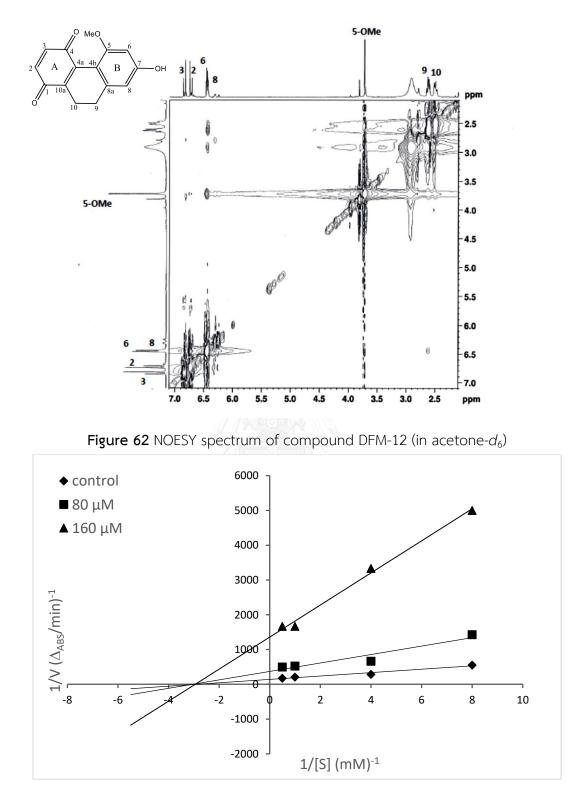
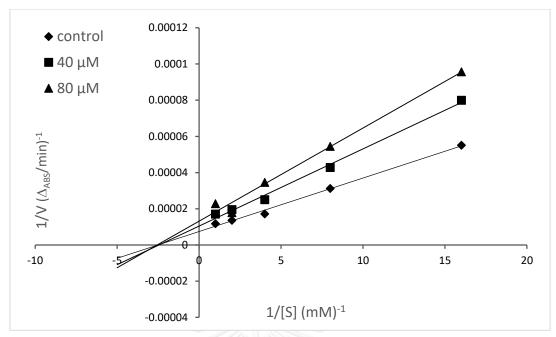
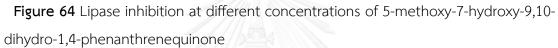




Figure 63 α -Glucosidase inhibition at different concentrations of 5-methoxy-7hydroxy-9,10-dihydro-1,4-phenanthrenequinone

VITA

Miss Prachyaporn Inthongkaew, was born on November 27, 1985, in Phatthalung, Thailand. She graduated with Bachelor's degree in Pharmacy in 2009 from the Faculty of Pharmaceutical Sciences, Prince of Songkhla University.

Publications:

Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., Sritularak, B. (2017) " Alpha-glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum." Revista Brasileira de Farmacognosia, accepted.

CHULALONGKORN UNIVERSITY