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CHAPTER I

INTRODUCTION

The notion of harmonic maps between Riemannian manifolds can be viewed as

the generalization of the classical notion of harmonic functions between Euclidean

spaces. A harmonic function from a bounded open set Ω ⊂ R
n into Rk is a

C2 function u : Ω → R
k which is a critical point of the “energy” functional

E(u) = 1
2

∫
Ω
|Du|2dx. It then follows that u must satisfy the following Euler-

Lagrange equation ∫
Ω

n∑
j=1

Dju ·Djζ dx = 0 (i)

for all ζ ∈ C∞
0 (Ω,Rk). This implies −4u = −

∑n
j=1

∂2u
∂x2

j
= 0 on Ω.

By the theorem of H. Weyl that any weakly harmonic map (i.e. weakly dif-

ferentiable function verified (i)) is harmonic, it motivates the following definition

of harmonic maps. A harmonic map from a bounded open set Ω ⊂ R
n into a

smooth compact Riemannian manifold N , which can be assumed to be isometri-

cally embedded in some Rk, is a weakly differentiable function u : Ω → R
k such

that u(x) ∈ N for a.e. x ∈ Ω (with respect to the Lebesgue measure on Ω) and it

is a critical point of the “energy” functional E(u) = 1
2

∫
Ω
|Du|2dx.

The Euler-Lagrange equation of harmonic maps are the following nonlinear

partial differential equation

−4u =
n∑

j=1

Au(Dju, Dju),

where Au is the second fundamental form of N in Rk. In particular, for harmonic

maps into spheres u : Ω → Sk−1, the Euler-Lagrange equation have the following
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form

−4u = u|Du|2. (ii)

Here, u weakly solves (ii) in the sense that
∫

Ω

∑n
j=1 Dju ·Djζ dx =

∫
Ω

u · ζ|Du|2dx

for all ζ ∈ C∞
0 (Ω,Rk). The extension from Ω ⊂ R

n to be arbitrary smooth

compact Riemannian manifolds involves simple technical modifications.

Harmonic functions have very nice differentiable properties, in fact any har-

monic functions are smooth. But in contrast, general harmonic maps do have

singular points, that is they have only partial regularity properties. In some ex-

treme cases, there is an example of everywhere discontinuous harmonic map due

to T. Riviére. For general harmonic maps it is of great interest to study both

analytic and geometric properties of the sets of singular points.

The harmonic maps that we defined above is often called weakly harmonic

map. There are also the stationary and minimizing harmonic maps. In our work,

we are mainly concerned with the minimizing harmonic maps. Though we also

derive the variational identities for each types of harmonic maps in chapter 3.

The Existence Questions:

There is an important question, since the beginning of harmonic maps, about the

existence of certain harmonic maps. The goal is to find whether there exists a

harmonic map in a given homotopy class of a smooth map. A technique used to

solve this question is to study the harmonic map flow equation. This is the heat

equation associated with certain harmonic map equation.

The Regularity Questions:

This question involves both interior and boundary regularity properties. Since

the equation of harmonic maps is of quasilinear elliptic type, the main tools for

analyzing interior regularity come from the theory of elliptic partial differential
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equations. For interior regularity, the harmonic maps of stationary and minimizing

types yield similar results. In fact they have quite similar criterion for a point to

be regular, the small energy regularity theorem (also called ε-regularity theorem).

In this work, we shall mainly concerned with the interior regularity question.

In addition, we only restrict our maps to the case that targets are the standard

spheres. Our main result is an alternative proof of the small energy regularity

theorem. The approach is to use penalized energy functional of the functional E

indirectly. In the process we obtain a smooth minimizing harmonic map associated

with a given minimizing harmonic map. Finally we get the theorem by applying

the Bochner identity to the obtained smooth map and its corresponding gradient

estimate. At the intermediate step before we can get the smooth minimizing

map there is a question about the existence of the map minimizing the penalized

energy subjected to certain boundary conditions. We will treat this point in the

preliminary chapter.

Our work are organized into five chapters as follows.

In chapter II, we introduce fundamental facts from Functional Analysis, the

theory of Sobolev spaces, and the Calculus of Variations. We begin formulating

the harmonic maps problems in the chapter III. This include the derivation of

the Euler-Lagrange equations for each types of harmonic maps. In chapter IV,

we introduce the regularity theory of Elliptic Differential Equations. Chapter

V contains our main results about the partial regularity of harmonic maps to

spheres.



CHAPTER II

PRELIMINARIES

In this chapter we introduce various tools from the Theory of Partial Differential

Equations and the Calculus of Variations which are needed in the sequel. Most

propositions are supplied with proofs, since they can illustrate the techniques used

in the subjects.

2.1 Introduction

In modern PDE theory, we tackle an equation in two steps, first determine the

existence of solutions, then investigate the regularity of solutions. In the existence

part, appropriate underlying function spaces must be chosen, and this turns out

to be Sobolev spaces. We introduce an elementary theory of Sobolev spaces in the

next section via the notion of weak partial derivatives. Three important properties

of Sobolev functions: (1) Sobolev embedding theorem, (2) Rellich compactness

Lemma and (3) Poincaré inequality are discuss in the section (2.3). They are

essential tools in the regularity theory.

Since harmonic maps are defined to be minimizers (or critical points) of certain

energy functionals (i.e. harmonic maps is a Geometric Variational Problem), we

need to introduce some terminologies and results from the Calculus of Variation.

We will discuss the direct method in the Calculus of Variations in section (2.4). In

section (2.5) we propose the penalty approximation method for solving constrained

minimization problems.
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2.2 Sobolev Spaces

Nowadays, Sobolev spaces became the appropriate setting in modern theory of

partial differential equations. The underlying success is the generalized notion of

differentiation. So we begin with the definition of weak derivatives. (There is also

an alternative approach via Fourier transformation.)

We assume throughout this work that Ω denotes an open subset of Rn for

some n ≥ 2. In what follows, unless otherwise explicitly stated, we use the n-

dimensional Lebesgue measure for all measure-theoretic notions.

Weak Partial Derivatives

If u ∈ L1
loc(Ω) we call vj ∈ L1

loc(Ω), 1 ≤ j ≤ n, the j th-weak (partial) derivative of

u provided ∫
Ω

u Djϕ dx = −
∫

Ω

vj ϕ dx, ∀ϕ ∈ C∞
0 (Ω).

In this case we simply write vj = Dju (more explicitly, Dxj
u(x) if xj is the jth

coordinate of x), so the identity take the familiar Gauss identity. It is easy to

verify that such vj is unique (almost everywhere).

Note that if u ∈ C1(Ω) then the above identity, with vj coincides with the jth

classical partial derivative, is a consequence of the integration by parts formula.

So the notion of weak derivatives is indeed “weaker” than the classical notion.

In general, for a multi-index α = (α1, . . . , αn), (αi ∈ N ∪ {0}), we say that a

function vα ∈ L1
loc(Ω) is the αth-weak (partial) derivative of a function u ∈ L1

loc(Ω)

provided ∫
Ω

u Dαϕ dx = (−1)|α|
∫

Ω

vαϕ dx, ∀ϕ ∈ C∞
0 (Ω),

here |α| =
∑

i αi. Note carefully that Dαϕ on the left is the αth classical derivative

of ϕ. As above, we denote vα = Dαu and if such vα exists then it is unique. Also,
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if u ∈ C |α|(Ω) then vα is just the classical derivative

Dαu =
∂|α|u

∂ xα1
1 · · · ∂ xαn

n

= Dα1
1 · · ·Dαn

n u.

Sobolev Spaces: Scalar-Valued

Let m ∈ N and 1 ≤ p < ∞. A function u ∈ Lp(Ω) is called a Sobolev function if

Dαu exist, for all |α| ≤ m, and they lie in Lp(Ω). Let Wm,p(Ω) denote the space

of all such functions u, and it is called a Sobolev space. As in Lp spaces, any two

functions in Wm,p(Ω) are identified if they are equal almost everywhere.

In the following we list some basic facts about Sobolev spaces, and leave more

involved concepts to the next section.

The space Wm,p(Ω) is a Banach space under the norm

‖u‖W m,p(Ω) =
{ ∑

0≤|α|≤m

∫
Ω

|Dαu|p dx
}1/p

.

Note that ui → u in Wm,p(Ω) if and only if Dαui → Dαu in Lp(Ω) as i →∞ for

all 0 ≤ |α| ≤ m. If p = 2 we particularly use Hm(Ω) = Wm,2(Ω). Hm(Ω) is a

Hilbert space under the inner product

(u, v)Hm(Ω) =
∑

0≤|α|≤m

∫
Ω

Dαu Dαv dx.

We also use Wm,p
0 (Ω) (and Hm

0 (Ω)) to denote the closure of C∞
0 (Ω) in Wm,p(Ω)

(and in Hm(Ω), respectively). The space H1
0 (Ω) has the following equivalent inner

product

(u, v)H1
0 (Ω) =

n∑
j=1

∫
Ω

Dju Djv dx,

(for a proof see Rellich compactness lemma in the next section). By mollification,

it can be shown that the smooth functions in Wm,p(Ω) are dense in the space

Wm,p(Ω). Furthermore, ζ ∈ C∞
0 (Ω) and u ∈ Wm,p(Ω), then ζu ∈ Wm,p

0 (Ω).
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The space Lp(Ω) is separable if 1 ≤ p < ∞ and is reflexive if 1 < p < ∞.

Wm,p(Ω), which can be identified as a closed subspace of certain product space

[Lp(Ω)]N , also has the inherited properties from Lp(Ω). Thus Wm,p(Ω) is separable

if 1 ≤ p < ∞ and is reflexive if 1 < p < ∞. In partial differential equations theory,

we mainly interest in the case where 1 < p ≤ n (see Sobolev embedding theorem).

Sobolev Spaces: Vector-Valued

Let u : Ω → R
k, u = (u1, . . . , uk). We say that u ∈ Wm,p(Ω,Rk) if ui ∈ Wm,p(Ω)

for all 1 ≤ i ≤ k. Wm,p(Ω,Rk) is called a Sobolev space. By the definition,

Wm,p(Ω,Rk) can be identified with the product space [Wm,p(Ω)]k.

For each u ∈ W 1,p(Ω,Rk), we regard Du as an k × n matrix (Dju
i) with a

matrix norm

|Du|2 =
k∑

i=1

n∑
j=1

(Dju
i)2.

We also define |Du|p = (|Du|2)p/2. This notion can be generalized to higher order

in a similar manner, i.e. for u ∈ Wm,p(Ω,Rk), we regard Dmu as an array {Dαui}

over all |α| = m, 1 ≤ i ≤ k, and define |Dmu|2 =
∑k

i=1

∑
|α|=m(Dαui)2.

We will use the vector notation Dju · Djv to denote
∑k

i=1 Dju
i Djv

i, and

Dαu ·Dαv =
∑k

i=1 Dαui Dαvi for each multi-index α.

Many properties in the scalar case are carried over to this case by trivial

modifications. For example, we define the norm on Wm,p(Ω,Rk) by

‖u‖W m,p(Ω,Rk) =
{ k∑

i=1

∑
0≤|α|≤m

∫
Ω

|Dαui|p dx
}1/p

.

It is easy to show that Wm,p(Ω,Rk) is a Banach space under this norm. Similar

to the real-valued Sobolev spaces, Hm(Ω,Rk) is a Hilbert space under the inner

product

(u, v)Hm(Ω,Rk) =
∑

0≤|α|≤m

∫
Ω

Dαu ·Dαv dx.
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The smooth functions in Wm,p(Ω,Rk) are dense in this space. There is also an

equivalent inner product for H1
0 (Ω,Rk) (∼=

[
H1

0 (Ω)
]k

) given by

(u, v)H1
0 (Ω,Rk) =

n∑
j=1

∫
Ω

Dju ·Djv dx.

The separability and reflexivity of Wm,p(Ω,Rk) are exactly the same as in scalar

case. Lastly, if ζ ∈ C∞
0 (Ω) then ζu ∈ Wm,p

0 (Ω,Rk) for all u ∈ Wm,p(Ω,Rk).

2.3 Properties of Sobolev Functions

In this section we introduce Sobolev embedding theorem, Rellich compactness

lemma, and Poincaré inequality. These propositions are the essential tools in the

theory of partial differential equations. See Chapter (4) for some applications.

Sobolev Embedding Theorem

Recall a normed linear space X is continuously embedded in a normed linear space

Y , written X ↪→ Y , if (1) X can be identified as a linear subspace of Y and

(2) there is a constant C such that ‖u‖Y ≤ C‖u‖X for all u ∈ X. By compact

embedding, we mean that every bounded sequence in X contains a convergent

subsequence in Y .

Theorem 2.1 (Sobolev Embedding Theorem). Suppose Ω is a bounded

open subset of Rn and it has a C1 boundary. Let m ∈ N and 1 ≤ p < ∞.

1. If mp < n then Wm,p(Ω) ↪→ Lq(Ω) for all 1 ≤ q ≤ np
n−mp

. Moreover, it is a

compact embedding if 1 ≤ q < np
n−mp

.

2. If there is an integer d ≥ 0 such that d < m − n
p

< d + 1 then Wm,p(Ω) is

continuously embedded in Cd,α(Ω) for all 0 ≤ α ≤ m− n
p
− l and the embedding

is compact if α < m− n
p
− l.
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This theorem says roughly that weakly differentiable Lp functions are in higher

order Lq spaces or in Hölder spaces. By interpolation, it is well-known that any

Lp function over a bounded domain is in lower order Lq spaces. Thus Sobolev

embedding theorem gives a reverse interpolation for Wm,p functions. The key for

proving part 1 is the corollary of the following inequality.

Lemma 2.2 (Gagliardo-Nirenburg-Sobolev Inequality). Let 1 ≤ p < n.

There is a constant C depends only on n and p such that

{∫
Rn

|u|p∗ dx
}1/p∗

≤ C
{∫

Rn

|Du|p dx
}1/p

,

for all u ∈ C1
0(Rn), where p∗ = np

n−p
.

Proof. First we prove for p = 1, that∫
Rn

|u|
n

n−1 dx ≤
{∫

Rn

|Du| dx
} n

n−1
.

Fixed x̃ = (x̃1, . . . , x̃n). Since u has a compact support, u(x̃) =
∫ x̃j

−∞ Dxj
u dxj. So

|u(x̃)| ≤
∫ +∞
−∞ |Du| dxj for all 1 ≤ j ≤ n, and hence

|u(x̃)|
n

n−1 ≤
n∏

j=1

( ∫ +∞

−∞
|Du| dxj

) 1
n−1

.

This holds for all x̃ so we can omit the tilde. Recall the following version of Hölder

inequality:
∫
|f1 · · · fn−1|1/(n−1) ≤

∏n−1
j=1{

∫
|fj|}1/(n−1) for all measurable functions

f1, . . . , fk. Integrate over x1 from −∞ to +∞ and note that (
∫ +∞
−∞ |Du| dx1)

1/(n−1)

can be moved out of the integral, we then apply Hölder inequality to the remaining

n− 1 terms and we obtain that∫ +∞

−∞
|u|

n
n−1 dx1 ≤

( ∫ +∞

−∞
|Du| dx1

) 1
n−1

n∏
j=2

( ∫ +∞

−∞

∫ +∞

−∞
|Du| dx1dxj

) 1
n−1

.

Again, integrating over x2 and note that the term (
∫ +∞
−∞

∫ +∞
−∞ |Du| dx1dx2)

1/(n−1)

can be moved out of the integral, we can apply Hölder inequality to the remaining
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n− 1 terms and so that∫ +∞

−∞

∫ +∞

−∞
|u|

n
n−1 dx1dx2 ≤

( ∫ +∞

−∞

∫ +∞

−∞
|Du| dx1dx2

) 2
n−1

n∏
j=3

( ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
|Du| dx1dx2dxj

) 1
n−1

.

By continuing the procedure with x3, . . . , xn respectively, we get the desired in-

equality.

Now consider for general p > 1. Let λ > 1 be a constant to be chosen later.

Apply the result for p = 1 to the function |u|λ one obtains that( ∫
Rn

|u|
λn

n−1 dx
)n−1

n ≤ λ

∫
Rn

|u|λ−1|Du| dx.

By Hölder’s inequality,
∫
Rn |u|λ−1|Du| dx ≤ (

∫
Rn |u|

(λ−1)p
p−1 dx)

p−1
p (

∫
Rn |Du|p dx)

1
p .

Now choose λ so that λn
n−1

= (λ−1)p
p−1

= p∗. Then( ∫
Rn

|u|p∗ dx
)n−1

n ≤ C
( ∫

Rn

|u|p∗ dx
) p−1

p
( ∫

Rn

|Du|p dx
) 1

p
,

this implies the theorem. �

Corollary 2.3 (Sobolev Inequality). Let 1 ≤ p < n. Then there is a constant

C = C(n, p) such that{∫
Ω

|u|p∗dx
}1/p∗

≤ C
{∫

Ω

|Du|p dx
}1/p

,

for all u ∈ W 1,p
0 (Ω).

Proof. Take a sequence uj ∈ C∞
0 (Ω) such that uj → u in W 1,p(Ω). This implies

uj → u strongly in Lp(Ω) hence there is a subsequence uj′ such that uj′ → u

pointwise a.e. on Ω. Extend each uj′ to a smooth function on Rn by setting

uj′ ≡ 0 on Ωc. By the previous lemma, uj′ satisfies{∫
Ω

|uj′|p
∗
dx

}1/p∗

≤ C(n, p)
{∫

Ω

|Duj′|p dx
}1/p

.

The right hand side converges to C‖Du‖Lp(Ω). Apply Fatou’s lemma to the left

hand side, and we are done. �
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Corollary 2.4. If Ω ⊂ Rn is a bounded C1 domain and 1 ≤ p < n, then there is

a constant C depends only on n, p and Ω such that

‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω),

for all u ∈ W 1,p(Ω).

We omit the proof here. Roughly speaking, the idea is to extend W 1,p functions

on Ω to W 1,p
0 functions over Rn. Under the smoothness assumption of Ω, we can

apply the Sobolev inequality. Now by interpolation, ‖u‖Lq(Ω) ≤ C|Ω|(
1
q
− 1

p∗ )‖u‖W 1,p(Ω),

for all 1 ≤ q ≤ p∗.

Additionally, if the domain Ω possesses certain symmetry, then we can remove

the dependence on Ω out of the constant C. This is the case for domain that is

a ball, i.e. BR(x0) = x0 + RB1(0). For elliptic (interior) regularity theory, we can

always restrict the domain to a ball. In particular, we have the following lemma.

Lemma 2.5. Let R > 0, 1 ≤ p < n. Then there is a constant C depends only on

n and p such that

‖u‖Lp(BR(x0)) ≤ CR‖u‖W 1,p(BR(x0)),

for all u ∈ W 1,p(BR(x0)).

Proof. By interpolation, there is C0 such that

{∫
B1(0)

|w|pdx
}1/p

≤ C0|B1(0)|
1
n‖w‖W 1,p(B1(0)),

for all w ∈ W 1,p(B1(0)). For each u ∈ W 1,p(BR(x0)), we define w(x) = u(x0 +

Rx). Thus w ∈ W 1,p(B1(0)) and satisfies the inequality above. By the change of

variables y = x0 + Rx, we see that

R−n/p
{∫

BR(0)

|u|pdx
}1/p

≤ C0|B1(0)|
1
n R1−n/p

{∫
BR(0)

|Du|pdx
}1/p

.

This proves the assertion. Also, note that C0 depends only on n and p. �



12

By the same argument as above, we can split the dependence on the domain

of multiplier constant in Poincaré inequality for the domain that is a ball.

Rellich Compactness Lemma

First we introduce the equivalent norm for W 1,p
0 space. The proof is just the

application of Sobolev inequality and interpolation of Lp functions.

Lemma 2.6. Suppose Ω ⊂ R
n is open, 1 ≤ p < n. Then W 1,p

0 (Ω) has the

following equivalent norm

‖u‖W 1,p
0 (Ω) =

{ n∑
j=1

∫
Ω

|Dju|pdx
}1/p

.

Now we describe Rellich Compactness Lemma. It is a direct consequence of

Sobolev Embedding Theorem and general theorems from Functional Analysis (see

section(2.4) for the details definition of weak convergence “⇀”).

Lemma 2.7 (Rellich Compactness Lemma). Let Ω ⊂ R
n be a bounded

domain with a C1 boundary and 1 < p < n. If {uj} is a bounded sequence in

W 1,p(Ω) then there is a subsequence {uj′} and u ∈ W 1,p(Ω) such that

(1) uj′ ⇀ u in W 1,p(Ω), and

(2) uj′ → u in Lp(Ω),

(3) ‖Du‖Lp(Ω) ≤ lim inf
j′→∞

‖Duj′‖Lp(Ω).

Proof. (1) follows from reflexivity of W 1,p(Ω). By Sobolev Embedding Theorem,

W 1,p(Ω) ↪→ Lp(Ω) is compact, so there is a subsequence of {uj′} that converges

strongly in Lp(Ω) to some ũ. But strong convergence implies weak convergence,

thus ũ = u. This proves (2) by choosing this subsequence of uk′ instead. The
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assertion (3) follows from the previous lemma and the weak lower semi-continuity

of norms. �

Poincaré Inequality

The Poincaré inequality gives the bound for the mean-square oscillation by norm

of the gradient. Using it with Campanato lemma (see the next chapter) we can

prove Hölder continuity of solutions of second order elliptic equations.

Lemma 2.8 (Poincaré Inequality). Let Ω ⊂ Rn be a bounded connected

domain with a C1 boundary. Then there is a constant C depends only on n and

Ω such that every u ∈ H1(Ω) satisfies∫
Ω

|u− (u)Ω|2dx ≤ C

∫
Ω

|Du|2dx,

where (u)Ω = |Ω|−1
∫

Ω
u. In particular, Ω is an open ball BR(x0) we have the

following more explicit estimate∫
BR(x0)

|u− (u)BR(x0)|2dx ≤ CR2

∫
BR(x0)

|Du|2dx,

for all u ∈ H1(BR(x0)), where C depends only on n.

Proof. We prove by contradiction. Suppose the assertion fails, i.e. there is a

sequence {uj} ⊂ H1(Ω) such that∫
Ω

|uj − (uj)Ω|2dx > j

∫
Ω

|Duj|2dx,

for each j. Define vj = {uj − (uj)Ω}/‖uj − (uj)Ω‖L2(Ω) ∈ L2(Ω) for each j. Then

each vj satisfies (vj)Ω = 0, ‖vj‖L2(Ω) = 1, and
∫

Ω
|Dvj|2 < 1

j
. Apply Rellich

Compactness Lemma to {vj}, we can find vj′ ⇀ v in H1(Ω) and vj′ → v in L2(Ω)

and ‖Dv‖L2(Ω) ≤ lim infj′→∞ ‖Dvj′‖L2(Ω) = 0. The later implies v is constant a.e.

on Ω, but the former implies ‖v‖L2(Ω) = 1 so (v)Ω 6= 0. By weak convergence, we
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get (v)Ω = limj′→∞(vj′)Ω = 0, which is a contradiction. For the domain that is a

ball, we apply the argument of lemma (2.5). �

2.4 The Direct Methods in The Calculus of Variations

A typical problem in the Calculus of Variations concerns with minimizing (or

finding critical points) of a functional over a carefully chosen function space. The

problem may subject to topological constraints (such as functions are subjected

to certain boundary conditions) or geometric constraints (such as functions have

image in manifolds). In this section we ourselves restrict to the unconstrained

minimization problems and discuss the direct methods. Then in the next section

we will consider the penalty approximation approach to the constrained problems.

Unconstrained Minimization Problems

Suppose we need to minimize a functional E : X → R over a Banach space X.

That is, we want to see whether there exists a u ∈ X such that

E(u) = inf
w∈X

E(w).

The basic example is the following: given a function f : Ω×R×Rn → R and let

E(w) =

∫
Ω

f(x, w(x), Dw(x)) dx.

For instance, if f = |Dw|2, we have the standard Dirichlet problem, and if f =

|Dw|2 −G(x)w we obtain the Poisson problem. If we let f =
√

1 + |Dw|2 we get

the classical minimal surface problem.

The space X and the functional E must have certain properties, to guarantee

the existence of such u.
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Before proceeding further, we recall some basic facts and results from Func-

tional Analysis.

1. If X is a normed linear space, then there is a canonical injection i : X → X∗∗

given by i(u)(v∗) = v∗(u) (v∗ ∈ X∗) for each u ∈ X. Clearly, i is a bounded linear

operator. Moreover, ‖i(u)‖ = ‖u‖ for all u ∈ X. The space X is said to be

reflexive if i is an isometric isomorphism from X onto X∗∗.

2. Let X be a normed linear space. A sequence {uj} in X is said to converge

weakly to u ∈ X, and write uj ⇀ u in X, if for all v∗ ∈ X∗, v∗(uj) → v∗(u). For a

reflexive Banach space X, every bounded sequence contains a weakly convergent

subsequence.

3. Let 1 ≤ p < ∞ and Ω ⊂ R
n. Then uj ⇀ u in Lp(Ω) if and only if∫

Ω
ujv →

∫
Ω

uv for all v ∈ Lp′(Ω), where p′ = p/(p − 1). We say that uj ⇀ u in

W 1,p(Ω) if uj ⇀ u in Lp(Ω) and Duj ⇀ Du in Lp(Ω).

The Direct Methods

Definition. A functional E : X → R on a normed linear space X is said to be

coercive if for any sequence {uj} in X with ‖uj‖X →∞ then E(uj) → +∞.

Let {uj} be a minimizing sequence, i.e. E(uj) → inf E as j → ∞. Since

inf E < +∞, if E is coercive then {uj} must be bounded in X.

The next definition provides an additional condition on the functional E and

the space X that guarantee the existence of minimizers.

Definition. A functional E : X → R is said to be (weakly) lower semi-continuous

if the following assertion holds: if uj converges (weakly) to u in X then E(u) ≤

lim infj→∞ E(uj).

Note that if E is continuous with respect to the norm (or weak) topology of X

then lim infj→∞ E(uj) = E(u) = lim supj→∞ E(uj) if uj converge (weakly, resp.)
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to u in X. An example of weakly lower semi-continuous functional on any Banach

space X is its norm. That is if uj ⇀ u in X then ‖u‖X ≤ lim infj→∞ ‖uj‖X .

Now we return to the discussion of the minimization problem. Given a reflexive

Banach space X and assume that the functional E is coercive and weakly lower

semi-continuous. Let {uj} be a minimizing sequence. By the boundedness of

{uj}, there is a subsequence uj′ ⇀ u in X for some u ∈ X. Hence, by weakly

lower semi-continuous of E

E(u) ≤ lim
j′→∞

E(uj′) = inf
w∈X

E(w).

This established a minimizer u of E in X. For convenience, we state this result

as a lemma.

Lemma 2.9. Let X be a reflexive Banach space. Let E : X → R be a coer-

cive, weakly lower semi-continuous functional on X. Then E attains at least one

minimizer in X.

2.5 Penalized Approximation

In this section we introduce the penalty approximation technique to tackle mini-

mization problems with constraints. To minimize a functional subjected to certain

constraints are difficult. This means in particular that now we are minimizing the

functional over nonlinear space.

The idea of penalization approximation technique is to replace a functional

with constraints by approximated constraint-free functionals over a Banach space.

Afterward, we solve the approximated minimization problems by the direct method,

and expect that the sequence of the associated minimizers may converge to a min-

imizer of the original functional.
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Constrained Minimization Problems

Assumptions: Given X is a reflexive Banach space, E, G : X → R are nonneg-

ative weakly lower semicontinuous functionals, E is coercive, and G attains zero

in X. We wish to minimize the functional E subjected to the constraint G, that

is to determine whether there exists u ∈ X satisfying G(u) = 0 and

E(u) = inf
w∈X, G(w)=0

E(w).

Penalized Approximation Approach

For each ε > 0, we define the functional

Eε(w) = E(w) +
1

ε
G(w),

and the corresponding relaxed minimization problem

Eε(uε) = inf
w∈X

Eε(w).

By the direct method, we immediately have the following conclusion: under the

above assumptions on X, E and G, then there exists at least one minimizer uε ∈ X

for each Eε.

Now choose a minimizer uε for each Eε and let κ(ε) = Eε(uε). The map

ε 7→ Eε(w) is non-increasing for each w ∈ X. Also, we observe that ε 7→ κ(ε) is

non-increasing. In fact, if 0 < ε1 < ε2 then

κ(ε2) ≤ E(w) +
1

ε2

G(w) ≤ E(w) +
1

ε1

G(w),

for all w ∈ X. Hence κ(ε2) ≤ κ(ε1). Since κ(ε) is locally Lipschitz except a null

set, κ(ε) is differentiable almost everywhere by Rademacher’s theorem.

Theorem 2.10. Under the above assumption on X, E and G. Then κ(ε) is

bounded and there is a sequence εj → 0 and minimizers uεj
for each Eεj

and a
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minimizer u ∈ X of E satisfying G(u) = 0 such that uεj
⇀ u in X and

ε−1
j G(uεj

) ≤ C| ln εj|−1,

for some constant C > 0.

Proof. We have κ(ε) ≤ Eε(v) = E(v) for all v satisfying G(v) = 0 and all ε; in

particular, κ(ε) ≤ infG(v)=0 E(v). Thus κ(ε) is bounded.

Consider for each ε such that κ is differentiable, we have

∣∣∣∂Eε

∂ε
(uε)

∣∣∣ = lim
ε′→ε+

Eε(uε)− Eε′(uε)

ε′ − ε
≤ lim

ε′→ε+

Eε(uε)− Eε′(uε′)

ε′ − ε
= |κ′(ε)|.

Note also that κ′ ≤ 0. If 0 < ε1 < ε2 then

κ(ε1)− κ(ε2) =

∫ ε2

ε1

|κ′(ε)| dε ≥ ess inf
ε1≤ε≤ε2

ε|κ′(ε)|
∫ ε2

ε1

1

ε
dε.

The term on the left is bounded and the term
∫ ε2

ε1

1
ε
dε = ln(ε2/ε1). Thus after

dividing by | ln ε1| and sending ε1 → 0, we conclude that

C| ln ε|−1 ≥ lim inf
ε→0

ε|κ′(ε)| ≥ lim inf
ε→0

ε
∣∣∣∂Eε

∂ε
(uε)

∣∣∣ = lim inf
ε→0

ε−1G(uε).

So there is a sequence εj → 0 such that

ε−1
j G(uεj

) ≤ C| ln εj|−1,

for all minimizers uεj
of Eεj

. In particular lim infj→∞ G(uεj
) = 0.

By coercivity of E, since E(uεj
) ≤ Eεj

(uεj
) = κ(εj) and the right hand side

is bounded, {uεj
} must be bounded. The reflexivity of X implies, by considering

subsequences if necessary, that there is a sequence {uεj
} and u ∈ X such that

uεj
⇀ u in X. As E, G are weakly lower semicontinuous, we have G(u) = 0 and

E(u) ≤ lim infj→∞ Eεj
(uεj

) ≤ infG(v)=0 E(v). This completes the proof. �



CHAPTER III

HARMONIC MAPS

This chapter is a detailed introduction to harmonic maps. They are purely varia-

tional objects. We study the case when the target spaces be any smooth compact

Riemannian manifolds. We also derive the corresponding variational identities,

i.e. the Euler-Lagrange equations. In the remaining section the penalized approx-

imation of harmonic maps to spheres problem is formulated.

3.1 Introduction

Roughly speaking, a harmonic map between two spaces is a critical point of certain

“energy” functional, among the maps with the same boundary values. In Physics,

harmonic maps are viewed as the direct generalization of the usual Laplace or

wave operators to nonlinear fields, i.e. fields that take values in curved manifold

not in Euclidean space. We remark here that, in the recent years, there are many

research papers related to harmonic maps in Mathematics or in Physics.

First of all we state our setting and give some conventions. We shall consider

harmonic maps which have the domain Ω that is an open subset of a Euclidean

space Rn, where n ≥ 2. The target space N of harmonic maps is assumed to be a

smooth compact Riemannian manifold. By Nash isometric embedding theorem,

N can be isometrically embedded in some Euclidean space Rk where k ≥ 2. For

a map u from Ω “into” N , we do not require u(Ω) ⊂ N but use the minimal

assumption that u(x) ∈ N for almost every x ∈ Ω. This is done in order to put
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the harmonic maps problem into the framework of modern PDE theory. Thus by

a map u : Ω → N , we mean u = (u1, . . . , uk) : Ω → R
k such that u(x) ∈ N for

almost every x ∈ Ω. Note that we have used the n-dimensional Lebesgue measure

on Ω. We say u ∈ H1(Ω, N) if u : Ω → N in the above sense and ui ∈ H1(Ω) for

all 1 ≤ i ≤ k. Recall H1(Ω) denotes the Sobolev space of those L2 functions on Ω

which have L2 gradients. Finally, we say u ∈ H1
loc(Ω, N) if u ∈ H1(Ω̃, N) for all

open set Ω̃ b Ω (i.e. Ω̃ has compact support in Ω).

3.2 Classification of Harmonic Maps

Generally, harmonic maps can be classified into three types based on certain

variational conditions.

For u ∈ H1
loc(Ω, N) and Ω̃ b Ω, we define the energy E(u, Ω̃) of u on Ω̃ by

E(u, Ω̃) =
1

2

∫
Ω̃

|Du|2dx,

where |Du|2 =
∑k

i=1

∑n
j=1(Dju

i)2.

1. Minimizing Harmonic Maps

A map u ∈ H1
loc(Ω, N) is called an (energy) minimizing harmonic map if for any

open set Ω̃ b Ω and all w ∈ H1
loc(Ω, N) with w ≡ u on Ω \ Ω̃

E(u, Ω̃) ≤ E(w, Ω̃).

To analyze interior regularity property, it is enough to assume that Ω is bounded,

and the definition becomes simpler. We say that u ∈ H1(Ω, N) is a minimizing

harmonic map if

E(u, Ω) ≤ E(w, Ω),

for all w ∈ H1(Ω, N) such that w ≡ u on a neighborhood of ∂Ω.
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2. Weakly Harmonic Maps

Suppose Ω is bounded. A map u ∈ H1(Ω, N) is said to be a weakly harmonic map

if it is a “weak” solution of the following system of nonlinear partial differential

equation

4u +
n∑

j=1

Au(Dju, Dju) = 0 on Ω,

where Au denotes the second fundamental form at the point u of N in Rk (see

the details below). By a weak solution u, we mean that u satisfies the following

integral equation ∫
Ω

n∑
j=1

{
Dju ·Djζ − ζ · Au(Dju, Dju)

}
dx = 0,

for all ζ ∈ C∞
0 (Ω,Rk), where v · w =

∑k
i=1 vi wi denotes the usual dot product of

vectors v, w in Rk.

We will show in the next section that the above equation of weakly harmonic

maps is the Euler-Lagrange equation of the energy functional E(u) =
∫

Ω
|Du|2 dx

(under small perturbations on the image).

3. Stationary Harmonic Maps

Suppose Ω is bounded. A map u ∈ H1(Ω, N) is said to be a stationary harmonic

map if it is weakly harmonic and satisfies∫
Ω

n∑
i,j=1

{
|Du|2δij − 2Diu ·Dju

}
Diζ

jdx = 0,

for all ζ ∈ C∞
0 (Ω,Rn). We will see that every minimizing harmonic map is

stationary harmonic.

Being stationary gives the monotonicity formula for harmonic maps. We will

also encounter the monotonicity identity in our penalized approximation set-

ting. In the next section, we will show in full details how to derive this iden-

tity. Roughly speaking, it is the Euler-Lagrange equation of the energy functional

E(u) = 1
2

∫
Ω
|Du|2dx (under perturbations on the domain Ω).
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Some Known Results of Harmonic Maps

Before proceeding further, let us discuss here some known results of harmonic

maps about their regularity properties. For a good survey see ([5]).

In case the domain has dimension n = 2, every harmonic map is smooth. This

was established for the minimizing harmonic case by C.E.B. Morrey in 1948, for

the stationary harmonic case by R. Schoen in 1983, and for the weakly harmonic

case by F. Hélein in 1991. Note here that by a map to be smooth, we do not mean

that it is smooth almost everywhere, but it must have a smooth representative

(in some Sobolev space).

Among the three types of harmonic maps, the weakly harmonic maps can have

the worst regularity properties. In fact, in 1995, T. Riviére proposed an example

of everywhere discontinuous weakly harmonic map from B1(0) ⊂ R3 to S2.

In general, for minimizing harmonic maps, a very important work of R. Schoen

and K. Uhlenbeck (see [7]) shows that if the domain has dimension n = 3, then any

minimizing harmonic maps are smooth away from a discrete set. If n ≥ 4, they

are smooth away from a (relatively) closed set of Hausdorff dimension ≤ n − 3.

The key ingredients in the proof are the minimality assumption of the harmonic

maps and the so called small energy regularity theorem.

There is a similar small energy regularity theorem for stationary harmonic

maps. In 1991, L.C. Evans proved the regularity in the case that targets are

spheres. For general target manifold, it was developed by F. Bethuel in 1993.

3.3 The Euler-Lagrange Equations

In this section we will derive the variational equations which are the consequences

of minimizing assumption on harmonic maps.
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Assume Ω is a bounded open subset of Rn (n ≥ 2) and N is a manifold which

is isometrically embedded in Rk (k ≥ 2). Recall E(u) = 1
2

∫
Ω
|Du|2dx for all

u ∈ H1(Ω, N). A map u ∈ H1(Ω, N) is a critical point of E if for any variation

us ∈ H1(Ω, N) (−ε < s < ε) such that u0 = u, us ≡ u on ∂Ω for all s, the map

s 7→ E(us) is critical at s = 0. Thus, we have

d

ds

∣∣∣
s=0

E(us) = 0,

provided the differentiation exists.

We begin with the identity for weakly harmonic maps. They are the result of

variations in the target spaces.

The First Variational Identity

Let u ∈ H1(Ω, N) be a minimizing harmonic map. Therefore u is a critical point

of the functional E by the definition of minimizing harmonic maps.

Consider the variation us ∈ H1(Ω, N) (−δ < s < δ) defined by

us(x) = Π ◦ (u(x) + sζ(x)) x ∈ Ω,

for a given ζ ∈ C∞
0 (Ω,Rk), where Π is the nearest point projection of Rk onto N .

Since N is compact, Π is well-defined and smooth on some tabular neighborhood

U ⊂ R
k of N , i.e. U = {x ∈ Rk : dist(x, N) < ε} for some ε > 0. It follows

that us ∈ H1(Ω, N) is a well-defined variation of u for each ζ, provided δ is small

enough. By the assumption that u is energy minimizing, we have

d

ds
E(u)

∣∣∣
s=0

= 0. (i)

We will see that the differentiation exists in the weak sense. The derivation of

the Euler-Lagrange equation will be split into several parts to make it easier to

follow.
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Step 1. We expand us with respect to the parameter s. By using the Taylor

series and the chain rules, we get

us = u + s
∂us

∂s

∣∣∣
s=0

+ O(s2) = u + s dΠu ◦ ζ + O(s2).

Thus

Djus = Dju + s {dΠu ◦Djζ + Dj(dΠu) ◦ ζ}+ O(s2).

The term Dj(dΠu) is just the array {∂2Πα
u/∂xj∂uβ}, where 1 ≤ α, β ≤ k. By the

chain rule, each term equals

k∑
γ=1

∂2Πα
u

∂uγ∂uβ

∂uγ

∂xj
=

k∑
γ=1

Dju
γ DuγuβΠα

u ,

Therefore we obtain

Djus = Dju + s
{
dΠu ◦Djζ + Hess Πu(Dju, ζ)

}
+ O(s2),

where Hess fx(u, v) :=
∑

i,j uivjDxixj
f .

Step 2. By simple geometric reasoning, we see that dΠy is the orthogonal

projection from the tangent space TyR
k ∼= Rk onto TΠ(y)N , for each y ∈ U . Recall

that in the Euclidean space Rk we have the standard identification of tangent

spaces by the parallel translation. Now each vector v ∈ TyR
k can be written as

v = vT + v⊥, where vT = dΠy(v) and v⊥ = v− vT . Thus dΠu ◦Djζ = (Djζ)T , i.e.

the projection of Djζ on TuN .

Step 3. Now from the equation (i), we have

0 =

∫
Ω

∂

∂s

∣∣∣
s=0
|Dus|2 =

∫
Ω

n∑
j=1

Dju ·
∂

∂s
Djus

∣∣∣
s=0

.

Combine this with the first two steps, we obtain∫
Ω

n∑
j=1

{
Dju · (Djζ)T + Dju · Hess Πu(Dju, ζ)

}
= 0. (ii)

Since Dju ∈ TuN , the first term on the left is equal Dju ·Djζ.
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Step 4. Recall that the second fundamental form A of N in Rk is define for

each y ∈ N to be the symmetric bilinear map Ay : TyN ×TyN → T⊥
y N (the space

of vectors in Rk orthogonal to TyN) which is given by

Ay(u
T , vT ) = −(DuT vT )⊥, u, v ∈ Rk.

On the right hand side u, v are extended to C∞ maps Rk → R
k that take the

values u, v respectively at the point y. DuT = uT ·D is the directional derivative

in the direction uT . (It can be verified by direct computations that the definition

of Ay is independent of choices of u, v and their extensions to smooth maps.) By

simple calculation, we obtain the following two important identities

Hess Πy(u
T , vT ) = −Ay(u

T , vT ), and Hess Πy(u
T , v⊥) = −v⊥ · Ay(u

T , ·).

The second identity is just the short form of w·Hess Πy(u
T , v⊥) = −v⊥ ·Ay(u

T , wT )

for all w ∈ TyR
k.

Step 5. The second term on the left of (ii) is equal to

Dju · Hess Πu(Dju, ζT ) + Dju · Hess Πu(Dju, ζ⊥) = ζ · Hess Πu(Dju, Dju).

Note that the first term vanishes since Dju ∈ TuN and Hess Πu(Dju, ζT ) =

−Au(Dju, ζT ) ∈ T⊥
u N . Therefore we conclude that∫

Ω

n∑
j=1

{
Dju ·Djζ − ζ · Au(Dju, Dju)

}
= 0,

and this holds for all ζ ∈ C∞
0 (Ω,Rk).

The Second Variational Identity

Again assume u ∈ H1(Ω, N) is an energy minimizing map. Consider the variation

us ∈ H1(Ω, N) (−δ < s < δ) defined by

us(x) = u(x + sζ(x)),
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for a given ζ ∈ C∞
0 (Ω,Rn). Clearly, u0 = u and us ≡ u on a neighborhood of ∂Ω.

Note that if δ is small enough then us is admissible, for each such ζ. Now by the

minimizing assumption of u, we have

d

ds
E(us)

∣∣∣
s=0

= 0. (i)

We split the derivation of the Euler-Lagrange equation into several steps.

Step 1. By chain rule we have

Dius(x) =
n∑

j=1

Dju(x + sζ){δij + sDiζ
j(x)}

= Diu(x + sζ) + s
n∑

j=1

Diζ
j(x) Dju(x + sζ).

Let ξ = x + sζ. Note that ξ gives a C1 diffeomorphism on Ω if s is small enough.

By the change of variables formula,

E(us) =

∫
Ω

|Dus(x)|2
∣∣∣∣det

(
∂x

∂ξ

)∣∣∣∣ dξ.

Step 2. Applying the chain rule, we get

Diζ
j(x) =

∂ζj

∂xi
=

n∑
l=1

∂ζj

∂ξl

∂ξl

∂xi

=
n∑

l=1

Dlζ
j(ξ)(δil + sDiζ

l(x)) = Diζ
j(ξ) + s

n∑
l=1

Dlζ
j(ξ)Diζ

l(x),

and hence

Dius(x) = Diu(ξ) + s
n∑

j=1

Diζ
j(ξ)Dju(ξ) + O(s2).

Thus

|Dus(x)|2 = |Du(ξ)|2 + 2s
n∑

i,j=1

Diu(ξ) ·Dju(ξ) Diζ
j(ξ) + O(s2).

Step 3. By Taylor series expansion,

∂ξi

∂xj
= δij + sDjζ

i(x).
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Using the previous step, we have∣∣∣∣det

(
∂ξ

∂x

)∣∣∣∣ = 1 + s

n∑
i=1

Diζ
i(ξ) + O(s2).

Therefore, ∣∣∣∣det

(
∂x

∂ξ

)∣∣∣∣ =

∣∣∣∣det

(
∂ξ

∂x

)∣∣∣∣−1

= 1− s
n∑

i=1

Diζ
i(ξ) + O(s2).

Step 4. Finally, we have

|Dus(x)|2
∣∣∣∣det

(
∂x

∂ξ

)∣∣∣∣ = |Du(ξ)|2 − s
{
|Du(ξ)|2 div ζ(ξ)

− 2
n∑

i,j=1

Diu(ξ) ·Dju(ξ) Diζ
j(ξ)

}
+ O(s2).

Thus the equation (i) gives∫
Ω

n∑
i,j=1

{
|Du|2δij − 2Diu ·Dju

}
Diζ

j = 0,

as required. Note that this holds for all ζ ∈ C∞
0 (Ω,Rn).

3.4 Penalization Approach for Harmonic Maps to Spheres

In this section we derive the Euler-Lagrange equation for harmonic maps to

spheres directly without using the result of previous section. We also consider

the penalized approximation of harmonic maps to spheres.

The Euler-Lagrange Equation

Suppose Ω is a bounded open subset of Rn and Sk−1 denotes the standard sphere

in Rk. Here we assume n, k ≥ 2.

By definition, a harmonic map to sphere u ∈ H1(Ω, Sk−1) is a critical point of

the energy integral

E(u) =
1

2

∫
Ω

|Du|2dx.
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This means that for any (admissible) variation us (−δ < s < δ) of u, the map

s 7→ E(us) is critical at s = 0. That is d
ds

∣∣
s=0

E(us) = 0 if the differentiation

exists. Recall us : Ω → R
k (−δ < s < δ) will be called an admissible variation of

u if us ∈ H1(Ω, Sk−1) for each s, u0 = u, and us|∂Ω ≡ u for all s.

Specifically, consider the 1-parameter family of maps us = (u + sζ)/|u + sζ|,

where ζ ∈ C∞
0 (Ω,Rk). Clearly, us is an admissible variation of u for each ζ if s is

small enough. Thus

d

ds

∣∣∣
s=0

E(us) =

∫
Ω

∂

∂s

∣∣∣
s=0

∣∣∣∣D (
u + sζ

|u + sζ|

)∣∣∣∣2 dx = 0.

By straightforward computation, we have

Di

(
u + sζ

|u + sζ|

)
=

(Diu + sDiζ)|u + sζ| − (u + sζ)|u + sζ|−1(u + sζ) · (Diu + sDiζ)

|u + sζ|2

=
(Diu + sDiζ)

|u + sζ|
− (u + sζ)

(u + sζ) · (Diu + sDiζ)

|u + sζ|3
:= A1 − A2.

Next, we compute

∂

∂s

∣∣∣
s=0

A1 = Diζ −Diu(u · ζ).

By noting that u ·Diu = Di(|u|2/2) = 0, we have

∂

∂s

∣∣∣
s=0

A2 = u(ζ ·Diu + u ·Diζ) + ζ(u ·Diu)− u(u ·Diu)(u · ζ)

= u(ζ ·Diu + u ·Diζ) = uDi(u · ζ).

Thus

∂

∂s

∣∣∣
s=0

∣∣∣∣D (
u + sζ

|u + sζ|

)∣∣∣∣2 = 2
n∑

i=1

Diu ·
∂

∂s

∣∣∣
s=0

Di

(
u + sζ

|u + sζ|

)
= 2

n∑
i=1

Diu · (Diζ −Diu(u · ζ)).

Therefore, we obtain∫
Ω

n∑
i=1

{
Diu ·Diζ −Diu ·Diu(u · ζ)

}
= 0, (i)
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and this holds for all ζ ∈ C∞
0 (Ω,Rk). In the terminology of partial differential

equation theory, we call a function u which satisfies the equation (i), for all ζ ∈

C∞
0 (Ω,Rk), a weak solution of the following equation

−4u = u|Du|2. (ii)

Note that if u ∈ C2 then (i) follows from (ii) by integration by parts. So we have

the equation (ii) as a necessary condition for harmonic maps to spheres.

Penalization Approach

Suppose Ω is a bounded open subset of Rn and Sk−1 the sphere in Rk, where

n, k ≥ 2. For each ε > 0, we define for every u ∈ H1(Ω,Rk) the energy functional

Eε(u) =
1

2

∫
Ω

|Du|2dx +
1

4ε2

∫
Ω

(1− |u|2)2dx.

Let E denote the usual Dirichlet integral

E(u) =
1

2

∫
Ω

|Du|2dx,

and

G(u) =

∫
Ω

(1− |u|2)2dx.

represented the deviation of images of u from the sphere Sk−1.

Let g ∈ H1(Ω, Sk−1) be given and uε be a minimizer of Eε subjected to the

Dirichlet boundary condition uε|∂Ω ≡ g. We are now concerning with the min-

imization problem of Eε over the closed affine subspace g + H1
0 (Ω,Rk) of the

Sobolev space H1(Ω,Rk). In this case the direct method still applicable. We will

see later that Eε is coercive and weakly lower semi-continuous. Therefore, there

is at least one such minimizer uε.

By the minimality of uε, as ε → 0, the term (4ε2)−1G(uε) must be bounded.

This in turn forces uε to have images close to Sk−1. The coercivity of Eε implies
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that uεj
⇀ u for some sequence uεj

and some u ∈ H1(Ω,Rk). By weak lower semi-

continuity of Eε, we conclude that u ∈ H1(Ω, Sk−1), u|∂Ω ≡ g, and E(u) ≤ E(g).

The proof of above statements involve trivial modifications of the theorems in

chapter 2. In the remaining, we will show that Eε is coercive and weakly lower

semi-continuous.

Eε is coercive: Suppose {vj} is a sequence in H1(Ω,Rk) such that ‖vj‖H1 →∞.

Since ‖Dvj‖L2 goes to infinity as j →∞, we get

Eε(vj) ≥
1

2

∫
Ω

|Dvj|2dx → +∞.

Hence Eε is coercive as claimed.

Eε is weakly lower semi-continuous: Suppose vj ⇀ v in H1(Ω,Rk), i.e.

vj ⇀ v in L2(Ω,Rk) and Dvj ⇀ Dv in L2(Ω,Rk). This implies that

‖v‖L2 ≤ lim inf
j→∞

‖vj‖L2 ,

and

‖Dv‖L2 ≤ lim inf
j→∞

‖Dvj‖L2 . (i)

We also note that {vj} is bounded in H1. Thus, by Rellich Compactness Lemma,

there is a subsequence vj′ → v′ strongly in L2 for some v′ ∈ L2(Ω,Rk). Since

strong convergence implies weak convergence, we must have v′ = v.

By considering a subsequence if necessary, we can assume that vj′ → v point-

wise almost everywhere. By observing that∫
Ω

(1− |v|2)2dx =

∫
Ω

(1− 2|v|2 + |v|4) dx,

and by Fatou’s lemma, we have∫
Ω

|v|4dx ≤ lim inf
j′→∞

∫
Ω

|vj′|4dx.
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Thus ∫
Ω

(1− |v|2)2 ≤ lim inf
j′→∞

∫
Ω

(1− |vj′|2)2. (ii)

Combine (i) and (ii), we conclude that Eε is weakly lower semi-continuous.



CHAPTER IV

REGULARITY THEORY FOR ELLIPTIC SYSTEMS

This chapter shows some techniques used in the regularity theory for elliptic sys-

tems. Although the equation considered may not the most general one, but it

illustrates various aspects of the theory.

4.1 Introduction

In this chapter we deal with the interior regularity theory of elliptic systems. The

model elliptic systems are of the following forms

−4u = f in Ω,

in the sense that∫
Ω

n∑
j=1

Dju ·Djϕ dx =

∫
Ω

f · ϕ dx for all ϕ ∈ H1
0 (Ω,Rk),

where f ∈ Lq(Ω,Rk) is given for some q ≥ 1. We assume that the solution

u : Ω → R
k belongs to the Sobolev space H1(Ω,Rk) and Ω ⊂ Rn is open. The

solution u is often called a weak solution.

The main regularity result of this chapter is that if q > n then, locally, u and its

weak derivative Du are Hölder continuous with exponent γ for all 0 < γ ≤ 1− n
q
.

In particular, this implies that u is C1. We will use this result in the next chapter

in order to show that the weak solutions for the penalized approximate equations

of harmonic maps to spheres are smooth.



33

It is important to note here that for the general elliptic systems, in contrast

to elliptic equations, the weak solutions are assumed only partial regularity; i.e..

they are regular on the whole domain except a small (relatively) closed set. This

is particularly true for minimizing harmonic maps. We will show this phenomena

in our main results.

4.2 Hölder Continuity

Let Ω be an open subset of Rn, k ∈ N, and 0 < γ ≤ 1. A function u : Ω → R
k is

said to be Hölder continuous with exponent γ on Ω (or simply γ-Hölder continuous

on Ω), provided there is a constant C ≥ 0 such that

|u(x)− u(y)| ≤ C|x− y|γ, for all x, y ∈ Ω. (i)

The least such constant C (if exists) is denoted [u]γ,Ω. If γ = 1 we say that u is

Lipschitz continuous on Ω. Note that Hölder continuity implies uniform continuity.

Let C0,γ(Ω,Rk) be the space of all bounded γ-Hölder continuous functions

u : Ω → R
k. It is a Banach space with respect to the norm ‖u‖C0,γ(Ω) = ‖u‖L∞(Ω)+

[u]γ,Ω. This can be easily checked by using the Arzéla-Ascoli theorem. Similarly,

we let C l,γ(Ω,Rk) be the space of those u : Ω → R
k such that (1) Dαu ∈ L∞ for

all |α| ≤ l and (2) Dαu are γ-Hölder continuous for all |α| = l. It is a Banach

space equipped with the following norm

‖u‖Cl,γ(Ω) =
∑

0≤|α|≤l

‖Dαu‖L∞(Ω) +
∑
|α|=l

[Dαu]γ,Ω.

4.3 Campanato and Morrey Lemmas

The following lemmas are fundamental to prove Hölder continuity of solutions (and

of their derivatives) for both elliptic equations and systems. They characterize

those L2 functions which are Hölder continuous by the decay of their oscillations.
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For a domain Ω ⊂ Rn with |Ω| 6= 0, we set (u)Ω := |Ω|−1
∫

Ω
u dx. Here |Ω| is

the n-dimensional Lebesgue measure of Ω. In case of a ball Br(x) ⊂ Rn, we will

use

ux,r := (u)Br(x0) =
1

|Br(x)|

∫
Br(x)

u dx.

Note that |Br(x0)| = ωnr
n where ωn = |B1(0)|.

Lemma 4.1 (Campanato). Let x0 ∈ Rn (n ≥ 2). Suppose u ∈ L2(B2r(x0),R
k)

and there are γ ∈ (0, 1] and a constant M > 0 such that∫
Bρ(y)

|u− uy,ρ|2dx ≤ M2ρn+2γ (i)

for all y ∈ Br(x0) and 0 < ρ ≤ r. Then u is γ-Hölder continuous on Br(x0),

i.e. there is a γ-Hölder continuous function ū on Br(x0) such that u = ū a.e. on

Br(x0). Moreover there is a constant C = C(n, γ) such that [u]γ,Br(x0) ≤ CM .

Proof. By the inequality |a− b|2 ≤ 2|c− a|2 + 2|c− b|2, if 0 < σ < ρ ≤ r then

ωnσ
n |uy,ρ − uy,σ|2 ≤

∫
Bσ(y)

{
2|u− uy,ρ|2 + 2|u− uy,σ|2

}
dx ≤ 4M2ρn+2γ

where ωn = |B1(0)|. In particular if σ = ρ/2 then |uy,ρ − uy,ρ/2| ≤ 2nω
−1/2
n Mργ.

Let ρk = r/2k, k ∈ {0, 1, 2, . . .}. The simple estimate gives

|uy,ρk
− uy,ρk+1

| ≤ C0Mrγ 2−kγ, (ii)

where C0 = 2nω
−1/2
n . This implies that uy,ρk

converges to a finite limit as k →∞.

Let ū(y) denote the limit. Furthermore, by (ii) we have

|uy,ρk
− ū(y)| ≤

∞∑
i=k

|uy,ρi
− uy,ρi+1

| ≤ C1Mrγ2−kγ, (iii)

where C1 = C1(n, γ).

Note that ū(y) is independent of the choice ρk ↘ 0. In fact for σl ↘ 0, for each

l take k such that ρk+1 < σl ≤ ρk we obtain that ωnρ
n
k+1|uy,ρk

−uy,σl
|2 ≤ 4M2ρn+2γ

k .

Hence |uy,ρk
− uy,σl

| ≤ C0Mrγ 2−kγ. Thus uy,σl
→ ū(y) as l →∞.
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Next we show that u = ū a.e. on Br(x0). By (i) when ρ = ρk and (iii), we have

1

ρn
k

∫
Bρk

(y)

|u− u(y)|2dx ≤ 2(C2
1 + 1)M2r2γ 2−2kγ. (iv)

As k → ∞, the right hand side goes to zero. Thus we can conclude that u = ū

a.e. on Br(x0) by Lebesgue differentiation lemma.

Now we will show that ū is γ-Hölder continuous on Br(x0). First we assume

that x, y ∈ Br(x0) and d = |x − y| ≤ r/4. Take k0 ∈ N such that 2−k0−1r < d ≤

2−k0r. By (iv) when k = k0 − 1 and the fact that Bρk0
(x) ⊂ Bρk0−1

(y), we get

1

ρn
k0−1

∫
Bρk0

(x)

|u− ū(y)|2dx ≤ C2M
2r2γ 2−2(k0−1)γ ≤ C2M

224γd2γ,

where C2 = 2(C2
1 + 1). Observe that the inequality still holds if we change the

role of x, y. Thus by summing the two inequalities and applying |a − b|2 ≤

2|c− a|2 + 2|c− b|2, we obtain ωn2n|ū(x)− ū(y)|2 ≤ 4C2M
224γd2γ. Therefore

|ū(x)− ū(y)| ≤ C3Mdγ = C3M |x− y|γ,

where C3 depends only on n, γ.

For arbitrary x, y ∈ Br(x0), let zi (i = 0, . . . , 8) be such that z0 = x, z8 = y,

zi lie on the line segment joining x, y and |zi − zi+1| = |x− y|/8 ≤ r/4. Applying

the result above to each pair zi, zi+1 and summing, we obtain

|ū(x)− ū(y)| ≤
7∑

i=0

|zi − zi+1| ≤ 8C38
−γM |x− y|γ = C(n, γ)M |x− y|γ.

So ū is Hölder continuous with exponent γ on Br(x0) as claimed. �

Remark. It is easy to see that∫
Bρ(y)

|u− uy,ρ|2dx ≤
∫

Bρ(y)

|u− λ|2dx,

for all λ ∈ Rk.

Combining the lemma of Campanato with Poincaré inequality, we obtain:
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Lemma 4.2 (Morrey). Suppose u ∈ H1
(
B2r(x0),R

k
)

satisfies∫
Bρ(y)

|Du|2dx ≤ M2ρn−2+2γ,

for all y ∈ Br(x0) and all 0 < ρ ≤ r, where γ ∈ (0, 1] and M > 0 is a constant.

Then u is γ-Hölder continuous on Br(x0) and [u]γ,Br(x0) ≤ CM for some constant

C depending only on n, γ.

Proof. By Poincaré inequality and the lemma of Campanato, we get∫
Bρ(y)

|u− uy,ρ|2dx ≤ C(n)ρ2

∫
Bρ(y)

|Du|2dx ≤ CM2ρn+2γ.

Thus this proves the assertion. �

4.4 Elliptic Estimation

First, we discuss in some details the concept of difference quotients. This is an

indispensable tool in regularity theory of linear equations. Afterward, the C1,γ

regularity of solutions for the equation −4u = f will be derived.

Difference Quotients

For most of partial differential equations, we cannot differentiate the equations

directly, so we are forced to use difference quotient. It can be seen that taking

difference quotient is almost the same as taking differentiation. So the ability to

take difference quotient becomes very useful, especially for the linear equations.

In such case, we can prove higher differentiability for weak solutions.

Let Ω be an open subset of Rn, h 6= 0, j ∈ {1, 2, . . . , n}, and x ∈ Ω with

dist(x, ∂Ω) > |h|. Suppose u : Ω → R
k. We define the difference quotient of u at

x in the direction ej = (0, . . . ,
(j)

1 , . . . , 0) by

Dh
j u(x) :=

u(x + hej)− u(x)

h
.
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Clearly, it is a linear operator. Moreover, it has the following properties. Suppose

ϕ ∈ C∞
0 (Ω,Rk) and u ∈ L1

loc(Ω,Rk). Then for all sufficiently small |h| > 0

(precisely, dist( supp ϕ, ∂Ω) > |h|), we have∫
Ω

(Dh
j u) · ϕ dx =

∫
Ω

u · (D−h
j ϕ) dx.

Lemma 4.3. Let U ⊂ Ω. If u ∈ W 1,p(Ω,Rk) where 1 ≤ p < ∞, then for all j

and all 0 < h < dist(U, ∂Ω) there holds

‖Dh
j u‖Lp(U) ≤ ‖Dju‖Lp(Ω).

Proof. Without loss of generality assume k = 1. First assume u ∈ C∞(Ω). Since

Dh
j u(x) = 1

h

∫ h

0
Dju(x + tej) dt for (x ∈ U), by the Hölder inequality we get

|Dh
j u(x)|p ≤ 1

h

∫ h

0

|Dju(x + tej)|p dt.

Integrating over U , we obtain∫
U

|Dh
j u(x)|p dx ≤ 1

h

∫ h

0

∫
Bh(U)

|Dju(x)|p dxdt ≤
∫

Ω

|Dju|p dx,

where Bh(U) =
⋃

x∈U Bh(x).

Now for arbitrary u, let ui → u in W 1,p(Ω) where each ui are smooth. Note

that Dh
j ui → Dh

j u in Lp(Ω), and also in Lp(U). Hence

‖Dh
j u‖Lp(U) = lim

i→∞
‖Dh

j ui‖Lp(Ω) ≤ lim
i→∞

‖Djui‖Lp(Ω) = ‖Dju‖Lp(Ω).

This proves the claim. �

Lemma 4.4. Let u ∈ Lp(Ω,Rk), 1 < p < ∞. If there are constants C, h0 > 0

such that ‖Dh
j u‖Lp(U) ≤ C for all U b Ω1, 0 < h ≤ h0 satisfying dist(U, ∂Ω) > h,

then the weak derivative Dju exists in Lp(Ω,Rk); moreover ‖Dju‖Lp(Ω) ≤ C.

1this means U is a compact subset of Ω.
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Proof. Assume without loss of generality k = 1. Extend any function Dh
j u on

U to Ω by setting its values outside U to be zero. For a sequence {Dhi
j u} where

hi ↘ 0, we can assume (by weak compactness of Lp(Ω)) that Dhi
j u ⇀ v in Lp(Ω)

for some function v ∈ Lp(Ω). This implies that ‖v‖Lp(Ω) ≤ C and∫
Ω

(Dhi
j u)ϕ dx →

∫
Ω

vϕ dx,

for all ϕ ∈ C∞
0 (Ω). Now for all large i such that dist(supp ϕ, ∂Ω) > hi, we have

that ∫
Ω

(Dhi
j u)ϕ dx =

∫
Ω

uD−hi
j ϕ dx → −

∫
Ω

u Djϕ dx as i →∞.

Thus
∫

Ω
u Djϕ dx = −

∫
Ω

vϕ dx for all ϕ ∈ C∞
0 (Ω). So Dju = v. �

Remark. As a consequence, we can say that the process of taking derivatives and

of taking difference quotients on W 1,p functions are the same thing. The point is

that if a function u has the bounded difference quotients then it also has the weak

derivatives.

C1,γ Regularity for the Equation −4u = f

Let Ω ⊂ R
n be open. We consider the following system of partial differential

equation:

−4u = f on Ω, (i)

where u, f : Ω → R
k. This equation is just the Poisson equation if the function

f is continuous. But now we assume only that f ∈ Lq for some q > n and

u ∈ H1(Ω,Rk) is a “weak” solution of above equation in the following sense∫
Ω

n∑
i=1

Diu ·Diϕ dx =

∫
Ω

f · ϕ dx (ii)

for all ϕ ∈ H1
0 (Ω,Rk). We will show that u is in fact C1,γ for all 0 < γ ≤ 1− n

q
.
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The method of putting partial differential equations into “weak” form, as we

dis in (ii), and analyzing in a priori the regularity of the weak solutions has

shown to be very successful. The pioneering works of De Giorgi, independently

by J. Nash, and putting forward by J. K. Moser, are very important to the later

development.

First we derive the decay estimates for solutions of the homogeneous equation.

We recall some elementary inequalities. Let 1 < p, q < ∞ with p−1 + q−1 = 1.

(1) Young inequality with ε: if a, b ≥ 0, ε > 0 then ab ≤ ε
ap

p
+ ε−

q
p
bq

q
.

(2) Hölder inequality: if u, v : Ω → R
k are (Lebesgue) measurable functions,

then ‖u · v‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (“u · v” means the dot product.)

Lemma 4.5. Let Ω ⊂ R
n. Suppose u ∈ H1(Ω,Rk) is a weak solution of the

system: −4u = 0, i.e.∫
Ω

n∑
i=1

Diu ·Diϕ dx = 0, ∀ϕ ∈ H1
0 (Ω,Rk). (i)

Then u satisfies ∫
Bρ(y)

|Du|2dx ≤ C
(ρ

σ

)n
∫

Bσ(y)

|Du|2dx,

and ∫
Bρ(y)

|Du− (Du)y,ρ|2dx ≤ C
(ρ

σ

)n+2
∫

Bσ(y)

|Du− (Du)y,σ|2dx,

for all 0 < ρ < σ, Bσ(y) ⊂ Ω, where C is a constant depending only on n, k.

Proof. Let ũ(x) = u(y + σx). The above inequalities in terms of ũ are the same

just by changing σ → 1, ρ → ρ/σ and y → 0. Therefore we will assume that y = 0

and σ = 1. Furthermore, we can assume ρ ≤ 1/2 (otherwise choose C = 2n+2).

First we prove that u ∈ H2(B1/2,R
k) (B1/2 := B1/2(0)). Putting D−h

j ϕ (h > 0,

j ∈ {1, . . . , n}) for ϕ in (i), we have∫
Ω

n∑
i=1

Di(D
h
j u) ·Diϕ dx =

∫
Ω

n∑
i=1

Diu ·Di(D
−h
j ϕ)dx = 0.
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Let ζ ∈ C∞
0 (B1) with h < dist(supp ζ, ∂B1). Now by setting ϕ = ζ2Dh

j u, we get∫
B1

ζ2|Dh
j (Du)|2dx = −2

∫
B1

n∑
i=1

ζDi(D
h
j u) · (Diζ Dh

j u)dx.

Using Schwartz inequality, |
∑

aibi| ≤ (
∑

a2
i )

1/2(
∑

b2
i )

1/2, and Young inequality

with ε (p = q = 2) to the right, we find that∫
B1

ζ2|Dh
j (Du)|2dx ≤ ε

∫
B1

ζ2|Dh
j (Du)|2dx + ε−1

∫
B1

|Dζ|2|Dh
j u|2dx.

Note that
∫

B1
|Dζ|2|Dh

j u|2dx ≤
∫

B1
|Dζ|2|Dju|2dx. If ε is small enough, we have∫

B1

ζ2|Dh
j (Du)|2dx ≤ C0

∫
B1

|Dζ|2|Dju|2dx,

for some universal constant C0 > 0. This inequality is often called a Caccioppoli

type inequality. Now fix a ζ with ζ ≡ 1 on B1/2, then for all h small enough∫
B1/2

|Dh
j (Du)|2dx ≤ C ′

0

∫
B1

|Du|2dx ≡ const.

Thus Du ∈ H1 on B1/2. Therefore, we can conclude that u ∈ H2 on B1/2 as

claimed and ‖D2u‖L2(B1/2) ≤
√

nC0‖Du‖L2(B1).

If we restrict domain to the ball B1/2, then by applying the same argument

to each Dju (which now is in H1 and weakly solves (i)), we can conclude that

Du ∈ H2. Hence u ∈ H3, and ‖D3u‖L2(B1/2) ≤ n3/2C2
0‖Du‖L2(B1). Continuing in

this way, we have that u ∈ Hm(B1/2,R
k) for all m ∈ N, and ‖Dmu‖L2(B1/2) ≤

C1(n,m)‖Du‖L2(B1).

By Sobolev Embedding Theorem, there is an integer m for which Hm ↪→ C1.

Fixing this value of m, Du is C1 on B1/2 and we get

‖Du‖2
L∞(B1/2) + ‖D2u‖2

L∞(B1/2) ≤ C2‖Du‖2
L2(B1),

where C2 > 0 is a constant depending only on n, k. Thus∫
Bρ

|Du|2dx ≤ ωnρ
n‖Du‖2

L∞(B1/2) ≤ C2ωnρ
n

∫
B1

|Du|2dx,
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where ωn = |B1(0)|. This is the first inequality. By Poincaré inequality, we obtain

that∫
Bρ

|Du− (Du)ρ|2dx ≤ C(n)ρ2

∫
Bρ

|D2u|2dx ≤ C2C(n)ρn+2

∫
B1

|Du|2dx.

Hence by using Du− (Du)1 in place of Du and the remark after lemma (4.1), we

get the second inequality. �

Remark. The lemma also proves that every “weakly” harmonic function, i.e.

that u ∈ H1 which solves the Laplace equation −4u = 0 in the “weak” sense (i),

is in fact a harmonic function. In fact, by proving that u ∈ Hm for all m, the

Sobolev Embedding Theorem implies that u ∈ C2. Hence u satisfies the usual

Laplace equation.

The next lemma will be employed in the proof of our main regularity result.

It is also useful for the decay estimate for the general elliptic regularity theory.

Lemma 4.6 (A Technical Lemma). Suppose f : [0, r] → [0,∞) is nondecreas-

ing and for any 0 < ρ < σ ≤ r there holds

f(ρ) ≤ A
[(ρ

σ

)α

+ ε
]
f(σ) + Bσβ, (ε > 0)

for some constants A, B, α, β > 0 with β < α. Then for each γ ∈ [β, α) there is

an ε0 = ε0(A, α, γ) ≥ 0 such that if ε ≤ ε0 then for all 0 < ρ < σ ≤ r

f(ρ) ≤ C
[(ρ

σ

)γ

f(σ) + Bρβ
]
,

where C is a constant depending only on A, α, γ, β.

Proof. Let τ ∈ (0, 1). For each i ∈ N, f(τ iσ) ≤ A(τα + ε)f(τ i−1σ) + B(τ i−1σ)β,

hence by induction, we have for each k ∈ N

f(τ kσ) ≤ Ak(τα + ε)k f(σ) + B(τ k−1σ)β

k−1∑
i=0

Ai(τα + ε)iτ−βi

≤ Ak(τα + ε)k f(σ) + B(τ k−1σ)β 1

1− A(τα + ε)τ−β
,
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provided A(τα + ε)τ−β < 1.

Let ε0 ≤ τα, where τ is chosen to satisfy 2Aτα = τ γ/2. Clearly τ and ε0

depend only on A, α, γ. So, if ε ≤ ε0 then

f(τ kσ) ≤ τ kγ f(σ) +
1

τ 2β(1− τ γ−β/2)
B(τ k+1σ)β.

For 0 < ρ < σ, let k ∈ N ∪ {0} be such that τ k+1σ < ρ ≤ τ kσ. Thus

f(ρ) ≤ f(τ kσ) ≤ 1

τ γ

(ρ

σ

)γ

f(σ) +
2

τ 2β(2− τ γ−β)
Bρβ.

This proves the lemma, by letting C ≥ max
{ 1

τ γ
,

2

τ 2β(2− τ γ−β)

}
. �

Now we come to the main regularity result of this chapter.

Theorem 4.7. Let Ω ⊂ Rn be open. Suppose f ∈ Lq(Ω,Rk) for some q > n and

u ∈ H1(Ω,Rk) is a weak solution of the system: −4u = f , i.e.∫
Ω

n∑
j=1

Dju ·Djϕ dx =

∫
Ω

f · ϕ dx, ∀ϕ ∈ H1
0 (Ω,Rk).

Then u ∈ C1,γ(Br(x0),R
k) for all B2r(x0) b Ω and all 0 < γ ≤ 1− n

q
.

Proof. Fix a ball B2r(x0) b Ω. Assume y ∈ Br(x0) and 0 < ρ < σ ≤ r. Let

X1 := H1(Bσ(y),Rk) and X1
0 := H1

0 (Bσ(y),Rk).

Step 1. First we prove that there is a unique w ∈ X1 such that w − u ∈ X1
0 ,

i.e. w = u− v for some v ∈ X1
0 , and

−4w = 0, on Br(x0). (i)

Note that (g, h)0 :=
∫

Bσ(y)

∑n
j=1 Djg · Djh dx is an equivalent inner product of

the Hilbert space X1
0 . Equation (i) is equivalent to that (u − v, ϕ)0 = 0. Hence

(v, ϕ)0 =
∫

Bσ(y)
f · ϕ dx, for all ϕ ∈ X1

0 . Since ϕ 7→
∫

Bσ(y)
f · ϕ dx is a bounded

linear functional on X1
0 , by Riesz theorem2 we can conclude that there exists a

unique such function v ∈ X1
0 .

2Every bounded linear functional on a Hilbert space is an inner product by a
fixed element.
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Step 2. Next we employ lemma (4.5) to derive two preliminary estimates.

Recall the inequality (a + b)2 ≤ 2a2 + 2b2 for all real numbers a, b. By direct

computation and using lemma (4.5), we have∫
Bρ(y)

|Du|2dx ≤ 2

∫
Bρ(y)

|Dw|2dx + 2

∫
Bρ(y)

|Dv|2dx

≤ 2C
(ρ

σ

)n
∫

Bσ(y)

|Dw|2dx + 2

∫
Bσ(y)

|Dv|2dx.

Substituting w = u− v, we find that∫
Bρ(y)

|Du|2dx ≤ 4C
(ρ

σ

)n
∫

Bσ(y)

|Du|2dx + (2 + 4C)

∫
Bσ(y)

|Dv|2dx

≤ C1

{(ρ

σ

)n
∫

Bσ(y)

|Du|2dx +

∫
Bσ(y)

|Dv|2dx
}

, (ii)

where C1 = 2 + 4C depends only on n, k.

By noting that ∫
Bσ(y)

|Dv − (Dv)y,σ|2dx ≤
∫

Bσ(y)

|Dv|2dx

(see the remark after lemma (4.1)), in the same way as above we get∫
Bρ(y)

|Du− (Du)y,ρ|2dx ≤ C2

{(ρ

σ

)n+2
∫

Bσ(y)

|Du− (Du)y,σ|2dx

+

∫
Bσ(y)

|Dv|2dx
}

, (iii)

for some constant C2 depending only on n, k.

Step 3. Next we estimate the term
∫

Bσ(y)
|Dv|2dx. Note that v ∈ X1

0 also

satisfies
∫

Bσ(y)

∑n
j=1 Djv ·Djϕ dx =

∫
Bσ(y)

f · ϕ dx for all ϕ ∈ X1
0 . Setting ϕ = v

and apply Hölder inequality and Sobolev inequality, we get∫
Bσ(y)

|Dv|2dx ≤ ‖f‖Lq(Bσ(y))

{∫
Bσ(y)

|v|2∗dx

}1/2∗

|Bσ(y)|(1−
1
q
− 1

2∗ )

≤ C(n)‖f‖Lq(Bσ(y))

{∫
Bσ(y)

|Dv|2dx

}1/2

σ(n+2
2
−n

q
)

≤ δ

∫
Bσ(y)

|Dv|2dx + C(n, δ)‖f‖2
Lq(Bσ(y))σ

(n−2n
q
+2).
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Here we used Sobolev inequality in the second inequality and Young’s inequality,

ab ≤ δa2 + 1
4δ

b2 for all a, b, δ > 0, in the last inequality. Choosing a small δ, then

we obtain that ∫
Bσ(y)

|Dv|2dx ≤ CF 2σ(n− 2n
q

+2), (iv)

where F = ‖f‖Lq(Br(x0)) and C is a constant depending only on n.

Step 4. By (ii) and (iv) together with the fact −2n
q

+ 2 ≥ −2 + 2γ for all

0 < γ ≤ 1, we have∫
Bρ(y)

|Du|2dx ≤ C1

{(ρ

σ

)n
∫

Bσ(y)

|Du|2dx + CF 2rn−2n
q
+2

(σ

r

)n−2+2γ
}

,

for all 0 < γ < 1, since σ/r ≤ 1. Thus by the technical lemma we see that∫
Bρ(y)

|Du|2dx ≤ C1

{
1

σn−2+2γ

∫
Bσ(y)

|Du|2dx + F 2r4−2(n
q
+γ)

}
ρn−2+2γ

≤ C

{∫
Br(x0)

|Du|2dx + F 2

}
ρn−2+2γ, (v)

where C = C(n, k, q, r). Therefore we can conclude that u is γ-Hölder continuous

on Br(x0) by Morrey’s lemma.

Also, by (iii), (iv) and the argument as above, we have∫
Bρ(y)

|Du− (Du)y,ρ|2dx ≤ C2

{ 1

σn+2γ

∫
Bσ(y)

|Du− (Du)y,σ|2dx

+ CF 2r4−2(n
q
+γ)

}
ρ(n+2γ)

≤ C(n, k, q, r)

{∫
Br(x0)

|Du|2dx + F 2

}
ρn+2γ, (vi)

for all 0 < γ ≤ 1− n
q
. Thus Du ∈ Cγ on Br(x0) by Campanato’s lemma. �

Remark. If f ∈ L∞(Ω,Rk) we can also verify that u ∈ C1,1(Br(x0),R
k) for all

B2r(x0) b Ω. Further, we have by (vi) and Campanato’s lemma that

[Du]1,Br(x0) ≤ C(n, k, r)
{
‖Du‖L2(Br(x0)) + ‖f‖L∞(Br(x0))

}
.



CHAPTER V

MAIN THEOREMS

This chapter contains the main results of our work. In the first theorem we show

that any weak solutions of the penalized approximate equations are smooth. This

nice property is used in the second theorem to prove the monotonicity identity

(a similar analogue of the monotonicity identity occurred in stationary harmonic

maps). Afterward, we give the gradient estimate for penalized approximate solu-

tions in the third theorem. Finally, the last theorem is another proof of the small

energy regularity theorem for minimizing harmonic maps.

5.1 Smoothness of Solutions for Penalized Approximate

Equations

One advantage of the penalized approximation approach is that solutions to the

approximate equations are smooth. More precisely, we will show in this section

that any weak solution uε ∈ H1(Ω,Rk) of the following system of nonlinear PDE

−4uε =
1

ε2
uε (1− |uε|2) in Ω,

is smooth. Recall that uε is a weak solution of the system if∫
Ω

n∑
j=1

Djuε ·Djϕ dx =
1

ε2

∫
Ω

uε · ϕ(1− |uε|2) dx,

for all ϕ ∈ H1
0 (Ω,Rk). Here Ω is an open subset of Rn, k ∈ N.

Also, recall that the difference quotient Dh
j v for a function v : Ω → R

k has

the following properties (see section (4.4) for details)
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• if v ∈ H1(Ω,Rk) then ‖Dh
j v‖L2(Ω) ≤ ‖Djv‖L2(Ω) for all small h > 0;

• conversely, if ‖Dh
j v‖L2(Ω) ≤ C for some fixed constant C for all small h > 0,

then v has the weak derivative Djv in L2(Ω,Rk).

Theorem 5.1. If u ∈ H1(Ω,Rk) is a locally bounded weak solution of the fol-

lowing system

−4uε =
1

ε2
uε(1− |uε|2), (∗)

then uε is smooth.

Proof. Denote by f0 the right hand side of (∗). Since f0 is clearly bounded on

B2r(x0) b Ω, the remark after theorem (4.7) gives uε ∈ C1,1 on Br(x0). This is

true for all B2r(x0) b Ω, so uε is also C1 on Ω.

We claim that uε ∈ Cm,1 on Br(x0) for all m ∈ N and for all B2r(x0) b Ω. To

this end we will use a “bootstrap” argument (. assuming by induction that uε is

Cm,1 on Br(x0) (m ∈ N) for all B2r(x0) b Ω, we will show that uε ∈ Cm+1,1 on

Br(x0)).

Fix B2r(x0) b Ω. Let fh
m = Dh

j (Dm−1f0) and vh = Dh
j (Dm−1uε). Then vh is a

weak solution of the following equation

−4vh = fh
m in B2r(x0).

By induction hypothesis uε is Cm on Ω. Hence Dm−1f0 is C1 on Ω. By the

mean-value theorem, we have

sup
B2r(x0)

|fh
m| ≤ sup

B2r+h0
(x0)

|D(Dm−1f0)| := C1 < ∞,

if 0 < h < h0 < dist(B2r(x0), ∂Ω), where C1 is independent of h.

By the remark after theorem (4.7), we conclude that vh is C1,1 on Br(x0).

Again by induction hypothesis uε is Cm,1 on Br(x0). Hence on Br+h0(x0) for a
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small h0. Therefore, we have that

sup
Br(x0)

|Dvh| = sup
Br(x0)

|Dh
j (Dmuε)| ≤ [Dmuε]1,Br+h0

(x0) := C2 < +∞,

if 0 < h < h0 < r, where C2 is independent of h. Furthermore

[Dvh]1,Br(x0) ≤ C(n, k, r)
{
‖Dvh‖L2(Br(x0)) + ‖fm‖L∞(Br(x0))

}
≤ C(n, k, r){ωnr

nC2 + C1}.

Thus for all sufficiently small h > 0, Dvh are bounded and equicontinuous in

C(Br(x0),R
k). By Arzéla-Ascoli theorem, we can conclude that there is a se-

quence hi ↘ 0 such that wj = limi→∞ Dhi
j (Dmuε) is in C(Br(x0),R

k) for each j.

Therefore wj is C0,1 on Br(x0). Now by Rademacher’s theorem Dmuε is differ-

entiable almost everywhere, and Dj(D
muε) = wj almost everywhere on Br(x0).

Therefore uε ∈ Cm+1,1 on Br(x0). �

5.2 Monotonicity Identity

Theorem 5.2. Let uε : Ω → R
k be a smooth solution of the system

−4uε =
1

ε2
uε(1− |uε|2). (i)

Then uε satisfies the following identity: if Br(x0) ⊂ Ω and 0 < ρ < σ ≤ r

σ2−n

∫
Bσ(x0)

eε(uε) dx− ρ2−n

∫
Bρ(x0)

eε(uε) dx =

∫
Bσ(x0)\Bρ(x0)

ξ2−n

∣∣∣∣∂uε

∂ξ

∣∣∣∣2 dξ

+ 2

∫ σ

ρ

t1−n

∫
Bt(x0)

1

4ε2
(1− |uε|2)2dx.

Here ξ = |x− x0| and

eε(uε) =
1

2
|Duε|2 +

1

4ε2
(1− |uε|2)2.
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Proof. Without loss of generality, assume x0 = 0. Let Bt := Bt(0). Multiply (i)

by xjDjuε and integrate over Bt(0), we have

−
∫

Bt

n∑
i,j=1

xjDjuε · (DiDiuε) dx =
1

ε2

∫
Bt

n∑
j=1

xj(Djuε) · uε(1− |uε|2) dx. (ii)

Integrating by parts, we see that the term on the left is∫
Bt

n∑
i,j=1

Di(xjDjuε) ·Diuε dx−
∫

∂Bt

n∑
i,j=1

xjDjuε ·Diuενi dξ

=

∫
Bt

n∑
i,j=1

Di(xjDjuε) ·Diuε dx− t

∫
∂Bt

∣∣∣∂uε

∂ξ

∣∣∣2dξ

where ν = x/t. The first term on the right can be expanded as follows. By

differentiating and multiplying out we get∫
Bt

n∑
i,j=1

Di(xjDjuε) ·Diuε dx =

∫
Bt

n∑
i,j=1

(δijDjuε + xjDiDjuε) ·Diuε dx

=

∫
Bt

|Duε|2dx +

∫
Bt

n∑
i,j=1

(xjDjDiuε) ·Diuε dx.

Again by integration by parts, we obtain∫
Bt

|Duε|2dx+

∫
Bt

n∑
j=1

xjDj

( |Duε|2

2

)
dx =

(
1−n

2

) ∫
Bt

|Duε|2dx+
t

2

∫
∂Bt

|Duε|2dx.

Therefore we have the left hand side of (ii) equals to(
1− n

2

) ∫
Bt

|Duε|2dx +
t

2

∫
∂Bt

|Duε|2dx− t

∫
∂Bt

∣∣∣∂uε

∂ξ

∣∣∣2dξ. (iii)

Next we compute the term on the right hand side of (ii). Notice that it is

equal to

− 1

ε2

∫
Bt

n∑
j=1

xjDj

(1

4
(1−|uε|2)2

)
dx =

n

4ε2

∫
Bt

(1−|uε|2)2dx− t

4ε2

∫
∂Bt

(1−|uε|2)2dx.

(iv)

Combining (iii) and (iv), we obtain

t

∫
∂Bt

eε(uε) dx = −(2− n)

∫
Bt

eε(uε) dx +
2

4ε2

∫
Bt

(1− |uε|2)2dx + t

∫
∂Bt

∣∣∣∂uε

∂ξ

∣∣∣2dξ.
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This implies that

d

dt

(
t2−n

∫
Bt

eε(uε) dx
)

= (2− n)t1−n

∫
Bt

eε(uε) dx + t2−n

∫
∂Bt

eε(uε) dx

=
2

4ε2
t1−n

∫
Bt

(1− |uε|2)2dx + t2−n

∫
∂Bt

∣∣∣∂uε

∂ξ

∣∣∣2dξ.

Finally, by integrating from ρ to σ, we obtain the identity. �

Remarks. 1. An immediate consequence of the theorem is the monotonicity

inequality for the energy functional Ẽε(uε, Bρ(x0)) = ρ2−n
∫

Bρ(x0)
eε(uε) dx. That

is, if 0 < ρ < σ ≤ r (Br(x0) b Ω) and uε is a smooth solution of (i), then

ρ2−n

∫
Bρ(x0)

eε(uε) dx ≤ σ2−n

∫
Bσ(x0)

eε(uε) dx.

Clearly limρ→0

∫
Bρ(x0)

eε(uε) dx = 0 for all x0 ∈ Ω since uε is smooth. We say that

uε has no energy concentration at any point x0 ∈ Ω.

2. A stationary (hence minimizing) harmonic map u also enjoys this phenom-

ena. There is a monotonicity inequality for the energy functional Ẽ(u, Bρ(x0)) =

ρ2−n
∫

Bρ(x0)
|Du|2dx, and a regular point x0 ∈ Ω of u i.e. a point for which u is

smooth in a neighborhood, is a point which u has no energy concentration.

5.3 Gradient Estimation

We begin with a Bochner type identity.

Lemma 5.3. Let uε : Ω → R
k be a smooth solution of the following system

−4uε =
1

ε2
uε(1− |uε|2). (i)

Then we have the following Bochner type inequality,

4gε(uε) ≥ 0,

where gε(uε) = 1
2
|Duε|2dx− 1

4ε2 (1− |uε|2)2.
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Proof. Differentiating (i) by Dj, multiplying by Djuε and summing over j =

1, . . . , n, we have that

−
n∑

j=1

Djuε · 4Djuε =
1

ε2
|Duε|2(1− |uε|2)−

2

ε2

n∑
j=1

|uε ·Djuε|2. (ii)

Also, observe that

Di

(
|Duε|2

2

)
=

n∑
j=1

Djuε ·DiDjuε,

and

4
(
|Duε|2

2

)
=

n∑
i,j=1

|DiDjuε|2 +
n∑

j=1

Djuε · 4Djuε. (iii)

On the other hand

Dj

(
1

4ε2
(1− |uε|2)2

)
= − 1

ε2
uε ·Djuε(1− |uε|2),

and

4
(

1

4ε2
(1− |uε|2)2

)
= −

{
1

ε2
|Duε|2(1− |uε|2)−

2

ε2

n∑
j=1

|uε ·Djuε|2
}

− 1

ε2
uε · 4uε(1− |uε|2).

Note that 1
ε2 uε · 4uε(1− |uε|2) = −|4uε|2. By (ii), (iii), we find that

4
(
|Duε|2

2

)
=

n∑
i,j=1

|DiDjuε|2 +4
(

1

4ε2
(1− |uε|2)2

)
− |4uε|2.

By noting that
∑n

i,j=1 |DiDjuε|2 − |4uε|2 ≥ 0, we obtain the claim. �

Theorem 5.4. Suppose Ω is an open subset of Rn, k ≥ 2. There exists δ0 =

δ0(n, k) > 0 such that if uε : Ω → R
k is a smooth solution of the system

−4uε =
1

ε2
uε(1− |uε|2) in Ω,

and r2−n
∫

Br(x0)
eε(uε) dx < δ0 (Br(x0) b Ω), then

r sup
Br/2(x0)

|Duε| ≤ C,
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where C = C(δ0) → 0 as δ0 → 0.

Proof. First we transform the above equation into a more manageable one.

Choose 0 < r1 < r such that

max
0≤t≤r

{
(r − t)2 max

Bt(x0)
eε(uε)

}
= (r − r1)

2 max
Br1 (x0)

eε(uε),

and x1 ∈ Br1(x0) to satisfy

max
Br1 (x0)

eε(uε) = eε(uε)(x1).

Let m2 = eε(uε)(x1). Since B
(

r−r1
2

)
(x1) ⊂ B

(
r+r1

2
)
(x0), we have

max
B

(
r−r1

2 )
(x1)

eε(uε) ≤ max
B

(
r+r1

2 )
(x0)

eε(uε)

≤ (r − r1)
2 max

Br1 (x0)
eε(uε)

/(
r − r + r1

2

)2

= 4m2.

Let R = ( r−r1

2
)m. If we set v(x) = uε(x1 + x

m
) on BR(0) and ε′ = mε, then we

find that the smooth function v satisfies

−4v =
1

ε′2
v(1− |v|2) on BR(0), (i)

and

max
BR(0)

eε′(v) ≤ 4, eε′(v)(0) = 1. (ii)

Claim R ≤ 1: We prove the claim by contradiction, that is assume R > 1. We

restrict the domain to the ball B1(0). We will show that this implies the existence

of a universal constant c > 0, independent of v, ε′ such that

1 ≤ c

∫
BB1(0)

eε′(v), (iii)

for any pair v, ε′ satisfying (i) and (ii).

Under the assumption R > 1, suppose that the assertion is false. We have

that there are sequences ε′j → 0 and {vj} such that each ε′j, vj verify (i), (ii) on
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B1(0) but ∫
B1(0)

eε′j
(vj) → 0, as j →∞.

By the previous lemma we conclude that gε′j
(vj) are subharmonic functions on

B1(0) for all j. This implies, by Moser’s Harnack inequality, that there is a

constant c > 0 depending only on n, k such that

gε′j
(vj)(0) ≤ c

∫
B1(0)

gε′j
(vj) dx ≤ c

∫
B1(0)

eε′j
(vj) dx

for all j. As j →∞, ε′j → 0, we have

gε′j
(vj)(0) → eε′j

(vj)(0) = 1.

But
∫

B1(0)
eε′j

(vj) dx → 0, so we get a contradiction. This prove (iii).

Next we will show that the assumption R > 1 leads to a contradiction. By

(iii), we have a constant c such that

1 ≤ c

∫
B1(0)

eε′(v) dx.

Substituting R = ( r−r1

2
)m back into the definition of v ,ε′ and applying the mono-

tonicity inequality, we get

1 ≤ c

∫
B1(0)

eε′(v) dx ≤ cR2−n

∫
BR(0)

{
1

2
|Dv|2 +

1

4mε2
(1− |v|2)2

}
dx

= c

(
r − r1

2

)2−n ∫
B

(
r−r1

2 )
(x0)

{
1

2
|Duε|2 +

1

4ε2
(1− |uε|2)2

}
dx

≤ cr2−n

∫
Br(x0)

eε(uε) dx.

This cannot be true since r2−n
∫

Br(x0)
eε(uε) dx is assumed to have any arbitrary

small value. So we have proved the claim. Now by the definition of r1, x1, we see

that (
r − r

2

)2

max
Br/2(x0)

eε(uε) ≤ (r − r1)
2m2 = 4R2.
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Therefore we obtain r supBr/2(x0) |Duε| ≤ 16R2. Notice that the claim above also

true if we replace 1 by any 0 < α < 1. Hence, for each 0 < α < 1, there is a β > 0

such that R ≤ α if δ0 < β. Thus R → 0 if δ0 → 0. �

We will use this gradient estimate for proving the next theorem. Notice that

the theorem asserts that if the energy r2−n
∫

Br(x0)
eε(uε) dx is small enough then

the gradient Du in the smaller ball Br/2(x0) is controlled by C/r.

5.4 Small Energy Regularity Theorem

In this section we give an alternative proof for the small energy regularity theorem

(also called the ε-regularity theorem) for minimizing harmonic maps to spheres.

We shall use the penalty approximation method developed before.

Theorem 5.5. Suppose Ω is an open subset of Rn, k ≥ 2. Then there is a

constant δ0 = δ0(n, k) > 0 such that if u ∈ H1(Ω,Rk) is a minimizing harmonic

map to the sphere Sk−1 and r2−n
∫

Br(x0)
1
2
|Du|2dx < δ0 (Br(x0) b Ω), then

r sup
Br/2(x0)

|Du| ≤ C,

where C = C(δ0) → 0 as δ0 → 0.

Proof. By re-scaling we can assume that r = 1 and x0 = 0. For each ε > 0, let

vε : B1(0) \B1/2(0) → R
k be a minimizer of the penalized energy functional

Eε(vε) =

∫
T

1

2
|Dvε|2dx +

1

4ε2

∫
T

(1− |vε|2)2dx,

over H1(T,Rk) subjected to the Dirichlet boundary condition vε ≡ u on ∂T . Here

T = B1(0) \ B1/2(0). The existence of vε follows from theorems of chapter 2 and

the final section of chapter 3. In fact, the problem is reduced to minimize Eε over

the closed affine subspace u + H1
0 (T,Rk) of H1(T,Rk).
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We can also conclude that there are sequences εj → 0 and vj = vεj
∈ H1(T,Rk)

such that vj → v∗ strongly in H1(T,Rk) for some v∗ : T → Sk−1 where v∗|∂T ≡ u

and Eε(v
∗) ≤ Eε(u).

We define the function v : B1(0) → Sk−1 by

v(x) =


u(x) if x ∈ B1/2,

v∗(x) if x ∈ B1(0) \B1/2(0).

Therefore, v ∈ H1(B1(0), Sk−1) and v ≡ u on ∂B1(0). Since Eε(v
∗) ≤ Eε(u) and

u is a minimizing harmonic map, we conclude that∫
B1(0)

|Dv|2dx =

∫
B1(0)

|Du|2dx.

Hence v is a minimizing harmonic map.

As vj minimizes Eεj
, Eεj

(vj) ≤
∫

T
|Du|2dx ≤ δ0. By the monotonicity identity,

we have

r2−n

∫
Br(y)

eεj
(vj) dx ≤ δ0

for all |y| = 3/4 and all 0 < r < 1/8. If δ0 is sufficiently small, we then obtain by

the gradient estimate that

r sup
Br/2(y)

|Dvj| ≤ C(δ0).

Recall C(δ0) → 0 as δ0 → 0. By considering a subsequence if necessary, we have

that Dvj → Dv∗ pointwise almost everywhere. So r supBr/2(y) |Dv∗| ≤ C(δ0). By

simple calculation, we obtain that

osc
|y|= 3

4

|v∗| ≤ C(δ0).

By the theorem due to J.Jost, we get osc
B3/4(0)

|v| ≤ C(δ0) provided δ0 is sufficiently

small. Also, by the theorem of ([6]), we can conclude that v is smooth on B3/4(0)

if δ0 is small enough (so that the oscillation of v is small).
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By Bochner type identity for harmonic maps to spheres (under the assumption

that the maps are smooth), and the the corresponding gradient estimate, we can

show that r supB1/2(0) |Du| = r supB1/2(0) |Dv| ≤ C(δ0) as we require. �

For a minimizing harmonic map u : Ω → Sk−1, we define the regular set of u

(i.e. the set of regular point) by

Reg(u) = {x ∈ Ω : u is smooth in a nbd of x},

and the singular set of u, defined by Sing(u), to be the complement Ω \ Reg(u).

A consequence of the small energy regularity theorem is the following criterion

for regular points of harmonic maps.

Corollary 5.6. A point x0 ∈ Ω is a regular point of a minimizing harmonic map

u : Ω → Sk−1 if and only if limr→0 r2−n
∫

Br(x0)
|Du|2dx = 0.

By the above corollary, we can estimate the size of the singular set of u. In

fact, it can be shown that for n-dimensional Ω, the Hausdorff dimension of the

singular set is at most n− 2. For details, see ([8]).
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