CHAPTER III RESULTS

3.1 Amino acid sequence of phenylalanine dehydrogenase

Digestion of the purified PheDH from *Bacillus lentus* with lysyl endopeptidase and isolation of digested peptides by reversed-phase high-performance liquid chromatography (HPLC) were carried out as described in section 2.6. The HPLC profile of the separation is presented in Figure 3.1. The isolated peptides at retention time 27.4, 28.7 and 33.6 minutes were determined for their amino acid sequences. The internal peptide fragments were AVIIGDPQKD, AIAGSANFQLLTEDHGRQ LAD, and GILYAPDYIVNSGGLIQVADELYEVN, respectively.

The CLUSTAL W program was used for alignment of amino acid sequence of PheDH from various sources to indicate the position of each peptide fragment and to use as data for degenerated primer design in the next step. The alignment is shown in Figure 3.2.

3.2 Nucleotide sequencing of phenylalanine dehydrogenase gene

3.2.1 Chromosomal DNA Extraction

The chromosomal DNA was extracted from *Bacillus lentus* according to modified method of Frederick *et al.* (1995). After chromosomal DNA had been achieved, it was run on agarose gel electrophoresis to examine its quality and quantity. It was found that extracted DNA had molecular weight over 23.1 kb and shown high purity which corresponded with its A_{260}/A_{280} ratio of 1.8-2.0. The DNA concentration was about 0.3-0.5 µg/µl. Thus, the quality of obtained DNA was appropriate for digestion with restriction endonuclease for PCR amplification, nucleotide sequencing and further cloning.

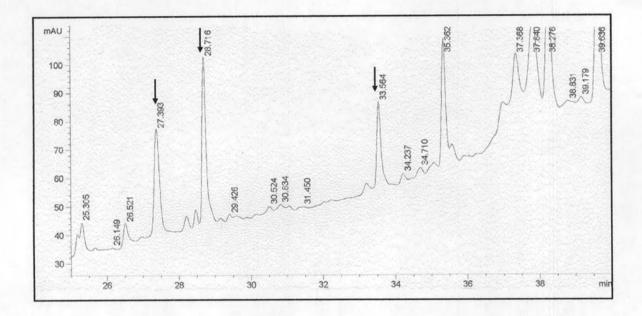
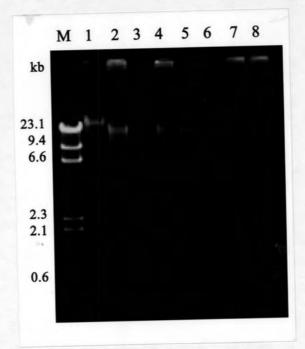


Figure 3.1 The reverse-phase HPLC profile of lysyl endopeptidase digested peptides. The arrows show the isolated peaks that were used for amino acid sequencing.

BLE	MELVERTERED FRUMERICONFERINGERATIATHOTTLGPALGGCRMOPY 58	2
BBA	 MSLVEKTSIIKDFTLFEKMSEHEQVVFCNDPATGLRAIIAIHDTTLGPALGGCRMQPY 58 MLTKTPTVTSTLDIFTEMAEHEQVLFCHDPSSGLRAIIAIHDTTLGPALGGCRMYPY 57 	
BHA	MLTKTPTVTSTLDIFTEMAEHEQVLFCHDPSSGLGATIATHDTTLGPALGGERMYPY 59	
BSP	-MAKULEKSSKIGNEDVFURIAMELVIVFUNDFVOODVALIMENDITEOOTA	
SUR	MILVILLOUDAAS ADDAMA PURCH CUDICATOD ANT THAT AND A THOUSAGE AND A	
TIN	MRDVEEMMDRIG-HEQVIECKHEQIODIGIIIADHATIMOCONOCONT	
RHO	MSIDSALNWDGEMTVTRFDRETGAHFVIRLDSTQLGPAAGGTRAAQY 47	ł.
	F1	
BLE	QKDQKD 10	0
BBA	NSVEEALEDALRLSKGMTYKCAASDVDFGGGKAVIIGDPQKDKSPELFRAFGQFV 11	13
BHA	QTTEDALRDVLRLSKGMTQKCAAADVDFGGGKAVIIGDPAKDKSANLFRAFGQFV 11	12
BSP	KNVDEALEDVLRLSEGMTYKCAAADIDFGGGKAVIIGDPEKDKSPALFRAFGQFV 1	14
SUR	KTMDLALKDVLRLSKGMTYKCAAADVDFGGGKSVIIGDPLKDKTPEKFRAFGQFI 1	15
TIN	ASTDEALEDVLRLSKGMTYKCSLADVDFGGGKMVIIGDPKKDKSPELFRVIGRFV 1	04
RHO	SQLADALTDAGKLAGAMTLKMAVSNLPMGGGKSVIALPAPRHSIDPSTWARILRIHAENI 1	07
	**	
BLE		
BBA	DSLGGRFYTGTDMGTNMEDFIHAMKETNCIVGVPEAYGGGGDSSIPTAMGVLYGIKATNK 1	73
BHA	ESLNGRFYTGTDMGTTMEDFVHALKETNGIVGIPKEYGGSGDSSVPTAKGVINSLKAISQ 1	.72
BSP	ESLNGRFYTGTDMGTTMDDFVHAQKETNFINGIPEQYGGSGDSSIPTAQGVIYALKATNQ 1	74
SUR	ESLNGRFYTGTDMGTTLEDFVHAMKETNYIVGKPVEYGGGGDSSIPTALGVFYGIKATNQ 1	.75
TIN	GGLNGRFYTGTDMGTNPEDFVHAARESKSFAGLPKSYGGKGDTSIPTALGVFHGMRATAR 1	.64
RHO	DKLSGNYWTGPDVNTNSADMDTLNDTTEFVFGRSLERGGAGSSAFTTAVGVFEAMKATVA 1	.67
BLE	MLFGKDDLGGVTYAIQGLGKVGYKVAEGLLEEGAHLFVTDINEQTLEAIQEKAKTTSGSV 2	222
BBA	MLFGKDDLGGVTYAIQGLGKVGIKVAEGLLEEGARLEVIDINEQIDEAIQENARIISOV 2	232
BHA	VVLKDKQFSGRTYAIQGLGKVGFKVAEELLKEGNDLYVSDLQESLPLRLQQLGQRLGRHV 2 YLFGSDSLSGKTYAIQGLGKVGYKVAEQLLKAGADLFVTDIHENVLNSIKQKSEELGGSV 2	234
BSP	YLFGSDSLSGKTYAIQGLGKVGYKVAEQLLKAGADLFVIDIHENVLNSIAQASEELGGSV 2	232
SUR	NLFGDDKVEGRKYSIQGLGKVGYKVAEHIINEGGNVIVTDINEQAIADIQKLGGSAV 2	221
TIN	FLWGTDQLKGRVVAIQGVGKVGERLLQLLVEVGAYCKIADIDSVRCEQLKEKYGDKV 2	220
RHO	HR-GLGSLDGLTVLVQGLGAVGGSLASLAAEAGAQLLVADTDTERVAHAVALGH 2	220
	R2	
DIR	AIAGSANFQLLTEDHGRQLAD-GI 3	33
BLE	TVVASDEIYSQEADVFVPCAFGGVVNDETMKQFKVKAIAGSANNQLLTEDHGRHLADKGI 2	293
BBA	EILHGDEIYEAAADVFVPCAQGAILNDATIARLKVKAIAGAANNQLEAERHGQMLHDQGI 2	292
BHA	EILHGDEIYEAAADVFVPCAQGAILNDATIARLKVKAIAGAANNQLEAEKNOQHDHDQOI TIVKSDDIYSVQADIFVPCAMGGIINDKTIPKLKVKAVVGSANNQLKDLRHANVLNEKGI 2	294
BSP	TIVKSUDIISVQADIFVPCARGEIINDKIIPKLKVKAVVGSANNQLKDLKHANVLKEKGI 2	292
SUR	RVVSSEEIYSQQADVFVPCAFGGVINDDTLKVLKVRGISGSANNQLAESRHGELLREKGI	201
TIN	QLVDVNRIHKESCDIFSPCAKGGVVNDDTIDEFRCLAIVGSANNQLVEDRHGALLQKRSI	201
RHO	TAVALEDVLSTPCDVFAPCAMGGVITTEVARTLDCSVVAGAANNVIADEAASDILHARGI	200
	: *:** : . * .*	

Figure 3.2 The CLUSTAL W alignment of amino acid sequence of phenylalanine dehydrogenases from various sources. Arrows show the regions of the amino acid sequence that used for degenerated primer design. BLE = Bacillus lentus, BBA = Bacillus badius, BSP = Bacillus sphaericus, BHA = Bacillus halodurans, SUR = Sporosarcina ureae, TIN = Thermoactinomyces intermedius and RHO = Rhodococcus sp. Conserved residues are indicated by asterisks (*). (*) means amino acids which have the same group of side chains and similar size while (.) means amino acids which have the same group of side chains but different size.

(continued)	R1	
	←	
BLE	LYAPDYIVNSGGLIQVAD-ELYEVN	57
BBA	PIALDITANOGOPIČANO PPILPANUPICIULI PULLPPI ZČE PROBŽET PLAN	352
BHA	WFAPDYIVNSGGLIQVAD-ELYGSNEKRVLSKTNAIYDTILEIFHQAERHHITTLQAANQ	351
BSP	DIALDITAMAGGITAAD BUIGLAUDULIUTIUTIUTIUTU	353
SUR	LYAPDYIVNGGGLIQVAD-ELYGTNPARVLAKTENIYTSLLEVFHQAEQDHMTTATAADR	351
TIN	CYAPDYLVNAGGLIQVAD-ELEGFHEERVLAKTEAIYDMVLDIFHRAKNENITTCEAADR	340
RHO	LYAPDFVANAGGAIHLVGREVLGWSESVVHERAVAIGDTLNQVFEISDNDGVTPDEAART :***:*.** *:: *:	340
BLE		
BBA	MCEQRMAARGRRNSFFTSSVKPKWDIRN 380	
BHA	LCERRIRERARRNNFFVNRIRPKWNLRK 379	
BSP	KCQKTIEGQQTRNSFFSRGRRPKWNIKE 381	
SUR	MCEKRIADAKNRNSFFTQSNRPKWNFHQ 379	
TIN	IVMERLKKLTDIRRILLEDPRNSARR 366	
RHO	LAGRRAREASTTTATA 356	


Figure 3.2 The CLUSTAL W alignment of amino acid sequence of phenylalanine dehydrogenases from various sources. Arrows show the regions of the amino acid sequence that used for degenerated primer design. BLE = *Bacillus lentus*, BBA = *Bacillus badius*, BSP = *Bacillus sphaericus*, BHA = *Bacillus halodurans*, SUR = *Sporosarcina ureae*, TIN = *Thermoactinomyces intermedius* and RHO = *Rhodococcus* sp. Conserved residues are indicated by asterisks (*). (:) means amino acids which have the same group of side chains and similar size while (.) means amino acids which have the same group of side chains but different size.

3.2.2 PCR amplification for the internal fragment of phenylalanine dehydrogenase gene

The chromosomal DNA of *Bacillus lentus* was completely digested with various restriction enzymes: *Bam*HI, *Bgl*II, *Eco*RI, *Kpn*I, *Pst*I, *Spe*I and *Xba*I. The agarose gel electrophoresis analysis of digested DNA in Figure 3.3 showed that the pattern resulting from all seven digestions gave the smear pattern of DNA lower than 23.1 kb.

All of digested DNA solutions were used as the templates for amplification of the internal fragment of phedh gene using primer F1 and R1, and PCR product of 625 bp was expected. The Figure 3.4 indicated that all of templates gave apparent band about 600 bp. However, nonspecific bands were also appeared. To confirm these PCR products, the PCR product were diluted 100 times and used as templates for second PCR amplification using various annealing temperatures and primer F1 and R2 which should give band of 583 bp. The result (figure not shown) showed that amplification using annealing temperature of 52.8°C and Bg/II digested DNA as template gave the strongest specific band. Then, this band was eluted from gel by QIAquick gel extraction kit as shown in Figure 3.5 and nucleotide sequence on both sides of the amplified fragment were determined using primer F1 and R2. After the nucleotide sequence of internal gene fragment had been obtained (Figure 3.6), it was compared with the DNA sequences deposited in the EMBL-GenBank-DDBL database. The sequence showed high homology (more than 71%) to partial part of phedh gene from other published Bacillus sp. sources indicated that this amplified fragment should be a part of phedh gene (data not shown). Finally, the internal nucleotide sequence was used as data to design antisense primer N1, N2 and sense primer C1, C2 for inverse PCR to determine 5'-terminal and 3'-terminal segment of the gene.

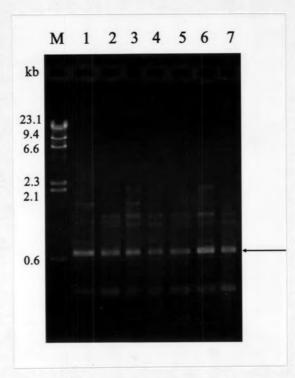
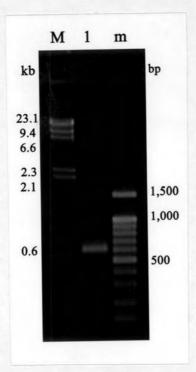


Figure 3.3 Restriction enzyme digested chromosomal DNA of Bacillus lentus

Lane M = λ /*Hin*dIII standard DNA marker

- Lane 1 = undigested chromosomal DNA
- Lane 2 = chromosomal DNA digested with BamHI
- Lane 3 = chromosomal DNA digested with BgIII
- Lane 4 = chromosomal DNA digested with EcoRI
- Lane 5 = chromosomal DNA digested with KpnI
- Lane 6 = chromosomal DNA digested with *PstI*
- Lane 7 = chromosomal DNA digested with SpeI
- Lane 8 = chromosomal DNA digested with XbaI


Figure 3.4 PCR products of primer F1 and R1 using various digested DNA templates

The specific product was indicated by arrow.

Lane M = λ /*Hin*dIII standard DNA marker

Lane 1 = PCR products using BamHI digested DNA as template

- Lane 2 = PCR products using *Bgl*II digested DNA as template
- Lane 3 = PCR products using *Eco*RI digested DNA as template
- Lane 4 = PCR products using KpnI digested DNA as template
- Lane 5 = PCR products using PstI digested DNA as template
- Lane 6 = PCR products using SpeI digested DNA as template
- Lane 7 = PCR products using XbaI digested DNA as template

Figure 3.5 Recovered PCR product of the internal fragment of phenylalanine dehydrogenase gene

Lane M = λ /*Hin*dIII standard DNA marker Lane 1 = specific PCR product using primer F1xR2 (583 bp) Lane m = 100 bp DNA ladder

Note: The template was PCR product from the PCR reaction using *Bgl*II digested DNA as template and F1xR1 as primers.

	N2	N1
1	GATAAATCTCCAGAACTGTTCCGCGCGTTTGGCCAATTTGT	TGATTCGCTTGGCGGCCGT
61	TTCTATACAGGTACTGATATGGGAACGAATATGGAAGATTI	CATTCACGCCATGAAAGAA
121	ACAAACTGCATTGTTGGGGTGCCGGAAGCTTACGGCGGCGG	GCGGAGATTCCTCTATTCCA
181	ACTGCCATGGGTGTCCTGTACGGCATTAAAGCAACCAACAA	AAATGTTGTTTGGCAAGGAC
241	GATCTTGGCGGCGTCACTTATGCCATTCAAGGACTTGGCAA	AAGTAGGCTACAAAGTAGCG
301	GAAGGGCTGCTCGAAGAAGGTGCTCATTTATTTGTAACGGA	ATATTAACGAGCAAAGCTTG
361	GAGGCTATCCAGGAAAAAGCAAAAACAACATCCGGTTCTGT	rcacggtagtagcgagcgat C1
421	GAAATTTATTCCCAGGAAGCCGATGTGTTCGTTCCGTGTGC	
481	GATGAAACGATGAAGCAGTTCAAGGTGAAAGCAATCGCCGG	C2
541	С	

Figure 3.6 The nucleotide sequence of the internal fragment of phenylalanine dehydrogenase gene. The chromatograms were presented in Appendix H. The regions of primers for further inverse PCR were shown by arrow.

3.2.3 PCR amplification for the 5'-terminus and 3'-terminus of phenylalanine dehydrogenase gene (inverse PCR)

3.2.3.1 The 5'-terminus of phenylalanine dehydrogenase gene

For the inverse PCR, the used primers for this part of PCR reaction were designed from the data of known sequence and the templates were prepared by firstly digested with each restriction enzyme (BamHI, BglII, EcoRI, PstI, SpeI and XbaI) which has no site on known sequence and secondly digested against NcoI which has only single site on known sequence to carry out linearized template. The first PCR products which used outer pair of primers (N1xC1) showed multiple and smear bands (Figure 3.7), so those PCR products were used as templates for second PCR which used inner pair of primers (N2xC2). The result (not shown) indicated that only the EcoRI digested tamplate gave specific band of 2.3 kb which was just weak band. To overcome this problem, the second PCR product was amplified again by 3 combinations of inner and outer pair of primers (N1xC2, N2xC2 and N2xC1) as shown in Figure 3.8. The result showed that the strongest band occurred when the pair of primers N2xC1 was used. Thus, the specific band was recovered and sequenced. After the obtained nucleotide sequence (Figure 3.9) had been compared with the DNA sequences deposited in the EMBL-GenBank-DDBL database, it was found that this fragment was at 5'-terminal of phedh gene which comprised start codon. From the obtained 5'-terminal sequence, the antisense primer N3 and N4 were designed to use in next step.

3.2.3.2 The 3'-terminus of phenylalanine dehydrogenase gene

Due to the result that there was no PCR product occurred when using the previous first PCR products from section 3.2.3.1 as templates and N4xC2 or N3xC2 as primers for second amplification, the different DNA templates for first PCR were prepared, the chromosomal DNA was digested with each restriction enzyme: *Kpn*I, *Nde*I, *Sac*I and *Xho*I, then ligated and digested again with *Nco*I.

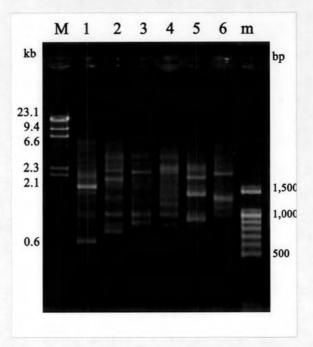
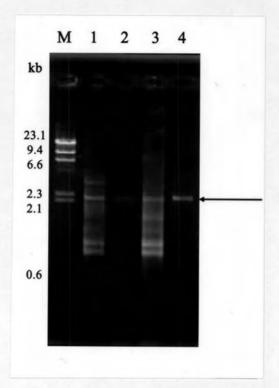



Figure 3.7 The first inverse PCR products using primer N1 and C1 and various digested DNA as templates

Lane M = λ /*Hin*dIII standard DNA marker

- Lane 1 = PCR products using *Bam*HI digested DNA as template
- Lane 2 = PCR products using Bg/II digested DNA as template
- Lane 3 = PCR products using *Eco*RI digested DNA as template
- Lane 4 = PCR products using *PstI* digested DNA as template
- Lane 5 = PCR products using SpeI digested DNA as template
- Lane 6 = PCR products using XbaI digested DNA as template
- Lane m = 100 bp DNA ladder

Figure 3.8 The second inverse PCR products at 5'-terminus using various pair of primers

The specific product eluted for sequencing was indicated by arrow.

Lane M = λ /*Hin*dIII standard DNA marker

Lane 1 = PCR products using primer N1xC1

Lane 2 = PCR products using primer N2xC2

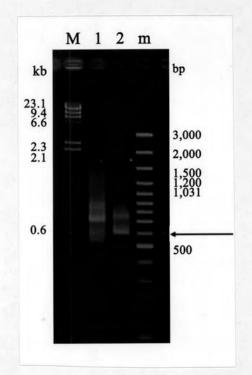
Lane 3 = PCR products using primer N1xC2

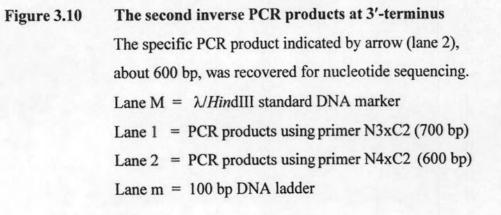
Lane 4 = PCR products using primer N2XC1

Note: The template was PCR product from the first PCR reaction using *Eco*RI digested DNA as template and N1xC1 as primers.

1 TATTTGATCCGGTTTGGCAGTATTCACACTTCTATCGTGCTGAAATCCCCTGTTCCCGAG 61 AAGATTATTTTGCCGTCTGATGAAGAACAGGAATGGCCGTGAAGGACGGCGCATCATAGA 121 AGATGATGTCGAATGATAAGACAAGCCTCCTCTTTCTATTGTCGAAAGAGGAGGCTTTTT 181 TAGCTTTTATTTACTGGAAATGAAAGCGTTTTACAAAACAAAGATAAATACCAAAAATG 241 301 TAACCTTTTATAATTAAAGTGAAGCGTATGCCTGCCGGCGCCGTCATTGGCGCTCGTTTG 361 AAAGGGCTTACAAAAATTATATAACCAAGAAGCTGACAGATCCTTTTTCTGCGGATAAAT 421 AAAAGCGTTCAACTATTAACGAAAGCAGGGATTAAATATGAGCTTAGTAGAAAAAACATC 481 CATCATAAAAGATTTCACTCTTTTTGAAAAAATGTCTGAACATGAACAAGTTGTTTTTTG 541 N4 CAACGATCCGGCGACAGGACTAAGGGCCATTATCGCTATTCATGACACCACACTCGGACC 601 TGCGCTCGGCGGCTGCCGCATGCAGCCTTATAACAGTGTGGAAGAAGCATTGGAAGATGC 661 N3 TCTTCGCCTTTCCAAAGGAATGACTTACAAATGCGCGGCGTCCGATGTCGACTTTGGCGG 721

781 CGGAAAAGCAGTCATTATCGGT


Figure 3.9 Nucleotide sequence of the 5'-terminal fragment of phenylalanine dehydrogenase gene using antisense primer N2. The chromatogram was shown in Appendix H. The start codon was underlined while the nucleotide sequences of new antisense primers were shown by arrow.


The first PCR products which used outer pair of primers (N1xC1) showed multiple and smear bands (figure not shown). Therefore, those PCR products were used as templates for second PCR which used pair of primers N3xC2 and N4xC2 as shown in Figure 3.10. The result indicated that only the *Nde*I digested tamplate gave specific band of 700 and 600 bp which corresponded to the size of fragment amplified by primer N3xC2 and N4xC2, respectively. The specific band of 600 bp was eluted from gel to sequence by primer C2. After that, the obtained nucleotide sequence (Figure 3.11) was compared with the DNA sequences deposited in the EMBL-GenBank-DDBL database. It was the 3'-terminal fragment of *phedh* gene which consisted of stop codon.

3.2.4 Nucleotide sequence and deduced amino acid sequence of phenylalanine dehydrogenase gene

From the gene walking by inverse PCR, the complete nucleotide sequence of the whole gene was identified as shown in Figure 3.12. The structural gene contained 1143 bp open reading frame, which was capable for encoding a polypeptide of 380 amino acids. The molecular weight of enzyme subunit was calculated from deduced amino acid sequence to be 41.4 kDa. The nucleotide sequence was compared with the DNA sequences deposited in the EMBL-GenBank-DDBL database. The percentage of similarity of nucleotide sequences of phenylalanine dehydrogenase from *Bacillus lentus* to those of *Bacillus badius*, *Sporosarcina ureae*, *Bacillus sphaericus*, *Thermoactinomyces intermedius* and *Rhodococcus* sp. M4 were 99, 65, 62, 57 and 10%, respectively. The alignment was shown in Figure 3.13. Comparison of nucleotide sequences between *phedh* gene of *Bacillus lentus* and those of published *Bacillus badius* is shown in Figure 3.14.

The deduced amino acid sequence of PheDH from *B. lentus* was compared with the sequences of PheDH from other bacterial sources. *B. lentus* exhibited the highest overall level of similarity to the enzyme from *B. badius* (99%) as shown in Figure 3.15. Moreover, it showed 67, 66, 62, 53 and 32% similarity to those of *Bacillus sphaericus*, *Sporosarcina ureae*, *Bacillus halodurans*,

Note: The template was PCR product from the first PCR reaction using NdeI digested DNA as template and N1xC1 as primers.

1	CTTGCAGACAAAGGCATTCTGTATGCTCCGGATTATATTGTTAACTCTGGCGGTCTGATC
61	CAAGTAGCCGACGAATTGTATGAGGTGAACAAAGAACGCGTGCTTGCGAAGACGAAGCAT
121	ATTTACGACGCAATTCTTGAAGTGTACCAGCAAGCGGAATTAGATCAAATCACCACAATG
181	GAAGCAGCCAACAGAATGTGTGAGCAAAGAATGGCGGCAAGAGGCCGACGCAACAGCTTC
241	TTTACTTCTTCTGTTAAGCCAAAATGGGATATTCGCAAC <u>TAA</u> TACTGTTCGGGGGGATAT
301	CATGAATACTCAATACCCAATCAAAAGAATAATCGATGATGAAGGCAACTTGATAGATGC
361	GTCTTACCAGGATCAGCTGAATGAGCAGCTTGTGA

Figure 3.11 Nucleotide sequence at the 3'-terminus of phenylalanine dehydrogenase gene using sense primer C2. The chromatogram was shown in Appendix H. The stop codon was underlined.

1	GTGAATTATTATTAAAGGCAGCTGTCAATGACATGG	GAGCATTTAAACAAGCTGATTGAT
61	TATTTGATCCGGTTTGGCAGTATTCACACTTCTATCG	STGCTGAAATCCCCTGTTCCCGAG
121	AAGATTATTTTGCCGTCTGATGAAGAACAGGAATGGC	CCGTGAAGGACGGCGCATCATAGA
181	AGATGATGTCGAATGATAAGACAAGCCTCCTCTTC	CATTGTCGAAAGAGGAGGCTTTTT
241	TAGCTTTTATTTACTGGAAATGAAAGCGTTTTACAA	ACAAAGATAAATACCAAAAAATG
301	CTTACGAAAAGTAAATAAAGGTCGGAAAATTCAATCA	ATAATGATGTGTATCTATCTCCTT
361	TAACCTTTTATAATTAAAGTGAAGCGTATGCCTGCCC	GGCGCCGTCATTGGCGCTCGTTTG
421	AAAGGGCTTACAAAAATTATATAACCAAGAAGCTGAG	CAGATCCTTTTTCTGCGGATAAAT
481	AAAAGCGTTCAACTATTAACGAAAGCAGGGATTAAA	TATGAGCTTAGTAGAAAAAACATC
		MSLVEKTS
541	CATCATAAAAGATTTCACTCTTTTTGAAAAAATGTC	IGAACATGAACAAGTTGTTTTTTG
	IIKDFTLFEKMS	EHEQVVFC
601	CAACGATCCGGCGACAGGACTAAGGGCCATTATCGC	PATTCATGACACCACACTCGGACC
	NDPATGLRAIIA	I H D T T L G P
661	TGCGCTCGGCGGCTGCCGCATGCAGCCTTATAACAG	IGTGGAAGAAGCATTGGAAGATGC
	ALGGCRMQPYNS	VEEALEDA
721	TCTTCGCCTTTCCAAAGGAATGACTTACAAATGCGC	GGCGTCCGATGTCGACTTTGGCGG
	LRLSKGMTYKCA	A S D V D F G G
781	CGGAAAAGCAGTCATTATCGGTGATCCGCAGAAAGA	TAAATCTCCAGAACTGTTCCGCGC
	GKAVIIGDPQKD	K S P E L F R A
841	GTTTGGCCAATTTGTTGATTCGCTTGGCGGCCGTTT	CTATACAGGTACTGATATGGGAAC
	FGQFVDSLGGRF	Y T G T D M G T
901	GAATATGGAAGATTTCATTCACGCCATGAAAGAAAC	AAACTGCATTGTTGGGGTGCCGGA
	NMEDFIHAMKET	N C I V G V P E
961	AGCTTACGGCGGCGGCGGAGATTCCTCTATTCCAAC	TGCCATGGGTGTCCTGTACGGCAT
	AYGGGGDSSIPT	A M G V L Y G I
1021	TAAAGCAACCAACAAAATGTTGTTTGGCAAGGACGA	TCTTGGCGGCGTCACTTATGCCAT
	KATNKMLFGKDD	LGGVTYAI

Figure 3.12 The nucleotide sequence and the deduced amino acid of phenylalanine dehydrogenase gene from *Bacillus lentus*. Pink = sequence from the internal gene fragment amplification, green = sequence obtained from the 5'-terminal gene fragment amplification, orange = sequence obtained from the 3'-terminal gene fragment amplification, purple = upstream sequence of *phedh* structural gene, and brown = downstream sequence of *phedh* structural gene.

76

1081	TCAA	GGA	CTT	GGC.	AAA	GTA	.GGC	TAC	AAA	GTA	GCG	GAA	GGG	CTG	CTC	GAA	GAA	GGT	GCT	CA
	Q	G	L	G	K	V	G	Y	K	V	A	Е	G	L	L	Ε	Е	G	A	Η
1141	TTTA	TTT	GTA	ACG	GAT.	ATT	AAC	GAG	CAA	AGC	TTG	GAG	GCT	ATC	CAG	GAA	AAA	GCA	AAA	AC
	L	F	V	Т	D	I	Ν	Е	Q	S	L	E	A	I	Q	Е	K	A	K	Т
1201	AACA	TCC	GGT	TCT	GTC	ACG	GTA	GTA	GCG	AGC	GAT	GAA	ATT	TAT	TCC	CAG	GAA	GCC	GAT	GT
	т	S	G	S	V	Т	V	V	A	S	D	Ε	I	Y	S	Q	Е	A	D	V
1261	GTTC	GTT	CCG	TGT	GCA	TTT	GGC	GGC	GTT	GTT	TAA	GAT	GAA	ACG	ATG	AAG	CAG	TTC	AAG	GT
	F	V	Ρ	С	A	F	G	G	V	V	Ν	D	Е	т	М	K	Q	F	K	V
1321	GAAA	GCA	ATC	GCC	GGT	TCA	GCC	AAC	AAT	CAG	GCTG	CTT	ACG	GAG	GAT	CAC	GGC	AGA	CAG	CT
	K	A	I	A	G	S	A	Ν	Ν	Q	L	L	Т	Е	D	H	G	R	Q	L
1381	TGCA	GAC.	AAA	GGC	ATT	CTG	TAT	GCT	CCG	GAI	TAT	ATT	GTT	AAC	TCT	GGC	GGT	CTG	ATC	CA
	A	D	K	G	I	L	Y	A	Ρ	D	Y	I	V	Ν	S	G	G	L	I	Q
1441	AGTA	GCC	GAC	GAA	TTG	TAT	GAG	GTG	GAAC	AAA	AGAA	CGC	GTG	CTT	GCG	AAG	ACG	AAG	CAT	TA
	V	A	D	Е	L	Y	Е	V	N	K	Ε	R	V	L	A	K	Т	K	Η	I
1501	TTAC	GAC	GCA	ATT	CTT	GAA	GTG	TAC	CAG	CAP	AGCO	GAA	TTA	GAI	CAP	ATC	ACC	ACA	ATG	GA
	Y	D	A	I	L	Е	V	Y	Q	Q	A	Е	L	D	Q	I	Т	т	М	Ε
1561	AGCA	GCC	AAC	AGA	ATG	TGI	GAG	CAP	AGA	ATC	GGC	GCA	AGA	GGC	CGA	CGC	AAC	AGC	TTC	TT
	A	A	Ν	R	Μ	С	Е	Q	R	Μ	A	A	R	G	R	R	N	S	F	F
1621	TACT	TCT	TCT	GTT	AAG	GCCF	AAAA	TGG	GAI	TAT	rcgo	CAAC	TAP	TAC	CTGI	TCO	GGGG	GGG	TAT	CA
	Т	S	S	V	K	Р	K	W	D	I	R	Ν	*							
1681	TGAA	TAC	TCA	ATA	CCC	CAAT	CAP	AAA	GAAI	AA	rcgł	ATGA	TGA	AGG	GCAA	ACTI	GAI	AGA	TGC	GT
1741	CTTA	CCA	GGA	TCA	GCI	GAR	ATGA	AGCA	AGCI	TG	rga									

Figure 3.12 The nucleotide sequence and the deduced amino acid of phenylalanine dehydrogenase gene from *Bacillus lentus*. Pink = sequence from the internal gene fragment amplification, green = sequence obtained from the 5'-terminal gene fragment amplification, orange = sequence obtained from the 3'-terminal gene fragment amplification, purple = upstream sequence of *phedh* structural gene, and brown = downstream sequence of *phedh* structural gene.

77

CLUSTAL W (1.83) multiple sequence alignment

BLE	AIGAGCTIAGIAGAAAAAAAAAAAAAAAAAAAAAAAAAAA	54
BBA	AIGAGUIIAGIAGAAAAAAAAAAAAAAAAAAAAAAAAAA	54
BSP	AIGGCAAAACAGCIIGAAAAGICAICAAAAAIIGGIAAAAIIGGIAGGIA	57
SUR	AIGAITTIGGTAACTTTAGAACAGACTTTAGAAGACGAGACG	60
TIN	middocdildori finiti di finita di finita di finita di finita di finita di fi	27
RHO	ATGAGTATCGACAGCGCACTGAA	23
BLE	ATGTCTGAACATGAACAAGTTGTTTTTTGCAACGATCCGGCGACAGGACTAAGGGCCATT	114
BBA		114
BSP	ATAGCGAATCACGAGCAGATTGTGTTCTGTAATGATCCGGTATCCGGCCTGCAAGCTATC	117
SUR		120
		87
TIN		81
RHO	CIGGGACGGGGAAAIGACGGICACCGGAIICGACGGGGAGACIGGIGGGGAAAIGACGGGGAAAIGACGGICACCGGACAGGGGAAAIGACGGICACCGGACAGGGGAGACIGGICACCGGGGACAGGGGGACAGGGGGACAGGGGGACAGGGGGACAGGGGGACAGGGGGG	
		174
BLE	ATCGCTATTCATGACACCACACTCGGACCTGGGGCGGGCG	174
BBA	ATCGCTATTCATGACACCACACTCGGACCTGCGCTCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCG	174
BSP	ATTGCTATCCACGATACAACCCTAGGCCCCGCTTTAGGTCGGTAGTCGGCTTGTT	177
SUR	ALIGCAGICCACGAIACGACIAIGGGACCIGCAGICGGGIGGIGGGIG	180
TIN	AICGCCIIGCAIMAIACAACCGCGGGGCCGGGCIIIGGGIGGIIGGIGGGGGGGG	147
RHO	ATTCGACTCGATTCGACCCAACTCGGACCGGCGGCCGGAGGCACCAGAGCCGCACAGTAC	141
	** * * ** ** ** ** ** * * * **	
BLE	AACAGTGTGGAAGAAGCATTGGAAGATGCTCTTCGCCTTTCCAAAGGAATGACTTACAAA	234
BBA	AACAGTGTGGAAGAAGCATTGGAAGATGCTCTTCGCCTTTCCAAAGGAATGACTTACAAA	234
BSP	AAAAATGTGGATGAAGCTCTGGAAGATGTGCTTCGCCTGTCAGAAGGAATGACGTATAAA	237
SUR	AAAAACGATGGATCTCGCATTAAAAGATGTTCTTCGCCTTTCAAAAGGGATGACATATAAA	
	GCTTCGACGGACGAAGCCTTGGAGGATGTTTTGCGGTTGTCCAAAGGCATGACCTATAAA	207
TIN	TCACAGCTGGCGGACGCCCTCACCGACGCCGGCAAATTGGCGGGGGGGG	201
RHO	** ** ** * * * * * * * * * * *****	
		200
BLE	TGCGCGGCGTCCGATGTCGACTTTGGCGGCGGAAAAGCAGTCATTATCGGTGATC	289
BBA	TGCGCGGCGTCCGATGTCGACTTTGGCGGCGGAAAAGCAGTCATTATCGGTGATC	209
BSP	TGCGCAGCCGCCGATATCGATTTCGGCGGCGGGAAGGCGGTCATTATCGGAGATC	292
SUR	TGTGCGGCAGCTGATGTAGACTTTGGCGGCGGAAAATCCGTCATCATCGGAGACC	295
TIN	TGCAGTCTGGCGGATGTGGACTTTGGCGGGGGAAAAATGGTTATCATCGGCGATC	262
RHO	ATGGCAGTGAGCAACCTTCCGATGGGCGGGGGGGGCAAATCCGTCATTGCGCTTCCTGCGCCG	261
BLE	CGCAGAAAGATAAATCTCCAGAACTGTTCCGCGCGCGTTTGGCCAATTTGTT CGCAGAAAGATAAATCTCCAGAACTGTTCCGCGCGCGTTTGGCCAATTTGTT	339
BBA	CGCAGAAAGATAAATCTCCAGAACTGTTCCGCGCGCITTGGCCAATTGT CAGAAAAGGATAAATCTCCCGGCATTGTTCCGTGCATTTGGTCAATTTGTG	342
BSP	CAGAAAAGGATAAATCTCCGGCATTGTTCCGTGCATTTGGTCAATTIGTG	346
SUR	CGCTAAAAGATAAAACGCCTGAGAAATTCCGTGCTTTCGGTCAATTCATC	210
TIN	CGAAAAAAGATAAATCGCCGGAGTTGTTTCGCGTGATCGGCCGTTTTGTG	312
RHO	CGTCATTCGATCGATCCGAGCACGTGGGCACGCATCCTCCGAATCCACGCCGAGAACATC	321
	* *** * * * * * *	

(continued)

Figure 3.13 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from various sources. BLE = *Bacillus lentus*, BBA = *Bacillus badius*, BSP = *Bacillus sphaericus*, SUR = *Sporosarcina ureae*, TIN = *Thermoactinomyces intermedius* and RHO = *Rhodococcus* sp. Conserved residues are indicated by asterisks (•).

BLE

BBA BSP

SUR TIN

RHO

BLE

BBA BSP

SUR

TIN

RHO

		GCGGCC		mam	202	com	ACT.	CATI	TCC	CARC	TAAD	ATCCA	ACATT	TC	399
		GCGGCC													399
		ATGGAC													402
															405
		ACGGAC ACGGCC													372
															381
GACA	AGTTGT	CCGGCA	ACTAC	TGG	ACC	GGA	-000	GACI	GICA	ACAC	CAAL	ICGGC	HUMCH	*	101
*	*	**	*	*	**	**			-		-				
ATTC	ACGCCA	TGAAAG	AAACA	AAC	TGC	ATT	GTT	GGG	GTGC	CGGA	AGCT	TACGO	CGGCG	GC	459
		TGAAAG													459
		AGAAAG													462
		TGAAAG													465
		CCAGGG													432
		ACGACA													441
GATA	CICIGA	ACGACA	ALLALL	+unu	+	*	110	**		*	COL	**	* **		
			-												
							ome		maco			CCAR		000	510

BLE	GGAGATTCCTCTATTCCAACTGCCATGGGTGTCCTGTACGGCATTAAAGCAACCAAC
BBA	GGAGATTCCTCTATTCCAACTGCCATGGGTGTCCTGTACGGCATTAAAGCAACCAAC
BSP	GGCGACTCGTCGATTCCGACCGCCCAGGGAGTCATTTATGCACTGAAGGCTACAAACCAG 522
SUR	GGAGACTCATCGATCCCTACTGCACTCGGAGTCTTCTATGGCATTAAAGCGACAAACCAG 525
TIN	GGGGACACATCCATTCCCACCGCGCTCGGGGTGTTTCACGGAATGCGGGCCACCGCCCGG 492
RHO	GGTTCGAGCGCGTTCACCACCGCCGTTGGCGTGTTCGAGGCGATGAAGGCGACCGTCGCG 501
inite	** * * ** ** ** ** * * * ** *
	ATGTTGTTTGGCAAGGACGATCTTGGCGGCGTCACTTATGCCATTCAAGGACTTGGCAAA 579
BLE	ATGTTGTTTGGCAAGGACGATCTTGGCGGCGTCACTTATGCCATTCAAGGACTTGGCAAA 579
BBA	TATTTATTTGGAAGCGATAGCCTTTCAGGTAAAACATATGCTATTCAAGGGCTGGGAAAA 582
BSP	AATCTGTTTGGCGACGACGACAAAGTAGAAGGCCGAAAATACAGTATCCAAGGCTCTGGGAAA 585
SUR	AATCIGITIGGCGACGACGACGACGACGACGACGACGACGACGACGACG
TIN	TITTATGGGGGACGGATCAGCTGAAAGGGGGTGTGGTGGGATGCGATGGGAGGACGGATG
RHO	CACCGTGGGCTGGGCTCACTCGACGGTTTGACGGTCCTGGTCCAAGGACTGGGGGCA 558
BLE	GTAGGCTACAAAGTAGCGGAAGGGCTGCTCGAAGAAGGTGCTCATTTATTT
BBA	GTAGGCTACAAAGTAGCGGAAGGGCTGCTCGAAGAAGGTGCTCATTTATTT
BSP	GTAGGGTATAAAGTAGCGGAACAGCTCTTAAAAGCCGGCGCCGATTTATTT
SUR	GTAGGTTACAAAGTAGCTGAACATATTATCAACGAAGGTGGAAACGTGATCGTCACAGAT 645
TIN	GTGGGAGAGCGCTTGTTGCAGCTTTTGGTCGAAGTGGGGGGCTTACTGCAAAATTGCCGAC 612
RHO	GTCGGAGGATCATTGGCATCCCTGGCCGCCGAAGCGGGTGCGCAACTCCTGGTGGCAGAC 618
242.5	** ** * * * * * * * * * * * *
BLE	ATTAACGAGCAAAGCTTGGAGGCTATCCAGGAAAAAGCAAAAACAACATC-CGGTTCTGT 698
BBA	ATTAACGAGCAAACGTTGGAGGCTATCCAGGAAAAAGCAAAAACAACATC-CGGTTCTGT 698
BSP	ATACATGAAAATGTCCTCAATTCCATTAAGCAAAAATCAGAAGAGCT-TGGCGGTTCAGT 701
SUR	ATTAATGAGCAAGCGATTGCAGATATTCAGAAGCTCGGTGGAAGCGCTGT 695
TIN	ATCGATTCGGTGCGATGCGAACAGCTGAAAGAAAGTATGGCGACAAGGT 662
	20002 COC COC COC COC COC COC COC COC COC CO

(continued)

* *

RHO

Figure 3.13 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from various sources. BLE = Bacillus lentus, BBA = Bacillus badius, BSP = Bacillus sphaericus, SUR = Sporosarcina ureae, TIN = Thermoactinomyces intermedius and RHO = Rhodococcus sp. Conserved residues are indicated by asterisks (+).

*

ACCGAC-----ACCGAGCGAGTAGCGCACGCTGTTGCGTTGGGCCA- 659

*

	CACGGTAGTAGCGAGCGATGAAATTTATTCCCAGGAAGCCGATGTGTTCGTTC
BLE	CACGGTAGTAGCGAGCGATGAAATTTATTCCCAGGAAGCCGATGTGTTCGTTC
BBA	GACCATTGTAAAAAGTGACGATATTTACAGCGTACAAGCGGATATATTTGTTCCGTGTGC 761
BSP	GACCATTGTAAAAAGTGACGATATTTACAGCGTACAAGCGGATATATTTGTTCCGTGTGC 755
SUR	CAGGGTCGTATCAAGTGAGGAGATTTACAGTCAGCAAGCA
TIN	CCAATTGGTGGATGTGAALCGGATTCACAAGGAGAGTTGCGATATTTCCGGCCTTCCCGCCTTCCCCCCTTCCCCCCTTCCCCCC
RHO	CACAGCGGTTGCCCTCGAGGACGTTCTGTCCACCCCGTGTGATGTCTTCGCACCCTGCGC 719
	** * ** *** *** **
BLE	ATTTGGCGGCGTTGTTAATGATGAAACGATGAAGCAGTTCAAGGTGAAAGCAATCGCCGG 818
BBA	ATTTGGCGGCGTTGTTAATGATGAAACGATGAAGCAGTTCAAGGTGAAAGCAATCGCCGG 818
BSP	GATGGGTGGTATTATCAATGATAAAAACCATTCCTAAGTTAAAGGTGAAGGCTGTTGTGGG 821
222	ATTTGGTGGCGTGATCAATGACGACACGCTAAAGGTGCTGAAAGTACGAGGAATCTCCGG 815
SUR	CAAAGGCGGCGTGGTCAATGACGACACCGTTGACGAGTTCCGTTGCCTGGCCATTGTCGG 782
TIN	CAAAGCCGGCCGTGGTCAATGATGACACCATTGACGAGTTCCGTGGCCGTGGCCGG 702
RHO	AATGGGCGGCGTCATCACCACCGAGGTGGCGCGAACACTCGTCGTCGTCGTCGTCGTCG
	** ** * * * * * * * *
BLE	TTCAGCCAACAATCAGCTGCTTACGGAGGATCACGGCAGACAGCTTGCAGACAAAGGCAT 878
	TTCAGCCAACAATCAGCTGCTTACGGAGGATCACGGCAGACACCTTGCAGACAAAGGCAT 878
BBA	ATCAGCCAATAACCAGCTCAAAGACCTCCGCCATGCAAATGTACTAAACGAAAAGGGAAT 881
BSP	ATCAGCCAATAACCAGCTCAAAGACCTCCGCCATGCAAATGTACTAAACGAAAAGGGTAT 875
SUR	TTCAGCAAACAATCAGCTCGCGGAAAGCCGCCATGGAGAGCTACTACGTCGTCT
TIN	ATCCGCCAACAACCAACTGGTGGAAGACCGGCATGGGGGCACTGCTTCAAAAACGGAGCAT 842
RHO	TGCCGCCAACAACGTCATCGCCGACGAGGCCGCCTCGGACATCCTGCACGCAC
	* ** ** * * ** * **
BLE	TCTGTATGCTCCGGATTATATTGTTAACTCTGGCGGTCTGATCCAAGTAGCCGAC-GAAT 937
BBA	TCTGTATGCTCCGGATTATATTGTTAACTCTGGCGGTCTGATCCAAGTAGCCGAC-GAAT 937
BSP	TCTATATGCACCCGATTATATCGTCAATGCCGGCGGCTTGATCCAGGTTGCTGAC-GAAC 940
SUR	TTTGTACGCACCAGACTATATCGTCAACGGCGGCGGTTTAATCCAAGTGGCGGAT-GAAT 934
- T. T. T. T	TTGTTATGCACCCGATTATCTGGTGAATGCCGGCGGGCTGATTCAAGTGGCTGAT-GAAC 901
TIN	TCTGTACGCTCCCGACTTCGTGGCCAACGCCGGCGGTGCCATCCACCTCGTAGGCCGGGA 899
RHO	* ** ** ** ** * * * * ** ***** ** ** **
BLE	TGTATGAGGTGAACAAAGAACGCGTGCTTGCGAAGACGAAGCATATTTACGACGCAAT 995
BBA	TGTATGAGGTGAACAAAGAACGCGTGCTTGCGAAGACGAAGCATATTTACGACGCAAT 995
0.712	TTTATGGGCCGAATAAAGAGCGGGTCTTGCTCAAAACGAAAGAAATTTACCGTTCTCT 998
BSP	TGTACGGAACGAATCCTGCACGTGTACTCGCTAAAACTGAAAACATCTATACCTCACT 992
SUR	TGTACGGAACGAATCCTGCACGTGTACTCGCTAA-AACTGAAAACATCTATACGACATGGT 952
TIN	The AAGE TICCAIGAAGAGAGAGAGAGAGIGCICOCCAA AAGCOTTOCOTTICOC
RHO	GGTTCTCGGTTGGTCCGAGTCGGTTGTCCACGAACGAGCAGTTGCCATAGGCGACACCCT 959
	* * ** * ** *
	TCTTGAAGTGTACCAGCAAGCGGAATTAGATCAAATCACCACAATGGAAGCAGCCAACAG 1055
BLE	TUTIONAGIGIACCAGONACCONATINONICARCACAGAMCCACACACACCCCAACAC 105
BBA	TCTTGAAGTGTACCAGCAAGCGGAATTAGATCAAATCACCACAATGGAAGCAGCCAACAG 1055
BSP	GCTTGAAATTTTTTAATCAGGCAGCCCTTGACTGCATCACAACAGTGGAGGCCGCAAATAG 1058
CUID	GCTTGAAGTATTCCATCAGGCAGAACAGGATCATATGACAACTGCCACTGCCGCAGACCG 1052
SUK	
SUR	CCTGGATATTTTTCACCGGGCGAAAAATGAGAATATTACCACTTGTGAGGCAGUGGACUG 1013
TIN	CCTGGATATTTTTCACCGGGCGAAAAATGAGAATATTACCACTTGTGAGGCAGCGGACCG 1019
8000	CCTGGATATTTTTCACCGGGCGAAAAATGAGAATATTACCACTTGTGAGGCAGCGGACCG 1019 GAATCAGGTCTTCGAGATCTCCGACAACGACGGCGTCACCCCGGACGAGGCCGCCCGC

(continued)

Figure 3.13 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from various sources. BLE = Bacillus lentus, BBA = Bacillus badius, BSP = Bacillus sphaericus, SUR = Sporosarcina ureae, TIN = Thermoactinomyces intermedius and RHO = Rhodococcus sp. Conserved residues are indicated by asterisks (•).

BLE BBA BSP SUR TIN RHO	AATGTGTGGAGCAAAGAATGGCGGCAAGAGGCCGACGCAACAGCTTCTTTACTTCTGT AATGTGTGGAGCAAAGAATGGCGGCAAGAGGCCGACGCAACAGCTTCTTTACTTCTTGT GAAGTGTCAAAAGACGATTGAGGGCCAGCAAACCCGTAATAGTTTCTTTTCTAGGGGACG TATGTGTGAAAAGCGTATTGCGGATGCCAAGAATCGCAACAGCTTCTTCACACAGTCAAA GAT-CGTGATGGAGCGTTTGAAAAAGTTAACCGATATTCGCCGGATCTTGTTGGA TCT-CGCTGGACGGCGCCCCGCGAGGCCTCGACAACGACAGCGACTGCCTAG * * * *	1115 1118 1112
BLE BBA BSP SUR TIN RHO	TAAGCCAAAATGGGATATTCGCAACTAA 1143 TAAGCCAAAATGGGATATTCGCAACTAA 1143 CAGGCCGAAGTGGAACATAAAAGAGTAA 1146 CCGACCGAAATGGAATTTCCATCAGTAA 1140 GGATCCCCGCAACAGCGCAAGGAGGTAA 1101	

Figure 3.13 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from various sources. BLE = *Bacillus lentus*, BBA = *Bacillus badius*, BSP = *Bacillus sphaericus*, SUR = *Sporosarcina ureae*, TIN = *Thermoactinomyces intermedius* and RHO = *Rhodococcus* sp. Conserved residues are indicated by asterisks (*).

CLUSTAL W (1.83) multiple sequence alignment

BLE BBA	ATGAGCITAGTAGAAAAAACATCCATCATAAAAGATTTCACTCTTTTTCATATATCTCT	60 60
BLE BBA	GAACATGAACAAGTTGTTTTTTGCAACGATCCGGCGACAGGACTAAGGGCCATTATCGCT GAACATGAACAAGTTGTTTTTTGCAACGATCCGGCGACAGGACTAAGGGCCATTATCGCT **********************************	120 120
BLE BBA	ATTCATGACACCACACTCGGACCTGCGCTCGGCGGCTGCCGCATGCAGCCTTATAACAGT ATTCATGACACCACACTCGGACCTGCGCTCGGCGGCTGCCGCATGCAGCCTTATAACAGT ************************************	180 180
BLE BBA	GTGGAAGAAGCATTGGAAGATGCTCTTCGCCTTTCCAAAGGAATGACTTACAAATGCGCG GTGGAAGAAGCATTGGAAGATGCTCTTCGCCTTTCCAAAGGAATGACTTACAAATGCGCG *********************************	240 240
BLE BBA	GCGTCCGATGTCGACTTTGGCGGCGGAAAAGCAGTCATTATCGGTGATCCGCAGAAAGAT GCGTCCGATGTCGACTTTGGCGGCGGAAAAGCAGTCATTATCGGTGATCCGCAGAAAGAT *******************************	300 300
BLE BBA	AAATCTCCAGAACTGTTCCGCGCGTTTGGCCAATTTGTTGATTCGCTTGGCGGCCGTTTC AAATCTCCAGAACTGTTCCGCGCGCTTTGGCCAATTTGTTGATTCGCTTGGCGGCCGTTTC ********************	360 360
BLE BBA	TATACAGGTACTGATATGGGAACGAATATGGAAGATTTCATTCA	420 420
BLE BBA	AACTGCATTGTTGGGGTGCCGGAAGCTTACGGCGGCGGCGGAGATTCCTCTATTCCAACT AACTGCATTGTTGGGGTGCCGGAAGCTTACGGCGGCGGGGGAGATTCCTCTATTCCAACT **********************	480 480
BLE BBA	GCCATGGGTGTCCTGTACGGCATTAAAGCAACCAACAAAATGTTGTTTGGCAAGGACGAT GCCATGGGTGTCCTGTACGGCATTAAAGCAACCAACAAAATGTTGTTTGGCAAGGACGAT ************************************	540 540
BLE BBA	CTTGGCGGCGTCACTTATGCCATTCAAGGACTTGGCAAAGTAGGCTACAAAGTAGCGGAA CTTGGCGGCGTCACTTATGCCATTCAAGGACTTGGCAAAGTAGGCTACAAAGTAGCGGAA ********************************	600
BLE BBA	GGGCTGCTCGAAGAAGGTGCTCATTTATTTGTAACGGATATTAACGAGCAAAGCTTGGAG GGGCTGCTCGAAGAAGGTGCTCATTTATTTGTAACGGATATTAACGAGCAAACGTTGGAG ********************************	660

(continued)

Figure 3.14 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from *Bacillus lentus* and published *Bacillus badius*. BLE = *Bacillus lentus*, BBA = *Bacillus badius* Conserved residues are indicated by asterisks (\bullet).

	GCTATCCAGGAAAAAGCAAAAACAACATCCGGTTCTGTCACGGTAGTAGCGAGCG	720
BLE	GCTATCCAGGAAAAAGCAAAAACAACATCCGGTTCTGTCACGGTAGTAGCGAGCG	720
BBA	GCTATCCAGGAAAAAGCAAAAACAACAACCGGGTTCTGTCACGGTAGTAGCGACCGATGAA *********************************	
BLE	ATTATTCCCAGGAAGCCGATGIGIICGIICGIGIGCATIIGGCGGCGIIGIIII	780
BBA	ATTTATTCCCAGGAAGCCGATGTGTTCGTTCGTTCCGTGTGCATTTGGCGGCGTTGTTAATGAT ***************************	100
BLE	GAAACGATGAAGCAGTTCAAGGTGAAAGCAATCGCCGGTTCAGCCAACAATCAGCTGCTT	840 840
BBA	GAAACGATGAAGCAGTTCAAGGTGAAAGCAATCGCCGGTTCAGCCAACAATCAGCTGCTT ********************************	040
BLE	ACGGAGGATCACGGCAGACAGCTTGCAGACAAAGGCATTCTGTATGCTCCGGATTATATT	900
BBA	ACGGAGGATCACGGCAGACACCTTGCAGACAAAGGCATTCTGTATGCTCCGGATTATATT *****************************	900
BLE	GTTAACTCTGGCGGTCTGATCCAAGTAGCCGACGAATTGTATGAGGTGAACAAAGAACGC	960 960
BBA	GTTAACTCTGGCGGTCTGATCCAAGTAGCCGACGAATTGTATGAGGTGAACAAAGAACGC **************************	960
BLE	GTGCTTGCGAAGACGAAGCATATTTACGACGCAATTCTTGAAGTGTACCAGCAAGCGGAA	
BBA	GTGCTTGCGAAGACGAAGCATATTTACGACGCAATTCTTGAAGTGTACCAGCAAGCGGAA *************************	1020
BLE	TTAGATCAAATCACCACAATGGAAGCAGCCAACAGAATGTGTGAGCAAAGAATGGCGGCA	1080
BBA	TTAGATCAAATCACCACAATGGAAGCAGCCAACAGAATGTGTGAGCAAAGAATGGCGGCA	1080
BLE	AGAGGCCGACGCAACAGCTTCTTTACTTCTTCTGTTAAGCCAAAATGGGATATTCGCAAC	
BBA	AGAGGCCGACGCAACAGCTTCTTTACTTCTGTTAAGCCAAAATGGGATATTCGCAAC *********************************	1140
BLE	TAA 1143	
BBA	TAA 1143	

Figure 3.14 Linear alignment of the nucleotide sequence of phenylalanine dehydrogenase genes from *Bacillus lentus* and published *Bacillus badius*. BLE = *Bacillus lentus*, BBA = *Bacillus badius* Conserved residues are indicated by asterisks (\bullet).

CLUSTAL W (1.83) multiple sequence alignment

BLE	MSLVEKTSIIKDFTLFEKMSEHEQVVFCNDPATGLRAIIAIHDTTLGPALGGCRMQPYNS	60
BBA	MSLVEKTSIIKDFTLFEKMSEHEQVVFCNDPATGLRAIIAIHDTTLGPALGGCRMQPYNS	60
DID	VEEALEDALRLSKGMTYKCAASDVDFGGGKAVIIGDPQKDKSPELFRAFGQFVDSLGGRF	120
BLE BBA		120
BLE	YTGTDMGTNMEDFIHAMKETNCIVGVPEAYGGGGDSSIPTAMGVLYGIKATNKMLFGKDD	180
BBA	YTGTDMGTNMEDFIHAMKETNCIVGVPEAYGGGGDSSIPTAMGVLYGIKATNKMLFGKDD ***********************************	180
BLE	LGGVTYAIQGLGKVGYKVAEGLLEEGAHLFVTDINEQSLEAIQEKAKTTSGSVTVVASDE	240
BBA	LGGVTYAIQGLGKVGYKVAEGLLEEGAHLFVTDINEQTLEAIQEKAKTTSGSVTVVASDE	240
BLE	IYSQEADVFVPCAFGGVVNDETMKQFKVKAIAGSANNQLLTEDHGRQLADKGILYAPDYI	300
BBA	IYSQEADVFVPCAFGGVVNDETMKQFKVKAIAGSANNQLLTEDHGRHLADKGILYAPDYI	300
BLE	VNSGGLIQVADELYEVNKERVLAKTKHIYDAILEVYQQAELDQITTMEAANRMCEQRMAA	360
BBA	VNSGGLIQVADELYEVNKERVLAKTKHIYDAILEVYQQAELDQITTMEAANRMCEQRMAA ******	360
BLE	RGRRNSFFTSSVKPKWDIRN 380	
BBA	RGRRNSFFTSSVKPKWDIRN 380	

Figure 3.15 Linear alignment of the deduced amino acid sequence of phenylalanine dehydrogenases from *Bacillus lentus* and published *Bacillus badius*. BLE = *Bacillus lentus*, BBA = *Bacillus badius*. Conserved residues are indicated by asterisks (•). (:) means amino acids which have the same group of side chains and similar size while (.) means amino acids which have the same group of side chains but different size.

Thermoactinomyces intermedius and *Rhodococcus* sp. M4, respectively. The alignment was shown in Figure 3.16.

3.3 Cloning of phenylalanine dehydrogenase gene

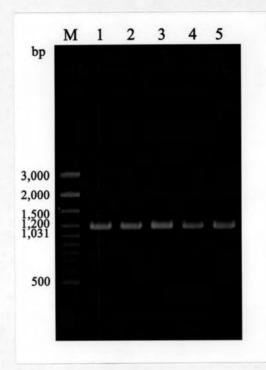
3.3.1 PCR amplification of the whole gene fragment

To express *phedh* gene in *E. coli* under T7 promoter of expression vector, pET-17b, the *phedh* gene was amplified using a pair of primers as described in section 2.7.3.1. The 5'-primer (Nde-N) comprised *NdeI* restriction site and 5'-end of *phedh* gene. The 3'-primer (Bam-C) consisted of *Bam*HI site, the TAA translational termination signal and 3'-end of *phedh* gene. Figure 3.17 showed the 1.1 kb PCR product of the *phedh* gene fragment amplified from *NdeI* digested DNA template at various annealing temperatures. All of annealing temperatures gave strong band of *phedh* gene without non-specific DNA fragment, so these PCR products were recovered and used for further cloning.

3.3.2 Transformation

The 1.1 kb amplified gene fragment was digested with *NdeI* and *Bam*HI, ligated with *NdeI-Bam*HI digested pET-17b vector, and then transformed into *E. coli* BL21(DE3) by electroporation as described in 2.8.1.2, 2.8.1.3, 2.8.1.4 and 2.8.2.2, respectively. The eighty-two transformants which could grow on LB plate containing 100 µg/ml ampicillin were randomly picked for plasmid extraction and digestion with *NdeI-Bam*HI as described in 2.8.1.1 and 2.8.1.2, respectively. The recombinant plasmids (pBLPheDH) in *E. coli* BL21(DE3) gave three bands, relaxed, linearized and supercoiled bands, on agarose gel electrophoresis. After digestion, a linear pET-17b with 3.3 kb and 1.1 kb of inserted *phedh* gene fragment were obtained as shown in Figure 3.18. From eighty-two transformants, sixteen transformants harboured recombinant plasmid (4.4 kb) which contain *phedh* gene. Therefore, these transformants were assayed for PheDH activity.

CLUSTAL W (1.83) multiple sequence alignment


BLE	-MSLVEKTSIIKDFTLFEKMSEHEQVVFCNDPATGLRAIIAIHDTTLGPALGGCRMQP 5	57
BBA		57
BSP		58
BHA		56
SUR		59
TIN	MRDVFEMMDRYGHEQVIFCRHPQTGLKAIIALHNTTAGPALGGCRMIP	48
RHO	MSIDSALNWDGEMTVTRFDRETGAHFVIRLDSTQLGPAAGGTRAAQ	46
KHO	* : . :* : :* :* *** **	
BLE	YNSVEEALEDALRLSKGMTYKCAASDVDFGGGKAVIIGDPQKDKSPELFRAFGQF	112
BBA	YNSVEEALEDALRLSKGMTYKCAASDVDFGGGKAVIIGDPQKDKSPELFRAFGQF	112
BSP	YKNVDEALEDVLRLSEGMTYKCAAADIDFGGGKAVIIGDPEKDKSPALFRAFGQF	113
BHA	YQTTEDALRDVLRLSKGMTQKCAAADVDFGGGKAVIIGDPAKDKSANLFRAFGQF	111
SUR	YKTMDLALKDVLRLSKGMTYKCAAADVDFGGGKSVIIGDPLKDKTPEKFRAFGQF	114
TIN	YASTDEALEDVLRLSKGMTYKCSLADVDFGGGKMVIIGDPKKDKSPELFRVIGRF	
	YSQLADALTDAGKLAGAMTLKMAVSNLPMGGGKSVIALPAPRHSIDPSTWARILRIHAEN	106
RHO	* ** *. :*: .** * : ::: :*** ** . : :*	200
BLE	VDSLGGRFYTGTDMGTNMEDFIHAMKETNCIVGVPEAYGGGGDSSIPTAMGVLYGIKATN	172
BBA	VDSLGGRFYTGTDMGTNMEDFIHAMKETNCIVGVPEAYGGGGDSSIPTAMGVLYGIKATN	
BSP	VESLNGRFYTGTDMGTTMDDFVHAQKETNFINGIPEQYGGSGDSSIPTAQGVIYALKATN	173
BHA	VESLNGRFYTGTDMGTTMEDFVHALKETNGIVGIPKEYGGSGDSSVPTAKGVINSLKAIS	171
SUR	IESLNGRFYTGTDMGTTLEDFVHAMKETNYIVGKPVEYGGGGDSSIPTALGVFYGIKATN	
TIN	VGGLNGRFYTGTDMGTNPEDFVHAARESKSFAGLPKSYGGKGDTSIPTALGVFHGMRATA	
RHO	IDKLSGNYWTGPDVNTNSADMDTLNDTTEFVFGRSLERGGAGSSAFTTAVGVFEAMKAT-	165
	: *.*.::**.*:.*: :: : * * *::::.** **: ::*	
BLE	KMLFGKDDLGGVTYAIQGLGKVGYKVAEGLLEEGAHLFVTDINEQSLEAIQEKAKTTSGS	232
BBA	KMLFGKDDLGGVTYAIQGLGKVGYKVAEGLLEEGAHLFVTDINEQTLEAIQEKAKTTSGS	232
BSP	QYLFGSDSLSGKTYAIQGLGKVGYKVAEQLLKAGADLFVTDIHENVLNSIKQKSEELGGS	
BHA	QVVLKDKQFSGRTYAIQGLGKVGFKVAEELLKEGNDLYVSDLQESLPLRLQQLGQRLGRH	231
SUR	QNLFGDDKVEGRKYSIQGLGKVGYKVAEHIINEGGNVIVTDINEQAIADIQKLGGSA	231
TIN	RFLWGTDQLKGRVVAIQGVGKVGERLLQLLVEVGAYCKIADIDSVRCEQLKEKYGDK	220
RHO	VAHRGLGSLDGLTVLVQGLGAVGGSLASLAAEAGAQLLVADTDTERVAHAVALG	219
RHO	·. * :*:* ** : . : * ::* .	
BLE	VTVVASDEIYSQEADVFVPCAFGGVVNDETMKQFKVKAIAGSANNQLLTEDHGRQLADKG	292
BBA	VTVVASDEIYSQEADVFVPCAFGGVVNDETMKQFKVKAIAGSANNQLLTEDHGRHLADKG	292
BSP	VTIVKSDDIYSVQADIFVPCAMGGIINDKTIPKLKVKAVVGSANNQLKDLRHANVLNEKG	293
BHA	VEILHGDEIYEAAADVFVPCAQGAILNDATIARLKVKAIAGAANNQLEAERHGQMLHDQG	291
SUR	VRVVSSEEIYSQQADVFVPCAFGGVINDDTLKVLKVRGISGSANNQLAESRHGELLREKG	291
TIN	VQLVDVNRIHKESCDIFSPCAKGGVVNDDTIDEFRCLAIVGSANNQLVEDRHGALLQKRS	280
RHO	HTAVALEDVLSTPCDVFAPCAMGGVITTEVARTLDCSVVAGAANNVIADEAASDILHARG	279
	: : :*:* *** *.:: : : *:*** : . * :.	

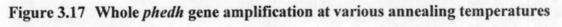

(continued)

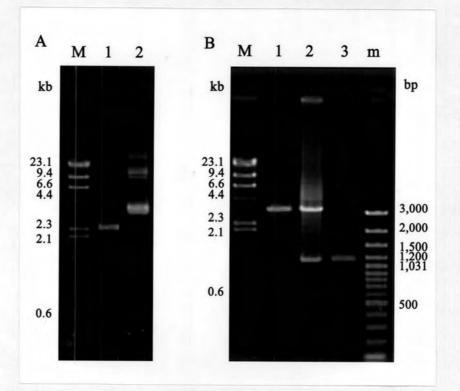
Figure 3.16 Linear alignment of the deduced amino acid sequence of phenylalanine dehydrogenases. Amino acid sequences that were determined by automated Edman degradation were underlined. BLE = Bacillus lentus, BBA = Bacillus badius, BSP = Bacillus sphaericus, BHA = Bacillus halodurans, SUR = Sporosarcina ureae, TIN = Thermoactinomyces intermedius and RHO = Rhodococcus sp. Conserved residues are indicated by asterisks (•). (:) means amino acids which have the same group of side chains and similar size while (.) means amino acids which have the same group of side chains but different size.

BLE	ILYAPDYIVNSGGLIQVAD-ELYEVNKERVLAKTKHIYDAILEVYQQAELDQITTMEAAN 35	51
BBA	ILYAPDYIVNSGGLIQVAD-ELYEVNKERVLAKTKHIYDAILEVYQQAELDQITTMEAAN 35	51
BSP	ILYAPDYIVNAGGLIQVAD-ELYGPNKERVLLKTKEIYRSLLEIFNQAALDCITTVEAAN 35	52
BHA	IWFAPDYIVNSGGLIQVAD-ELYGSNEKRVLSKTNAIYDTILEIFHQAERHHITTLQAAN 35	
SUR	ILYAPDYIVNGGGLIQVAD-ELYGTNPARVLAKTENIYTSLLEVFHQAEQDHMTTATAAD 35	50
TIN	ICYAPDYLVNAGGLIQVAD-ELEGFHEERVLAKTEAIYDMVLDIFHRAKNENITTCEAAD 33	39
RHO	ILYAPDFVANAGGAIHLVGREVLGWSESVVHERAVAIGDTLNQVFEISDNDGVTPDEAAR 33	39
	* :***::.*.** *:: *: * :: * ::::. : . :*. **	
BLE	RMCEQRMAARGRRNSFFTSSVKPKWDIRN 380	
BBA	RMCEQRMAARGRRNSFFTSSVKPKWDIRN 380	
BSP	RKCOKTIEGOOTRNSFFSRGRRPKWNIKE 381	
BHA	QLCERRIRERARRNNFFVNRIRPKWNLRK 379	
SUR	RMCEKRIADAKNRNSFFTQSNRPKWNFHQ 379	
TIN	RIVMERLKKLTDIRRILLEDPRNSARR 366	
RHO	TLAGRRAREASTTTATA 356	

Figure 3.16 Linear alignment of the deduced amino acid sequence of phenylalanine dehydrogenases. Amino acid sequences that were determined by automated Edman degradation were underlined. BLE = Bacillus lentus, BBA = Bacillus badius, BSP = Bacillus sphaericus, BHA = Bacillus halodurans, SUR = Sporosarcina ureae, TIN = Thermoactinomyces intermedius and RHO = Rhodococcus sp. Conserved residues are indicated by asterisks (*). (*) means amino acids which have the same group of side chains and similar size while (.) means amino acids which have the same group of side chains but different size.

Lane M = 100 bp DNA ladder

Lane 1 = PCR product using annealing temperature at 53.2° C


Lane 2 = PCR product using annealing temperature at 55.3° C

Lane 3 = PCR product using annealing temperature at 56.5° C

Lane 4 = PCR product using annealing temperature at 57.5° C

Lane 5 = PCR product using annealing temperature at 58.4° C

Note: The template was *NdeI* digested chromosomal DNA and primers were Nde-N and Bam-C.

Figure 3.18 Electrophoretic pattern of pBLpheDH

A: Extracted plasmid pattern

Lane M = λ /*Hin*dIII standard DNA marker

Lane 1 = undigested pET-17b

Lane 2 = extracted recombinant plasmid

B: Restriction pattern of pBLpheDH

Lane M = λ /*Hin*dIII standard DNA marker

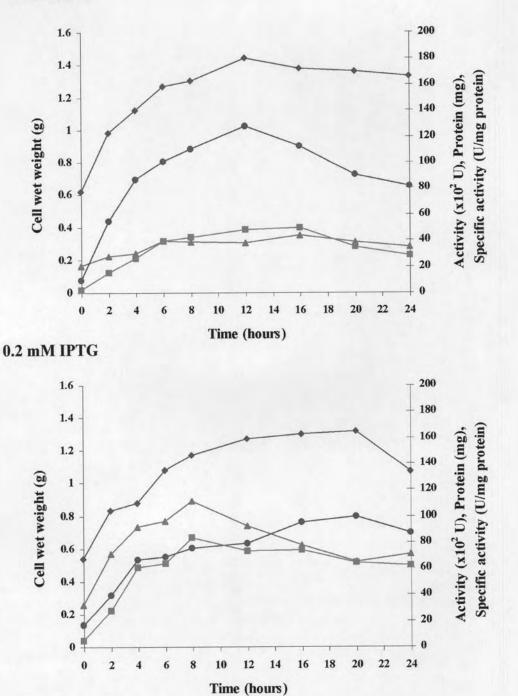
- Lane 1 = NdeI-BamHI digested pET-17b
- Lane 2 = *NdeI-Bam*HI digested pBLpheDH
- Lane 3 = PCR product of *phedh* gene
- Lane m = 100 bp DNA ladder

3.3.3 Phenylalanine dehydrogenase activity of transformants

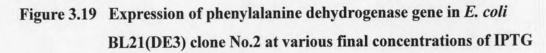
The sixteen recombinant clones were grown as described in 2.9.2 to prepare crude extract for determination of the enzyme activity. *E. coli* BL21(DE3) with and without plasmid pET-17b were used as references. The result was shown in Table 3.1. The clones showed various levels of the specific activity from 9.34-92.0 units/mg protein. The highest specific activity, 92.0 fold higher than that of *Bacillus lentus* (Inkure, 2005), was produced by *E. coli* BL21(DE3) transformant No. 2. Thus, this recombinant clone was used in the further experiments.

3.4 Optimization of phenylalanine dehydrogenase gene expression

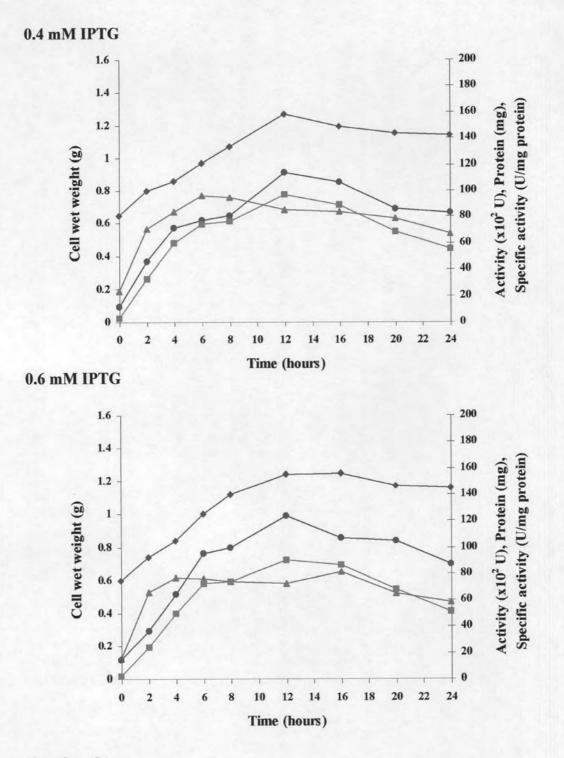
3.4.1 Optimization of phenylalanine dehydrogenase gene expression

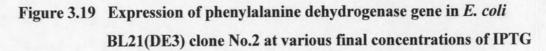

The transformant No. 2 giving the highest PheDH activity had been grown and induced by IPTG at final concentration of 0, 0.2, 0.4, 0.6, 0.8 and 1 mM at various times (0, 2, 4, 8, 12, 16, 20 and 24 hours) before the cells were harvested as described in 2.10. The results were displayed in Figure 3.19. When recombinant clone was cultured without IPTG induction, the expression of *phedh* gene was slightly increased until 16 hours with specific activity of 44.0 units/mg protein after that expression of gene tended to decrease. When using 0.2 mM IPTG, the maximal specific activity was 2 times higher than that of absence of IPTG. When transformant was induced by various final concentrations of IPTG (0.2, 0.4, 0.6, 0.8 and 1 mM), the expression was highest at induction time of 8 hours using 0.2 mM IPTG. Although, other each final concentration (0.4, 0.6 and 0.8 mM) shown highest the expressions at induction time less than 8 hours, they had the expression less than that of induction with 0.2 mM at induction time 8 hours. Hence, the optimum condition for induction of *phedh* gene was 0.2 mM IPTG at 8 hours of induction. The obtained specific activity of PheDH was about 111 units/mg protein.

Sources	Total activity (U)	Total protein (mg)	Specific activity (U/mg protein)	
Bacillus lentus	223	217	1.0	
E. coli BL21(DE3)	0	78.2	0	
<i>E. coli</i> BL21(DE3) harbouring pET-17b	0	90.4	0	
Transformant No.1	4,180	76.9	54.4	
Transformant No.2	9,080	98.7	92.0	
Transformant No.3	2,180	80.2	27.2	
Transformant No.4	2,880	76.5	37.6	
Transformant No.5	1,490	56.1	26.6	
Transformant No.6	2,390	46.4	51.5	
Transformant No.7	853	50.3	17.0	
Transformant No.8	2,500	86.5	28.9	
Transformant No.9	7,200	98.2	73.3	
Transformant No.10	6,720	96.4	69.7	
Transformant No.11	6,530	103	63.4	
Transformant No.12	5,970	79.0	75.6	
Transformant No.13	2,500	78.3	31.9	
Transformant No14	1,890	93.1	20.3	
Transformant No.15	786	84.2	9.34	
Transformant No.16	7,850	103	76.3	

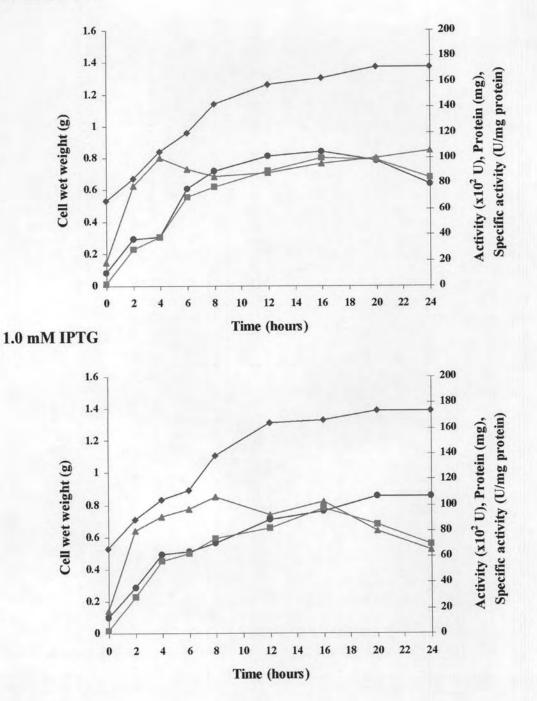

Table 3.1 Phenylalanine dehydrogenase activity from crude extract of *E. coli* BL21(DE3) transformants^a

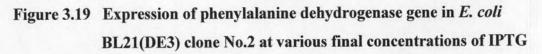
^a Crude extracts were prepared from 200 ml of cell culture by induction with 0.4 mM IPTG for 4 hours.


0 mM IPTG


(continued)

- \blacklozenge = cell wet weight
- = total acitivity
- specific activity
- = protein





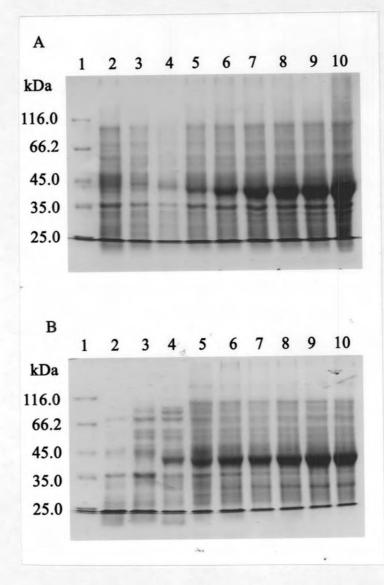
- \blacklozenge = cell wet weight
- = total acitivity
- \blacktriangle = specific activity
- = protein

0.8 mM IPTG

- \bullet = cell wet weight
- = total acitivity
- ▲ = specific activity
- = protein

3.4.2 Protein pattern of cells and crude extracts

The 1.5 ml of transformant No.2 cultures which had grown at various concentrations of IPTG and various times as described in 2.10 were harvested and centrifuged in microcentrifuge tube. The cell pellets were resuspended in 100 µl of 5x sample buffer. Seven microliters of cell samples or 20 µg protein of crude extracts were subjected to electrophoresis on 10% SDS-polyacrylamide gel. The results in Figure 3.20-3.25 showed that the intensity of major protein band at 42 kDa of cell and crude extracts at each induction time was quite corresponded to the level of enzyme activity from its crude extract.

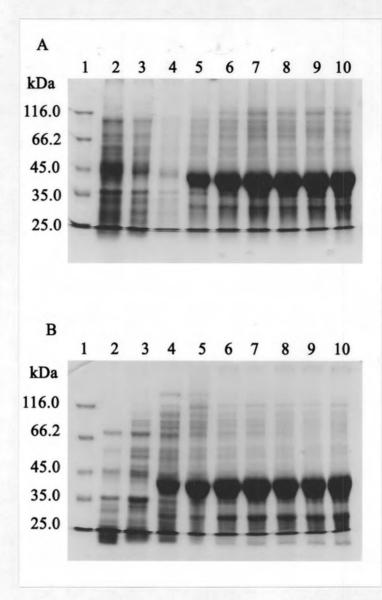

3.5 Stability of phenylalanine dehydrogenase gene (pBLPheDH) in E. coli BL21(DE3)

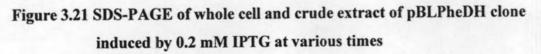
The 1st, 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th and 50th subcultured colonies were picked up to culture and assay for oxidative deamination activity. The result shown in Table 3.2 indicated that each generation also showed high expression level of *phedh* gene when compared to that of 1st generation. The parent showing highest expression level gave specific activity of 93.2 units/mg protein in crude extract. Later on, expression of *phedh* gene was gradually decreased with increasing number of generation. Despite the fact that the transformant No.2 was daily subcultured for 50 days, the *phedh* gene expression in *E. coli* BL21(DE3) remained 57.7% of that of the parent. It was implied that this transformant has high stability of recombinant plasmid.

3.6 Purification of phenylalanine dehydrogenase

3.6.1 Preparation of crude extract

Crude recombinant PheDH was prepared from 5 g of transformant No. 2 which was cultivated from 1.6 liter of medium as described in section 2.12.1. Crude


Figure 3.20 SDS-PAGE of whole cell and crude extract of pBLPheDH clone induced by 0 mM IPTG at various times

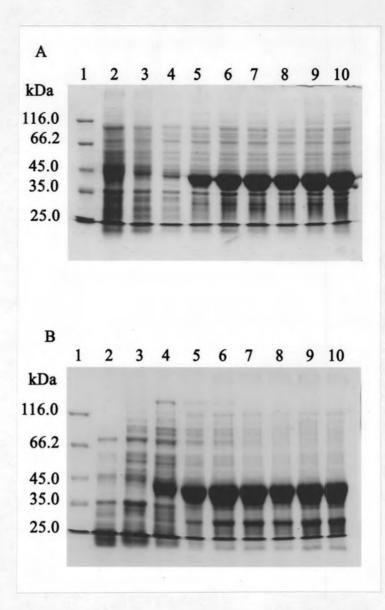

A: whole cell

B: crude extract

Lane 1	= protein marker
Lane 2	= cell and crude extract of <i>E. coli</i> BL21(DE3)
Lane 3	= cell and crude extract of E. coli BL21(DE3) harbouring
1	- call and and autroat of a DI DhaDU alone at various

pET-17b

A: whole cell


B: crude extract

Lane 1	= protein marker
--------	------------------

Lane 2 = cell and crude extract of E. coli BL21(DE3)

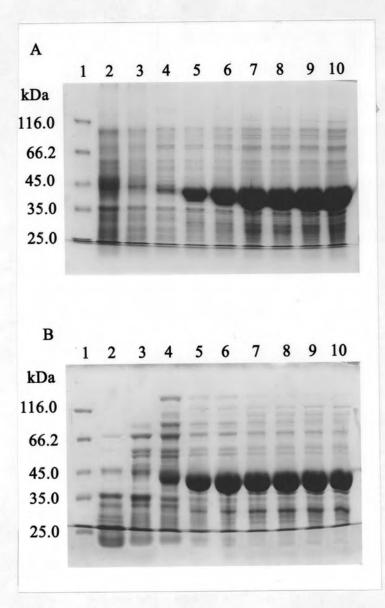
Lane 3 = cell and crude extract of E. coli BL21(DE3) harbouring pET-17b

Lane 4-10 = cell and crude extract of pBLPheDH clone at various induction times: 0, 2, 4, 8, 12, 16 and 20 hours, respectively

Figure 3.22 SDS-PAGE of whole cell and crude extract of pBLPheDH clone induced by 0.4 mM IPTG at various times

A: whole cell

B: crude extract


Lane 1 = protein marker]	Lane	1	=	protein	mark	er
-------------------------	---	------	---	---	---------	------	----

Lane $2 =$	cell and crude	extract of E. co	li BL21(DE3)
------------	----------------	------------------	--------------

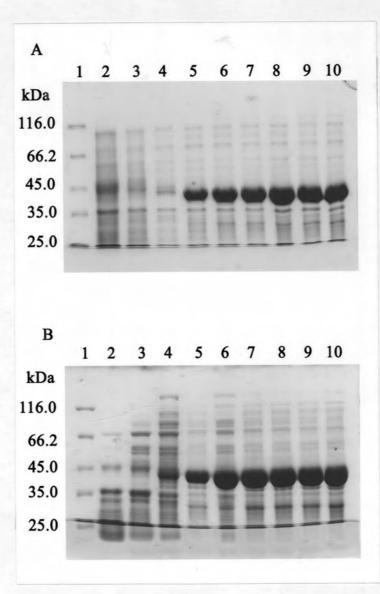
Lane 3 = cell and crude extract of *E. coli* BL21(DE3) harbouring pET-17b

```
Lane 4-10 = cell and crude extract of pBLPheDH clone at various
induction times: 0, 2, 4, 8, 12, 16 and 20 hours, respectively
```

98

Figure 3.23 SDS-PAGE of whole cell and crude extract of pBLPheDH clone induced by 0.6 mM IPTG at various times

A: whole cell

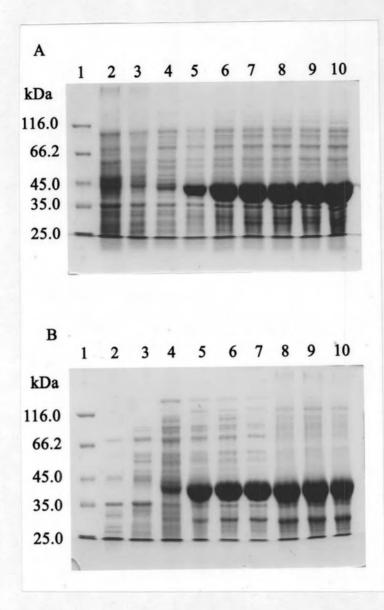

B: crude extract

protein	marker
	protein

Lane 2 = cell and crude extract of *E. coli* BL21(DE3)

Lane 3 = cell and crude extract of *E. coli* BL21(DE3) harbouring pET-17b

Lane 4-10 = cell and crude extract of pBLPheDH clone at various induction times: 0, 2, 4, 8, 12, 16 and 20 hours, respectively 99


Figure 3.24 SDS-PAGE of whole cell and crude extract of pBLPheDH clone

induced by 0.8 mM IPTG at various times

A: whole cell

B: crude extract

Lane 1	=	protein marker
Lane 2	=	cell and crude extract of E. coli BL21(DE3)
Lane 3	=	cell and crude extract of E. coli BL21(DE3) harbouring
		pET-17b
Lane 4-10	=	cell and crude extract of pBLPheDH clone at various
		induction times: 0, 2, 4, 8, 12, 16 and 20 hours, respectively

Figure 3.25 SDS-PAGE of whole cell and crude extract of pBLPheDH clone

induced by 1.0 mM IPTG at various times

A: whole cell

B: crude extract

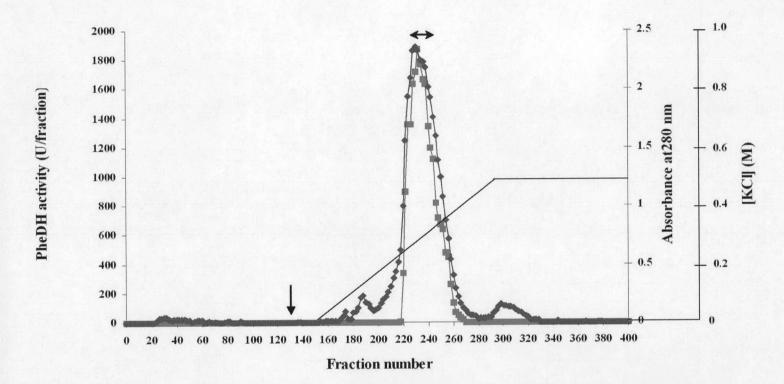
Lane 1	=	protein marker
Lane 2	=	cell and crude extract of E. coli BL21(DE3)
Lane 3	=	cell and crude extract of E. coli BL21(DE3) harbouring
		pET-17b
Lane 4-10	=	cell and crude extract of pBLPheDH clone at various
		induction times: 0, 2, 4, 8, 12, 16 and 20 hours, respectively

Number of subculture	Total activity (U)	Total protein (mg)	Specific activity (U/mg protein)
1	10,900	117	93.2
5	9,250	104	89.2
10	8,260	129	75.5
15	7,840	119	71.3
20	7,090	103	68.5
25	7,370	108	68.2
30	7,280	110	66.2
35	7,930	124	64.0
40	7,960	128	62.0
45	7,750	125	62.0
50	6,360	118	53.9

Table 3.2 Stability of phenylalanine dehydrogenase gene expression in pBLPheDH clone^a

^a Crude extracts were prepared from 200 ml of cell culture.

The data represent the mean values of three independent experiments.


extract contained 712 mg proteins and 55,500 units of PheDH activity. Thus, the specific activity of the enzyme in the crude preparation was 77.9 units/mg protein which was 78 times higher than that of wild type crude extract.

3.6.2 Ammonium sulfate precipitation

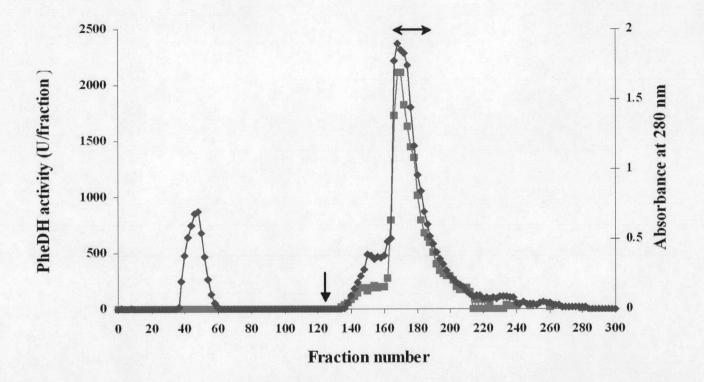
First step of purification, crude extract was purified by ammonium sulfate precipitation as described in section 2.12.2.1. To determine the proper ammonium sulfate concentration for enzyme precipitation, the precipitation using 0-30%, 30-40%, 40-50% and 50-60% ammonium sulfate were performed in preliminary experiment. The result showed that most of enzyme activity was found in the 40-50% fraction. Therefore, protein from 40-50% saturated ammonium sulfate fraction was collected and dialysed against the buffer. The recovered protein and enzyme activity were 350 mg and 28,800 units, respectively. The specificity activity of the enzyme from this step was 82.3 units/mg protein.

3.6.3 DEAE-Toyopearl column chromatography

The enzyme from 40-50% saturated ammonium sulfate precipitation was loaded into DEAE-Toyopearl column as described in section 2.12.2.2. The chromatographic profile was shown in Figure 3.26. The unbound proteins were eluted from column by the phosphate buffer, whereas the bound proteins were eluted by linear salt gradient of 0 to 0.5 M potassium chloride in the buffer. PheDH was eluted at about 0.25 M potassium chloride as indicated in the profile. PheDH fractions were pooled, dialysed against the buffer, concentrated by aquasorb to reduce enzyme volume. This operation obtained the enzyme with 153 mg proteins and 21,400 activity units. The specificity activity of the enzyme from this step was 140 units/mg protein. The enzyme was purified 1.80 fold with 38.6% recovery.

Figure 3.26 Purification of phenylalanine dehydrogenase from pBLPheDH clone by DEAE - Toyopearl column

The enzyme solution was applied to DEAE -Toyopearl column and washed with 10 mM potassium phosphate buffer, pH 7.4 containing $0.01\%(v/v)\beta$ -mercaptoethanol and 1 mM EDTA until A₂₈₀ decreased to base line. The bound proteins were eluted by 0-0.5 M KCl in the same buffer at the flow rate of 1 ml/min. The fractions of 3 ml were collected. The arrow indicates where gradient started. The protein peak from fraction number 222 to 256 was pooled (\iff). A_{280} , \blacksquare PheDH activity, -[KCl]

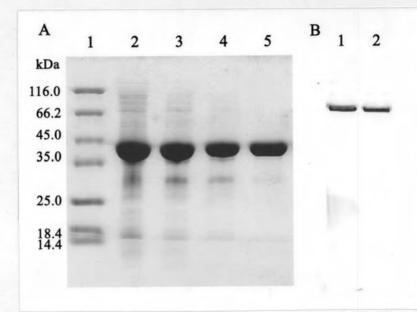

3.6.4 Butyl-Toyopearl column chromatography

The pooled active fraction from DEAE-Toyopearl column was applied to the Butyl-Toyopearl column as described in section 2.12.2.3. The chromatographic profile was shown in Figure 3.27. The unbound proteins were eluted from column with buffer containing 25% saturated ammonium sulfate and then the bound proteins were eluted with 22.5% saturated ammonium sulfate in the buffer. The enzyme was eluted immediately with the buffer containing 22.5% salt saturation. The pooled fraction containing PheDH activity was dialyzed against the buffer and concentrated by aquasorb. The proteins remained from this step was 105 mg with 17,200 units of PheDH activity. The specific activity of the enzyme was 164 units/mg protein. The PheDH was purified 2.11 fold with about 31.0% recovery. The purified enzyme from this step was kept at 4°C for further experiments.

The summary of purification of PheDH was shown in Table 3.3.

3.6.5 Determination of enzyme purity and protein pattern on non-denaturing polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis

The enzyme from each step of purification was examined for purity and protein pattern by SDS-PAGE as described in section 2.13.2. In addition, purified enzyme from the last step of purification was run on non-denaturing PAGE followed by protein and activity staining as described in 2.13.1.1 and 2.13.1.2, respectively. The results are shown in Figure 3.28. The purified enzyme in lane 5A on SDS-PAGE showed a single band which corresponded with a single protein band in lane 1B and its activity staining in lane 2B on native-PAGE. It indicated that PheDH from Butyl-Toyopearl column was a pure enzyme. The molecular weight of PheDH subunit was calculated to be 42 kDa by its mobility in SDS-PAGE compared with those of standard proteins.


Figure 3.27 Purification of phenylalanine dehydrogenase from pBLPheDH clone by Butyl-Toyopearl column

The enzyme solution was applied to Butyl-Toyopearl column and washed with 25% saturated ammonium sulfate in 10 mM potassium phosphate buffer, pH 7.4 containing 0.01% (v/v) β -mercaptoethanol and 1 mM EDTA until A₂₈₀ decreased to base line. The enzyme was eluted by 22.5% saturated ammonium sulfate in the same buffer at the flow rate of 1 ml/ min. The fractions of 2 ml were collected. The arrow indicates where 22.5% saturated ammonium sulfate in the same buffer begun. The protein peak from fraction number 164 to 192 was pooled (\leftrightarrow). \Rightarrow A₂₈₀, \blacksquare PheDH activity

Purification steps	Total activity (unit)	Total protein (mg)	Specific activity (units/mg protein)	% Recovery	Purification fold
Crude enzyme	55,500	712	77.9	100	1
40-50% saturated ammonium sulfate precipitation	28,800	350	82.3	51.9	1.06
DEAE-Toyopearl column	21,400	153	140	38.6	1.80
Butyl-Toyopearl column	17,200	105	164	31.0	2.11

Table 3.3 Purification of phenylalanine dehydrogenase from pBLPheDH clone^a

^a Crude extract was prepared from 1.6 liters (5 g cell wet weight) of cell culture.

Figure 3.28 Protein pattern from each step of purification investigated by SDS-PAGE and the purified PheDH at last step examined by native-PAGE

A: SDS-PAGE

Lane 1	= protein marker
Lane 2	= crude extract
Lane 3	= 40-50% saturated ammonium sulfate precipitation
Lane 4	= DEAE-Toyopearl column
Lane 5	= Butyl-Toyopearl column
B: native-P	AGE
Lane 1	= Butyl-Toyopearl column (protein staining)

Lane 2 = Butyl-Toyopearl column (activity staining)

3.7 Characterization of phenylalanine dehydrogenase

3.7.1 Molecular weight determination of phenylalanine dehydrogenase

The native molecular weight of recombinant PheDH was determined from high molecular weight calibration curve obtained by gel filtration on HPLC by TSK gel G3000SW column as mentioned in section 2.14.1 (Figure 3.29). The molecular weight of the native enzyme was estimated to be about 340,000 Da. The subunit molecular weight of the enzyme was estimated to be about 42,000 Da by SDS-PAGE, as previously described in section 3.6.5. The result indicated that the enzyme was consisted of eight identical subunits.

3.7.2 Substrate specificity of phenylalanine dehydrogenase

Substrate specificity of PheDH in the oxidative deamination and amination directions were studied as mentioned in section 2.14.2. The ability of the enzyme to catalyze the oxidative deamination of various amino acids and their derivatives was determined at a concentration of 20 mM as shown in Table 3.4. In addition to L-phenylalanine (relative activity, 100%), which was the preferred substrate, various L-amino acids served as substrates (relative activities given in parentheses): *p*-fluoro-DL-phenylalanine (30), *m*-fluoro-DL-phenylalanine (16), *S*-methyl-L-cysteine (13), L-norleucine (11), L-methionine (8), L-ethionine (7), *o*-fluoro-DL-phenylpyruvate (5), L-tryptophan (5), L-valine (4), L-norvaline (4), L-leucine (3), L-alloisoleucine (3), L-isoleucine (1) and L-histidine (1). The tested amino acids, which were not substrate for the oxidative deamination, were D-phenylalanine, L-alanine, and L-proline.

The reductive amination of the keto acids (10 mM) was shown in Table 3.5. Among the substrate tests, the highest activity occurred when phenylpyruvate was used as substrate. The relative activities for α -ketocaproate, α -ketoisocaproate, α -ketoisocaproate, α -ketoisocaproate, α -ketoisovalerate, α -keto- β -methyl-n-valerate, α -keto- γ -methiol-

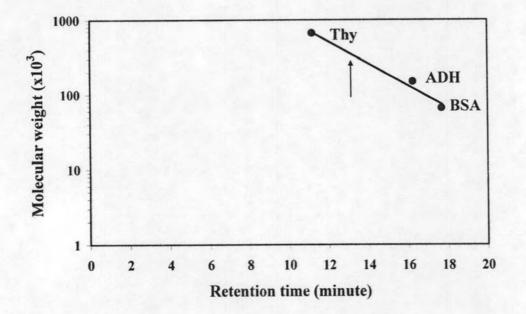


Figure 3.29 Calibration curve for molecular weight of phenylalanine dehydrogenase by gel filtration on HPLC

Thy	=	thyroglobulin	(669,000 Da)
ADH	=	alcohol dehydrogenase	(150,000 Da)
BSA	=	bovine serum albumin	(66,000 Da)

Arrow indicated a determined molecular weight of PheDH.

Substrate ^b	Relative activity (%)
L-phenylalanine	100
p-fluoro-DL-phenylalanine	30
m-fluoro-DL-phenylalanine	16
o-fluoro-DL-phenylpyruvate	5
S-methyl-L-cysteine	13
L-norleucine	11
L-ethionine	7
L-methionine	8
L-histidine	1
L-leucine	3
L-tryptophan	4
L-valine	5
L-alloisoleucine	3
L-isoleucine	1
L-norvaline	4

Table 3.4 Substrate specificity of phenylalanine dehydrogenase in oxidative deamination^a

^a The data represent the mean values of three independent experiments.

^b Final concentration of each substrate was 20 mM.

Substrate ^b	Relative activity (%)
phenylpyruvate	100
α-ketocaproate	31
α-ketoisocaproate	11
α-ketovalerate	12
α-ketoisovalerate	9
α-keto-β-methyl-n-valerate	4
α-keto-γ-methiol-butyrate	1

Table 3.5 Substrate specificity of phenylalanine dehydrogenase in reductive amination^a

^a The data represent the mean values of three independent experiments.

^b Final concentration of keto acids was 10 mM.

butyrate were 31, 11, 12, 9, 4 and 1%, respectively when compared with the activity for phenylpyruvate. The tested keto acids which was not substrate for the reductive amination was α -keto-n-butyrate.

3.7.3 Coenzyme specificity of phenylalanine dehydrogenase

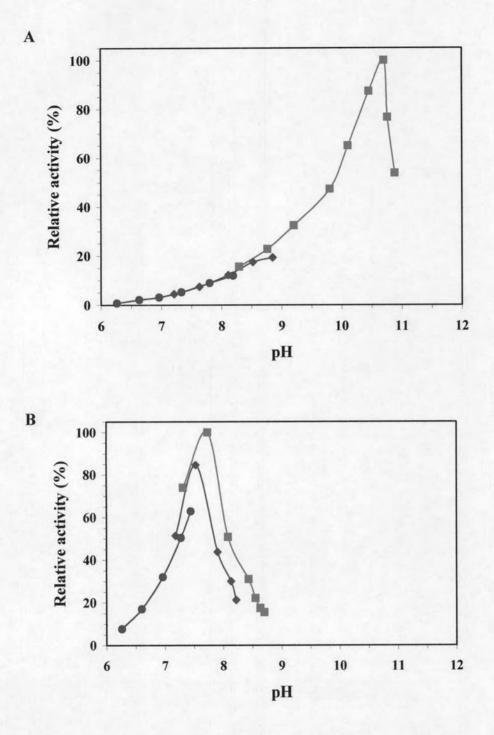
Coenzyme specificity of PheDH was investigated as described in section 2.14.3. PheDH required NAD⁺ as a natural coenzyme for oxidative deamination. Some analogs of NAD⁺ could serve as a coenzyme as shown in Table 3.6. 3-Acetylpyridine-NAD⁺ (167%) was much better coenzyme than NAD⁺. Nicotinamide-1, N^6 -ethenoadenine dinucleotide, nicotinamide hypoxanthine dinucleotide, nicotinamide guanine dinucleotide and thionicotinamide adenine dinucleotide showed 75, 89, 77 and 52% relative activity to that of NAD⁺, while NADP⁺, nicotinic acid adenine dinucleotide and 3-pyridinealdehyde adenine dinucleotide showed no activity.

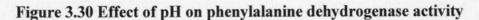
3.7.4 Effect of pH on phenylalanine dehydrogenase activity

The effect of pH on the enzyme activity in both of the oxidation deamination and reduction amination was examined at various pHs of buffers ranged from 6.0 to 12.5 as mentioned in section 2.14.4. The result was shown in Figure 3.30. The enzyme exhibited maximal activity at pH 10.7 for oxidative deamination (Figure 3.30 A) while the maximal activity for reductive amination was at pH 7.8 (Figure 3.30 B).

3.7.5 Effect of temperature on phenylalanine dehydrogenase activity

The effect of temperature on enzyme activity was investigated as described in section 2.14.5. The temperature was varied from 25°C to 75°C. The result was shown in Figure 3.31. The enzyme performed the highest activity at 45°C for oxidative deamination and at 50°C for reductive amination.


Coenzyme ^b	Relative activity (%)
3-nicotinamide adenine dinucleotide	100
3-acetylpyridine adenine dinucleotide	167
nicotinamide-1, N^6 -ethenoadenine dinucleotide	75
nicotinamide hypoxanthine dinucleotide	89
nicotinamide guanine dinucleotide	77
thionicotinamide adenine dinucleotide	52
nicotinic acid adenine dinucleotide	0
β-nicotinamide adenine dinucleotide phosphate	0
3-pyridinealdehyde adenine dinucleotide	0


Table 3.6 Coenzyme specificity of phenylalanine dehydrogenase^a

^a The data represent the mean values of three independent experiments.

^b Final concentration of each coenzyme analog was 2.0 mM.

The assay was conducted at the following wavelengths: 3-acetylpyridine adenine dinucleotide, 363 nm ($\epsilon = 9.1 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); β -nicotinamide adenine dinucleotide phosphate (NADP⁺), 340 nm ($\epsilon = 6.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); nicotinamide-1, N^6 -ethenoadenine dinucleotide, 334 nm ($\epsilon = 6.9 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); nicotinamide hypoxanthine dinucleotide (deamino-NAD⁺), 338 nm ($\epsilon = 6.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); nicotinamide guanine dinucleotide, 340 nm ($\epsilon = 6.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); nicotinamide guanine dinucleotide, 340 nm ($\epsilon = 6.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); nicotinic acid adenine dinucleotide (deamido-NAD⁺), 338 nm ($\epsilon = 6.2 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); 3-pyridinealdehyde adenine dinucleotide, 358 nm ($\epsilon = 9.3 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$); and thionicotinamide adenine dinucleotide, 395 nm ($\epsilon = 11.3 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$). The reaction was carried out at pH 9.5 to avoid the degradation of NAD⁺ analogs at a more alkaline pH.

The PheDH activities for oxidative deamination (A) and reductive amination (B) were measured at different pHs with 200 mM potassium phosphate buffer (\bullet), Tris-HCl buffer (\bullet) and glycine-KCl-KOH buffer (\blacksquare).

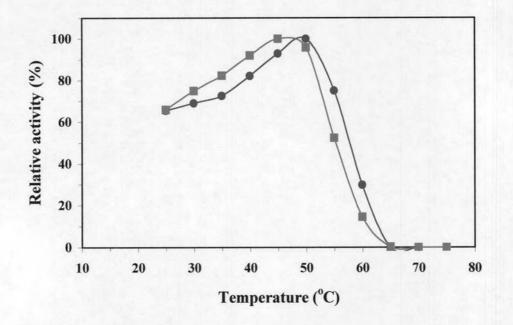


Figure 3.31 Effect of temperature on phenylalanine dehydrogenase activity

The PheDH activities for oxidative deamination (■) and reductive amination (●) reactions were measured at various temperatures varying from 25°C to 75°C.

3.7.6 Effect of pH on phenylalanine dehydrogenase stability

The pH stability of PheDH was studied as described in section 2.14.6. The enzyme was preincubated at 30°C for 20 minutes in various 10 mM buffers at various pHs ranging from 4.0 to 12.5. The result was shown in Figure 3.32. The enzyme was stable over the pH ranged from 7.0 to 11.0.

3.7.7 Effect of temperature on phenylalanine dehydrogenase stability

The thermostability of PheDH was studied as described in section 2.14.7. The enzyme was preincubated at various temperatures ranged from 30°C to 70°C for 10 min. The enzyme activity of non-preincubated enzyme was defined as 100% relative activity. The result was shown in Figure 3.33 A. The enzyme retained its full activity at temperature up to 45°C and lost about half of its activity at about 55°C. At 60°C, PheDH absolutely lost its activity. The enzyme stability was tested at 45°C by incubation for 0 to 15 days and investigated its activity everyday. The remained deamination activities were expressed as the percentage of the original activity. The result was shown in Figure 3.33 B. The enzyme was fully stable at 45°C only 1 hour and retained 50% of its activity after treatment for 3 days. The enzyme activity was relatively decreased with increasing of incubation time and the activity was completely lost after incubation for 14 days.

3.8 Kinetic studies of phenylalanine dehydrogenase

3.8.1 Initial velocity studies for oxidative deamination

A series of steady-state kinetic analysis was carried out to investigate the kinetic parameters. First, initial velocity studies for oxidative deamination were performed. The concentration of L-phenylalanine was varied in the presence of several fixed concentration of NAD⁺. Double-reciprocal plots of initial velocity against reciprocals of L-phenylalanine concentrations gave a family of straight lines,

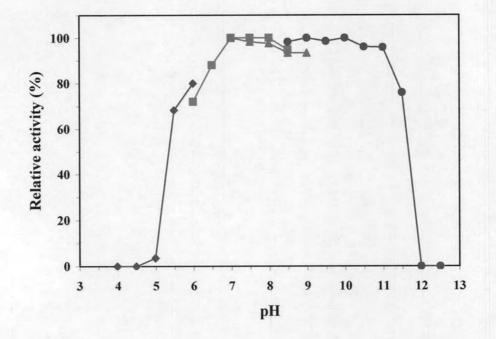


Figure 3.32 Effect of pH on phenylalanine dehydrogenase stability

The enzymes in buffers at various pHs ranged from 4.0 to 12.5 were incubated at 30°C for 20 minutes and then the relative activities were assayed for the oxidative deamination. The 10 mM buffers used were acetate buffer (pH 4.0- $6.0; \blacklozenge$), potassium phosphate buffer (pH 6.0-8.5; \blacksquare), Tris-HCl buffer (pH 7.0-9.0; \blacktriangle) and glycine-KCl-KOH buffer (pH 8.5-12.5; \blacklozenge).

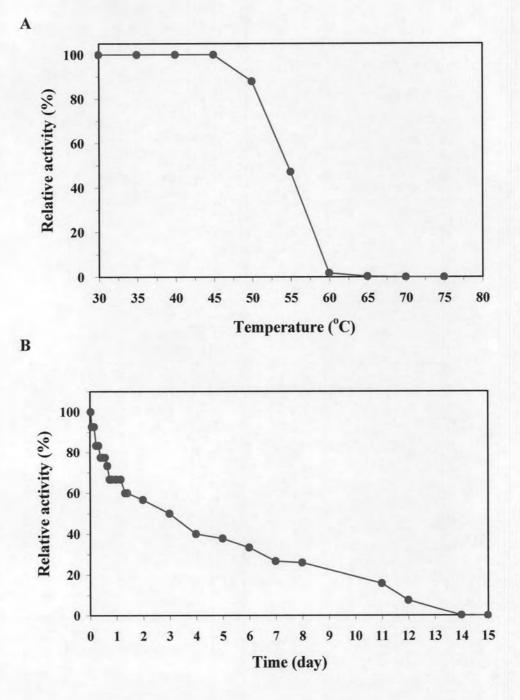
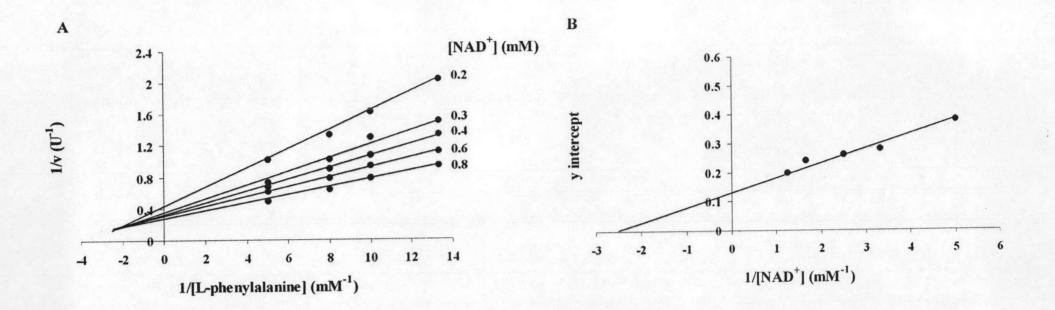


Figure 3.33 Effect of temperature on phenylalanine dehydrogenase stability

- A The effect of temperature on stability of the enzyme activity was performed at 30 to 75°C for 10 minutes before the residual oxidative deamination activity was determined under standard condition at 30°C.
- B The enzyme stability was tested at 45°C and the residual oxidative deamination activity was determined under standard condition at 30°C.

which intersected in the upper left quadrant as shown in Figure 3.34 A. These results showed that the reaction proceeds via the formation of a ternary complex of the enzyme with NAD⁺ and L-phenylalanine (Cleland, 1971). The apparent K_m value for L-phenylalanine was calculated to be 0.45 mM. From the secondary plots of intercept at the ordinate versus reciprocal concentrations of NAD⁺, the apparent K_m value for NAD⁺ was calculated to be 0.40 mM as shown in Figure 3.34 B.


3.8.2 Initial velocity studies for reductive amination

A kinetic analysis of reductive amination was performed to investigate possible reaction mechanism.

3.8.2.1 At a saturating concentration of NADH (0.2 mM), the double reciprocal plots of initial velocities versus phenylpyruvate concentrations at several fixed concentrations of NH₄Cl gave straight intersecting lines as shown in Figure 3.35 A. The apparent K_m value for phenylpyruvate was calculated to be 0.15 mM from this figure. The apparent K_m value for NH₄Cl was calculated to be 48 mM from the secondary plots of intercept at the ordinate versus reciprocal concentrations of NH₄Cl as shown in Figure 3.35 B.

3.8.2.2 At a saturating concentration of phenylpyruvate (10 mM), the double-reciprocal plots of initial velocities versus NH₄Cl concentration at several fixed concentrations of NADH gave parallel straight lines as shown in Figure 3.36.

3.8.2.3 At a saturating concentration of NH₄Cl (500 mM), the double reciprocal plots of initial velocities versus NADH concentration at several fixed concentrations of phenylpyruvate gave straight intersecting lines as shown in Figure 3.37 A. The apparent K_m of NADH was calculated to be 0.15 mM. The secondary plots of intercept at the ordinate versus reciprocal concentrations of phenylpyruvate, as shown in Figure 3.37 B, gave the same apparent K_m of 0.15 mM with that in Figure 3.35 A.

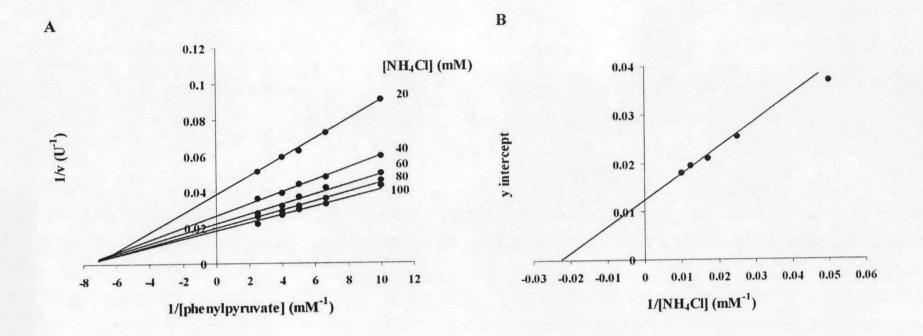


Figure 3.34 Initial velocity patterns for oxidative deamination

A Double-reciprocal plots of initial velocities versus L-phenylalanine concentrations at a series of fixed concentrations of NAD⁺.

Concentrations of NAD⁺ were 0.2, 0.3, 0.4, 0.6 and 0.8 mM, respectively.

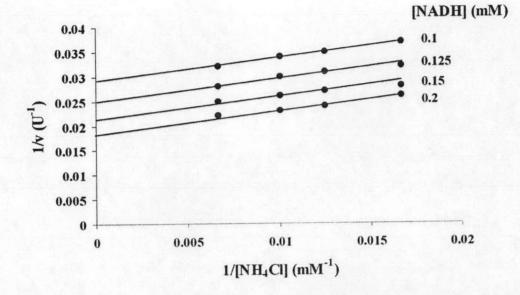
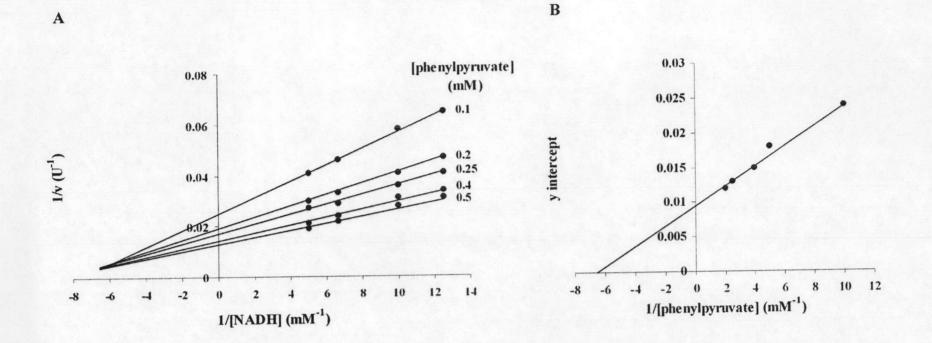

B Secondary plots of y intercepts versus reciprocal NAD⁺ concentrations

Figure 3.35 Initial velocity patterns for reductive amination (phenylpyruvate versus NH4Cl)


- A Double-reciprocal plots of initial velocities versus phenylpyruvate concentrations at several fixed concentrations of NH₄Cl in the presence of a high concentration (0.2 mM) of NADH. The concentrations of NH₄Cl were 20, 40, 60, 80 and 100 mM, respectively.
- B Secondary plots of y intercepts versus reciprocal NH₄Cl concentrations

122

Figure 3.36 Initial velocity patterns for reductive amination (NH₄Cl versus NADH)

Double-reciprocal plots of initial velocities versus NH₄Cl concentration at several fixed concentrations of NADH in the presence of a high concentration (10 mM) of phenylpyruvate. The concentrations of NADH were 0.1, 0.125, 0.15 and 0.2 mM, respectively.

Figure 3.37 Initial velocity patterns for reductive amination (NADH versus phenylpyruvate)

- A Double-reciprocal plots of initial velocities versus NADH concentrations at several fixed concentrations of phenylpyruvate in the presence of a high concentration (500 mM) of NH₄Cl. The concentrations of phenylpyruvate were 0.1, 0.2, 0.25, 0.4 and 0.5 mM, respectively.
- B Secondary plots of y intercepts versus reciprocal phenylpyruvate concentrations

124

The apparent K_m values of the substrates of PheDH were summarized in Table 3.7.

Substrate	<i>K</i> _m (mM)
L-phenylalanine	0.45
NAD ⁺	0.40
phenylpyruvate	0.15
NH4Cl	48
NADH	0.15

 Table 3.7 The apparent K_m values of substrates of phenylalanine dehydrogenase

 from E. coli BL21 (DE3) harbouring pBLPheDH