

GENERALIZED TRANSFORMATION SEMIGROUPS AND LINEAR TRANSFORMATION SEMIGROUPS WHOSE BI-IDEALS ARE QUASI-IDEALS

By

Field of study
Thesis Advisor

Mr. Chaiwat Namnak
Mathematics
Associate Professor Yupaporn Kemprasit, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctor's Degree

THESIS COMMITTEE

(Assistant Professor Amorn Wasanawichit, Ph.D.)
\qquad Member
(Associate Professor Chawewan Ratanaprasert, Ph.D.)

[^0]เราเรียกเซมิกรุปย่อย Q ของเซมิกรุป S ว่า ควอซี-ไอเดียล ของ S ถ้า $S Q \cap Q S \subseteq Q$ และ ไบ-ไอเดียลของ S หมายถึง เซมิกรุปย่อย B ของ S ซึ่ง $B S B \subseteq B$ ควอซี-ไอเดียลเป็นนัยทั่วไปของ ไอเดียลซ้ายและไอเดียลขวา และไบ-ไอเดียลให้นัยทั่วไปของควอซี-ไอเดียล แนวคิดของไบ-ไอเดียล และแนวคิดของควอซี-ไอเดียลสำหรับเซมิกรุปแนะนำโดย อาร์ เอ กูด และ ดี อาร์ ฮิวส์ ในปี 1952 และ โดย โอ สตีนเฟลด์ ในปี 1956 ตามลำดับ หลังจากนั้นได้มีการศึกษาเรื่องควอซี-ไอเดียลและไบ-ไอเดียล ของเซมิกรุปกันอย่างกว้างขวาง สิ่งที่เราสนใจในการวิจัยนี้คือเซมิกรุปซึ่งมีไบ-ไอเดียลและควอซีไอเดียลเป็นสิ่งเดียวกัน และ เราเรียกเซมิกรุปเช่นนี้ว่า $B Q-$ เซมิกรุป

สำหรับเซต X และ Y ให้ $P(X, Y)$ เป็นเซตของการส่ง $\alpha: A \rightarrow Y$ ทั้งหมด โดยที่ $A \subseteq X$ สำหรับ $\theta \in P(Y, X)$ ให้ $(P(X, Y), \theta)$ แทนเซมิกรุป $(P(X, Y), *)$ โดย $\alpha * \beta=\alpha \theta \beta$ สำหรับ $\alpha, \beta \in P(X, Y)$ ทั้งหมด จุดประสงค์แรกของการวิจัยนี้คือให้ลักษณะว่าเซมิกรุปย่อยบางชนิดของ $(P(X, Y), \theta)$ สำหรับ θ ที่เจาะจงจะเป็น $B Q$-เซมิกรุปเมื่อใดในเทอมของขนาดของ X และ Y

สำหรับปริภูมิเวกเตอร์ V บนริงการหาร ให้ $L(V)$ เป็นเซมิกรุปภายใต้การประกอบของการ แปลงเชิงเส้น $\alpha: V \rightarrow V$ ทั้งหมด เราศึกษาเซมิกรุปย่อยหลากหลายของ $L(V)$ ที่นิยามโดยเคอร์เนลและ ภาพของการแปลงเชิงเส้น เพื่อจุดประสงค์ที่สอง เราให้ลักษณะว่าเซมิกรุปการแปลงเชิงเส้นเหล่านี้จะ เป็น $B Q$-เซมิกรุปเมื่อใดในเทอมของมิติของ V

สุดท้ายเราศึกษาเซมิกรุปการแปลงเต็มที่รักษาอันดับ $T_{O P}(I)$ บนช่วง I ของจำนวนจริง เราให้ เงื่อนไขที่จำเป็นและเพียงพอสำหรับ I ที่ทำให้ $T_{O P}(I)$ เป็น $B Q-$-ซมิกรุป

จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา คณิตศาสตร์
สาขา คณิตศาสตร์
ปีการศึกษา 2545

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา.
ลายมือชื่ออาจารย์ที่ปร็กษาร่วม

```
# # 4273806923 : MAJOR MATHEMATICS
KEY WORDS :GENERALIZED TRANSFORMATION SEMIGROUPS / LINEAR TRANSFORMATION

CHAIWAT NAMNAK : GENERALIZED TRANSFORMATION SEMIGROUPS AND LINEAR TRANSFORMATION SEMIGROUPS WHOSE BI-IDEALS ARE QUASI-IDEALS. THESIS ADVISOR : ASSOCIATE PROFESSOR YUPAPORN KEMPRASIT, Ph.D., 63 pp. ISBN 974-17-2533-7

A subsemigroup \(Q\) of a semigroup \(S\) is called a quasi-ideal of \(S\) if \(S Q \cap Q S \subseteq Q\). By a bi-ideal of \(S\) we mean a subsemigroup \(B\) of \(S\) such that \(B S B \subseteq B\). Quasi-ideals are a generalization of left ideals and right ideals and bi-ideals generalize quasi-ideals. The notion of bi-ideal and the notion of quasi-ideal for semigroups were introduced respectively by R. A. Good and D. R. Huges in 1952 and O. Steinfeld in 1956. Since then, both quasi-ideals and bi-ideals of semigroups have been widely studied. Semigroups whose bi-ideals and quasi-ideals coincide are of our interest in this research. One calls such semigroups \(B Q\)-semigroups.

For sets \(X\) and \(Y\), let \(P(X, Y\) be the set of all mappings \(\alpha: A \rightarrow Y\) where \(A \subseteq X\). For \(\theta \in P(Y, X)\), let \((P(X, Y), \theta)\) denote the semigroup \((P(X, Y), *)\) where \(\alpha * \beta=\alpha \theta \beta\) for all \(\alpha, \beta \in P(X, Y)\). The first purpose of this research is to characterize when certain subsemigroups of \((P(X, Y), \theta)\) with a particular \(\theta\) are \(B Q\)-semigroups in terms of the cardinalities of \(X\) and \(Y\).

For a vector space \(V\) over a division ring, let \(L(V)\) be the semigroup under composition of all linear transformations \(\alpha: V \rightarrow V\). Various subsemigroups of \(L(V)\) defined by kernels and images of linear transformations are studied for our second purpose. We characterize when these linear transformation semigroups are \(B Q\) semigroups in terms of the dimensions of \(V\).

Finally, we study the full order-preserving transformation semigroup \(T_{O P}(I)\) on an interval \(I\) of real numbers. Necessary and sufficient conditions for \(I\) so that \(T_{O P}(I)\) is a \(B Q\)-semigroup are given.
จุฬาลงกรันวิทยบริการ

\section*{Department Mathematics}

Field of study Mathematics
Academic year 2002

Student's signature \(\qquad\)
Advisor's signature
Co-advisor's signature

\section*{ACKNOWLEDGMENTS}

I am greatly indebted to Associate Professor Dr. Yupaporn Kemprasit, my thesis supervisor, for her valuable suggestions and guidance offered during the preparation and completion of this thesis. I would like to express my special thanks to my thesis committee: Assistant Professor Dr. Patanee Udomkavanich (chairman), Assistant Professor Dr. Ajchara Harnchoowong, Assistant Professor Dr. Amorn Wasanawichit and Associate Professor Dr. Chawewan Ratanaprasert for their useful comments. Moreover, I feel very grateful to all of my teachers who have taught me for my knowledge and skills.

My deep appreciation goes to Naresuan University for allowing me to study in the Ph.D. program. In particular, I wish to express my sincere appreciation to my beloved parents for their encouragement throughout my study.

\[
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
\]

\section*{CONTENTS}
ABSTRACT IN THAI ..... iv
ABSTRACT IN ENGLISH ..... v
ACKNOWLEDGMENTS ..... vi
CHAPTER
I INTRODUCTION AND PRELIMINARIES ..... 1
II GENERALIZED TRANSFORMATION SEMIGROUPS ..... 17
III LINEAR TRANSFORMATION SEMIGROUPS ..... 24
IV ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ..... 54
REFERENCES ..... 61
VITA ..... 63

\section*{CHAPTER I}

\section*{INTRODUCTION AND PRELIMINARIES}

In this introductory chapter, we present a number of elementary concepts, notations and propositions on semigroups most of which will be indispensable for the remainder of this research.

Let \(\mathbb{N}, \mathbb{Z}\) and \(\mathbb{R}\) denote respectively the set of natural numbers (positive integers), the set of integers and the set of real numbers. For any set \(X\), let \(|X|\) denote the cardinality of \(X\).

An element \(e\) of a semigroup \(S\) is called an idempotent if \(e^{2}=e\). For a semigroup \(S\), let \(E(S)\) be the set of all idempotents of \(S\). A semigroup \(S\) with zero 0 is called a zero semigroup if \(x y=0\) for all \(x, y \in S\). An element \(x\) of a semigroup \(S\) is regular if \(x=x y x\) for some \(y \in S\), and \(S\) is called a regular semigroup if every element of \(S\) is regular.

A nonempty subset \(A\) of a semigroup \(S\) is called a left [right \(]\) ideal of \(S\) if \(S A \subseteq A[A S \subseteq A]\), and \(A\) is called an ideal of \(S\) if \(A\) is both a left and a right ideal of \(S\). We call a semigroup \(S\) a left \([\) right \(]\) simple semigroup if \(S\) is the only left [right] ideal of \(S\). Likewise a semigroup \(S\) is called a simple semigroup if \(S\) is the only ideal of \(S\). The following known result will be used later.

Proposition 1.1. A semigroup \(S\) is left \([\) right \(]\) simple if and only if \(S x=S\) \([x S=S]\) for all \(x \in S\).

A semigroup \(S\) with zero 0 is called a left [right] 0-simple semigroup if \((i) S^{2} \neq\{0\}\) and (ii) \{0\} and \(S\) are the only left [right] ideals of \(S\). A 0 -simple semigroup is a
semigroup \(S\) with zero 0 such that \((i) S^{2} \neq\{0\}\) and (ii) \(\{0\}\) and \(S\) are the only ideals of \(S\).

For a semigroup \(S\), let \(S^{1}\) be \(S\) if \(S\) has an identity, otherwise, let \(S^{1}\) be the semigroup \(S \cup\{1\}\) where \(1 \notin S\) with the operation extended from the operation on \(S\) by defining \(1 x=x 1=x\) for all \(x \in S \cup\{1\}\).

A subsemigroup \(Q\) of a semigroup \(S\) is called a quasi-ideal of \(S\) if \(S Q \cap Q S \subseteq\) \(Q\), and by a bi-ideal of \(S\) we mean a subsemigroup \(B\) of \(S\) such that \(B S B \subseteq\) \(B\). Clearly, every left ideal and every right ideal of \(S\) is a quasi-ideal of \(S\) and every quasi-ideal of \(S\) is a bi-ideal of \(S\). The notion of quasi-ideal for semigroups was introduced by O. Steinfeld \([16]\) in 1956. In fact, the notion of bi-ideal for semigroups was introduced earlier by R. A. Good and D. R. Huges [3] in 1952.

Example 1.2. (1) Let \(R\) be division ring, \(n \in \mathbb{N}\) and \(M_{n}(R)\) the semigroup of all \(n \times n\) matrices over \(R\) under the usual multiplication of matrices. For each \(C \in M_{n}(R)\), let \(C_{i j}\) denote the entry of \(C\) in the \(i^{\text {th }}\) row and the \(j^{\text {th }}\) column. For \(k, l \in\{1,2, \ldots, n\}\), let \(Q_{n}^{k l}(R)\) be the subset of \(M_{n}(R)\) consisting of all matrices \(C \in M_{n}(R)\) such that
สถาณันวิตยยแมริฉาร

\[
M_{n}(R) Q_{n}^{k l}(R)=\left\{\left.\left[\begin{array}{ccccccc}
0 & \ldots & 0 & x_{1} & 0 & \ldots & 0 \\
0 & \ldots & 0 & x_{2} & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & x_{n} & 0 & \ldots & 0
\end{array}\right] \right\rvert\, x_{1}, x_{2}, \ldots, x_{n} \in R\right\}
\]
and
\[
Q_{n}^{k l}(R) M_{n}(R)=\left\{k^{t h} \rightarrow\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0 \\
x_{1} & x_{2} & \ldots . & x_{n} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right] \quad x_{1}, x_{2}, \ldots, x_{n} \in R\right\}
\]
which implies that \(M_{n}(R) Q_{n}^{k l}(R) \cap Q_{n}^{k l}(R) M_{n}(R)=Q_{n}^{k l}(R)\), so \(Q_{n}^{k l}(R)\) is a quasiideal of \(M_{n}(R)\). Moreover, if \(n>1\), then for all \(k, l \in\{1,2, \ldots, n\}, Q_{n}^{k l}(R)\) is neither a left ideal nor a right ideal of \(M_{n}(R)\).
(2) Let \(R\) be a division ring, \(n \in \mathbb{N}, n \geq 4\) and \(S U_{n}(R)\) the semigroup of all strictly upper triangular matrices over \(R\) under the usual multiplication of matrices. Let


Then \(B^{2}=\{0\}\), so \(B\) is a subsemigroup of \(S U_{n}(R)\). Moreover, \(B S U_{n}(R) B=\) \(\{0\} \subseteq B\). But
\[
\begin{aligned}
{\left[\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0
\end{array}\right] } & =\left[\begin{array}{lllll}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{lllll}
0 & \ldots & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllll}
0 & \ldots & 0 & 1 & 0 \\
0 & \ldots & 0 & 0 & 1 \\
0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
0 & \ldots & 0 & 0 \\
\vdots & & \vdots & \vdots \\
0 & \ldots & 0 & 0 \\
0 & \ldots & 0 & 1 \\
0 & \ldots & 0 & 0
\end{array}\right] \\
& \in\left(S U_{n}(R) B \cap B S U_{n}(R)\right) \backslash B,
\end{aligned}
\]
so \(B\) is a bi-ideal but not a quasi-ideal of \(S U_{n}(R)\).
Example 1.2(1) shows that quasi-ideals of semigroups are a generalization of onesided ideals. It is shown in Example 1.2(2) that bi-ideals of semigroups generalize quasi-ideals.

We know that the intersection of a set ofsubsemigroups of a semigroup \(S\) is a subsemigroup of \(S\) if it is nonempty. It is known that the intersection of a set of quasi-ideals of a semigroup \(S\) is either \(\varnothing\) or a quasi-ideal of \(S\) and this is also true for bi-ideals of \(S([15]\), page 10 and 12). For a nonempty subset \(X\) of a semigroup \(S\), let \((X)_{q}\) and \((X)_{b}\) denote the intersection of all quasi-ideals of \(S\) containing \(X\) and the intersection of all bi-ideals of \(S\) containing \(X\), respectively. Then \((X)_{q}\) \(\left[(X)_{b}\right]\) is the smallest quasi-ideal [bi-ideal] of \(S\) containing \(X\) and \((X)_{q}\left[(X)_{b}\right]\) is called the quasi-ideal [bi-ideal] of \(S\) generated by \(X\). For \(x_{1}, x_{2}, \ldots, x_{n} \in S\), let \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{q}\) and \(\left(x_{1}, x_{2}, \ldots, x_{n}\right)_{b}\) denote respectively \(\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)_{q}\) and \(\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)_{b}\). Since every quasi-ideal of \(S\) is a bi-ideal of \(S\), we have

Proposition 1.3. For every nonempty subset \(X\) of a semigroup \(S,(X)_{b} \subseteq(X)_{q}\).

The following facts are well-known.

Proposition 1.4. ([2], page 84-85). For any nonempty subset \(X\) of a semigroup \(S\),
\[
(X)_{q}=S^{1} X \cap X S^{1}=(S X \cap X S) \cup X
\]
and
\[
(X)_{b}=X S^{1} X \cup X=X S X \cup X \cup X^{2}
\]

Let \(\boldsymbol{B} \boldsymbol{Q}\) denote the class of all semigroups whose bi-ideals and quasi-ideals coincide. Then a semigroup \(S\) is in \(\boldsymbol{B Q}\) if and only if every bi-ideal of \(S\) is a quasi-ideal. One call a semigroup in \(B \boldsymbol{Q}\) a \(B Q\)-semigroup. The following two propositions give some significant subclasses of \(B \boldsymbol{Q}\).


Proposition 1.5. ([11]). Every regular semigroup is in \(\boldsymbol{B Q}\).

Proposition 1.6. ([7]). Every left right] simple semigroup and every left [right] 0-simple semigroup belongs to \(\boldsymbol{B Q} \cdot \sigma\).
Not only these kinds of semigroups belong to \(\boldsymbol{B} \boldsymbol{Q}\). Zero semigroups containing more than one element are obvious examples. Some other significant examples can be seen in this research. However, J. Calais [1] has characterized the semigroups in \(\boldsymbol{B} \boldsymbol{Q}\) as follows:

Proposition 1.7. ([1]). A semigroup \(S\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \((x, y)_{q}=(x, y)_{b}\) for all \(x, y \in S\).

If \(S\) is a \(B Q\)-semigroup, then for a nonempty subset \(X\) of \(S,(X)_{b}\) is a quasiideal of \(S\) containing \(X\) which implies that \((X)_{q} \subseteq(X)_{b}\). We thus deduce from Proposition 1.3 that

Proposition 1.8. If \(S \in \boldsymbol{B} \boldsymbol{Q}\), then \((X)_{b}=(X)_{q}\) for every nonempty subset \(X\) of \(S\). Hence if \(S\) is a semigroup such that \((x)_{b} \neq(x)_{q}\left((x)_{b} \subsetneq(x)_{q}\right)\) for some \(x \in S\), then \(S \notin \boldsymbol{B} \boldsymbol{Q}\).

Next, let \(X\) be a set. A partial transformation of \(X\) is a map from a subset of \(X\) into \(X\). By a transformation of \(X\) is a map from \(X\) into \(X\). The empty transformation is the partial transformation 0 with empty domain. Let \(P_{X}\) be the set of all partial transformations of \(X\). For \(\alpha \in P_{X}\), let \(\operatorname{Dom} \alpha\) and \(\operatorname{Im} \alpha\) denote respectively the domain and the image (range) of \(\alpha\). Then \(P_{X}\) is a semigroup under the composition of maps, that is, for \(\alpha, \beta \in P_{X}\)
\[
\begin{aligned}
& \operatorname{Dom} \alpha \beta=\{x \in \operatorname{Dom} \alpha \mid x \alpha \in \operatorname{Dom} \beta\}, \\
& x(\alpha \beta)=(x \alpha) \beta \text { for all } x \in \operatorname{Dom} \alpha \beta .
\end{aligned}
\]

This implies that for \(\alpha, \beta \in P_{X}, \operatorname{Dom} \alpha \beta \subseteq \operatorname{Dom} \alpha\) and \(\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta\). Let
\[
\begin{aligned}
6 T_{X} & =\left\{\alpha \in P_{X} \mid \text { Dom } \alpha \in X\right\}, \\
M_{X} & =\left\{\alpha \in T_{X} \mid \alpha \text { is one-to-one }\right\}, \\
E_{X} & =\left\{\alpha \in T_{X} \mid \operatorname{Im} \alpha=X\right\}, \\
G_{X} & =\left\{\alpha \in T_{X} \mid \alpha \text { is one-to-one and } \operatorname{Im} \alpha=X\right\}
\end{aligned}
\]

Then all \(T_{X}, I_{X}, M_{X}\) and \(E_{X}\) are subsemigroups of \(P_{X}, G_{X}=M_{X} \cap E_{X}, G_{X} \subseteq\) \(E_{X} \subseteq T_{X} \subseteq P_{X}\) and \(G_{X} \subseteq M_{X} \subseteq I_{X} \subseteq P_{X}\). In particular, \(G_{X}\) is a subgroup of \(P_{X}\), that is, \(G_{X}\) is a subsemigroup of \(P_{X}\) which also forms a group. We call \(P_{X}, T_{X}\), \(I_{X}\) and \(G_{X}\), the partial transformation semigroup on \(X\), the full transformation
semigroup on \(X\), the one-to-one partial transformation semigroup on \(X\) and the symmetric group on \(X\), respectively. It is well-known that \(P_{X}, T_{X}\) and \(I_{X}\) are regular semigroups ([5], page 4). By Proposition 1.5, \(P_{X}, T_{X}, I_{X}\) and \(G_{X}\) are \(B Q\)-semigroups for any set \(X\). Due to the fact that for an infinite set \(X\), for every \(a \in X,|X|=|X \backslash\{a\}|\), we have that \(|X|<\infty\) if and only if \(M_{X}=E_{X}=G_{X}\), hence \(M_{X}\) and \(E_{X}\) are in \(\boldsymbol{B Q}\) if \(|X|<\infty\). The semigroups \(M_{X}\) and \(E_{X}\) have the following special properties which can be proved easily.

Proposition 1.9. Let \(X\) be a set.
(i) For \(\alpha, \beta, \gamma \in T_{X}\), if \(\beta \alpha=\gamma \alpha\{\alpha \beta=\alpha \gamma]\) and \(\alpha \in M_{X}\left[E_{X}\right]\), then \(\beta=\gamma\). Hence \(M_{X}\left[E_{X}\right]\) is right \([l e f t]\) cancellative.
(ii) For \(\alpha \in M_{X}\left[E_{X}\right]\), \(\alpha\) is regular in \(M_{X}\left[E_{X}\right]\) if and only if \(\alpha \in G_{X}\). Hence \(M_{X}\left[E_{X}\right]\) is regular if and only if \(|X|<\infty\).
(iii) If \(X\) is infinite, then \(M_{X} \backslash G_{X}\left[E_{X} \backslash G_{X}\right]\) is a unique maximal proper ideal of \(M_{X}\left[E_{X}\right]\). Hence \(M_{X}\left[E_{X}\right]\) is left simple if and only if \(|X|<\infty\) and \(M_{X}\) \(\left[E_{X}\right]\) is right simple if and only if \(|X|<\infty\).


From Proposition 1.9(ii) and (iii), it follow that \(M_{X}\) and \(E_{X}\) are neither regular nor left [right] simple if \(X\) is infinite. However, we cannot conclude from Proposition 1.5 or Proposition 1.6 that \(M_{X}\) and \(E_{X}\) do not belong to \(\boldsymbol{B} \boldsymbol{Q}\) when \(X\) is infinite. It was proved in [8] that \(M_{X}\left[E_{X}\right]\) belongs to \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|<\infty\).

Proposition 1.10. ([8]). For a set \(X\),
(i) \(M_{X} \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|<\infty\),
(ii) \(E_{X} \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|<\infty\).

For an infinite set \(X\), let
\[
O E_{X}=\left\{\alpha \in T_{X} \mid X \backslash \operatorname{Im} \alpha \text { is infinite }\right\} .
\]

Let \(A \subseteq X\) be such that \(|X \backslash A|=|A|=|X|\) and let \(\lambda: X \rightarrow X \backslash A\) be a bijection. Then \(\lambda \in O E_{X}\). Since \(\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta\) for all \(\alpha, \beta \in T_{X}\), it follows that \(O E_{X}\) is a subsemigroup of \(T_{X}\). It was shown by Y. Kemprasit [9] that \(O E_{X}\) is a \(B Q\)-semigroup for every infinite set \(X\) but \(O E_{X}\) is neither regular nor left [right] simple. We can consider \(O E_{X}\) as the "opposite semigroup" of \(E_{X}\). It was proved by P. M. Higgins [4] that \(O E_{X}\) is dense in \(T_{X}\) in the following sense:
\[
\text { for any semigroup } S \text { and any homomorphisms } \varphi, \psi: T_{X} \rightarrow S,
\]
\[
\left.\varphi\right|_{O E_{X}}=\psi \|_{O E_{X}} \text { implies that } \varphi=\psi .
\]

Next, let \(X\) be an infinite set and
\[
B L_{X}=\left\{\alpha \in T_{X} \mid \alpha \text { is one-to-one and } X \backslash \operatorname{Im} \alpha \text { is infinite }\right\} .
\]

Then \(B L_{X}=M_{X} \cap O E_{X}\). Clearly, \(\lambda\) defined above is in \(B L_{X}\). We then deduce that \(B L_{X}\) is a subsemigroup of \(T_{X}\). By Proposition \(1.9(\mathrm{i}), B L_{X}\) is right cancellative. This implies that \(E\left(B L_{X}\right)=\varnothing\) since \(1_{X} \notin B L_{X}\). If \(X\) is countably infinite, \(B L_{X}\) is called the Baer-Levi semigroup on \(X\) ([5], page14). TheBaer-Levi semigroup on a countably infinite set is known to be right simple ([5], page 14), so it is in \(\boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.6. It was proved by Y. Kemprasit in [9] that countable infiniteness of \(X\) is also necessary for \(B L_{X}\) to be in \(\boldsymbol{B} \boldsymbol{Q}\).

Proposition 1.11. ([9]). For an infinite set \(X, B L_{X} \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(X\) is countably infinite.
K. D. Magill ([12] and [13]) generalized the notion of transformation semigroups as follows: Let \(X\) and \(Y\) be sets and let \(T(X, Y)\) denote the set of all
transformations \(\alpha: X \rightarrow Y\). Then for a fixed \(\theta \in T(Y, X)\), define an operation "*" on \(T(X, Y)\) by
\[
\alpha * \beta=\alpha \theta \beta \quad \text { for all } \alpha, \beta \in T(X, Y) .
\]

Under this operation, \(T(X, Y)\) becomes a semigroup which is denoted by \((T(X, Y), \theta)\). Moreover, the semigroup \(((T(X, Y), \theta)\) need not be regular.
R. P. Sullivan ([17]) generalized one step further by considering the set \(P(X, Y)\) of all partial transformations from \(X\) into \(Y\), that is, \(P(X, Y)=\{\alpha: A \rightarrow Y \mid\) \(A \subseteq X\}\), and generalizing the above semigroup as follows: For a nonempty subset \(S\) of \(P(X, Y)\) and \(\theta \in P(Y, X)\), if \(\alpha \theta \beta \in S\) for all \(\alpha, \beta \in S\), let \((S, \theta)\) denote the semigroup \((S, *)\) with * defined as above. In the same way, we define \(I(X, Y), M(X, Y), E(X, Y)\) and define the corresponding semigroups \((I(X, Y), \theta)\) where \(\theta \in I(Y, X),(M(X, Y), \theta)\) where \(\theta \in M(Y, X)\) and \((E(X, Y), \theta)\) where \(\theta \in E(Y, X)\), respectively. We remark here that
\[
\begin{gathered}
\left(P(X, X), 1_{X}\right)=P_{X},\left(T(X, X), 1_{X}\right)=T_{X},\left(I(X, X), 1_{X}\right)=I_{X}, \\
\left(M(X, X), 1_{X}\right)=M_{X},\left(E(X, X), 1_{X}\right)=E_{X} .
\end{gathered}
\]

In Chapter II , we prove that \((S(X, Y), \theta)\) always belongs to \(\boldsymbol{B} \boldsymbol{Q}\) if \(S(X, Y)\) is any of \(P(X, Y), T(X, Y)\) and \(I(X, Y)\) where \(\theta \in S(Y, X)\). In particular, we also show that these three semigroups need not be regular. Moreover, by the help of Proposition 1.10, we shall prove that the condition that \(|X|=|Y|<\infty\) is necessary and sufficient for \((M(X, Y), \theta)\) and \((E(X, Y), \theta)\) to be in \(\boldsymbol{B} \boldsymbol{Q}\).

Let \(V\) be a vector space over a division ring. For \(A \subseteq V\), we let \(\langle A\rangle\) denote the subspace of \(V\) spanned by \(A\). To introduce various linear transformation semigroups for Chapter III, we first give some basic properties of vector spaces.

Proposition 1.12. Let \(V\) and \(W\) be vector spaces over a division ring.
(i) If \(\alpha: V \rightarrow W\) is a linear transformation, then
\[
\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} \alpha+\operatorname{dim} \operatorname{Im} \alpha
\]
(ii) If \(U\) is a subspace of \(V\), then
\[
\operatorname{dim} V=\operatorname{dim} U+\operatorname{dim}(V / U)
\]
(iii) If \(U\) and \(Z\) are subspaces of \(V\) such that \(Z \subseteq U\), then
\[
\operatorname{dim}(V / U)=\operatorname{dim}(V / Z / U / Z) \leq \operatorname{dim}(V / Z)
\]
(iv) If \(B\) is a basis of \(V\) and \(A \subseteq B\), then \(\{v+\langle A\rangle \mid v \in B \backslash A\}\) is a basis of \(V /\langle A\rangle\) and \(v+\langle A\rangle \neq v^{\prime}+\langle A\rangle\) for distinct \(v, v^{\prime} \in B \backslash A\). Hence
\[
\operatorname{dim}(V /\langle A\rangle)=|B \backslash A|
\]
(v) Let \(\alpha: V \rightarrow W\) be a linear transformation. If \(w_{1}, w_{2}, \ldots, w_{n} \in W\) are linearly independent and \(v_{1}, v_{2}, \ldots, v_{n} \in V\) are such that \(v_{i} \alpha=w_{i}\) for all \(i \in\{1,2, \ldots, n\}\), then \(v_{1}, v_{2}, \ldots, v_{n}\) are linearly independent.
(vi) Let \(\alpha: \overparen{\rightarrow} W\) be a linear transformation, \(B_{1}\) is a basis of Ker \(\alpha\) and \(B_{2}\) is a basis of Im \(\alpha\). If for each \(v \in B_{2}, u_{v} \in V\) is such that \(u_{v} \alpha=v\), then \(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\) is a cbasis of W.
(vii) Let \(\alpha: V \rightarrow W\) be a linear transformation and \(B\) a basis of \(V\). If \(B \alpha\) is a linearly independent subset of \(W\) and \(\left.\alpha\right|_{B}\) is one-to-one, then \(\alpha\) is one-toone, that is, \(\operatorname{Ker} \alpha=\{0\}\).
(viii) Let \(\alpha: V \rightarrow W\) be a linear transformation, \(B\) a basis of \(V\) and \(A \subseteq B\). If \(A \alpha\) is a linearly independent subset of \(W,\left.\alpha\right|_{A}\) is one-to-one and \((B \backslash A) \alpha=\{0\}\), then \(\operatorname{Ker} \alpha=\langle B \backslash A\rangle\).

For a vector space \(V\) over a division ring, let \(L(V)\) be the semigroup under composition of all linear transformations \(\alpha: V \rightarrow V\). It is known that \(L(V)\) is regular ([6], page 443). Let
\[
G(V)=\{\alpha \in L(V) \mid \alpha \text { is an isomorphism }\} .
\]

Then \(G(V)\) is a subgroup of \(L(V)\). By Proposition 1.5, both \(L(V)\) and \(G(V)\) are in \(\boldsymbol{B} \boldsymbol{Q}\). The following subsets of \(L(V)\) are considered:
\[
\begin{aligned}
& M(V)=\{\alpha \in L(V) \mid \alpha \text { is one-to-one }\} \text { and } \\
& E(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\} .
\end{aligned}
\]

Both \(M(V)\) and \(E(V)\) are clearly subsemigroups of \(L(V)\) containing \(G(V)\) and \(M(V)[E(V)]=G(V)\) if and only if \(\operatorname{dim} V<\infty\). Next, we define the "opposite semigroups" of \(M(V)\) and \(E(V)\) to be respectively by
\[
\begin{aligned}
& O M(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { is infinite }\} \text { and } \\
& O E(V)=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\}
\end{aligned}
\]
where \(\operatorname{dim} V\) is infinite. To show that \(O M(V)\) and \(O E(V)\) are indeed subsemigroups of \(L(V)\), suppose that \(\operatorname{dim} V\) is infinite. Then we have that \(0 \in O M(V)\) and \(0 \in O E(V)\) where 0 is the zero map on \(V\). Since for all \(\alpha, \beta \in L(V)\), Ker \(\alpha \beta \supseteq \operatorname{Ker} \alpha\) and \(\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta\), it follows that \(O M(V)\) and \(O E(V)\) are subsemigroups of \(L(V)\), respectively (see Proposition 1.12(iii)). The following subset of \(L(V)\) is also considered:
\[
O M E(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { are infinite }\}
\]
where \(\operatorname{dim} V\) is infinite. Since \(0 \in O M(V) \cap O E(V)=O M E(V)\) and both \(O M(V)\) and \(O E(V)\) are subsemigroups of \(L(V)\), we have that \(O M E(V)\) is a subsemigroup of \(L(V)\) containing 0 .

The semigroup \(B L_{X}\) where \(X\) is infinite motivates us to define \(B L(V)\) where \(\operatorname{dim} V\) is infinite as follows:
\[
B L(V)=\{\alpha \in L(V) \mid \alpha \text { is one-to-one and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\} .
\]

Then \(B L(V)=M(V) \cap O E(V)\). To show that \(B L(V)\) is a subsemigroup of \(L(V)\), assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\). Then \(B\) is infinite, so there exists \(A \subseteq B\) such that \(|A|=|B \backslash A|=|B|\). Thus there exists a bijection \(\varphi: B \rightarrow A\). Define \(\alpha \in L(V)\) by \(v \alpha=v \varphi\) for all \(v \in B\). We thus deduce from Proposition 1.12(vii) that \(\alpha \in M(V)\). By Proposition 1.12(iv), we have
\[
\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /\langle A\rangle)=|B \backslash A| .
\]

This implies that \(\alpha \in O E(V)\). Then \(\alpha \in M(V) \cap O E(V)\), so \(B L(V)\) is a subsemigroup of \(L(V)\), as required. Similarly, we consider the "opposite semigroup" of \(B L(V)\) which is defined to be
\[
O B L(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V \text { and dim Ker } \alpha \text { is infinite }\}
\]
where \(\operatorname{dim} V\) is infinite. By the definition, we have \(O B L(V)=E(V) \cap O M(V)\). To show that \(O B L(V)\) is indeed a subsemigroup of \(\mathscr{L}(V)\), it suffices to show that \(O B L(V) \neq \varnothing\). Let \(B\) be a basis of \(V\) and let \(A\) be a subset of \(B\) such that \(|A|=|B \backslash A|=|B|\). Then there exists a bijection \(\varphi: A \rightarrow B\). Define \(\alpha \in L(V)\) by
\[
v \alpha= \begin{cases}v \varphi & \text { if } v \in A, \\ 0 & \text { if } v \in B \backslash A\end{cases}
\]

Then \(\operatorname{Im} \alpha=\langle A \varphi\rangle=\langle B\rangle=V\). By Proposition 1.12(viii), Ker \(\alpha=\langle B \backslash A\rangle\), so \(\operatorname{dim} \operatorname{Ker} \alpha=|B \backslash A|=|B|\). Hence \(\alpha \in O B L(V)\). Then \(O B L(V)\) is a subsemigroup of \(L(V)\) which is considered as the "opposite semigroup" of \(B L(V)\). Note
that \(0 \notin O B L(V)\). Moreover, \(E(B L(V))=\varnothing=E(O B L(V))\) by Proposition 1.9(i).

Next, the following subsets of \(L(V)\) are considered:
\[
\begin{aligned}
& A M(V)=\{\alpha \in L(V) \mid \operatorname{dim} \text { Ker } \alpha \text { is finite }\} \text { and } \\
& A E(V)=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\} .
\end{aligned}
\]

Then \(M(V) \subseteq A M(V)\) and \(E(V) \subseteq A E(V)\). To show that \(A M(V)\) and \(A E(V)\) are subsemigroups of \(L(V)\), let \(\alpha, \beta \in L(V)\). We claim that \(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\) is a linear transformation from \(\operatorname{Ker} \alpha \beta\) onto \(\operatorname{Ker} \beta \cap \operatorname{Im} \alpha\) with \(\operatorname{Ker}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha\). Since
\[
\left.(\operatorname{Ker} \alpha \beta) \alpha\right|_{\operatorname{Ker} \alpha \beta}=(\operatorname{Ker} \alpha \beta) \alpha \subseteq \operatorname{Im} \alpha \quad \text { and }
\]
\(\left(\left.(\operatorname{Ker} \alpha \beta) \alpha\right|_{\operatorname{Ker} \alpha \beta}\right) \beta=(\operatorname{Ker} \alpha \beta) \alpha \beta=\{0\}\),
it follows that \(\operatorname{Im}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right) \subseteq \operatorname{Ker} \beta \cap \operatorname{Im} \alpha\). Let \(v \in \operatorname{Ker} \beta \cap \operatorname{Im} \alpha\). Then \(u \alpha=v\) for some \(u \in V\) and \(v \beta=0\). This implies that \(u \alpha \beta=v \beta=0\). Thus \(u \in \operatorname{Ker} \alpha \beta\) and so \(v=u \alpha=u\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right) \in \operatorname{Im}(\alpha \mid \operatorname{Ker} \alpha \beta)\). Hence we have \(\operatorname{Im}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \beta \cap \operatorname{Im} \alpha\). Since
\[
\begin{aligned}
\operatorname{Ker}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right) & =\{v \in \operatorname{Ker} \alpha \beta \mid v \alpha=0\} \\
& \subseteq\{v \in V \mid v \alpha=0\} \quad(\text { since } \operatorname{Ker} \alpha \beta \subseteq V) \\
& =\{v \in V \mid v \alpha=0\} \\
& =\{v \in V \mid v \alpha \beta=0\} \cap\{v \in V \mid v \alpha=0\} \quad \text { (since } 0 \beta=0) \\
& =\{v \in \operatorname{Ker} \alpha \beta \mid v \alpha=0\} \\
& =\operatorname{Ker}(\alpha \mid \operatorname{Ker} \alpha \beta),
\end{aligned}
\]
we have \(\operatorname{Ker}\left(\left.\alpha\right|_{\operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha\). Hence we have the claim. It then follows from Proposition 1.12(i) that
\[
\begin{align*}
\operatorname{dim} \operatorname{Ker} \alpha \beta & =\operatorname{dim} \operatorname{Ker} \alpha+\operatorname{dim}(\operatorname{Ker} \beta \cap \operatorname{Im} \alpha) \\
& \leq \operatorname{dim} \operatorname{Ker} \alpha+\operatorname{dim} \operatorname{Ker} \beta . \tag{1}
\end{align*}
\]

Define \(\beta^{*}: V / \operatorname{Im} \alpha \rightarrow \operatorname{Im} \beta / \operatorname{Im} \alpha \beta\) by
\[
(v+\operatorname{Im} \alpha) \beta^{*}=v \beta+\operatorname{Im} \alpha \beta \quad \text { for all } v \in V
\]

Clearly, \(\beta^{*}\) is well-defined and onto. Since \(\beta\) is linear, \(\beta^{*}\) is linear. Hence \(\beta^{*}\) is a linear transformation of \(V / \operatorname{Im} \alpha\) onto \(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta\). Then we have that \(\operatorname{dim}(V / \operatorname{Im} \alpha) \geq \operatorname{dim}(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)\). Since \(\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta\), we have by Proposition 1.12 (iii) and (ii) that
\[
\begin{gathered}
\operatorname{dim}(V / \operatorname{Im} \beta)=\operatorname{dim}((V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)) \quad \text { and } \\
\operatorname{dim}(V / \operatorname{Im} \alpha \beta)=\operatorname{dim}(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)+\operatorname{dim}((V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)),
\end{gathered}
\]
respectively. These facts imply that
\[
\begin{equation*}
\operatorname{dim}(V / \operatorname{Im} \alpha \beta) \leq \operatorname{dim}(V / \operatorname{Im} \alpha)+\operatorname{dim}(V / \operatorname{Im} \beta) \tag{2}
\end{equation*}
\]

We have respectively from (1) and (2) that \(A M(V)\) and \(A E(V)\) are subsemigroups of \(L(V)\), as required. The semigroups \(A M(V)\) and \(A E(V)\) can be referred to respectively as the semigroup of all "almost one-to-one linear transformations" of \(V\) and the semigroup of all "almost onto linear transformations" of \(V\). Observe that if \(\operatorname{dim} V\) is finite, then \(\| A M(V) \oplus A E(V)=L(V) \cap \sim\)

Finally, we consider the following subsets of \(L(V)\) :
\[
\begin{aligned}
& M A E(V)=\{\alpha \in L(V) \phi \alpha \text { is one-to-one and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\}, \\
& E A M(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V \text { and } \operatorname{dim} \operatorname{Ker} \alpha \text { is finite }\} \text { and } \\
& A M E(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { are finite }\} .
\end{aligned}
\]

Then we have that
\[
\begin{aligned}
& G(V) \subseteq M(V) \cap A E(V)=M A E(V) \\
& G(V) \subseteq E(V) \cap A M(V)=E A M(V) \quad \text { and } \\
& G(V) \subseteq A M(V) \cap A E(V)=A M E(V)
\end{aligned}
\]
so the above three subsets of \(L(V)\) are subsemigroups of \(L(V)\). Note that if \(\operatorname{dim} V\) is finite, then \(\operatorname{MAE}(V)=E A M(V)=G(V)\) and \(A M E(V)=L(V)\).

The aim of Chapter III is to characterize in terms of dimensions of \(V\) when the subsemigroups of \(L(V)\) mentioned above belong to \(\boldsymbol{B} \boldsymbol{Q}\).

Next, let \((X, \leq)\) be a partially ordered set. For \(\alpha \in T_{X}, \alpha\) is said to be orderpreserving if for all \(x, y \in X, x \leq y\) implies that \(x \alpha \leq y \alpha\). For partially ordered sets \((X, \leq)\) and \(\left(Y, \leq^{\prime}\right)\), we say that \((X, \leq)\) and \(\left(Y, \leq^{\prime}\right)\) are order-isomorphic if there is a bijection \(\varphi: X \rightarrow Y\) such that for \(x_{1}, x_{2} \in X, x_{1} \leq x_{2}\) if and only if \(x_{1} \varphi \leq^{\prime} x_{2} \varphi\). The opposite partial order \(\leq_{\text {opp }}\) on \(X\) of \(\leq\) is defined by
\[
x \leq_{o p p} y \text { if and only if } y \leq x \text { for all } x, y \in X
\]

Clearly, \(\leq_{o p p}\) is really a partial order on \(X\). It is clear that for a nonempty interval \(I\) of \(\mathbb{R},(I, \leq)\) and \(\left(-I, \leq_{\text {opp }}\right)\) are order-isomorphic by \(x \mapsto-x\) where \(\leq\) is the usual order of real numbers and \(-I=\{-x \mid x \in I\}\). Hence we have

Proposition 1.13. Let \(\leq\) be the usual partial order on \(\mathbb{R}\).
(i) For \(a \in \mathbb{R},((-\infty, a), \leq)\) is order-isomorphicto \(\left((-a, \infty), \leq_{\text {opp }}\right)\).
(ii) For \(a \in \mathbb{R},((-\infty, a], \leq)\) is order-isomorphic to \(\left([-a, \infty), \leq_{o p p}\right)\).
(iii) For \(a, b \in \mathbb{R}\) and \(a<b,((a, b], \leq)\) is order-isomorphic to \(\left([-b,-a), \leq_{\text {opp }}\right)\).

Let \(T_{O P}(X)\) denote the set of all order-preserving transformations of \(X\). Then \(T_{O P}(X)\) is a subsemigroup of \(T_{X}\). In [14], \(T_{O P}(X)\) is said to be the full orderpreserving transformation semigroup on \(X\). Y. Kemprasit and T. Changphas [10] characterized when \(T_{O P}(I)\) is regular where \(I\) is a nonempty interval of \(\mathbb{R}\), as follows:

Proposition 1.14. ([10]). For a nonempty interval \(I\) of \(\mathbb{R}, T_{O P}(I)\) is regular if and only if \(I\) is closed and bounded.

Then we can conclude from Proposition 1.5 and Proposition 1.14 that if \(I\) is closed and bounded, then \(T_{O P}(I)\) is a \(B Q\)-semigroup. By making use of Proposition 1.8 and Proposition 1.13, we show in the last chapter that the converse of this statement holds. Hence we obtain the fact that for a nonempty interval \(I\) of \(\mathbb{R}\), \(T_{O P}(I) \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(I\) is closed and bounded.

\[
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
\]

\section*{CHAPTER II}

\section*{GENERALIZED TRANSFORMATION SEMIGROUPS}

The purpose of this chapter is to characterize when the generalized transformation semigroups mentioned in Chapter I belong to \(\boldsymbol{B} \boldsymbol{Q}\).

Let us recall the notations which are used throughout this chapter. Let \(X\) and \(Y\) be sets and
\[
P_{X}=\text { the partial transformation semigroup on } X,
\]
\(T_{X}=\) the full transformation semigroup on \(X\),
\(I_{X}=\) the one-to-one partial transformation semigroup on \(X\),
\(M_{X}=\) the semigroup of one-to-one transformations of \(X\),
\(E_{X}=\) the semigroup of onto transformations of \(X\),
\(G_{X}=\) the symmetric group on \(X\),
\[
\begin{aligned}
& P(X, Y)=\{\alpha: A \rightarrow Y \mid A \subset X\}, \\
& T(X, Y)=\{\alpha \in P(X, Y) \mid \operatorname{Dom} \alpha=X\} \\
& I(X, Y)=\{\alpha \in P(X, Y) \mid \alpha \text { is one-to-one }\}, \\
& M(X, Y)=\{\alpha \in T(X, Y) \mid \alpha \text { is one-to-one }\}, \\
& E(X, Y)=\{\alpha \in T(X, Y) \mid \operatorname{Im} \alpha=Y\}
\end{aligned}
\]

As was mentioned in Chapter I, \(P_{X}, T_{X}\) and \(I_{X}\) are regular. In fact, if \(|X|>1\), \(T_{X}\) is not left [right] simple and \(P_{X}\) and \(I_{X}\) are not left [right] 0-simple. That is because the set
\[
\left\{\alpha \in S_{X}| | \operatorname{Im} \alpha \mid \leq 1\right\}
\]
is clearly a proper ideal of \(S_{X}\) where \(S_{X}\) is \(P_{X}, T_{X}\) or \(I_{X}\). Then \((T(X, Y), \theta)\) need not be left [right] simple and \((P(X, Y), \theta),(I(X, Y), \theta)\) need not be left [right] 0-simple. Moreover, these three semigroups need not be regular. To see this, let \(X=Y=\mathbb{N}\) and define \(\theta: Y \rightarrow X\) by \(x \theta=2 x\) for all \(x \in Y\). Then \(\theta \in S(Y, X)=S(\mathbb{N}, \mathbb{N})\). Since for every \(\alpha \in S(\mathbb{N}, \mathbb{N}), 1_{\mathbb{N}} \theta \alpha \theta 1_{\mathbb{N}}=\theta \alpha \theta\) which implies that \(\operatorname{Im}\left(1_{\mathbb{N}} \theta \alpha \theta 1_{\mathbb{N}}\right)=\operatorname{Im}(\theta \alpha \theta) \subseteq \operatorname{Im} \theta=2 \mathbb{N} \neq \operatorname{Im} 1_{\mathbb{N}}\). Hence \(1_{\mathbb{N}} \in S(\mathbb{N}, \mathbb{N})\) which is not regular in \((S(\mathbb{N}, \mathbb{N}), \theta)\).

The first theorem requires the facts that \(P_{Y}, T_{Y}\), and \(I_{Y}\) are regular and every regular semigroup is a \(B Q\)-semigroup.

Theorem 2.1. If \(S(X, Y)\) is any one of \(T(X, Y), P(X, Y)\) and \(I(X, Y)\) and \(\theta \in\) \(S(Y, X)\), then \((S(X, Y), \theta) \in \boldsymbol{B} \boldsymbol{Q}\).

Proof. We know that \((A)_{b} \subseteq(A)_{q}\) for any nonempty subset \(A\) of \(S(X, Y)\) (Proposition 1.3). To prove that \((S(X, Y), \theta) \in \boldsymbol{B} \boldsymbol{Q}\), by Proposition 1.4 and Proposition 1.7, it suffices to show that for any nonempty subset \(A\) of \(S(X, Y)\),
\[
S(X, Y) \theta A \cap A \theta S(X, Y) \subseteq A \theta S(X, Y) \theta A
\]

For this purpose, tet \(A\) be a nonempty subset of \(S(X, Y)\) and \(\alpha \in S(X, Y) \theta A \cap\)

for some \(\beta, \mu \in S(X, Y)\) and \(\lambda, \gamma \in A\). But \(\theta \lambda \in S(Y, Y)\) and \(T_{Y}, P_{Y}\) and \(I_{Y}\) are all regular, so there exists \(\eta \in S(Y, Y)\) such that
\[
\begin{equation*}
\theta \lambda=\theta \lambda \eta \theta \lambda \tag{2}
\end{equation*}
\]

It thus follows from (1) and (2) that
\[
\begin{equation*}
\alpha=\beta \theta \lambda \eta \theta \lambda=\gamma \theta \mu \eta \theta \lambda=\gamma \theta(\mu \eta) \theta \lambda . \tag{3}
\end{equation*}
\]

Since \(\mu \in S(X, Y), \eta \in S(Y, Y)\) and \(\lambda, \gamma \in A\), we have from (3) that \(\alpha \in\) \(A \theta S(X, Y) \theta A\). This completes the proof.

The next two theorems are the second main results of this chapter. We first prove three lemmas which will be used to determine when the semigroups \((M(X, Y), \theta)\) where \(\theta \in M(Y, X)\) and \((E(X, Y), \theta)\) where \(\theta \in E(Y, X)\) are in the class \(\boldsymbol{B Q}\).

For convenience, we denote the semigroup \((M(X, Y), \theta)\) where \(\theta \in M(Y, X)\) by \(\left(M_{X}, \theta\right)\) if \(X=Y\). The notion \(\left(E_{X}, \theta\right)\) is defined similarly. Also, the notation \(\left(G_{X}, \theta\right)\) where \(\theta \in G_{X}\) is used for the semigroup \(G_{X}\) with the operation \(*\) defined by \(\alpha * \beta=\alpha \theta \beta\) for all \(\alpha, \beta \in G_{X}\). Clearly, \(\left(G_{X}, \theta\right)\) is a group having \(\theta^{-1}\) as its identity.

Lemma 2.2. If \(\theta \in G_{X}\), then \(\left(G_{X}, \theta\right) \cong G_{X},\left(M_{X}, \theta\right) \cong M_{X}\) and \(\left(E_{X}, \theta\right) \cong E_{X}\).

Proof. Define \(\varphi: T_{X} \rightarrow T_{X}\) by \(\alpha \varphi=\alpha \theta\) for all \(\alpha \in T_{X}\). Then for \(\alpha, \beta \in T_{X}\), \((\alpha \theta \beta) \varphi=\alpha \theta \beta \theta=(\alpha \varphi)(\beta \varphi), \alpha \theta^{-1} \in T_{X},\left(\alpha \theta^{-1}\right) \varphi=\alpha\) and \(\alpha \theta=\beta \theta\) implies that \(\alpha=\alpha \theta \theta^{-1}=\beta \theta \theta^{-1}=\beta\). Hence \(\varphi\) is an isomorphism from \(\left(T_{X}, \theta\right)\) onto \(T_{X}\). Since \(\theta \in G_{X}, G_{X} \theta \approx G_{X}, M_{X}=M_{X} \theta^{-1} \theta \subseteq M_{X} \theta \subseteq M_{X}\) and \(E_{X}=E_{X} \theta^{-1} \theta \subseteq E_{X} \theta \subseteq\) \(E_{X}\). It then follows that \(\left.\varphi\right|_{G_{X}},\left.\varphi\right|_{M_{X}} ^{\sigma}\) and \(\left.\varphi\right|_{E_{X}}\) are respectively isomorphisms of \(\left(G_{X}, \theta\right),\left(M_{X}, \theta\right)\) and \(\left(E_{X}, \theta\right)\) onto \(G_{X}, M_{X}\) and \(E_{X}^{\odot}\).

Lemma 2.3. The following statements hold.
(i) \(M(X, Y) \neq \varnothing\) and \(M(Y, X) \neq \varnothing\) if and only if \(|X|=|Y|\).
(ii) \(E(X, Y) \neq \varnothing\) and \(E(Y, X) \neq \varnothing\) if and only if \(|X|=|Y|\).

Proof. If \(\alpha \in M(X, Y)\) and \(\beta \in M(Y, X)\), then
\[
|X|=|\operatorname{Im} \alpha| \leq|Y| \quad \text { and } \quad|Y|=|\operatorname{Im} \beta| \leq|X|
\]
so \(|X|=|Y|\). If \(\gamma \in E(X, Y)\) and \(\lambda \in E(Y, X)\), then
\[
|X| \geq|\operatorname{Im} \gamma|=|Y| \quad \text { and } \quad|Y| \geq|\operatorname{Im} \lambda|=|X|
\]
which implies that \(|X|=|Y|\).
If \(|X|=|Y|\), then there is a bijection \(\mu\) of \(X\) onto \(Y\), then \(\mu \in M(X, Y) \cap\) \(E(X, Y)\) and \(\mu^{-1} \in M(Y, X) \cap E(Y, X)\).

Hence (i) and (ii) are proved.

Lemma 2.4. Assume that \(|X|=|Y|\). If \(\varphi\) is a bijection of \(X\) onto \(Y\), then
(i) \((M(X, Y), \theta) \cong\left(M_{X}, \varphi \theta\right)\) where \(\theta \in M(Y, X)\) and
(ii) \((E(X, Y), \theta) \cong\left(E_{X}, \varphi \theta\right)\) where \(\theta \in E(Y, X)\).

Proof. Define \(\psi_{1}: M(X, Y) \rightarrow M_{X}\) and \(\psi_{2}: E(X, Y) \rightarrow E_{X}\) by
\[
\alpha \psi_{1}=\alpha \varphi^{-1} \text { for all } \alpha \in M(X, Y) \text { and } \beta \psi_{2}=\beta \varphi^{-1} \text { for all } \beta \in E(X, Y) \text {. }
\]

Let \(\theta \in M(Y, X)\). Then \(\varphi \theta \in M_{X}\) and for \(\alpha, \beta \in M(X, Y)\),

and if \(\alpha \psi_{1}=\beta \psi_{1}\), then \(\alpha=\left(\alpha \varphi^{-1}\right) \varphi=\left(\alpha \psi_{1}\right) \varphi=\left(\beta \psi_{1}\right) \varphi=\left(\beta \varphi^{-1}\right) \varphi=\beta\). If \(\alpha \in M_{X}\), then \(\alpha \varphi \in M(X, Y)\) and \((\alpha \varphi) \psi_{1}=(\alpha \varphi) \varphi^{-1}=\alpha\). This proves that \(\psi_{1}\) is an isomorphism of \((M(X, Y), \theta)\) onto \(\left(M_{X}, \varphi \theta\right)\). We can show similarly that \(\psi_{2}\) is an isomorphism of \((E(X, Y), \theta)\) onto \(\left(E_{X}, \varphi \theta\right)\) where \(\theta \in E(Y, X)\). Hence (i) and (ii) are proved, as desired.

Theorem 2.5. For \(\theta \in M(Y, X)\), the semigroup \((M(X, Y), \theta)\) belongs to \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|=|Y|<\infty\).

Proof. Assume that \(|X|=|Y|<\infty\). Then \(\theta: Y \rightarrow X\) is a bijection, hence \(\theta^{-1}: X \rightarrow Y\) is also a bijection. By Lemma 2.4(i), \((M(X, Y), \theta) \cong\left(M_{X}, \theta^{-1} \theta\right)=\) \(\left(M_{X}, 1_{X}\right)=M_{X}\). Since \(|X|<\infty, M_{X}=G_{X}\), so \(M_{X} \in \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.5. Hence \((M(X, Y), \theta) \in \boldsymbol{B} \boldsymbol{Q}\).

Conversely, assume that \((M(X, Y), \theta) \in B \boldsymbol{Q}\). By Lemma 2.3(i), \(|X|=|Y|\). Let \(\varphi: X \rightarrow Y\) be a bijection. Then \(\varphi \theta \in M_{X}\). To show that \(|X|<\infty\), suppose that \(X\) is infinite. Therefore \(G_{X} \nsubseteq M_{X}\).

Case 1: \(\varphi \theta \in G_{X}\). Then \(\left(M_{X}, \varphi \theta\right) \cong M_{X}\) by Lemma 2.2. But \(M_{X} \notin \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.10(i), so we have \(\left(M_{X}, \varphi \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}\).

Case 2: \(\varphi \theta \in M_{X} \backslash G_{X}\). Then by Proposition 1.9(iii), \((\varphi \theta)^{n} \in M_{X} \backslash G_{X}\) for every \(n \in \mathbb{N}\). It thus follows from Proposition 1.9(i) that \((\varphi \theta)^{n} \neq(\varphi \theta)^{m}\) for all distinct \(n, m \in \mathbb{N}\). In particular,
\[
\begin{equation*}
(\varphi \theta)^{2} \neq \varphi \theta \quad \text { and } \quad(\varphi \theta)^{2} \neq(\varphi \theta)^{3} . \tag{1}
\end{equation*}
\]

We have from Proposition 1.4 that in \(\left(M_{X}, \varphi_{\theta}\right), \stackrel{\partial}{\Omega}\)


By (2), \((\varphi \theta)^{2} \in(\varphi \theta)_{q}\) in \(\left(M_{X}, \varphi \theta\right)\). Since \((\varphi \theta)^{2} \notin G_{X}\), by Proposition 1.9(ii), \((\varphi \theta)^{2}\) is not regular in \(M_{X}\). Thus
\[
\begin{equation*}
(\varphi \theta)^{2} \notin(\varphi \theta)^{2} M_{X}(\varphi \theta)^{2} . \tag{4}
\end{equation*}
\]

From (1), (3) and (4), we conclude that \((\varphi \theta)^{2} \notin(\varphi \theta)_{b}\) in \(\left(M_{X}, \varphi \theta\right)\). It then follows from Proposition 1.8 that \(\left(M_{X}, \varphi \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}\).

Now we have \(\left(M_{X}, \varphi \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}\) from Case 1 and Case 2. But since \((M(X, Y), \theta) \cong\) \(\left(M_{X}, \varphi \theta\right)\) by Lemma 2.4(i), we deduce that \((M(X, Y), \theta) \notin \boldsymbol{B} \boldsymbol{Q}\), a contradiction. It then follows that \(|X|=|Y|<\infty\).

Hence the theorem is proved, as required.

Theorem 2.6. For \(\theta \in E(Y, X)\), the semigroup \((E(X, Y), \theta)\) belongs to \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|=|Y|<\infty\).

Proof. Assume that \(|X|=|Y|<\infty\). Then we have that \(\theta: Y \rightarrow X\) is a bijection, so \(\theta^{-1}: X \rightarrow Y\) is a bijection. By Lemma 2.4(ii), \((E(X, Y), \theta) \cong\left(E_{X}, \theta^{-1} \theta\right)=\) \(\left(E_{X}, 1_{X}\right)=E_{X}\). But \(E_{X}=G_{X}\) because \(|X|<\infty\), so \(E_{X} \in \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.5. Consequently, \((E(X, Y), \theta) \in B \boldsymbol{Q}\).

For the converse, assume that \((E(X, Y), \theta) \in \boldsymbol{B} \boldsymbol{Q}\). By Lemma 2.3(ii), \(|X|=\) \(|Y|\). Let \(\varphi: X \rightarrow Y\) be a bijection. Then \(\varphi \theta \in E_{X}\). To show that \(|X|<\infty\), suppose on the contrary that \(X\) is infinite. Thus \(G_{X} \nsubseteq E_{X}\).

Case 1: \(\varphi \theta \in G_{X}\). From Lemma 2.2, \(\left(E_{X}, \varphi \theta\right) \cong E_{X}\). By Proposition 1.10(ii), \(E_{X} \notin \boldsymbol{B Q}\). Thus \(\left(E_{x}, \varphi \theta\right) \notin \boldsymbol{B Q}\). \(9 \cap \rho\)
Case 2: \(\varphi \theta \in E_{X} \backslash G_{X}\). Then by Proposition 1.9(iii), \((\varphi \theta)^{n} \in E_{X} \backslash G_{X}\) for every \(n \in \mathbb{N}\). From Proposition \(1.9(\mathrm{i})\), we have that \((\varphi \theta)^{n} \neq(\varphi \theta)^{m}\) for all distinct \(n, m \in \mathbb{N}\). In particular,
\[
\begin{equation*}
(\varphi \theta)^{2} \neq \varphi \theta \quad \text { and } \quad(\varphi \theta)^{2} \neq(\varphi \theta)^{3} \tag{1}
\end{equation*}
\]

We can see from Proposition 1.4 that in \(\left(E_{X}, \varphi \theta\right)\),
\[
\begin{align*}
& (\varphi \theta)_{q}=\left(E_{X}(\varphi \theta)^{2} \cap(\varphi \theta)^{2} E_{X}\right) \cup\{\varphi \theta\}  \tag{2}\\
& (\varphi \theta)_{b}=(\varphi \theta)^{2} E_{X}(\varphi \theta)^{2} \cup\left\{\varphi \theta,(\varphi \theta)^{3}\right\} \tag{3}
\end{align*}
\]

We then have from (2) that \((\varphi \theta)^{2} \in(\varphi \theta)_{q}\) in \(\left(E_{X}, \varphi \theta\right)\). From Proposition 1.9(ii), \((\varphi \theta)^{2}\) is not regular in \(E_{X}\), that is,
\[
\begin{equation*}
(\varphi \theta)^{2} \notin(\varphi \theta)^{2} E_{X}(\varphi \theta)^{2} \tag{4}
\end{equation*}
\]

It then follows from (1), (3) and (4) that \((\varphi \theta)^{2} \notin(\varphi \theta)_{b}\) in \(\left(E_{X}, \varphi \theta\right)\). Hence \(\left(E_{X}, \varphi \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.8.

From the above two cases, we have \(\left(E_{X}, \varphi \theta\right) \notin \boldsymbol{B} \boldsymbol{Q}\). \(\operatorname{But}(E(X, Y), \theta) \cong\left(E_{X}, \varphi \theta\right)\) by Lemma 2.4(ii), we deduce that \((E(X, Y), \theta) \notin \boldsymbol{B} \boldsymbol{Q}\) which is a contradiction. Therefore we have that \(|X|=|Y|<\infty\).

Hence the proof is complete.
\[
\begin{gathered}
\text { สถาบันวิทยบริการ } \\
\text { จุฬาลงกรณ์มหาวัทยาล่ย }
\end{gathered}
\]

\section*{CHAPTER III}

\section*{LINEAR TRANSFORMATION SEMIGROUPS}

In this chapter, we give necessary and sufficient conditions for dimensions of a vector space \(V\) over a division ring in order that various linear transformation semigroups on \(V\) belong to \(B \boldsymbol{Q}\).

We first recall the following subsemigroups of \(L(V)\) previously mentioned in Chapter I:
\[
\begin{aligned}
G(V)= & \{\alpha \in L(V) \mid \alpha \text { is an isomorphism }\}, \\
M(V)= & \{\alpha \in L(V) \mid \alpha \text { is one-to-one }\}, \\
E(V)= & \{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\}, \\
O M(V)= & \{\alpha \in L(V) \mid \operatorname{dim} \text { Ker } \alpha \text { is infinite }\} \\
& \text { where } \operatorname{dim} V \text { is infinite, } \\
O E(V)= & \{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\} \\
G & \text { where } \operatorname{dim} V \text { is infinite, } \\
O M E(V)= & \{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { and dim }(V / \operatorname{Im} \alpha) \text { are infinite }\} \\
9 & \text { where } \operatorname{dim} V \text { is infinite, } \\
B L(V)= & \{\alpha \in L(V) \mid \alpha \text { is one-to-one and dim }(V / \operatorname{Im} \alpha) \text { is infinite }\} \\
& \text { where } \operatorname{dim} V \text { is infinite, } \\
O B L(V)= & \{\alpha \in L(V) \mid \text { Im } \alpha=V \text { and dim Ker } \alpha \text { is infinite }\} \\
& \text { where } \operatorname{dim} V \text { is infinite, }
\end{aligned}
\]
\[
\begin{aligned}
A M(V) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { is finite }\}, \\
A E(V) & =\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\}, \\
M A E(V) & =\{\alpha \in L(V) \mid \alpha \text { is one-to-one and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is finite }\}, \\
E A M(V) & =\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V \text { and } \operatorname{dim} \operatorname{Ker} \alpha \text { is finite }\} \text { and } \\
A M E(V) & =\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { are finite }\} .
\end{aligned}
\]

In the remainder, let \(V\) be a vector space over a division ring \(R\).
We first introduce the following lemmas which will be used.

Lemma 3.1. If \(B\) is a basis of \(V, A \subseteq B\) and \(\alpha \in L(V)\) is one-to-one, then
\[
\operatorname{dim}(\operatorname{Im} \alpha \mid\langle A \alpha\rangle)=|B \backslash A| .
\]

Proof. Assume that \(\alpha\) is one-to-one. Then we have that \(\alpha: V \rightarrow \operatorname{Im} \alpha\) is an isomorphism. Define \(\bar{\alpha}: V /\langle A\rangle \longrightarrow \operatorname{Im} \alpha /\langle A\rangle \alpha\) by
\[
(v+\langle A\rangle) \bar{\alpha}=v \alpha+\langle A\rangle \alpha \quad \text { for all } v \in V .
\]

Clearly, \(\bar{\alpha}\) is well-defined and onto. Since \(\alpha\) is linear, it follows that \(\bar{\alpha}\) is linear. Also \(\bar{\alpha}\) is one-to-one since \(\alpha\) is one-to-one. Hence \(\bar{\alpha}\) is an isomorphism from \(V /\langle A\rangle\) onto \(\operatorname{Im} \alpha /\langle A\rangle \alpha\). Thus \(\operatorname{Im} \alpha /\langle A\rangle \alpha \cong V /\langle A\rangle\). But \(\operatorname{dim}(V /\langle A\rangle)=|B \backslash A|\)

Lemma 3.2. Assume that \(B\) is a linearly independent subset of \(V\). If \(v_{1}, v_{2}, \ldots, v_{n} \in\) \(B\) are distinct and \(u_{1}, u_{2}, \ldots, u_{n} \in\left\langle B \backslash\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle\), then \(v_{1}-u_{1}, v_{2}-\) \(u_{2}, \ldots, v_{n}-u_{n}\) are linearly independent over \(R\).

Proof. It is clear that for any subset \(A\) of \(B,\langle A\rangle \cap\langle B \backslash A\rangle=\{0\}\). Let \(r_{1}, r_{2}, \ldots, r_{n} \in R\) be such that
\[
r_{1}\left(v_{1}-u_{1}\right)+r_{2}\left(v_{2}-u_{2}\right)+\ldots+r_{n}\left(v_{n}-u_{n}\right)=0 .
\]

Then \(r_{1} v_{1}+r_{2} v_{2}+\ldots+r_{n} v_{n}=r_{1} u_{1}+r_{2} u_{2}+\ldots+r_{n} u_{n} \in\left\langle\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle \cap\) \(\left\langle B \backslash\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}\right\rangle=\{0\}\). Since \(v_{1}, v_{2}, \ldots, v_{n}\) are linearly independent over \(R\), we have that \(r_{i}=0\) for every \(i \in\{1,2, \ldots, n\}\). This proves that \(v_{1}-u_{1}, v_{2}-\) \(u_{2}, \ldots, v_{n}-u_{n}\) are linearly independent over \(R\).

We know from Proposition 1.10 that for any set \(X, M_{X} \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(|X|<\infty\) and this is also true for \(E_{X}\). Following the technique of the given proofs for these facts, we obtain the same results for \(M(V)\) and \(E(V)\) by replacing \(|X|\) by \(\operatorname{dim} V\). However, our proofs are more complicated.

Theorem 3.3. The semigroup \(M(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V<\infty\).

Proof. If \(\operatorname{dim} V<\infty\), then \(M(V)=G(V)\) which implies by Proposition 1.5 that \(M(V) \in \boldsymbol{B} \boldsymbol{Q}\).

For the converse, assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\). Then \(B\) is infinite. Let \(A=\left\{u_{n} \mid n \in \mathbb{N}\right\}\) be a subset of \(B\) where for any distinct \(i, j \in \mathbb{N}, u_{i} \neq u_{j}\). Let \(\alpha, \beta, \gamma \in L(V)\) be defined by
\[
\begin{aligned}
& 66 v \alpha= \begin{cases}u_{2 n} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B \backslash A,\end{cases} \\
& v \beta= \begin{cases}u_{n+1}^{\partial} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B \backslash A\end{cases}
\end{aligned}
\]
and
\[
v \gamma= \begin{cases}u_{n+2} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \\ v & \text { if } v \in B \backslash A\end{cases}
\]

By Proposition 1.12(vii), \(\alpha, \beta, \gamma \in M(V)\). From the definitions of \(\alpha, \beta\) and \(\gamma\), we have that
\[
u_{n} \beta \alpha=u_{2 n+2}=u_{n} \alpha \gamma \text { for all } n \in \mathbb{N}
\]
and
\[
v \beta \alpha=v=v \alpha \gamma \text { for all } v \in B \backslash A .
\]

This implies that \(\alpha \neq \beta \alpha=\alpha \gamma\), so \(\beta \alpha \in M(V) \alpha \cap \alpha M(V)=(\alpha)_{q}\) by Proposition 1.4. Suppose that \(\beta \alpha \in(\alpha)_{b}\). Since \(\alpha \neq \beta \alpha\), by Proposition 1.4, \(\beta \alpha \in \alpha M(V) \alpha\). Let \(\lambda \in M(V)\) be such that \(\beta \alpha=\alpha \lambda \alpha\). From Proposition 1.9(i), \(\beta=\alpha \lambda\). It then follows that
\[
\begin{equation*}
B \backslash\left\{u_{1}\right\}=B \beta=B \alpha \lambda=\left(B \backslash\left\{u_{2 n-1} \mid n \in \mathbb{N}\right\}\right) \lambda . \tag{1}
\end{equation*}
\]

We have by Lemma 3.1 that
\[
\begin{equation*}
\operatorname{dim}\left(\operatorname{Im} \lambda /\left\langle\left(B \backslash\left\{u_{2 n-1} \dagger n \in \mathbb{N}\right\}\right) \lambda\right\rangle\right)=\left|\left\{u_{2 n-1} \mid n \in \mathbb{N}\right\}\right| \tag{2}
\end{equation*}
\]

Thus from (1) and (2) yield that
\[
\begin{equation*}
\operatorname{dim}\left(\operatorname{Im} \lambda /\left\langle B \backslash\left\{u_{1}\right\}\right\rangle\right)=\left|\left\{u_{2 n-1} \mid n \in \mathbb{N}\right\}\right| . \tag{3}
\end{equation*}
\]

But \(\operatorname{dim}\left(V /\left\langle B \backslash\left\{u_{1}\right\}\right\rangle\right)=\left|\left\{u_{1}\right\}\right|=1\) by Proposition 1.12 (iv), so


We have a contradiction because of (3) and (4). Then \(\beta \alpha \notin(\alpha)_{b}\), so by Proposition \(1.8, M(V) \notin \boldsymbol{B} \boldsymbol{Q}\).

Hence the theorem is completely proved.

Theorem 3.4. The semigroup \(E(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V<\infty\).

Proof. If \(\operatorname{dim} V<\infty\), then \(E(V)=G(V)\), so \(E(V) \in \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.5.
Conversely, assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be an infinite basis of \(V\) and \(A=\left\{u_{n} \mid n \in \mathbb{N}\right\} \subseteq B\) where \(u_{i} \neq u_{j}\) if \(i \neq j\). Define \(\alpha, \beta, \gamma \in L(V)\) by \(v \alpha= \begin{cases}0 & \text { if } v=u_{n} \text { for some odd } n \in \mathbb{N}, \\ u_{\frac{n}{2}} & \text { if } v=u_{n} \text { for some even } n \in \mathbb{N}, \\ v & \text { if } v \in B \backslash A,\end{cases}\) \(v \beta= \begin{cases}0 & \text { if } v=u_{1} \text { or } u_{2}, \\ u_{n-2} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1,2\}, \\ v & \text { if } v \in B \backslash A\end{cases}\)
and


Then \(\operatorname{Im} \alpha=\operatorname{Im} \beta=\operatorname{Im} \gamma=\langle B \cup\{0\}\rangle=V\), so \(\alpha, \beta, \gamma \in E(V)\). Moreover,


Consequently, \(\alpha \neq \beta \alpha=\alpha \gamma \in E(V) \alpha \cap \alpha E(V)\). By Proposition 1.4, \(\alpha \gamma \in(\alpha)_{q}\).
Suppose that \(\alpha \gamma \in(\alpha)_{b}\). By Proposition 1.4, \(\alpha \gamma=\alpha \lambda \alpha\) for some \(\lambda \in E(V)\).
By Proposition 1.9(i), we have \(\gamma=\lambda \alpha\). By the definition of \(\gamma\), we have from Proposition 1.12(viii) that
\[
\begin{equation*}
\operatorname{dim} \operatorname{Ker}(\lambda \alpha)=\operatorname{dim} \operatorname{Ker} \gamma=1 \tag{1}
\end{equation*}
\]

Since \(\operatorname{Im} \lambda=V\), for each odd \(n \in \mathbb{N}, u_{n}^{\prime} \lambda=u_{n}\) for some \(u_{n}^{\prime} \in V\). Then from Proposition 1.12(v),
\[
\begin{align*}
& \left\{u_{2 n-1}^{\prime} \mid n \in \mathbb{N}\right\} \text { is a linearly independent subset of } V \text { and } \\
& \text { for every } n \in \mathbb{N}, u_{2 n-1}^{\prime} \gamma=u_{2 n-1}^{\prime} \lambda \alpha=u_{2 n-1} \alpha=0 \tag{2}
\end{align*}
\]

Hence (1) and (2) yield a contradiction. Consequently, \(\alpha \gamma \notin(\alpha)_{b}\). Therefore \(E(V) \notin \boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.8.

Therefore the theorem is proved.

For the study of \(O M(V), O E(V), O M E(V), B L(V)\) and \(O B L(V)\), we always assume that \(\operatorname{dim} V\) is infinite. We will show that the semigroups \(O M(V)\) and \(O E(V)\) are not regular and neither left 0 -simple nor right 0 -simple but they are always in \(\boldsymbol{B Q}\).

\section*{Proposition 3.5. The semigroup \(O M(V)\) is not regular.}

Proof. Let \(B\) be a basis of \(V\) and \(A \subseteq B\) such that \(|A|=|B \backslash A|=|B|\). Then there exists a bijection \(\varphi: B \backslash A \rightarrow B\). Define \(\alpha \in L(V)\) by

Then \(\operatorname{Ker} \alpha=\langle A\rangle\) by Proposition 1.12 (viii) and \(\operatorname{Im} \alpha=\langle\operatorname{Im} \varphi\rangle=\langle B\rangle=V\). Therefore \(\alpha \in O M(V)\). Suppose that \(\alpha=\alpha \beta \alpha\) for some \(\beta \in L(V)\). Since \(\alpha \in E(V)\) by Proposition \(1.9(\mathrm{i}), 1_{V}=\beta \alpha\) where \(1_{V}\) is the identity map on \(V\). This implies that \(\beta\) is one-to-one, so \(\beta \notin O M(V)\). This proves that \(\alpha\) is not regular in \(O M(V)\). Hence \(O M(V)\) is not a regular semigroup.

Proposition 3.6. The semigroup \(O M(V)\) is neither left 0 -simple nor right 0 simple.

Proof. For each \(k \in \mathbb{N}\), let
\[
A_{k}=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha \leq k\} .
\]

Clearly, \(0 \in A_{k} \neq\{0\}\) for all \(k \in \mathbb{N}\). Since \(\operatorname{dim} V=\operatorname{dim} \operatorname{Ker} \alpha+\operatorname{dim} \operatorname{Im} \alpha\) for all \(\alpha \in L(V)\) (Proposition 1.12(i)) and \(\operatorname{dim} V\) is infinite, it follows that \(\operatorname{dim} \operatorname{Ker} \alpha\) is infinite for all \(\alpha \in A_{k}\) and for all \(k \in \mathbb{N}\). Then \(A_{k} \subseteq O M(V)\). Since for \(\alpha, \beta \in L(V), \operatorname{rank}(\alpha \beta) \leq \min \{\operatorname{rank} \alpha, \operatorname{rank} \beta\}\), it follows that \(A_{k}\) is an ideal of \(L(V)\). Hence \(A_{k}\) is a nonzero ideal of \(O M(V)\).

We can see that \(\alpha \in O M(V)\) defined in the proof of Proposition 3.5 is not an element of \(A_{k}\) for all \(k \in \mathbb{N}\). Hence \(A_{k}\) is a nonzero proper ideal of \(O M(V)\) for every \(k \in \mathbb{N}\).

Therefore \(O M(V)\) is neither left 0 -simple nor right 0 -simple.

As an immediate consequence of the fact that \(\operatorname{Ker} \alpha \beta \supseteq \operatorname{Ker} \alpha\) for all \(\alpha, \beta \in\) \(L(V)\), we have

Lemma 3.7. Theosemigroup \(O M(V)\) is a right ideal of \(L(V)\).

Theorem 3.8. The semigroup \(\Theta M(V)\) always belongs to \(\boldsymbol{B Q}\).
Proof. To show that \(O M(V) \in \boldsymbol{B} \boldsymbol{Q}\) from Proposition 1.3, Proposition 1.4 and Proposition 1.7, it suffices to show that for every nonempty subset \(X\) of \(O M(V)\), \(O M(V) X \cap X O M(V) \subseteq X O M(V) X\).

Let \(X\) be a nonempty subset of \(O M(V)\) and let \(\alpha \in O M(V) X \cap X O M(V)\). Then
\[
\begin{equation*}
\alpha=\beta \gamma=\lambda \eta \text { for some } \beta, \eta \in O M(V) \text { and } \gamma, \lambda \in X \tag{1}
\end{equation*}
\]

But \(L(V)\) is regular, so \(\gamma=\gamma \mu \gamma\) for some \(\mu \in L(V)\). It then follows from (1) that
\[
\begin{equation*}
\alpha=\beta \gamma \mu \gamma=\lambda \eta \mu \gamma=\lambda(\eta \mu) \gamma \tag{2}
\end{equation*}
\]

By Lemma 3.7, \(\eta \mu \in O M(V)\), so from (2), we have \(\alpha \in X O M(V) X\). This proves that \(O M(V) X \cap X O M(V) \subseteq X O M(V) X\). Hence \(O M(V) \in \boldsymbol{B} \boldsymbol{Q}\), as required.

Proposition 3.9. The semigroup \(O E(V)\) is not regular.

Proof. Let \(B\) be an infinite basis of \(V\) and \(A \subseteq B\) such that \(|A|=|B \backslash A|=|B|\). Then there exists a bijection \(\varphi: B \rightarrow A\). Define \(\alpha \in L(V)\) by \(v \alpha=v \varphi\) for all \(v \in B\). Then \(\operatorname{Im} \alpha=\langle A\rangle\) and by Proposition 1.12(vii), \(\alpha\) is one-to-one. By Proposition 1.12(iv), \(\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /\langle A\rangle)=|B \backslash A|\). Thus, we have \(\alpha \in O E(V)\). If \(\alpha=\alpha \beta \alpha\) for some \(\beta \in L(V)\), then \(\alpha \beta=1_{V}\) since \(\alpha\) is one-to-one which implies that \(\operatorname{Im} \beta=V\), so \(\beta \notin O E(V)\). Hence, we deduce that \(\alpha\) is not regular in \(O E(V)\). We therefore conclude that \(O E(V)\) is not a regular semigroup.

Proposition 3.10. The semigroup \(O E(V)\) is neither left 0 -simple nor right 0 -


Proof. For each \(k \in \mathbb{N}\), let
\[
A_{k}=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha \leq k\}
\]

As in the proof of Proposition 3.6. We have that \(A_{k}\) is a nonzero ideal of \(L(V)\) for all \(k \in \mathbb{N}\). Since \(\operatorname{dim} V=\operatorname{dim} \operatorname{Im} \alpha+\operatorname{dim}(V / \operatorname{Im} \alpha)\) (Proposition 1.12(ii)) and \(\operatorname{dim} V\) is infinite, it follows that \(\operatorname{dim}(V / \operatorname{Im} \alpha)\) is infinite for all \(\alpha \in A_{k}\) and for all \(k \in \mathbb{N}\). Thus \(A_{k} \subseteq O E(V)\) for every \(k \in \mathbb{N}\).

Let \(\alpha \in O E(V)\) be defined as in the proof of Proposition 3.9. Since \(A\) is an infinite subset of \(B\) and \(\operatorname{Im} \alpha=\langle A\rangle\), it follows that \(\alpha \notin A_{k}\) for every \(k \in \mathbb{N}\). Therefore each \(A_{k}\) is a nonzero proper ideal of \(\operatorname{OE}(V)\). Hence \(O E(V)\) is neither left 0 -simple nor right 0 -simple.

Lemma 3.11. The semigroup \(O E(V)\) is a left ideal of \(L(V)\).

Proof. This is clear because of Proposition 1.12(iii) and the fact that \(\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta\) for all \(\alpha, \beta \in L(V)\).

Theorem 3.12. The semigroup \(O E(V)\) is always in \(\boldsymbol{B Q}\).

Proof. To prove the theorem, by Proposition 1.3, Proposition 1.4 and Proposition 1.7, it suffices to show that \(O E(V) X \cap X O E(V) \subseteq X O E(V) X\) for any nonempty subset \(X\) of \(O E(V)\).

Let \(X\) be a nonempty subset of \(O E(V)\) and let \(\alpha \in O E(V) X \cap X O E(V)\). Then
\[
\begin{equation*}
\alpha \approx \beta \gamma=\lambda \eta \text { for some } \beta, \eta \in O E(V) \text { and } \gamma, \lambda \in X \text {. } \tag{1}
\end{equation*}
\]


By Lemma 3.11, \(\mu \beta \in O E(V)\). It then follows from (2) that \(\alpha \in X O E(V) X\).
Therefore the theorem is proved.

We will show that \(\operatorname{OME}(V)\) is always regular and hence it is in \(\boldsymbol{B} \boldsymbol{Q}\) by Proposition 1.5.

Lemma 3.13. The semigroup \(O M E(V)\) is a regular semigroup.

Proof. To show that \(O M E(V)\) is regular, let \(\alpha \in O M E(V)\). Let \(B_{1}\) and \(B_{2}\) be respectively bases of \(\operatorname{Ker} \alpha\) and \(\operatorname{Im} \alpha\). Then \(B_{1}\) is infinite. Let \(B\) be a basis of \(V\) containing \(B_{2}\). By Proposition 1.12(iv), \(\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}\left(V /\left\langle B_{2}\right\rangle\right)=\left|B \backslash B_{2}\right|\). But \(\alpha \in O E(V)\), so \(B \backslash B_{2}\) is infinite. For each \(v \in B_{2}\), there exists an element \(u_{v} \in V\) such that \(u_{v} \alpha=v\). It then follows that \(\left|\left\{u_{v} \mid v \in B_{2}\right\}\right|=\left|B_{2}\right|\). Moreover, \(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\) is a basis of \(V\) by Proposition 1.12(vi). Define \(\beta \in L(V)\) by
\[
v \beta=\left\{\begin{array}{l}
u_{v} \text { if } v \in B_{2}, \\
0 \text { if } v \in B \backslash B_{2} .
\end{array}\right.
\]

Then Ker \(\beta=\left\langle B \backslash B_{2}\right\rangle\) by Proposition 1.12 (viii) and \(\operatorname{Im} \beta=\left\langle\left\{u_{v} \mid v \in B_{2}\right\}\right\rangle\). We therefore have \(\operatorname{dim} \operatorname{Ker} \beta=\left|B \mathcal{B} B_{2}\right|\). Since \(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\) is a basis of \(V\) by Proposition 1.12(vi), we have by Proposition 1.12(iv) that
\[
\operatorname{dim}(V / \operatorname{Im} \beta)=\left|\left(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\right) \backslash\left\{u_{v} \mid v \in B_{2}\right\}\right|=\left|B_{1}\right| .
\]

It then follows that \(\bar{\beta} \in O M E(V)\). Since \(B_{1} \cup\left\{u_{v} \mid \bar{v} \in B_{2}\right\}\) is a basis of \(V\) and
\[
\begin{aligned}
& v \alpha \beta \alpha=(v \alpha) \beta \alpha=\theta \beta \alpha=0=v \alpha \text { for all } v \in B_{1} \\
& u_{v} \alpha \beta \alpha=\left(u_{v} \alpha\right) \beta \alpha=v \beta \alpha=(v \beta) \alpha=u_{v} \alpha \text { for all } v \in B_{2},
\end{aligned}
\]


The following theorem is obtained directly from Lemma 3.13 and Proposition 1.5.

Theorem 3.14. The semigroup \(O M E(V)\) always belongs to \(\boldsymbol{B} \boldsymbol{Q}\).

Observe that \(O M(V)\) and \(O E(V)\) are not regular but \(O M E(V)(=O M(V) \cap\) \(O E(V))\) is. However, \(O M(V)\) and \(O E(V)\) are neither left 0 -simple nor right 0 -simple and neither is \(O M E(V)\) as shown in the following proposition.

Proposition 3.15. The semigroup \(O M E(V)\) is neither left 0-simple nor right 0 -simple.

Proof. For each \(k \in \mathbb{N}\), define
\[
\begin{equation*}
A_{k}=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha \leq k\} \tag{1}
\end{equation*}
\]
as in the proof of Proposition 3.6. By the proof of Proposition 3.6 and Proposition 3.10, each \(A_{k}\) is a nonzero ideal of \(O M(V)\) and \(O E(V)\), respectively. Then \(A_{k}\) is a nonzero ideal of \(O M E(V)(=O M(V) \cap O E(V))\). From (1), we have
\[
A_{1} \subseteq A_{2} \subseteq A_{3} \subseteq
\]

Let \(B\) be a basis of \(V\) and let \(u_{1}, u_{2}, u_{3}, \ldots\) be distinct elements of \(B\). For each positive integer \(k\), define \(\alpha_{k} \in L(V)\) by
\[
v \alpha_{k}=\left\{\begin{array}{l}
v \quad \text { if } v \in\left\{u_{1}, u_{2}, \ldots u_{k}\right\} \\
0 \quad \text { if } v \in B \backslash\left\{u_{1}, u_{2}, \ldots u_{k}\right\}
\end{array}\right.
\]

Then for every \(k \in \mathbb{N}, \operatorname{Im} \alpha_{k}=\left\langle u_{1}, u_{2}, \ldots u_{k}\right\rangle\) and hence \(\operatorname{dim} \operatorname{Im} \alpha_{k}=k\). Thus for every \(k>1, \alpha_{k} \in A_{k} \backslash A_{k-1}\). Consequently,
สถาบันจิดิครยยริการ


Hence \(O M E(V)\) is neither left 0 -simple nor right 0 -simple.

As was mentioned in Chapter I, \(B L_{X}\) is right simple if \(X\) is a countably infinite set. This is also true that \(B L(V)\) is right simple if \(\operatorname{dim} V=\aleph_{0}\). We give this fact as a lemma in order to prove the next theorem, analogous to Proposition 1.11. That is, to prove that \(B L(V) \in \boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V=\aleph_{0}\). The technique of the proof Proposition 1.11 is helpful for the proof of this theorem.

Lemma 3.16. If \(\operatorname{dim} V=\aleph_{0}\), then \(B L(V)\) is right simple .

Proof. By assumption, we have that for every \(\alpha \in B L(V)\), \(\operatorname{dim}(V / \operatorname{Im} \alpha)=\aleph_{0}\). We will show that \(B L(V)\) is right simple by Proposition 1.1. This is equivalent to show that for all \(\alpha, \beta \in B L(V)\), there exists \(\gamma \in B L(V)\) such that \(\alpha \gamma=\beta\). Let \(\alpha\), \(\beta \in B L(V)\) be arbitrary fixed. Since \(\alpha\) and \(\beta\) are one-to-one linear transformations of \(V\), we have that \(\alpha^{-1} \beta: \operatorname{Im} \alpha \rightarrow \operatorname{Im} \beta\) is an isomorphism.

Let \(B_{1}\) be a basis of \(\operatorname{Im} \alpha\) and \(B_{2}=B_{1} \alpha^{-1} \beta\). Then \(B_{2}\) is a basis of \(\operatorname{Im} \beta\). Let \(B\) and \(B^{\prime}\) be bases of \(V\) such that \(B_{1} \subseteq B\) and \(B_{2} \subseteq B^{\prime}\). It then follows from Proposition 1.12(iv), that
\[
\operatorname{dim}(V / \operatorname{Im} \alpha)=\left|B \backslash B_{1}\right| \quad \text { and } \quad \operatorname{dim}(V / \operatorname{Im} \beta)=\left|B^{\prime} \backslash B_{2}\right|
\]

Consequently, \(\left|B \backslash B_{1}\right|=|B|=\left|B^{\prime} \backslash B_{2}\right|=\aleph_{0}\). Let \(A \subseteq B^{\prime} \backslash B_{2}\) be such that \(|A|=\left|B^{\prime} \backslash B_{2}\right|=\left|\left(B^{\prime} \backslash B_{2}\right) \backslash A\right|\). Thus
\[
\begin{equation*}
\left|\left(B^{\prime} \backslash B_{2}\right) \backslash A\right|=\aleph_{0} \tag{1}
\end{equation*}
\]

Then there exists a bijection \(\varphi: B \backslash B_{1} \rightarrow A\). Define \(\gamma \in L(V)\) by

Since \(B_{1} \alpha^{-1} \beta \cap\left(B \backslash B_{1}\right) \varphi=B_{2} \cap A=\varnothing\), it follows that \(\left.\gamma\right|_{B}: B^{\circ} \rightarrow B_{2} \cup A \subseteq B^{\prime}\) is a bijection. Hence \(\gamma\) is one-to-one by Proposition 1.12(vii), so \(\varnothing \in M(V)\). Also, we have from Proposition 1.12(iv) that
\[
\begin{equation*}
\operatorname{dim}(V / \operatorname{Im} \gamma)=\operatorname{dim}\left(V /\left\langle B_{2} \cup A\right\rangle\right)=\left|B^{\prime} \backslash\left(B_{2} \cup A\right)\right|=\left|\left(B^{\prime} \backslash B_{2}\right) \backslash A\right| \tag{3}
\end{equation*}
\]

Then \(\gamma \in O E(V)\) by (1) and (3). But since \(B L(V)=M(V) \cap O E(V), \gamma \in B L(V)\). Because \(\operatorname{Im} \alpha=\left\langle B_{1}\right\rangle\), we deduce from (2) that \(\left.\gamma\right|_{\operatorname{Im} \alpha}=\alpha^{-1} \beta\). This implies that \(\alpha \gamma=\beta\).

Hence \(B L(V)\) is right simple, as desired.

Theorem 3.17. The semigroup \(B L(V)\) is in \(\boldsymbol{B Q}\) if and only if \(\operatorname{dim} V=\aleph_{0}\).

Proof. If \(\operatorname{dim} V=\aleph_{0}\), then \(B L(V) \in \boldsymbol{B} \boldsymbol{Q}\) by Lemma 3.16 and Proposition 1.6.
For the converse, assume that \(\operatorname{dim} V \neq \aleph_{0}\). Since \(\operatorname{dim} V\) is infinite, \(\operatorname{dim} V>\aleph_{0}\). Let \(B\) be a basis of \(V\). Then \(B\) is uncountable. Let \(A\) and \(C\) be subsets of \(B\) such that
\[
\begin{equation*}
A \subseteq C,|B \backslash C|=|C|=|B| \quad \text { and } \quad|C \backslash A|=|A|=|C| . \tag{1}
\end{equation*}
\]

Let \(D\) be a countably infinite subset of \(B\). Since \(B\) is uncountable,
\[
|B>D|=|B| .
\]

Then there are \(\alpha, \beta \in L(V)\) such that \(\left.\alpha\right|_{B}: B \rightarrow B \backslash C\) and \(\left.\beta\right|_{B}: B \rightarrow B \backslash D\) are bijections. By Proposition 1.12(vii), we have that \(\alpha, \beta \in M(V)\). By Proposition 1.12(iv),
\[
\begin{align*}
& \operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /\langle B \backslash C\rangle)=|C| \text { and } \\
& \operatorname{dim}(V / \operatorname{Im} \beta)=\operatorname{dim}(V /\langle B \backslash D\rangle)=|D|, \tag{2}
\end{align*}
\]
so we have that \(\alpha, \beta \in O E(V)\). Thus \(\alpha, \beta \in B L(V)\). Also we have


Since \(|C|=|A|\), there is a bijection \(\varphi: C \rightarrow A\). By \((1), C \varphi \subseteq C\). Define \(\gamma \in L(V)\) by
\[
v \gamma= \begin{cases}v \alpha^{-1} \beta \alpha & \text { if } v \in B \backslash C,  \tag{4}\\ v \varphi & \text { if } v \in C\end{cases}
\]

Because of (3) and \(C \varphi \subseteq A\), we have \((B \backslash C) \alpha^{-1} \beta \alpha \cap C \varphi \subseteq(B \backslash C) \cap C=\varnothing\).
Then \(\left.\gamma\right|_{B}: B \rightarrow(B \backslash C) \cup A \subseteq B\) is one-to-one. Hence \(\gamma \in M(V)\) by Proposition
1.12 (vii) and \(\operatorname{Im} \gamma \subseteq\langle(B \backslash C) \cup A\rangle\). Since
\[
\begin{aligned}
\operatorname{dim}(V / \operatorname{Im} \gamma) & \geq \operatorname{dim}(V /\langle(B \backslash C) \cup A\rangle) & & \text { from Proposition 1.12(iii) } \\
& =|B \backslash((B \backslash C) \cup A)| & & \text { from Proposition 1.12(iv) } \\
& =|C \backslash A| & & \\
& =|B| & & \text { from (1), }
\end{aligned}
\]
we have \(\gamma \in O E(V)\). Hence \(\gamma \in B L(V)\). We have by (4) that \(\left.\gamma\right|_{\operatorname{Im} \alpha}=\alpha^{-1} \beta \alpha\). Consequently, \(\beta \alpha=\alpha \gamma \in B L(V) \alpha \cap \alpha B L(V)\). By Proposition 1.4, \(\beta \alpha \in(\alpha)_{q}\). To show that \(\beta \alpha \notin(\alpha)_{b}\), suppose on the contrary that \(\beta \alpha \in(\alpha)_{b}\). By Proposition 1.4, \(\beta \alpha=\alpha, \beta \alpha=\alpha^{2}\) or \(\beta \alpha=\alpha \lambda \alpha\) for some \(\lambda \in B L(V)\). By Proposition 1.9(i), \(\beta=1_{V}, \beta=\alpha\) or \(\beta=\alpha \lambda\). Since \(C\) is uncountable, \(D\) is countable, \(B \alpha=B \backslash C\) and \(B \beta=B \backslash D\), we deduce that \(\beta \neq 1_{V}\) and \(\beta \neq \alpha\). Then \(\beta=\alpha \lambda\). Hence
\[
\begin{equation*}
\operatorname{Im} \beta=\operatorname{Im}(\alpha \lambda)=(\operatorname{Im} \alpha) \lambda=\langle B \backslash C\rangle \lambda=\langle(B \backslash C) \lambda\rangle \tag{5}
\end{equation*}
\]

Consequently,
\[
\begin{array}{rlr}
|D| & =\operatorname{dim}(V / \operatorname{Im} \beta) & \text { from (2) } \\
& =\operatorname{dim}(V /\langle B \backslash C\rangle \lambda) & \text { from (5) } \\
6 \backslash 6 \mid & \geq \operatorname{dim}(\operatorname{Im} \lambda /\langle B \lambda C\rangle \lambda) \\
& =|B \backslash(B \backslash C)| \\
& =|C| .
\end{array}
\]

This contradicts the facts that \(D\) is countable but \(C\) is uncountable. Therefore \(\beta \alpha \notin(\alpha)_{b}\). By Proposition 1.8, \(B L(V) \notin \boldsymbol{B} \boldsymbol{Q}\).

Hence the theorem is completely proved.

If \(B L(V)\) is right simple, by Proposition \(1.6, B L(V) \in \boldsymbol{B} \boldsymbol{Q}\) which implies by Theorem 3.17 that \(\operatorname{dim} V=\aleph_{0}\). That is, the converse of Lemma 3.16 holds.

Corollary 3.18. \(\operatorname{dim} V=\aleph_{0}\) if and only if \(B L(V)\) is a right simple semigroup.

Next, to show that \(\operatorname{dim} V=\aleph_{0}\) is also necessary and sufficient for the semigroup \(O B L(V)\) belongs to \(\boldsymbol{B} \boldsymbol{Q}\), we first show as a lemma that if \(\operatorname{dim} V=\aleph_{0}\), then \(O B L(V)\) is left simple. Recall that \(O B L(V)=O M(V) \cap E(V)\).

Lemma 3.19. If \(\operatorname{dim} V=\aleph_{0}\), then \(O B L(V)\) is left simple.

Proof. To show that \(O B L(V)\) is left simple by Proposition 1.1 which is equivalent to show that for all \(\alpha, \beta \in O B L(V), \gamma \alpha=\beta\) for some \(\gamma \in O B L(V)\).

Let \(\alpha, \beta \in O B L(V)\) and let \(B\) be a basis of \(V\). Then \(B\) is countably infinite. Then for every infinite subset \(A\) of \(B,|A|=|B|\). Since \(\operatorname{Im} \alpha=\operatorname{Im} \beta=V\), for every \(v \in B\), there exist \(u_{v}, w_{v} \in V\) such that
\[
\begin{equation*}
u_{v} \alpha=w_{v} \beta=v . \tag{1}
\end{equation*}
\]

Then for distinct \(v_{1}, v_{2} \in B, u_{v_{1}} \neq u_{v_{2}}\) and \(w_{v_{1}} \neq w_{v_{2}}\). This implies that
\[
\left|\left\{u_{v} \mid v \in B\right\}\right|=|B|=\left|\left\{w_{v} \mid v \in B\right\}\right| .
\]

Let \(B_{1}\) and \(B_{2}\) be respectively bases of Ker \(\alpha\) and Ker \(\beta\). Then \(B_{1}\) and \(B_{2}\) are countably infinite. By Proposition 1.12(vi), we have that \(B_{1} \cup\left\{u_{v} \mid v \in B\right\}\) and \(B_{2} \cup\left\{w_{v} \| \in B\right\}\) are both bases of \(V\). Next, det \(C\) be a subset of \(B_{2}\) such that \(|C|=\left|B_{2}\right|=\left|B_{2} \backslash C\right|\). Then there is a bijection \(\varphi: C \rightarrow B_{1}\). Note that \(C \cup\left(B_{2} \backslash C\right) \cup\left\{w_{v} \mid v \in B\right\}\) is a disjoint union and it is a basis of \(V\). Define \(\gamma \in L(V)\) by
\[
\begin{align*}
& \text { for every } v \in C, v \gamma=v \varphi \\
& \text { for every } v \in B_{2} \backslash C, v \gamma=0  \tag{2}\\
& \text { for every } v \in B, w_{v} \gamma=u_{v}
\end{align*}
\]

Since \(B_{1} \cup\left\{u_{v} \mid v \in B\right\}\) is a basis of \(V\),
\[
\operatorname{Im} \gamma=\left\langle C \varphi \cup\left\{u_{v} \mid v \in B\right\}\right\rangle=\left\langle B_{1} \cup\left\{u_{v} \mid v \in B\right\}\right\rangle=V
\]

Also, \(\operatorname{Ker} \gamma=\left\langle B_{2} \backslash C\right\rangle\) by Proposition 1.12(viii) and hence \(\operatorname{dim} \operatorname{Ker} \gamma=\left|B_{2} \backslash C\right|=\) \(\left|B_{2}\right|=\operatorname{dim} \operatorname{Ker} \beta\). Thus \(\gamma \in O B L(V)\). To show that \(\gamma \alpha=\beta\), let \(v \in B\). Then \(v \in C, v \in B_{2} \backslash C\) or \(v=w_{z}\) for some \(z \in B\).

Case 1: \(v \in C\). Since \(C \subseteq B_{2} \subseteq \operatorname{Ker} \beta, v \beta=0\). From (2), \(v \gamma=v \varphi \in B_{1} \subseteq \operatorname{Ker} \alpha\). This implies that \(v \gamma \alpha=0\). Hence \(v \gamma \alpha=v \beta\).

Case 2: \(v \in B_{2} \backslash C\). Since \(B_{2} \backslash C \subseteq B_{2} \subseteq \operatorname{Ker} \beta, v \beta=0\). \(\operatorname{By}(2), v \gamma=0\). Thus \(v \gamma \alpha=0=v \beta\).

Case 3: \(v=w_{z}\) for some \(z \in B\). Then by (1), \(u_{z} \alpha=z=w_{z} \beta\). From (2), \(v \gamma=w_{z} \gamma=u_{z}\) and thus \(v \gamma \alpha=u_{z} \alpha=z=w_{z} \beta=v \beta\).

Hence \(\gamma \alpha=\beta\).

This proves that \(O B L(V)\) is left simple, as required.

Theorem 3.20. The semigroup \(O B L(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V=\aleph_{0}\).
Proof. First, assume that \(\operatorname{dim} V \neq \aleph_{0}\). Then \(\operatorname{dim} V>\aleph_{0}\) since \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\) and let \(C \subset B\) be such that \(|B \backslash C|=|C|=|B|\). Let \(D_{1}\) and \(D_{2}\) be countably infinite subsets of \(C\) and \(B \backslash C\), respectively. Since \(C\) and \(B \backslash C\) are uncountable, we have
\[
\left|(B \backslash C) \backslash D_{2}\right|=|B \backslash C|=\left|B \backslash D_{1}\right|=|B| \text { and }\left|C \backslash D_{1}\right|=|C|=|B| .
\]

Then there are bijections \(\varphi_{1}: D_{2} \rightarrow D_{1}, \varphi_{2}:(B \backslash C) \backslash D_{2} \rightarrow B \backslash D_{1}, \varphi_{3}:\) \(C \backslash D_{1} \rightarrow C\) and \(\varphi_{4}:(B \backslash C) \backslash D_{2} \rightarrow B \backslash C\). By the choices of \(C, D_{1}\) and \(D_{2}\),
we have
\[
\begin{equation*}
B=\left((B \backslash C) \backslash D_{2}\right) \cup D_{2} \cup C=\left(C \backslash D_{1}\right) \cup\left((B \backslash C) \backslash D_{2}\right) \cup D_{1} \cup D_{2} \tag{1}
\end{equation*}
\]
which are disjoint unions .
We also have \(\varphi_{2}^{-1} \varphi_{4}: B \backslash D_{1} \rightarrow B \backslash C\) is a bijection. It then follows that
\[
\begin{equation*}
\left(B \backslash D_{1}\right) \varphi_{2}^{-1} \varphi_{4}=\left((B \backslash C) \backslash D_{2}\right) \cup D_{2} \tag{2}
\end{equation*}
\]
which is a disjoint union .
Next, define \(\alpha, \beta, \gamma \in L(V)\) by

and


We have that \(\alpha\) and \(\beta\) are well-defined by (1) and \(\gamma\) is well-defined by (2). From Proposition 1.12(viii) and the definitions of \(\alpha\) and \(\beta\), we get
\[
\begin{align*}
& \left.\operatorname{Im} \alpha=\left\langle\left((B \backslash C) \backslash D_{2}\right) \varphi_{2} \cup D_{2} \varphi_{1}\right\rangle=\left\langle\left(B \backslash D_{1}\right) \cup D_{1}\right)\right\rangle=\langle B\rangle=V \\
& \operatorname{dim} \operatorname{Ker} \alpha=\operatorname{dim}\langle C\rangle=|C| \tag{3}
\end{align*}
\]
\[
\begin{aligned}
& \operatorname{Im} \beta=\left\langle\left(C \backslash D_{1}\right) \varphi_{3} \cup\left((B \backslash C) \backslash D_{2}\right) \varphi_{4}\right\rangle=\langle C \cup(B \backslash C)\rangle=\langle B\rangle=V, \\
& \operatorname{dim} \operatorname{Ker} \beta=\operatorname{dim}\left\langle D_{1} \cup D_{2}\right\rangle=\left|D_{1} \cup D_{2}\right| .
\end{aligned}
\]

By (2), Proposition1.12(viii) and the definitions of \(\varphi_{1}, \varphi_{2}\) and \(\gamma\), we have
\[
\left.\operatorname{Im} \gamma=\left\langle D_{2} \varphi_{1} \cup\left((B \backslash C) \backslash D_{2}\right)\right) \varphi_{2}\right\rangle=\left\langle D_{1} \cup\left(B \backslash D_{1}\right)\right\rangle=\langle B\rangle=V
\]
\[
\begin{equation*}
\operatorname{dim} \operatorname{Ker} \gamma=\operatorname{dim}\left\langle D_{1}\right\rangle=\left|D_{1}\right| \tag{4}
\end{equation*}
\]

Consequently, \(\alpha, \beta, \gamma \in O B L(V)\). We claim that \(\beta \alpha=\alpha \gamma\). Let \(v \in B\). Then \(v\) belongs to one of the following subsets of \(B: D_{1}, D_{2}, C \backslash D_{1}\) and \((B \backslash C) \backslash D_{2}\).

Case 1: \(v \in D_{1}\). Then \(v \beta \alpha=0 \alpha=0\). Since \(D_{1} \subseteq C, v \alpha \gamma=0 \gamma=0\).
Case 2: \(v \in D_{2}\). Then \(v \beta \alpha=0 \alpha=0\). Since \(v \alpha=v \varphi_{1} \in D_{1}, v \alpha \gamma=0\).
Case 3: \(v \in C \backslash D_{1}\). Then \(v \alpha \gamma=0 \gamma=0\). But \(v \beta=v \varphi_{3} \in C\), so \(v \beta \alpha=0\).
Case 4: \(v \in(B \backslash C) \backslash D_{2}\). Then \(v \beta=v \varphi_{4} \in B \backslash C\), so
\[
v \beta \alpha=\left\{\begin{array}{l}
v \varphi_{4} \varphi_{1} \text { if } v \varphi_{4} \in D_{2}, \\
v \varphi_{4} \varphi_{2} \text { if } v \varphi_{4} \in(B \backslash C) \backslash D_{2} .
\end{array}\right.
\]

Since \(v \alpha=v \varphi_{2} \in B \backslash D_{1}\), we have
\[
\overline{v \alpha \gamma}= \begin{cases}v \alpha \varphi_{2}^{-1} \varphi_{4} \varphi_{1} & \text { if } v \alpha \varphi_{2}^{-1} \varphi_{4} \in D_{2} \\ v \alpha \varphi_{2}^{-1} \varphi_{4} \varphi_{2} & \text { if } v \alpha \varphi_{2}^{-1} \varphi_{4} \in(B \backslash C) \backslash D_{2}\end{cases}
\]

\[
\text { وq刁 } \begin{aligned}
& v \alpha \varphi_{2}^{-1} \varphi_{4} \varphi_{1}=v \varphi_{4} \varphi_{1} \text { if } v \varphi_{4} \in D_{2}, \\
& \left.\alpha_{2}^{-1} \varphi_{4} \varphi_{2} \neq v \varphi_{4} \varphi_{2} \text { if } v \varphi_{4} \in(B \backslash C) \backslash D_{2} .6\right)
\end{aligned}
\]

We then conclude that
\[
v \alpha \gamma= \begin{cases}v \varphi_{4} \varphi_{1} & \text { if } v \varphi_{4} \in D_{2}, \\ v \varphi_{4} \varphi_{2} & \text { if } v \varphi_{4} \in(B \backslash C) \backslash D_{2} .\end{cases}
\]

This proves that \(v \beta \alpha=v \alpha \gamma\) for every \(v \in B\). Hence \(\beta \alpha=\alpha \gamma \in O B L(V) \alpha \cap\) \(\alpha O B L(V)\). By Proposition 1.4, \(\alpha \gamma \in(\alpha)_{q}\). Suppose that \(\alpha \gamma \in(\alpha)_{b}\). By Proposition 1.4, \(\alpha \gamma=\alpha, \alpha \gamma=\alpha^{2}\) or \(\alpha \gamma=\alpha \lambda \alpha\) for some \(\lambda \in O B L(V)\). By Proposition
1.9(i), \(\gamma=1_{V}, \gamma=\alpha\) or \(\gamma=\lambda \alpha\). By the definition of \(\gamma\), we have that \(\gamma \neq 1_{V}\). Since \(D_{1}\) is countable and \(C\) is uncountable, from (3) and (4), \(\gamma \neq \alpha\). Then \(\gamma=\lambda \alpha\). Since \(\operatorname{Im} \lambda=V\), for each \(v \in C\), there exists an element \(u_{v} \in V\) such that \(u_{v} \lambda=v\). Then \(\left|\left\{u_{v} \mid v \in C\right\}\right|=|C|\), so \(\left\{u_{v} \mid v \in C\right\}\) is uncountable. Since \(C\) is a linearly independent subset of \(V\) over \(R\), by Proposition 1.12(v), \(\left\{u_{v} \mid v \in C\right\}\) is linearly independent over \(R\). But since \(\operatorname{Ker} \alpha=\langle C\rangle\), so for every \(v \in C, u_{v} \lambda \alpha=v \alpha=0\). It then follows that \(\left\{u_{v} \mid v \in C\right\} \subseteq \operatorname{Ker} \lambda \alpha\). Hence \(\operatorname{dim} \operatorname{Ker} \lambda \alpha\) is uncountable. Then by (4), that \(\gamma=\lambda \alpha\) is impossible. Therefore \(\alpha \gamma \notin(\alpha)_{b}\). Thus \((\alpha)_{b} \neq(\alpha)_{q}\). By Proposition 1.8, we have that \(O B L(V)\) is not in \(\boldsymbol{B} \boldsymbol{Q}\). This proves that if \(O B L(V)\) belongs to \(\boldsymbol{B} \boldsymbol{Q}\), then \(\operatorname{dim} V=\aleph_{0}\).

The converse of the theorem follows directly from Lemma 3.19 and Proposition

\section*{1.6.}

Corollary 3.21. \(\operatorname{dim} V=\aleph_{0}\) if and only if \(O B L(V)\) is a left simple semigroup.

Proof. Assume that \(O B L(V)\) is left simple. Then \(O B L(V) \in \boldsymbol{B} \boldsymbol{Q}\) by Proposition
1.6. Therefore we have by Theorem 3.20 that \(\operatorname{dim} V=\aleph_{0}\).

The converse is Lemma 3.19. 9 ?
Next, assume that \(V\) is a vector space over a division ring \(R\) of any dimension. Recall from Chapter I, page 14, that if \(\operatorname{dim} V<\infty\), then \(A M(V)=A E(V)=\) \(L(V)\). Since \(L(V)\) is a regular semigroup, it follows from Proposition 1.5 that
(1) if \(\operatorname{dim} V<\infty\), then \(A M(V) \in \boldsymbol{B} \boldsymbol{Q}\) and
(2) if \(\operatorname{dim} V<\infty\), then \(A E(V) \in \boldsymbol{B} \boldsymbol{Q}\).

The next two theorems show that the converses of (1) and (2) are also true.

Theorem 3.22. The semigroup \(A M(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V<\infty\).

Proof. If \(\operatorname{dim} V<\infty\), then \(A M(V) \in \boldsymbol{B} \boldsymbol{Q}\), as was mentioned above.
For the converse, assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\) and \(A=\left\{u_{n} \mid n \in \mathbb{N}\right\} \subseteq B\) where \(u_{i} \neq u_{j}\) if \(i \neq j\). Define \(\alpha, \beta, \gamma \in L(V)\) by
\[
\begin{aligned}
& v \alpha=\left\{\begin{array}{ll}
u_{2 n} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B \backslash A, \\
v \beta= \begin{cases}u_{n+1} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B \backslash A,\end{cases}
\end{array}, \begin{array}{l}
\text { in }
\end{array}\right.
\end{aligned}
\]
and
\[
v \gamma=\left\{\begin{array}{ll}
u_{n+2} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B
\end{array},\right.
\]

Then \(\alpha, \beta, \gamma \in M(V)\) by Proposition \(1.12(\) vii \()\), so \(\alpha, \beta, \gamma \in A M(V)\). Since
for every \(n \in \mathbb{N}, u_{n} \beta \alpha=u_{2 n+2}=u_{n} \alpha \gamma\) and
for every \(v \in B \backslash A, v \beta \alpha=v=v \alpha \gamma\),
we deduce that \(\alpha \neq \beta \alpha \cong \alpha \gamma\). Thus \(\beta \alpha \in A M(V) \alpha \cap \alpha A M(V)=(\alpha)_{q}\) by Proposition 1.4. Suppose that \(\beta \alpha \in(\alpha)_{b}\). By Proposition 1.4, \(\beta \alpha=\alpha \lambda \alpha\) for some \(\lambda \in A M(V)\), Since \(\alpha\) is one-to-one, we conclude that \(\beta=\alpha \lambda\). This implies by the definitions of \(\alpha\) and \(\beta\) that
\[
B \backslash\left\{u_{1}\right\}=B \beta=B \alpha \lambda=(B \alpha) \lambda=\left(B \backslash\left\{u_{1}, u_{3}, u_{5}, \ldots\right\}\right) \lambda
\]

For convenience, for each \(n \in \mathbb{N}\), let \(w_{n}=u_{2 n-1}\). Thus
\[
\begin{equation*}
\left\langle B \backslash\left\{w_{n} \mid n \in \mathbb{N}\right\}\right\rangle \lambda=\left\langle\left(B \backslash\left\{w_{n} \mid n \in \mathbb{N}\right\}\right) \lambda\right\rangle=\left\langle B \backslash\left\{u_{1}\right\}\right\rangle . \tag{1}
\end{equation*}
\]

But \(V=\left\langle B \backslash\left\{u_{1}\right\}\right\rangle+\left\langle u_{1}\right\rangle\), so by (1), we have
\[
\begin{equation*}
V=\left\langle B \backslash\left\{w_{n} \mid n \in \mathbb{N}\right\}\right\rangle \lambda+R u_{1} \tag{2}
\end{equation*}
\]

We then have by (2) that for each \(n \in \mathbb{N}\), there exist \(v_{n} \in\left\langle B \backslash\left\{w_{n} \mid n \in \mathbb{N}\right\}\right\rangle\) and \(a_{n} \in R\) such that \(w_{n} \lambda=v_{n} \lambda+a_{n} u_{1}\). Therefore
\[
\begin{equation*}
\text { for every } n \in \mathbb{N},\left(w_{n}-v_{n}\right) \lambda \in\left\langle u_{1}\right\rangle \text {. } \tag{3}
\end{equation*}
\]

It follows from Lemma 3.2 that the set \(\left\{w_{n}-v_{n} \mid n \in \mathbb{N}\right\}\) is linearly independent over \(R\) and \(w_{i}-v_{i} \neq w_{j}-v_{j}\) if \(i \neq j\). Set \(W=\left\langle\left\{w_{n}-v_{n} \mid n \in \mathbb{N}\right\}\right\rangle\). Then \(\operatorname{dim} W\) is infinite. From \((3),\left.\lambda\right|_{W}: W \rightarrow\left\langle u_{1}\right\rangle\) and hence \(\operatorname{dim} \operatorname{Im}\left(\left.\lambda\right|_{W}\right) \leq 1\). By Proposition 1.12(i),
\[
\operatorname{dim} W=\operatorname{dim} \operatorname{Ker}\left(\left.\lambda\right|_{W}\right)+\operatorname{dim} \operatorname{Im}\left(\left.\lambda\right|_{W}\right)
\]

We thus conclude that \(\operatorname{dim} \operatorname{Ker}\left(\left.\lambda\right|_{W}\right)\) is infinite. But \(\operatorname{Ker} \lambda \supseteq \operatorname{Ker}\left(\left.\lambda\right|_{W}\right)\), so \(\operatorname{dim} \operatorname{Ker} \lambda\) is infinite. It is a contradiction since \(\lambda \in A M(V)\). This proves that \((\alpha)_{q} \neq(\alpha)_{b}\). Therefore \(A M(V) \notin B Q\) by Proposition 1.8.

Hence the proof of the theorem is complete.


Theorem 3.23. The semigroup \(A E(V)\) is in \(\boldsymbol{B Q}\) if and only if \(\operatorname{dim} V<\infty\).
Proof. If \(\operatorname{dim} V<\infty\), then \(\boldsymbol{A E}(V) \in \boldsymbol{B} \boldsymbol{Q}\), as mentioned previously.
On the other hand, assume that \(\operatorname{dim} V\) is infinite. Let \(\widetilde{B}\) be a basis of \(V\) and \(A=\left\{u_{n} \mid n \in \mathbb{N}\right\} \subseteq B\) where \(u_{i} \neq \widetilde{u_{j}}\) if \(i \neq j\). Define \(\alpha, \beta, \gamma \in L(V)\) by
\(v \alpha= \begin{cases}0 & \text { if } v=u_{n} \text { for some odd } n \in \mathbb{N}, \\ u_{\frac{n}{2}} & \text { if } v=u_{n} \text { for some even } n \in \mathbb{N}, \\ v & \text { if } v \in B \backslash A,\end{cases}\)
\(v \beta= \begin{cases}0 & \text { if } v=u_{1} \text { or } u_{2}, \\ u_{n-2} & \text { if } v=u_{n} \text { for some } n>2, \\ v & \text { if } v \in B \backslash A\end{cases}\)
and
\[
v \gamma= \begin{cases}0 & \text { if } v=u_{1} \\ u_{n-1} & \text { if } v=u_{n} \text { for some } n>1, \\ v & \text { if } v \in B \backslash A\end{cases}
\]

Then \(\operatorname{Im} \alpha=\operatorname{Im} \beta=\operatorname{Im} \gamma=\langle B \cup\{0\}\rangle=B\). Thus \(\alpha, \beta, \gamma \in E(V) \subseteq A E(V)\) and
\[
\begin{array}{ll}
u_{n} \beta \alpha=0=u_{n} \alpha \gamma & \text { if } n=2 \text { or } n \text { is odd, } \\
u_{n} \beta \alpha=u_{\frac{n-2}{2}}=u_{n} \alpha \gamma & \text { if } n>2 \text { and } n \text { is even } \quad \text { and } \\
v \beta \alpha=v=v \alpha \gamma & \text { for all } v \in B \backslash A .
\end{array}
\]

Thus \(\alpha \neq \beta \alpha=\alpha \gamma\). Consequently, \(\alpha \gamma \in A E(V) \alpha \cap \alpha A E(V)=(\alpha)_{q}\) by Proposition 1.4. Suppose that \(\alpha \gamma \in(\alpha)_{b}\). By Proposition 1.4, \(\alpha \gamma=\alpha \lambda \alpha\) for some \(\lambda \in A E(V)\). Since \(\alpha \in E(V)\), by Proposition 1.9(i), \(\gamma=\lambda \alpha\). Then \(u_{1} \lambda \alpha=u_{1} \gamma=0\), so \(u_{1} \lambda \in \operatorname{Ker} \alpha\). By the definition of \(\alpha\) and Proposition 1.12(viii),
\[
\operatorname{Ker} \alpha=\left\langle\left\{u_{n} \mid n \in \mathbb{N} \text { and } n \text { is odd }\right\}\right\rangle \text {. }
\]

For convenience, let \(\bar{w}_{n}=u_{2 n-1}\) for every \(n \in \mathbb{N}\). Thus
\(\operatorname{Ker} \alpha=\left\langle\left\{w_{n} \mid n \in \mathbb{N}\right\}\right\rangle\).
Since \(u_{1} \lambda \in \operatorname{Ker} \alpha\), there are \(k \in \mathbb{N}\) and \(a_{1}, a_{2}, \ldots, a_{k} \in R\) such that

We claim that \(\left\{w_{k+n}+\operatorname{Im} \lambda \mid n \in \mathbb{N}\right\}\) is a linearly independent infinite subset of \(V / \operatorname{Im} \lambda\). To prove this, let \(l \in \mathbb{N}\) and \(b_{1}, b_{2}, \ldots, b_{l} \in R\) be such that
\[
\sum_{n=1}^{l} b_{n}\left(w_{k+n}+\operatorname{Im} \lambda\right)=\operatorname{Im} \lambda
\]

It then follows that \(\sum_{n=1}^{l} b_{n} w_{k+n} \in \operatorname{Im} \lambda\), so there exists \(z \in V\) such that
\[
\begin{equation*}
z \lambda=\sum_{n=1}^{l} b_{n} w_{k+n} \tag{3}
\end{equation*}
\]

Since \(V=\langle B\rangle=\langle A\rangle+\langle B \backslash A\rangle\), there are \(m \in \mathbb{N}, c_{1}, c_{2}, \ldots, c_{m} \in R\) and \(u^{\prime} \in\langle B \backslash A\rangle\) such that
\[
\begin{equation*}
z=\sum_{n=1}^{m} c_{n} u_{n}+u^{\prime} \tag{4}
\end{equation*}
\]

We may choose \(m>1\). From (3) and (4), we have
\[
\begin{equation*}
\sum_{n=1}^{l} b_{n} w_{k+n}=\sum_{n=1}^{m} c_{n}\left(u_{n} \lambda\right)+u^{\prime} \lambda \tag{5}
\end{equation*}
\]

By (1) and (5), we get
\[
0=\left(\sum_{n=1}^{l} b_{n} w_{k+n}\right) \alpha=\sum_{n=1}^{m} c_{n}\left(u_{n} \lambda \alpha\right)+u^{\prime} \lambda \alpha .
\]

Since \(\lambda \alpha=\gamma\) and \(u_{1} \gamma=0\), we have
\[
\begin{equation*}
\sum_{n=2}^{m} c_{n}\left(u_{n} \gamma\right)=-u^{\prime} \gamma \tag{6}
\end{equation*}
\]

From the definition of \(\gamma\), we have
\[
\begin{equation*}
\sum_{n=2}^{m} c_{n}\left(u_{n} \gamma\right)=\sum_{n=2}^{m} c_{n} u_{n-1} \in\langle A\rangle \quad \text { and } \quad u^{\prime} \gamma=u^{\prime} \in\langle B \backslash A\rangle . \tag{7}
\end{equation*}
\]

But \(\langle A\rangle \cap\langle B \backslash A\rangle=\{0\}\), so (6) and (7) yield \(u^{\prime}=0\) and \(c_{2}=c_{3}=\ldots=c_{m}=0\).
It then follows from (5) that

From this equality and (2), we obtain the following equality. 6
\[
\sum_{n=1}^{l} b_{n} w_{k+n}=c_{1} \sum_{n=1}^{k} a_{n} w_{n}
\]

This implies that \(c_{1} a_{1} w_{1}+c_{1} a_{2} w_{2}+\ldots+c_{1} a_{k} w_{k}-b_{1} w_{k+1}-b_{2} w_{k+2}-\ldots-b_{l} w_{k+l}=0\).
But since \(w_{1}, w_{2}, \ldots, w_{k}, \ldots, w_{k+l}\) are linearly independent over \(R\), so \(b_{n}=0\) for all \(n \in\{1,2, \ldots, l\}\). Hence we have the claim. This contradicts that \(\operatorname{dim}(V / \operatorname{Im} \lambda)\) is finite. This proves that \((\alpha)_{q} \neq(\alpha)_{b}\). By Proposition 1.8, \(A E(V) \notin \boldsymbol{B} \boldsymbol{Q}\).

Hence the theorem is completely proved.

Finally, we show that the finiteness of \(\operatorname{dim} V\) is also necessary and sufficient for each of the linear transformation semigroups \(\operatorname{MAE}(V)\) and \(E A M(V)\) to belong to \(\boldsymbol{B Q}\).

Theorem 3.24. The semigroup \(\operatorname{MAE}(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if \(\operatorname{dim} V<\infty\).

Proof. Assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\) and \(A=\left\{u_{n} \mid n \in\right.\) \(\mathbb{N}\} \subseteq B\) where \(u_{i} \neq u_{j}\) if \(i \neq j\). Define \(\alpha, \beta, \gamma \in L(V)\) by
\[
\begin{aligned}
& v \alpha= \begin{cases}u_{n+2} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N}, \\
v & \text { if } v \in B \backslash A,\end{cases} \\
& v \beta= \begin{cases}u_{n+1} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1\}, \\
v & \text { if } v \in(B \backslash A) \cup\left\{u_{1}\right\}\end{cases}
\end{aligned}
\]
and
\[
v \gamma= \begin{cases}u_{n+1} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1,2,3\}, \\ v & \text { if } v \in(B \backslash A) \cup\left\{u_{1}, \bar{u}_{2}, u_{3}\right\} .\end{cases}
\]

Then \(\alpha, \beta\) and \(\gamma\) are one-to-one by Proposition \(1.12(\) vii \(), \operatorname{Im} \alpha=\left\langle B \backslash\left\{u_{1}, u_{2}\right\}\right\rangle\), \(\operatorname{Im} \beta=\left\langle B \backslash\left\{u_{2}\right\}\right\rangle\) and \(\operatorname{Im} \gamma=\left\langle B \backslash\left\{u_{4}\right\}\right\rangle\). Thus from Proposition 1.12(iv), \(\operatorname{dim}(V / \operatorname{Im} \alpha)=2, \operatorname{dim}(V / \operatorname{Im} \beta)={ }^{\sigma}\) 1 and \(\operatorname{dim}(V / \operatorname{Im} \gamma)=1\). Hence \(\alpha, \beta, \gamma \in\) \(\operatorname{MAE}(V)\). By the definitions of \(\alpha, \beta\) and \(\gamma\), we have that
\[
\begin{aligned}
& u_{1} \beta \alpha=u_{1} \alpha=u_{3}=u_{3} \gamma=u_{1} \alpha \gamma \\
& u_{n} \beta \alpha=u_{n+1} \alpha=u_{n+3}=u_{n+2} \gamma=u_{n} \alpha \gamma \quad \text { for any } n>1, \\
& v \beta \alpha=v=v \alpha \gamma \quad \text { for any } v \in B \backslash A .
\end{aligned}
\]

It then follows that \(\beta \alpha=\alpha \gamma\), so \(\beta \alpha \in M A E(V) \alpha \cap \alpha M A E(V)\). By Proposition 1.4, \(\beta \alpha \in(\alpha)_{q}\). Suppose that \(\beta \alpha \in(\alpha)_{b}\). Since \(u_{2} \beta \alpha=u_{5} \neq u_{4}=u_{2} \alpha, \beta \alpha \neq \alpha\).

Then by Proposition 1.4, \(\beta \alpha=\alpha \lambda \alpha\) for some \(\lambda \in M A E(V)\). By Proposition 1.9(i), we have \(\beta=\alpha \lambda\). Then
\[
\begin{equation*}
B \backslash\left\{u_{2}\right\}=B \beta=B \alpha \lambda=\left(B \backslash\left\{u_{1}, u_{2}\right\}\right) \lambda \tag{1}
\end{equation*}
\]

Since \(\lambda\) is one-to-one, \(\lambda: V \rightarrow V \lambda\) is an isomorphism. Consequently, \(V / W \cong\) \(V \lambda / W \lambda\) for every subspace \(W\) of \(V\) (see the proof of Lemma 3.1). Hence
\[
\begin{aligned}
2 & =\operatorname{dim}\left(V /\left\langle B \backslash\left\{u_{1}, u_{2}\right\}\right\rangle\right) \quad \text { from Proposition 1.12(iv) } \\
& =\operatorname{dim}\left(V \lambda /\left\langle B \backslash\left\{u_{1}, u_{2}\right\}\right\rangle \lambda\right) \\
& \leq \operatorname{dim}\left(V /\left\langle B \backslash\left\{u_{1}, u_{2}\right\}\right\rangle \lambda\right) \\
& =\operatorname{dim}\left(V /\left\langle\left(B \backslash\left\{u_{1}, u_{2}\right\}\right) \lambda\right\rangle\right) \\
& =\operatorname{dim}\left(V /\left\langle B \backslash\left\{u_{2}\right\}\right\rangle\right)=1 \quad \text { from (1) and Proposition 1.12(iv) }
\end{aligned}
\]
which is a contradiction. Thus \(\beta \alpha \notin(\alpha)_{b}\), so \((\alpha)_{q} \neq(\alpha)_{b}\). By Proposition 1.8, \(M A E(V)\) does not belong to \(\boldsymbol{B} \boldsymbol{Q}\). This proves that if \(M A E(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\), then \(\operatorname{dim} V<\infty\).

As was mentioned in Chapter I, page \(15, \operatorname{MAE}(V)=G(V)\) if \(\operatorname{dim} V<\infty\), so \(M A E(V) \in \boldsymbol{B} \boldsymbol{Q}\) if \(\operatorname{dim} V \leqslant \infty\).


Theorem 3.25. The semigroup \(E A M(V)\) is in \(\boldsymbol{B} \boldsymbol{Q}\) if and only if dim \(V<\infty\).
Proof. Assume that \(\operatorname{dim} V\) is infinite. Let \(B\) be a basis of \(V\) and \(A=\left\{u_{n} \mid n \in\right.\)
\(\mathbb{N}\} \subseteq B\) where \(u_{i} \neq u_{j}\) for all distinct \(i \neq j\). Define \(\alpha, \beta, \gamma \in L(V)\) by
\[
v \alpha= \begin{cases}0 & \text { if } v \in\left\{u_{1}, u_{2}\right\} \\ u_{n-2} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1,2\}, \\ v & \text { if } v \in B \backslash A,\end{cases}
\]
\[
v \beta= \begin{cases}0 & \text { if } v=u_{1} \\ u_{n-1} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1\}, \\ v & \text { if } v \in B \backslash A\end{cases}
\]
and
\[
v \gamma= \begin{cases}0 & \text { if } v=u_{1} \\ u_{n-1} & \text { if } v=u_{n} \text { for some } n \in \mathbb{N} \backslash\{1\} \\ v & \frac{\text { if } v \in B \backslash A .}{}\end{cases}
\]

Then \(\operatorname{Im} \alpha=\operatorname{Im} \beta=\operatorname{Im} \gamma=\langle B \cup\{0\}\rangle=V\) and by Proposition 1.12(viii), \(\operatorname{Ker} \alpha=\left\langle u_{1}, u_{2}\right\rangle, \operatorname{Ker} \beta=\left\langle u_{1}\right\rangle\) and \(\operatorname{Ker} \gamma=\left\langle u_{1}\right\rangle\), so we have that \(\alpha, \beta, \gamma \in\) \(\operatorname{EAM}(V)\). From the definitions of \(\alpha, \beta\) and \(\gamma\), we have the following equalities.


It then follows that \(\beta \alpha=\alpha \gamma \in E A M(V) \alpha \cap \alpha E A M(V)\). By Proposition 1.4, \(\alpha \gamma \in(\alpha)_{q}\). Suppose that \(\alpha \gamma \in(\alpha)_{b}\). Since \(u_{3} \alpha \gamma=0 \neq u_{1}=u_{3} \alpha\). By Proposition 1.4, \(\alpha \gamma=\alpha \lambda \alpha\) for some \(\lambda \in E A M(V)\). By Proposition 1.9(i), \(\gamma=\lambda \alpha\). From the definition of \(\gamma\),
\[
\begin{equation*}
\operatorname{dim} \operatorname{Ker}(\lambda \alpha)=\operatorname{dim} \operatorname{Ker} \gamma=1 \tag{1}
\end{equation*}
\]

Since \(\operatorname{Im} \lambda=V\), there are \(u_{1}^{\prime}, u_{2}^{\prime} \in V\) such that \(u_{1}^{\prime} \lambda=u_{1}\) and \(u_{2}^{\prime} \lambda=u_{2}\). Since \(u_{1}\) and \(u_{2}\) are linearly independent, we have from Proposition 1.12(v) that
\[
\begin{equation*}
u_{1}^{\prime} \text { and } u_{2}^{\prime} \text { are linearly independent. } \tag{2}
\end{equation*}
\]

We also have
\[
\begin{equation*}
\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \gamma=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\} \lambda \alpha=\left\{u_{1}, u_{2}\right\} \alpha=\{0\} . \tag{3}
\end{equation*}
\]

Therefore (1), (2) and (3) yield a contradiction. Consequently, \(\alpha \gamma \notin(\alpha)_{b}\). By Proposition 1.8, \(E A M(V) \notin \boldsymbol{B} \boldsymbol{Q}\). This proves that if \(E A M(V) \in \boldsymbol{B} \boldsymbol{Q}\), then \(\operatorname{dim} V<\infty\).

As was mentioned in Chapter I, page 15, \(E A M(V)=G(V)\) if \(\operatorname{dim} V\) is finite, hence the converse holds.

Finally, we shall show that \(A M E(V)\) is also regular which implies that it is a \(B Q\)-semigroup.


Proposition 3.26. The semigroup \(A M E(V)\) is a regular semigroup.


ص
Proof. Let \(\alpha \in A M E(V)\). Then dim Ker \(\alpha\) and dim \((V / \operatorname{Im} \alpha)\) are finite. Let \(B_{1}\) and \(B_{2}\) be bases of \(\operatorname{Ker} \alpha\) and and \(\operatorname{Im} \alpha\), respectively. Let \(B\) be a basis of \(V\) containing \(B_{2}\). For each \(v \in \widetilde{B_{2}}\), let \(u_{v} \in V\) be such that \(u_{v} \alpha=v\) It then follows from Proposition 1.12(vi) that \(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\) is a basis of \(V\). By Proposition 1.12(iv),
\[
\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}\left(V /\left\langle B_{2}\right\rangle\right)=\left|B \backslash B_{2}\right|
\]
so \(\left|B \backslash B_{2}\right|<\infty\). Define \(\beta \in L(V)\) by
\[
v \beta= \begin{cases}u_{v} & \text { if } v \in B_{2} \\ 0 & \text { if } v \in B \backslash B_{2}\end{cases}
\]

Then \(\operatorname{Ker} \beta=\left\langle B \backslash B_{2}\right\rangle\) by Proposition 1.12 (viii) and \(\operatorname{Im} \beta=\left\langle\left\{u_{v} \mid v \in B_{1}\right\}\right\rangle\). Thus \(\operatorname{dim} \operatorname{Ker} \beta=\left|B \backslash B_{2}\right|<\infty\) and we also have by Proposition 1.12(iv) that
\[
\begin{aligned}
\operatorname{dim}(V / \operatorname{Im} \beta) & =\operatorname{dim}\left(\left\langle B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\right\rangle /\left\langle\left\{u_{v} \mid v \in B_{2}\right\}\right\rangle\right) \\
& =\left|B_{1}\right|=\operatorname{dim} \operatorname{Ker} \alpha<\infty
\end{aligned}
\]

Hence \(\beta \in A M E(V)\). Since \(B_{1} \cup\left\{u_{v} \mid v \in B_{2}\right\}\) is a basis of \(V\),
\[
\begin{aligned}
& v \alpha \beta \alpha=0=v \alpha \quad \text { for all } v \in B_{1} \quad \text { and } \\
& u_{v} \alpha \beta \alpha=v \beta \alpha=u_{v} \alpha \quad \text { for all } v \in B_{2}
\end{aligned}
\]
we have \(\alpha \beta \alpha=\alpha\). This proves that \(A M E(V)\) is regular, as required.

Therefore by Proposition 3.26 and Proposition 1.5, we have

Theorem 3.27. The semigroup \(A M E(V)\) always belongs to \(\boldsymbol{B} \boldsymbol{Q}\).

Observe that \(0 \in A M E(V)\) if and only if \(\operatorname{dim} V<\infty\). Because \(A M E(V)\) is always a \(\boldsymbol{B} \boldsymbol{Q}\)-semigroup, it is natural to ask whether \(A M E(V)\) is left 0 -simple and/or right 0-simple if \(\operatorname{dim} V<\infty\) and whether it is left simple and/or right simple if \(\operatorname{dim} V\) is infinite (see Proposition 1.6). The following proposition is the answer.

(i) If \(\operatorname{dim} V<\infty\), then \(A M E(V)\) is left \([\) right \(] 0\)-simple if and only if \(\operatorname{dim} V=1\).
(ii) If \(\operatorname{dim} V\) is infinite, then \(A M E(V)\) is neither left simple nor right simple.

Proof. Since \(A M E(V)=L(V)\) if \(\operatorname{dim} V<\infty\), we have that
\[
A M E(V) \begin{cases}=\{0\} & \text { if } \operatorname{dim} V=0 \\ \cong R & \text { if } \operatorname{dim} V=1\end{cases}
\]

Since \(R\) is a division ring, it follows that if \(\operatorname{dim} V=1\), then \(A M E(V)\) is both left 0 -simple and right 0 -simple. Next, we assume that \(\operatorname{dim} V>1\) and let
\[
\begin{aligned}
& C=\{\alpha \in A M E(V) \mid \operatorname{dim} \operatorname{Ker} \alpha>1\} \\
& D=\{\alpha \in A M E(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha)>1\}
\end{aligned}
\]

Let \(B\) be a basis of \(V\) and \(u, w \in B\) such that \(u \neq w\). Define \(\beta, \gamma \in L(V)\) by
\[
v \beta= \begin{cases}v & \text { if } v \in B \backslash\{u, w\}, \\ 0 & \text { if } v=u \text { or } v=w\end{cases}
\]
and
\[
v \gamma= \begin{cases}v & \text { if } v \in B \backslash\{u\} \\ 0 & \text { if } v=u\end{cases}
\]

Then by Proposition \(1.12(\) viii \(), \overline{\operatorname{Ker} \beta=\langle u, w\rangle \text { and } \operatorname{Ker} \gamma=\langle u\rangle \text {. Moreover, } \operatorname{Im} \beta=}\) \(\langle B \backslash\{u, w\}\rangle\) and \(\operatorname{Im} \gamma=\langle B\rangle\{u\}\rangle\). Therefore we have that \(\operatorname{dim} \operatorname{Ker} \beta=2\), \(\operatorname{dim}(V / \operatorname{Im} \beta)=2, \operatorname{dim} \operatorname{Ker} \gamma=1\) and \(\operatorname{dim}(V / \operatorname{Im} \gamma)=1\). It thus follows that \(\beta \in C, \beta \in D, \gamma \in A M E(V) \backslash C\) and \(\gamma \in A M E(V) \backslash D\). This shows that \(C\) and \(D\) are nonempty proper subsets of \(A M E(V)\). Since \(\operatorname{Ker} \alpha \beta \supseteq \operatorname{Ker} \alpha\) and \(\operatorname{Im} \beta \alpha \subseteq \operatorname{Im} \alpha\) for all \(\alpha, \beta \in A M E(V)\), we deduce that \(G\) is a proper right ideal and \(D\) is a proper left ideal of \(A M E(V)\). This proves that (i) and (ii) hold.

\section*{จฬาลงกรณมหาวทยาลย}

Remark 3.29. The known result in Proposition 1.10 about \(M_{X}\) and \(E_{X}\) motivates us to study \(M(V)\) and \(E(V)\). Also, our study on \(B L(V)\) in Theorem 3.17 is motivated by the known result in Proposition 1.11. After that, many other linear transformation semigroups are considered. As can be seen in this chapter, many linear transformation semigroups are characterized when to be \(B Q\)-semigroups. Our technique of proofs use some knowledge of cardinalities of sets and linear algebra. Especially, suitable constructions of linear transformations to achieve our
goals are really important. It is quite clearly seen that if we define the transformation semigroups on a sets which were not defined in [9] in the similar way as in this chapter, the expected results will be obtained by replacing \(\operatorname{dim} V\) with \(|X|\). Moreover, the proofs will be about the same or easier.


\section*{CHAPTER IV ORDER-PRESERVING TRANSFORMATION \\ SEMIGROUPS}

In this chapter, we are concerned with any order-preserving transformation semigroups \(T_{O P}(I)\) on a nonempty interval \(I\) of real numbers under usual ordering. The aim is to characterize when \(T_{O P}(I)\) is in \(\boldsymbol{B Q}\) in terms of \(I\). Proposition 1.8, Proposition 1.13 and suitable constructions of mappings are important tools.

It is obvious that there are 9 types of nonempty intervals of \(\mathbb{R}\) as follows where \(a, b \in \mathbb{R}\).
(1) \(\mathbb{R}\),
(2) \((a, \infty)\),
(3) \([a, \infty)\),
(4) \((-\infty, a)\),
(5) \((-\infty, a]\),
(6) \((a, b) \quad\) where \(a<b\)
(7) \((a, b]\) where \(a<b\),

To provide the main result, a series of following lemmas are required.

Lemma 4.1. \(T_{O P}(\mathbb{R})\) is not in \(\boldsymbol{B Q}\).

Proof. Define \(\alpha, \beta, \gamma: \mathbb{R} \rightarrow \mathbb{R}\) by
\[
x \alpha=2^{x}, \quad x \beta=3 x \quad \text { and } \quad x \gamma=x^{3} \text { for all } x \in \mathbb{R}
\]

Then all of \(\alpha, \beta\) and \(\gamma\) are one-to-one and increasing on \(\mathbb{R}\), so \(\alpha, \beta, \gamma \in T_{O P}(\mathbb{R})\).

Moreover, \(\operatorname{Im} \alpha=(0, \infty)\) and \(\operatorname{Im} \beta=\operatorname{Im} \gamma=\mathbb{R}\). Since for every \(x \in \mathbb{R}\),
\[
\begin{aligned}
& x \beta \alpha=(x \beta) \alpha=(3 x) \alpha=2^{3 x}, \\
& x \alpha \gamma=(x \alpha) \gamma=\left(2^{x}\right) \gamma=\left(2^{x}\right)^{3}=2^{3 x}
\end{aligned}
\]
it follows that \(\alpha \neq \beta \alpha=\alpha \gamma \in T_{O P}(\mathbb{R}) \alpha \cap \alpha T_{O P}(\mathbb{R})\). By Proposition 1.4, \(\beta \alpha \in\) \((\alpha)_{q}\). To show that \(\beta \alpha \notin(\alpha)_{b}\), suppose that \(\beta \alpha \in(\alpha)_{b}\). From Proposition 1.4, \(\beta \alpha=\alpha \lambda \alpha\) for some \(\lambda \in T_{O P}(\mathbb{R})\). Since \(\alpha\) is one-to-one, \(\beta=\alpha \lambda\) (Proposition 1.9(i)). It then follows that
\[
\begin{equation*}
\left.\lambda\right|_{\operatorname{Im} \alpha}=\left.\lambda\right|_{(0, \infty)}=\alpha^{-1} \beta \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathbb{R}=\mathbb{R} \beta=\mathbb{R} \alpha \lambda=(\mathbb{R} \alpha) \lambda=(0, \infty) \lambda \tag{2}
\end{equation*}
\]

From (1), we have that \(\left.\lambda\right|_{(0, \infty)}\) is one-to-one. Because \(0 \lambda \in \mathbb{R}\), by (2), there exists \(d \in(0, \infty)\) such that \(0 \lambda=d \lambda\). But since \(\lambda\) is order-preserving, it follows that \((0, d] \lambda=\{0 \lambda\}\). This is a contradiction because \(\left.\lambda\right|_{(0, \infty)}\) is one-to-one. Hence \(\beta \alpha \notin(\alpha)_{b}\). By Proposition 1.8, we have \(T_{O P}(\mathbb{R}) \notin \boldsymbol{B} \boldsymbol{Q}\)


Lemma 4.2. If \(a \in \mathbb{R}\) and \(I=(a, \infty)\) or \([a, \infty)\), then \(T_{O P}(I)\) is not in \(\boldsymbol{B} \boldsymbol{Q}\).

\[
\begin{align*}
x a= & \left.\frac{9 x-a}{x-a+1}+a, o / q\right) \\
x \beta= & 2 x-a  \tag{1}\\
x \gamma= & \frac{2 x-2 a}{x-a+1}+a \\
& \text { for all } x \in[a, \infty)
\end{align*}
\]

Then we have
\[
\begin{equation*}
\alpha, \beta \text { and } \gamma \text { are continuous on } I, \tag{2}
\end{equation*}
\]
\[
\begin{align*}
& x \alpha^{\prime}=\frac{(x-a+1)-(x-a)}{(x-a+1)^{2}}=\frac{1}{(x-a+1)^{2}}>0, \\
& x \beta^{\prime}=2>0,  \tag{3}\\
& x \gamma^{\prime}=\frac{(x-a+1)(2)-(2 x-2 a)}{(x-a+1)^{2}}=\frac{2}{(x-a+1)^{2}}>0
\end{align*}
\]
for all \(x \in[a, \infty)\). It then follows from (3) that \(\alpha, \beta, \gamma\) are strictly increasing on \([a, \infty)\). From (1), we have that
\[
\begin{equation*}
a \alpha=a \beta=a \gamma=a . \tag{4}
\end{equation*}
\]

Consequently, \(\alpha, \beta, \gamma \in T_{O P}(I)\) and all of them are one-to-one. Let
\[
\alpha_{1}=\left.\alpha\right|_{I}, \quad \beta_{1}=\left.\beta\right|_{I} \quad \text { and } \quad \gamma_{1}=\left.\gamma\right|_{I}
\]

Then \(\alpha_{1}, \beta_{1}, \gamma_{1} \in T_{O P}(I)\) from (3) and (4). Observe that if \(a \in I\), then \(\alpha_{1}=\alpha\), \(\beta_{1}=\beta\) and \(\gamma_{1}=\gamma\). We claim that \(\beta_{1} \alpha_{1}=\alpha_{1} \gamma_{1}\). To show this, let \(x \in I\). Then


Thus \(\beta_{1} \alpha_{1}=\alpha_{1} \gamma_{1} \in T_{O P}(I) \alpha_{1} \cap \alpha_{1} T_{O P}(I)\). By Proposition 1.4, \(\beta_{1} \alpha_{1} \in\left(\alpha_{1}\right)_{q}\).
Since \(a+1 \in I,(a+1) \alpha_{1}=\frac{a+1-a}{a+1-a+1}+a=\frac{1}{2}+a\) and
\[
(a+1) \beta_{1} \alpha_{1}=(2 a+2-a) \alpha_{1}=(a+2) \alpha_{1}=\frac{a+2-a}{a+2-a+1}+a=\frac{2}{3}+a,
\]
we have that \(\beta_{1} \alpha_{1} \neq \alpha_{1}\). Suppose that \(\beta_{1} \alpha_{1} \in\left(\alpha_{1}\right)_{b}\). From Proposition 1.4, \(\beta_{1} \alpha_{1}=\alpha_{1} \lambda \alpha_{1}\) for some \(\lambda \in T_{O P}(I)\). But since \(\alpha_{1}\) is one-to-one, \(\beta_{1}=\alpha_{1} \lambda\). From (1), (3) and (4), we have \(\operatorname{Im} \beta=[a, \infty)\). Since
\[
\lim _{x \rightarrow \infty}(x \alpha)=\lim _{x \rightarrow \infty}\left(\frac{1-\frac{a}{x}}{1-\frac{a}{x}+\frac{1}{x}}+a\right)=a+1
\]
we have from (2)-(4) that \(\operatorname{Im} \alpha=[a, a+1)\). Hence we have
\[
\begin{equation*}
\operatorname{Im} \beta_{1}=I \quad \text { and } \quad \operatorname{Im} \alpha_{1}=I \cap[a, a+1) \tag{5}
\end{equation*}
\]

Since \(\beta_{1}=\alpha_{1} \lambda\) and both \(\alpha_{1}\) and \(\beta_{1}\) are one-to-one, from (5) we conclude that
\[
\begin{equation*}
\left.\lambda\right|_{I \cap[a, a+1)}=\alpha_{1}^{-1} \beta_{1} \text { which is one-to-one } \tag{6}
\end{equation*}
\]

Moreover, from (5),
\[
\begin{equation*}
I=I \beta_{1}=I \alpha_{1} \lambda \Rightarrow\left(I \alpha_{1}\right) \lambda=(I \cap[a, a+1)) \lambda \tag{7}
\end{equation*}
\]

Since \(a+1 \in I,(a+1) \lambda \in I\), so by (7) \((a+1) \lambda=d \lambda\) for some \(d \in I \cap[a, a+1)\). Then \(d<a+1\) and \(d \lambda=(a+1) \lambda\). But \(\lambda\) is order-preserving, thus \([d, a+1) \lambda=\{(a+1) \lambda\}\).
Now, we have
\[
\begin{equation*}
d<a+1, \quad[d, a+1) \subseteq I \cap[a, a+1) \quad \text { and } \quad[d, a+1) \lambda=\{(a+1) \lambda\} \tag{8}
\end{equation*}
\]

Then (6) and (8) yield a contradietion. Hence \(\beta_{1} \alpha_{1} \notin\left(\alpha_{1}\right)_{b}\). We therefore have from Proposition 1.8 that \(T_{O P}(I) \notin \boldsymbol{B} \boldsymbol{Q}\).

The following lemma is directly obtained from Lemma 4.2 and Proposition 1.13(i) and (ii).

Lemma 4.3. If \(a \in \mathbb{R}\) and \(I=(-\infty, a)\) or \((-\infty, a]\), then \(T_{O P}(I) \notin \boldsymbol{B} \boldsymbol{Q}\).

Lemma 4.4. Let \(a, b \in \mathbb{R}\) be such that \(a<b\) and let \(I\) be \((a, b)\) or \((a, b]\). Then \(T_{O P}(I) \notin \boldsymbol{B} \boldsymbol{Q}\).

Proof. Define \(\alpha, \beta, \gamma:[a, b] \rightarrow \mathbb{R}\) by
\[
\begin{align*}
& x \alpha=\frac{x}{2}+\frac{b}{2} \text { for all } x \in[a, b]  \tag{1}\\
& x \beta= \begin{cases}\frac{2 x}{3}+\frac{a}{3} & \text { if } a \leq x<\frac{a+b}{2} \\
\frac{4 x}{3}-\frac{b}{3} & \text { if } \frac{a+b}{2} \leq x \leq b,\end{cases}  \tag{2}\\
& x \gamma= \begin{cases}\frac{2 x}{3}+\frac{a+b}{6} & \text { if } a \leq x<\frac{a+3 b}{4}, \\
\frac{4 x}{3}-\frac{b}{3} & \text { if } \frac{a+3 b}{4} \leq x \leq b .\end{cases} \tag{3}
\end{align*}
\]

We then have respectively from (1), (2) and (3) that
\[
\begin{align*}
& a \alpha=\frac{a+b}{2} \in(a, b), \quad b \alpha=b \text { and } x \alpha^{\prime}=\frac{1}{2} \text { for all } x \in[a, b],  \tag{4}\\
& a \beta=a, \quad b \beta=b, \\
& x \beta^{\prime}=\left\{\begin{array}{l}
\frac{2}{3}=\text { if } a \leq x<\frac{a+b}{2}, \\
\frac{4}{3} \quad \text { if } \frac{a+b}{2}<x \leq b, \\
\left.\lim _{x \rightarrow\left(\frac{a+b}{2}\right) \bar{a}}(x \beta)=\frac{2}{3}\left(\frac{a+b}{2}\right)+\frac{a}{3}=\frac{2 a+b}{3}\right] \text { and } \\
\left(\frac{a+b}{2}\right) \beta=\frac{4}{3}\left(\frac{a+b}{2}\right)-\frac{b}{3} \frac{2 a+b}{30} \\
9
\end{array}\right.  \tag{5}\\
& \begin{array}{l}
a \gamma=\frac{5 a+b}{6} \in(a, b), \quad b \gamma=b,
\end{array} \\
& x \gamma^{\prime}=\left\{\begin{array}{l}
\frac{2}{3} \quad \text { if } a \leq x<\frac{a+3 b}{4}, \\
\frac{4}{3} \quad \text { if } \frac{a+3 b}{4}<x \leq b, \\
\lim _{x \rightarrow\left(\frac{a+3 b}{4}\right)-}(x \gamma)=\frac{2}{3}\left(\frac{a+3 b}{4}\right)+\frac{a+b}{6}=\frac{a+2 b}{3} \text { and } \\
\left(\frac{a+3 b}{4}\right) \gamma=\frac{4}{3}\left(\frac{a+3 b}{4}\right)-\frac{b}{3}=\frac{a+2 b}{3} .
\end{array}\right.
\end{align*}
\]

From (4), (5) and (6), we have that \(\alpha, \beta\) and \(\gamma\) are continuous, order-preserving and one-to-one and \(\alpha, \beta, \gamma:[a, b] \rightarrow[a, b]\). This implies that \(\alpha_{1}, \beta_{1}, \gamma_{1} \in T_{O P}(I)\) where \(\alpha_{1}=\left.\alpha\right|_{I}, \beta_{1}=\left.\beta\right|_{I}\) and \(\gamma_{1}=\left.\gamma\right|_{I}\). To show that \(\beta_{1} \alpha_{1}=\alpha_{1} \gamma_{1}\). Let \(x \in I\).

Case 1: \(x<\frac{a+b}{2}\). Then by (1)-(3),
\[
\begin{aligned}
& x \beta_{1} \alpha_{1}=\left(x \beta_{1}\right) \alpha_{1}=\left(\frac{2 x+a}{3}\right) \alpha_{1}=\frac{1}{2}\left(\frac{2 x+a}{3}\right)+\frac{b}{2}=\frac{2 x+a+3 b}{6}, \\
& x \alpha_{1} \gamma_{1}=\left(x \alpha_{1}\right) \gamma_{1}=\left(\frac{x+b}{2}\right) \gamma_{1}=\frac{2}{3}\left(\frac{x+b}{2}\right)+\frac{a+b}{6}=\frac{2 x+a+3 b}{6}
\end{aligned}
\]
since \(x<\frac{a+b}{2} \Rightarrow \frac{x+b}{2}<\frac{\frac{a+b}{2}+b}{2}=\frac{a+3 b}{4}\).
Case 2: \(x \geq \frac{a+b}{2}\). Then \(\frac{x+b}{2} \geq \frac{\frac{a+b}{2}+b}{2}=\frac{a+3 b}{4}\), so we have from (1)-(3) that
\[
\begin{aligned}
& x \beta_{1} \alpha_{1}=\left(x \beta_{1}\right) \alpha_{1}=\left(\frac{4 x-b}{3}\right) \alpha_{1}=\frac{1}{2}\left(\frac{4 x-b}{3}\right)+\frac{b}{2}=\frac{2 x+b}{3}, \\
& x \alpha_{1} \gamma_{1}=\left(x \alpha_{1}\right) \gamma_{1}=\left(\frac{x+b}{2}\right) \gamma_{1}=\frac{4}{3}\left(\frac{x+b}{2}\right)-\frac{b}{3}=\frac{2 x+b}{3}
\end{aligned}
\]

Hence \(\beta_{1} \alpha_{1}=\alpha_{1} \gamma_{1} \in T_{O P}(I) \alpha_{1} \cap \alpha_{1} T_{O P}(I)=\left(\alpha_{1}\right)_{q}\). Suppose that \(\beta_{1} \alpha_{1} \in\) \(\left(\alpha_{1}\right)_{b}\). Since \(\alpha_{1}\) is one-to-one and \(\beta_{1} \neq 1_{X}\), by Proposition 1.9(i), \(\beta_{1} \alpha_{1} \neq \alpha_{1}\). By Proposition 1.4, \(\beta_{1} \alpha_{1}=\alpha_{1} \lambda \alpha_{1}\) for some \(\lambda \in T_{O P}(I)\). Then \(\beta_{1}=\alpha_{1} \lambda\) since \(\alpha_{1}\) is one-to-one. Since \(a \notin T\), from (4) and (5) and the continuity of \(\alpha\) and \(\beta\), we have
respectively. Since \(\beta_{1}=\alpha_{1} \lambda\), we have from (7) that
\[
\begin{equation*}
I=I \beta_{1}=I \alpha_{1} \lambda=\left(I \alpha_{1}\right) \lambda=\left(I \cap\left(\frac{a+b}{2}, b\right]\right) \lambda . \tag{8}
\end{equation*}
\]

We also have
\[
\begin{equation*}
\left.\lambda\right|_{\operatorname{Im} \alpha_{1}}=\alpha_{1}^{-1} \beta_{1} \text { which is one-to-one } \tag{9}
\end{equation*}
\]
since \(\alpha_{1}\) and \(\beta_{1}\) are one-to-one. For any case of \(I, I \cap\left(a, \frac{a+b}{2}\right) \neq \varnothing\). Let \(c \in I \cap\left(a, \frac{a+b}{2}\right)\). By (8), \(c \lambda=d \lambda\) for some \(d \in I \cap\left(\frac{a+b}{2}, b\right]\). Then
\[
c<\frac{a+b}{2}<d\left\{\begin{array}{l}
<b \text { if } I=(a, b)  \tag{10}\\
\leq b \text { if } I=(a, b]
\end{array}\right.
\]

Since \(\lambda\) is order-preserving, we have \([c, d] \lambda=\{c \lambda\}\) which implies that \(\left(\frac{a+b}{2}, d\right] \lambda=\) \(\{d \lambda\}\). By (7) and (10), \(\left(\frac{a+b}{2}, d\right] \subsetneq \operatorname{Im} \alpha_{1}\). Now, we have
\[
\begin{equation*}
\frac{a+b}{2}<d,\left(\frac{a+b}{2}, d\right] \subseteq \operatorname{Im} \alpha_{1} \text { and } \quad\left(\frac{a+b}{2}, d\right] \lambda=\{d \lambda\} \tag{11}
\end{equation*}
\]

From (9) and (11), we have a contradiction. Therefore, \(\beta_{1} \alpha_{1} \notin\left(\alpha_{1}\right)_{b}\). By Proposition 1.8, we have \(T_{O P}(I) \notin \boldsymbol{B} \boldsymbol{Q}\), as desired.

We also have the following lemma from Lemma 4.4 and Proposition 1.13(iii).

Lemma 4.5. If \(a, b \in \mathbb{R}\) are such that \(a<b\), then \(T_{O P}([a, b)) \notin \boldsymbol{B} \boldsymbol{Q}\).

Now we are ready to give the main result of this chapter.


Theorem 4.6. For a nonempty interval I of \(\mathbb{R}, T_{O P}(I) \in \boldsymbol{B Q}\) ifand only if \(I\) is

Proof. If \(I\) is closed and bounded, by Proposition 1.14 and Proposition 1.5, \(T_{O P}(I) \in \boldsymbol{B} \boldsymbol{Q}\).

On the other hand, assume that \(I\) is neither closed nor bounded. Then \(I\) is one of the types (1)-(8) mentioned at the beginning of this chapter. Hence by Lemma 4.1-Lemma 4.5, we conclude that \(T_{O P}(I) \notin \boldsymbol{B} \boldsymbol{Q}\).

\section*{REFERENCES}
[1] Calais, J. Demi-groups dans lesquals tout bi-idéal est un quasi-idéal. Symposium of Semigroups, Smolenice, 1968.
[2] Clifford, A. H., and Preston, G. B. The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, American Mathematical Society. Providence, R. I., 1961.
[3] Good, R. A., and Hughes, D. R. Associated groups for semigroups. Bull. Amer. Math. Soc. 58 (1952): 624-625 (Abstract).
[4] Higgins, P. M. Dense subsets of some common classes of semigroups. Semigroup Forum 24 (1986): 5-19.
[5] Higgins, P. M. Techniques of Semigroup Theory. New York: Oxford University Press, 1992.
[6] Hungerford, T. W. Algebra. New York: Spring-Verlag, 1984.
[7] Kapp, K. M. On bi-ideals and quasi-ideals in semigroups. Publ. Math. Debrecen 16 (1969): 179-185.
[8] Kemprasit, Y Infinitely many bi-ideals which are not quasi-ideals in some transformation semigroups. Annales Univ. Sci. Budapest 44 (2001): จหรึนจจงกรณ์มหาวิทยาลย
[9] Kemprasit, Y. Some transformation semigroups whose sets of bi-ideals and quasi-ideals coincide. Comm. Algebra 30 (2002): 4499-4506.
[10] Kemprasit, Y., and Changphas, T. Regular order-preserving transformation semigroups. Bull. Austral. Math. Soc. 62 (2000): 511-524.
[11] Lajos, S. Generalized ideals in semigroups. Acta Sci. Math. 22 (1961): 217-222.
[12] Magill, K. D., Jr. Semigroup structures for families of functions I; some homomorphism theorems. J. Austral. Math. Soc. 7 (1967): 81-93.
[13] Magill, K. D., Jr. Semigroup structures for families of functions II; continuous functions. J. Austral. Math. Soc. 7 (1967): 95-107.
[14] Saitô, T., Aoki, K. and Kajitori. Remark on isomorphisms of regressive transformation semigroups. Semigroup Forum 53 (1996): 129-134.
[15] Steinfeld, O. Quasi-ideals in Rings and Semigroups. Budapest: Akadé miai Kiadó, 1978.
[16] Steinfeld, O. Über die quasiideale von halbgruppen. Publ. Math. Debrecen 4 (1956): 262-275.
[17] Sullivan, R. P. On a generalization of transformation semigroups. J. Aus tral. Math. Soc. 19 (1975): 470-473.


จุฬาลงกรณ์มหาวิทยาลัย

\section*{VITA}

Mr. Chaiwat Namnak was born on June \(2^{\text {nd }}, 1972\) in Kamphengphet. He got a Bachelor of Science in Mathematics with first-class honors in 1993 from Naresuan University in Phitsanulok. Since then, he has been a teacher at Naresuan University. He got a Master of Science in Mathematics at Chulalongkorn University in 1997. For his Ph.D. program in mathematics, he got a University Development Commission (U.D.C.) scholarship between 1999-2002 to study at Chulalongkorn University```


[^0]:    ชัยวัฒน์ นามนาค :เซมิกรุปการแปลงนัยทั่วไปและเซมิกรุปการแปลงเชิงเส้นซึ่งไบ-ไอเดียลเป็นควอซี่-ไอเดียล (GENERALIZED TRANSFORMATION SEMIGROUPS AND LINEAR TRANSFORMATION SEMIGROUPS WHOSE BI-IDEALS ARE QUASI-IDEALS)
    อ. ที่ปรึกษา : รศ. ดร. ยุพาภรณ์ เข็มประสิทธิ์ จำนวนหน้า 63 หน้า. ISBN 974-17-2533-7

