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CHAPTER I

INTRODUCTION AND PRELIMINARIES

In this introductory chapter, we present a number of elementary concepts,

notations and propositions on semigroups most of which will be indispensable for

the remainder of this research.

Let N, Z and R denote respectively the set of natural numbers (positive in-

tegers), the set of integers and the set of real numbers. For any set X, let |X|
denote the cardinality of X.

An element e of a semigroup S is called an idempotent if e2 = e. For a

semigroup S, let E(S) be the set of all idempotents of S. A semigroup S with

zero 0 is called a zero semigroup if xy = 0 for all x, y ∈ S. An element x of

a semigroup S is regular if x = xyx for some y ∈ S, and S is called a regular

semigroup if every element of S is regular.

A nonempty subset A of a semigroup S is called a left [right] ideal of S if

SA ⊆ A [AS ⊆ A], and A is called an ideal of S if A is both a left and a right

ideal of S. We call a semigroup S a left [right] simple semigroup if S is the only

left [right] ideal of S. Likewise a semigroup S is called a simple semigroup if S is

the only ideal of S. The following known result will be used later.

Proposition 1.1. A semigroup S is left [right] simple if and only if Sx = S

[xS = S] for all x ∈ S.

A semigroup S with zero 0 is called a left [right] 0-simple semigroup if (i) S2 6= {0}
and (ii) {0} and S are the only left [right] ideals of S. A 0-simple semigroup is a
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semigroup S with zero 0 such that (i) S2 6= {0} and (ii) {0} and S are the only

ideals of S.

For a semigroup S, let S1 be S if S has an identity, otherwise, let S1 be the

semigroup S ∪ {1} where 1 /∈ S with the operation extended from the operation

on S by defining 1x = x1 = x for all x ∈ S ∪ {1}.
A subsemigroup Q of a semigroup S is called a quasi-ideal of S if SQ ∩ QS ⊆

Q, and by a bi-ideal of S we mean a subsemigroup B of S such that BSB ⊆
B. Clearly, every left ideal and every right ideal of S is a quasi-ideal of S and

every quasi-ideal of S is a bi-ideal of S. The notion of quasi-ideal for semigroups

was introduced by O. Steinfeld [16] in 1956. In fact, the notion of bi-ideal for

semigroups was introduced earlier by R. A. Good and D. R. Huges [3] in 1952.

Example 1.2. (1) Let R be a division ring, n ∈ N and Mn(R) the semigroup of

all n × n matrices over R under the usual multiplication of matrices. For each

C ∈ Mn(R), let Cij denote the entry of C in the ith row and the jth column. For

k, l ∈ {1, 2, . . . , n}, let Qkl
n (R) be the subset of Mn(R) consisting of all matrices

C ∈ Mn(R) such that

Cij = 0 if i 6= k or j 6= l.

Then for k, l ∈ {1, 2, . . . , n},

lth

↓

Mn(R)Qkl
n (R) =








0 . . . 0 x1 0 . . . 0

0 . . . 0 x2 0 . . . 0

...
...

...
...

...

0 . . . 0 xn 0 . . . 0




∣∣∣∣∣ x1, x2, . . . , xn ∈ R
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and

Qkl
n (R)Mn(R) =





kth →




0 0 . . . 0

...
...

...

0 0 . . . 0

x1 x2 . . . xn

0 0 . . . 0

...
...

...

0 0 . . . 0




∣∣∣∣∣ x1, x2, . . . , xn ∈ R





which implies that Mn(R)Qkl
n (R)∩Qkl

n (R)Mn(R) = Qkl
n (R), so Qkl

n (R) is a quasi-

ideal of Mn(R). Moreover, if n > 1, then for all k, l ∈ {1, 2, . . . , n}, Qkl
n (R) is

neither a left ideal nor a right ideal of Mn(R).

(2) Let R be a division ring, n ∈ N, n ≥ 4 and SUn(R) the semigroup of

all strictly upper triangular matrices over R under the usual multiplication of

matrices. Let

B =








0 . . . 0 x 0

0 . . . 0 0 y

0 . . . 0 0 0

...
...

...
...

0 . . . 0 0 0




∣∣∣∣∣ x, y ∈ R





.

Then B2 = {0}, so B is a subsemigroup of SUn(R). Moreover, BSUn(R)B =

{0} ⊆ B. But
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0 . . . 0 1

0 . . . 0 0

0 . . . 0 0

...
...

...

0 . . . 0 0




=




0 1 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

...
...

...
...

0 0 0 . . . 0







0 . . . 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0

...
...

...
...

0 . . . 0 0 0




=




0 . . . 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0

...
...

...
...

0 . . . 0 0 0







0 . . . 0 0

...
...

...

0 . . . 0 0

0 . . . 0 1

0 . . . 0 0




∈ (SUn(R)B ∩BSUn(R))rB,

so B is a bi-ideal but not a quasi-ideal of SUn(R).

Example 1.2(1) shows that quasi-ideals of semigroups are a generalization of one-

sided ideals. It is shown in Example 1.2(2) that bi-ideals of semigroups generalize

quasi-ideals.

We know that the intersection of a set of subsemigroups of a semigroup S is a

subsemigroup of S if it is nonempty. It is known that the intersection of a set of

quasi-ideals of a semigroup S is either ∅ or a quasi-ideal of S and this is also true

for bi-ideals of S ([15], page 10 and 12). For a nonempty subset X of a semigroup

S, let (X)q and (X)b denote the intersection of all quasi-ideals of S containing X

and the intersection of all bi-ideals of S containing X, respectively. Then (X)q

[(X)b] is the smallest quasi-ideal [bi-ideal] of S containing X and (X)q [(X)b] is

called the quasi-ideal [bi-ideal] of S generated by X. For x1, x2, . . . , xn ∈ S, let

(x1, x2, . . . , xn)q and (x1, x2, . . . , xn)b denote respectively ({x1, x2, . . . , xn})q and

({x1, x2, . . . , xn})b. Since every quasi-ideal of S is a bi-ideal of S, we have
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Proposition 1.3. For every nonempty subset X of a semigroup S, (X)b ⊆ (X)q.

The following facts are well-known.

Proposition 1.4. ([2], page 84–85). For any nonempty subset X of a semigroup

S,

(X)q = S1X ∩XS1 = (SX ∩XS) ∪X

and

(X)b = XS1X ∪X = XSX ∪X ∪X2.

Let BQ denote the class of all semigroups whose bi-ideals and quasi-ideals

coincide. Then a semigroup S is in BQ if and only if every bi-ideal of S is a

quasi-ideal. One call a semigroup in BQ a BQ-semigroup. The following two

propositions give some significant subclasses of BQ .

Proposition 1.5. ([11]). Every regular semigroup is in BQ .

Proposition 1.6. ([7]). Every left [right] simple semigroup and every left [right]

0-simple semigroup belongs to BQ .

Not only these kinds of semigroups belong to BQ . Zero semigroups containing

more than one element are obvious examples. Some other significant examples can

be seen in this research. However, J. Calais [1] has characterized the semigroups

in BQ as follows:

Proposition 1.7. ([1]). A semigroup S is in BQ if and only if (x, y)q = (x, y)b

for all x, y ∈ S.
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If S is a BQ-semigroup, then for a nonempty subset X of S, (X)b is a quasi-

ideal of S containing X which implies that (X)q ⊆ (X)b. We thus deduce from

Proposition 1.3 that

Proposition 1.8. If S ∈ BQ , then (X)b = (X)q for every nonempty subset X of

S. Hence if S is a semigroup such that (x)b 6= (x)q

(
(x)b ( (x)q

)
for some x ∈ S,

then S /∈ BQ .

Next, let X be a set. A partial transformation of X is a map from a subset

of X into X. By a transformation of X is a map from X into X. The empty

transformation is the partial transformation 0 with empty domain. Let PX be the

set of all partial transformations of X. For α ∈ PX , let Dom α and Im α denote

respectively the domain and the image (range) of α. Then PX is a semigroup

under the composition of maps, that is, for α, β ∈ PX

Dom αβ = { x ∈ Dom α | xα ∈ Dom β },

x(αβ) = (xα)β for all x ∈ Dom αβ.

This implies that for α, β ∈ PX , Dom αβ ⊆ Dom α and Im αβ ⊆ Im β. Let

TX = {α ∈ PX | Dom α = X },

IX = {α ∈ PX | α is one-to-one },

MX = {α ∈ TX | α is one-to-one },

EX = {α ∈ TX | Im α = X },

GX = {α ∈ TX | α is one-to-one and Imα = X }.

Then all TX , IX ,MX and EX are subsemigroups of PX , GX = MX ∩ EX , GX ⊆
EX ⊆ TX ⊆ PX and GX ⊆ MX ⊆ IX ⊆ PX . In particular, GX is a subgroup of

PX , that is, GX is a subsemigroup of PX which also forms a group. We call PX , TX ,

IX and GX , the partial transformation semigroup on X, the full transformation
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semigroup on X, the one-to-one partial transformation semigroup on X and the

symmetric group on X, respectively. It is well-known that PX , TX and IX are

regular semigroups ([5], page 4). By Proposition 1.5, PX , TX , IX and GX are

BQ-semigroups for any set X. Due to the fact that for an infinite set X, for every

a ∈ X, |X| = |X r {a}|, we have that |X| < ∞ if and only if MX = EX = GX ,

hence MX and EX are in BQ if |X| < ∞. The semigroups MX and EX have the

following special properties which can be proved easily.

Proposition 1.9. Let X be a set.

(i) For α, β, γ ∈ TX , if βα = γα [αβ = αγ] and α ∈ MX [EX ], then β = γ.

Hence MX [EX ] is right [left] cancellative.

(ii) For α ∈ MX [EX ], α is regular in MX [EX ] if and only if α ∈ GX . Hence

MX [EX ] is regular if and only if |X| < ∞.

(iii) If X is infinite, then MX rGX [EX rGX ] is a unique maximal proper ideal

of MX [EX ]. Hence MX [EX ] is left simple if and only if |X| < ∞ and MX

[EX ] is right simple if and only if |X| < ∞.

From Proposition 1.9(ii) and (iii), it follow that MX and EX are neither regular nor

left [right] simple if X is infinite. However, we cannot conclude from Proposition

1.5 or Proposition 1.6 that MX and EX do not belong to BQ when X is infinite.

It was proved in [8] that MX [EX ] belongs to BQ if and only if |X| < ∞.

Proposition 1.10. ([8]). For a set X,

(i) MX ∈ BQ if and only if |X| < ∞,

(ii) EX ∈ BQ if and only if |X| < ∞.
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For an infinite set X, let

OEX = {α ∈ TX | X r Im α is infinite }.

Let A ⊆ X be such that |X r A| = |A| = |X| and let λ : X → X r A be a

bijection. Then λ ∈ OEX . Since Im αβ ⊆ Im β for all α, β ∈ TX , it follows that

OEX is a subsemigroup of TX . It was shown by Y. Kemprasit [9] that OEX is a

BQ-semigroup for every infinite set X but OEX is neither regular nor left [right]

simple. We can consider OEX as the “opposite semigroup”of EX . It was proved

by P. M. Higgins [4] that OEX is dense in TX in the following sense:

for any semigroup S and any homomorphisms ϕ, ψ : TX → S,

ϕ|OEX
= ψ|OEX

implies that ϕ = ψ.

Next, let X be an infinite set and

BLX = {α ∈ TX | α is one-to-one and X r Im α is infinite }.

Then BLX = MX∩OEX . Clearly, λ defined above is in BLX .We then deduce that

BLX is a subsemigroup of TX . By Proposition 1.9(i), BLX is right cancellative.

This implies that E(BLX) = ∅ since 1X /∈ BLX . If X is countably infinite, BLX

is called the Baer-Levi semigroup on X ([5], page 14). The Baer-Levi semigroup

on a countably infinite set is known to be right simple ([5], page 14), so it is in

BQ by Proposition 1.6. It was proved by Y. Kemprasit in [9] that countable

infiniteness of X is also necessary for BLX to be in BQ .

Proposition 1.11. ([9]). For an infinite set X, BLX ∈ BQ if and only if X is

countably infinite.

K. D. Magill ([12] and [13]) generalized the notion of transformation semi-

groups as follows: Let X and Y be sets and let T (X, Y ) denote the set of all
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transformations α : X → Y . Then for a fixed θ ∈ T (Y,X), define an operation

“∗” on T (X,Y ) by

α ∗ β = αθβ for all α, β ∈ T (X,Y ).

Under this operation, T (X, Y ) becomes a semigroup which is denoted by (T (X,Y ), θ).

Moreover, the semigroup ((T (X,Y ), θ) need not be regular.

R. P. Sullivan ([17]) generalized one step further by considering the set P (X, Y )

of all partial transformations from X into Y , that is, P (X,Y ) = {α : A → Y |
A ⊆ X }, and generalizing the above semigroup as follows: For a nonempty

subset S of P (X, Y ) and θ ∈ P (Y, X), if αθβ ∈ S for all α, β ∈ S, let (S, θ)

denote the semigroup (S, ∗) with ∗ defined as above. In the same way, we define

I(X, Y ),M(X, Y ), E(X, Y ) and define the corresponding semigroups (I(X,Y ), θ)

where θ ∈ I(Y,X), (M(X,Y ), θ) where θ ∈ M(Y,X) and (E(X,Y ), θ) where

θ ∈ E(Y, X), respectively. We remark here that

(P (X,X),1X) = PX , (T (X, X), 1X) = TX , (I(X,X), 1X) = IX ,

(M(X, X), 1X) = MX , (E(X, X), 1X) = EX .

In Chapter II, we prove that (S(X, Y ), θ) always belongs to BQ if S(X, Y )

is any of P (X, Y ), T (X, Y ) and I(X, Y ) where θ ∈ S(Y, X). In particular, we

also show that these three semigroups need not be regular. Moreover, by the help

of Proposition 1.10, we shall prove that the condition that |X| = |Y | < ∞ is

necessary and sufficient for (M(X, Y ), θ) and (E(X, Y ), θ) to be in BQ .

Let V be a vector space over a division ring. For A ⊆ V , we let 〈A〉 denote

the subspace of V spanned by A. To introduce various linear transformation

semigroups for Chapter III, we first give some basic properties of vector spaces.



10

Proposition 1.12. Let V and W be vector spaces over a division ring.

(i) If α : V → W is a linear transformation, then

dimV = dimKerα + dim Imα.

(ii) If U is a subspace of V , then

dimV = dimU + dim (V/U).

(iii) If U and Z are subspaces of V such that Z ⊆ U , then

dim (V/U) = dim (V/Z/U/Z) ≤ dim (V/Z).

(iv) If B is a basis of V and A ⊆ B, then { v + 〈A〉 | v ∈ B r A } is a basis of

V/〈A〉 and v + 〈A〉 6= v′ + 〈A〉 for distinct v, v′ ∈ B r A. Hence

dim (V/〈A〉) = |B r A|.

(v) Let α : V → W be a linear transformation. If w1, w2, . . . , wn ∈ W are

linearly independent and v1, v2, . . . , vn ∈ V are such that viα = wi for all

i ∈ {1, 2, . . . , n}, then v1, v2, . . . , vn are linearly independent.

(vi) Let α : V → W be a linear transformation, B1 is a basis of Kerα and B2

is a basis of Imα. If for each v ∈ B2, uv ∈ V is such that uvα = v, then

B1 ∪ { uv | v ∈ B2 } is a basis of V .

(vii) Let α : V → W be a linear transformation and B a basis of V . If Bα is a

linearly independent subset of W and α|B is one-to-one, then α is one-to-

one, that is, Kerα = {0}.

(viii) Let α : V → W be a linear transformation, B a basis of V and A ⊆ B. If Aα

is a linearly independent subset of W , α|A is one-to-one and (BrA)α = {0},
then Kerα = 〈B r A〉.
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For a vector space V over a division ring, let L(V ) be the semigroup under

composition of all linear transformations α : V → V . It is known that L(V ) is

regular ([6], page 443). Let

G(V ) = {α ∈ L(V ) | α is an isomorphism }.

Then G(V ) is a subgroup of L(V ). By Proposition 1.5, both L(V ) and G(V ) are

in BQ . The following subsets of L(V ) are considered:

M(V ) = {α ∈ L(V ) | α is one-to-one } and

E(V ) = {α ∈ L(V ) | Im α = V }.

Both M(V ) and E(V ) are clearly subsemigroups of L(V ) containing G(V ) and

M(V ) [E(V )] = G(V ) if and only if dim V < ∞. Next, we define the “opposite

semigroups” of M(V ) and E(V ) to be respectively by

OM(V ) = {α ∈ L(V ) | dim Ker α is infinite } and

OE(V ) = {α ∈ L(V ) | dim (V/Im α) is infinite }

where dim V is infinite. To show that OM(V ) and OE(V ) are indeed subsemi-

groups of L(V ), suppose that dim V is infinite. Then we have that 0 ∈ OM(V )

and 0 ∈ OE(V ) where 0 is the zero map on V . Since for all α, β ∈ L(V ),

Ker αβ ⊇ Ker α and Im αβ ⊆ Im β, it follows that OM(V ) and OE(V ) are sub-

semigroups of L(V ), respectively (see Proposition 1.12(iii)). The following subset

of L(V ) is also considered:

OME(V ) = {α ∈ L(V ) | dim Ker α and dim (V/Im α) are infinite }

where dim V is infinite. Since 0 ∈ OM(V )∩OE(V ) = OME(V ) and both OM(V )

and OE(V ) are subsemigroups of L(V ), we have that OME(V ) is a subsemigroup

of L(V ) containing 0.
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The semigroup BLX where X is infinite motivates us to define BL(V ) where

dim V is infinite as follows:

BL(V ) = {α ∈ L(V ) | α is one-to-one and dim (V/Im α) is infinite }.

Then BL(V ) = M(V )∩OE(V ). To show that BL(V ) is a subsemigroup of L(V ),

assume that dim V is infinite. Let B be a basis of V . Then B is infinite, so

there exists A ⊆ B such that |A| = |B r A| = |B|. Thus there exists a bijection

ϕ : B → A. Define α ∈ L(V ) by vα = vϕ for all v ∈ B. We thus deduce from

Proposition 1.12(vii) that α ∈ M(V ). By Proposition 1.12(iv), we have

dim (V/Im α) = dim (V/〈A〉) = |B r A|.

This implies that α ∈ OE(V ). Then α ∈ M(V ) ∩ OE(V ), so BL(V ) is a sub-

semigroup of L(V ), as required. Similarly, we consider the “opposite semigroup”

of BL(V ) which is defined to be

OBL(V ) = {α ∈ L(V ) | Im α = V and dim Ker α is infinite }

where dim V is infinite. By the definition, we have OBL(V ) = E(V ) ∩ OM(V ).

To show that OBL(V ) is indeed a subsemigroup of L(V ), it suffices to show that

OBL(V ) 6= ∅. Let B be a basis of V and let A be a subset of B such that

|A| = |B r A| = |B|. Then there exists a bijection ϕ : A → B. Define α ∈ L(V )

by

vα =





vϕ if v ∈ A,

0 if v ∈ B r A.

Then Im α = 〈Aϕ〉 = 〈B〉 = V . By Proposition 1.12(viii), Ker α = 〈B r A〉, so

dim Ker α = |B r A| = |B|. Hence α ∈ OBL(V ). Then OBL(V ) is a subsemi-

group of L(V ) which is considered as the “opposite semigroup”of BL(V ). Note
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that 0 /∈ OBL(V ). Moreover, E(BL(V )) = ∅ = E(OBL(V )) by Proposition

1.9(i).

Next, the following subsets of L(V ) are considered:

AM(V ) = {α ∈ L(V ) | dim Ker α is finite } and

AE(V ) = {α ∈ L(V ) | dim (V/Im α) is finite }.
Then M(V ) ⊆ AM(V ) and E(V ) ⊆ AE(V ). To show that AM(V ) and AE(V )

are subsemigroups of L(V ), let α, β ∈ L(V ). We claim that α|Ker αβ is a linear

transformation from Ker αβ onto Ker β ∩ Im α with Ker (α|Ker αβ) = Ker α. Since

(Ker αβ)α|Ker αβ = (Ker αβ)α ⊆ Im α and

(
(Ker αβ)α|Ker αβ

)
β = (Ker αβ)αβ = {0},

it follows that Im (α|Ker αβ) ⊆ Ker β∩Im α. Let v ∈ Ker β∩Im α. Then uα = v for

some u ∈ V and vβ = 0. This implies that uαβ = vβ = 0. Thus u ∈ Ker αβ and so

v = uα = u(α|Ker αβ) ∈ Im (α|Ker αβ). Hence we have Im (α|Ker αβ) = Ker β ∩ Im α.

Since

Ker (α|Ker αβ) = { v ∈ Ker αβ | vα = 0 }

⊆ { v ∈ V | vα = 0 } (since Ker αβ ⊆ V )

= Ker α

= { v ∈ V | vα = 0 }

= { v ∈ V | vαβ = 0 } ∩ { v ∈ V | vα = 0 } (since 0β = 0)

= { v ∈ Ker αβ | vα = 0 }

= Ker (α|Ker αβ),

we have Ker (α|Ker αβ) = Ker α. Hence we have the claim. It then follows from

Proposition 1.12(i) that

dim Ker αβ = dim Ker α + dim (Ker β ∩ Im α)

≤ dim Ker α + dim Ker β. (1)
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Define β∗ : V/Im α → Im β/Im αβ by

(v + Im α)β∗ = vβ + Im αβ for all v ∈ V .

Clearly, β∗ is well-defined and onto. Since β is linear, β∗ is linear. Hence

β∗ is a linear transformation of V/Im α onto Im β/Im αβ. Then we have that

dim (V/Im α) ≥ dim (Im β/Im αβ). Since Im αβ ⊆ Im β, we have by Proposition

1.12(iii) and (ii) that

dim (V/Im β) = dim ((V/Im αβ)/(Im β/Im αβ)) and

dim (V/Im αβ) = dim (Im β/Im αβ) + dim ((V/Im αβ)/(Im β/Im αβ)),

respectively. These facts imply that

dim (V/Im αβ) ≤ dim (V/Im α) + dim (V/Im β). (2)

We have respectively from (1) and (2) that AM(V ) and AE(V ) are subsemigroups

of L(V ), as required. The semigroups AM(V ) and AE(V ) can be referred to

respectively as the semigroup of all “almost one-to-one linear transformations” of

V and the semigroup of all “almost onto linear transformations” of V . Observe

that if dim V is finite, then AM(V ) = AE(V ) = L(V ).

Finally, we consider the following subsets of L(V ):

MAE(V ) = {α ∈ L(V ) | α is one-to-one and dim (V/Im α) is finite },

EAM(V ) = {α ∈ L(V ) | Im α = V and dim Ker α is finite } and

AME(V ) = {α ∈ L(V ) | dim Ker α and dim (V/Im α) are finite }.

Then we have that

G(V ) ⊆ M(V ) ∩ AE(V ) = MAE(V ),

G(V ) ⊆ E(V ) ∩ AM(V ) = EAM(V ) and

G(V ) ⊆ AM(V ) ∩ AE(V ) = AME(V ),
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so the above three subsets of L(V ) are subsemigroups of L(V ). Note that if dimV

is finite, then MAE(V ) = EAM(V ) = G(V ) and AME(V ) = L(V ).

The aim of Chapter III is to characterize in terms of dimensions of V when

the subsemigroups of L(V ) mentioned above belong to BQ .

Next, let (X,≤) be a partially ordered set. For α ∈ TX , α is said to be order-

preserving if for all x, y ∈ X, x ≤ y implies that xα ≤ yα. For partially ordered

sets (X,≤) and (Y,≤′), we say that (X,≤) and (Y,≤′) are order-isomorphic if

there is a bijection ϕ : X → Y such that for x1, x2 ∈ X, x1 ≤ x2 if and only if

x1ϕ ≤′ x2ϕ. The opposite partial order ≤opp on X of ≤ is defined by

x ≤opp y if and only if y ≤ x for all x, y ∈ X.

Clearly, ≤opp is really a partial order on X. It is clear that for a nonempty interval

I of R, (I,≤) and (−I,≤opp) are order-isomorphic by x 7→ −x where ≤ is the usual

order of real numbers and −I = {−x | x ∈ I}. Hence we have

Proposition 1.13. Let ≤ be the usual partial order on R.

(i) For a ∈ R, ((−∞, a),≤) is order-isomorphic to ((−a,∞),≤opp).

(ii) For a ∈ R, ((−∞, a],≤) is order-isomorphic to ([−a,∞),≤opp).

(iii) For a, b ∈ R and a < b, ((a, b],≤) is order-isomorphic to ([−b,−a),≤opp).

Let TOP (X) denote the set of all order-preserving transformations of X. Then

TOP (X) is a subsemigroup of TX . In [14], TOP (X) is said to be the full order-

preserving transformation semigroup on X. Y. Kemprasit and T. Changphas [10]

characterized when TOP (I) is regular where I is a nonempty interval of R, as

follows:
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Proposition 1.14. ([10]). For a nonempty interval I of R, TOP (I) is regular if

and only if I is closed and bounded.

Then we can conclude from Proposition 1.5 and Proposition 1.14 that if I is closed

and bounded, then TOP (I) is a BQ-semigroup. By making use of Proposition

1.8 and Proposition 1.13, we show in the last chapter that the converse of this

statement holds. Hence we obtain the fact that for a nonempty interval I of R,

TOP (I) ∈ BQ if and only if I is closed and bounded.



CHAPTER II

GENERALIZED TRANSFORMATION SEMIGROUPS

The purpose of this chapter is to characterize when the generalized transfor-

mation semigroups mentioned in Chapter I belong to BQ .

Let us recall the notations which are used throughout this chapter. Let X and

Y be sets and

PX = the partial transformation semigroup on X,

TX = the full transformation semigroup on X,

IX = the one-to-one partial transformation semigroup on X,

MX = the semigroup of one-to-one transformations of X,

EX = the semigroup of onto transformations of X,

GX = the symmetric group on X,

P (X, Y ) = {α : A → Y | A ⊆ X },

T (X, Y ) = {α ∈ P (X, Y ) | Dom α = X },

I(X, Y ) = {α ∈ P (X, Y ) | α is one-to-one },

M(X, Y ) = {α ∈ T (X,Y ) | α is one-to-one },

E(X, Y ) = {α ∈ T (X,Y ) | Im α = Y }.

As was mentioned in Chapter I, PX , TX and IX are regular. In fact, if |X| > 1,

TX is not left [right] simple and PX and IX are not left [right] 0-simple. That is

because the set

{α ∈ SX | |Im α| ≤ 1 }
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is clearly a proper ideal of SX where SX is PX , TX or IX . Then (T (X,Y ), θ)

need not be left [right] simple and (P (X,Y ), θ), (I(X,Y ), θ) need not be left

[right] 0-simple. Moreover, these three semigroups need not be regular. To see

this, let X = Y = N and define θ : Y → X by xθ = 2x for all x ∈ Y . Then

θ ∈ S(Y, X) = S(N,N). Since for every α ∈ S(N,N), 1Nθαθ1N = θαθ which

implies that Im (1Nθαθ1N) = Im (θαθ) ⊆ Im θ = 2N 6= Im 1N. Hence 1N ∈ S(N,N)

which is not regular in (S(N,N), θ).

The first theorem requires the facts that PY , TY , and IY are regular and every

regular semigroup is a BQ-semigroup.

Theorem 2.1. If S(X, Y ) is any one of T (X, Y ), P (X, Y ) and I(X,Y ) and θ ∈
S(Y, X), then (S(X,Y ), θ) ∈ BQ .

Proof. We know that (A)b ⊆ (A)q for any nonempty subset A of S(X,Y ) (Propo-

sition 1.3). To prove that (S(X,Y ), θ) ∈ BQ , by Proposition 1.4 and Proposition

1.7, it suffices to show that for any nonempty subset A of S(X, Y ),

S(X, Y )θA ∩ AθS(X, Y ) ⊆ AθS(X, Y )θA.

For this purpose, let A be a nonempty subset of S(X,Y ) and α ∈ S(X,Y )θA ∩
AθS(X, Y ). Then we have

α = βθλ = γθµ (1)

for some β, µ ∈ S(X,Y ) and λ, γ ∈ A. But θλ ∈ S(Y, Y ) and TY , PY and IY are

all regular, so there exists η ∈ S(Y, Y ) such that

θλ = θληθλ. (2)

It thus follows from (1) and (2) that

α = βθληθλ = γθµηθλ = γθ(µη)θλ. (3)
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Since µ ∈ S(X, Y ), η ∈ S(Y, Y ) and λ, γ ∈ A, we have from (3) that α ∈
AθS(X, Y )θA. This completes the proof.

The next two theorems are the second main results of this chapter. We

first prove three lemmas which will be used to determine when the semigroups

(M(X, Y ), θ) where θ ∈ M(Y, X) and (E(X,Y ), θ) where θ ∈ E(Y, X) are in the

class BQ .

For convenience, we denote the semigroup (M(X,Y ), θ) where θ ∈ M(Y, X)

by (MX , θ) if X = Y . The notion (EX , θ) is defined similarly. Also, the notation

(GX , θ) where θ ∈ GX is used for the semigroup GX with the operation ∗ defined

by α ∗ β = αθβ for all α, β ∈ GX . Clearly, (GX , θ) is a group having θ−1 as its

identity.

Lemma 2.2. If θ ∈ GX , then (GX , θ) ∼= GX , (MX , θ) ∼= MX and (EX , θ) ∼= EX .

Proof. Define ϕ : TX → TX by αϕ = αθ for all α ∈ TX . Then for α, β ∈ TX ,

(αθβ)ϕ = αθβθ = (αϕ)(βϕ), αθ−1 ∈ TX , (αθ−1)ϕ = α and αθ = βθ implies that

α = αθθ−1 = βθθ−1 = β. Hence ϕ is an isomorphism from (TX , θ) onto TX . Since

θ ∈ GX , GXθ = GX , MX = MXθ−1θ ⊆ MXθ ⊆ MX and EX = EXθ−1θ ⊆ EXθ ⊆
EX . It then follows that ϕ|GX

, ϕ|MX
and ϕ|EX

are respectively isomorphisms of

(GX , θ), (MX , θ) and (EX , θ) onto GX , MX and EX .

Lemma 2.3. The following statements hold.

(i) M(X,Y ) 6= ∅ and M(Y, X) 6= ∅ if and only if |X| = |Y |.

(ii) E(X,Y ) 6= ∅ and E(Y, X) 6= ∅ if and only if |X| = |Y |.
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Proof. If α ∈ M(X, Y ) and β ∈ M(Y,X), then

|X| = |Im α| ≤ |Y | and |Y | = |Im β| ≤ |X|,

so |X| = |Y |. If γ ∈ E(X, Y ) and λ ∈ E(Y,X), then

|X| ≥ |Im γ| = |Y | and |Y | ≥ |Im λ| = |X|,

which implies that |X| = |Y |.
If |X| = |Y |, then there is a bijection µ of X onto Y , then µ ∈ M(X,Y ) ∩

E(X, Y ) and µ−1 ∈ M(Y, X) ∩ E(Y, X).

Hence (i) and (ii) are proved.

Lemma 2.4. Assume that |X| = |Y |. If ϕ is a bijection of X onto Y , then

(i) (M(X,Y ), θ) ∼= (MX , ϕθ) where θ ∈ M(Y,X) and

(ii) (E(X, Y ), θ) ∼= (EX , ϕθ) where θ ∈ E(Y, X).

Proof. Define ψ1 : M(X, Y ) → MX and ψ2 : E(X, Y ) → EX by

αψ1 = αϕ−1 for all α ∈ M(X, Y ) and βψ2 = βϕ−1 for all β ∈ E(X,Y ).

Let θ ∈ M(Y, X). Then ϕθ ∈ MX and for α, β ∈ M(X,Y ),

(αθβ)ψ1 = (αθβ)ϕ−1 = (αϕ−1)(ϕθ)(βϕ−1) = (αψ1)(ϕθ)(βψ1).

and if αψ1 = βψ1, then α = (αϕ−1)ϕ = (αψ1)ϕ = (βψ1)ϕ = (βϕ−1)ϕ = β. If

α ∈ MX , then αϕ ∈ M(X,Y ) and (αϕ)ψ1 = (αϕ)ϕ−1 = α. This proves that ψ1

is an isomorphism of (M(X, Y ), θ) onto (MX , ϕθ). We can show similarly that ψ2

is an isomorphism of (E(X,Y ), θ) onto (EX , ϕθ) where θ ∈ E(Y, X). Hence (i)

and (ii) are proved, as desired.
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Theorem 2.5. For θ ∈ M(Y,X), the semigroup (M(X,Y ), θ) belongs to BQ if

and only if |X| = |Y | < ∞.

Proof. Assume that |X| = |Y | < ∞. Then θ : Y → X is a bijection, hence

θ−1 : X → Y is also a bijection. By Lemma 2.4(i), (M(X,Y ), θ) ∼= (MX , θ−1θ) =

(MX , 1X) = MX . Since |X| < ∞, MX = GX , so MX ∈ BQ by Proposition 1.5.

Hence (M(X,Y ), θ) ∈ BQ .

Conversely, assume that (M(X,Y ), θ) ∈ BQ . By Lemma 2.3(i), |X| = |Y |.
Let ϕ : X → Y be a bijection. Then ϕθ ∈ MX . To show that |X| < ∞, suppose

that X is infinite. Therefore GX  MX .

Case 1: ϕθ ∈ GX . Then (MX , ϕθ) ∼= MX by Lemma 2.2. But MX /∈ BQ by

Proposition 1.10(i), so we have (MX , ϕθ) /∈ BQ .

Case 2: ϕθ ∈ MX r GX . Then by Proposition 1.9(iii), (ϕθ)n ∈ MX r GX for

every n ∈ N. It thus follows from Proposition 1.9(i) that (ϕθ)n 6= (ϕθ)m for all

distinct n, m ∈ N. In particular,

(ϕθ)2 6= ϕθ and (ϕθ)2 6= (ϕθ)3. (1)

We have from Proposition 1.4 that in (MX , ϕθ),

(ϕθ)q =
(
MX(ϕθ)2 ∩ (ϕθ)2MX

) ∪ {ϕθ }, (2)

(ϕθ)b = (ϕθ)2MX(ϕθ)2 ∪ {ϕθ, (ϕθ)3 }. (3)

By (2), (ϕθ)2 ∈ (ϕθ)q in (MX , ϕθ). Since (ϕθ)2 /∈ GX , by Proposition 1.9(ii),

(ϕθ)2 is not regular in MX . Thus

(ϕθ)2 /∈ (ϕθ)2MX(ϕθ)2. (4)

From (1), (3) and (4), we conclude that (ϕθ)2 /∈ (ϕθ)b in (MX , ϕθ). It then follows

from Proposition 1.8 that (MX , ϕθ) /∈ BQ .
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Now we have (MX , ϕθ) /∈ BQ from Case 1 and Case 2. But since (M(X, Y ), θ) ∼=
(MX , ϕθ) by Lemma 2.4(i), we deduce that (M(X, Y ), θ) /∈ BQ , a contradiction.

It then follows that |X| = |Y | < ∞.

Hence the theorem is proved, as required.

Theorem 2.6. For θ ∈ E(Y, X), the semigroup (E(X, Y ), θ) belongs to BQ if

and only if |X| = |Y | < ∞.

Proof. Assume that |X| = |Y | < ∞. Then we have that θ : Y → X is a bijection,

so θ−1 : X → Y is a bijection. By Lemma 2.4(ii), (E(X,Y ), θ) ∼= (EX , θ−1θ) =

(EX , 1X) = EX . But EX = GX because |X| < ∞, so EX ∈ BQ by Proposition

1.5. Consequently, (E(X, Y ), θ) ∈ BQ .

For the converse, assume that (E(X, Y ), θ) ∈ BQ . By Lemma 2.3(ii), |X| =

|Y |. Let ϕ : X → Y be a bijection. Then ϕθ ∈ EX . To show that |X| < ∞,

suppose on the contrary that X is infinite. Thus GX  EX .

Case 1: ϕθ ∈ GX . From Lemma 2.2, (EX , ϕθ) ∼= EX . By Proposition 1.10(ii),

EX /∈ BQ . Thus (EX , ϕθ) /∈ BQ .

Case 2: ϕθ ∈ EX r GX . Then by Proposition 1.9(iii), (ϕθ)n ∈ EX r GX for

every n ∈ N. From Proposition 1.9(i), we have that (ϕθ)n 6= (ϕθ)m for all distinct

n,m ∈ N. In particular,

(ϕθ)2 6= ϕθ and (ϕθ)2 6= (ϕθ)3. (1)

We can see from Proposition 1.4 that in (EX , ϕθ),

(ϕθ)q =
(
EX(ϕθ)2 ∩ (ϕθ)2EX

) ∪ {ϕθ }, (2)

(ϕθ)b = (ϕθ)2EX(ϕθ)2 ∪ {ϕθ, (ϕθ)3 }. (3)
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We then have from (2) that (ϕθ)2 ∈ (ϕθ)q in (EX , ϕθ). From Proposition 1.9(ii),

(ϕθ)2 is not regular in EX , that is,

(ϕθ)2 /∈ (ϕθ)2EX(ϕθ)2. (4)

It then follows from (1), (3) and (4) that (ϕθ)2 /∈ (ϕθ)b in (EX , ϕθ). Hence

(EX , ϕθ) /∈ BQ by Proposition 1.8.

From the above two cases, we have (EX , ϕθ) /∈ BQ . But (E(X,Y ), θ) ∼= (EX , ϕθ)

by Lemma 2.4(ii), we deduce that (E(X,Y ), θ) /∈ BQ which is a contradiction.

Therefore we have that |X| = |Y | < ∞.

Hence the proof is complete.



CHAPTER III

LINEAR TRANSFORMATION SEMIGROUPS

In this chapter, we give necessary and sufficient conditions for dimensions of

a vector space V over a division ring in order that various linear transformation

semigroups on V belong to BQ .

We first recall the following subsemigroups of L(V ) previously mentioned in

Chapter I:

G(V ) = {α ∈ L(V ) | α is an isomorphism },

M(V ) = {α ∈ L(V ) | α is one-to-one },

E(V ) = {α ∈ L(V ) | Im α = V },

OM(V ) = {α ∈ L(V ) | dim Ker α is infinite }

where dimV is infinite,

OE(V ) = {α ∈ L(V ) | dim (V/Im α) is infinite }

where dimV is infinite,

OME(V ) = {α ∈ L(V ) | dim Ker α and dim (V/Im α) are infinite }

where dimV is infinite,

BL(V ) = {α ∈ L(V ) | α is one-to-one and dim (V/Im α) is infinite }

where dimV is infinite,

OBL(V ) = {α ∈ L(V ) | Im α = V and dim Ker α is infinite }

where dimV is infinite,
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AM(V ) = {α ∈ L(V ) | dim Ker α is finite },

AE(V ) = {α ∈ L(V ) | dim (V/Im α) is finite },

MAE(V ) = {α ∈ L(V ) | α is one-to-one and dim (V/Im α) is finite },

EAM(V ) = {α ∈ L(V ) | Im α = V and dim Ker α is finite } and

AME(V ) = {α ∈ L(V ) | dim Ker α and dim (V/Im α) are finite }.

In the remainder, let V be a vector space over a division ring R.

We first introduce the following lemmas which will be used.

Lemma 3.1. If B is a basis of V , A ⊆ B and α ∈ L(V ) is one-to-one, then

dim (Imα/〈Aα〉) = |B r A|.

Proof. Assume that α is one-to-one. Then we have that α : V → Im α is an

isomorphism. Define ᾱ : V/〈A〉 → Im α/〈A〉α by

(v + 〈A〉)ᾱ = vα + 〈A〉α for all v ∈ V .

Clearly, ᾱ is well-defined and onto. Since α is linear, it follows that ᾱ is linear.

Also ᾱ is one-to-one since α is one-to-one. Hence ᾱ is an isomorphism from

V/〈A〉 onto Im α/〈A〉α. Thus Im α/〈A〉α ∼= V/〈A〉. But dim (V/〈A〉) = |B r A|
by Proposition 1.12(iv), so dim (Im α/〈Aα〉) = |B r A|.

Lemma 3.2. Assume that B is a linearly independent subset of V . If v1, v2, . . . , vn ∈
B are distinct and u1, u2, . . . , un ∈ 〈B r {v1, v2, . . . , vn}〉, then v1 − u1, v2 −
u2, . . . , vn − un are linearly independent over R.

Proof. It is clear that for any subset A of B, 〈A〉 ∩ 〈B r A〉 = {0}. Let

r1, r2, . . . , rn ∈ R be such that

r1(v1 − u1) + r2(v2 − u2) + . . . + rn(vn − un) = 0.
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Then r1v1 + r2v2 + . . . + rnvn = r1u1 + r2u2 + . . . + rnun ∈ 〈{v1, v2, . . . , vn}〉 ∩
〈B r {v1, v2, . . . , vn}〉 = {0}. Since v1, v2, . . . , vn are linearly independent over R,

we have that ri = 0 for every i ∈ {1, 2, . . . , n}. This proves that v1 − u1, v2 −
u2, . . . , vn − un are linearly independent over R.

We know from Proposition 1.10 that for any set X, MX ∈ BQ if and only if

|X| < ∞ and this is also true for EX . Following the technique of the given proofs

for these facts, we obtain the same results for M(V ) and E(V ) by replacing |X|
by dimV . However, our proofs are more complicated.

Theorem 3.3. The semigroup M(V ) is in BQ if and only if dimV < ∞.

Proof. If dim V < ∞, then M(V ) = G(V ) which implies by Proposition 1.5 that

M(V ) ∈ BQ .

For the converse, assume that dim V is infinite. Let B be a basis of V . Then

B is infinite. Let A = {un | n ∈ N } be a subset of B where for any distinct

i, j ∈ N, ui 6= uj. Let α, β, γ ∈ L(V ) be defined by

vα =





u2n if v = un for some n ∈ N,

v if v ∈ B r A,

vβ =





un+1 if v = un for some n ∈ N,

v if v ∈ B r A

and

vγ =





un+2 if v = un for some n ∈ N,

v if v ∈ B r A.



27

By Proposition 1.12(vii), α, β, γ ∈ M(V ). From the definitions of α, β and γ, we

have that

unβα = u2n+2 = unαγ for all n ∈ N

and

vβα = v = vαγ for all v ∈ B r A.

This implies that α 6= βα = αγ, so βα ∈ M(V )α∩αM(V ) = (α)q by Proposition

1.4. Suppose that βα ∈ (α)b. Since α 6= βα, by Proposition 1.4, βα ∈ αM(V )α.

Let λ ∈ M(V ) be such that βα = αλα. From Proposition 1.9(i), β = αλ. It then

follows that

B r {u1 } = Bβ = Bαλ = (B r {u2n−1 | n ∈ N })λ. (1)

We have by Lemma 3.1 that

dim (Im λ/〈(Br{u2n−1 | n ∈ N })λ〉) = |{u2n−1 | n ∈ N }|. (2)

Thus from (1) and (2) yield that

dim (Im λ/〈Br{u1 }〉) = |{u2n−1 | n ∈ N }|. (3)

But dim (V/〈B r {u1 }〉) = |{u1}| = 1 by Proposition 1.12(iv), so

dim (Im λ/〈B r {u1 }〉) ≤ dim (V/〈B r {u1 }〉) = 1. (4)

We have a contradiction because of (3) and (4). Then βα /∈ (α)b, so by Proposition

1.8, M(V ) /∈ BQ .

Hence the theorem is completely proved.

Theorem 3.4. The semigroup E(V ) is in BQ if and only if dimV < ∞.
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Proof. If dim V < ∞, then E(V ) = G(V ), so E(V ) ∈ BQ by Proposition 1.5.

Conversely, assume that dim V is infinite. Let B be an infinite basis of V and

A = {un | n ∈ N } ⊆ B where ui 6= uj if i 6= j. Define α, β, γ ∈ L(V ) by

vα =





0 if v = un for some odd n ∈ N,

un
2

if v = un for some even n ∈ N,

v if v ∈ B r A,

vβ =





0 if v = u1 or u2,

un−2 if v = un for some n ∈ Nr { 1, 2 },

v if v ∈ B r A

and

vγ =





0 if v = u1,

un−1 if v = un for some n ∈ Nr { 1 },

v if v ∈ B r A.

Then Im α = Im β = Im γ = 〈B ∪ { 0 }〉 = V , so α, β, γ ∈ E(V ). Moreover,

unβα = 0 = unαγ if n = 2 or n is odd ,

unβα = un−2
2

= unαγ if n > 2 and n is even and

vβα = v = vαγ for all v ∈ B r A.

Consequently, α 6= βα = αγ ∈ E(V )α ∩ αE(V ). By Proposition 1.4, αγ ∈ (α)q.

Suppose that αγ ∈ (α)b. By Proposition 1.4, αγ = αλα for some λ ∈ E(V ).

By Proposition 1.9(i), we have γ = λα. By the definition of γ, we have from

Proposition 1.12(viii) that

dim Ker (λα) = dim Ker γ = 1. (1)
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Since Im λ = V , for each odd n ∈ N, u′nλ = un for some u′n ∈ V . Then from

Proposition 1.12(v),

{u′2n−1 | n ∈ N } is a linearly independent subset of V and

for every n ∈ N, u′2n−1γ = u′2n−1λα = u2n−1α = 0. (2)

Hence (1) and (2) yield a contradiction. Consequently, αγ /∈ (α)b. Therefore

E(V ) /∈ BQ by Proposition 1.8.

Therefore the theorem is proved.

For the study of OM(V ), OE(V ), OME(V ), BL(V ) and OBL(V ), we always

assume that dim V is infinite. We will show that the semigroups OM(V ) and

OE(V ) are not regular and neither left 0-simple nor right 0-simple but they are

always in BQ .

Proposition 3.5. The semigroup OM(V ) is not regular.

Proof. Let B be a basis of V and A ⊆ B such that |A| = |B r A| = |B|. Then

there exists a bijection ϕ : B r A → B. Define α ∈ L(V ) by

vα =





vϕ if v ∈ B r A,

0 if v ∈ A.

Then Ker α = 〈A〉 by Proposition 1.12(viii) and Im α = 〈Im ϕ〉 = 〈B〉 = V .

Therefore α ∈ OM(V ). Suppose that α = αβα for some β ∈ L(V ). Since

α ∈ E(V ) by Proposition 1.9(i), 1V = βα where 1V is the identity map on V .

This implies that β is one-to-one, so β /∈ OM(V ). This proves that α is not

regular in OM(V ). Hence OM(V ) is not a regular semigroup.
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Proposition 3.6. The semigroup OM(V ) is neither left 0-simple nor right 0-

simple.

Proof. For each k ∈ N, let

Ak = {α ∈ L(V ) | dim Im α ≤ k }.

Clearly, 0 ∈ Ak 6= {0} for all k ∈ N. Since dimV = dimKer α + dim Im α for

all α ∈ L(V ) (Proposition 1.12(i)) and dim V is infinite, it follows that dimKer α

is infinite for all α ∈ Ak and for all k ∈ N. Then Ak ⊆ OM(V ). Since for

α, β ∈ L(V ), rank (αβ) ≤ min{rank α, rank β}, it follows that Ak is an ideal of

L(V ). Hence Ak is a nonzero ideal of OM(V ).

We can see that α ∈ OM(V ) defined in the proof of Proposition 3.5 is not an

element of Ak for all k ∈ N. Hence Ak is a nonzero proper ideal of OM(V ) for

every k ∈ N.

Therefore OM(V ) is neither left 0-simple nor right 0-simple.

As an immediate consequence of the fact that Ker αβ ⊇ Ker α for all α, β ∈
L(V ), we have

Lemma 3.7. The semigroup OM(V ) is a right ideal of L(V ).

Theorem 3.8. The semigroup OM(V ) always belongs to BQ .

Proof. To show that OM(V ) ∈ BQ from Proposition 1.3, Proposition 1.4 and

Proposition 1.7, it suffices to show that for every nonempty subset X of OM(V ),

OM(V )X ∩XOM(V ) ⊆ XOM(V )X .

Let X be a nonempty subset of OM(V ) and let α ∈ OM(V )X ∩ XOM(V ).

Then

α = βγ = λη for some β, η ∈ OM(V ) and γ, λ ∈ X. (1)
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But L(V ) is regular, so γ = γµγ for some µ ∈ L(V ). It then follows from (1) that

α = βγµγ = ληµγ = λ(ηµ)γ. (2)

By Lemma 3.7, ηµ ∈ OM(V ), so from (2), we have α ∈ XOM(V )X. This

proves that OM(V )X ∩ XOM(V ) ⊆ XOM(V )X. Hence OM(V ) ∈ BQ , as

required.

Proposition 3.9. The semigroup OE(V ) is not regular.

Proof. Let B be an infinite basis of V and A ⊆ B such that |A| = |B rA| = |B|.
Then there exists a bijection ϕ : B → A. Define α ∈ L(V ) by vα = vϕ for

all v ∈ B. Then Im α = 〈A〉 and by Proposition 1.12(vii), α is one-to-one. By

Proposition 1.12(iv), dim (V/Im α) = dim (V/〈A〉) = |B r A|. Thus, we have

α ∈ OE(V ). If α = αβα for some β ∈ L(V ), then αβ = 1V since α is one-

to-one which implies that Im β = V , so β /∈ OE(V ). Hence, we deduce that α

is not regular in OE(V ). We therefore conclude that OE(V ) is not a regular

semigroup.

Proposition 3.10. The semigroup OE(V ) is neither left 0-simple nor right 0-

simple.

Proof. For each k ∈ N, let

Ak = {α ∈ L(V ) | dim Im α ≤ k }.

As in the proof of Proposition 3.6. We have that Ak is a nonzero ideal of L(V )

for all k ∈ N. Since dimV = dim Im α + dim (V/Im α) (Proposition 1.12(ii)) and

dimV is infinite, it follows that dim (V/Im α) is infinite for all α ∈ Ak and for all

k ∈ N. Thus Ak ⊆ OE(V ) for every k ∈ N.
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Let α ∈ OE(V ) be defined as in the proof of Proposition 3.9. Since A is an

infinite subset of B and Im α = 〈A〉, it follows that α /∈ Ak for every k ∈ N.

Therefore each Ak is a nonzero proper ideal of OE(V ). Hence OE(V ) is neither

left 0-simple nor right 0-simple.

Lemma 3.11. The semigroup OE(V ) is a left ideal of L(V ).

Proof. This is clear because of Proposition 1.12(iii) and the fact that Im αβ ⊆ Im β

for all α, β ∈ L(V ).

Theorem 3.12. The semigroup OE(V ) is always in BQ .

Proof. To prove the theorem, by Proposition 1.3, Proposition 1.4 and Proposition

1.7, it suffices to show that OE(V )X ∩XOE(V ) ⊆ XOE(V )X for any nonempty

subset X of OE(V ).

Let X be a nonempty subset of OE(V ) and let α ∈ OE(V )X ∩ XOE(V ).

Then

α = βγ = λη for some β, η ∈ OE(V ) and γ, λ ∈ X. (1)

Since L(V ) is regular, λ = λµλ for some µ ∈ L(V ). Then from (1),

α = λµλη = λµβγ = λ(µβ)γ. (2)

By Lemma 3.11, µβ ∈ OE(V ). It then follows from (2) that α ∈ XOE(V )X.

Therefore the theorem is proved.

We will show that OME(V ) is always regular and hence it is in BQ by

Proposition 1.5.
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Lemma 3.13. The semigroup OME(V ) is a regular semigroup.

Proof. To show that OME(V ) is regular, let α ∈ OME(V ). Let B1 and B2 be

respectively bases of Ker α and Im α. Then B1 is infinite. Let B be a basis of V

containing B2. By Proposition 1.12(iv), dim (V/Im α) = dim (V/〈B2〉) = |BrB2|.
But α ∈ OE(V ), so B r B2 is infinite. For each v ∈ B2, there exists an element

uv ∈ V such that uvα = v. It then follows that |{uv | v ∈ B2 }| = |B2|. Moreover,

B1 ∪ { uv | v ∈ B2 } is a basis of V by Proposition 1.12(vi). Define β ∈ L(V ) by

vβ =





uv if v ∈ B2,

0 if v ∈ B rB2.

Then Ker β = 〈B r B2〉 by Proposition 1.12(viii) and Im β = 〈{uv | v ∈ B2 }〉.
We therefore have dim Ker β = |B r B2|. Since B1 ∪ {uv | v ∈ B2 } is a basis of

V by Proposition 1.12(vi), we have by Proposition 1.12(iv) that

dim (V/Im β) = |(B1 ∪ {uv | v ∈ B2 })r {uv | v ∈ B2 }| = |B1|.

It then follows that β ∈ OME(V ). Since B1 ∪ {uv | v ∈ B2 } is a basis of V and

vαβα = (vα)βα = 0βα = 0 = vα for all v ∈ B1

uvαβα = (uvα)βα = vβα = (vβ)α = uvα for all v ∈ B2,

we deduce that αβα = α. This proves that OME(V ) is regular, as required.

The following theorem is obtained directly from Lemma 3.13 and Proposition 1.5.

Theorem 3.14. The semigroup OME(V ) always belongs to BQ .

Observe that OM(V ) and OE(V ) are not regular but OME(V )(= OM(V ) ∩
OE(V )) is. However, OM(V ) and OE(V ) are neither left 0-simple nor right

0-simple and neither is OME(V ) as shown in the following proposition.
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Proposition 3.15. The semigroup OME(V ) is neither left 0-simple nor right

0-simple.

Proof. For each k ∈ N, define

Ak = {α ∈ L(V ) | dim Im α ≤ k } (1)

as in the proof of Proposition 3.6. By the proof of Proposition 3.6 and Proposition

3.10, each Ak is a nonzero ideal of OM(V ) and OE(V ), respectively. Then Ak is

a nonzero ideal of OME(V )(= OM(V ) ∩OE(V )). From (1), we have

A1 ⊆ A2 ⊆ A3 ⊆ . . .

Let B be a basis of V and let u1, u2, u3, . . . be distinct elements of B. For each

positive integer k, define αk ∈ L(V ) by

vαk =





v if v ∈ { u1, u2, . . . uk },

0 if v ∈ B r {u1, u2, . . . uk }.

Then for every k ∈ N, Im αk = 〈u1, u2, . . . uk〉 and hence dim Im αk = k. Thus for

every k > 1, αk ∈ Ak r Ak−1. Consequently,

A1 ( A2 ( A3 ( . . . .

Therefore each Ak is a nonzero proper ideal of OME(V ).

Hence OME(V ) is neither left 0-simple nor right 0-simple.

As was mentioned in Chapter I, BLX is right simple if X is a countably infinite

set. This is also true that BL(V ) is right simple if dim V = ℵ0. We give this fact

as a lemma in order to prove the next theorem, analogous to Proposition 1.11.

That is, to prove that BL(V ) ∈ BQ if and only if dim V = ℵ0. The technique of

the proof Proposition 1.11 is helpful for the proof of this theorem.
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Lemma 3.16. If dimV = ℵ0, then BL(V ) is right simple .

Proof. By assumption, we have that for every α ∈ BL(V ), dim (V/Im α) = ℵ0.

We will show that BL(V ) is right simple by Proposition 1.1. This is equivalent to

show that for all α, β ∈ BL(V ), there exists γ ∈ BL(V ) such that αγ = β. Let α,

β ∈ BL(V ) be arbitrary fixed. Since α and β are one-to-one linear transformations

of V , we have that α−1β : Im α → Im β is an isomorphism.

Let B1 be a basis of Im α and B2 = B1α
−1β. Then B2 is a basis of Im β. Let

B and B′ be bases of V such that B1 ⊆ B and B2 ⊆ B′. It then follows from

Proposition 1.12(iv), that

dim (V/Im α) = |B rB1| and dim (V/Im β) = |B′ rB2|.

Consequently, |B r B1| = |B| = |B′ r B2| = ℵ0. Let A ⊆ B′ r B2 be such that

|A| = |B′ rB2| = |(B′ rB2)r A|. Thus

|(B′ rB2)r A| = ℵ0. (1)

Then there exists a bijection ϕ : B rB1 → A. Define γ ∈ L(V ) by

vγ =





vα−1β if v ∈ B1,

vϕ if v ∈ B rB1. (2)

Since B1α
−1β ∩ (B rB1)ϕ = B2 ∩A = ∅, it follows that γ|B : B → B2 ∪A ⊆ B′

is a bijection. Hence γ is one-to-one by Proposition 1.12(vii), so γ ∈ M(V ). Also,

we have from Proposition 1.12(iv) that

dim (V/Im γ) = dim (V/〈B2 ∪A〉) = |B′r (B2 ∪A)| = |(B′rB2)rA|. (3)

Then γ ∈ OE(V ) by (1) and (3). But since BL(V ) = M(V )∩OE(V ), γ ∈ BL(V ).

Because Im α = 〈B1〉, we deduce from (2) that γ|Im α = α−1β. This implies that

αγ = β.

Hence BL(V ) is right simple, as desired.
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Theorem 3.17. The semigroup BL(V ) is in BQ if and only if dimV = ℵ0.

Proof. If dim V = ℵ0, then BL(V ) ∈ BQ by Lemma 3.16 and Proposition 1.6.

For the converse, assume that dim V 6= ℵ0. Since dimV is infinite, dim V > ℵ0.

Let B be a basis of V . Then B is uncountable. Let A and C be subsets of B such

that

A ⊆ C, |B rC| = |C| = |B| and |C rA| = |A| = |C|. (1)

Let D be a countably infinite subset of B. Since B is uncountable,

|B rD| = |B|.

Then there are α, β ∈ L(V ) such that α|B : B → BrC and β|B : B → BrD are

bijections. By Proposition 1.12(vii), we have that α, β ∈ M(V ). By Proposition

1.12(iv),

dim (V/Im α) = dim (V/〈B r C〉) = |C| and

dim (V/Im β) = dim (V/〈B rD〉) = |D|, (2)

so we have that α, β ∈ OE(V ). Thus α, β ∈ BL(V ). Also we have

(B rC)α−1βα = (B rD)α ⊆ B rC. (3)

Since |C| = |A|, there is a bijection ϕ : C → A. By (1), Cϕ ⊆ C. Define γ ∈ L(V )

by

vγ =





vα−1βα if v ∈ B r C,

vϕ if v ∈ C. (4)

Because of (3) and Cϕ ⊆ A, we have (B r C)α−1βα ∩ Cϕ ⊆ (B r C) ∩ C = ∅.

Then γ|B : B → (BrC)∪A ⊆ B is one-to-one. Hence γ ∈ M(V ) by Proposition
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1.12(vii) and Im γ ⊆ 〈(B r C) ∪ A〉. Since

dim (V/Im γ) ≥ dim (V/〈(B r C) ∪ A〉) from Proposition 1.12(iii)

= |B r ((B r C) ∪ A)| from Proposition 1.12(iv)

= |C r A|

= |B| from (1),

we have γ ∈ OE(V ). Hence γ ∈ BL(V ). We have by (4) that γ|Im α = α−1βα.

Consequently, βα = αγ ∈ BL(V )α∩αBL(V ). By Proposition 1.4, βα ∈ (α)q. To

show that βα /∈ (α)b, suppose on the contrary that βα ∈ (α)b. By Proposition

1.4, βα = α, βα = α2 or βα = αλα for some λ ∈ BL(V ). By Proposition 1.9(i),

β = 1V , β = α or β = αλ. Since C is uncountable, D is countable, Bα = B r C

and Bβ = B rD, we deduce that β 6= 1V and β 6= α. Then β = αλ. Hence

Im β = Im (αλ) = (Im α)λ = 〈BrC〉λ = 〈(BrC)λ〉. (5)

Consequently,

|D| = dim (V/Im β) from (2)

= dim (V/〈B r C〉λ) from (5)

≥ dim (Im λ/〈B r C〉λ)

= |B r (B r C)| from Lemma 3.1

= |C|.

This contradicts the facts that D is countable but C is uncountable. Therefore

βα /∈ (α)b. By Proposition 1.8, BL(V ) /∈ BQ .

Hence the theorem is completely proved.

If BL(V ) is right simple, by Proposition 1.6, BL(V ) ∈ BQ which implies by

Theorem 3.17 that dimV = ℵ0. That is, the converse of Lemma 3.16 holds.
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Corollary 3.18. dimV = ℵ0 if and only if BL(V ) is a right simple semigroup.

Next, to show that dim V = ℵ0 is also necessary and sufficient for the semi-

group OBL(V ) belongs to BQ , we first show as a lemma that if dim V = ℵ0,

then OBL(V ) is left simple. Recall that OBL(V ) = OM(V ) ∩ E(V ).

Lemma 3.19. If dimV = ℵ0, then OBL(V ) is left simple.

Proof. To show that OBL(V ) is left simple by Proposition 1.1 which is equivalent

to show that for all α, β ∈ OBL(V ), γα = β for some γ ∈ OBL(V ).

Let α, β ∈ OBL(V ) and let B be a basis of V . Then B is countably infinite.

Then for every infinite subset A of B, |A| = |B|. Since Im α = Im β = V , for

every v ∈ B, there exist uv, wv ∈ V such that

uvα = wvβ = v. (1)

Then for distinct v1, v2 ∈ B, uv1 6= uv2 and wv1 6= wv2 . This implies that

|{uv | v ∈ B }| = |B| = |{wv | v ∈ B }|.

Let B1 and B2 be respectively bases of Ker α and Ker β. Then B1 and B2 are

countably infinite. By Proposition 1.12(vi), we have that B1 ∪ { uv | v ∈ B } and

B2 ∪ {wv | v ∈ B } are both bases of V . Next, let C be a subset of B2 such

that |C| = |B2| = |B2 r C|. Then there is a bijection ϕ : C → B1. Note that

C ∪ (B2 r C) ∪ {wv | v ∈ B } is a disjoint union and it is a basis of V . Define

γ ∈ L(V ) by

for every v ∈ C, vγ = vϕ,

for every v ∈ B2 r C, vγ = 0, (2)

for every v ∈ B, wvγ = uv.
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Since B1 ∪ { uv | v ∈ B } is a basis of V ,

Im γ = 〈Cϕ ∪ { uv | v ∈ B }〉 = 〈B1 ∪ { uv | v ∈ B }〉 = V.

Also, Ker γ = 〈B2rC〉 by Proposition 1.12(viii) and hence dim Ker γ = |B2rC| =
|B2| = dim Ker β. Thus γ ∈ OBL(V ). To show that γα = β, let v ∈ B. Then

v ∈ C, v ∈ B2 r C or v = wz for some z ∈ B.

Case 1: v ∈ C. Since C ⊆ B2 ⊆ Ker β, vβ = 0. From (2), vγ = vϕ ∈ B1 ⊆ Ker α.

This implies that vγα = 0. Hence vγα = vβ.

Case 2: v ∈ B2 rC. Since B2 rC ⊆ B2 ⊆ Ker β, vβ = 0. By (2), vγ = 0. Thus

vγα = 0 = vβ.

Case 3: v = wz for some z ∈ B. Then by (1), uzα = z = wzβ. From (2),

vγ = wzγ = uz and thus vγα = uzα = z = wzβ = vβ.

Hence γα = β.

This proves that OBL(V ) is left simple, as required.

Theorem 3.20. The semigroup OBL(V ) is in BQ if and only if dim V = ℵ0.

Proof. First, assume that dim V 6= ℵ0. Then dim V > ℵ0 since dim V is infinite.

Let B be a basis of V and let C ⊆ B be such that |B r C| = |C| = |B|. Let D1

and D2 be countably infinite subsets of C and B r C, respectively. Since C and

B r C are uncountable, we have

|(B r C)rD2| = |B r C| = |B rD1| = |B| and |C rD1| = |C| = |B|.

Then there are bijections ϕ1 : D2 → D1, ϕ2 : (B r C) r D2 → B r D1, ϕ3 :

C rD1 → C and ϕ4 : (B r C)rD2 → B r C. By the choices of C, D1 and D2,
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we have

B =((B r C)rD2) ∪D2 ∪ C = (C rD1) ∪ ((B r C)rD2) ∪D1 ∪D2

which are disjoint unions . (1)

We also have ϕ−1
2 ϕ4 : B rD1 → B r C is a bijection. It then follows that

(B rD1)ϕ
−1
2 ϕ4 =((B r C)rD2) ∪D2

which is a disjoint union . (2)

Next, define α, β, γ ∈ L(V ) by

vα =





vϕ2 if v ∈ (B r C)rD2,

vϕ1 if v ∈ D2,

0 if v ∈ C,

vβ =





vϕ3 if v ∈ C rD1,

vϕ4 if v ∈ (B r C)rD2,

0 if v ∈ D1 ∪D2

and

vγ =





vϕ−1
2 ϕ4ϕ1 if v ∈ B rD1 and vϕ−1

2 ϕ4 ∈ D2,

vϕ−1
2 ϕ4ϕ2 if v ∈ B rD1 and vϕ−1

2 ϕ4 ∈ (B r C)rD2,

0 if v ∈ D1.

We have that α and β are well-defined by (1) and γ is well-defined by (2). From

Proposition 1.12(viii) and the definitions of α and β, we get

Im α = 〈((B r C)rD2)ϕ2 ∪D2ϕ1〉 = 〈(B rD1) ∪D1)〉 = 〈B〉 = V,

dim Ker α = dim 〈C〉 = |C|, (3)

Im β = 〈(C rD1)ϕ3 ∪ ((B r C)rD2)ϕ4〉 = 〈C ∪ (B r C)〉 = 〈B〉 = V,

dim Ker β = dim 〈D1 ∪D2〉 = |D1 ∪D2|.
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By (2), Proposition1.12(viii) and the definitions of ϕ1, ϕ2 and γ, we have

Im γ = 〈D2ϕ1 ∪ ((B r C)rD2))ϕ2〉 = 〈D1 ∪ (B rD1)〉 = 〈B〉 = V,

dim Ker γ = dim 〈D1〉 = |D1|. (4)

Consequently, α, β, γ ∈ OBL(V ). We claim that βα = αγ. Let v ∈ B. Then v

belongs to one of the following subsets of B: D1, D2, C rD1 and (B rC)rD2.

Case 1: v ∈ D1. Then vβα = 0α = 0. Since D1 ⊆ C, vαγ = 0γ = 0.

Case 2: v ∈ D2. Then vβα = 0α = 0. Since vα = vϕ1 ∈ D1, vαγ = 0.

Case 3: v ∈ C rD1. Then vαγ = 0γ = 0. But vβ = vϕ3 ∈ C, so vβα = 0.

Case 4: v ∈ (B r C)rD2. Then vβ = vϕ4 ∈ B r C, so

vβα =





vϕ4ϕ1 if vϕ4 ∈ D2,

vϕ4ϕ2 if vϕ4 ∈ (B r C)rD2.

Since vα = vϕ2 ∈ B rD1, we have

vαγ =





vαϕ−1
2 ϕ4ϕ1 if vαϕ−1

2 ϕ4 ∈ D2,

vαϕ−1
2 ϕ4ϕ2 if vαϕ−1

2 ϕ4 ∈ (B r C)rD2.

But vαϕ−1
2 ϕ4 = vϕ2ϕ

−1
2 ϕ4 = vϕ4, so

vαϕ−1
2 ϕ4ϕ1 = vϕ4ϕ1 if vϕ4 ∈ D2,

vαϕ−1
2 ϕ4ϕ2 = vϕ4ϕ2 if vϕ4 ∈ (B r C)rD2.

We then conclude that

vαγ =





vϕ4ϕ1 if vϕ4 ∈ D2,

vϕ4ϕ2 if vϕ4 ∈ (B r C)rD2.

This proves that vβα = vαγ for every v ∈ B. Hence βα = αγ ∈ OBL(V )α ∩

αOBL(V ). By Proposition 1.4, αγ ∈ (α)q. Suppose that αγ ∈ (α)b. By Proposi-

tion 1.4, αγ = α, αγ = α2 or αγ = αλα for some λ ∈ OBL(V ). By Proposition
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1.9(i), γ = 1V , γ = α or γ = λα. By the definition of γ, we have that γ 6= 1V .

Since D1 is countable and C is uncountable, from (3) and (4), γ 6= α. Then

γ = λα. Since Im λ = V , for each v ∈ C, there exists an element uv ∈ V such

that uvλ = v. Then |{uv | v ∈ C }| = |C|, so {uv | v ∈ C } is uncountable.

Since C is a linearly independent subset of V over R, by Proposition 1.12(v),

{uv | v ∈ C } is linearly independent over R. But since Ker α = 〈C〉, so for every

v ∈ C, uvλα = vα = 0. It then follows that {uv | v ∈ C } ⊆ Ker λα. Hence

dim Ker λα is uncountable. Then by (4), that γ = λα is impossible. Therefore

αγ /∈ (α)b. Thus (α)b 6= (α)q. By Proposition 1.8, we have that OBL(V ) is not

in BQ . This proves that if OBL(V ) belongs to BQ , then dim V = ℵ0.

The converse of the theorem follows directly from Lemma 3.19 and Proposition

1.6.

Corollary 3.21. dimV = ℵ0 if and only if OBL(V ) is a left simple semigroup.

Proof. Assume that OBL(V ) is left simple. Then OBL(V ) ∈ BQ by Proposition

1.6. Therefore we have by Theorem 3.20 that dim V = ℵ0.

The converse is Lemma 3.19.

Next, assume that V is a vector space over a division ring R of any dimension.

Recall from Chapter I, page 14, that if dim V < ∞, then AM(V ) = AE(V ) =

L(V ). Since L(V ) is a regular semigroup, it follows from Proposition 1.5 that

(1) if dimV < ∞, then AM(V ) ∈ BQ and

(2) if dimV < ∞, then AE(V ) ∈ BQ .

The next two theorems show that the converses of (1) and (2) are also true.
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Theorem 3.22. The semigroup AM(V ) is in BQ if and only if dimV < ∞.

Proof. If dim V < ∞, then AM(V ) ∈ BQ , as was mentioned above.

For the converse, assume that dim V is infinite. Let B be a basis of V and

A = {un | n ∈ N } ⊆ B where ui 6= uj if i 6= j. Define α, β, γ ∈ L(V ) by

vα =





u2n if v = un for some n ∈ N,

v if v ∈ B r A,

vβ =





un+1 if v = un for some n ∈ N,

v if v ∈ B r A,

and

vγ =





un+2 if v = un for some n ∈ N,

v if v ∈ B r A.

Then α, β, γ ∈ M(V ) by Proposition 1.12(vii), so α, β, γ ∈ AM(V ). Since

for every n ∈ N, unβα = u2n+2 = unαγ and

for every v ∈ B r A, vβα = v = vαγ,

we deduce that α 6= βα = αγ. Thus βα ∈ AM(V )α ∩ αAM(V ) = (α)q by

Proposition 1.4. Suppose that βα ∈ (α)b. By Proposition 1.4, βα = αλα for

some λ ∈ AM(V ). Since α is one-to-one, we conclude that β = αλ. This implies

by the definitions of α and β that

B r {u1 } = Bβ = Bαλ = (Bα)λ = (B r {u1, u3, u5, . . . })λ.

For convenience, for each n ∈ N, let wn = u2n−1. Thus

〈B r {wn | n ∈ N }〉λ = 〈(B r {wn | n ∈ N })λ〉 = 〈B r {u1}〉. (1)

But V = 〈B r {u1}〉+ 〈u1〉, so by (1), we have

V = 〈B r {wn | n ∈ N }〉λ + Ru1 (2)
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We then have by (2) that for each n ∈ N, there exist vn ∈ 〈B r {wn | n ∈ N }〉
and an ∈ R such that wnλ = vnλ + anu1. Therefore

for every n ∈ N, (wn−vn)λ ∈ 〈u1〉. (3)

It follows from Lemma 3.2 that the set {wn− vn | n ∈ N } is linearly independent

over R and wi − vi 6= wj − vj if i 6= j. Set W = 〈{wn − vn | n ∈ N }〉. Then

dim W is infinite. From (3), λ|W : W → 〈u1〉 and hence dim Im (λ|W ) ≤ 1. By

Proposition 1.12(i),

dim W = dim Ker (λ|W ) + dim Im (λ|W ).

We thus conclude that dim Ker (λ|W ) is infinite. But Ker λ ⊇ Ker (λ|W ), so

dim Ker λ is infinite. It is a contradiction since λ ∈ AM(V ). This proves that

(α)q 6= (α)b. Therefore AM(V ) /∈ BQ by Proposition 1.8.

Hence the proof of the theorem is complete.

Theorem 3.23. The semigroup AE(V ) is in BQ if and only if dimV < ∞.

Proof. If dim V < ∞, then AE(V ) ∈ BQ , as mentioned previously.

On the other hand, assume that dim V is infinite. Let B be a basis of V and

A = {un | n ∈ N } ⊆ B where ui 6= uj if i 6= j. Define α, β, γ ∈ L(V ) by

vα =





0 if v = un for some odd n ∈ N,

un
2

if v = un for some even n ∈ N,

v if v ∈ B r A,

vβ =





0 if v = u1 or u2,

un−2 if v = un for some n > 2,

v if v ∈ B r A
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and

vγ =





0 if v = u1,

un−1 if v = un for some n > 1,

v if v ∈ B r A.

Then Im α = Im β = Im γ = 〈B ∪ {0}〉 = B. Thus α, β, γ ∈ E(V ) ⊆ AE(V ) and

unβα = 0 = unαγ if n = 2 or n is odd,

unβα = un−2
2

= unαγ if n > 2 and n is even and

vβα = v = vαγ for all v ∈ B r A.

Thus α 6= βα = αγ. Consequently, αγ ∈ AE(V )α ∩ αAE(V ) = (α)q by

Proposition 1.4. Suppose that αγ ∈ (α)b. By Proposition 1.4, αγ = αλα for

some λ ∈ AE(V ). Since α ∈ E(V ), by Proposition 1.9(i), γ = λα. Then

u1λα = u1γ = 0, so u1λ ∈ Ker α. By the definition of α and Proposition 1.12(viii),

Ker α = 〈{un | n ∈ N and n is odd }〉.

For convenience, let wn = u2n−1 for every n ∈ N. Thus

Ker α = 〈{wn | n ∈ N }〉. (1)

Since u1λ ∈ Ker α, there are k ∈ N and a1, a2, . . . , ak ∈ R such that

u1λ =
k∑

n=1

anwn. (2)

We claim that {wk+n + Im λ | n ∈ N } is a linearly independent infinite subset of

V/Im λ. To prove this, let l ∈ N and b1, b2, . . . , bl ∈ R be such that

l∑
n=1

bn(wk+n + Im λ) = Im λ.

It then follows that
∑l

n=1 bnwk+n ∈ Im λ, so there exists z ∈ V such that

zλ =
l∑

n=1

bnwk+n (3)
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Since V = 〈B〉 = 〈A〉 + 〈B r A〉, there are m ∈ N, c1, c2, . . . , cm ∈ R and

u′ ∈ 〈B r A〉 such that

z =
m∑

n=1

cnun + u′. (4)

We may choose m > 1. From (3) and (4), we have

l∑
n=1

bnwk+n =
m∑

n=1

cn(unλ) + u′λ. (5)

By (1) and (5), we get

0 = (
l∑

n=1

bnwk+n)α =
m∑

n=1

cn(unλα) + u′λα.

Since λα = γ and u1γ = 0, we have

m∑
n=2

cn(unγ) = −u′γ. (6)

From the definition of γ, we have

m∑
n=2

cn(unγ) =
m∑

n=2

cnun−1 ∈ 〈A〉 and u′γ = u′ ∈ 〈B r A〉. (7)

But 〈A〉 ∩ 〈B rA〉 = {0}, so (6) and (7) yield u′ = 0 and c2 = c3 = . . . = cm = 0.

It then follows from (5) that

l∑
n=1

bnwk+n = c1(u1λ).

From this equality and (2), we obtain the following equality.

l∑
n=1

bnwk+n = c1

k∑
n=1

anwn.

This implies that c1a1w1+c1a2w2+. . .+c1akwk−b1wk+1−b2wk+2−. . .−blwk+l = 0.

But since w1, w2, . . . , wk, . . . , wk+l are linearly independent over R, so bn = 0 for all

n ∈ { 1, 2, . . . , l }. Hence we have the claim. This contradicts that dim (V/Im λ)

is finite. This proves that (α)q 6= (α)b. By Proposition 1.8, AE(V ) /∈ BQ .

Hence the theorem is completely proved.
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Finally, we show that the finiteness of dim V is also necessary and sufficient for

each of the linear transformation semigroups MAE(V ) and EAM(V ) to belong

to BQ .

Theorem 3.24. The semigroup MAE(V ) is in BQ if and only if dimV < ∞.

Proof. Assume that dim V is infinite. Let B be a basis of V and A = {un | n ∈
N } ⊆ B where ui 6= uj if i 6= j. Define α, β, γ ∈ L(V ) by

vα =





un+2 if v = un for some n ∈ N,

v if v ∈ B r A,

vβ =





un+1 if v = un for some n ∈ Nr { 1 },

v if v ∈ (B r A) ∪ { u1 }

and

vγ =





un+1 if v = un for some n ∈ Nr { 1, 2, 3 },

v if v ∈ (B r A) ∪ { u1, u2, u3 }.

Then α, β and γ are one-to-one by Proposition 1.12(vii), Im α = 〈B r {u1, u2 }〉,
Im β = 〈B r {u2 }〉 and Im γ = 〈B r {u4 }〉. Thus from Proposition 1.12(iv),

dim (V/Im α) = 2, dim (V/Im β) = 1 and dim (V/Im γ) = 1. Hence α, β, γ ∈
MAE(V ). By the definitions of α, β and γ, we have that

u1βα = u1α = u3 = u3γ = u1αγ,

unβα = un+1α = un+3 = un+2γ = unαγ for any n > 1,

vβα = v = vαγ for any v ∈ B r A.

It then follows that βα = αγ, so βα ∈ MAE(V )α ∩ αMAE(V ). By Proposition

1.4, βα ∈ (α)q. Suppose that βα ∈ (α)b. Since u2βα = u5 6= u4 = u2α, βα 6= α.
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Then by Proposition 1.4, βα = αλα for some λ ∈ MAE(V ). By Proposition

1.9(i), we have β = αλ. Then

B r {u2 } = Bβ = Bαλ = (B r {u1, u2 })λ. (1)

Since λ is one-to-one, λ : V → V λ is an isomorphism. Consequently, V/W ∼=
V λ/Wλ for every subspace W of V (see the proof of Lemma 3.1). Hence

2 = dim (V/〈B r {u1, u2 }〉) from Proposition 1.12(iv)

= dim (V λ/〈B r {u1, u2 }〉λ)

≤ dim (V/〈B r {u1, u2 }〉λ)

= dim (V/〈(B r {u1, u2 })λ〉)

= dim (V/〈B r {u2 }〉) = 1 from (1) and Proposition 1.12(iv)

which is a contradiction. Thus βα /∈ (α)b, so (α)q 6= (α)b. By Proposition 1.8,

MAE(V ) does not belong to BQ . This proves that if MAE(V ) is in BQ , then

dimV < ∞.

As was mentioned in Chapter I, page 15, MAE(V ) = G(V ) if dimV < ∞, so

MAE(V ) ∈ BQ if dimV < ∞.

Hence the proof is complete.

Theorem 3.25. The semigroup EAM(V ) is in BQ if and only if dimV < ∞.

Proof. Assume that dim V is infinite. Let B be a basis of V and A = {un | n ∈
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N } ⊆ B where ui 6= uj for all distinct i 6= j. Define α, β, γ ∈ L(V ) by

vα =





0 if v ∈ {u1, u2 },

un−2 if v = un for some n ∈ Nr { 1, 2 },

v if v ∈ B r A,

vβ =





0 if v = u1,

un−1 if v = un for some n ∈ Nr { 1 },

v if v ∈ B r A

and

vγ =





0 if v = u1,

un−1 if v = un for some n ∈ Nr { 1 },

v if v ∈ B r A.

Then Im α = Im β = Im γ = 〈B ∪ { 0 }〉 = V and by Proposition 1.12(viii),

Ker α = 〈u1, u2〉, Ker β = 〈u1〉 and Ker γ = 〈u1〉, so we have that α, β, γ ∈
EAM(V ). From the definitions of α, β and γ, we have the following equalities.

u1βα = 0α = 0 = u1α = u1αγ,

u2βα = u1α = 0 = 0γ = u2αγ,

u3βα = u2α = 0 = u1γ = u3αγ,

unβα = un−1α = un−3 = un−2γ = unαγ if n > 3 and

vβα = v = vαγ for all v ∈ B r A.

It then follows that βα = αγ ∈ EAM(V )α ∩ αEAM(V ). By Proposition 1.4,

αγ ∈ (α)q. Suppose that αγ ∈ (α)b. Since u3αγ = 0 6= u1 = u3α. By Proposition

1.4, αγ = αλα for some λ ∈ EAM(V ). By Proposition 1.9(i), γ = λα. From the

definition of γ,

dim Ker (λα) = dim Ker γ = 1. (1)
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Since Im λ = V , there are u′1, u
′
2 ∈ V such that u′1λ = u1 and u′2λ = u2. Since u1

and u2 are linearly independent, we have from Proposition 1.12(v) that

u′1 and u′2 are linearly independent. (2)

We also have

{u′1, u
′
2 }γ = {u′1, u

′
2 }λα = {u1, u2 }α = {0}. (3)

Therefore (1), (2) and (3) yield a contradiction. Consequently, αγ /∈ (α)b. By

Proposition 1.8, EAM(V ) /∈ BQ . This proves that if EAM(V ) ∈ BQ , then

dimV < ∞.

As was mentioned in Chapter I, page 15, EAM(V ) = G(V ) if dimV is finite,

hence the converse holds.

Finally, we shall show that AME(V ) is also regular which implies that it is a

BQ-semigroup.

Proposition 3.26. The semigroup AME(V ) is a regular semigroup.

Proof. Let α ∈ AME(V ). Then dimKer α and dim (V/Im α) are finite. Let B1

and B2 be bases of Ker α and and Im α, respectively. Let B be a basis of V

containing B2. For each v ∈ B2, let uv ∈ V be such that uvα = v. It then follows

from Proposition 1.12(vi) that B1∪{ uv | v ∈ B2 } is a basis of V . By Proposition

1.12(iv),

dim (V/Im α) = dim (V/〈B2〉) = |B rB2|,

so |B rB2| < ∞. Define β ∈ L(V ) by

vβ =





uv if v ∈ B2,

0 if v ∈ B rB2.
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Then Ker β = 〈B r B2〉 by Proposition 1.12(viii) and Im β = 〈{uv | v ∈ B1 }〉.
Thus dimKer β = |B rB2| < ∞ and we also have by Proposition 1.12(iv) that

dim (V/Im β) = dim (〈B1 ∪ { uv | v ∈ B2 }〉/〈{uv | v ∈ B2 }〉)

= |B1| = dim Ker α < ∞.

Hence β ∈ AME(V ). Since B1 ∪ { uv | v ∈ B2 } is a basis of V ,

vαβα = 0 = vα for all v ∈ B1 and

uvαβα = vβα = uvα for all v ∈ B2,

we have αβα = α. This proves that AME(V ) is regular, as required.

Therefore by Proposition 3.26 and Proposition 1.5, we have

Theorem 3.27. The semigroup AME(V ) always belongs to BQ .

Observe that 0 ∈ AME(V ) if and only if dimV < ∞. Because AME(V ) is

always a BQ-semigroup, it is natural to ask whether AME(V ) is left 0-simple

and/or right 0-simple if dim V < ∞ and whether it is left simple and/or right

simple if dimV is infinite (see Proposition 1.6). The following proposition is the

answer.

Proposition 3.28. The following statements hold.

(i) If dimV < ∞, then AME(V ) is left [right] 0-simple if and only if dimV = 1.

(ii) If dimV is infinite, then AME(V ) is neither left simple nor right simple.

Proof. Since AME(V ) = L(V ) if dimV < ∞, we have that

AME(V )





= { 0 } if dimV = 0,

∼= R if dimV = 1.
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Since R is a division ring, it follows that if dim V = 1, then AME(V ) is both left

0-simple and right 0-simple. Next, we assume that dim V > 1 and let

C = {α ∈ AME(V ) | dim Ker α > 1 },

D = {α ∈ AME(V ) | dim (V/Im α) > 1 }.

Let B be a basis of V and u, w ∈ B such that u 6= w. Define β, γ ∈ L(V ) by

vβ =





v if v ∈ B r {u,w },

0 if v = u or v = w

and

vγ =





v if v ∈ B r {u},

0 if v = u.

Then by Proposition 1.12(viii), Ker β = 〈u,w〉 and Ker γ = 〈u〉. Moreover, Im β =

〈B r {u,w }〉 and Im γ = 〈B r {u}〉. Therefore we have that dim Ker β = 2,

dim (V/Im β) = 2, dim Ker γ = 1 and dim (V/Im γ) = 1. It thus follows that

β ∈ C, β ∈ D, γ ∈ AME(V ) r C and γ ∈ AME(V ) r D. This shows that

C and D are nonempty proper subsets of AME(V ). Since Ker αβ ⊇ Ker α and

Im βα ⊆ Im α for all α, β ∈ AME(V ), we deduce that C is a proper right ideal

and D is a proper left ideal of AME(V ). This proves that (i) and (ii) hold.

Remark 3.29. The known result in Proposition 1.10 about MX and EX moti-

vates us to study M(V ) and E(V ). Also, our study on BL(V ) in Theorem 3.17 is

motivated by the known result in Proposition 1.11. After that, many other linear

transformation semigroups are considered. As can be seen in this chapter, many

linear transformation semigroups are characterized when to be BQ-semigroups.

Our technique of proofs use some knowledge of cardinalities of sets and linear al-

gebra. Especially, suitable constructions of linear transformations to achieve our



53

goals are really important. It is quite clearly seen that if we define the transfor-

mation semigroups on a sets which were not defined in [9] in the similar way as in

this chapter, the expected results will be obtained by replacing dim V with |X|.
Moreover, the proofs will be about the same or easier.



CHAPTER IV

ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS

In this chapter, we are concerned with any order-preserving transformation

semigroups TOP (I) on a nonempty interval I of real numbers under usual ordering.

The aim is to characterize when TOP (I) is in BQ in terms of I. Proposition 1.8,

Proposition 1.13 and suitable constructions of mappings are important tools.

It is obvious that there are 9 types of nonempty intervals of R as follows where

a, b ∈ R.

(1) R,

(2) (a,∞), (3) [a,∞),

(4) (−∞, a), (5) (−∞, a],

(6) (a, b) where a < b , (7) (a, b] where a < b,

(8) [a, b) where a < b , (9) [a, b] where a ≤ b .

To provide the main result, a series of following lemmas are required.

Lemma 4.1. TOP (R) is not in BQ .

Proof. Define α, β, γ : R→ R by

xα = 2x, xβ = 3x and xγ = x3 for all x ∈ R.

Then all of α, β and γ are one-to-one and increasing on R, so α, β, γ ∈ TOP (R).
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Moreover, Im α = (0,∞) and Im β = Im γ = R. Since for every x ∈ R,

xβα = (xβ)α = (3x)α = 23x,

xαγ = (xα)γ = (2x)γ = (2x)3 = 23x,

it follows that α 6= βα = αγ ∈ TOP (R)α ∩ αTOP (R). By Proposition 1.4, βα ∈
(α)q. To show that βα /∈ (α)b, suppose that βα ∈ (α)b. From Proposition 1.4,

βα = αλα for some λ ∈ TOP (R). Since α is one-to-one, β = αλ (Proposition

1.9(i)). It then follows that

λ|Im α = λ|(0,∞) = α−1β, (1)

R = Rβ = Rαλ = (Rα)λ = (0,∞)λ. (2)

From (1), we have that λ|(0,∞) is one-to-one. Because 0λ ∈ R, by (2), there

exists d ∈ (0,∞) such that 0λ = dλ. But since λ is order-preserving, it follows

that (0, d]λ = {0λ}. This is a contradiction because λ|(0,∞) is one-to-one. Hence

βα /∈ (α)b. By Proposition 1.8, we have TOP (R) /∈ BQ .

Lemma 4.2. If a ∈ R and I = (a,∞) or [a,∞), then TOP (I) is not in BQ .

Proof. Define α, β, γ : [a,∞) → R by

xα =
x− a

x− a + 1
+ a,

xβ = 2x− a, (1)

xγ =
2x− 2a

x− a + 1
+ a

for all x ∈ [a,∞).

Then we have

α, β and γ are continuous on I, (2)
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xα′ =
(x− a + 1)− (x− a)

(x− a + 1)2
=

1

(x− a + 1)2
> 0,

xβ′ = 2 > 0, (3)

xγ′ =
(x− a + 1)(2)− (2x− 2a)

(x− a + 1)2
=

2

(x− a + 1)2
> 0

for all x ∈ [a,∞). It then follows from (3) that α, β, γ are strictly increasing on

[a,∞). From (1), we have that

aα = aβ = aγ = a. (4)

Consequently, α, β, γ ∈ TOP (I) and all of them are one-to-one. Let

α1 = α|I , β1 = β|I and γ1 = γ|I .

Then α1, β1, γ1 ∈ TOP (I) from (3) and (4). Observe that if a ∈ I, then α1 = α,

β1 = β and γ1 = γ. We claim that β1α1 = α1γ1. To show this, let x ∈ I. Then

xβ1α1 = (xβ1)α1 = (2x− a)α1

=
(2x− a)− a

(2x− a)− a + 1
+ a

=
2x− 2a

2x− 2a + 1
+ a,

xα1γ1 = (xα1)γ1 =
( x− a

x− a + 1
+ a

)
γ

=
2
( x− a

x− a + 1
+ a

)− 2a

( x− a

x− a + 1
+ a

)− a + 1
+ a

=
2
( x− a

x− a + 1

)

x− a

x− a + 1
+ 1

+ a

=
2x− 2a

2x− 2a + 1
+ a.

Thus β1α1 = α1γ1 ∈ TOP (I)α1 ∩ α1TOP (I). By Proposition 1.4, β1α1 ∈ (α1)q.

Since a + 1 ∈ I, (a + 1)α1 =
a + 1− a

a + 1− a + 1
+ a =

1

2
+ a and

(a + 1)β1α1 = (2a + 2− a)α1 = (a + 2)α1 =
a + 2− a

a + 2− a + 1
+ a =

2

3
+ a,
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we have that β1α1 6= α1. Suppose that β1α1 ∈ (α1)b. From Proposition 1.4,

β1α1 = α1λα1 for some λ ∈ TOP (I). But since α1 is one-to-one, β1 = α1λ. From

(1), (3) and (4), we have Im β = [a,∞). Since

lim
x→∞

(xα) = lim
x→∞

( 1− a

x

1− a

x
+

1

x

+ a
)

= a + 1,

we have from (2)-(4) that Im α = [a, a + 1). Hence we have

Im β1 = I and Im α1 = I ∩ [a, a+1). (5)

Since β1 = α1λ and both α1 and β1 are one-to-one, from (5) we conclude that

λ|I∩[a,a+1) = α−1
1 β1 which is one-to-one (6)

Moreover, from (5),

I = Iβ1 = Iα1λ = (Iα1)λ = (I ∩ [a, a+1))λ. (7)

Since a+1 ∈ I, (a+1)λ ∈ I, so by (7) (a+1)λ = dλ for some d ∈ I∩[a, a+1). Then

d < a+1 and dλ = (a+1)λ. But λ is order-preserving, thus [d, a+1)λ = {(a+1)λ}.
Now, we have

d < a+1, [d, a+1) ⊆ I ∩ [a, a+1) and [d, a+1)λ = {(a+1)λ}. (8)

Then (6) and (8) yield a contradiction. Hence β1α1 /∈ (α1)b. We therefore have

from Proposition 1.8 that TOP (I) /∈ BQ .

The following lemma is directly obtained from Lemma 4.2 and Proposition 1.13(i)

and (ii).

Lemma 4.3. If a ∈ R and I = (−∞, a) or (−∞, a], then TOP (I) /∈ BQ .
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Lemma 4.4. Let a, b ∈ R be such that a < b and let I be (a, b) or (a, b]. Then

TOP (I) /∈ BQ .

Proof. Define α, β, γ : [a, b] → R by

xα =
x

2
+

b

2
for all x ∈ [a, b] (1)

xβ =





2x

3
+

a

3
if a ≤ x <

a + b

2
,

4x

3
− b

3
if

a + b

2
≤ x ≤ b, (2)

xγ =





2x

3
+

a + b

6
if a ≤ x <

a + 3b

4
,

4x

3
− b

3
if

a + 3b

4
≤ x ≤ b. (3)

We then have respectively from (1), (2) and (3) that

aα =
a + b

2
∈ (a, b), bα = b and xα′ =

1

2
for all x ∈ [a, b], (4)

aβ = a, bβ = b,

xβ′ =





2

3
if a ≤ x <

a + b

2
,

4

3
if

a + b

2
< x ≤ b, (5)

lim
x→(a+b

2
)−

(xβ) =
2

3
(
a + b

2
) +

a

3
=

2a + b

3
and

(
a + b

2
)β =

4

3
(
a + b

2
)− b

3
=

2a + b

3
,

aγ =
5a + b

6
∈ (a, b), bγ = b,

xγ′ =





2

3
if a ≤ x <

a + 3b

4
,

4

3
if

a + 3b

4
< x ≤ b, (6)

lim
x→(a+3b

4
)−

(xγ) =
2

3
(
a + 3b

4
) +

a + b

6
=

a + 2b

3
and

(
a + 3b

4
)γ =

4

3
(
a + 3b

4
)− b

3
=

a + 2b

3
.
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From (4), (5) and (6), we have that α, β and γ are continuous, order-preserving

and one-to-one and α, β, γ : [a, b] → [a, b]. This implies that α1, β1 ,γ1 ∈ TOP (I)

where α1 = α|I , β1 = β|I and γ1 = γ|I . To show that β1α1 = α1γ1. Let x ∈ I.

Case 1: x <
a + b

2
. Then by (1)-(3),

xβ1α1 = (xβ1)α1 = (
2x + a

3
)α1 =

1

2
(
2x + a

3
) +

b

2
=

2x + a + 3b

6
,

xα1γ1 = (xα1)γ1 = (
x + b

2
)γ1 =

2

3
(
x + b

2
) +

a + b

6
=

2x + a + 3b

6

since x <
a + b

2
⇒ x + b

2
<

a+b
2

+ b

2
=

a + 3b

4
.

Case 2: x ≥ a + b

2
. Then

x + b

2
≥

a+b
2

+ b

2
=

a + 3b

4
, so we have from (1)-(3)

that

xβ1α1 = (xβ1)α1 = (
4x− b

3
)α1 =

1

2
(
4x− b

3
) +

b

2
=

2x + b

3
,

xα1γ1 = (xα1)γ1 = (
x + b

2
)γ1 =

4

3
(
x + b

2
)− b

3
=

2x + b

3

Hence β1α1 = α1γ1 ∈ TOP (I)α1 ∩ α1TOP (I) = (α1)q. Suppose that β1α1 ∈
(α1)b. Since α1 is one-to-one and β1 6= 1X , by Proposition 1.9(i), β1α1 6= α1. By

Proposition 1.4, β1α1 = α1λα1 for some λ ∈ TOP (I). Then β1 = α1λ since α1 is

one-to-one. Since a /∈ I, from (4) and (5) and the continuity of α and β, we have

Im α1 = I ∩ (
a + b

2
, b] and Im β1 = I (7)

respectively. Since β1 = α1λ, we have from (7) that

I = Iβ1 = Iα1λ = (Iα1)λ =
(
I ∩ (

a + b

2
, b]

)
λ. (8)

We also have

λ|Im α1 = α−1
1 β1 which is one-to-one (9)
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since α1 and β1 are one-to-one. For any case of I, I ∩ (a,
a + b

2
) 6= ∅. Let

c ∈ I ∩ (a,
a + b

2
). By (8), cλ = dλ for some d ∈ I ∩ (

a + b

2
, b]. Then

c <
a + b

2
< d





< b if I = (a, b),

≤ b if I = (a, b]. (10)

Since λ is order-preserving, we have [c, d]λ = {cλ} which implies that (
a + b

2
, d]λ =

{dλ}. By (7) and (10), (
a + b

2
, d] ⊆ Im α1. Now, we have

a + b

2
< d, (

a + b

2
, d] ⊆ Im α1 and (

a + b

2
, d]λ = {dλ}. (11)

From (9) and (11), we have a contradiction. Therefore, β1α1 /∈ (α1)b. By Propo-

sition 1.8, we have TOP (I) /∈ BQ , as desired.

We also have the following lemma from Lemma 4.4 and Proposition 1.13(iii).

Lemma 4.5. If a, b ∈ R are such that a < b, then TOP ([a, b)) /∈ BQ .

Now we are ready to give the main result of this chapter.

Theorem 4.6. For a nonempty interval I of R, TOP (I) ∈ BQ if and only if I is

closed and bounded.

Proof. If I is closed and bounded, by Proposition 1.14 and Proposition 1.5,

TOP (I) ∈ BQ .

On the other hand, assume that I is neither closed nor bounded. Then I is

one of the types (1)–(8) mentioned at the beginning of this chapter. Hence by

Lemma 4.1–Lemma 4.5, we conclude that TOP (I) /∈ BQ .
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