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CHAPTER I

INTRODUCTION AND PRELIMINARIES

Let N,Z and R denote respectively the set of natural numbers (positive inte-

gers), the set of integers and the set of real numbers.

For a nonempty set X of an abelian group (A, +), let ZX denote the set of

all finite sums of the form
∑

kixi where ki ∈ Z and xi ∈ X. For x ∈ A, let Zx

denote Z{x}. Note that ZX is the subgroup of (A, +) generated by X.

For nonempty subsets X and Y of a ring A = (A, +, ·), let XY denote the

set of all finite sums of the form
∑

xiyi where xi ∈ X and yi ∈ Y . If X consists

of a single element x, we write xY for XY . Similarly, if Y = {y}, we write Xy

for XY . For a nonempty subset X of A and x ∈ A, the notations ZX and Zx

are defined as those in the abelian group (A, +). A quasi-ideal of a ring A is a

subring Q of A such that AQ ∩ QA ⊆ Q. Every one-sided ideal of a ring A is

clearly a quasi-ideal . The notion of quasi-ideal in rings was first introduced by O.

Steinfeld [10] in 1953. Note that if A is commutative, then the quasi-ideals and

the ideals of A coincide.

Example 1.1. Let R be a division ring, n ∈ N and Mn(R) the ring of all n × n

matrices over R under the usual addition and multiplication of matrices. For

A ∈ Mn(R), let Aij denote the entry of A in the ith row and the jth column. For

k, l ∈ {1, 2, . . . , n}, let Qkl
n (R) be the subset of Mn(R) consisting of all matrices

A ∈ Mn(R) such that

Aij = 0 if i 6= k or j 6= l
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Then for k, l ∈ {1, 2, . . . , n}, Qkl
n (R) is a subring of Mn(R),

l

↓

Mn(R)Qkl
n (R) =








0 . . . 0 x1 0 . . . 0

0 . . . 0 x2 0 . . . 0

...
...

...
...

...

0 . . . 0 xn 0 . . . 0




∣∣∣∣∣ x1, x2, . . . , xn ∈ R





and

Qkl
n (R)Mn(R) =





k →




0 0 . . . 0

...
...

...

0 0 . . . 0

x1 x2 . . . xn

0 0 . . . 0

...
...

...

0 0 . . . 0




∣∣∣∣∣ x1, x2, . . . , xn ∈ R





which implies that Mn(R)Qkl
n (R)∩Qkl

n (R)Mn(R) = Qkl
n (R), so Qkl

n (R) is a quasi-

ideal of Mn(R). Moreover, if n > 1, then for all k, l ∈ {1, 2, . . . , n}, Qkl
n (R) is

neither a left ideal nor a right ideal of Mn(R).

Example 1.1 shows that quasi-ideals of rings are a generalization of one-sided

ideals.

It is well-known in ring theory that if a ring A is not a zero ring, then A is a

division ring if and only if A and {0} are the only left [right] ideals of A. This is

also true if the word “left [right] ideals” is replaced by “quasi-ideals”.
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Proposition 1.2. ([11], page 6). Let A be a ring such that A2 6= {0}. Then A is

a division ring if and only if A and {0} are the only quasi-ideals of A.

We also have

Proposition 1.3. ([11], page 10 and 12). Let A be a ring. Then the intersection

of a set of quasi-ideals of A is a quasi-ideal of A.

For a subset X of a ring A, let (X)q denote the intersection of all quasi-ideals of

A containing X. Then for X ⊆ A, (X)q is the smallest quasi-ideal of A containing

X.

Proposition 1.4. (H.J. Wilnert [13]). For a nonempty subset X of a ring A,

(X)q = ZX + (AX ∩XA).

A ring A is said to be a (Von Neumann) regular ring if for every x ∈ A, x = xyx

for some y ∈ A. These two facts are known.

Proposition 1.5. ([11], page 69). Let A be a ring . Then A is regular if and only

if QAQ = Q for every quasi-ideal Q of A.

Proposition 1.6. ([11], page 69). Let A be a ring . Then A is regular if and only

if RL = R ∩ L for all right ideal R and left ideal L of A.

It is clearly seen that the intersection of a left ideal and a right ideal of a ring

A is a quasi-ideal. However, a quasi-ideal of A may not be obtained in this way.

See [11], page 8 , [6], [1] and [4] for examples. A quasi-ideal Q of A is said to

have the intersection property if Q = L ∩ R for some left ideal L and right ideal

R of A, and we say that A has the intersection property of quasi-ideals if every

quasi-ideal of A has the intersection property.

It is known that every ring with a one-sided identity and every regular ring
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has the intersection property of quasi-ideals. This is a special case of the following

proposition.

Proposition 1.7. ([11], page 9). Let Q be a quasi-ideal of a ring A. If Q ⊆ QA

or Q ⊆ AQ, then

Q = (Q + AQ) ∩ (Q + QA).

In this case, Q has the intersection property (since Q + AQ and Q + QA are a

left ideal and right ideal of A, respectively.)

H.J. Wilnert [13] and Z. Moucheng and etc. [6] characterized quasi-ideals of rings

having the intersection property as follows:

Proposition 1.8. (H.J. Wilnert [13]). Let Q be a quasi-ideal of a ring A. Then

the following statements are equivalent.

(i) Q has the intersection property.

(ii) (Q + AQ) ∩ (Q + QA) = Q.

(iii) AQ ∩ (Q + QA) ⊆ Q.

(iv) QA ∩ (Q + AQ) ⊆ Q.

Proposition 1.9. (Z. Moucheng and etc. [6]). Let X be a nonempty subset of a

ring A. Then the following statements are equivalent.

(i) (X)q has the intersection property.

(ii) (ZX + AX) ∩ (ZX + XA) = (X)q.

(iii) AX ∩ (ZX + XA) ⊆ (X)q.

(iv) XA ∩ (ZX + AX) ⊆ (X)q.

Z. Moucheng and etc. [6] also characterized rings having the intersection property

of quasi-ideals.

Proposition 1.10. (Z. Moucheng and etc. [6]). The following statements for a

ring A are equivalent.
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(i) A has the intersection property of quasi-ideals.

(ii) For any finite nonempty subset X of A, we have

AX ∩ (ZX + XA) ⊆ ZX + (AX ∩XA) (= (X)q) .

(iii) For any finite subset X = {x1, x2, . . . , xn} of A and a1, a2, . . . , an ∈ A, if

n∑
i=1

(aixi + kixi + xia
′
i) = 0,

for some a′i ∈ A and ki ∈ Z, then
n∑

i=1

aixi ∈ (X)q.

We call a nonzero quasi-ideal Q of a ring A a minimal quasi-ideal of A if Q

does not properly contain a nonzero quasi-ideal of A. The following fact is clearly

true.

Proposition 1.11. A nonzero quasi-ideal Q of a ring A is a minimal quasi-ideal

of A if and only if (x)q = Q for all x ∈ Q\{0}.

Recall that for an element x of a ring A, the principal left [right] ideal of

A generated by x is Zx + Ax [Zx + xA] which is denoted by (x)l [(x)r]. P. N.

Stewart [12] gave a necessary and sufficient condition for a quasi-ideal of a ring to

be minimal in terms of principal left ideals and principal right ideals as follows:

Proposition 1.12. (P. N. Stewart [12]). A quasi-ideal Q of a ring A is a minimal

quasi-ideal of A if and only if for any two nonzero elements x and y of Q,

(x)l = (y)l and (x)r = (y)r.

A minimal left [right ] ideal of a ring A is a nonzero left [right] ideal of A which does

not properly contain a nonzero left [right] ideal of A. There is a relationship among

minimal quasi-ideals, minimal left ideals and minimal right ideals as follows:
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Proposition 1.13. ([11], page 34). If L and R are a minimal left ideal and a

minimal right ideal of a ring A, then either L ∩ R = {0} or L ∩ R is a minimal

quasi-ideal of A.

A sufficient condition for a quasi-ideal of a ring A to be minimal are as follows:

Proposition 1.14. ([11], pages 37). Let Q be a quasi-ideal of a ring A. If Q is

a division subring of A, then Q is a minimal quasi-ideal of A.

Next, we shall give the definitions of a multiplicative hyperring and their sub-

hyperrings, left [right] hyperideals, hyperideals quasi-hyperideals accordingly as

those in rings.

For a set X, let P (X) denote the power set of X and let P ∗(X) = P (X)\{∅}.
A hyperoperation on a nonempty set H is a mapping of H ×H into P ∗(H).

A hypergroupoid is a system (H, ◦) consisting of a nonempty set H and a hyper-

operation ◦ on H.

Let (H, ◦) be a hypergroupoid. For nonempty subsets X and Y of H, let

X ◦ Y =
⋃
x∈X
y∈Y

(x ◦ y)

and let X ◦ x = X ◦ {x} and let x ◦X = {x} ◦X for all x ∈ H. An element e of

H is called an identity of (H, ◦) if x ∈ (x ◦ e)∩ (e ◦x) for all x ∈ H. An element e

of H is called a scalar identity of (H, ◦) if x ◦ e = e ◦ x = {x} for all x ∈ H. Then

(H, ◦) has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, ◦) such that (x◦y)◦z = x◦(y◦z) for

all x, y, z ∈ H. A subsemihypergroup of a semihypergroup (H, ◦) is a nonempty

subset H1 of H which forms a semihypergroup under the hyperoperation ◦ of H

restricted to H1. It is clear that the intersection of a set of subsemihypergroups

of (H, ◦) is a subsemihypergroup of (H, ◦) if it is nonempty.

The following example of a semihypergroup is known.
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Proposition 1.15. ([2], page 11). Let P be a nonempty subset of a semigroup S.

Define a hyperoperation ◦ on S by

x ◦ y = xPy for all x, y ∈ S.

Then (S, ◦) is a semihypergroup.

R. Rota [8] first introduced the notion of multiplicative hyperrings in 1982 as

follows:

A multiplicative hyperring is a triple (A, +, ◦) such that

(i) (A, +) is an abelian group,

(ii) (A, ◦) is a semihypergroup,

(iii) x ◦ (y + z) ⊆ x ◦ y + x ◦ z and (y + z) ◦ x ⊆ y ◦ x + z ◦ x for all x, y, z ∈ A,

(iv) (−x) ◦ y = x ◦ (−y) = − (x ◦ y) for all x, y ∈ A .

The operation + and the hyperoperation ◦ of a multiplicative hyperring (A, +, ◦)
are called the addition and the multiplication of (A, +, ◦), respectively. If both

containments in (iii) are equalities, we say that (A, +, ◦) is strongly distributive.

That is, a strongly distributive multiplicative hyperring is a triple (A, +, ◦) such

that

(i) (A, +) is an abelian group,

(ii) (A, ◦) is a semihypergroup,

(iii) x ◦ (y + z) = x ◦ y + x ◦ z and (y + z) ◦ x = y ◦ x + z ◦ x for all x, y, z ∈ A,

(iv) (−x) ◦ y = x ◦ (−y) = − (x ◦ y) for all x, y ∈ A .

A multiplicative hyperring (A, +, ◦) is said to be commutative if x ◦ y = y ◦ x

for all x, y ∈ A. A unitary multiplicative hyperring is a multiplicative hyperring

(A, +, ◦) such that (A, ◦) has a scalar identity which is called the unitary element

of (A, +, ◦) and it is usually denoted by u. A unitary multiplicative hyperring

is a multiplicative hyperring with a unitary element. Multiplicative hyperrings
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are clearly a generalization of rings. By the definitions, strongly distributive

multiplicative hyperrings give a closer generalization of rings.

For a nonempty subset X of a multiplicative hypering (A, +, ◦) and x ∈ A, we

use the notations ZX and Zx in the same meaning as those in a ring, that is,

ZX = the set of all finite sums of the form
∑

kixi

where ki ∈ Z and xi ∈ X,

Zx = Z{x},

so Zx = {nx | n ∈ Z}. If (A, +, ◦) is a multiplicative hyperring, then for a, b, c, d ∈
A, a◦ b and c◦d are nonempty subsets of A and a◦ b◦ c◦d = (a◦ b)◦ (c◦d) which

is the set
⋃

s∈a◦b
t∈c◦d

(s ◦ t), not the union of all finite sums of the form
∑

si ◦ ti where

si ∈ a ◦ b and ti ∈ c ◦ d. Because of this fact, we cannot use the notation X ◦ Y

in the similar meaning as that in rings where X and Y are nonempty subsets of

a multiplicative hyperring. To distinguish between the following two subsets of a

multiplicative hyperring (A, +, ◦) :
⋃
x∈X
y∈Y

x ◦ y and the union of all finite sums of the

form
∑

xi ◦yi where xi ∈ X and yi ∈ Y for nonempty subsets X,Y of A , we shall

let X ◦ Y and < X ◦ Y > denote the first set and the second one, respectively,

that is,

X ◦ Y =
⋃
x∈X
y∈Y

(x ◦ y), < X ◦ Y > =
⋃

xi∈X,yi∈Y
n∈N

(x1 ◦ y1 + x2 ◦ y2 + · · ·+ xn ◦ yn).

Because of the associative law of the hyperoperation ◦ of (A, +, ◦), it follows that

if X1, X2, . . . , Xn are nonempty subsets of (A, +, ◦), then

X1 ◦X2 ◦ · · · ◦Xn =
⋃

x1∈X1,...,xn∈Xn

(x1 ◦ x2 ◦ · · · ◦ xn),
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< X1 ◦X2 ◦ · · · ◦Xn > = the union of all finite sums of the form

∑
x

(1)
i ◦ x

(2)
i ◦ · · · ◦ x

(n)
i where x

(1)
i ∈ X1,

x
(2)
i ∈ X2, . . . , x

(n)
i ∈ Xn.

For a ∈ A and ∅ 6= X ⊆ A, let X ◦ a and a ◦ X denote X ◦ {a} and {a} ◦ X,

respectively. For elements a and b of A and n ∈ N , we shall let n(a ◦ b) and

(−n)(a ◦ b) denote

a ◦ b + a ◦ b + · · ·+ a ◦ b (n copies) and

(−(a ◦ b)) + (−(a ◦ b)) + · · ·+ (−(a ◦ b)) (n copies),

respectively. The following facts are obvious.

Proposition 1.16. If (A, +, ◦) is a strongly distributive multiplicative hyperring,

then for a, b ∈ A,

< A ◦ a >=
⋃

x∈A

(x ◦ a) = A ◦ a, < a ◦ A >=
⋃

x∈A

(a ◦ x) = a ◦ A,

< a ◦ A ◦ b >=
⋃

x∈A

(a ◦ x ◦ b) = a ◦ A ◦ b.

The following three propositions are known.

Proposition 1.17. (R. Rota [8]). In a multiplicative hyperring (A, +, ◦),

(a + b) ◦ (c + d) ⊆ a ◦ c + a ◦ d + b ◦ c + b ◦ d for all a, b, c, d ∈ A.

In particular, if (A, +, ◦) is strongly distributive, then

(a + b) ◦ (c + d) = a ◦ c + a ◦ d + b ◦ c + b ◦ d for all a, b, c, d ∈ A.

The following proposition will be useful and we omit its easy proof.
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Proposition 1.18. Let (A, +, ◦) is a multiplicative hyperring. Then the following

statements hold.

1. For x, y ∈ A and n ∈ Z, x ◦ (ny) ⊆ n(x ◦ y) and (nx) ◦ y ⊆ n(x ◦ y).

2. For nonempty subsets X, Y and Z of A,

<< X >> =< X >=< X > + < X >,

< X ◦ Y > =<< X > ◦ < Y >> (from Proposition 1.17),

< X◦ < Y ◦ Z >> =< X ◦ Y ◦ Z >=<< X ◦ Y > ◦Z > .

3. If A1 is a subgroup of (A, +) then ZA1 = A1.

4. For nonempty subsets X,Y, Z and V of A, < X+Y > ◦ < Z+V >⊆< X◦Z >

+ < X ◦ V > + < Y ◦ Z > + < Y ◦ V > (from Proposition 1.17).

5. For nonempty subsets X and Y of A, < X ◦ (ZY ) >⊆ Z(X ◦ Y ) and

< (ZX) ◦ Y >⊆ Z(X ◦ Y ) (from (1)).

6. For nonempty subsets X and Y of A, Z(A ◦X) =< A ◦X >, Z(X ◦ A) =

< X ◦ A > and Z(X ◦ A ◦ Y ) =< X ◦ A ◦ Y >.

If (A, +, ◦) is strongly distributive, then “ ⊆” in 1. and 5. can be replaced by

“ =” as follows:

7. For x, y ∈ A and n ∈ N, x ◦ (ny) = n(x ◦ y) = (nx) ◦ y .

8. For nonempty subsets X and Y of A, < X◦(ZY ) >= Z(X◦Y ) =< (ZX)◦Y >.

Proposition 1.19. (R. Rota [8]). In a strongly distributive multiplicative hyper-

ring (A, +, ◦), 0 ∈ a ◦ 0 and 0 ∈ 0 ◦ a for every a ∈ A.

Some examples of multiplicative hyperrings are as follows:

Example 1.20. (R. Rota [8]). Let I be an ideal of a ring (R, +, ·). Define a

hyperoperation ◦ on R by

x ◦ y = xy + I for all x, y ∈ R.
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Then (R, +, ◦) is a strongly distributive multiplicative hyperring. If |I| > 1, then

it is not unitary.

Example 1.21. (R. Rota [8]). Let V be a vector space over a field F . Define a

hyperoperation ◦ on V by

u ◦ v = the subspace of V generated by u and v for all u, v ∈ V ,

that is,

u ◦ v = Fu + Fv for all u, v ∈ V .

Then (V, +, ◦) is a commutative multiplicative hyperring where + is the addition

on V , 0 ∈ 0 ◦ u for every u ∈ V but it is not strongly distributive if dim V ≥ 1.

Moreover, it is not unitary if dim V > 0.

Example 1.22. ([7], page 79). Let (R, +, ·) be a ring. Define a hyperoperation

◦ on R by

a ◦ b = {ab, 2ab, 3ab, . . .} for all a, b ∈ R.

Then (R, +, ◦) is a multiplicative hyperring but it need not be strongly distribu-

tive and it need not be unitary. Moreover, a ◦ 0 = {0} = 0 ◦ a for all a ∈ R.

Next, let (A, +, ◦) be a multiplicative hyperring. For a nonempty subset B

of A, one says that B is a subhyperring of (A, +, ◦) if B is itself a multiplicative

hyperring under the operation + and the hyperoperation ◦ on A restricted to

B. A subhyperring B of (A, +, ◦) is called a left [right ] hyperideal of (A, +, ◦) if

A◦B ⊆ B [B ◦A ⊆ B]. If B is both a left and a right hyperideal of (A, +, ◦), then

it is called a (two-sided)hyperideal of (A, +, ◦). A subhyperring Q of (A, +, ◦) is

called a quasi-hyperideal of (A, +, ◦) if < A ◦Q > ∩ < Q ◦A >⊆ Q. Then quasi-

hyperideals are also a generalization of left hyperideals and right hyperideals. Es-

pecially, quasi-hyperideals in a multiplicative hyperrings generalize quasi-ideals in
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rings. Note that if (A, +, ◦) is commutative, then quasi-hyperideals, left [right] hy-

perideals and hyperideals of (A, +, ◦) coincide.

For a multiplicative hyperring (A, +, ◦) and a hyperideal I of (A, +, ◦), R.

Rota [8] constructed a multiplicative hypering from (A, +, ◦) by I which may be

called the quotient multiplicative hyperring of (A, +, ◦) by I as follows:

Example 1.23. (R. Rota [8]). Let (A, +, ◦) be a multiplicative hyperring and I

a hyperideal of (A, +, ◦). Define a hyperoperation ∗ on A/I by

(a + I) ∗ (b + I) = { c + I | c ∈ a ◦ b } for all a, b ∈ A.

Then (A/I,⊕, ∗) is a multiplicative hyperring where (A/I,⊕) is the quotient group

of (A, +) relative to I. Moreover (A/I,⊕, ∗) is strongly distributive if (A, +, ◦)
is. If |I| > 1, then it is not unitary.

An element a of a multiplicative hyperring (A, +, ◦) is said to be regular if

a ∈ a ◦ x ◦ a for some x ∈ A and we call (A, +, ◦) is a regular multiplicative

hyperring if every element of A is regular in (A, +, ◦).
The intersection of a left hyperideal and a right hyperideal of a multiplicative

hyperring (A, +, ◦) is clearly a quasi-hyperideal. However, a quasi-hyperideal

may not be obtained in this way. A quasi-hyperideal of a multiplicative hyperring

(A, +, ◦) is said to have the intersection property if it is the intersection of a left

hyperideal and a right hyperideal of (A, +, ◦) and we say that (A, +, ◦) has the

intersection property of quasi-hyperideals if every quasi-hyperideal of A has the

intersection property.

A nonzero left hyperideal L of a multiplicative hyperring (A, +, ◦) is said to

be minimal if L does not properly contain a nonzero left hyperideal of (A, +, ◦).
A minimal right [two-sided, quasi- ] hyperideal of (A, +, ◦) is defined similarly.
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In Chapter II, Proposition 1.2 to Proposition 1.6 are generalized to quasi-

hyperideals in multiplicative hyperrings. In this chapter, we construct a multi-

plicative hyperring from a ring by using Proposition 1.15 and some of its quasi-

hyperideals are provided.

We generalize Proposition 1.7 – Proposition 1.10 to quasi-hyperideals in mult-

tiplicative hyperrings in Chapter III.

Finally, minimal quasi-hyperideals of multiplicative hyperrings are studied to

generalize Proposition 1.11 – Proposition 1.14 in Chapter IV. The study of mini-

mal quasi-ideals of rings of strictly upper triangular n×n matrices by Y. Kemprasit

and P. Juntarakhajorn in [5] motivates us to investigate minimal quasi-hyperideals

of the multiplicative hyperrings of upper triangular n× n matrices with a hyper-

operation defined as in Proposition 1.15. Many nice results relating to minimal

quasi-hyperideals of these multiplicative hyperrings are given in this chapter.



CHAPTER II

GENERAL PROPERTIES AND EXAMPLES

In this chapter, we first generalize Proposition 1.2 – Proposition 1.6 of Chapter I.

Then a multiplicative hyperring defined from a ring is provided and we show

that every quasi-ideal of the given ring is a quasi-hyperideal of the constructed

multiplicative hyperring.

To generalize Proposition 1.2, the following three lemmas are required.

Lemma 2.1. Let (A, +, ◦) be a multiplicative hyperring. Then the following state-

ments hold.

(i) The intersection of a collection of subhyperrings of (A, +, ◦) is a subhyperring

of (A, +, ◦).
(ii) The intersection of a collection of left [right ] hyperideals of (A, +, ◦) is a

left [right ] hyperideal of (A, +, ◦).

Proof. Let {Cα | α ∈ Λ} be a set of subhyperrings of (A, +, ◦). Then
⋂

α∈Λ

Cα is a

subgroup of (A, +). Hence
⋂

α∈Λ

Cα is a subhyperring (see page 6). If each Cα is a

left hyperideal of (A, +, ◦), we have that for every β ∈ Λ,

A ◦ (
⋂

α∈Λ

Cα) ⊆ A ◦ Cβ ⊆ Cβ

which implies that, A ◦ (
⋂

α∈Λ

Cα) ⊆
⋂

α∈Λ

Cα. Hence
⋂

α∈Λ

Cα is a left hyperideal of

(A, +, ◦). Dually, if each Cα is a right hyperideal of (A, +, ◦), then
⋂

α∈Λ

Cα is a

right hyperideal of (A, +, ◦). Hence the lemma is proved.
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Lemma 2.2. Let (A, +, ◦) be a multiplicative hyperring and ∅ 6= X ⊆ A. Then

the following statements hold.

(i) 0 ∈< A ◦X > and 0 ∈< X ◦ A >.

(ii) < A ◦X > and < X ◦ A > are a left hyperideal and a right hyperideal of

(A, +, ◦), respectively.

(iii) ZX+ < A ◦X > and ZX+ < X ◦A > are respectively a left hyperideal and

a right hyperideal of (A, +, ◦) containing X.

Proof. (i) Let a ∈ A and x ∈ X. If y ∈ a◦x, then −y ∈ −(a◦x) = (−a)◦x ⊆ A◦X
which implies that

0 = y − y ∈ a ◦ x + (−a) ◦ x ⊆< A ◦X > .

We can show similarly that 0 ∈< X ◦ A >.

(ii) By Proposition 1.18(2), < A ◦ X > + < A ◦ X >=< A ◦ X >. By (i),

0 ∈< A ◦X >. Let a ∈< A ◦X >. Then a ∈
n∑

i=1

ri ◦ xi for some ri ∈ A, xi ∈ X

and n ∈ N. Since −a ∈ −(
n∑

i=1

ri ◦ xi) =
n∑

i=1

(−(ri ◦ xi)) =
n∑

i=1

(−ri) ◦ xi, we have

that −a ∈< A ◦X >. Then < A ◦X > is a subgroup of (A, +). By Proposition

1.18(2), A◦ < A ◦X >⊆< A◦ < A ◦X >>=< A ◦ A ◦X > ⊆< A ◦X >. Hence

< A ◦X > is a left hyperideal of (A, +, ◦).
Similarly, < X ◦ A > is a right hyperideal of (A, +, ◦).
(iii) Since 0 ∈< A ◦ X > from (i) and X ⊆ ZX , it follows that X ⊆ ZX+

< A ◦ X >. We know that ZX is a subgroup of (A, +) and by (ii), < A ◦ X >

is a subgroup of (A, +). It then follows that ZX+ < A ◦ X > is a subgroup of

(A, +). We also have

A ◦ (ZX+ < A ◦X >) ⊆ A ◦ (ZX) + A◦ < A ◦X >

⊆< A ◦ (ZX) > + < A◦ < A ◦X >>
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⊆< Z(A ◦X) > + < A ◦ A ◦X >

from Proposition 1.18(2) and (5)

⊆<< A ◦X >> + < A ◦X > from Proposition 1.18(6)

⊆< A ◦X > from Proposition 1.18(2)

⊆ ZX+ < A ◦X > since 0 ∈ ZX.

Hence ZX+ < A ◦ X > is a left hyperideal of (A, +, ◦) containing X. We can

obtain similarly that ZX+ < X ◦A > is a right hyperideal of (A, +, ◦) containing

X.

Let (A, +, ◦) be a multiplicative hyperring. Then by Lemma 2.1, the inter-

section of a collection of left [right] hyperideals of (A, +, ◦) is also a left [right]

hyperideal of (A, +, ◦). For ∅ 6= X ⊆ A, let (X)l[(X)r] denote the intersection

of all left [right] hyperideals of (A, +, ◦) containing X. Therefore, (X)l[(X)r] is

the smallest left [right] hyperideal of (A, +, ◦) containing X and it is called the

left [right ] hyperideal of (A, +, ◦) generated by X. For a ∈ A, let (a)l [(a)r] de-

note ({a})l [({a})r] which is called the principal left [right ] hyperideal of (A, +, ◦)
generated by a.

Lemma 2.3. In a multiplicative hyperring (A, +, ◦),

(X)l = ZX+ < A ◦X > and (X)r = ZX+ < X ◦ A >

for every nonempty subset X of A. In particular, for a ∈ A,

(a)l = Za+ < A ◦ a > and (a)r = Za+ < a ◦ A > .

Proof. From Lemma 2.2 (iii), (X)l ⊆ ZX+ < A ◦X >. Since (X)l is a subgroup

of (A, +) containing X, we have that ZX ⊆ (X)l and < A ◦X >⊆< A ◦ (X)l >⊆
< (X)l >= (X)l. Hence ZX+ < A ◦ X >⊆ (X)l. Therefore we deduce that

(X)l = ZX+ < A◦X >. We can show similarly that (X)r = ZX+ < X◦A >.
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Theorem 2.4. Let (A, +, ◦) be a multiplicative hyperring such that A ◦A 6= {0}.
Then < A ◦ x >= A =< x ◦A > for all x ∈ A\{0} if and only if (A, +, ◦) has no

proper nonzero quasi-hyperideals.

Proof. Assume that for every x ∈ A\{0}, < A ◦ x >= A =< x ◦ A >. Let Q

be a nonzero quasi-hyperideal of (A, +, ◦). Then there exists k ∈ Q\{0}. By

assumption, A =< A ◦ k >=< k ◦A >, so A =< k ◦A > ∩ < A ◦ k >⊆< Q ◦A >

∩ < A ◦Q >⊆ Q. Thus A = Q. This prove that (A, +, ◦) has no proper nonzero

quasi-hyperideals.

Conversely, assume that (A, +, ◦) has no proper nonzero quasi-hyperideals. Let

a ∈ A\{0}. Since (a)l is the principal left hyperideal of (A, +, ◦) generated by a,

(a)l is a nonzero quasi-hyperideal of (A, +, ◦). By assumption, (a)l = A. Hence

< A ◦ a > ⊆< A ◦ (a)l >

⊆< A ◦ (Za+ < A ◦ a >) > by Lemma 2.3

⊆< A ◦ (Za) + A◦ < A ◦ a >>

⊆< Z(A ◦ a)+ < A ◦ A ◦ a >> by Proposition 1.18(2) and (5)

⊆<< A ◦ a > + < A ◦ a >> by Proposition 1.18(6)

=< A ◦ a > by Proposition 1.18(2)

which implies that < A ◦ a >=< A ◦ (a)l >=< A ◦ A > 6= {0}. But < A ◦ a > is

a left hyperideal of (A, +, ◦) by Lemma 2.2(ii), so < A ◦ a > is a nonzero quasi-

hyperideal of (A, +, ◦). It then follows from the assumption that < A ◦ a >= A.

Similarly, we obtain that < a◦A >= A. Therefore < A◦a >= A =< a◦A >.

We know that for a ring A with |A| > 1, A is a division ring if and only if

Ax = A = xA for all x ∈ A\{0}. Then Proposition 1.2 is a corollary of the above

theorem.
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Corollary 2.5. Let A be a ring such that A2 6= {0}. Then A is a division ring if

and only if A and {0} are the only quasi-ideals of A.

We also have

Theorem 2.6. Let (A, +, ◦) be a multiplicative hyperring. Then the intersection

of a set of quasi-hyperideals of (A, +, ◦) is a quasi-hyperideal of (A, +, ◦).

Proof. Let Qα (α ∈ Λ) be a set of quasi-hyperideals of (A, +, ◦). Then
⋂

α∈Λ

Qα is

a subgroup of (A, +) since each Qα is a subgroup of (A, +). We have that for

every β ∈ Λ,

< A ◦ (⋂

α∈Λ

Qα

)
> ∩ <

(⋂

α∈Λ

Qα

) ◦ A >⊆< A ◦Qβ > ∩ < Qβ ◦ A >⊆ Qβ.

Consequently, < A ◦ (⋂

α∈Λ

Qα

)
> ∩ <

(⋂

α∈Λ

Qα

) ◦ A >⊆
⋂

α∈Λ

Qα. Hence
⋂

α∈Λ

Qα is a

quasi-hyperideal of (A, +, ◦).

Proposition 1.3 is an immediate consequence of the above theorem.

Corollary 2.7. Let A be a ring. Then the intersection of a set of quasi-ideals of

A is a quasi-ideal of A.

Let (A, +, ◦) be a multiplicative hyperring. For X ⊆ A, the quasi-hyperideal

of (A, +, ◦) generated by X is the intersection of all quasi-hyperideals of (A, +, ◦)
containing X which is denoted by (X)q. Then for X ⊆ A, (X)q is the smallest

quasi-hyperideal of (A, +, ◦) containing X. For a ∈ A , let (a)q denote ({a})q and

it is called the principal quasi-hyperideal of (A, +, ◦) generated by a .

Theorem 2.8. For a nonempty subset X of a multiplicative hyperring (A, +, ◦),

(X)q = ZX + (< A ◦X > ∩ < X ◦ A >).
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In particular, for a ∈ A,

(a)q = Za + (< A ◦ a > ∩ < a ◦ A >).

Proof. First, we show that ZX + (< A ◦X > ∩ < X ◦A >) is a quasi-hyperideal

of (A, +, ◦) containing X. Since X ⊆ ZX and 0 ∈< A ◦ X > ∩ < X ◦ A >

(from Lemma 2.2(i)), X ⊆ ZX+ (< A ◦X > ∩ < X ◦ A >). By Lemma 2.2(ii),

< A ◦ X > and < X ◦ A > are subgroups of (A, +) . Then (< A ◦ X > ∩
< X ◦ A >) is a subgroup of (A, +). Since ZX is a subgroup of (A, +), we have

that ZX + (< A ◦X > ∩ < X ◦ A >) is a subgroup of (A, +). Since

< A ◦ (ZX + (< A ◦X > ∩ < X ◦ A >)) >

⊆< A ◦ (ZX+ < A ◦X >) >

⊆< A ◦ (ZX) + A◦ < A ◦X >>

⊆< Z(A ◦X)+ < A ◦ A ◦X >>

by Proposition 1.18(2) and (5)

⊆<< A ◦X > + < A ◦X >>

by Proposition 1.18(6)

⊆<< A ◦X >>⊆< A ◦X >

from Proposition 1.18(2)

and

< (ZX + (< A ◦X > ∩ < X ◦ A >)) ◦ A >

⊆< (ZX+ < X ◦ A >) ◦ A >

⊆< (ZX) ◦ A + < X ◦ A > ◦A >

⊆< Z(X ◦ A) + < X ◦ A ◦ A >>

by Proposition 1.18(2) and (5)
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⊆<< X ◦ A > + < X ◦ A >>

by Proposition 1.18(6)

⊆<< X ◦ A >>⊆< X ◦ A >

by Proposition 1.18(2)

it follows that

< A ◦ (ZX + (< A ◦X > ∩ <X ◦ A >)) > ∩ < (ZX + (< A ◦X > ∩ < X ◦ A >)) ◦ A >

⊆< A ◦X > ∩ < X ◦ A >

⊆ ZX + (< A ◦X > ∩ < X ◦ A >)

from Lemma 2.2(i).

Hence ZX +(< A◦X > ∩ < X ◦A >) is a quasi-hyperideal of (A, +, ◦) containing

X. Then we deduce that (X)q ⊆ ZX + (< A ◦X > ∩ < X ◦ A >).

Since ((X)q, +) is a subgroup of (A, +) containing X, ZX ⊆ (X)q. We also

have < A◦X > ∩ < X ◦A >⊆< A◦ (X)q > ∩ < (X)q ◦A >⊆ (X)q which implies

that ZX+ (< A ◦ X > ∩ < X ◦ A >) ⊆ (X)q. Therefore (X)q = (< A ◦ X >

∩ < X ◦ A >).

Proposition 1.4 becomes a consequence of Theorem 2.8.

Corollary 2.9. For a nonempty subset X of a ring A,

(X)q = ZX + (AX ∩XA).

Theorem 2.10. Let (A, +, ◦) be a multiplicative hyperring.

(i) If (A, +, ◦) is regular, then Q = Q ◦ A ◦Q for every quasi-hyperideal Q of

(A, +, ◦).
(ii) The converse of (i) holds if (A, +, ◦) is strongly distributive.
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Proof. (i) Assume that (A, +, ◦) is regular and let Q be a quasi-hyperideal of

(A, +, ◦). Then for x ∈ Q, x ∈ x ◦A ◦ x ⊆ Q ◦A ◦Q. That means Q ⊆ Q ◦A ◦Q.

But Q ◦ A ◦ Q = (Q ◦ A) ◦ Q ⊆ A ◦ Q and Q ◦ A ◦ Q = Q ◦ (A ◦ Q) ⊆ Q ◦ A, so

we have

Q ◦ A ◦Q ⊆ (A ◦Q) ∩ (Q ◦ A) ⊆< A ◦Q > ∩ < Q ◦ A >⊆ Q.

Hence Q = Q ◦ A ◦Q.

(ii) Assume that(A, +, ◦) is strongly distributive and Q ◦A ◦Q = Q for every

quasi-hyperideal Q of (A, +, ◦). To show that (A, +, ◦) is regular, let a ∈ A. Then

(a)l ∩ (a)r is a quasi-hyperideal of (A, +, ◦). It thus follows that

a ∈ (a)l ∩ (a)r

= ((a)l ∩ (a)r) ◦ A ◦ ((a)l ∩ (a)r) by assumption

⊆ (a)r ◦ A ◦ (a)l

= (Za + a ◦ A) ◦ A ◦ (Za + A ◦ a)

from Proposition 1.16 and Lemma 2.3

⊆ (Za) ◦ A ◦ (Za) + (Za) ◦ A ◦ (A ◦ a)

+ (a ◦ A) ◦ A ◦ (Za) + (a ◦ A) ◦ A ◦ (A ◦ a)

from Proposition 1.18(4)

⊆ Z(a ◦ A ◦ a) + Z(a ◦ A ◦ A ◦ a) + Z(a ◦ A ◦ A ◦ a)

+ (a ◦ A ◦ a)

from Proposition 1.18(5)

⊆ Z(a ◦ A ◦ a) + Z(a ◦ A ◦ a) + Z(a ◦ A ◦ a)

+ Z(a ◦ A ◦ a)

= a ◦ A ◦ a + a ◦ A ◦ a + a ◦ A ◦ a + a ◦ A ◦ a

from Proposition 1.16 and Proposition 1.18(6)
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= a ◦ A ◦ a from Proposition 1.16 and Proposition 1.18(2).

This implies that a is a regular element of (A, +, ◦). Hence (ii) is proved.

From Theorem 2.10, we have the following corollary which is Proposition 1.5.

Corollary 2.11. A ring A is regular if and only if QAQ = Q for every quasi-ideal

Q of A.

Theorem 2.12. Let (A, +, ◦) be a multiplicative hyperring.

(i) If (A, +, ◦) is regular, then R ◦L = R∩L for every right hyperideal R and for

every left hyperideal L of (A, +, ◦).
(ii) The converse of (i) holds if (A, +, ◦) is strongly distributive.

Proof. (i) Assume that (A, +, ◦) is regular. Let R and L be a right hyperideal

and a left hyperideal of (A, +, ◦), respectively. Then R◦L ⊆ R∩L. Let a ∈ R∩L.

Since (A, +, ◦) is regular, a ∈ a ◦ y ◦ a for some y ∈ A. Since a ∈ R and y ◦ a ⊆ L,

a ∈ a ◦ y ◦ a ⊆ R ◦ L. Hence R ∩ L ⊆ R ◦ L, and consequently, R ◦ L = R ∩ L.

(ii) Assume that (A, +, ◦) is strongly distributive and R ◦L = R∩L for every

right hyperideal R and left hyperideal L of (A, +, ◦). To show that (A, +, ◦) is

regular, let a ∈ A. By Proposition 1.16 and Lemma 2.2(ii), a ◦A and A ◦ a are a

right hyperideal and a left hyperideal of (A, +, ◦), respectively. Therefore

a ∈ (a)r ∩ (a)l

= (a)r ◦ (a)l by assumption

⊆ (a)r ◦ A

= (Za + a ◦ A) ◦ A by Proposition 1.16 and Lemma 2.3

⊆ (Za) ◦ A + (a ◦ A) ◦ A

⊆ Z(a ◦ A) + a ◦ A by Proposition 1.18(5)
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= a ◦ A + a ◦ A by Proposition 1.16 and Proposition 1.18(6)

= a ◦ A by Proposition 1.16 and Proposition 1.18(2)

and similarly, a ∈ A ◦ a. Hence

a ∈ a ◦ A ∩ A ◦ a

= (a ◦ A) ◦ (A ◦ a) by assumption, Proposition 1.16 and Lemma 2.2(ii)

⊆ a ◦ A ◦ a,

so a is a regular element of (A, +, ◦). Therefore (ii) is proved.

As a consequence of Theorem 2.12, we have

Corollary 2.13. Let A be a ring. Then A is regular if and only if RL = R ∩ L

for every right ideal R and for every left ideal L of A.

Theorem 2.14. Let (R, +, ·)be a ring and ∅ 6= P ⊆ R. Define a hyperoperation

◦ on R by

x ◦ y = { xty | t ∈ P } for all x, y ∈ R.

Then (R, +, ◦) is a multiplicative hyperring.

Proof. From Proposition 1.15, (R, ◦) is a semihypergroup. Next, let x, y, z ∈ R.

Then

x ◦ (y + z) = { xt(y + z) | t ∈ P }

= { xty + xtz | t ∈ P }

⊆ { xty | t ∈ P }+ { xtz | t ∈ P }

= x ◦ y + x ◦ z

and we obtain similarly that (y + z) ◦ x ⊆ y ◦ x + z ◦ x. Moreover,

(−x) ◦ y = { (−x)ty | t ∈ P }
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= { xt(−y) | t ∈ P } = x ◦ (−y)

= {−(xty) | t ∈ P }

= −{ xty | t ∈ P } = −(x ◦ y).

This proves that (R, +, ◦) is a multiplicative hyperring, as required.

Lemma 2.15. Let (R, +, ·) be a ring, P a nonempty subset of R and (R, +, ◦)
the multiplicative hyperring defined from (R, +, ·) and P where

x ◦ y = { xty | t ∈ P } for all x, y ∈ R.

If K1 and K2 are nonempty subsets of R, then

< K1 ◦K2 >= K1PK2,

that is, the set < K1 ◦K2 > in (R, +, ◦) is equal to K1PK2 in (R, +, ·) which is

the set of all finite sums of the form
∑

aipibi where ai ∈ K1, pi ∈ P and bi ∈ K2.

In particular,

< a ◦ b >= aPb for all a, b ∈ R.

Proof. Let x ∈< K1 ◦K2 >. Then x ∈ a1 ◦ b1 + a2 ◦ b2 + · · · + am ◦ bm for some

a1, a2, . . . , am ∈ K1 and b1, b2, . . . , bm ∈ K2. It therefore follows that

x = a1p1b1 + a2p2b2 + · · ·+ ampmbm for some p1, p2, . . . , pm ∈ P .

Consequently, x ∈ K1PK2.

Conversely, if x ∈ K1PK2, then x = a1p1b1 + a2p2b2 + · · ·+ ampmbm for some

a1, a2, . . . , am ∈ K1, p1, p2, . . . , pm ∈ P and b1, b2, . . . , bm ∈ K2. This implies that

x ∈ a1 ◦ b1 + a2 ◦ b2 + · · ·+ am ◦ bm ⊆< K1 ◦K2 > .

Hence the lemma is proved.
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Theorem 2.16. Let (R, +, ·) be a ring, P a nonempty subset of R and (R, +, ◦)
the multiplicative hyperring where ◦ is the hyperoperation defined from P by

x ◦ y = { xty | t ∈ P } for all x, y ∈ R.

If Q is a quasi-ideal of (R, +, ·), then Q is a quasi-hyperideal of the multiplicative

hyperring (R, +, ◦).

Proof. Recall that (R, +, ◦) is really a multiplicative hyperring by Theorem 2.14.

Let Q be a quasi-ideal of (R, +, ·). Then Q is a subgroup of (A, +) and

RQ ∩QR ⊆ Q. It remains to show that < R ◦Q > ∩ < Q ◦R >⊆ Q. But

< R ◦Q > = RPQ by Lemma 2.15

= (RP )Q

⊆ RQ

and similarly < Q ◦R >⊆ QR. It then follows that

< R ◦Q > ∩ < Q ◦R >⊆ RQ ∩QR ⊆ Q.

This proves that Q is a quasi-hyperideal of (R, +, ◦), as required.

The converse of Theorem 2.16 is not true in general. If Q is a subgroup of

(R, +) which is not a quasi-ideal of (R, +, ·) (that is, RQ∩QR * Q) and P = {0},
then Q is clearly a quasi-hyperideal of (R, +, ◦). The following example is not a

trivial one.

Example 2.17. Let R be a ring with identity 1 6= 0 and M4(R) the ring of all

4× 4 matrices over R. Let

U4(R) = {A ∈ M4(R) | A is upper triangular}
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and

P =








0 0 x y

0 0 0 z

0 0 0 0

0 0 0 0




∣∣∣∣∣ x, y, z ∈ R





.

Define a hyperoperation ◦ on M4(R) by

A ◦B = {ACB | C ∈ P} for all A,B ∈ M4(R).

Then U4(R) is a subring of (M4(R), +, ·) and P is clearly an ideal of (U4(R), +, ·).
Since U4(R) contains the identity matrix of M4(R), we have

M4(R)U4(R) ∩ U4(R)M4(R) = M4(R) * U4(R).

Thus U4(R) is not a quasi-ideal of (M4(R), +, ·). By Lemma 2.15,

< M4(R) ◦ U4(R) > ∩ < U4(R) ◦M4(R) >

= M4(R)PU4(R) ∩ U4(R)PM4(R)

= M4(R)(PU4(R)) ∩ (U4(R)P )M4(R)

⊆ M4(R)P ∩ PM4(R) since P is an ideal of U4(R).

But an element of M4(R)P is of the form



0 0 x1 y1

0 0 x2 y2

0 0 x3 y3

0 0 x4 y4




and an element of PM4(R) is of the form



x1 x2 x3 x4

y1 y2 y3 y4

0 0 0 0

0 0 0 0




,
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so each element of M4(R)P ∩ PM4(R) is of the form




0 0 x1 x2

0 0 y1 y2

0 0 0 0

0 0 0 0




which is upper triangular. Hence

< M4(R) ◦ U4(R) > ∩ < U4(R) ◦M4(R) >⊆ U4(R)

which implies that U4(R) is a quasi-hyperideal of (M4(R), +, ◦).
Note that if “4”is replaced by “n”which is greater than 4, the above result is

still true.



CHAPTER III

MULTIPLICATIVE HYPERRINGS HAVING THE

INTERSECTION PROPERTY OF

QUASI-HYPERIDEALS

The main purpose of this chapter is to generalize Proposition 1.7 – Proposition

1.10 by characterizing when quasi-hyperideals of multiplicative hyperrings have

the intersection property and when multiplicative hyperrings have the intersection

property of quasi-hyperideals.

The first theorem of this chapter is a generalization of Proposition 1.7. We

first give a lemma which follows directly from Proposition 1.18(3) and Lemma

2.2(iii)

Lemma 3.1. If S is a subhyperring of a multiplicative hyperring (A, +, ◦), then

S + < A ◦ S > and S + < S ◦ A > are respectively a left hyperideal and a right

hyperideal of (A, +, ◦) containing S.

Theorem 3.2. If Q is a quasi-hyperideal of a multiplicative hyperring (A, +, ◦),
and either Q ⊆< Q ◦ A > or Q ⊆< A ◦Q >, then

Q = (Q + < A ◦Q >) ∩ (Q + < Q ◦ A >).

In this case, Q has the intersection property.

Proof. Suppose that Q is a quasi-hyperideal of (A, +, ◦). Let D = (Q + < Q◦A >)

∩ (Q + < A ◦Q >). By Lemma 2.2(i), Q ⊆ D. Now assume that Q ⊆< A ◦Q >.

Then Q + < A ◦ Q >=< A ◦ Q > by Lemma 2.2(ii), and so D = (Q +
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< Q ◦ A >) ∩ < A ◦ Q >. Next, we will show that D ⊆ Q. Let d ∈ D. Then

d ∈ Q + < Q ◦ A > and d ∈< A ◦ Q >. Thus d = k + c for some k ∈ Q and

c ∈< Q ◦ A >. Then

c = d + (−k)

∈< A ◦Q > +Q

=< A ◦Q >

which implies that c ∈< A ◦ Q > ∩ < Q ◦ A >⊆ Q, and therefore d = k + c ∈
Q + Q ⊆ Q. Hence D ⊆ Q. Similarly, Q ⊆< Q ◦ A > implies that D ⊆ Q. We

then conclude that D = Q. By Lemma 3.1, Q has the intersection property.

As a consequence of Theorem 3.2, we have

Corollary 3.3. Let Q be a quasi-ideal of a ring A. If Q ⊆ QA or Q ⊆ AQ, then

Q = (Q + AQ) ∩ (Q + QA).

In this case, Q has the intersection property (since Q + AQ and Q + QA are a

left ideal and a right ideal of A, respectively.)

We note that if (A, +, ◦) is a unitary multiplicative hyperring, then for every

quasi-hyperideal Q of (A, +, ◦), Q = Q ◦ u ⊆ Q ◦ A ⊆< Q ◦ A > where u is

the unitary element of (A, +, ◦), so by Theorem 3.2, Q = (Q + < A ◦ Q >)

∩ (Q + < Q ◦ A >). We then deduce that every unitary multiplicative hyper-

ring has the intersection property of quasi-hyperideals. Moreover, if (A, +, ◦) is

a regular multiplicative hyperring, then for every quasi-hyperideal Q of (A, +, ◦),
Q ⊆ Q ◦A ◦Q ⊆ Q ◦A ⊆< Q ◦A >, so Q = (Q + < A ◦Q >)∩ (Q + < Q ◦A >)

by Theorem 3.2. Hence a regular multiplicative hyperring has the intersection

property of quasi-hyperideals.
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The following two theorems give some equivalent conditions for a quasi-hyperideal

of a multiplicative hyperring to have the intersection property.

Theorem 3.4. Let Q be a quasi-hyperideal of a multiplicative hyperring (A, +, ◦).
Then the following statements are equivalent.

(i) Q has the intersection property.

(ii) (Q + < A ◦Q >) ∩ (Q + < Q ◦ A >) = Q.

(iii) < A ◦Q > ∩ (Q + < Q ◦ A >) ⊆ Q.

(iv) < Q ◦ A > ∩ (Q + < A ◦Q >) ⊆ Q.

Proof. (i)⇒(ii) Assume that Q has the intersection property. Then there exist

a left-hyperideal L and a right-hyperideal R of (A, +, ◦) such that Q = L ∩ R.

Then Q ⊆ L and Q ⊆ R and so < A ◦ Q >⊆ < A ◦ L >⊆< L >= L and

< Q ◦ A >⊆< R ◦ A >⊆< R >= R. Then Q + < A ◦ Q >⊆ L and Q+

< Q◦A >⊆ R. Consequently, (Q + < A◦Q >)∩ (Q + < Q◦A >) ⊆ L∩R = Q.

But Q ⊆ (Q + < A ◦Q >) ∩ (Q + < Q ◦ A >) by Lemma 2.2(i), so (ii) holds.

(ii)⇒(i) This follows from Lemma 3.1.

(ii)⇒(iii) This is obvious since < A ◦Q >⊆ Q + < A ◦Q >.

(iii)⇒(ii) Assume that < A ◦Q > ∩ (Q + < Q ◦A >) ⊆ Q. By Lemma 2.2(i),

Q ⊆ (Q + < A ◦ Q >) ∩ (Q + < Q ◦ A >). To prove the reverse inclusion, let

x ∈ (Q + < A ◦ Q >) ∩ (Q + < Q ◦ A >). Thus x = t1 + c and x = t2 + d

for some t1, t2 ∈ Q, c ∈< A ◦ Q > and d ∈< Q ◦ A >. Since Q is a subgroup of

(A, +) , c = −t1 + x = −t1 + t2 + d = (−t1 + t2) + d ∈ Q + < Q ◦ A >. Now, we

have that c ∈< A ◦ Q > ∩ (Q + < Q ◦ A >). By (iii), c ∈ Q . This implies that

x = t1 + c ∈ Q. Then (ii) holds.

Similarly, we can prove that (ii) ⇔ (iv).

The following theorem strengthens Theorem 3.4.
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Theorem 3.5. Let X be a nonempty subset of a multiplicative hyperring (A, +, ◦).
Then the following statements are equivalent.

(i) (X)q has the intersection property.

(ii) (ZX+ < A ◦X >) ∩ (ZX+ < X ◦ A >) = (X)q.

(iii) < A ◦X > ∩ (ZX+ < X ◦ A >) ⊆ (X)q.

(iv) < X ◦ A > ∩ (ZX+ < A ◦X >) ⊆ (X)q.

Proof. (i)⇒(ii) Since (X)q has the intersection property, there exist a left-hyperideal

L and a right-hyperideal R of (A, +, ◦) such that (X)q = L∩R. Then X ⊆ L and

so ZX ⊆ L and < A◦X >⊆< A◦L >⊆ L. Thus ZX+ < A◦X >⊆ L. Similarly,

we have ZX+ < X ◦A >⊆ R. Therefore, (ZX+ < A ◦X >)∩ (ZX+ < X ◦A >)

⊆ L ∩ R = (X)q. By Theorem 2.8, (X)q = ZX + (< A ◦X > ∩ < X ◦ A >), so

(X)q = ZX+(< A◦X > ∩ < X◦A >) ⊆ (ZX+ < A◦X >) ∩ (ZX+ < X◦A >).

Then (ii) holds.

(ii)⇒(i) It is true because of Lemma 2.2(iii).

(ii)⇒(iii) This implication is clear.

(iii)⇒(ii) Assume that < A ◦ X > ∩ (ZX+ < X ◦ A >) ⊆ (X)q. By The-

orem 2.8, (X)q = ZX + (< A ◦ X > ∩ < X ◦ A >). Then (X)q ⊆ (ZX+

< A ◦ X >) ∩ (ZX+ < X ◦ A >). By Theorem 2.8, we remain to show that

ZX + (< A ◦ X > ∩ < X ◦ A >) ⊇ (ZX+ < A ◦ X >) ∩ (ZX+ < X ◦ A >).

Let t ∈ (ZX+ < A ◦ X >) ∩ (ZX+ < X ◦ A >). Then t = t1 + q1 and

t = t2 + q2 for some t1, t2 ∈ ZX, q1 ∈ < A ◦ X > and q2 ∈< X ◦ A >.

Then q1 = −t1 + t = −t1 + (t2 + q2) = (−t1 + t2) + q2 ∈ ZX+ < X ◦ A >.

Hence q1 ∈< A ◦ X > ∩ (ZX+ < X ◦ A >) ⊆ (X)q. This implies that

t = t1 + q1 ∈ ZX + (X)q = (X)q. Therefore (ii) holds.

Similarly, we can prove that (ii) ⇔ (iv).

Proposition 1.8 and Proposition 1.9 are special cases of Theorem 3.4 and The-
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orem 3.5, respectively .

Corollary 3.6. Let Q be a quasi-hyperideal of a ring A. Then the following

statements are equivalent.

(i) Q has the intersection property.

(ii) (AQ + Q) ∩ (QA + Q) = Q.

(iii) AQ ∩ (Q + QA) ⊆ Q.

(iv) QA ∩ (Q + AQ) ⊆ Q.

Corollary 3.7. Let X be a nonempty subset of a ring A. Then the following

statements are equivalent.

(i) (X)q has the intersection property.

(ii) (ZX + AX) ∩ (ZX + XA) = (X)q.

(iii) AX ∩ (ZX + XA) ⊆ (X)q.

(iv) XA ∩ (ZX + AX) ⊆ (X)q.

The following theorem gives some equivalent conditions for a multiplicative

hyperring to have the intersection property of quasi-hyperideals.

Theorem 3.8. Let (A, +, ◦) be a multiplicative hyperring and let (i),(ii) and (iii)

be the statements given as follows.

(i) (A, +, ◦) has the intersection property of quasi-hyperideals.

(ii) For any finite nonempty subset X of A,

< A ◦X > ∩(ZX+ < X ◦ A >) ⊆ ZX + (< A ◦X > ∩ < X ◦ A >) (= (X)q).

(iii) For a finite subset X = {x1, x2, . . . , xn} of A and a1, a2, . . . an ∈ A , if

y ∈ (
n∑

i=1

ai ◦ xi) ∩ (
n∑

i=1

kixi +
n∑

i=1

xi ◦ a′i)

for some a′i ∈ A and ki ∈ Z, then y ∈ (X)q.

Then (i) ⇔ (ii) ⇒ (iii), and if (A, +, ◦) is strongly distributive, then (iii) ⇒(ii).
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Proof. (i)⇒(ii) Suppose that (A, +, ◦) has the intersection property of quasi-

hyperideals and let X be a finite nonempty subset of A. Then (X)q has the

intersection property. Therefore (ii) holds by Theorem 2.8 and Theorem 3.5.

(ii)⇒(i) Assume that (ii) true. Let Q be any quasi-hyperideal of (A, +, ◦). We

need to show that < A ◦ Q > ∩ (Q + < Q ◦ A >) ⊆ Q. Let y ∈< A ◦ Q >

∩ (Q + < Q ◦ A >). Then y ∈
n∑

i=1

ai ◦ qi and y ∈ q +
m∑

j=1

q′j ◦ a′j for some

ai, a
′
j ∈ A, q, qi, q

′
j ∈ Q and m,n ∈ N. Consider X = {q1, q2, . . . , qn, q, q

′
1, . . . , q

′
m}.

Then X ⊆ Q and |X| < ∞ . By assumption, < A ◦X > ∩ (ZX+ < X ◦ A >) ⊆
ZX + (< A ◦X > ∩ < X ◦ A >), so we have

y ∈< A ◦X > ∩ (ZX+ < X ◦ A >) ⊆ ZX + (< A ◦X > ∩ < X ◦ A >)

⊆ Q + (< A ◦Q > ∩ < Q ◦ A >)

⊆ Q + Q ⊆ Q.

This shows that < A ◦Q > ∩ (Q+ < Q ◦ A >) ⊆ Q. By Theorem 3.4, Q has the

intersection property. Hence (i) is proved.

(ii)⇒(iii) Assume (ii) holds. Let X = {x1, x2, . . . , xn} ⊆ A and a1, a2, . . . , an ∈
A and let y ∈ (

n∑
i=1

ai ◦ xi) ∩ (
n∑

i=1

kixi +
n∑

i=1

xi ◦ a′i) for some a′i ∈ A, ki ∈ Z. But

(
n∑

i=1

ai ◦ xi) ∩ (
n∑

i=1

kixi +
n∑

i=1

xi ◦ a′i) ⊆< A ◦X > ∩ (ZX+ < X ◦ A >) ⊆ (X)q,

so y ∈ (X)q

(iii)⇒(ii) Assume that (A, +, ◦) is strongly distributive and (iii) holds. Let X

be a finite nonempty subset of A, say X = {x1, x2, . . . , xn} , and y ∈ < A ◦X >

∩ (ZX+ < X ◦ A >). Then y ∈< A ◦ X > and y ∈ ZX+ < X ◦ A >. Since

(A, +, ◦) is strongly distributive, by Proposition 1.19, 0 ∈ 0 ◦ xi and 0 ∈ xi ◦ 0 for

all i ∈ { 1, 2, . . . , n }. It then follows that

y ∈
n∑

i=1

ai ◦ xi and y ∈
n∑

i=1

lixi +
n∑

i=1

xi ◦ a′i
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for some ai, a
′
i ∈ A and li ∈ Z for i ∈ { 1, 2, . . . , n }. Therefore

y ∈ (
n∑

i=1

ai ◦ xi) ∩ (
n∑

i=1

lixi +
n∑

i=1

xi ◦ a′i)

which implies that by (iii) that y ∈ (X)q. This proves that < A ◦X > ∩ (ZX+

< X ◦ A >) ⊆ ZX + (< A ◦X > ∩ < X ◦ A >). Hence (ii) holds.

A direct consequence of Theorem 3.8 is Proposition 1.10.

Corollary 3.9. The following statements for a ring A are equivalent.

(i) Every quasi-ideal of A has the intersection property.

(ii) For any finite nonempty subset X of A,

AX ∩ (ZX + XA) ⊆ ZX + (AX ∩XA) (= (X)q).

(iii) For any finite subset X = {x1, x2, . . . , xn} of A and a1, a2, . . . , an ∈ A, if

n∑
i=1

(aixi + kixi + xia
′
i) = 0,

for some a′i ∈ A and ki ∈ Z, then
n∑

i=1

aixi ∈ (X)q.



CHAPTER IV

MINIMAL QUASI-HYPERIDEALS OF

MULTIPLICATIVE HYPERRINGS

In the last chapter, minimal quasi-hyperideals of multiplicative hyperrings are

studied. The first aim is to generalize Proposition 1.11 to Proposition 1.14 by

considering minimal quasi-hyperideals of multiplicative hyperrings. The second

purpose is to investigate minimal quasi-ideals of the multiplicative hyperring de-

fined from the ring of all upper triangular n × n matrices over a division ring R

as in Theorem 2.14 by using P to be the set of all strictly upper triangular n× n

matrices over a division ring R.

Theorem 4.1. A nonzero quasi-hyperideal Q of a multiplicative hyperring (A, +, ◦)
is a minimal quasi-hyperideal if and only if (x)q = Q for all x ∈ Q\{0}.

Proof. Suppose that Q is a minimal quasi-hyperideal of (A, +, ◦) and let x ∈
Q\{0}. Since (x)q is a nonzero quasi-hyperideal of (A, +, ◦) contained in Q, by

the minimality of Q, (x)q = Q.

Conversely, assume that (x)q = Q for all x ∈ Q\{0}. Let Q′ be a nonzero

quasi-hyperideal of (A, +, ◦) contained in Q. Then there exists a nonzero element

in Q′, say y, so (y)q = Q. Thus Q = (y)q ⊆ Q′. Hence Q = Q′. Therefore Q is a

minimal quasi-hyperideal of (A, +, ◦).

We obtain that Proposition 1.11 is an immediate consequence of the above

theorem.
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Corollary 4.2. A nonzero quasi-ideal Q of a ring A is a minimal quasi-ideal of

A if and only if (x)q = Q for all x ∈ Q\{0}.

Next, a necessary and sufficient condition for a quasi-hyperideal of a multiplica-

tive hyperring to be minimal in terms of principal left hyperideals and principal

right hyperideals are givens as follows:

Theorem 4.3. A quasi-hyperideal Q of a multiplicative hypering (A, +, ◦) is min-

imal if and only if for any elements x, y ∈ Q\{0},

(x)l = (y)l and (x)r = (y)r.

Proof. Assume that Q is a minimal quasi-hyperideal of (A, +, ◦). Let x, y ∈
Q\{0}. Then by Lemma 2.6, (x)l ∩ Q is a nonzero quasi-hyperideal of (A, +, ◦)
contained in Q. By the minimality of Q, we have that Q = (x)l ∩ Q. Then

Q ⊆ (x)l, this implies that y ∈ (x)l. Therefore (y)l ⊆ (x)l. By a similar argument,

we obtain (x)l ⊆ (y)l. Hence (x)l = (y)l. Dually, we can show that (x)r = (y)r.

Conversely, assume that for all x, y ∈ Q\{0}, (x)l = (y)l and (x)r = (y)r. Let

Q′ be a nonzero quasi-hyperideal of (A, +, ◦) such that Q′ ⊆ Q. Let x ∈ Q\{0}.
Case 1: < A ◦ Q′ > ∩ Q 6= {0} and < Q′ ◦ A > ∩ Q 6= {0}. Let q ∈
(< A ◦Q′ > ∩ Q)\{0} and s ∈ (< Q′ ◦A > ∩ Q)\{0}. By assumption, (x)l = (q)l

and (x)r = (s)r, so x ∈ (q)l and x ∈ (s)r. Thus

x ∈ (q)l = Zq + < A ◦ q > by Lemma 2.3

⊆ Z < A ◦Q′ > + < A◦ < A ◦Q′ >> since q ∈< A ◦Q′ >

= Z < A ◦Q′ > + < A ◦ A ◦Q′ > by Proposition 1.18(2)

⊆ Z < A ◦Q′ > + < A ◦Q′ >

⊆< A ◦Q′ > + < A ◦Q′ >
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by Lemma 2.2(ii) and Proposition 1.18(3)

=< A ◦Q′ >

and

x ∈ (s)r = Zs + < s ◦ A > by Lemma 2.3

⊆ Z < Q′ ◦ A > + << Q′ ◦ A > ◦A > since s ∈< Q′ ◦ A >

= Z < Q′ ◦ A > + < Q′ ◦ A ◦ A > by Proposition 1.18(2)

⊆ Z < Q′ ◦ A > + < Q′ ◦ A >

⊆< Q′ ◦ A > + < Q′ ◦ A >

by Lemma 2.2(ii) and Proposition 1.18(3)

=< Q′ ◦ A >,

so x ∈< A ◦Q′ > ∩ < Q′ ◦ A >⊆ Q′.

Case 2: < A◦Q′ > ∩ Q = {0}. Let y ∈ Q′\{0}. Then y ∈ Q\{0} and (x)l = (y)l,

so x ∈ (y)l = Zy + < A ◦ y >. Thus x = ny + t for some t ∈< A ◦ y >, so

x− ny = t ∈< A ◦Q′ > ∩ Q = {0}. Hence x− ny = 0. Thus x = ny ∈ Q′.

Case 3: < Q′ ◦ A > ∩ Q = {0}. Dually to Case 2, one can prove that x ∈ Q′.

From the above three cases, we obtain Q = Q′. Therefore Q is a minimal quasi-

hyperideal of (A, +, ◦).

A consequence of Theorem 4.3 is Proposition 1.12.

Corollary 4.4. A quasi-ideal Q of a ring A is a minimal quasi-ideal of A if and

only if any two nonzero elements x and y of Q,

(x)l = (y)l and (x)r = (y)r.
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There are some relationships among minimal quasi-hyperideals, minimal left

hyperideals and minimal right hyperideals as follows:

Theorem 4.5. The intersection of a minimal left hyperideal L and a minimal

right hyperideal R of a multiplicative hyperring (A, +, ◦) is either {0} or a minimal

quasi-hyperideal of (A, +, ◦).

Proof. We have that Q = R ∩ L is a quasi-hyperideal of (A, +, ◦). Assume that

Q 6= {0}. We shall show that Q is minimal. Suppose that there exists a quasi-

hyperideal Q′ of (A, +, ◦) such that {0} 6= Q′ ( Q. Then Q′ ( L, so < A ◦Q′ >

is a left hyperideal of (A, +, ◦) contained in L. But L is a minimal left hyperideal

of (A, +, ◦), so it follows that < A ◦Q′ >= {0} or < A ◦Q′ >= L. If < A ◦Q′ >=

{0}, then Q′ is a left hyperideal of (A, +, ◦) such that {0} 6= Q′ ( L which

contradicts the minimality of L. Then < A ◦ Q′ >= L. Similarly, one can show

that < Q′ ◦ A >= R. Hence Q = R ∩ L =< Q′ ◦ A > ∩ < A ◦Q′ >⊆ Q′, which

contradicts that Q′ ( Q. We then deduce that Q is a minimal quasi-hyperideal

of (A, +, ◦).

Proposition 1.13 is directly obtained from Theorem 4.5.

Corollary 4.6. If L and R are a minimal left ideal and a minimal right ideal of

a ring A, then either L ∩R = {0} or L ∩R is a minimal quasi-ideal of A.

Theorem 4.7. If a nonzero quasi-hyperideal Q of a multiplicative hyperring (A, +, ◦)
such that < x ◦ Q >= Q =< Q ◦ x > for all x ∈ Q\{0}, then Q is a minimal

quasi-hyperideal of (A, +, ◦).

Proof. Let Q′ be a nonzero quasi-hyperideal of (A, +, ◦) such that Q′ ⊆ Q. This

implies that Q′ is a quasi-hyperideal of Q. Since < Q◦x >= Q =< x◦Q > for all

x ∈ Q\{0}, we have < Q ◦Q′ >= Q and < Q′ ◦Q >= Q. Hence Q =< Q′ ◦Q >
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∩ < Q ◦ Q′ > ⊆< Q′ ◦ A > ∩ < A ◦ Q′ >⊆ Q′. Then Q = Q′. Therefore Q is a

minimal quasi-hyperideal of (A, +, ◦).

We have mentioned in Chapter II that for a ring A with |A| > 1, A is a division

ring if and only if Ax = xA = A for all x ∈ A\{0}. Then the following result can

be considered as a consequence of Theorem 4.7.

Corollary 4.8. Let Q be a quasi-ideal of a ring A. If Q is a division subring of

A, then Q is a minimal quasi-ideal of A.

In the remainder, let R be a division ring, n ∈ N and Un(R) = (Un(R), +, ·)
the ring of all upper triangular n×n matrices over R where + and · are the usual

addition and the multiplication of matrices, respectively. Let SUn(R) be the set

of all strictly upper triangular n× n matrices over R. Define a hyperoperation ◦
on Un(R) by

A ◦B = {ACB | C ∈ SUn(R)} for all A, B ∈ Un(R) .

Since SUn(R) is a subring of (Un(R), +, ·), we have

A ◦B = ASUn(R)B for all A,B ∈ Un(R).

By Theorem 2.14, (Un(R), +, ◦) is a multiplicative hyperring which may be de-

noted by (Un(R), +, SUn(R)). Note that SUn(R) is an ideal of (Un(R), +, ·).
The main purpose of this part is to prove the following results.

1) If char R = 0, then (Un(R), +, SUn(R)) has no minimal quasi-hyperieal.

2) Let char R = p > 0. Then the following statements hold.

2.1) For A ∈ Un(R), if rank(A) = 1, then (A)q is a minimal quasi-hyperideal

of (Un(R), +, SUn(R)).
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2.2) The converse of 2.1) holds if and only if n ≤ 2.

We note that if char R = 0, then m1R 6= 0 for all m ∈ Z\{0} where 1R is the

identity of R. Also, if char R = p > 0, then

Z1R = { 0, 1R, 2(1R), . . . , (p− 1)(1R) }

so for x ∈ R,

Zx = { 0, x, 2x, . . . , (p− 1)x }

and |Zx| = p if x 6= 0.

Theorem 4.9. If char R = 0, then (Un(R), +, SUn(R)) has no minimal quasi-

hyperideal.

Proof. Let char R = 0. To prove that (Un(R), +, SUn(R)) has no minimal quasi-

hyperideal, by Theorem 4.1, it suffices to prove that for every A ∈ Un(R)\{0},
there exists B ∈ Un(R)\{0} such that (B)q ( (A)q in (Un(R), +, SUn(R)).

Let A ∈ Un(R) and A 6= 0. Then 2A ∈ Un(R). Since char R = 0 and A 6= 0,

we have 2A 6= 0. Since (A)q is a subgroup of (Un(R), +), 2A ∈ (A)q which implies

that (2A)q ⊆ (A)q. Suppose that (2A)q = (A)q. By Theorem 2.8 and Lemma 2.15,

(A)q = ZA + (< A ◦ Un(R) > ∩ < Un(R) ◦ A >)

= ZA+(ASUn(R)Un(R) ∩ Un(R)SUn(R)A) , (1)

so

(2A)q = Z(2A) + ((2A)SUn(R)Un(R) ∩ Un(R)SUn(R)(2A))

= 2(ZA + (ASUn(R)Un(R) ∩ Un(R)SUn(R)A))

= 2(A)q.
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Since A ∈ (A)q = (2A)q = 2(A)q and SUn(R) is an ideal of Un(R), we have form

(1) that there exist m ∈ Z, B ∈ Un(F ) and C ∈ SUn(F ) such that

A = 2(mA + CA) = 2mA + 2CA

which implies that

(1− 2m)A = 2CA. (2)

Since A is upper triangular, Aij = 0 for all i, j ∈ { 1, 2, . . . , n } and i > j. Since

A 6= 0, Aij 6= 0 for some i ∈ { 1, 2, . . . , n } and j ∈ { i, i + 1, . . . , n }. Let

k = max{ i ∈ { 1, 2, . . . , n } | Aij 6= 0 for some j ∈ { i, i + 1, . . . , n }}, (3)

and let l ∈ { k, k + 1, . . . , n } be such that Akl 6= 0. From (2), we have

((1− 2m)A)kl = (2CA)kl.

It then follows that

(1− 2m)Akl = 2
n∑

j=1

CkjAjl.

= 2
k∑

j=1

CkjAjl + 2
n∑

j=k+1

CkjAjl

= 2
k∑

j=1

CkjAjl from(3). (4)

Since C is strictly upper triangular, Ck1 = Ck2 = . . . = Ckk = 0. Thus we have

from (4) that

(1− 2m)Akl = 0.

But char R = 0 and Akl 6= 0, so 1−2m = 0. Thus 2m = 1 which is a contradiction.

Hence (2A)q ( (A)q.

This proves that (Un(R), +, SUn(R)) has no minimal quasi-hyperideal, as re-

quired.
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Lemma 4.10. For A ∈ Un(R), if rank(A) = 1, then

Un(R)SUn(R)A ∩ ASUn(R)Un(R) = {0}.

Proof. Let A ∈ Un(R) be such that rank(A) = 1. Then A 6= 0 and Aij = 0 for

all i, j ∈ { 1, 2, . . . , n } with i > j, so Aij 6= 0 for some i ∈ { 1, 2, . . . , n } and

j ∈ { i, i + 1, . . . , n }. Let

k = max{ i ∈ { 1, 2, . . . , n } | Aij 6= 0 for some j ∈ { i, i + 1, . . . , n }},

and

l = min{ j ∈ { k, k + 1, . . . , n } | Akj 6= 0}.

It thus follows from the properties of k, l and the fact that rank(A) = 1 that

A =




0 . . . 0 x1Akl x1Ak,l+1 . . . x1Akn

0 . . . 0 x2Akl x2Ak,l+1 . . . x2Akn

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 xk−1Akl xk−1Ak,l+1 . . . xk−1Akn

0 . . . 0 xkAkl xkAk,l+1 . . . xkAkn

0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . 0




for some x1, x2, . . . , xk−1 ∈ R where xk = 1. Let B ∈< Un(R) ◦ A > ∩
< A ◦ Un(R) >. Since SUn(R) is an ideal of (Un(R), +, ·), by Lemma 2.15, we

have B = CA = AD for some C, D ∈ SUn(R). Then
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CA =




0 . . . 0
k∑

j=2

(C1jxj)Akl

k∑
j=2

(C1jxj)Ak,l+1 . . .

k∑
j=2

(C1jxj)Akn

0 . . . 0
k∑

j=3

(C2jxj)Akl

k∑
j=3

(C2jxj)Ak,l+1 . . .

k∑
j=3

(C2jxj)Akn

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 Ck−1,kxkAkl Ck−1,kxkAk,l+1 . . . Ck−1,kxkAkn

0 . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

0 . . . 0 0 0 . . . 0




(1)

Since A ∈ Un(R) and D ∈ SUn(R), Ai1 = Ai2 = . . . = Ai,l−1 = 0 for all i ∈
{ 1, 2, . . . , n }, Dll = Dl+1,l = . . . = Dnl = 0. Then (AD)il =

l−1∑
t=1

(AitDtl) +

n∑

t=l

(AitDtl) = 0 + 0 = 0 for all i ∈ { 1, 2, . . . , n }. But CA = AD, so (CA)il =

(AD)il = 0 for all i ∈ { 1, 2, . . . , n }. Since Akl 6= 0 and (CA)il = 0 for all

i ∈ {1, 2, . . . , n}, we have from (1) that

k∑
j=2

(C1jxj) = 0

k∑
j=3

(C2jxj) = 0

...

k∑

j=k−1

(Ck−2,jxj) = 0

Ck−1,kxk = 0.

which implies by (1) that CA = 0. But B = CA, so B = 0. This proves that

Un(R)SUn(R)A ∩ ASUn(R)Un(R) = {0}, as desired.

Corollary 4.11. For A ∈ Un(R), if rank(A) = 1, then

(A)q = ZA in (Un(R), +, SUn(R)).
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Proof. Let A ∈ Un(R) be such that rank(A) = 1. By Lemma 4.10, Un(R)SUn(R)A

∩ ASUn(R)Un(R) = {0}. Then

(A)q = ZA + (< A ◦ Un(R) > ∩ < Un(R) ◦ A >) by Theorem 2.8

= ZA + (Un(R)SUn(R)A ∩ ASUn(R)Un(R)) by Lemma 2.15

= ZA. by Lemma 4.10

Lemma 4.12. Let char R = p > 0. Then for A ∈ Un(R)\{0}, (A)q = ZA in

(Un(R), +, SUn(R)), then (A)q = { 0, A, 2A, . . . , (p − 1)A }, |(A)q| = p and

(A)q is a minimal quasi-hyperideal of (Un(R), +, SUn(R)).

Proof. Since char R = p,

Z1R = { 0, 1R, 2(1R), . . . , (p− 1)(1R)},

and so

ZA = (Z1R)A = { 0, A, 2A, . . . , (p− 1)A }

where 1R is the identity of R. Then (A)q = { 0, A, 2A, . . . , (p− 1)A }. Because

A 6= 0, Aij 6= 0 for some i, j ∈ {1, 2, . . . , n}. Since char R = p and Aij 6= 0,

we have that 0, Aij, 2Aij, . . . , (p − 1)Aij are all distinct. Hence |(A)q| = p. Let

B ∈ (A)q and B 6= 0. Then (B)q is an additive subgroup of (A)q and (B)q 6= {0}.
But |(B)q|

∣∣∣|(A)q|, so |(B)q| = p. Hence (B)q = (A)q. Therefore (A)q is a minimal

quasi-hyperideal of (Un(R), +, SUn(R)).

The following theorem is obtained directly from Corollary 4.11 and Lemma

4.12.

Theorem 4.13. Let char R = p > 0 and A ∈ Un(R). If rank(A) = 1, then in

(Un(R), +, SUn(R)), (A)q is a minimal quasi-hyperideal.
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Theorem 4.14. Let char R = p > 0. Then the following statements are equiva-

lent.

(i) For A ∈ Un(R), if (A)q is a minimal quasi-hypereideal of (Un(R), +, SUn(R)),

then rank(A) = 1.

(ii) n ≤ 2.

Proof. To prove (i) implies (ii) by contrapositive, assume that n > 2. Let

A =




0 . . . 0 0 1

0 . . . 0 1 0

0 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0




.

Then A ∈ Un(R) and rank(A) = 2. To show that Un(R)SUn(R)A∩ASUn(R)Un(R)

= {0}, let B ∈ Un(R)SUn(R)A ∩ ASUn(R)Un(R). Since SUn(R) is an ideal of

(Un(R), +, ·), B = CA = AD for some C, D ∈ SUn(R). But

CA =




0 C12 C13 . . . C1n

0 0 C23 . . . C2n

. . . . . . . . . . . . . . .

0 0 . . . 0 Cn−1,n

0 0 0 0 0







0 . . . 0 0 1

0 . . . 0 1 0

0 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0




=




0 . . . 0 C12 0

0 . . . 0 0 0

0 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0




,
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AD =




0 . . . 0 0 1

0 . . . 0 1 0

0 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0







0 D12 D13 . . . D1n

0 0 D23 . . . D2n

. . . . . . . . . . . . . . .

0 0 . . . 0 Dn−1,n

0 0 0 0 0




=




0 . . . 0 0 0

0 . . . 0 0 Dn−1,n

0 . . . 0 0 0

. . . . . . . . . . . . . . .

0 0 0 0 0




and B = CA = AD, so we have that B = 0. This proves that Un(R)SUn(R)A ∩
ASUn(R)Un(R) = {0}. By Theorem 2.8, Lemma 2.15 and Lemma 4.12, (A)q is a

minimal quasi-hyperideal of (Un(R), +, SUn(R)).

Conversely, to prove that (ii) implies (i), assume that n ≤ 2 and let A ∈ Un(R)

be such that (A)q is a minimal quasi-hyperideal of (Un(R), +, SUn(R)). Then

A 6= 0. If n = 1, then rank(A) = 1.

Next, assume that n = 2. To prove that rank(A) = 1, suppose not. Since

A =




a11 a12

0 a22


 ,

we have that a11 6= 0 and a22 6= 0. Let

B =




0 1

0 0


 .
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Because



0 1

0 0


 =




1 0

0 0







0 a−1
22

0 0







a11 a12

0 a22




=




a11 a12

0 a22







0 a−1
11

0 0







0 0

0 1




we have that B ∈ U2(R)SU2(R)A∩ASU2(R)U2(R). But (A)q = ZA+(U2(R)SU2(R)A

∩ ASU2(R)U2(R)) by Theorem 2.8 and Lemma 2.15, so B ∈ (A)q and hence

(B)q ⊆ (A)q. Since rank(B) = 1, by Corollary 4.11, (B)q = ZB in (U2(R), +, SU2(R)),

so

(B)q =








0 m

0 0




∣∣∣∣∣ m ∈ Z





.

Then A /∈ (B)q since a11 6= 0 and a22 6= 0. Therefore {0} ( (B)q ( (A)q. It is

a contradiction since (A)q is a minimal quasi-hyperideal of (U2(R), +, SU2(R)).

This proves that rank(A) = 1, as required.
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