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Chapter 1

Introduction

The Bose-Einstein Condensation(BEC) [1-4] is one of the most re-
markable phenomena in quantum many-body system. The condensation is a log-
ical consequence of the Bose-Einstein statistics: a gas of non-interacting bosonic
atoms, below a certain temperature, suddenly develops a macroscopic population
in the lowest energy quantum mechanical state.

According to quantum mechanics, all particles belong to one of two kinds,
bosons or fermions, named after the scientists who first introduced them, S.N.
Bose and E. Fermi. Bosons are particles which have integer spin; the angular
momentum of the particle is 0, 1, 2, 3, and so on, in units of the reduced Planck
constant h = h/2mw. Fermions are particles which have half-integral spin: 1/2,
3/2,5/2, and so on, in the same units.

Moreover, another major different between bosons and fermions is that
fermions are subject to the Pauli exclusion principle, while bosons are not. Put
in simple term, this means that no two fermions can be in the same state at the
same time, while bosons do not suffer from such a restriction. On the contrary,
they have a tendency to accumulate in the same state. Fermions are repelled by
each other, while bosons are attracted under the effect of the so-called exchange
force. There are some classic examples. Both photons and phonons are examples
of bosons, while protons, neutrons and electrons are examples of fermions.

Furthermore, we have known from quantum statistics that at ultra-low
temperature the de Broglie wavelength, A4, of atoms becomes extremely large,

then they begin to feel that they are not isolated, even at low density. It is



as if the atoms had long tentacles that allow them to probe their environment
and notice the presence of other atoms. One of two things can then happen,
depending upon whether the atoms are bosons or fermions: Fermions start to
repel each other so as to make to sure that no two of them are in the same state.
Bosons, on the other hand, begin to attract each other, attempting to all occupy
the same state. At absolute zero temperature, all atoms eventually condense into
the lowest energy state. This is the phenomenon of Bose-Einstein condensation.

Basically, we can say that Bose-Einstein condensation is a phase transition
that occurs when a collection of identical bosons is cooled to the point that
their quantum mechanical de Broglie wave overlaps. The basic physics of this
phase transition is worked out in every text in statistical mechanics [5]. But the
most important point is that Bose-Einstein condensation occurs only at quite low
temperatures. The de Broglie wavelength, Ay, is equal to h/p, where % is Planck

constant and p is the momentum of the particle. At temperature 7', typical value

M

of p will be (2mkgT)?, where m is the mass of the particle and kp is Boltzmann’s

constant. The precise condition for Bose-Einstein condensation to occur is that

3
omh? \ 2
nA3, = n (mZBT> = 2.612 (1.1)

where n is the number density of the particles.

Originally, in 1925, Bose-Einstein condensation was predicted by Einstein
that a non-interacting gas of atoms (bosons) would undergo a phase transition at
low temperature, when a macroscopic number of atoms occupy the lowest energy
level (in a uniform ideal Bose gas, this is the zero momentum single-particle
state). His work was inspired by a novel derivation of the Planck distribution for

photons by Bose in 1924.



For many years, however, Bose-Einstein condensation had been regarded
as a mathematical artifact. Until 1938, the theory of Bose-Einstein condensation
was first applied to superfluid liquid helium [6,7] and shortly thereafter was used
to explain superconductivity in metals at low temperature [8]. These two branches
of condensed matter physics have been enormously important research since their
inception.

Subsequently, in the 1970’s, efforts started to observe Bose-Einstein con-
densation in a dilute vapor of spin-polarized hydrogen [9], whose inter-atomic
interaction is sufficiently weak and well understood. However, Bose-Einstein con-
densation in the hydrogen gas was not achieved for a long time, because of the
existence of inelastic inter-atomic collisions, which cause trap loss and heating.
Nevertheless, several of the key ideas that led to success in alkali atoms in 1995
grew out of the pioneering work on hydrogen gas in the 1970’s.

Afterwords, in 1993, the evidence of Bose-Einstein condensation in a gas
of exitons in a semi-conductor host has been observed [10]. Although the interac-
tions in these systems are weak, little information about them is known, and thus
it is difficult to understand the net effect of Bose-Einstein condensation in the
exiton gas. Furthermore; attention has also focused on the alkali atoms: Li, Na,
K, Rb and Cs. The atoms are bosons, with an even number of neutrons. More-
over, by combinations of various new technologies developed in atomic physics
such as laser cooling and trapping [11], evaporation cooling and magnetic trap
have made it possible to observe Bose-Einstein condensation of -alkali atoms in
controllable situations. The essential idea behind laser cooling is that when an
atom absorbs a photon, it slows down.

In 1995, Bose-Einstein condensation was observed in a series of experi-



ments on vapors of ¥Rb[12], "Li[13,14], and ®"Na[15] in which the atoms were
confined in magnetic traps and cooled down to extremely low temperature of the
order of 107% — 1077 K [16-19]. Moreover, in 1998, Bose-Einstein condensation
of spin-polarized hydrogen atoms was also finally observed [20]. Now, more than
twenty groups have succeeded in observing Bose-Einstein condensation [21-24].

Alkali atoms are perfect for Bose-Einstein condensation studies. They
have a magnetic moment, and hence can be trapped by magnetic field. They
essentially have a one-electron structure. They are thus simple atoms, and have
been well studied by atomic physicists. One can easily selectively flip the spin
of higher energy trapped atoms. These hot atoms are then quickly ejected from
the magnetic trap and the remaining atoms quickly thermalize to a lower tem-
perature. This evaporate cooling is very efficient and quickly brings one into the
temperature region required for Bose-Einstein condensation.

It is useful to mention a few experimental fact about the magnetic traps

currently in use. As it turns out, these traps are well described as a harmonic

potential
T (isotropic)
2
‘/;x(m == { m(w2x2+w2y2+w2z2) ) ) (1.2)
e (anisotropic)

Most current traps are either:
pancakes , Wy > w, (= wy) (1.3)
cigars , WAk Wyl (= wy) (1.4)

and the trap frequencies are of the order w ~ 27wx100 Hz. In 1995, the first
condensates were small ~ 103 atoms and Tgpc ~ 100 nK. However in 1999, the
condensates can be quite large ~ 10% atoms at Tprc ~ uK. These have size ~

many microns, which can be easily seen optically when the condensates are small,



the trap is turned off and cloud allowed to expand, and then measured by optical
methods. The results are simple to analyze if gas is non-interacting. However,
more analysis is needed to include the effects of interaction during expansion.
In addition, observation of Bose-Einstein condensation in cooled and
trapped dilute gases of alkali atoms and spin polarized atomic hydrogen has gen-
erated a renewed theoretical interest in understanding such systems. In a mean
field approach, which is valid in the limit pa® < 1 where p is density of atoms and
a is the s-wave scattering length, ground state of these systems can be described
by Ginzburg-Pitaevskii-Gross equation [25]. Various numerical procedures and
approximate analytical methods have been used to solve the Ginzburg-Pitaevskii-
Gross equation. Among these variational scheme proposed by Gordon Baym and
C.J. Pethick [26] to explain the experimental observations of 8"Rb is particularly
appealing. In this approach the trial wavefunction was taken to be of the form
of ground state of the trap potential, modeled by an anisotropic harmonic os-
cillator potential. Thus the wavefunction is represented by a three dimensional
Gaussian with axial and transverse frequencies as variational parameters. This
form of wavefunction, however, is valid only when the number of atoms in the
trap is very small. As the number increases, the repulsive interaction between
the atoms tends to expand the condensate and flatten the density profile in the
central region of the trap where the density is maximum. Of these two effects,
only expansion of the condensate can be described adequately by the Gaussian
trial wavefunction. On the other hand, in the limit of very large number of atoms
in the trap, an essentially exact expression for the ground state wavefunction can
be described by the Thomas-Fermi approximation [27], by neglecting the kinetic

energy term in the Ginzberg-Pitaevskii-Gross equation. It is also important to



note that the Thomas-Fermi wavefunction does not describe the surface region
properly which significantly affects some relevant physical observables, e.g., the
aspect ratio.

In addition the inter-particle interaction in the work of Gordon Baym
and C.J. Pethick are of finite range (short-range) and well approximated by the
delta function. Furthermore the long-range interaction are also considered which
it is the problem of charged boson. Inter-particle interactions of charged bosons
system are long-range and approximated by Coulomb potential. The problem of
charged bosons is rather academic, but turns out to be quite interesting because
its concept can be used in various branches of condensed matter and plasma
physics.

Moreover, charged boson problem recently became of particular inter-
est motivated by the bipolaron theory of high-temperature superconductivity
[28]. Initially, in 1955, Schafroth [29] demonstrated that an ideal gas of charged
bosons exhibits the Meissner-Ochsenfeld effect below the ideal Bose-gas conden-
sation temperature. Later on, in 1961, Foldy [30] studied the theory of a homo-
geneous plasma of charged bosons by using the Bogoliubov [31] approach. Until
1995 that Bose-Einstein condensation was observed. Then the properties of the
ground state energy of charged bosons became more important, and it was stud-
ied by using Ginzburge-Pitaevskii-Gross equation which is based on mean field
theory. There are numerical procedure and approximate analytical method that
have been used to solve the Ginzburge-Pitaevskii-Gross equation.-The important
numerical procedure is the work of Yeong E. Kim and Alexander L. Zubarev [32]
to approximate the ground state energy of charge bosons, but this procedure is

valid when the number of atoms in the system is large. In addition, the impor-



tant approximated analytical method is the work of Takeya Tsurumi, Hirofumi
Morise and Miki Wadati [33]. By using variational technique, they can approxi-
mate the ground state energy of charged bosons, and can show that the ground
state energy of long-range interacting bosons under traps is stable.

Unfortunately, up to the present there is no experimental evidence of
Bose-Einstein condensation for bosonic atoms with charges. In the future, new
technology may make it possible to observe this Bose-Einstein condensation for
bosonic atoms with charges, and after that the ground state energy of charged
bosons will be proved. Although the directly experimental proof is not yet re-
alized, the concept may still be useful in condensed matter physics, especially
bipolaron theory of high temperature superconductivity, and the theory of plasma
physics such as a plasma in the core of white dwarfs [34] .

Since the concept of charged bosons is important in various branches of
physics, the propose of this thesis is to evaluate the ground state energy of charged
bosons in an isotropic trap whose inter-atomic interaction is approximated by
Coulomb and Screened Coulomb potential using the method of the variational
Feynman path integration developed by R.P. Feynman [35], and then compare
the result with the result from the Ginzburg-Pitaevskii-Gross approach.

Since the problem of charged bosons will be formulated in the form of
Feynman path integrals, Chapter II is devoted to the construction of the basic
ideas of the Feynman path integrals, and the discussion of how the variational
Feynman path integral can be used to evaluate the ground state energy of the
quantum systems.

Then, Chapter III is devoted to the review of the current research in the

evaluation of the ground state energy for bosonic atoms with and without charges



by using the Ginzburg-Pitaevskii-Gross approach; the basic ideas of the Ginzburg-
Pitaevskii-Gross equation are also presented. Moreover, the lower and the upper
limit of the ground state energy of Bose-Einstein condensation is presented by
using the evaluation of the ideal Bose gas (non-interacting Bose gas) model and
the Thomas-Fermi approximation respectively.

Next, Chapter IV is devoted to the calculation of the ground state en-
ergy of charged bosons whose inter-atomic interactions are approximated by the
Coulomb and Screened Coulomb potential. Finally, the discussion and conclusion

are presented in Chapter V.



Chapter 2
Feynman Path Integrals

Since we will formulate the problem of charged bosons in an isotropic
traps in the form of Feynman path integrals [44], we will devote this chapter to
introduce the basic ideas of Feynman path integrals.We present in this chapter
the mathematical formulation of the propagator in the form of a path integral.
Moreover, we will discuss how the variational path integration which can be used

to estimate the upper bound of the ground state energy of our system.

2.1 Feynman Propagator

If a particle moves from one to another point there are many possible path
which the particle can take. In classical mechanics, when we consider the particle
as a point, there is a principle of least action which expresses the condition that
determines a particular path from all of the possible paths. For simplicity, we
will restrict ourselves to the case of a particle moving in one dimension. Thus
the position at any time can be specified by coordinate x which is a function of
time. The path thus means a function z(t).

If a particle starts from the point z, at an initial time, ¢,, and then moves
to the end point, xz;, at the end time, t;, there are many possible paths in the

area of interest, in which the particle can move. For each path, the action S,

ty
S:/ L(z,x,t)dt, (2.1)
ta

where L is the Lagrangian for the system.
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The principle of least action states that the particular path z(t) along
which the particle actually travels corresponds to the extremum value of S. In
other words, the value of S is unchanged to the first order if the path z(t) is the
classical path.

Quantum mechanics deals with probabilities, that is, we cannot specify
the position of a particle but we can only know the probability of its being found
in a given place. The probability of a particle being found to have a position x(t)
is the absolute square of a probability amplitude. The probability amplitude is
associated with the entire motion of a particle as a function of time, rather than
simply with the position of the particle at a particular time. Thus consider the
path along which the particle move from a to b, we must specify how much each
trajectory contributes to the probability amplitude K (b,a). It is not just the
particular path of extreme action which contributes; rather, it is the case of the
all of paths contribute. The contribution ¢[x ()] from a single path depends on

the classical action for that path in the units of A,

[z (t)] = (const) exp [%S{x(t)}] . (2.2)
The amplitude K'(b,a) is the sum over all trajectories between the end points of
a and b of the contributions ¢[z(t)],
Kb o) = > ole® (2:3)
all paths from a to'b
hence, from Eqs.(2.2) and (2.3), we obtain

K(b,a) = 3 (const) exp [%S{x(t)}} | (2.4)

all paths from a to b

We have thus described the physical ideas concerned in the construction

of the amplitude for a particle to reach a particular point in space and time by
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closely following its motion in getting there. So if we want to find the probability
amplitude of the particle going from a to b, we have to carry out the sum in Eq.
(2.4), but the number of paths from a to b is infinite, so Eq. (2.4) is very difficult
to work with. Another method and more efficient method of computing the sum
over all paths will be described now.

We choose a subset of all paths by first separating the independent time
into small interval, e. This gives us a set of successive times ty,%s,t3,... be-
tween t, and t,, where t;.1 = t; + €. At each time, t;, we select some spe-
cial point x; and constructing a path by connecting all of the points, so we
set the form of them to be a line. This processes are shown in Figure 2.1.
It is possible to define a sum over all paths constructed in this manner by
taking a multiple integral over all values of z; for 7 from 1 to n — 1, where

s L\
D0 = Cadd, = T4

By using this method, Eq. (2.4) become

K (b,a) = / / / (const) exp l%S{x(t)}} dodzy . doy . (25)

We do not integrate over xg or x, because these are the fixed end point x, and
xp. In order to achieve the correct measure, Eq. (2.5) must be taken in the limit
of € — 0 and some normalizing factor. A~" which depends-on ¢ must be provided

in order that the limit of Eq. (2.5) becomes

(ba) ~ i // /Const exp{S{x()}}%%...% (2.6)

Eq. (2.6) can also be written in a less restrictive notation as

K(b,a) ~ N / / / (const) exp {%S{m(t)}] D(path) (2.7)
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Figure 2.1: Diagram showing how the path integrals can be constructed.

This is called a path integral and the amplitude K (b, a) is known as the Feynman

propagator.

2.2 Propagator from Schrodinger Equation

So far, we have followed Feynman’s argument in writing down the prop-
agator in the form of path integral. It will now be shown that the propagator
in this form can also be derived directly from the Schrodinger equation. The
time-dependent Schrodinger equation is

{m% — H] () = 0. (2.8)

We can define the one-electron Green Function of this equation as the solution of

[fm% ) H} G(Z, 25ty ) = 0(2 ~&)o(t =) (2.9)

Thus the Green function can be written in matrix form as

Gz, T:5t,¢) = (7] exp{—%ﬁ(t — )7, (2.10)
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Let us divide the time interval ¢ — ¢ into n equal small subintervals, so

that t — ¢’ = ne. By making use of the identity

icHn ) ieH "
exp (— - ) = 11_{% (1 - T) : (2.11)

Eq. (2.20) becomes to

ieH iel
T 7 =M 1—— ... [1==117). 2.12
G(F, 7.t Egg@l( h) ( ; )m (212)

N J/

-
n lactors

According to of quantum mechanics we can insert a complete set of states

between each pair of factors in Eq. (2.12):

H
G(T, &3t ) = 15%// / 7 (1 \ “—) (T )T
v- icH b, R
'<-Tn*1’ (1 2 7) |xn72>d~1‘n72 c

(FYd (| (1 _ %) 1) (2.13)

H= > V (), (2.14)

(Fon (1 . TH) af| | @b 50 @ e
= [tweindgaiey {0 L avia}] @)

From quantum mechanics, the momentum eigenfunction (Z|p) for a free particle
1s

19 = e (377 210
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Therefore

B ieH\ 1 i L
(Tt (1 - T) 7)) = W/GXP{T_‘L (Tiy1 — T4) -p}

. [1 - % {p—2 + v(f)H dp. (2.17)

2m

We now replace 1 — % {% + V(f)} by the corresponding exponential, the error
introduced here is O(e?), so that the total error from all the n factors can be

neglected. Eq. (2.17) becomes to

ieH \| 1 ie [ p* (T — 7)) -0 .o
1— —= i 4 e s, A ) P
( h > %) (2mh)3 /exp{ h {Qm € ap

<fi+1

. {2:;7@ (B @ - @))2} exp {—%V(f)} |

Substituting Eq. (2.19) into Eq. (2.13), we obtain
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)3/2 N -

where % = (2 T, = Z,Ty = 2. In an obvious notation

diy dZy  dZ,—4
7 / _ — T —_—
Gz, 75t t) // /exp{ /t/ 7 V(x)}dt] T A A

(2.21)

It can be shown that the time-dependent Green function (Eq. (2.20)) of
Schrodinger equation has exactly the same form as the Feynman propagator, (Eq.
(2.6)). The latter can be written in this form by using the argument discussed at
the beginning of this chapter. As a simple example of how to obtain G (&, Z';¢,t')
written in the form of Eq. (2.21), let us consider the case of a free electron.

For a free electron L = %

, by using Eq. (2.20) we obtain

oo N j” m (T — dihd7y  dT,
G@&4t) =lm7 // /exp[hl 2 ( ; ) A A A
(2.22)

The calculation is carried out by direct integrations as follows. Since

o 3/2
, = e i, T ab .
/ exp {a(xo—x1)2+b(x2—m1)2}dx1 = <_(a+b)) eXP{a+b($2—$0)2}a

we have

3 [0 .
<27:?h€> / eXP {% [<f1 — To)” 4+ (2 — 51)2} } dr

o0

B ( m )3 mihe 3/2ex m (Fo — 0)?
-~ \2rihe m P 2h(2¢) 7 "

_ <#{2€)>3/Q exp {%(@ - i;‘O)Q} . (2.24)
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2mihe

Multiplying the result by (T)_l/2 exp { 2 (T3 — T»)?} and integrating over 5,

we obtain

1 mo, . I I dx, dZ
i) fe {ﬁ <I1”0)2*“2‘“2*(“‘“)2}} A A

In this way a recurring process is established by which, after (n — 1) steps, we

obtain

- 4 m 3/2 im = =
Gﬂ(wa 1'/; t) 7 <2m’h(ns)) exp [Qh(ne) (xn - 370)2]

. Since ne =t, %, = & and 7y = &', then

) = (N T
Go(a:,x,t)—<2mht) exp [2ht<x ). (2.26)

The method of direct integration can be carried out only for this simple
case of a free electron. For other case, the path integral is more difficult to work
out. Therefore, a different way to solve this difficult problem is required.

First, we begin with the general form of the Feynman path integral

K, 4= N / DA fexdp {%S(f(t))} . (2.27)

We known from classic physics that the action S"is extremized and then it fur-
nishes us the classical path completely fixed. Therefore, any path Z(t) can be
expressed as the sum of the classical path, 7(t), and a new variable ¢(t). That
1s

T(t) = Ze(t) + ¥(t) (2.28)

(2.25)
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and it is clear that the path differential D[Z(¢)] can be replaced by D[y(t)]. This
means that besides defining a point on the path by its distance #(¢) from an
arbitrary coordinate axis, we now give the meaning of it by its deviation y/(t)
from the classical path, as shown in Figure 2.2. The crucial conditions which the

deviations, 7(t) have to satisfy are
7(0) = #T) = 0. (2.20)

In this situation, we begin from the time ¢ = 0 to the time at t = T'. Generally,
the Lagrangian will be the quadratic form

2

L= a(t)z (t) + bOZ(t)E(t) + c(t)T2(t) + d(O)L(t) + e(t)Z(t) + f(t).  (2.30)
Hence, the action S can be expressed as
Slz®)] = S +y(t)]
_ /0 [aft) {200 + 26050 +37(0)} +.-+ £0)] . (230)

It is obvious that the integral of all terms involving exclusively Z.(t) is exactly
the classical action and the integral of all terms that are linear in ¢(t) precisely
vanishes. So, all the remaining terms in the integral are the second-order terms

in ¢(¢) only. That is

SI0) = Suls Ol [al0f O+ 40070 + cOF O] ar 232

From Eq. (2.32); the propagator or the Green’s function can be rewritten

as
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Figure 2.2: Diagram showing a path deviating from the classical path.

For the quadratic Lagrangian, customarily, the propagator can be written as

il &) £ Firyesy {%sd[fcm} | (2.31)

where

F(T) =N [ Dige) oo [% / a{awi? )+ oo + c(t)zzQ(t)}]
(2.35)
is a prefactor.
Next, we show that the method can be used to the problem of a one-

dimensional harmonic oscillator of which the Lagrangian is

Liw(t),a(t)] = %352 - %w2x2. (2.36)

We obtain the equation of motion by applying the Euler-Lagrange equation to
the Lagrangian
oL dor
Jxr  dt oz
thus we have

T+ w?r. =0 (2.37)
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and the solution of Eq. (2.37), with boundary conditions (0) = 2’ and x(T) = z,
is
_x—a'coswT

xe(t) = amor sin wt + 2’ cos wt. (2.38)

Therefore, the corresponding action can be expressed as

sab] = [ 3 [0 5 ko] a
_ %{:ﬁc(T)xc(T)—:éc(O)xc(O)— /0 T:z:c &, — wa] dt] .

Using Eq. (2.37), we have

Salae(t)) = 7 [t T)e(T) = 2e(0)z.(0)] (2:39)

Substituting Eq. (2.38) into Eq. (2.39), we have

mw
2sinwT

Sealze(t)] [COS wl'(z?2”) — 2z’ (2.40)

that is the classical action of the harmonic oscillator. From Egs. (2.34) and
(2.40), we obtain, to complete the propagator we must to find the prefactor,

F(T). Hence, from Eq. (2.37), we begin with

P =N [ Dol [+ [ @ {at- ) 2.41)

with the boundary conditions y(0) = y(T") = 0.

By expressing y(t) in the form of a Fourier series,

nmt
t) = n SIN ——, 2.42
Yt) = 3 ansin (2.42)

it is obvious that we can change the integration variables from ¢'s to the new

variables a,,’s, and then with the use of the identity

N 2 —1/2
T T
lim (1 - (”—) ) S (2.43)
N—o0 nmw sin w7’

n=1
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we obtain the result as

mw

F(T) = (2.44)

2mihsinwT’
Finally, the time-independent propagator or Green’s function of the harmonic
oscillator is

K(ba) = mw { imw

= 2 2y ’
Shsh T [cosz(m + ") 2$m}} (2.45)

2rihsinwT
2.3 Variational Path Integration

In this section the variational path integration approach is described. By
constructing an appropriate action with some variational parameters, we can use
the path integral of this action to estimate the upper bound of the ground state
energy. To be more clearly, consider the density matrix in the form of the sum

over energy eigenstates.

p(@5, 745 B) = > U5 vn(a1) exp[— ES]. (2.46)
As the imaginary time goes to infinity, i.e., temperature goes to zero, the

higher order terms of the summation decay more rapidly than the first leading

term or the term involving the ground state energy. So we can write

p — exp(—Eyf). (2.47)

B—o0

Whenever we choose any trial action namely S;, where we can find its

density matrix exactly, we can write the path integral

o= /D[:v(t)es
= /D e(5=51) 5

= (eSS / Dla(t)]e™ (2.48)
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where we average with weighting factor e defined by

_ [ Dlz(#)le™F

)= DR

(2.49)

In order to evaluate the energy as in Eq. (2.47), we must write the density
matrix in the exponential form. To do this we apply the inequality
(eF) Sl exp(F)
called the Feynman-Jansen inequality. The density matrix in Eq. (2.47) can be
approximated as

p >exp(S — 5) / Dix(t)]e". (2.50)
Remember that the path integral of S; gives the ground state energy as
p1 & exp(—E15). (2.51)
Then Eq. (2.50) can be written as
e EoB) >3 e300 o ~E S (2.52)
Hence

(5= 51)

Ey < E; — ;

(2.53)



Chapter 3

Bose-Einstein Condensation:
Ginzburg-Pitaevskii-(Gross Approach

In this chapter we present the basic equation describing Bose-Einstein
condensation and review recent researches which evaluate the ground state energy
of bosonic atoms with and without charges by using the Ginzburg-Pitaevskii-
Gross approach.

In section 3.1, we will derive the Ginzburg-Pitaevskii-Gross equation,
which is based on the Hartree approximation and essentially equivalent to the
time-independent nonlinear Schrodinger equation. In section 3.2, we consider
the time-dependent case. To derive the equation of motion for the condensate,
we begin with the second-quantized formulation. By employing the mean field
approach, we obtain the so-called Gross-Pitaevskii equation or equivalently the
time-dependent nonlinear Schrodinger equation.

In section 3.3, we discuss the Bose-Einstein condensation of a free gas, or
non- interacting gas, under harmonic potentials. The results are simple to ana-
lyze. In section 3.4, we give some details to calculate the ground state energy of
the condensate under the three-dimensional Thomas-Fermi approximations. In
the Thomas-Fermi approximation; the kinetic term in the Ginzburg-Pitaevskii-
Gross equation-is neglected due to the assumption of the Thomas-Fermi approx-
imation stated that the number of atoms in the system is very large and hence
the potential terms in the Ginzburg-Pitaevskii-Gross equation are dominated.
Moreover, we find that the non-interacting gas model gives the lower limit of the

ground state energy, on the other hand, the Thomas-Fermi approximation gives



23

the upper limit.

In section 3.5, we review of the recent researches which evaluate the
ground state energy of neutral bosonic atoms confined in magnetic trap by varia-
tional method which proposed by Gordon Baym and C.J. Pethick. Then we can
find that the inter-atomic interaction in this method are finite range or short-
range and well approximated by the delta function.

Finally in section 3.6 we review the work of Takeya Tsurumi, Hirofumi
Moris and Miki Wadati [33]. They evaluated the ground state energy of charge
bosons confined in anisotropic trap. The inter-atomic interaction are long-rang
interaction and well approximated by coulomb potential, and we find that the

result is stable.

3.1 Ginzburg-Pitaevskii-Gross Equation: Time-
independent Case

In this section,we derive the Ginzburg-Pitaevskii-Gross equation based
on the Hartree approximation, [36]-[38], which is essentially equivalent to the
time-independent nonlinear Schrodinger equation.

Firstly, we consider /N identical bosonic particles whose inter-atomic in-
teractions are of finite range, trapped in an external potential V(7). We assume
that the gas is sufficiently dilute and at very low temperature. In such a situation,
two-body interaction dominates and the s-wave part plays a central role. We may
replace the scattering from an inter-atomic potential of finite range by the hard
sphere potential of diameter a, which is identical to s-wave scattering length in
this case. Then, the Hamiltonian operator of the system of hard spheres can
be given in certain approximations by the pseudopotential Hamiltonian operator

[39] Y
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Al G,
H= 21:(—V + V(7 ) ZUO arij”j’ (3.1)

where m is the mass of bosonic particle, and

0? 0* 0

V2 = 4 —+ — 3.2
’ ox? + y? + 022’ (32)
rij = |ri—7jl, (3.3)
Uy = d4rhia/m. (3.4)
The magnetic trap is well approximated by a harmonic potential,
V() = P2l 2 T p—y 3.5
(T) & E(wxx +wyy +tw;z )7 ( : )

with (wg, wy, w,) being trap frequencies.

In the ground state of the system, almost all bosons may occupy the lowest
single-particle state because of sufficiently weak inter-atomic interactions. Thus,
following the Hartree approximation, we write the ground state wavefunction,

Do (71,73, ..., 7x), in terms of the product of N single-particle state wavefunctions,
g(7):

N GR N Hg(ﬁ) (3.6)

where g(7) is normalized as

(l9) = / g =1, (3.7)

and thus the norm of the wavefunction @y, defined by (®y|Py),

(Dy|Dg) E/dﬁ.../dr7v|<I>0(ﬁ,...,7“7v)|2 = (/dﬂg(mF)N, (3.8)

is equal to unity. From Eqgs. (3.1) and (3.6), we have

(Bo| H|Po) Z/dﬁ /drN(I)* V2+V( ))@
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U, 0
+ 0 E /dT1 /dTN(I) (S )87“ (Tijq)g)
ij

i#]
= N/drg —V2+V( )) (7)
= _ 1 /drl/drgg 73)g*(r1)d(r1 — 73)
8 T12 [7"129(7“1)9( 2)] (3'9)

where the superscript * means the complex conjugate and
i SRCL S (3.10)
x

In Eq. (3.9), if the product of two single-state wavefunctions ¢(ri)g(r3) is not
singular at ri; = 0, the operator (9/0ri2)(r12) can be set equal to unity, which

gives
(B0 H]2) = / 179 (PS94 V() )
'l / 7 [ 4 () (15(7~ )g(7)g()
- ¥ [ar|em (G ey (A)on + 5

1
Uolg(M]*[(3.11)
We minimize the functional (®y|H|®y) (3.11) under the constraint:

To find the constrained extremum of (®o|H|®Py), we set the variation of a func-

tional (®g|H |Pg) — u(Po|Pg) equal.to zero,

5
0g*(7)

where pis a Lagrange’s multiplier. Substituting Eqgs. (3.8) and (3.11) into Eq.

(<<1>0|H|<1>0> « u<<1>0|<1>0>) 20, (3.13)

(3.13), we obtain

;—Zjv2g(f’) +V(M)g(7) + (N = D)Uslg(M)[*g(F) = pg (7). (3.14)
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Introducing a wavefunction ¥(7),
U(7) = NYV2g(7). (3.15)

we get

;—:VZW(F) +V(OW() + (1 - %)UM\IJ(F)F\D(F) = pW(7) (3.16)

with

(W[ = /dF|\IJ(F)|2 _ N (3.17)
The wavefunction ¥ has many names: an order parameter, a macroscopic wave-
function and a Bose-Einstein condensation wavefunction. For sufficiently large

N, we can neglect the 1/N-order term appearing on the left hand side of Eq.
(3.6). Thus

I () () + U () = (7). (3.18)

We refer to Eq. (3.18) as the Ginzburg-Pitaevskii-Gross equation with an external
potential term. This equation may also be referred to as the time-independent
nonlinear Schrodinger equation.

From Egs. (3.11) and (3.15), the ground state energy of the system, F,

B = N [dr| 5 IVa@ P V@I + O - ) a1

o b ARG G RS LT AERE)

which we call the Ginzburg-Pitaevskii-Gross energy functional with an external
potential term. On the other hand, multiplying the both sides of Eq. (3.16) by

U*(7) and integrating it, we get

R h2 1
e = [ dr[mwvwwmuu—ﬁwom/r*]

- L Uy [
= B+(1-3)5 /dr|\Il|. (3.20)
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It is clear that p, introduced as a Lagrange’s multiplier, has a meaning of the

chemical potential of the system.

3.2 Gross-Pitaevskii Equation: Time-dependent
Case

In this section, we consider the time-dependent case, ¥ = W(7 t). To
derive the equation of motion of W, we use the second-quantized formation. Let

V(7 t) and T (7, t) denote the bosonic annihilation and creation operators, re-

spectively. The (equal-time) commutation relations among the operators are

A

(7, )W (5, 1) — U(r t)U(F, 1) = 0, (3.21)

), W7, 1)]

S —

(7,0, ¥ ()| = Lo = i), (3.22)

it
[\if Pt

A~

and the second-quantized Hamiltonian of the system, H, can be written as

. B2 L. { %\ NI
HE/dFL—V\If’L-V\II+V(F)\IJ+\II+?O\II+\II+\II\II . (3.23)
m

The time-evolution of the operator @(F, t) obeys the Heisenberg equation,

ih%\fl — [\IJH] (3.24)

Substituting the Hamiltonian (3.23) into Eq. (3.24) and using the commutation

relations (3.21) and (3.22) we get
2 _h2V2@+V(4)\iI+U ARVA (3.25)
ih—¥=—— 7 : :
ot 2m 0

We denote an expectation value by (-). The Heisenberg equation for the bosonic

operator (3.25) gives

(U = — VX)) + V(A (D) + Ug(THT0). (3.26)
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According to the mean field theory [16, 40], we may replace the expectation values
of the bosonic annihilation and creation operators by the condensate wavefunction

\il(F, t) and its complex conjugate U*(7,t) respectively,

(U(7, 1)) = (7 1), (BH(F 1) = (7 1). (3.27)
For the third term in the right hand side of Eq. (3.26) takes the following ap-

proximated form,

(THO) & (UHY (D)) = [B(F, 1) PO (F, 1) (3.28)
Substituting (3.27) and (3.28) into Eq. (3.26), we get
52
m’gt‘l’( B = 2R B V(L) S U 2 ). (3.29)

2m

which is called the Gross-Pitaevskii equation with an external potential or the
(time-dependent) nonlinear Schrédinger equation. The Eq. (3.29) can be written

in a variational form,
o 0

e = ol

where the function E[] is defined by Eq. (3.29) with the 1/N-order term deleted.

B[], (3.30)

We note that, by setting
U (7, t) = exp(—iut)U(F),

in Eq. (3.29), we obtain the Ginzburg-Pitaevskii-Gross Eq. (3.18) again.

3.3 Free Bose Gas: Non-Interacting Case

In this section, we discuss the Bose-Einstein condensation of a free gas

under harmonic potentials. The N-body Hamiltonian (first quantization) is

H - Hj

M=

J=1

m

N
= Z{ (B, + Py + P) + 5 (w2 + iyl +w22) |, (3.31)

J=1
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0

where pj = (pjs, Pjy, Pj-) is the momentum operator of particle j, and pj = —ihig=.
J

Since there is no interaction among particles, the eigenstates are expressed as
(i, 75,0 %) = [ 607)), (3.32)
where the single-particle state wavefunction ¢(7) satisfies
{;—Zj (aa—; + aa_; + aa_;) + 2@kt + iy + w?zZ)] 6(F) = (7). (3.33)

The eigenvalues of Eq. (3.33) is well-known;

%) e, (3.34)

€npnyn, = (nx - %)hwx + (ny + %)hu}y e (nz +
where n,, ny, n, =0, 1,2, ...
We adopt the grand canonical ensemble. The total particle number N
and the total energy F is given by
~1
N = IS (e Blenm. — ) =1] (3.35)

NNy, Tz

-1
E = Z Enanyn. |:6Xp 5(€nmnyn; - M) - 1:| (336)

NNy ,Nz
where 8 = (kgT) ! and p is the chemical potential. For later discussion, we shift
the chemical potential as p@ — A(w, + wy +w,)/2 — 1. At very low temperature,

Eq. (3.35) is written in the following form,

Ne = [N+, (3.37)
where
No = /(e 1), (3.38)
-1
Ny = Z [GXP B(nghw, + nylw, +n.fw,) — 1| . (3.39)

NNy N 70
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Discussions, here and in what follows, are essentially the same as those for free
boson gas in a box. The Bose-Einstein condensation is the situation where N,
becomes macroscopic, that is, Ny ~ O(N). Eq. (3.38) then implies p < 0 and
—Bp ~ O(1/N). We have set ;= 0 in Eq. (3.39). Therefore, Ny in Eq. (3.39)
gives the maximum of the contribution from the excited state at low temperature.

We replace the summations in Eq. (3.39) by an integral over the single-
particle energy € with the density of states D(e),

o’

D(e)de = Wdc. (3.40)

The formula (3.40) can be derived as follows. We estimate the number of the
states, N (€), whose energies are smaller than e, which is equivalent to the number
of positive integer sets {n,,n,,n.} satisfying 0 < (n,hw, + n,hw, + n.fiw,) < e.
Geometrically, this corresponds to a volume, (e/hw,)(e/hw,)(e/hw,)/6. There-
fore, we obtain N(e) = #e*/(hw)?, Where &® = w,wyw,. A relation D(e) =
dN (€)/de gives Eq. (3.40).

Using Eq. (3.40) to rewrite the summations in Eq. (3.39), we obtain

A /00 D(e)de

exp(fe) =1
kpT\?
<%) R <, (3.41)
where
) x’dy
(3) :/0 A¥Y s (3.42)

The transition temperature is defined by

ksTo\?
N = g(g)( = ) . (3.43)

For T' < T,, we have
N = Ny +¢(3) (l‘:—wT)g (3.44)
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and therefore

No T3
—:1—(—) . T<T. 3.45
N T (3.45)

The exponent is changed from 3/2 (for gas confined in box) to 3 (for gas confined
in harmonic potentials).
The total energy E in Eq. (3.36) is calculated in the thermodynamic

limit; N — oo, @ — 0, Nw?=finite. The result is

E = aNker?@d . 1o
93(%)
4
S (T T, (3.46)
where with z = exp(8p) :
gn(2) = j—n (3.47)

=1

and ((4) = 7*/90 = 1.082...

To summarize, Bose-Einstein condensation of a free Bose gas is the ap-
proximation which is valid when the number of atoms in the condensate is very
small, hence its ground state energy is the lower limit of a ground state energy

of other cases of the Bose-Einstein condensation.

3.4 Ground State Energy from the Thomas-Fermi
Approximation

This section is devoted to ‘the calculation of the ground state energy
of the Bose-Einstein condensate under the three-dimensional Thomas-Fermi ap-
proximations.

We start from the three-dimensional Ginzburg-Pitaevskii-Gross equation

with a harmonic potential term,

—ﬁ2(0_2+8_2+8_2)

52 "o a2 T(w2a® w2y 4 w22 + g WP = . (3.48)

2m 2
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Here, ¢ > 0, means the strength of the inter-atomic interaction, and p is the
chemical potential. In the Thomas-Fermi approximation, the first term (the
kinetic term) on the left hand side of Eq. (3.48) is neglected, which gives the
number density of the condensate, |[¥|?, as

1 1 1 1
it = (g = gy’ = gmat=?). (349

Hence, the number of particles N is given by

xo Yo 20
N:/ dx/ dy/ dz|V|?, (3.50)
—Zo Z —Yo —Zz0

where xg, 1o and zy are defined as

o172 2 N2 1, N\
muws muwy 2
o 2 \1/2 LA N . )\ /2
2 = (mwg) (,u = M T = S,y ) : (3.51)

Substituting (3.49) and (3.51) into (3.50), we obtain

8m o 22 \Y2p 2 \1/2/0 2 \1/2
N= 1—59(mw§> (mw:g) (mw§> W (3:52)
which gives
159\ 2/5 fimw?\ 15 pmwi \ 15 rmw?y 1/5
“:(§> ( 2 ) ( Qy) ( 2 ) NP (3.53)

From the thermodynamic identity,

e i N’ (3.54)

and from Eq. (3.53), we have the energy in the three-dimensional case, denoted

by Esp,

5 (15g\2/5 fmw?\ 1/5 ymw2\ 1/5 rmw?\ 1/5
ro=z(50) (7)) (F) (F) v s
7\ s 2 2 2 (3.55)

To summarize, because we neglected the kinetic energy term in the Ginzburg-

Pitaevskii-Gross equation, the Thomas-Fermi approximation is valid when the
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number of atoms in the condensate is very large, and its ground state energy is
the upper limit of a ground state energy of other cases of Bose-Einstein conden-

sation.

3.5 Ground State Energy of Neutral Bosons:
Short-Range Interaction Case

In this section, by following the work of Gordon Baym and C.J. Pethick[26]
the ground state energy of Bose-Einstein condensation for neutral bosonic atoms
is presented.

It is known that Bose-Einstein condensation in experiments with cooled
and trapped atoms can be described within the framework of the Ginzburg-
Pitaevskii-Gross Theory. Validity of such a description has been analysed by
Stenholm [41]. In a situation where the trap can be modeled by an anisotropic
harmonic oscillator potential and the inter-atomic interactions can be replaced by
the effective pseudo-potential involving s-wave scattering length, the ground state
energy for condensed bosons of mass m is given by the Ginzburg-Pintaevskii-Gross

functional,

h? 21 h?
B[] = /dF[%N\II(F)F + 5 (wlo® + wiy? + w22 (R + T w()|.
(3.56)
Here ¥(7) is the condensate wavefunction, w,, wy, and w, are angular frequencies

characterizing the external potential of the anisotropic trap and a is the s-wave

scattering length. The wavefunction satisfies the normalization condition,

/ AP = N. (3.57)

For a system of weakly interacting gas at T'= 0, N is essentially the total num-

ber of atoms in the trap. The exact form of the wavefunction can be determined
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by minimizing the energy functional in Eq. (3.56) with the normalization con-
straint Eq. (3.57). Such a minimization results in the Ginzburg-Pitaevskii-Gross
equation,

Arha

—n? 2, M/ 9 9 2 9 2.9
[%V +5(wxx +wyy +wzz)+7

|\If<f)|2]w<f) _ U@, (358)

For simplicity, we consider the case in which the magnetic trap is an axially
symmetric. Then we have w, = w, = w,, and it is convenient to express Eq.

(3.56)- Eq. (3.58) in terms of the scaled variables defined as,

no= Tla,
vl = CLLV,
El = E/h(,d_L,
Uy(ri) = W‘I’(f%
My = M/h’wJ-a
8malN
Gy - T (3.59)
]
where
h
a, = 4 (3.60)
mw

We now have

E{(V L1 . . U .
= [arig P fat o e3P+ ) @
with
W
o= == 3.62
e (5.62)

being the anisotropy parameter of the trap,

/ 47 0, ()2 = 1 (3.63)
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and
[ = V3 (adgf N ) + u1|\I!1(ﬁ)|2] U (7) = 2m Ty (7). (3.64)

Since it is not possible to find exact analytic solution to Eq. (3.64),
various numerical techniques have therefore been developed to study the ground
state property of such systems within the framework of the Ginzburg-Pitaevskii-
Gross theory. These techniques involve either the direct numerical minimization
of Eq. (3.53) subject to the constraint Eq. (3.63) [42] or numerical integration of
Eq. (3.64) or its time dependent version, Gross-Pitaevskii equation [43]. Another
approach is to use the variational method which has been extensively used in
different branches of physies. The main advantage of this method is that with
a suitable guess for the form of the wavefunction, it is possible to save a lot of
computational effort and time. In addition, it may also provide physical insights
which generally get obscured in the complicated computational procedures. The
first study of this kind was done by Baym and Pethick in light of the experimental

observation in 8"Rb. They took the trial wavefunction for the ground state as

¥() = Nl (1) e satam ()
m

with effective frequencies, w, and w,, treated as variational parameters. However,
the wavefunction in Eq. (3.65) brings out only the qualitative features of the
condensate, e.g., expansion of the condensate in different directions, shifts in the
angular frequencies and the scaling behavior of energy with the number of atoms
in the trap. Further, this form of the wavefunction is valid only for small number
of atom in the trap.

To find the ground state energy from the trial wavefunction of Baym and

Pethick, we substituting Eq. (3.65) into Eq. (3.56). We thus obtain

B Q. w? Q. w? Nam!'/? 12
Eo(Q1,9,) = Nh(7 00T T a0t ey ) (3.66)
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For an isotropic case in which Q, =€,, w, = w,, we find

30 3w?  Nam!'/?
Eo(Q) = Nh( - + S + = 032)

T T ome (3.67)

3.6 Ground State Energy of Charged Bosons:
Long-Range Interaction Case

This section is devoted to the review of the work of Takeya Tsurumi,
Hirofumi Moris and Miki Wadati [33] in which the authors evaluated the ground
state energy of charged bosons confined in an isotropic trap. The problem is
rather academic, but turns out to be quite interesting because of the expecta-
tion that the Bose-Einstein condensation for charges boson under magnetic traps
will be observed in future. In previous section, the interaction between neutral
atoms which deal with short-range interaction is well approximated by the delta
function, V(7) = gd(r; — r5)[26]. Hence for the charges boson case, the interac-
tion which accounts for long-range interaction was approximated by the Coulomb
potential, V (7) = g/|r; — 7;|[33]. Hence, the Ginzburg-Petaevskii-Gross energy

functional becomes
BlU] = /df[h—2|V\If|2 T
2m 2
1 = S
+ 5/(1?/ dr'U (7 — )| (7) 2] ¥ (7))?, (3.68)
where the trap is assumed to be an isotropic harmonic potential, and

U(7) =g/ (3.69)

The coupling constant g can be positive or negative in this section.
From the assumption that the ground state wavefunction ¥(#) depends

only on r = ||, using the integral formula for fixed 7,

2/r  (for " <r)

2/r" (for ' >r)’ (3.70)

/ dfsin O(r? + "2 — 2rr'cosh) Y2 = {
0
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the last term in Eq. (3.70)

- 1 . o0 o] .
g/df’dr’v O = 167r2g/ dr r2|x1/(m|2/ dr'r 2T () 2.
r—r 0 r
(3.71)
The ground state energy can be calculated by the variational method. Choose a

trial wavefunction,
2

—r
V(7)) = <_), 02
(7) = Cexp (5 (3.72)
where C and d are real constants to be determined. The particle number N and

the ground state energy are found to be

N = Ca%g, (3.73)
3:32R202d 3732 mwC2dd D)
E = & ‘ / & mf +§7T5/2904d5. (3.74)
m

By use of Eq. (3.73), we eliminate the normalization constant C' in Eq. (3.74).

The result is
f/ 3H2N .. 3mw’Nd> N2g

E(d) = . 3.75
(@ 4dmd? 2 4 A (2m)'/2d (3:75)
It is convenient to introduce a dimensionless parameter A,
A =d/dy (3.76)
where dy = [h/(mw)]*/2. Then Eq. (3.75) is rewritten as
1 3\ 2 2 -1
B\ = ENM[E(A R ] (3.77)
where
2'Ng (mw\1/?
=K\ Ry | ra e . 3.78
T hw ( h ) ( )

One can show that F()) has an absolute minimum irrespective of the sign of o,
that is, the condensate of long-range interacting bosons under harmonic traps is

stable both for repulsive and attractive interactions.
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Next, consider the Bose-Einstein condensate of charged bosons confined
in magnetic traps. Based on the result obtained in Eq. (3.77), the ground state
energy can be found. Setting g = €2, e being the electric charge, Eq. (3.77)
becomes

1

B(\) = 5N [g(ﬂ %)+ aexl] , (3.79)

2 Ne? /mw\ 1/2
o, = \/; 7 (T) . (3.80)

Note that, o, is positive. We then minimize E(\) with respect to A. The condi-

where

tion. OE/0\ = 0 gives
3X* =~ 3— 0.\ = 0. (3.81)

For a weak interaction case where o, is small, the approximate solution of Eq.
(3.81) is A & 1 + (¢/12). Using this in Eq. (3.79), we obtain

3

Fis 5th(1 4 2). (3.82)

3

In the non-interaction limit o, = 0, the exact result £ = 3Nhw/2 for harmonic

oscillators is recovered.



Chapter 4
Results

This chapter is devoted to present the result of applying the path integral
to calculate the ground state energy of charge bosons confined in an isotropic traps
including the approximated density matrix and the wavefunction. We will show
the detail of the calculation for the cases in which the inter-atomic interaction is
approximated by Coulomb potential (long-range interaction) in Section 4.1 and

screened Coulomb potential (intermediate-range interaction) in Section 4.2.

4.1 Ground State Energy with Coulomb Poten-
tial

This section is devote to the detail of using variational Feynman path in-
tegral to obtain the ground state energy of charged bosons confined in an isotropic
trap. It is known that this trap can be approximated by a harmonic oscillator po-
tential, and the inter-atomic interaction is approximated by Coulomb potential.

Hence, the Lagrangian of such a system is

SN a2 () + ) 4wt e L Yo
L= 2;[l()+ 27 () +wyyi (r) + “()]+2;%(7)_7?‘7(7)| (4.1)

where m is the atomic mass of the alkali gas, w,, w, and w, are the frequencies

in the z, y and z direction respectively, U, is a real constant and

[7(r) = PO = [(2a(r) = 23(1)? + (1) = 5(7)? + (wa(7) — 2(7))°] 2.

For an isotropic magnetic trap, we know that w, = w, = w,. Then the Lagrangian
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in Eq. (4.1) becomes

N

L=—5 3R +w (0] + 5 Zm =

(4.2)
=1 J )|
From Chapter 2, we have known that ground state energy can be evalu-
ated from variational Feynman path integration technique as (c.f. Eq. (2.53))
Ey < By — (S =)
where S’ is the trial action which we can find its ground state energy exactly.

Then choosing the trial action to be the form of harmonic oscillator with the

frequency €2 being the variational parameter,

— ——Z/ + O (7)]dr, (4.3)

the density matrix can easily be evaluated by transforming the propagator of
harmonic oscillator in real time to the negative imaginary time. The result which
can be found in a standard textbook of Feynman path integration [44] takes the
form

Q 3N —N Q
p’(ﬁﬁi’ﬂ)z( = eXp{ = i

Wh(@ﬁ)) 2 2hsinh(25) (7 +7) cosh(ﬂﬁ)—w']}.
(4.4)

Next, consider the average term, (S — Sp)e in Eq. (2.53). Since the Lagrangian
in Eq. (4.2) has the same kinetic part as the trial action in Eq. (4.3), then we
obtain

(55 :“Z/ drlu 0 UOZ/ ‘”< —rj<f>|>sf

G

We see that Eq. (4.5) contains the average over quantities like <F?(T)>s, and
(1/|73(7).— 7(7)]),,. These quantities can be evaluated from the generating func-

tional [44] defined as

<exp ( /Og . 'F(T)>>SO _ D] esp [50+ 2 ar T)F(T)] o)

[ D[7(7)] exp[So]
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with end point conditions

(B) = rq, 7(0) = ry
and f(7) is an arbitrary function of imaginary time. By following the standard
way of evaluation of path integral, we write

(1) = 7 + (1),
with 7(8) = 0 = 7(0).

We have known from Feynman and Hibbs [44] that the term linear in

y(7) that appears together with f(7) will vanish from above condition. So the
remaining terms containing %(7) the denominator and the numerator are the

same and cancel out. We are thus left with is the exponential of the two classical

actions, that is,

<exp (/Oﬂ dr ) -m)> >SO — exp(S; — So). (4.7)

Hence, we can see that the quantities of interest can be extracted from the formula

—

in Eq. (4.7) by performing the functional differentiation with respect to f(¢) and

setting it to be zero. For example,

(roresp ( [“anftoratey) ) = s fesp(s; -
- 5(;%) lexp(S; — So)].  (4.8)

Therefore, by evaluating both sides when f(7) = 0, we obtain

(7 - d2,
(7)) s, 570r)

We can continue this process to get the second derivatives as

(4.9)

() - 7 (S — S
GORONEE T S~ Sls=o

B [ 525, 5S; 68,

- 4+ - ) (4.10)
0f(r)of(s) 6f(r)df(s)],,
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—

Actually, since Sy is quadratic in f(7), the quantities (7"(7)) g, and (7(7) - 7(s)) g,
can be directly evaluated in terms of 5Sf/6f(7) and 625f/5f(7')f(s), which is
independent of f(7)

Next, by applying the generating functional technique, we can evaluate
the quantities (r;(7)) ,, and <W>s' in Eq. (4.5). First, we will evaluate the
quantities (7j(7))s by introducing the Lagrangian of forced harmonic oscillator
in three dimensions as

LS

1=1

m -2 mQ? ., S _
=11 (1) + @)= fi(r) i) (4.11)

and the classical action S’ ean be evaluated easily. From Feynman and Hibb we

have
- mQ —~2 /12 o
S = 3 {g b L) coh(9) <2 7 7
=1
il 2 B
L /0 ilr)sinh (5 = 7)dr — 2 /0 7.(+) sinh Qdr

_ (T?W /0 ¢ /0 Tfn- i(s)sith (8 — 7) sinh(Qs)drds| }. (412)

where 7 and 77" are initial and final points in the configuration space, § = 1/kT,
T is absolute temperature, and & is Boltzmann’s constant.

Next, substituting Sy in Eq. (4.12) into Eq. (4.10) we obtain

<rl(7')-rz(s)> = 4525}: + 6§f 6§f
S5 0f(r)8f () Of(7) 0F (),

3 sinhQ(B — 7)sinh(Qr)  [AsinhQ(B8 —7)  #sinh(Qr)]?

ms) sinh(9203) [ sinh(£273) sinh(273)

=0 (R () gre (4.13)

Then, we consider that quantity (1/|75(7) — 7}(7)[)s in Eq. (4.5). By the defini-

tion of Dirac delta function,
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/ Pr (R (7 — ) = f(r

we can express the quantity (1/|75(7) — 7;(7)|)¢ through this definition as

<Wl<>|> B </ d*rd (F(r) = (Fi(7) = 75(r)) ﬁ> . (4.15)

Next, using the integral form of the Dirac delta function in Eq. (4.15) we obtain

<ﬁ> -/ d() Al élﬁ]; exp [ F '(F(T)—(ﬁ(T)—ﬂ(T)))]>S,(4-16)
r / :% / (;l:; exp [@k 7 )] <exp [—u%’(ﬁ(r)—@(r))by.

), (4.14)

(4.17)
The exponential term on the right hand side of Eq. (4.17) factorizes so that
1 / d3r /°° dk, ) )
——— = — (ikyx) (exp [—iky(z; — x)]) o
<In~(7) — 75(7)| >S/ ™(7) J oo 27 s
dky .
< [ S exp i) (exp [k, (1))
> dk, . .
X S eXp (ik.2) (exp [—ik,(z, — 2.)]) s . (4.18)
— :
Our next task is to evaluate the exponential term for coordinate. Consider
the z-coordinate, we can write it as
, _ [ Dla( exp( S ) exp( iky (i — xj)]
We can see that the numerator is
/D Jexp =S, — i z;)] = /D | exp[— (S, +ik.w;)]-exp[—(S;, —iky2;)]
(4.20)

Substitute Eq. (4.20) into Eq. (4.19), we obtain

<fD ()] exp[—(S}, + kaxz)]>
J Dlzz,(1)] exp(=57,)

[ Dlz;(1)] exp[— (S’ — ikyxj)]
( [ Dlea, ()] exp(—55,) )‘(“”

(exp (—tha(zi — 75)))s =
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It is convenience to write

[ Dla;(7)] exp[—(S, + ikyx;)]

[Dlea, (N]exp(=S,) K} (4.22)
and
J Dla;(r ]eXp[ (S, —ikpry)]
T Dliee, (D] exp(— sy Ko (4.23)
Next, we define
fE(7) = Hikyd (1T — 5), (4.24)

then the exponential term on the left hand side of Eqs. (4.22) and (4.23) can be

written as,
B 6
S+ ikuai(r) = [ s Pl + s ik (r - i)
4 8
> /0 E(jc?(T)—i-QZx?(T))—i-/o dr fH(7)x;(7) (4.25)
and
m B
Sy, — thexi(T) = / )+ Pz (r ))—k/0 ds (—iky)o(T — s)x;(s)
B
= [ @86 + [ arr e 029

Substitute Eq. (4.25) into Eq. (4.22) and Eq. (4.26) into Eq. (4.23) we find that
K/ and K, can be evaluated easily by using the solution of the force harmonic
oscillator (c.f. Eq. (4.12)), and we can see that the force-independent terms are

canceled out by the denominator. Then Eq. (4.22) and (4.23) become

K:f = exp {W / i) sth(ﬁ—7’)d7’+ / fE(7) sinh(Qr)dr

1 40 40 0~ .
+2mQSinh(Qﬁ)/0 /0 7 (m) f(s) sinh Q(B — 7) smh(Qs)des]. (4.27)

Then using Eq. (4.24) we obtain

KE — exp {iikmx;sinh QB —r1) ik ,sinh(Q7) k7 sinh Q(B8 — 7)isinh Q(8 — 7'):| .

nh(Qp) i sinh(Q5)  2mS2 sinh(Q25)
(4.28)
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Using the above result, Eq. (4.21) can be expressed as,
(exp (—iky (2 — 7)) g, = KK

sinh(Qr) k2 sinh Q(B — 7) sinh(Q7)

, sinh Q(B —7) k(! — o) B

= exp {zkm(azé — %) sinh(Q3) 77sinh(QB)  mQ sinh(23)

(4.29)
Similarly y and z terms can be evaluated in the same way, Thus Eq. (4.18) can

be express as,

<|n(>—n > /d/ 5 bl LK

/ - Y exp(ikyy) K K / —exp (ik z)K+K_

(4.30)

Again we will interest only the z-coordinate on the right hand side of Eq.
(4.30), from Eq. (4.28) and Eq. (4.29), we can write
< dky / o < dk, ,
/ L4 exp(ik,z) K K = / o (ike) x

o0 o0

. hQ =
exp {ka(x; N x;)%

. » sinh(Qr) k2 sinhQ(B — 7) sinh Q7)
a7 xj)sinh(ﬂﬁ) - mQ sinh(Q25)
(4.31)

Hence, the k-integral can be evaluated by using the relation

/: dr exp(—ax® + bz) = \ﬁexp (fa) (4.32)

and Eq. (4.31) becomes

* dhy a1 7mQ sinh(Q3) 12
/_oo or - explike :c)K+K 27 [smh QB —1) sinh(QT)] %
—m$2sinh(Q7) , .\ sinhQ(p —7) y o posinh(Qr))?
. [4 sinh Q(f — 7) sinh(Q7) ' (a: + (@i —aj) sinh(Q25) e - mj)sinh(QB)>

1 7mQ sinh(Q) 12 —mQ sinh(QB)
o [sinh QB —r1) sinh(QT)] P [4 sinh Q(f8 — 7) sinh(Q7)
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X <x2 + 2z(2! —x’.)w + (2 — ’!)M)

77 sinh(Qp) * 7 sinh(QP)
. ,.sinhQ(3—7) . asinh(Q7))?
+ ((xl_x])W+(xz _$j)m> ] (4.33)

Apparently, the y and z term take the similar form as in Eq. (4.33).

At this point we can make a discussion. If we consider the system of
Bose-Einstein condensation that is composed of identical particles. At finite
temperature (/3 is finite), we must take into account the permutation symmetry
in the density matrix. That is the permutation must be included in the partition
function

Z = / ' % > &8 pp(PF, By, 0)di (4.34)
P
where

¢ = +1 for boson/fermion respectively

pp = density matrix for distinguishable system

P = permutation operator
Then the full density matrix of the many-body Bose-Einstein condensation par-

ticle, at finite temperature, can be found by collecting all terms in
Py B 0).= Z\Ifi(F)\Ifz‘(F’)e_ﬂE. (4.35)

It is a very tough task to evaluate the density matrix in Eq. (4.35) because we
must take the symmetry into account. However, finding the ground state energy
is an easier task since at zero temperature (in the limit 5 — 00) the higher order
terms in the summation decay more rapidly than the first leading term or the
term involving the ground state energy. That is, in the limit S — oo, the zeroth

order term dominates,

lim pp (7, 557, 0) = To(F) T3 (F")e 5. (4.36)

B—00
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Hence, the ground state energy can be found from the coordinate-independent
term in the exponent so that the permutation between end-point needs not to be
performed.

Consider Eqs. (4.13) and (4.33). If we neglect the end-point dependent

terms, Eq. (4.13) becomes

3 mmisinh Q(S — 7) sinh(Q7)

<7:?(T)>5/ = mQ sinh (Q3) (4.37)

and Eq. (4.33) becomes

00 dkm ) — 1 7er smh(Qﬁ) 12
bl ko) KEK . = —
/ o exp (ika@)Hsi e 2 [sinh QB —1) Sinh(QT)]

— 00

—m{2 sinh(Q3)

Asinh Q(B — 7) sinh(Q7) xQ] (4.38)

xexp{

Similarly, y and z terms, we get

© dk, < 1 7mQ sinh(Q3) 12
-y kEaVKEKS, = —
/_oo 27 exp(ikyy ) K iy 27 [Sinh Q(B = 7) sinh(Q7)

—m sinh(Q3) 2
4sinh Q5 — 1) sinh(QT)y ]

X exp { (4.39)

and

©dk, B 1 7mSQ sinh(Q) 12
2 o, —
/_ 27 exp(ike2) KK 27 [sinh QB —7) sinh(QT)}

oo

—m{2sinh(Q/) 2
4sinh Q5 — 7)sinh(Q7) ‘ ]

X exp [ (4.40)

Substituting Eqgs. (4.38), (4.39) and (4.40) into Eq. (4.30), we obtain

(), - | e ]

—m sinh(Q/3)
4sinh Q(5 — 7) sinh(27)

X exp [ (z* +y* + 22)] . (4.41)
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Since z% + y* + 2% = r?, then

(v, - o ]
r e [ Tomh 5@ S_in:l)(;zf})l(m) r?] (4.42)

We next transform the integral from cartesian coordinates to spherical coordi-

nates, by using the relation

00 T 2T
/d3r = / / / 7% sin Odrdfde, (4.43)
r=0Jo=0J $=0

then Eq. (4.42) becomes

1 ) mmQsinh(Q8) 1%
< |75 (1) — 75(7)] >5' ~ (2n)3 [sinh QB — 1) sinh(QT)]
aFe —m sinh(Q3) 5
7 /T“O /H /M i) {4 sinh Q(5 — 7) sinh(Q7) }
X1 sin fdrdfde (4.44)

1 TmS2sinh(Q) 3/2
| )

(2m)3 | sinh Q(8 — 7) sinh(
> —m{2sinh(Q25) 5
4 dr.(4.4
. 7r/0 5P [4smh Q05— 7) smh(ar) | | " (449)
The r-integral can be evaluated by using the relation
/Oo o gy = L (4.46)
i e " wdy = o, :
so that Eq. (4.45) becomes
1 1 rmQsinh(QB)  1°/*
7(7) = 73(7)| /o . (2m)3 |sinh Q(8 — 7) sinh(Q7)
- 4 sinh Q( - 7) sinh(Q7) (4.47)
mS2sinh(20)

At this point, we have evaluated the important quantities, (72(7))g and

1/|mi(7) — 7(7)|) .. The next task is to use such quantities to evaluate the
( i(T)s



49

quantity (S — S')s, and finally to evaluate the ground state energy of charged
bosons.

We now evaluate the quantities (S —S"), in Eq.(4.5), To do so, we sub-
stituting Eqs.(4.37) and (4.47) into Eq.(4.5). Then Eq.(4.5) can be rewritten

as

_om al o 3 (sinh Q(f — 7) sinh(Qr)
(5= e = _52/ drlw a0 QmQ ( sinh(27) >

L5 o AL ]

1]
(4.48)

We may write the summation as,

N
Y =N and > =N(N-1)~N?,
i=1 i#]

where N is a number of atoms in the system. So, Eq. (4.48) becomes

it L ey

NQU mQ\ ﬂd sinh(Q/5) 3/2 4sinh Q(f — 7) sinh(27)
2 (7) /0 ! [sinhQ(ﬁ—T) sinh(QT)} [ mS2sinh(20) ]

3 (25 (s e

N2 (mQ\'/* P sinh(Q5) Y2
B (T) /OdT Linm(ﬁ—ﬂsmh(m)] ' (4.49)

It is difficult to integrate this equation. However we can use the approximation

in the integrand. Let us start from the definition

sinhx =

5 (4.50)

Then the integrand of second term on the right hand side of Eq. (4.49) becomes

sinh (Q2/3) B 2(1 — e=2%)

sinh Q(3 — 7)sinh(Qr) (1 — e 22F-7))(1 — - 207)" (4.51)
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In the limit 8 — oo we find that

f—1=p, (4.52)

so that
sinh (Q2/3) B 2

sinh Q(f — 7)sinh(Qr) ~ 1 — e 297" (4.53)

Using geometric series

1
1—z

=1l+ax+a"+ - for —1<ux<l, (4.54)

we can write

sinh(Q2)
sinh Q(3 —7) sinh(€7)

~ 214 e T f et ), (4.55)

As 8 — oo, the zeroth order term dominates the rest of the series. Thus

sinh(28)

~ 2 4.56
sinh Q(8 — 7) sinh(27) ’ (4.56)
so that
sinh (8 —7) sinh(Q2r) 1
b (€2) = b (0F) ~1/2. (4.57)
sinh Q(8—7) sinh(Q7)
Finally substitute Eqgs. (4.56) and (4.57) into Eq. (4.49), we get
3N (w? -2\ 1 [P N? mQ\ g
- SN = —— = | dr— — — 21/2/d
5= = T (Sa)af e Ta(T)
3N [w? — 2 Uy (2mQ\"?
= ( 3 ) 8- ?U (T) N?3, (4.58)

By checking the dimension, we can restore h into Eq. (4.58)

, 3Nh (w?— Q2 Uy (2mQ) "
¥ AN N L 4< < )B—?()(ﬁ) N2p! (4.59)

Now it is easy to evaluate the ground state energy by recalling Eq. (2.53)

1

EOSE{)—B

(S =50g
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Hence, the upper bound of the ground state energy is
! ]' !

and Ej in Eq. (4.60) can easily be evaluated; it is the ground state of trial action
S"in Eq. (4.3) which is the action of harmonic oscillator. E is the ground state
energy of harmonic oscillator which can be found in any standard textbook of
quantum mechanics [44],

B\ (4.61)

Substituting Eqs. (4.59) and (4.61) into Eq. (4.60), we find that the ground state

energy is

NiQ 3N 2. Q2 0\ /2
B, - 3Nk +3 hfw \ Us mf) QL2 N2
2 4 Q T

3 3 . WP 0\ 2
_ ZNm+Zz\m%Jon (”%) N?. (4.62)

Next, we will approximate the density matrix, and the ground state wave

function. We begin with Eq. (2.50) as
p(fla 6; F’ O) > p,(fl, 6; F) 0) - exp <S - SI>S’ :

Then substituting p'(#, §;7,0) from Eq. (4.4) and the quantity (S —S'), from

Eq. (4.59) and setting % equal the unity, we find that

3N/2 B
p(7, B;7,0) = [miQQB)] exp <ﬂ[(f2 + %) cosh(QB) — 2FF]>

27 sinh( 2sinh(Q53)
3N w?—Q? Uy ,2mf)
cowp (21 (- ), (4.63)

Next we approximate the prefactor by using Eq. (4.50),

Q) 3N/2 C/m0 3N/2 1 3N/2
27 sinh (Q29) B s eSth — e~ 98

m 3N/2 08 3N/2
- (= ——) (4.64)
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Again by using the geometric series, we find that

mS) /2 mQ\*""? 3NQB 208 408 3N/2
o = = 3 1 - - ces . (4.65
[27Tsinh(96)] ( s ) e s (1+e e +) (4.65)

For the ground state energy, we take the limit [ approaches infinity, so we keep

only the zeroth order term. Then Eq. (4.65) become

mQ SN2\ P2 —3NQB
mam]  (5) (), (466)

Then we substitute Eq. (4.66) into Eq. (4.63), we find that

3N/2
(7. Bi70) = (%) . (ﬂ[(fQJrF’z)cosh(Qﬁ)—WF’])

2sinh(Q20)
3 3NBw? Uy 2mQ
X exp (—ZNQB 2 % - g(i)lﬂmz) . (4.67)
T

In the limit f — oo we can approximate

1 // cosh(Q3)

Restoring /i into Eq. (4.67) by checking the dimension and using Eq. (4.68), Eq.
(4.67) becomes

0 3N/ QN
p(7,B;7,0) = <m ) exp( £ (FQ—FFQ))

h 2h
3 3w U (2mQ\"?
— | -NQY+ -Nh—+ — | —— N? 4.69
XeXp[ (4 3 Q+2(7rh> b [4.69)
Comparing Eq. (4:69) with Eq. (4:36) we obtain
3 3 . w? mQ\ /2
Ey=-NiQ+ -Nh— — N? 4.
=S 2 (B

and

) =TT = () e [ 20N am
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Hence () is the ground state wavefunction of charged bosons which is of a

Gaussian form and it is the product of N single-particle state wavefunctions

AGHE »
hi(r}) = <n7:—7?) - exp <—Tg—§r ) . (4.72)

Moreover, Ey in Eq. (4.70) is the ground state energy which is the same as Eq.
(4.62).

4.2 Ground State Energy with Screened Coulomb

Potential

In Section 4.1 we have evaluated the ground state energy of charged
bosons confined in an isotropic trap, whose the inter-atomic interaction is de-
scribed by long-range interaction which is approximated by Coulomb potential.
In this section we will consider the intermediate-range interaction approximated
by Screened Coulomb potential, because we expect that the ground state en-
ergy of charged bosons with intermediate-range interaction may be different from
long—range interaction case.

By using the variational Feynman path integration mentioned in Sections
2.3 and 4.1, we will evaluated the ground state energy of charged bosons confined
in an isotropic trap with a screened Coulomb potential. Thus, the Lagrangian of

such a system is

__m N PN 2R (r 1 N Up exp[—pu|7i (1) = 7(7)]]
L= 2;[2()+ z()]+2; 20— o (4.73)

Following Eq. (4.5) we can write

(S - 8) :——2/ dr(wt ) { Uoz/ <exp — i (r) = 75(7)]

[73(7) = 75(7)]

i#]
(4.74)

),
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where S’ is the trial action which same as Eq. (4.3) and the quantity <F,2(T)>
S/

is also same as Eq. (4.37).
Next consider the integrand in the second term on the right hand side of

Eq. (4.74), by following the definition of the delta function in Eq. (4.14), we can

write

R mon )~ (e - o -mem ==l
(4.75)

Using the integral form of the delta function in Eq. (4.75), we obtain

<exp[|;i/Z|T7;i(_r)ﬂf( g|(7)|] >5' o < /_ : B e;’” /_ Z (g:;g explif(7 — (7(r) — 77}-(T))]>S,.
(4.76)

So we can write

(et I B I i o
4.77

s

Evaluating the k-integral by using the process from Eq. (4.18) to Eq.
(4.41), we obtain

—

/OO ﬁ exp(iE : 7_") <exp[ik(ﬁ-(’r) = FJ(T))]>S, 9

oo (2)°
1 [ 7mS2sinh(Q79) ]3/2 exp [ —mS2sinh(Q/3) 2
(2m)3 | sinh Q(8 — 7) sinh(Q27) 4sinh Q(S — 7) sinh(27)
(4.78)

Substituting Eq. (4.78) into.Eq. (4.77) we-obtain

<exp[—u|ﬁ-(7) A Fj(T)I]> o
73 (1) — 5(7)] s

1 7mS2sinh(QP) 2 dadr —mS2sinh(Q/3) 9

(27)3 [sinh QB — 1) sinh(m)] P {4sinh Q3 — rysinh(Qr) M|

(4.79)
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Transforming the integral to the spherical coordinates by using Eq. (4.43), and

integrating over @ and ¢ variables. Then, Eq. (4.79) becomes

<eXp[—u|ﬁ~(T) - 73(T>|1> _
7i(7) — 75(7)]] g
(4r) mm§2sinh(20) 82 oo —m$2 sinh(Q3) 9
(27)3 [sinh QB —1) sinh(m)] /0 drr exp [4sinh Q(F — r)ysmh(r) ]
(4.80)

Next we evaluate the r-integral in Eq. (4.80),

o0 —mQsinh(Q5) - /°° —an?—b
d —rl= | drozeme®tr. (481
/0 rrexp [4sinh Q@ —n)sich(©Qr) ]~ J, (481)

Let
u = ax® + bz,
then

du = 2axdx + bdz,

The integral in Eq. (4.81) becomes

o0 2 ]. = 2
/ do e 70 = —/ dz [(2ax 4 b) — b9~
0 2a Jg

]_ o 2 o0 2
= — [/ dz (2az + b)e % —b7._ b/ dx e " bm] .
2a 0 0
(4.82)

We can see that the first term on the right hand side of Eq. (4.82) can be

integrated easily. Thus

/ dx (2az +b)e ™ b = / due " =1, (4.83)
0 0

We next evaluate the second term on the right hand side of Eq. (4.82). It is

convenient to write

> 2 b? o b
I= [ doee™™ ™" =exp(— d — —)?. 4.84
/0 Te exp(4a)/0 z exp[—a(z + 2a) ] (4.84)
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Let w = x + b/2a, then dw = dx and the lower limit of the integral in Eq. (4.84)

becomes b/2a. Then the integral in Eq. (4.84) can be written as

I :/ dw exp(—aw?) (4.85)
b

/2a

Using another dummy variable v, and denoting the lower limit of the integral as

b/2a = wy = w, (4.86)
we can write
I7 = / / dw dv exp[=a(w?® + v?)]. (4.87)
Jwg Jug

For wy = vy = 0, I? can be evaluated easily by transforming it to polar coordi-

nates, so we obtain

w2 poo
7 / / r dr df exp(—ar?) = uE (4.88)
0 0 4a

We note that IZ is the integral for the case that the lower limits of the integral
I} are zero (wy = vg = 0).
For the case that wy = vy = b/2a, it is easy to evaluate the integral I?

Eq. (4.87) by writing it as,

/ / dw dv exp[—a(w? + v?)]
b/2a Jb/2a
0o oo b/2a  pb/2a
= / / dw dv exp[—a(w? + v?)] —/ / dw dv exp[—a(w? + v?)],
o Jo 0 0

(4.89)
We have known from the table of integral [45] that
b/2a 1 b
/ Spl R o\ /A B (L] (4.90)
0 2 2a
where Erf[z] is the error function, and its lowest term is given by
2
Erf [2] ~ \/_“””7? (4.91)
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so Eq. (4.90) becomes

b/2a b
/ exp[—z°]dx = (4.92)
0

" 2a

from Eq. (4.90) and Eq. (4.91) we find that Eq. (4.92) is valid when 2 < 1, in
otherwise case this gives zero, so that the second term on the right hand side of

Eq. (4.89) becomes

b/2a prb/2a b2
/ / dw dvexp[—a(w® +v*)] = —. (4.93)
0 0 4a

Then substituting Eq. (4.88), and Eq. (4.93) into Eq. (4.89), we obtain

o] o0 b2
2= dw dv exp[—a(w?® +1%)] = — — — 4.94
' /b/2a /b/2a 7l el Bl 4a  4a?® ( )
thus
7 b2 1/2
and hence Eq. (4.84) becomes
_ ) 2 ofr 2]
dve ™ "=exp(—) |— - —| - 4.96
/0 F exp(4a) [4@ 4a2] (4.96)
Next substituting Eq. (4.83) and Eq. (4.96) into Eq. (4.82) we find that
> . B B O o R
d B e RGeS | N — 4.97
/0 vV 20 4da [a aQ] exp(4a) (4.97)
Recalling Eq. (4.81), we can see that
Qsinh(Q
mAlsinh(©5) and b= pu.

“= Ysinh Q(B — 1) sinh(Q27)

This expression is-applicable’even when g <1, so we can write

/OO dr rex —mA2sinh($}5) 2 — pr
0 P | 4sinh QB — 7) sinh(Q7) ,

_ 14sinh Q(B — 7)sinh(Q7) w4 sinh Q5 — 1) sinh(Q7)
T2 mS2sinh(20) a (Z mS2sinh(Qf3)
4sinh Q(5 — 7) sinh (1) 5, 4sinh Q(S — 7) sinh(Q7)  ,71/2
[” m$ sinh Q) — Qb (Q7)
p? 4sinh Q(B — 7) sinh(Q7)
exp [Z mS2sinh(Q03) D

(4.98)
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Next we substitute Eq. (4.98) into Eq. (4.80), we find

<eXp[—M|ﬁ(T) - 73'(7)|]>
7i(7) = 75(7)] s
1 [ 7m§2 sinh(27) ]3/2
(2m)3 Lsinh (B — 7) sinh(Q7)
{14sinh Q(B — 7)sinh(Q1) (H4sinh Q(f — 7) sinh(Q7)
2 mS2sinh(27) 4 mS2sinh(27)

X

4sinh Q(f — 7)sinh(Q7)  , 4sinhQ(S — 7) sinh(Q7)  ,711/2
[” m$ sinh (Q5) b (Q7)
p? 4sinh Q(B — 7) sinh ()
P [Z mSsinh(£20) D } (4.99)

~

By using the approximation in Eq. (4.56) and Eq. (4.57), we obtain

<eXp[—M|Fi(T) - Fj(T)H>S, = (91) 4 m@)s = (QW)_%MF B M—Z]%exp( 2 )

|75 (1) — 75(7)| 2 mfQ 2mS)
(4.100)

(M2

Then we evaluate the quantity (S — S’) ¢ by substituting Eq. (4.100) into

Eq. (4.74) and using the quantity (7i(7))s in Eq. (4.37), we find that

(S — 8", = _ 3N <w2 y Q?) /Oﬂ gl (sinh QB =1) sinh(QT))

2 Q sinh(203)
47TN2U0 _3 T _3 s ,u2 % /LZ g
— [(%) (mQ): = @m) Fu| S - L] o) /0 dr.
(4.101)
Again, by using the approximation in Eq. (4.57), Eq. (4.101) becomes
3N fw?—Q2\ [? A4xN2Up . _s L7
(S8, = _T< - )/0 ir— 25 o) 2(mQ)2/0 dr
47 N2U, T p? 1 w2 b
— 2m) P — =] /d. 4.102
) Sl - Lol o) [Larn o)
Next integrating over the time 7, we obtain
3N [w? — Q2 med. 1
-9 = — N? 3
(S-S, 4< - )ﬁ N5
N2Uy, -« p? 1 u?
— - — 2 . 4.103
(QW)I/ZM[Q )z ew(g =)0 (4.103)
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Then, to evaluate the ground state energy we begin with Eq. (4.60) in
which the upper bound of the ground state energy can be written as

1

EUZE(I)—
B

<S - S,>S’ ’

where E’ is the ground state energy of harmonic oscillator which corresponds to

the trial action S’ in Eq. (4.3). So

_ 3NKQ

EI
{ 2

Thus by using such E{ and the quantity (S — S'), from Eq. (4.103) (after restor-

ing i by checking dimension), the upper bound of the ground state energy is

2 WG Q\ /2
E, = gz\rm 4 ZNh (“ ) + Uy (m—) N?

Q 2mh
WA H s " (L) he N2
e 2 2 mal “Poma

3 3l w? mQ\ 9
= ZNthLZNhﬁ—i—UO(?) N

Ut (7 u2h\"* u2h )
+(2ﬂ)1/2 <§ ~ 0 exp | 59 N7, (4.104)

where this expression is applicable even when p <'1.

Then, from Eq. (2.48), Eq. (4.4) and Eq. (4.104), the approximated

density matrix with A set equal the unity is

p(fla 6; F) 0) — pl(’r_'a Ba F) 0) ) eXP<S - SI>S’
| mS ¥ —mON
~ | 27sinh(QB) P 2sinh(Q20)
3N jw? — Q2 mS
e { =67 (T o
2

(5 i) (o) 4109

[(7® +72) cosh(QB) — 277

)1/2

) — N2U(
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Next using the approximation from Eq. (4.66), Eq. (4.68) and restoring h, Eq.
(4.105) becomes

X exp {—B

U (7 12h /2 w2h 9
AlLT N
T one (2 m2 ) TP\ oma

Comparing Eq. (4.106) with Eq. (4.36), we obtain

2 0 1/2
§Nh,Q+§Nﬁ“’—+Uo<m) N?

4 4770 o
} . (4.106)

3 & \wk mQ\ 2
Ey = -1 - Nh— 2
0 47VhQ+4NhQ + Uy (27rh> N
U - (7 1R 1/2 u2h 9
=t — N 4.1
Jr(27r)1/2 <2 ms2 AT (4.107)
and
L (mEN T —mQN 2
lf () () g

where Eq. (4.107) is valid even when g < 1.



Chapter 5

Discussion and Conclusion

This work is based on the observation of the Bose-Einstein condensation
phenomena arisen by trapping alkali atoms in magnetic field. These alkali atoms
are composite bosons and neutral atoms of which the inter-atomic interaction is
short-range and well approximated by the delta function. We extended the in-
vestigation beyond the short-range interaction, i.e. long-range and intermediate-
range interaction, by using Feynman path integration. For the long-range interac-
tion, it is approximated by using the Coulomb potential. For intermediate-range
interaction, it is approximated by the Screened Coulomb potential.

Since the problem of charged bosons in an isotropic trap can be formulated
in the form of Feynman path integral, we have constructed the basic ideas of the
Feynman path integral in Chapter II. We have reviewed also how the variation
Feynman path integral can be used to evaluate the ground state energy of the
charged bosons.

In Chapter III, we have presented the basic equation which describes the
Bose-Einstein condensation. For the time-independent case, we use Ginzburg-
Pitaevskii-Gross equation which is equivalent to the time-independent nonlinear
Schrodinger equation. We have reviewed some recent researches which evaluate
the ground state energy of the neutral bosons and the charged besons. For the
charged bosons case, we have reviewed the works of Takeya Tsurumi, Hirofumi
Moris, and Miki Wadati. They began by choosing a trial wavefunction in the

form of G aussian as

U(7) = Cexp (%;) . (5.1)
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Then by using the Ginzburg-Pitaevskii-Gross energy functional, which the inter-
atomic interaction term was approximated by Coulomb potential, they have eval-
uated the ground state energy of the charged bosons confined in an isotropic trap

as
B 3h2N n 3mw?Nd? N N2g
 4md? 4 (2m)1/2d

Eq(d) (5.2)

In chapter IV, we have calculated the upper bound of the ground state
energy of the charged bosons confined in an isotropic trap by using the variational
path integration method. In this method, we have used the Feynman-Jansen
inequality, i.e.

(e > exp(F), (5.3)

to evaluate the upper bound of the ground state energy. Then we have used the
approximation that the temperature approach zero. Hence the upper bound of

ground state energy is obtained [44] as

s = %(s L. (5.4)

Finally, the upper bound of the ground state energy for the coulomb

potential case is

3 B o mS2 12
Ey=-NhQ) + -Nh— —— N? .
4=gVmit g +UO<27rh> ! (5:5)

and for the Screened Coulomb potential case is

3 3 w? mQ\"?
Ey~= ZNTLQ—FZNTLE—FUO <%> N

Up (7 ph /2 u*h
+ 1/2 (_ g Tad exp m NZ, (56)

where this expression, Eq. (5.6), is applicable even when pu < 1, and we have

evaluated the wavefunction for a single-particle state as

() = (”7:—22)3/4 exp [_”;—gw] | (5.7)
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If we compare our wavefunction, Eq. (5.7), with the wavefunction from the

Ginzburg-Pitaevskii-Gross approach, Eq. (5.1), we conclude that

h
2= —. 5.8
oo (5.8)
Substituting this into Eq. (5.2) we get
3 3 w? mO\ 2
Ey=-NiQ+ -Nh— + N?g [ — .
o=Vt g g<27rh> ’ (5.9)

It is readily seenthat our result, in the case of coulomb potential, Eq. (5.5) in
good agreement with the result from the Ginzburg-Pitaevskii-Gross approach,
Eq. (5.9), where g = Uy = €?

In conclusion, at small momentum, i.e. temperature approach zero, the
system goes to a condense state. The bound state in the case of the coulomb po-
tential can be described by the Ginzburg-Pitaevskii-Gross approach. In our study,
the ground state energy are evaluated by the variational Feynman path integral
and can be compared with the Ginzburg- Pitaevskii-Gross approach. Moreover,
we find the agreement between the Ginzburg-Pitaevskii-Gross approach and the
variational Feynman path integration. The Feynman-Jansen inequality implies
the stability of the bound state because our ground state is stable.

From our result, the ground state energy of the Screened Coulomb case
is stable and form a condense state. Finally, when the effect of the Screened
Coulomb potential is neglected, the ground state is the same as of Coulomb

potential as expected.
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