
การสงคายอนกลับสูโครงขายประสาทเทียมคอนโวลูชั่นของซัพพอรทเวกเตอรแมชชีนเชิงโครงสรางนำมาใชกับปญหา
การประมาณทาทางของมนุษย

นายพีระจักร วิฑูรชาติ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2559

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย
บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

STRUCTURED SVM BACKPROPAGATION TO CONVOLUTIONAL

NEURAL NETWORK APPLYING TO HUMAN POSE ESTIMATION

Mr. Peerajak Witoonchart

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2016

Copyright of Chulalongkorn University

Thesis Title STRUCTURED SVM BACKPROPAGATION TO
CONVOLUTIONAL NEURAL NETWORK APPLY-
ING TO HUMAN POSE ESTIMATION

By Mr. Peerajak Witoonchart
Field of Study Computer Engineering
Thesis Advisor Professor Prabhas Chongstitvatana, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfill-
ment of the Requirements for the Doctoral Degree

. .
Dean of the Faculty of
Engineering

(Associate Professor Supot Teachavorasinskun, D.Eng)

THESIS COMMITTEE

. Chairman
(Professor Boonserm Kijsirikul, Ph.D.)

. Thesis Advisor
(Professor Prabhas Chongstitvatana, Ph.D.)

. Examiner
(Nattee Niparnan, Ph.D.)

. Examiner
(Assistant Professor Thanarat Chalidabhongse, Ph.D.)

. External Examiner
(Associate Professor Bunyarit Uyyanonvara, Ph.D.)

iv

พีระจักร วิฑูรชาติ: การสงคายอนกลับสูโครงขายประสาทเทียมคอนโวลูชั่นของซัพพอรทเวก
เตอรแมชชีนเชิงโครงสรางนำมาใชกับปญหาการประมาณทาทางของมนุษย. (STRUC-

TURED SVM BACKPROPAGATION TO CONVOLUTIONAL NEU-

RAL NETWORK APPLYING TO HUMAN POSE ESTIMATION)

อ.ที่ปรึกษาวิทยานิพนธ : ศ. ดร. ประภาส จงสถิตยวัฒนา ,121 หนา

ในงานนี้ เราแสดงใหเห็นเปนครั้งแรกถึงวิธีการที่จะแปลงสูตรของซัพพอรตเวคเตอรแมชชีน
เชิงโครงสรางใหเปนโครงขายประสาทเทียมคอนโวลูชั่นสองชั้น ชั้นบนของโครงขายประสาทเทียม
คอนโวลูชั่นเปนชั้นการอนุมาณความสูญเสียชวยเหลือเพิ่มเติม และชั้นลางของโครงขายประสาทเทียม
คอนโวลูชั่นเปนชั้นคอนโวลูชั่น เราแสดงใหเห็นวาโมเดลหลายสวนที่บิดเบี้ยวไดสามารถถูกเรียนรูได
ดวยโครงขายประสาทเทียมเชิงคอนโวลูชั่นซัพพอรตเวคเตอรแมชชีนเชิงโครงสรางที่เพิ่งประดิษฐขึ้น
มาใหมโดยการสงคายอนกลับของความผิดพลาดของโมเดลหลายสวนที่บิดเบี้ยวไดไปสูโครงขายประสาท
เทียมเชิงคอนโวลูชั่น การสงคาไปขางหนาคำนวนการอนุมาณความสูญเสียชวยเหลือเพิ่มเติม การ
สงคายอนกลับคำนวณความลาดเอียงของการอนุมาณความสูญเสียชวยเหลือเพิ่มเติมสูชั้นคอนโวลูชั่น
โดยการกระทำเชนนั้น เราไดสรางโครงขายประสาทเทียมคอนโวลูชั่นชนิดใหม:โครงขายประสาทเทียม
เชิงคอนโวลูชั่นซัพพอรตเวคเตอรแมชชีนเชิงโครงสรางที่ซึ่งถูกนำไปใชกับปญหาการประมาณทาทาง
ของมนุษย การประดิษฐใหมนี้เปนโครงขายประสาทเทียมที่สามารถนำไปใชเปนชั้นสุดทายของการ
เรียนรูเชิงลึก วิธีของเราเรียนตัวแปรของโมเดลเชิงโครงสรางและโมเดลรูปลักษณไปพรอมกัน สูตร
การสงคากลับของเรายังสามารถนำไปใชกับปญหาการแบงแยกหลายชนิดของซัพพอรตเวคเตอรแมชชีน
เชิงโครงสรางที่ซึ่งผลการทดลองของเราเหนือกวาตัวแบงแยกหลายชนิดที่ชื่อวาซอฟตแมกซที่ใชกัน
อยางแพรหลายเมื่อเปรียบเทียบบนฐานขอมูลมาตราฐาน MNIST. เราเขียนโปรแกรมวิธีของเรา
ในฐานะชั้นชนิดใหมของหองสมุดโปรแกรมชื่อวาCaffeที่มีอยูแลว

ภาควิชา วิศวกรรมคอมพิวเตอร . . ลายมือชื่อนิสิต .

สาขาวิชา วิศวกรรมคอมพิวเตอร . . ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ

ปการศึกษา 2559

v

5471446721: MAJOR COMPUTER ENGINEERING

KEYWORDS: STRUCTURED SVM/ CONVOLUTIONAL NEURAL NETWORK / NEU-

RAL NETWORK

PEERAJAK WITOONCHART : STRUCTURED SVM BACKPROPAGATION TO

CONVOLUTIONAL NEURAL NETWORK APPLYING TO HUMAN POSE ESTI-

MATION. ADVISOR : Professor Prabhas Chongstitvatana, Ph.D. ,121 pp.

In this work, we show, for the first time, how to formulate Structured SVM as two

layers of Convolutional Neural Network, the top layer of which is loss augmented infer-

ence layer, and the bottom is normal convolutional layer. We show that Deformable Part

Model can be learned with newly created Structured SVM neural network by propagating

the error of Deformable Part Model back propagate to Convolutional Neural Network. The

forward propagation calculates loss augmented inference. The back propagation calculates

the gradient from the loss augmented inference layer to convolutional layer. By doing so, we

create a new type of convolutional neural network: Structured SVM Convolutional Neural

Network, which is then applied to Human Pose Estimation problem. This new creation is a

neural network, which can be used as the last layers of deep learning. Our method jointly

learns structural model parameters and appearance model parameters. Our back propaga-

tion formulation can also be applied to Multiclass Classification Structured SVM where our

result outperformed widely used Softmax classifier on standard MNIST dataset. We imple-

ment our method as a new layer of existing Caffe library.

Department : Computer Engineering Student’s Signature .

Field of Study : Computer Engineering Advisor’s Signature .

Academic Year: 2016

vi

Acknowledgements

Five years of my life has been dedicated to this Ph.D study. It would have been fi-
nancially impossible to dedicate such an amount of time and resource to this thesis without
financial help from my family. I have been very fortunate to be raised by parents who empha-
sized the importance of education. Now that I myself am a father of three children, I know
how hard it is to maintain a good environment and provide resources for the next generation
so they can stay focused on what they wish to do. I thank my parents, namely, Wongwai and
Gasiniee Witoonchart, for providing such an environment and resources for my Ph.D study.
This is a privilege not every family can give.

The next in the line I wish to thank is my wife, Aiping Witoonchart. She given good
support to my children. Without her agreement to five years of my life dedicated to this Ph.D
study, I would have been unable to dedicate such an amount of time and resources to this
thesis. To raise a child, a great amount of labor and attention must be paid. To raise three
children, the amount of labor is more than tripled. Yet she has maintained good support and
standards so I can dedicate my time to my research.

Finally, I must thank my advisor, Prof. Prabhas Chongstitvatana. He has assisted in
answering all of my inquiries. He has been my guide during these years. Through these
years, I have had the feeling of swimming on an ocean of methods, parameters, algorithms.
It was through my adviser that I could see where the shore lie.

Here in this thesis is the fruit of their contribution. Thank you all. Please enjoy reading
this thesis.

Table of contents

List of figures . x

List of tables . xiii

1 Introduction . 1

1.1 Motivation . 1

1.2 Literature Review on Human Pose Estimation learning algorithms . . . 4

1.3 Literature Review on Structured SVM 10

1.4 Impact of our work . 12

1.5 Reading this Thesis . 13

2 Background . 15

2.1 Pictorial Structure . 16

2.2 Max Sum Algorithm . 21

2.3 Toy example of Part base detection . 31

2.4 Structured SVM . 33

2.5 Convolutional Neural Network . 36

3 Multiclass Structured SVM backpropagation to Deep Learning . . 41

3.1 Introduction . 41

3.2 Multiclass Classification with Structured SVM 42

3.2.1 SSVM as two-layer Neural Network 45

viii

3.3 Experiment . 47

3.3.1 Neural Network Structure . 47

3.3.2 Implementation as a Caffe layer 48

3.3.3 Result . 49

3.4 Conclusion . 51

4 Structured SVM as two layer neural network on Human Pose Es-

timation . 53

4.1 Introduction . 53

4.2 DPM Problem formulation . 54

4.2.1 DPM Problem formulation . 57

4.2.2 Model and Detection Inferences 58

4.2.3 Subgradient optimization of Structured SVM 61

4.2.4 SSVM as two-layer Neural Network 62

4.2.5 Solving Inferences with Max-Sum Algorithm 65

4.3 Experiment . 67

4.3.1 Data Preparation . 67

4.3.2 Neural Network Structure . 70

4.3.3 PCP evaluation . 71

4.3.4 Implementation as a Caffe layer 72

4.3.5 Result . 72

5 Comparing different types of Structured SVM on Human Pose Es-

timation . 77

5.1 Introduction . 77

5.2 Human Pose Estimation Part base detection 78

5.3 Learning Human Pose Estimation with Structured SVM 80

ix

5.3.1 Solving Structured SVM . 84

5.4 Experiment . 91

5.4.1 Result . 93

5.5 Conclusion . 93

6 Conclusion . 95

References . 97

Biography . 107

List of figures

1.1 Double Couing problem happens on the limbs where limbs of the stick-

man are couting on one limb of the test image twice, image from [25] . 6

2.1 Matching Quality on Motorbike image using a wheel as similarity filter.

Courtesy of [34] . 17

2.2 Pictorial Structure for two wheels . 17

2.3 Inference on graphs . 19

2.4 Human Pose Estimation tree graphs . 19

2.5 Message Passing from many children to a parent 24

2.6 Message Passing has reached root node. The max-marginal score is found 25

2.7 Backtrack with stored tables from root to leafs 26

2.8 Original Image . 32

2.9 The first part’s scores . 33

2.10 Root Scores plus all passed messages 33

2.11 Inference on different tree graphs . 34

2.12 Linear SVM as sorting. The arrows are the real value axes, representing

each training data. If the classifications are all correct, such that the

training error is 0%, then the correct prediction score yi

(
wT xi + b

)
≥ 0,

and the incorrect prediction score −yi

(
wTxi + b

)
≤ 0 36

xi

3.1 Cost function (blue line), and test accuracy (red line) as a function of

training iterations of our Multiclass SSVM Deep Convolutional Neural

Network on MNIST dataset. Show first 500 iterations. 47

3.2 The Structure of Convolutional Neural Network, which is slightly modi-

fied version of Lenet by Caffe library. 48

3.3 MNIST dataset is the dataset of handwritten digits. 49

3.4 Test Accuracy as a function of training iterations. Our Structured SVM

Classifier has consistently higher accuracy than Softmax. 50

4.1 Proposed method formulate Structured SVM two layer neural network,

which are the two topmost (blue and green) layers of c). The appearance

model weights are the bottom Convssvm Layer (green layer), which are

a normal convolutional layer. The Loss Augmented Inference on the top

layer (blue layer) has pairwise weights, the deformable model’s weight,

and bias weights, the cooccurance model’s weight, which can be seen as

structural weights. The deformable weights,wefd , are shown as weights

between the edges in a), shown as subvector in concatenated vector of

weights in b), and shown as Loss Augmented Inference weights in c).

The appearance model weights,wt
f , are shown as weights of nodes in a),

shown as subvector in concatenated vector of weights in b), and shown

as Convssvm layer in c). 56

4.2 Slack Loss, One minus Intersect over Union loss ,∆ (ŷ,yi), versus samples. 66

4.3 Feature Pyramid is feeded to Structured SVM neural network as many

layers. 69

xii

4.4 Visualization of our result Human Pose Estimation from PARSE test

dataset. The green bounding boxes are a head. The yellow boudning

boxes are a torso. The cyan bounding boxes are a left arm. The blue

bounding boxes are a right arm. The red bounding boxes are a left limb.

The deep blue bounding boxes are a right limb. 75

4.5 Visualization of our result Human Pose Estimation trained with PARSE

training set and tested with LSP test dataset. The green bounding

boxes are a head. The yellow bounding boxes are a torso. The cyan

bounding boxes are a left arm. The blue bounding boxes are a right

arm. The red bounding boxes are a left limb. The deep blue bounding

boxes are a right limb. 76

5.1 PARSE dataset. The blue Bounding boxes are our training label ŷ,

which are created by their joint, mid-joint positions. There are 14

joint positions in the original PARSE dataset label. The mid-joint is

calculated by finding the mid position of two joints. 79

5.2 Human Pose Estimation as SSVM sorting: This shows the idea of SSVM

as sorting. The correct bounding box assignment has a higher score

than the rest of other assignments. 81

5.3 Hard Margin constraints of Structured SVM. If we can have w which

sorts the score w ·Φ (xi,yi), to the highest of all possible ways of sorting,

then we achieve 100% test accuracy by predicting the y with maximum

score. 81

5.4 Soft Margin constraints of Structured SVM 82

5.5 Slack Loss, One minus Intersect over Union loss ,∆ (ŷ,yi), versus samples 92

List of tables

3.1 Error of MNIST dataset classification result in percentage 51

4.1 Strict Percentage of Correct Point (PCP)[112] Comparison on PARSE

dataset. 72

4.2 Strict Percentage of Correct Point (PCP)[112] Comparison on Fashion-

ista Dataset. 73

4.3 Strict Percentage of Correct Point (PCP)[112] Comparison on LSP

Dataset. 73

5.1 Strict Percentage of Correct Point (PCP)[112] Comparison 93

Listings

2.1 Maximizing Objective Function 2.2 with Naive Method 20

2.2 Maximizing Objective Function 2.2 with Max-Sum Algorithm 28

Chapter 1

Introduction

1.1 Motivation

Since the dawn of the computer era, mankind has dreamed of a robot which can see

and understand the world like a human. The story of such a wonder is the subject of

many science fiction stories. Some of those stories have inspired other writers. The

story of Skynet in "The Terminator," films, in which a computer gains consciousness,

sees the world through cameras, and responds to threats, has inspired this author to

formulate a Ph.D thesis.

Many decades have passed since then, and our dream of a Skynet-type network is

still unrealized. What happened? Why is it so hard to write a program that detects

objects around us? Despite decades of research, this is still an open question. Lately,

with new research results from the machine learning community, and with advances in

computer speed, we are now able to write a program that detects objects like never

before. These new methods rely heavily on statistical theory. Data-driven solutions

seems to be the core idea upon which these methods rely. In most cases, the more

data-driven the algorithm, the better the detection accuracy. These statistical methods,

however, need a representation of images in order to work correctly. One must at least

2

normalize each training data point on the same domain. The training data must be

engineered in such a way that those which are not distinguished during classification

should be removed before being sent to statistical classifiers. Such data preprocessing

prior to classification are called feature extraction and the preprocessed data is called

feature. These requirements gives rise to “feature” engineering, trying to find a way to

pre-process the data such that the intended statistical classifier gives high accuracy.

For example, HOG [23], SIFT [67], LBP [71], Haar wavelet[104], Shapelet[81], Shape

Context[5], Covariance[102] Features are extracted from training images and used

to train classifiers such as SVM[103] and Adaboost[40]. Previous decades saw many

Computer Vision researchers trying to find features-classifier pairs which gave the

greatest accuracy for image classification. Object detection can be a sliding windows

on all possible scales of image classification. For example, to detect a human is to

slide a window and then determine if within that window there is a human or not

over all possible locations and scales [107]. Engineering such a feature is very difficult

task. Many researchers spend a decade or two of their career attempting to engineer

features. Their results are impressive, yet improvable. There were many speculations

that if hand engineered features were replaced with learned features, which are features

obtained by statistical methods to learn the preprocessed data directly from data,

one could significantly improve the accuracy. Because the dataset requirement is very

large, learning the feature directly from the data is computationally intensive. The

accuracy gain from feature learning inspires researchers to learn their features. It is

undeniable that the feature learning method requires data engineering, and additional

preprocessing of data is still required before feature learning. However, such data

engineering is much easier than feature engineering, and additional preprocessing of

data is usually very simple. Ideas from pioneering Computer Vision researchers such

as Pictorial Structure are then incorporated into this new statistical method. The idea

3

of Pictorial Structure is that objects are formed by object parts. These parts have

relative locations which can be modeled as if there are springs among them. Therefore,

a static structure model is created for a particular object class. For example, a face

must have two eyes, one nose, one mouth, and a hair area. We could outline the

image and place springs among these part locations. Once this was done, a static

structure model for face could be created. This model is called Pictorial Structure. For

a computer program to use this face pictorial structure for face detection, one needs

to quantify the Pictorial Structure model and the matching quality of a test image.

Together with statistical learning methods, and with engineered features, Pictorial

Structure became a powerful tool for object detection since it not only performed object

detection, but also a localization of object parts. Using PS with statistical learning

gives rise to face detection involving eyes, lips localization, Human Pose-Estimation,

and text detection. Since quantifying Pictorial Structure results in an entire structure

of hand engineered features refined through statistical learning processes, the method

can be said to use hand-designed features over structured learning. The detection

is thus called structured inference. How could one improve the Pictorial structure?

Currently, there are not many researchers using Feature Learning methods on Pictorial

Structure. Since many objects fall under PS framework, they are capable of being

detected by this framework using the same technique, with the only change being the

dataset. Application of this method is object detection. All objects which fall under

PS framework are applicable. Human Pose-Estimation, Face Detection, and Object

Detection with deformable object parts are some particular instances of PS framework

object detection upon which we are currently focusing. In Human Pose-Estimation,

Part articulation is difficult because the same part can be shown from many different

angles. Previous research attempted to find an articulation of a mixture of part types.

Each part on the dataset was categorized into K clusters with K-mean clustering, thus

4

K type for that part. Detection is therefore attempting to recover the part position

and part type for each and every part. Previous research defined the detection problem

as a structural prediction problem under PS framework. However, there results on

arms and limbs has not yet reached sufficient accuracy. It should be noted that learned

features can handle variation of image quite well. Therefore feature learning methods

should be applied to Pose-Estimation Problems as an instance of PS framework.

The author believes that, for computers to understand the world, we need to

understand the functioning of the brain, and imitate these function. The author

believes that human brains learn to recognize images. Therefore, the author wishes to

research deep learning algorithms due to the claims that they imitate brain functions.

In this thesis the author has come up with a new layer of deep learning.

The author believes that research is related to the era in which one lives. Human

understanding of Artificial Intelligence(AI) has passed both the boom time and the

bust time. Within the bust time there is no basic research theories, or no calculation

power. Instead of using GPU specifically for image rendering, researchers are now

performing general purpose calculation with the General Purpose Graphic Processing

Unit (GPGPU) technology. With these developments, the calculation can now power

skyrockets. Hence, the author believes that the boom time of AI research is now.

–

1.2 Literature Review on Human Pose Estimation

learning algorithms

The Generic Structural Prediction of object parts is similar to the Human Pose-

Estimation Problem. Some examples are, labeling and bounding car parts with boxes,

labeling and bounding face parts with boxes, and labeling and bounding bus parts

5

with boxes. The Pose Estimation problem on 2D still images is defined as the process

of finding human joints or parts on an image that contains one human. This is a

difficult problem due to the change in colors of suits and because parts are often

partially, if not totally, occluded. Previous state-of-the-art Pose Estimation solutions

were based heavily on the success of Pictorial Structure first proposed by [38], which

was then further developed in the age of statistical classification by [34]. Pictorial

Structure tree inference was made efficient by [32]. The method quickly became the

standard for object localization. [77] adopted this method for Human Pose Estimation

(HPE), thus making it the standard for HPE. Ramanan’s method of solving HPE is to

cluster the subparts into a mixture of appearances for each part, then incoperating the

co-occurance model and deformable model with a mixture of the appearance model.

In the Histogram of Oriented Gradients (HOG) [23], features of each subpart are

extracted and the appearance model filters learned the SVM [21] filters for each and

every subpart. Pictorial structures were then created and populated the part and

subpart filters with these SVM filters. They were then relearned structurally. The

result was very successful. However, some problems persisted, for example, double

counting, shown in Figure 1.1, where limbs or arms are counted twice on the same

limb or arm of the test image. This problem led to a wide variety of improvements.

One improvement was to add more training data [51]. Further methods also tried to

improve the detection model, such as adding a prior model to [74], incorperateing the

geometrical model. Some attempted to use information from the subsequent video

frame for loopy inference [17]. Some attempted to impose symmetry betweeen limbs,

adding repulsive edges on different arms[50]. [106] used latent tree models where

the latent structure was learned from observation without making the assumption of

physical constraints. There are other methods in which a puppet is utilized instead of

bounding boxes to represent a human[122]. The tests [13] increased the unary potential

6

Fig. 1.1 Double Couing problem happens on the limbs where limbs of the stickman are
couting on one limb of the test image twice, image from [25]

accuracy by random forest[11] Plausible poses can be modeled with greater fidelity.

One way is to find better structure, for example, in [96]. Pictorial Structure tree

model is added with spatial hierarchical of hidden nodes, [95] carefully designed leaf

node variation and latent node, which control variation on leaf nodes, or [93][88][95]

used loopy model to inference. [25] tries to focus on part clustering into multimodal

decomposible models. Some of them try to solve multiple instances of a human part

with a multimodal Hierarchical model with approximate inference on a single prototype

and among local poses [29].[74] use well defined parts which are often encountered in

appearance space and configurational space, and use pre-trained Adaboost classifier

[40] on SIFT [66] or shape context [5] feature function. [30] adds prior model for head

to torso connection in upper body Human Pose Estimation. [17] try to improve PS

with better prior model by parameterize geometric variables. However the models

are improved, all of these methods must learn structural model parameters. Latent

SVM [113] has become the standard for learning these model parameters. Structured

SVM [100] can also be used to learn Human Pose Estimation [14]. This research also

uses standard Structured SVM as a model learning algorithm. This research differs

from [14] in that back propagate Structured Loss Augmented Inference back to neural

network is conducted prior.

7

Apart from using an SVM base to learn the pictorial structure model, Random

Forest [11] is used to learn the unary potential filters, joint location prediction, and

co-occurance model in [25]. [82] uses Structured SVM on mode-specific submodule for

flexible submodule selection.

The morning ring rang since [20] shows near human accuracy in traffic sign recogni-

tion and hand written digit bench-marks. Deep learning and feature learning, however,

have been recent trends for finding features for classification, object detection[91], and

segmentation[119]. The following are examples of such trends: Deep convolutional

Neural Network, which can perform facial point detection [90][59],Deep Network for

pedestrian detection [84], and Pose Estimation with Deep Network [72], In [72], appear-

ance model, co-occurance model, and deformable model were inserted as three different

types of input to neural network, and back propagate the sum of cross-entropy error,

square error, and regularization. [97] used spatial dropout and heat map regression on

Deep Convolutional Neural Network. [12] fed back gradient error of the approximation

of the joint positions to Coonvolutional Neural Network. Key point regression with

convolutional neural network can perform both Human Pose Estimation and Action

Recognition impressively [44]. These regression based methods differ from our approach

in that discriminiative classification with Structured SVM Loss Augmented Inference

is used as the last layer. Most similar to our work is the current work of [112], which

results in a great Percentage of Correct Parts (PCP) improvement. Their method

achieves as high as 81% PCP accuracy. They formulate the problem as end-to-end

back propagation of SVM hinge loss back to convolutional neural network. This is

analogeous to the work of [105] on the object detection application. Our work differs

in that we formulate the problem as Structured SVM (SSVM) [100]. Other similar

work is [16], and their extension [15], in which articulated pose estimation was utilized

as pictorial structure as can be seen in our work. In addition, Convolutional Neural

8

Network to learn the appearance weight was utilized as in ours. They used SVM to

learn the model structurally, which is a similar method but not the same as ours. The

biggest difference is that they did not back propagate the error from Structured SVM,

which is the key to our contribution.

Our approach starts from Ross Girshick’s notice that Convolutional Neural Network

(CNN) [54][55] is Deformable Part Model (DPM) [42]. However, the error was not

back propagated from DPM model to CNN. Should the DPM be a CNN, the error

must be back propagated to the lower layer. [99],[48],[98], and [47] used regression

of joint positions over deep Convolutional Neural Network. To this end, this thesis

back propagates the error of DPM back to CNN under Structured SVM Loss function.

There have been similar tests conducted in other fields using the method of back

propaging the error from Structured SVM to Neural Network. In the Acoustic Signal

processing field, [87] the method of back propagating the Structured SVM error from

state prediction of acoustic signal to Neural Network is quite similar to the method in

this thesis. However, the domain is Acoustic Signal Processing, while ours is Computer

Vision. Their loss formulation is also different from ours in that they use square hinge

loss function. Their loss function is also different since the nature of Acoustic Signal

and Visual Signal is different. They back propagated to neural network, while ours

back propagates to convolutional neural network. On Human Pose Estimation field,

[112], also doing back propgation to Convolutional Neural network from SVM hinge

loss. Our method differs in that we back propagate the Loss Augmented Inference loss.

The usual method of applying Latent SVM [113] with Deep learning is to extract

features with deep neural network and perform Latent SVM learning as two distinct

stages on the same pipeline, meaning that one must do feature extraction, then cache

the result on the first stage, then submit to Latent SVM learning algorithm as the

second stage. For example, Girshick [42], and [16] extract pyramid of features from

9

convolutional neural network on the feature extraction stage, cache the extracted

features and then learn Latent SVM during the second stage. On the second stage, the

latent SVM then learns all model parameters by switching between SVM optimization

and inference combinatorial optimization. This kind of method has an inherent problem

in that they cannot learn the deep learning feature extraction parameters from the

error of inference optimization, because they are on the two different distinct stages.

The learnable feature extraction parameters cannot be updated by the error of Latent

SVM. Seeing this shortcoming, we proposed the Structured SVM Convolutional Neural

Network.

In this work, we show for the first time how to formulate Structured SVM as

two layers of Convolutional Neural Network, the top layer of which is loss augmented

inference layer, and the bottom is normal convolutional layer. We show that Deformable

Part Model can be learned with newly created Structured SVM neural network by

propagating the error of Deformable Part Model back propagate to Convolutional

Neural Network. The forward propagation calculates loss augmented inference. The

back propagation calculates the gradient from the loss augmented inference layer to

convolutional layer. By doing so, we create a new type of convolutional neural network:

Structured SVM Convolutional Neural Network, which is then applied to Human Pose

Estimation problem. This new creation is a neural network, which can be used as the

last layers of deep learning. Our method jointly learns structural model parameters and

appearance model parameters. Our back propagation formulation can also be applied

to Multiclass Classification Structured SVM where our result outperformed widely

used Softmax classifier on standard MNIST dataset. We implement our method as a

new layer of existing Caffe library. We built a very large back propagating system with

373,978,502 back propagating elements. Our source code is available for download.

10

1.3 Literature Review on Structured SVM

Why Structured SVM? The ultimate goal of computer vision is to "enable a computer

to see things like humans". That means that a computer should be able to do

"segmentation[24][64], detection[117][120][37][46][36][121][3], and tracking[115][116]". In

the domain of part based detection and Pictorial Structure, a variant of SVM, called

LSVM[31] is widely used in Human Pose Estimation [113] [106] [96] [4] [110], [80], and

[75], and in other part based detection problems. For example, facial detection[121][3],

scene text recognition[86],and object detection[117][120]. In the field of segmentation,

Markov Random Field[60](MRF) are widely used[78]. These MRFs can be learned

with Structured SVM[24][65]. Since its introduction by Joachim et al[100], Structured

SVM has become a common tool in computer vision, ranging from object detection [43]

and human pose estimation [18] to CRF Segmentation learning [64]. Structured SVMs

are widely used to jointly learn Segmentation and Detection. The work [85] shows

that Structured SVM can learn both segmentation and detection. In the case of [108]

Structured SVM can further extend from Part based detection model to hierarchical

poselet. Structured SVM can incorperate stochastic context free grammar to And-Or

Graph for Object Detection works[63]. [37] uses Segmentation clues to help Object

Detection. To do tracking, an online structured SVM can be used [115][116]. The work

[69] sees Structured SVM perform learning for both Object Detection and Semantic

Segmentation in the Wild environment. The work of online Structured SVM learns both

Human interactive labeling and pose labeling for bird pose estimation[10] shows that

Structured SVM is very capable of performing real different tasks. The work of [111]

jointly learn saliency map and dictionary. The most convincing example is perhaps

from the work of [28][27][68], which sees Human Pose Estimation and Segmentation

model parameters learned by Structured SVM.

11

Structured SVM requires graphical model inference. This requirement creates a

wide variety of graphical model incorperation to Structured learning for computer

vision problems. For example, [117] used Bayasian optimization, and Gaussian Process

as a probabilistic model, and used local fine grain search to perform inference to

improve Convolutional Neural Network result on object detection. In the work [109],

distributed convex believe propagation [83] is used to perform scene segmentation.

Greedy algorithm for object detection work is done by [26]. The branch-and-bound

strategy is used for object detection in work[7], and is learned by Structured SVM

regressor. We see Markov Chain Monte Calo[41] type of inference with Bayesian

Probabilistic modeling on the computer vision task of Scene Segmentation and parsing

in the work of [118]. In the work of [2],RGB-D input on Scene Sementic Labeling

problem, we see Integer Programming inference[70] on Structured SVM learning. And-

Or Structure for Object Detection[58][62][114] tasks are another type which typically

uses Structured SVM learning as their learning method. [61] use Linear Programming

to solve the Visual Sementic Search problem, the model parameters of which are learned

by Structured SVM.

Structured SVM can also use Kernel trick to combine multiple computer vision tasks

to learn co-segmentation-detection. For example, [6] creates co-object-segmentation-

detection by having object similarity kernel, mask similarity kernel, shape kernel, and

local color model kernel.

When compared to LSVM, there are also works on LSVM with co-segmentation

[89], but they are less widely used. It is because of the Structured SVM ability to learn

graphical models in a principled way that inspired the author to work on Structured

SVM. The author believes that Structured SVM learning brings us closer to the ultimate

goal of co-segmentation, detection and tracking than does LSVM.

12

1.4 Impact of our work

In this work, the author shows, in the computer vision field, that a type of Markov

Random Field can be learned with neural network. The work of [34] shows that

Pictorial Structure learned by LSVM is a type of Markov Random Field. It is

established knowledge that Markov Random Field can be learned with Structured

SVM. In this work, the author shows that the unary potential of Markov Random

Field, if learned with deep learning, can be back propagated during the structure

learning phase. This is important because there are currently many works that follow

the following procedure. The first step is to extract the feature with feature extractors.

The second step is to use the extracted feature to learn multilcass classifier. This results

in initial Unary weights of MRF. Finally. the third step is to learn MRF structurally

as a distinct stage. The author is aware that learning unary potential of MRF before

joining the MRF structure could help the system to escape local minima. Our work

shows that it is possible to jointly learn all these steps in one single step. It is possible

to jointly learn the parameters of deep learning feature extractor, MRF unary potential

parameters and MRF pairwise potential parameters. Our work back propagates the

error of MRF structured prediction to the deep learning unary potential weights in

a principled way. The impact of our work is not only for Human Pose Estimation,

but for other projects that have been using this pipeline. Researchers can now use

Structured SVM back propagation for their work. For example, In the work of Scene

Text Detection,Recognition [52] Convolutional Neural Network is used to extract the

unary potential of each character by Random Ferns[73] (Step 1,2), then learns Pictirial

Structure MRF [34] to understand the text (step 3). Given their inference algorithm

are also Pictorial Structure, our Structured SVM back propagation to Convolutional

Neural Network could be applied to their work to create an end to end deep learning

system.

13

It is now established knowledge that by doing end-to-end deep learning on computer

vision tasks results in high accuracy. For example [112] use of end to end in Human

Pose Estimation with CNN, or in scene text recognition [52] where end-to-end CNN

helps to achieve high accuracy. Our work helps others achieve end-to-end success if one

has MRF, which can be learned with Structured SVM, and has deep Neural Network

as Unary Potential parameters.

Currently, the few ways of solving Structured SVM are, namely, Cutting plane

algorithm [100], Subgradient Method[79], Multi Sample Online Dual Ascent[9], and

Block-Coordinate Frank-Wolfe Optimization[53]. Our work can be added to this list as

a new way of solving Structured SVM: Back Propagation Algorithm. Although Back

propagation algorithm is not different from Subgradient algorithm[79] for single layer

perceptrons, it is clearly different from subgradient algorithm in multilayer perceptrons,

and deep learning.

1.5 Reading this Thesis

The paper is organized as follows: Chapter 1 is the introduction and literature reviews.

Chapter 2 explains basic theories and knowledge required to read the Thesis. Before

we can work on complex Structured SVM back propagation to Convolutioinal Neural

Network, our work must begin with formulation of Structured SVM back propagation

to neural network applying to Multiclass Classification problems. We explain this in

Chapter 3. Our formulation of Multiclass Structured SVM back propagate to deep

learning in Chapter 3 also reports better performance than widely used deep learning

multiclass Classifier Softmax[8] in standard MNIST dataset[57]. Chapter 4 is the main

section, where the original work of Structured SVM Convolutional Neural Network is

formulated for the first time. In Chapter 5, we compare our Structured SVM trained

14

with Back propagation with base line LSVM, and our implementation of Cutting plane

algorithm Structured SVM[101]. We conclude our work in Chapter 6.

Chapter 2

Background

Introduction

This chapter introduces common knowledge needed to understand this thesis. The

author starts with a description of Pictorial Structure idea from [34]. Pictorial Structure

idea was conceived as an attempt to perform object recognition whose object structure is

well defined components. For example, a face object is well defined to have components

such as two eyes, a nose, and a pair of lips. Their locational relationship is also well

defined. These relationships of well defined components create a structure of face class.

This chapter investigates the Pictorial Structure idea, how to realize Pictorial Structure

as a model for detection, how to calculate Pictorial Structure detection efficiently, how

to learn Pictorial Structure’s model parameters with Structured SVM, and how to

formulate Pictorial Structure model as an instance of Structured SVM inference.

Applying efficient calculation to Pictorial Structure for Human Pose Estimation

problem is not easy to understand. This chapter starts with very simplified part

localization problem, so that one can understand the Max-Sum Algorithm, also known

as Viterbi Algorithm [39], which facilitates efficient calculation. This is followed by a

description of how the Max-Sum algorithm can be used for a toy-based example of a

16

computer vision part-based detection problem. After readers understand the Max-Sum

Application to computer vision toy example, the more complex Pictorial Structure

model for Human Pose Estimation problem is described.

To understand model learning, which is crucial to understanding this thesis, this

chapter begins with Structured SVM framework. This chapter also provides the basic

understanding of Structured SVM to those who are familiar with binary SVMs, but do

not yet have a clear understanding of Structured SVM. After readers understand the

application of Structured SVM to a multiclass classification problem, the more complex

formulation of Pictorial Structure model learning into Structured SVM problem will

be described.

To understand the main part of this thesis, a prerequisite understanding of Support

Vector Machine(SVM), and Neural Networks are required, and will not be described in

this chapter. This chapter describes forward and backward opearation of Convolutional

layer of Convolutional Neural Network [55]. This is important because in Chapter 4,

the readers need to know its operation to fully understand all Chapter 4’s formulation.

Detection or prediction inference can be used interchangeably. The former has a

straight forward meaning. The latter has its root in a probabilistic graphical model. In

our system, there are two types of inference, prediction inference, and loss augmented

inference. To understand loss augmented inference, one must understand the Structured

SVM framework.

2.1 Pictorial Structure

The Pictorial structure Model was proposed during the 1970s. Figure 2.3 is a picture

from the 1970s where the relationship of parts are being modeled in pairwise connection.

Parts are connected by springs between them. The key idea of pictorial structure is to

change the relationship modeling to a global optimization problem. During test time,

17

Fig. 2.1 Matching Quality on Motorbike image using a wheel as similarity filter.
Courtesy of [34]

Fig. 2.2 Pictorial Structure for two wheels

part placements are the best positions of parts on an image where the springs are not

too stretched or too compressed, while also having the best matching quality.

To see how the idea can be realized, for each part, there are costs of part placements

on all positions of the test image. For example, if the test image is a motorcycle, some

of its parts are its two wheels. In Figure 2.1, the matching quality shows the cost

of placing each part on each position of the test image. White in matching quality

shows places where cost of placements are low. One can see that there is more than

one position to place a wheel because there is a front wheel and a back wheel, both

of which look the same. Modeling of a relationship between these two wheels can be

transformed into a global optimization problem. If one is not concerned with pictorial

Structure, placement would occur in the whitest positions of the match quality image.

Notice that there are many white places. It is likely to turn out that the two best

maximum similarity scores may not match the position which the two wheels may be

18

thought to be. These two positions are unrelated except for appearance similarity to

the filters.

If we are to have structural prior information for matching, the above pictorial

model could be used. The structural model of this model is as shown in Figure 2.2.

The overall structural placement is the minimum cost of all placements, which are the

sum of the match quality of 2 wheels and the cost of the spring. We can now write the

structural placement as a global optimization problem.

[ŷ1, ŷ2] = arg max
y1,y2

m1(y1) +m2(y2) + c12 (y1, y2) (2.1)

,where y1 represents the pixel location for the front wheel, and y2 represents the

pixel location for the back wheel, and ŷ1 represents the best location for the front

wheel, and ŷ2 represents the best location for the back wheel, m1 (a) ,m2 (a) are two

matching qualities evaluating at position a, and c12 (a, b) is the cost of stretching or

compressing the spring term. At this stage, the mathematical term is not for precise

definition. The main purpose in showing the above equation is to present the idea of

Pictorial Structure.

Matching quality, m1 (y1),m2 (y1) , in linear cases, are the filter responses of the

image. This can be seen as finding the dot product of each sliding window all over the

image. This is sometimes called unary potential because the term is a score on a single

node. The spring term c12 (y1, y2) is called pairwise potential because the score needs

the values of two nodes. The value which maximize eq. 2.1 is called max-marginal of

the optimization problem. The underlying assumption of pictorial structure is that

"Deformation Cost only depends on displacement among parts". The Figure

2.3 shows the Pictorial Structure model of a face. In an example model of a face,

there are many parts of a connected graph, each of which represents a nose, an eye,

an ear, etc. The dynamic programming idea is we trim each leaf from the tree by

19

Fig. 2.3 Inference on graphs

Fig. 2.4 Human Pose Estimation tree graphs

memoizing the best location and score, of each leaf with respect to its parent position.

For example, we trim an eye and memoize the best location and score of an eye as a

function of each location of the nose. The best score of each nose location is calculated

by adding the matching score of every eye with the deformable score with respect to

the nose location. Once that is done, the eye is trimmed from the tree. Following this

procedure, one trims the tree until reaching the root node. One can then find the best

score and position of the root node. Once the best score and position is found, one can

read the memoization and retrieve the best configuration that provides the best score

for eyes, nose, lips. The described algorithm is referred to as Max Sum Algorithm.

The combinatorial optimization defined by eq. 2.1 has 2 nodes. An arbitrary

Pictorial Structure may have n nodes, which may look like Figure 2.4. In this thesis,

we focus only on tree graph. The max-sum algorithm seeks to find the solution of the

20

combinatorial optimization of the form,

L̂ = arg max
L

∑
i∈V

mi (li) +
∑

ij∈E

g (li, lj) (2.2)

,under Graph G = {V,E}. To solve this problem, the naïve method is shown in Listing

2.1. From the Listing we can see that the naïve method uses O (pn) calculations,

where p is the number of pixels in feature space, and n is the number of nodes. This

is prohibitively expensive to calculate. There is, however, a dynamic programming

method which can calculate in quadratic time provided that our graph is a tree with

exact solution. The dynamic programming is the max-sum algorithm.

The max-sum algorithm gives exact inference to the combinatorial optimization

problem. The word exact inference has a special mathematics meaning. It means

that the algorithm gives the exactly correct answer to the maximization over the

search domain, as opposed to an approximate inference which gives an approximately

correct answer. The max-sum algorithm can accelerate the calculation from exponential

time complexity to O(np2). Running the naïve methods has total of 166 = 16777216

calculations and takes 1109 seconds on AMD Phenom2 1090t CPU (released year 2010),

while the max-sum algorithm has total 5x16x16 = 1285 calculations and takes 0.0967

seconds on the same machine.

Listing 2.1 Maximizing Objective Function 2.2 with Naive Method

1 image_size=16;

2 for i=1:image_size

3 best_energy= -inf;

4 for j_c1 =1:image_size

5 for j_c2 = 1:image_size

6 for j_c3 = 1:image_size

21

7 for j_c4 = 1:image_size

8 for j_c5 = 1:image_size

9 energy = ...

cal_energy(i,j_c1,j_c2,j_c3,j_c4,j_c5,MapC(:,:,1),MapC(:,:,2),

10 MapC(:,:,3),MapC(:,:,4),MapC(:,:,5),MapRoot,distEu);

11 no_cal = no_cal+1;

12 if best_energy < energy

13 best_conf_root(i,:) = [energy i j_c1 j_c2 ...

j_c3 j_c4 j_c5];

14 best_energy = energy;

15 end

16 end

17 end

18 end

19 end

20 end best_energy_this_root(i) = best_energy;

21 if best_energy > best_energy_of_all_root

22 best_energy_of_all_root = best_energy;

23 best_root_of_all = i;

24 end

25 end

2.2 Max Sum Algorithm

This is how the algorithm works. For ease of understanding, we shall begin with a

simple tree graph. Moving from the leaves to the root, the algorithm calculates each

possible answer for parent’s value and labels the children which have the maximum

contribution to the score of the parent. To find the label which gives maximum

contribution to the root, one starts by calculating all possible scores from every child’s

label to each score of root’s label. One can then find the best score and position of

22

the root node by maximizing the root score. Once the best root score and best root

position is found, one can read the memoization and retrive the configuration that

provides the best score.

Here is an example. Suppose our image has the size of (4, 4), and the pixel location

l is a scalar, which is a row major order index of the matrix (4, 4). Let us define all

possible locations in this image as L = {1, ..., 16}. MapP, MapT, MapQ, MapR, MapS

maps pixel postion l ∈ L to a scalar real value. Therefore ∀l ∈ L, these mapping

functions are tables of the domain L. Thus each of these MapP, MapT, MapQ, MapR,

MapS is a vector of size 16 or a matrix of size (4, 4). From the Figure 2.5 one can see

there is a total of 16x16 connections between all labels of P to all labels of Q. Here,

the Q node updates its unary potentials. For each label of Q, it selects the maximum

unary potential updates it can get from every label of P adding the distance score

during traversing through its edge. The message from the two leaves are defined as

Msg(j)
P →Q

= max
i

(MapP (i) + dist (i, j)) (2.3)

Msg(j)
T →Q

= max
t

(MapT (t) + dist (t, j)) (2.4)

, where dist (vi, vj) = λ
((
xvi
− xvj

)2
+
(
yvi
− yvj

)2
)

, and xvi
, yvi

means row, and

column number of position of node vi. The parameter λ in this case is an arbitrary

hyperparameter constant. The value Msg(j)
P →Q 1x1

is a scalar which memorize (OR

MEMOIZE?) maxMapP
(̂
i
)

+ dist
(̂
i, j
)

where î is the ith label of P which gives THE

maximum value of all labels i of P. Each label of Q, j, has different î For all the labels

of Q, we get the matrix Msg
P →Q 16x1

. Generally Dynamic Programming needs to memorize

the configuration, and the value, which maximize each subproblem. Here the

belovedChild
Q→P 16x1

(j) = arg max
i
MapP (i) + dist (i, j) (2.5)

23

belovedChild
Q→T 16x1

(j) = arg max
t
MapT (t) + dist (t, j) (2.6)

are recorded. Simply speaking, each parent’s label records which label provides the

best contribution to parent. This is shown in Listing 2.2 line 55.

To be consistent with eq. 2.2, we can think of node P, T, Q, R, S as node

i = {1, 2, 3, 4, 5}. In this case, MapP is our m1 (L), MapT is our m2 (L), MapQ is

our m3 (L), MapR is our m4 (L), MapS is our m5 (L), where L =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

.

Next, the message from Q to R is defined as

Msg(k)
Q→R

= max
j

(
MapQ (j) +Msg(j)

P →Q

+Msg(j)
T →Q

+ dist (j, k)
)

(2.7)

,and then node R memoization

belovedChild
R→Q 16x1

(k) = arg max
j
MapQ (j) +Msg(j)

P →Q

+Msg(j)
t→q

+ dist (j, k) (2.8)

In the next step, the Message Passing from R to S is calculated as follows,

Msg(s)
R→S

= max
k

(
MapR (k) +Msg(k)

Q→R

+ dist (k, s)
)

(2.9)

,and then node S memoization

belovedChild
S→R 16x1

(l) = arg max
k

MapR (k) +Msg(k)
Q→R

+ dist (k, s) (2.10)

. These steps are shown in Figure 2.5. In this Figure, Msg
P →Q

, and Msg
T →Q

is shown, with

its memoized table eq. 2.5, and 2.6, respectively.

24

Fig. 2.5 Message Passing from many children to a parent

25

Fig. 2.6 Message Passing has reached root node. The max-marginal score is found

26

Fig. 2.7 Backtrack with stored tables from root to leafs

27

Once the messages from all root branches are passed to the root node, we maximize

the root score to find the best configuration for the root node. This is called finding

the maximum value of our dynamic programming objective eq. 2.2, sometimes called

max-marginal. To calculate the max-marginal, one simply adds all the passed messages

to the root unary potential and finds the maximum.

G (ŝ) = maxsMsg(s)
R→S

+MapS (s) (2.11)

This is line 33 in Listing 2.2, also shown in Figure 2.6. We call G (ŝ) max-marginal. The

ŝ is the solution of the combinatorial optimization at root position. To get the configura-

tion l̂ = { ŝ k̂ ĵ t̂ î }, which maximizes our initial problem eq. 2.2, we can use

table lookup from our previously memoized table. ŝ = arg maxs∈{1,2,3,...,16} MsgS(s)
r→s

+

MapS (s) Once ŝ value is taken, we look upwards for its best child label k̂ =

belovedChild
S→R 16x1

(ŝ). Once k̂ value is taken, we look upwards for its best child la-

bel ĵ = belovedChild
R→Q 16x1

(
k̂
)
. Once ĵ value is taken, we look up for its best child

label î = belovedChild
P →Q 16x1

(
ĵ
)
, and t̂ = belovedChild

P →T 16x1

(
ĵ
)
. Finally, we answer our

original question eq. 2.2 as l̂ = { ŝ k̂ ĵ t̂ î }. This is line 82 of Listing 2.2,

also shown in Figure 2.7.

In Figure 2.6, if the 3rd label of the root score is the maximum of all root scores

across the labels, then the root position, ŝ, is set to 3. The value of the root score

represents maxL
∑

i∈V mi (li) +∑
ij∈E g (li, lj). This completes the forward pass. Still

we need to find the argument which maximizes it. This can be found by looking back

the beloved child tables.

Figure 2.7 shows how this can be done. Once the label of the best root ancestor

is found, the algorithm follows the memoization by recursively looking at the most

beloved child table. In our example, from S to R to Q, and to P. This completes the

28

backward pass. This completes the algorithm and the solution l̂ is found, thus completes

our objective.

Listing 2.2 Maximizing Objective Function 2.2 with Max-Sum Algorithm

1 test_yi = [9 10 11 12 13 14];

2 loss_fn = @(y) (double(sum(y ̸=test_yi)));

3 MapC(:,:,1) = 5*[1,2,3,4;4 3 2 2;2 4 3 2; 3 1 2 1];

4 MapC(:,:,2) = 2*[4 3 1 3; 1 3 4 2; 2 3 3 1; 3 3 1 5];

5 MapC(:,:,3) = 5*[1 2 1 3; 1 4 4 2; 3 3 4 2; 2 3 4 3];

6 MapC(:,:,4) = 3*[3 2 3 3; 3 4 4 3; 3 4 4 3; 3 3 3 3];

7 MapC(:,:,5) = 5*[5 5 6 2; 5 1 1 5; 5 1 1 6; 4 5 5 3];

8 Mxr = [4;2;1;4];

9 %MapC(:,:,1)=Mxr*Mxr';

10 MapRoot=2*Mxr*Mxr';

11 %MapRoot=zeros(4);

12 distEu=@(x,y) (-1*(norm(x-y))^2);

13 %distEu = @(x,y) 0;

14

15

16 % Tree structure prior and its plot

17 tstr = [0 1 5 6 1 1];

18 %tstr=[0 1 1 1 2 3];

19 t_name =0:5;

20 %show_tree(tstr,t_name);

21 Msg = zeros(16,size(tstr,2));

22 bt = zeros(16,size(tstr,2));

23 % Tree structure prior and its plot

24 tstr = [0 1 5 6 1 1];

25 %tstr=[0 1 1 1 2 3];

26 t_name =0:5;

29

27 %show_tree(tstr,t_name);

28 Msg = zeros(16,size(tstr,2));

29 bt = zeros(16,size(tstr,2));

30 T_iter = tstr;

31 T_name = t_name;

32 tree_depth=0;

33 num_cal=0;

34 zeta= zeros(16,16);

35 while size(T_iter,2)>1

36 leafs = find_leaves(T_iter,T_name)

37 tree_depth=tree_depth+1;

38 book_leaves_depth{tree_depth} = leafs;

39 for leaf_j=1:size(leafs,1)

40 leafs(leaf_j) ;

41 for i=1:16 %parent

42 for j=1:16 %current leaf_j

43 zeta(i,j) = distEu(PostMap(i),PostMap(j));

44 num_cal = num_cal+1;

45 end

46 unary_j = MapC(:,:,leafs(leaf_j));

47 unary_j = unary_j(:)';

48 children_of_leaf_j = find_children(tstr, t_name, ...

leafs(leaf_j));

49 if(¬isempty(children_of_leaf_j))

50 sumChdrenMsg = sum(Msg(:,children_of_leaf_j)',1);

51 else

52 sumChdrenMsg = zeros(1,16);

53 end

54 parNode = t_name(T_iter(find(T_name == leafs(leaf_j))));

55 [Msg(i,leafs(leaf_j)) bt(i,leafs(leaf_j))] = ...

max(unary_j+ zeta(i,:)+ sumChdrenMsg);

56 end

30

57 out = sprintf('working node %i, children %d, parent ...

node%d, msg %d \n',...

58 leafs(leaf_j),children_of_leaf_j, parNode, ...

Msg(i,leafs(leaf_j)));

59 disp(out);

60

61 T_iter(find(T_name == leafs(leaf_j)))=[]

62 T_name(find(T_name == leafs(leaf_j)))=[]

63

64 end

65 end

66 children_of_root = find_children(tstr, t_name, 0)

67 if(¬isempty(children_of_root))

68 sumChdrenMsg =sum(Msg(:,children_of_root)',1);

69 else

70 sumChdrenMsg = zeros(1,16);

71 end

72

73 [max_marginal arg_max_marginal] = max(MapRoot(:)' + sumChdrenMsg);

74 RootScore = reshape(MapRoot(:)'+sumChdrenMsg,[4 4]);

75 best_energy_of_all_root = max_marginal;

76 best_root_of_all = arg_max_marginal;

77

78 vi_pos(1) = best_root_of_all;

79 out = sprintf('===================\nbest configuration at ...

root-%d',...

80 best_root_of_all);

81 disp(out);

82 for i=tree_depth:-1:1

83 bp_nodes = book_leaves_depth{i};

84 for j=1:size(bp_nodes,1)

85 parNodeIdx = tstr(find(t_name == bp_nodes(j)));

31

86 vi_pos(bp_nodes(j)+1) = bt(vi_pos(parNodeIdx) ,bp_nodes(j)) ;

87 num_cal = num_cal+1;

88 end

89 end

90 for(b=2:size(tstr,2))

91 out = sprintf('best v%d is at pos %d',b-1,vi_pos(b));

92 disp(out);

93 end

2.3 Toy example of Part base detection

In this section, the toy-based example of part base detection is explained. Suppose we

have a Swastika symbol whose part filters is exactly those parts of Swastika symbol.

Our choice of this symbol is because it is structured image with respect to its axis

appearance. Our choice is of pure technical reason, and has nothing to do with politics

or history. By defining the part filters to be the axis of the Swastika symbol itself, we

ensure that the similarity score is high when the subwindow score looks similar. This

can be measured by means of convolution.

Let T = {V,E} denote a tree graph whose structure prior we wish to match. Let

Θ̄p∈{1..K}, where K is the number of parts, be the unary potential such that Θ̄p (l) is

the scalar unary potential of pixel position l. Therefore Θ̄p is a vector of size |L|,

where L is a set all pixel position. Let ∆ (li, lj) denote pairwise function between ith

part, and jth part. Let image intensity be denoted by X, and the image intensity at

the position l of pth part denotes X (lp). This X (lp) is not a scalar pixel intensity of

position lp but a matrix of cropped image X at the top left position lp. Let Sp ∈ Z2

be the number of rows, and columns of the part p’s filter, then the image intensity

X (lp) is a matrix of size Sp, with lp at the top-left position. Our Z denotes a set of all

32

Fig. 2.8 Original Image

integers. Let wp ∈ RSp be the similarity filter of part p. In our example, we just crop

the intensity value of axis of the Swastika symbol as the filter.

Our requirement is to find a solution l̄∗ such that

l̄∗ = arg max
l

∑
i∈V

Θ̄i (li) +
∑
ij∈E

∆ (li, lj) (2.12)

, where ∆ (li, lj) = λ
((
xli − xlj

)2
+
(
yli − ylj

)2
)

, and xli , yli means row, and column

number of position of node li.

Let our similarity filter be a matrix of size 23, 46, which looks like an axis. The

unary potentials of each part can be calculated by

Θ̄i (vi) =
∑

x̄

∑
ȳ

w (x̄, ȳ) X (x+ x̄, y + ȳ) (2.13)

, or in the compressed form

Θ̄i (vi) =
∑

l̄

w
(
l̄
)

X
(
l + l̄

)
(2.14)

. Figure 2.9 shows Θ̄1,.

We follow the message passing algorithm as described in previous section to find

the best position of placing the white bar, on the Swastika symbol. Figure 2.10 shows

33

Fig. 2.9 The first part’s scores

Fig. 2.10 Root Scores plus all passed messages

the root potential after all messages have passed. We hope that the root location of

the detection will be in the middle of the image.

Finally, after backward operation, we obtain the best position for placing our tree

on the Swastika symbol as shown in Figure 2.11. This is the expected result because

the best position of the similarity filters are at the horizontal axes of Swastika symbol,

and since the Swastika symbol is symmetrical, the best place to place the root similarity

filter is the middle of the flag.

2.4 Structured SVM

The purpose of Structural SVM is to produce Structural Prediction by learning

maximum margin classifier for each training data. Probabilistic Graphical Model

such as Markov Random Fields (MRF), or Conditional Random Fields (CRF) can use

Structured SVM during the learning phase to learn their weight parameters. Structured

SVM is not an algorithm in which one can simply plug in the data and conduct learning

or classification like SVM, but a framework for which an inference, loss, and feature

modules must be plugged in first. For example, if a Structured SVM is to be applied

34

Fig. 2.11 Inference on different tree graphs

with MRF, one must specify the MRF structure, which the Structured SVM will learn,

the MRF inference algorithm, the MRF feature function, the loss function, and the

loss augmented inference algorithm. The loss augmented inference algorithm is the

inference algorithm with loss function.

The propose of SSVM is to learn the structural prediction function of the form

ŷ = arg max
ŷ∈Y

w ·Φa (x, y) (2.15)

Suppose we are given the training set (xi,yi), for i = 1, ..., N . Where xi is ith the input

feature, and yi are vectored label. Our goal is to find the assignment of position ŷ to

the a image, whose label is unknown. This is called structured prediction.

The above detection function can be seen as structural prediction where one finds

the position ŷ of a node on the Figure 2.4 such that inference eq. 2.15 is satisfied. We

also need to learn this structural prediction function a weight matrix that maximizes

training accuracy. In other words, we want to find w∗, by structural learning, such

35

that, for all images in the training data, the eq. 2.15 provides good training accuracy.

The w∗ is the argument w which maximizes the objective function eq. 2.16.

The SSVM has the optimization of the form [100]

min
w,ξ

1
2∥w∥

2 + C

m

m∑
i=1

ξi

s.t. ∀i , ∀y ∈ Y \ yi : w · δΦai (xi,y) ≥ ∆ (yi, y)− ξi

(2.16)

,where δΦa (xi,y) = Φa (xi,yi)− Φa (xi,y)

The above explanation is quite generic. Let us start with simple explanation. Since

readers are more familiar with SVM, we shall first explain how to formulate Linear

SVM as an instance of Structured SVM.

In a linear binary SVM problem, we have a feature vector x ∈ Rn, and label

y ∈ {−1, 1}. Let’s define ȳi = −1× yi to be an incorrect label. If we define a function

Φ (x, y) = y

x

1

, and wwb =

w

b

. Previous Linear SVM prediction is correct when

yi

(
wTxi + b

)
≥ 0 or wwb ·Φ (x, y) ≥ 0. That is, suppose w∗

wb was learned, such that

the previous test gave 100% correct training accuracy. One can see that, in such a

case, for all i, any misclassified samples will have ȳi (w∗ · xi + b) ≤ 0. Therefore, one

may say that the objective of previous hard-margin Linear SVM

min
wwb,ξ

∥wwb∥2

s.t. ∀i : wwb · Φai (xi,yi) ≥ 1
(2.17)

is to find w∗
wb such that ∀i, yi (w∗ · xi + b) ≥ 0 is satisfied. This is shown in Figure

2.12. The correct classification score yi (w∗ · xi + b) ≥ 0, and the incorrect classification

score −yi (w∗ · xi + b) ≤ 0, therefore the correct classification score yi (w∗ · xi + b) must

≥ 0 incorrect classification score ȳi (w∗ · xi + b) must ≤ 0. Since a number that belongs

to a set of non-negative real numbers is always greater than or equal to a number

36

Fig. 2.12 Linear SVM as sorting. The arrows are the real value axes, representing each
training data. If the classifications are all correct, such that the training error is 0%,
then the correct prediction score yi

(
wT xi + b

)
≥ 0, and the incorrect prediction score

−yi

(
wTxi + b

)
≤ 0

belonging to a set of non-positive real number, the correct score is always greater than

or equal to the incorrect score. Thus, by choosing the maximum number from among

the two scores, one can choose the correct prediction ŷ = yi. This explanation changes

the mindset from hyperplane to sorting.

2.5 Convolutional Neural Network

To understand the proposed algorithm, one needs to understand how the convolutional

layer of a convolutional neural network differs from a conventinonal neural network

layer. The idea presented here is that the Convolutional Neural Network is simply the

sliding windows of a Neural Network.

Convolutional neural network is simply the conventional linear algebra neural

network with shared weights across the board. For example, the linear algebra neural

network operation y =

w

w0

 ·
x

1

37

Now if x has more rows and columns than w, both output y1, and y2 are fed

forward neural network with the same w value. y1 =

w

w0

 ·
x (1 : R, 1 : C)

1

, and

y2 =

w

w0

 ·
x (1 : R + 1, 2 : C + 1)

1

. Hence the name shared weights. For the sake

of simplicity, let us remove the bias w0 from our calculation. The convolution layer is

defined by

y(2)
ij =

m−1∑
a=0

m−1∑
b=0

wabx
(1)
(a+i)(b+j)

Suppose our example has 2 nodes on the upper layer, denoted y(2)
00 , and y(2)

01 . Suppose

our weights w are of size (5,5) suppose our lower layer x(1)
(a)(b) is size (6,6) such that

a ∈ {0, ..., 5}, and b ∈ {0, ..., 5}. Then the Forward Operation is calculated by

y(2)
00 =

5−1∑
a=0

5−1∑
b=0

wabx
(1)
(a)(b)

y(2)
01 =

5−1∑
a=0

5−1∑
b=0

wabx
(1)
(a)(1+b)

or in the matrix form,

y(2)
00 =

w00 w01 w02 w03 w04

w10 w11 w12 w13 w14

w20 w21 w22 w23 w24

w30 w31 w32 w33 w34

w40 w41 w42 w43 w44

·

x
(1)
00 x

(1)
01 x

(1)
02 x

(1)
03 x

(1)
04

x
(1)
10 x

(1)
11 x

(1)
12 x

(1)
13 x

(1)
14

x
(1)
20 x

(1)
21 x

(1)
22 x

(1)
23 x

(1)
24

x
(1)
30 x

(1)
31 x

(1)
32 x

(1)
33 x

(1)
34

x
(1)
40 x

(1)
41 x

(1)
42 x

(1)
43 x

(1)
44

(2.18)

38

y(2)
01 =

w00 w01 w02 w03 w04

w10 w11 w12 w13 w14

w20 w21 w22 w23 w24

w30 w31 w32 w33 w34

w40 w41 w42 w43 w44

·

x
(1)
01 x

(1)
02 x

(1)
03 x

(1)
04 x

(1)
05

x
(1)
11 x

(1)
12 x

(1)
13 x

(1)
14 x

(1)
15

x
(1)
21 x

(1)
22 x

(1)
23 x

(1)
24 x

(1)
25

x
(1)
31 x

(1)
32 x

(1)
33 x

(1)
34 x

(1)
35

x
(1)
41 x

(1)
42 x

(1)
43 x

(1)
44 x

(1)
45

(2.19)

During the Backward Operation, the CNN back propagate errors according to the

following equations.
∂E

∂x
(1)
ij

=
m−1∑
a=0

m−1∑
b=0

wab
∂E

∂y
(2)
(i−a)(j−b)

(2.20)

∂E

∂wab

=
I−m∑
i=0

J−m∑
j=0

x
(1)
(i+a,j+b)

∂E

∂y
(2)
ij

(2.21)

where I, J is the number of rows and columns of the image x. If we set the following

two matrices,

∂E
∂x00

∂E
∂x01

· · · ∂E
∂x04

∂E
∂x10

∂E
∂x11

· · · ∂E
∂x14

∂E
∂x20

∂E
∂x21

· · · ∂E
∂x24

∂E
∂x30

∂E
∂x31

· · · ∂E
∂x34

∂E
∂x40

∂E
∂x41

· · · ∂E
∂x44

y00

=

∂E

∂y
(2)
00

∂E

∂y
(2)
00
· · · ∂E

∂y
(2)
00

∂E

∂y
(2)
00

∂E

∂y
(2)
00
· · · ∂E

∂y
(2)
00

∂E

∂y
(2)
00

∂E

∂y
(2)
00
· · · ∂E

∂y
(2)
00

∂E

∂y
(2)
00

∂E

∂y
(2)
00
· · · ∂E

∂y
(2)
00

∂E

∂y
(2)
00

∂E

∂y
(2)
00
· · · ∂E

∂y
(2)
00

⊙

w00 w01 · · · w04

w10 w11 · · · w14

w20 w21 · · · w24

w30 w31 · · · w34

w40 w41 · · · w44

(2.22)

39

∂E
∂x01

∂E
∂x02

· · · ∂E
∂x05

∂E
∂x11

∂E
∂x12

· · · ∂E
∂x15

∂E
∂x21

∂E
∂x22

· · · ∂E
∂x25

∂E
∂x31

∂E
∂x32

· · · ∂E
∂x35

∂E
∂x41

∂E
∂x42

· · · ∂E
∂x45

y01

=

∂E

∂y
(2)
01

∂E

∂y
(2)
01
· · · ∂E

∂y
(2)
01

∂E

∂y
(2)
01

∂E

∂y
(2)
01
· · · ∂E

∂y
(2)
01

∂E

∂y
(2)
01

∂E

∂y
(2)
01
· · · ∂E

∂y
(2)
01

∂E

∂y
(2)
01

∂E

∂y
(2)
01
· · · ∂E

∂y
(2)
01

∂E

∂y
(2)
01

∂E

∂y
(2)
01
· · · ∂E

∂y
(2)
01

⊙

w00 w01 · · · w04

w10 w11 · · · w14

w20 w21 · · · w24

w30 w31 · · · w34

w40 w41 · · · w44

(2.23)

,then eq. 2.20 can be written as ,where ⊙ is the element-wise multiplication.

∂E

∂x
(1)
ij

=

∂E
∂x00
|y00

∂E
∂x01
|y00 + ∂E

∂x01
|y01

∂E
∂x02
|y00 + ∂E

∂x02
|y01 · · · ∂E

∂x04
|y00 + ∂E

∂x04
|y01

∂E
∂x05
|y01

∂E
∂x10
|y00

∂E
∂x11
|y00 + ∂E

∂x11
|y01

∂E
∂x12
|y00 + ∂E

∂x12
|y01 · · · ∂E

∂x14
|y00 + ∂E

∂x14
|y01

∂E
∂x15
|y01

∂E
∂x20
|y00

∂E
∂x21
|y00 + ∂E

∂x21
|y01

∂E
∂x22
|y00 + ∂E

∂x22
|y01 · · · ∂E

∂x24
|y00 + ∂E

∂x24
|y01

∂E
∂x25
|y01

∂E
∂x30
|y00

∂E
∂x31
|y00 + ∂E

∂x31
|y01

∂E
∂x32
|y00 + ∂E

∂x32
|y01 · · · ∂E

∂x34
|y00 + ∂E

∂x34
|y01

∂E
∂x35
|y01

∂E
∂x40
|y00

∂E
∂x41
|y00 + ∂E

∂x41
|y01

∂E
∂x42
|y00 + ∂E

∂x42
|y01 · · · ∂E

∂x44
|y00 + ∂E

∂x44
|y01

∂E
∂x45
|y01

One neural network back propagation is the green part, and the other is the red. One

can see the true nature of back propagation of convolutional layer of Convolutional

Neural Network. The Convolutional Layer of Convolutional Neural Network is simply

the sliding window of conventional linear algebra neural network layer y = w · x.

During the forward operation, the sliding linear algebra neural network is performed.

During the backward operation, the sliding back propagation of linear algebra neural

network is performed. This idea has a profound impact in later derivations of our

Structured SVM Convolutional Neural Network.

Chapter 3

Multiclass Structured SVM

backpropagation to Deep Learning

3.1 Introduction

In this work, we created a new multiclass classifier layer for deep learning classification

problems. Currently, Softmax classifier[8] is the widely used classifier for deep learning

multiclass classification. We introduce a new classifier: Structured SVM multiclass

classifier, which out-performs Softmax classifier[8] in MNIST dataset. Our new classifier

is simple to use and can replace softmax layer with our structured SVM multiclass

classifier. To the best of our knowledge, there has never been any formulation of

multiclass Structured SVM back propagation to Deep learning image classification.

Our implementation is on Caffe library and the source code is available for download.

Currently, deep learning is widely used for image classification, and data classifi-

cation problems. For example, Caffe library[49], TensorFlow[1] library and Theano

libary[94] are using Softmax classifier for their Hand written digit classification exam-

ples. The most prominent of these example is the Multicolumn deep neural network[19],

which is the state of the art MNIST dataset benchmark of year 2012. The loss layer of

42

deep learning multiclass classification of these examples is softmax classifier. Though

multiclass Structured SVM classifier had been in use for some time, there has not

yet been any usage of it as multiclass classifier on deep learning. As Tang et al.[92]

shows, SVM based classifier outperforms Softmax Classifier by a small but consistent

margin. Tang wonders how other formulations of SVM based multiclass classifiers

would perform. Therefore, in this work, we introduce Structured SVM multiclass

classifier back propagation to lower layers of neural networks. This is an extension of

the work of Tang[92].

The closest work in the liturature, to the best of our knowlede, is done in Acoustic

Signal Processing domain, in which Multiclass Structured SVM is formulated and back

propagated for Acoustic Signal Processing work [87]. This formulation differs from ours

in that it uses square hinge loss, while we use linear loss. In this work, the multiclass

Structured SVM back propagation to Deep Convolutional Neural Network is applied

to deep learning image classification problem for the first time.

This work formulates multiclass Structured SVM as a two layer Neural Network.

Our method can be used with deep learning. Our study is an extension of Tang[92].

We show that our multiclass Structured SVM formulations also outperform Softmax

by a small margin.

3.2 Multiclass Classification with Structured SVM

To formulate a problem under SSVM framework, one needs to delineate the feature

vector x, which describes the input quantitatively, the structured label y, the structured

weights w, and the graph structure G = {V,E}, where V denotes the set of all nodes,

and E denotes the set of all edges. Once those are delineated, the next step is to

theorize the set Y, the set of all possible values y could take. The domain of all

possible w is usually, but not always, R|w|. For example, in our HPE problem, some

43

of the dimensions of w are restricted to be positive numbers. To prepare for SSVM

framework, one needs to specify 2 functions and 2 algorithms. They are:

1. Joint Feature, Label function, or what I have termed the feature at label function

Φ (x,y). This function must be specified in such a way that the next 2 algorithms are

correctly specified. This function output is usually a vector value.

2. Loss function. This function provides the discrepancy measurement between the

guessing answer ŷ to the label y. The function is of the form ∆ (y,yi). This function

output is a scalar.

3. The prediction inference algorithm, also known as the test inference algorithm.

This algorithm’s objective is to find optimal solution ŷ from Y which satisfies ŷ =

arg maxy∈Y w ·Φa (xi,yi). where ŷ is the prediction result, the quantitative answer to

the problem, and Φ (x,y) is defined in Joint Feature, Label function.

4. The Loss Augmented Inference Algorithm. This algorithm’s objective is to find

the optimal solution ŷ from Y which satisfies ŷ = arg maxŷ∈Y w ·Φa (xi,y) + ∆ (y,yi)

The quantity ŷ is the most violated constraint. One can see a similarity between the

test inference and the loss augmented inference. Even though ∆ (y,yi) is a scalar, both

y and yi are generally not. Since one must find this maximum over Y, if one wishes to

use exhaustive search to find ŷ, then finding the loss augmented inference with ∆ (y,yi)

is trivial. However, if one needs to use dynamic programming, which finds ŷ through

subdivision of each element of y to solve test inference, one must make sure that the

define ∆ (y,yi) is also able to go through the same subdivision and memoization to

find ŷ and ∆ (y,yi). Having explained the method of formulating the problem under

SSVM framework, now let us focus on the multiclass classification problem.

Suppose we have a set of training feature and their corresponding labels of dimension

m, we first define an Xtrain as a feature vector in Rm. The training label is the class

of the feature. We define the label as ytrain. There are a discrete, finite set of values

44

y can take. That is all-possible-class-number, or, in other words, number of classes

K. Therefore the set Y is the set of {1, 2, ..., K}. We wish to find, for a set of unseen

features [Xtest] a set of predictions
[
ypred

]
, such that

[
ypred

]
correctly predicts [ytest]

with the highest accuracy possible. A ypred
i is called correctly predicting ytest

i at ith

sample if ypred
i = ytest

i .

One can see that under the multiclass problem formulation, the feature x, label

y and the set of all possible y, Y, are now defined. If there are not many classes, i.e

K is a small number, then Y is small. In this case, what is our G = {V,E}? the V

is one node structure, the E is an empty set. In one-vs-all SVM, there are total K

hyperplanes. Suppose these K hyperplanes’ weights are trained, how can one classify

the test feature Xtest
unseen?

In 1-vs-all, one classifies the test with the highest score. Therefore, ytest
unseen chooses

number 1, 2, 3, 4 from the subscript of {wT
1 Xtest

unseen,wT
2 Xtest

unseen,wT
3 Xtest

unseen,wT
4 Xtest

unseen}.

We can rewrite the above procedure as ytest
unseen = argmaxj∈{1,2,3,4},wT

j Xtest
unseen

One can see that the above sorting is of a similar form to the test algorithm eq.

2.15 required by SSVM framework. To make 1-vs-all SVM testing match the form

of SSVM test inference,[22] define the weights and the joint feature-label function as

follows: w =

← w1 →

← w2 →
...

← wk →

T

, Φ (x, j) =

column 1st 2nd · · · jth · · · Kth

↑ ↑ · · · ↑ · · · ↑

0 0 · · · x · · · 0

↓ ↓ · · · ↓ · · · ↓

 by

defining in this form, w ·Φa (xi, yi) = wT
j X. Hence the 1-vs-all test inference ytest =

argmaxj∈{1,2,3,4},wT
j Xtest is now written fully in the form of SSVM test inference.

ŷ = arg max
y∈Y

w ·Φa (xi, yi) (3.1)

45

Note that in [100], Φ (x, y) defined this way can be written as

Φ (x, y) = x⊗ Λc (y) (3.2)

, where Λc (y) =

∆ (1, y)

...

∆ (K, y)

. The Loss Function ∆ (a, b) is defined as

∆ (a, b) =

1 a ̸= b

0 otherwise

, and ⊗ is the direct tensor product, ie

⊗ : RD ×RK → RD·K , (a⊗ b)i+(j−1)D = ai · bj

. The loss function of multiclass SSVM is just normal 0-1 loss ∆ (y, yi). To find ypred

from the test inference equation 3.1, one can simply use exhaustive search through all

possible values of j.

The loss augmented inference

ŷ = arg max
y∈Y

w ·Φa (xi, y) + ∆ (y, yi) (3.3)

can also use exhaustive search for trivial reasons.

3.2.1 SSVM as two-layer Neural Network

Φr (x, ŷ) = WT
hkΦ (x, y) (3.4)

Li = max
y∈Y

∆ (y, yi) + Φr (xi, ŷ)− Φr (xi, yi) (3.5)

46

The term Φr (xi,y)−Φr (xi,yi) can be seen in Neural Network sense as picking two

scalars from the matrix of lower layer, and do subtraction. This eq.3.5 defined the

upper layer of SSVM as a two-layer Neural Network. We perform exhaustive search

over K possible classes, the value of ŷ in eq.3.3.

Here is our back propagation rules for our two-layer Neural Network. The Gradient

of Top layer, the Loss Augmented Inference Layer, is

The gradient of objective function w.r.t respond map layer, Φr (xiL), is

∂Li

∂Φr
= δ (yv, ŷv)− δ (yv, yiv) ,∀y ∈ Y,∀v ∈ V (3.6)

,where δ (a, b) = 1, if a = b, and δ (a, b) = 0, otherwise. This can be realized by creating

a blank matrix of the size Φr (x,y), and then set +1 at position ȳv, and −1 at the

position yiv, and if it happens that some ȳv = yiv, then set 0 at that position.

The above gradient defines The Loss Augmented Inference Layer. The gradient

w.r.t weights of respond map layer is

∂Li

∂Whk
= ∂Li

∂Φr

∂Φr

∂Whk
(3.7)

but from eq. 3.4 Φr (x, ŷ) = WT
hkx , therefore ∂Φr

∂Whk
= x.

∂Li

∂Whk
= x⊗ Λc (ŷ)− x⊗ Λc (yi) (3.8)

Since we defined our multiclass SSVM as 2 layers of Neural Networks, we defined

the back propagation rule with respect to the lower layer of the 2 layers. We can always

back propagate to other types of Neural Network layers, and to any number of lower

layers

47

Fig. 3.1 Cost function (blue line), and test accuracy (red line) as a function of training
iterations of our Multiclass SSVM Deep Convolutional Neural Network on MNIST
dataset. Show first 500 iterations.

3.3 Experiment

A test is done with standard MNIST dataset[57]. Our result is comparable to previous

SVM based method, and gives a better result than standard Softmax classifier. Figure

3.1 shows that the gradient of cost function is nicely reduced, as in the case of normal

neural networks.

3.3.1 Neural Network Structure

Caffe library use a slightly modified Lenet[56] as its Deep Convolutional Neural Network

with Softmax[8] as a multiclass classifier.The Structure of this CNN is shown in Figure

3.2. There are output neurons of kernel size 5x5 on the first Convolutional layer with

stride 1 and a bias, follow by Max-pooling layer kernel size 2x2 with stride 2, follow

by 50 neurons of Convolutional layer with kernel size 5x5 with stride 1 and a bias,

follow by Max-pooling layer kernel size 2x2 with stride 2, follow by 500 neurons of fully

48

Fig. 3.2 The Structure of Convolutional Neural Network, which is slightly modified
version of Lenet by Caffe library.

connect layer and a bias, follow by Rectified Linear layer, follow by Softmax classifier

of 10 classes. In our setting, we used the same structure, and remove the Softmax and

then add our Multiclass Structured SVM with 10 classes as the output classifier. We

then compare the classification result between our setting, and Caffe library setting.

MNIST dataset[57] has the image intensity value ranging from 0-255. We normalize

the dataset so that the intensity range is from 0-1. Then we directly feed the image

to Caffe’s Lenet with SSVM multiclass classifier. We use the same learning rate for

comparison. In both networks, we use momentum of 0.0005, base learning rate of 0.01,

inverse alpha function learing rate with alpha of 0.0001, and power of 0.75. By this

setting, we have every parameters the same value for the two comparing Convolutional

Neural network, except the classifier layer. This is the equal basis for fair comparison.

All weights are randomly initialized.

The MNIST dataset of handwritten digits has a training set of 60,000 examples,

and a test set of 10,000 examples. The example of MNIST dataset is shown in Figure

3.3. The goal of this dataset is to predict the class of the test set given images. The

class of an image is the digit value of that image.

3.3.2 Implementation as a Caffe layer

The Loss Augmented Inference layer for multiclass classification requires forward

propagation to calculate eq.3.4, and backward propagation to calculate eq.3.6. We

49

Fig. 3.3 MNIST dataset is the dataset of handwritten digits.

can use normal fully connect layer for our bottom layer calculating eq.3.4 of two layer

Structured SVM. Once we back propagate the eq.3.6, lower layer back propagation

is calculated as normal a modular design of Neural Network. These equations are

implemented using python layer of Caffe library[49].

3.3.3 Result

Our Structured SVM Classifier has consistently higher accuracy than Softmax, using

the same underlying Convolutional Neural Network structure, and learning parameters.

This is shown in Table 3.1. Figure 3.4 shows the test accuracy of the two comparing

networks as a function of training iterations. The red line shows the result test accuracy,

the higher the better, of our Structured SVM Classifier, and the blue line shows the

result test accuracy of Softmax classifier over the same underlying CNN structure. Our

Structured SVM Classifier clearly consistently outperform Softmax classifier after the

same number of training iterations.

50

Fig. 3.4 Test Accuracy as a function of training iterations. Our Structured SVM
Classifier has consistently higher accuracy than Softmax.

51

Table 3.1 Error of MNIST dataset classification result in percentage

Our Result Softmax[49]
0.74 0.88

3.4 Conclusion

This work formulates multiclass Structured SVM as a two layer Neural Network. Our

method can be used with deep learning. Our study is an extension of Tang[92]. With all

parameter the same, we show that other multiclass SVM formulations also outperform

Softmax by a small margin.

Chapter 4

Structured SVM as two layer

neural network on Human Pose

Estimation

4.1 Introduction

This chapter describes the main work of this thesis. A description of a DPM problem

formulation in Section 4.2, and Detection Inference is in Section 4.2.2. Section 4.2.3

provides the reader with the understanding of the Subgradient method before our

extension. Section 4.2.4 extends the Subgradient method so it becomes a two-layer

neural network of Human Pose Estimation, which is the main contribution of this

thesis.

Our proposed method jointly learns structural model and appearance model. In

pictorial structure, one usually has three models combine into one single large model.

They are coocurrance model, deformable model, and appearance model. The first two

are called structural model in our abstract. We define bias system for coocurrance

model. The deformable model refers to spring relation between position of parts. The

54

appearance model refers to the DPM learnable filters. Our proposed method sees

all model parameters as neural network parameters and jointly learns them using

stochastic subgradient descent simultanously. Unlike [113] where the appearance model

is learned prior to structural training, our method can learn all parameters from

random initialization. We noticed that the DPM unary filters work very similarly to

convolutional operation during DPM inference. Thus, we designed the DPM unary

filters, which varies over human parts and human part types, as convolution layer of

CNN. This DPM filters defines the appearance model’s weight since they give the

feature similarity score. We designed the cooccurance model’s weight, bias weights,

as parameters defined on Loss Augmented Inference Layer. We designed the DPM

pairwise weights, the deformable weights, or simply the spring terms weights, as other

type of parameters defined on Loss Augmented Inference Layer. These designs are

shown in Figure 4.1. In this section, we show how Structured SVM on DPM can be

implemented as two-layer neural networks, the first of which is convolutional layer, and

the last of which is the Loss Augmented Inference layer.

4.2 DPM Problem formulation

Human Pose Estimation is the problem of estimating human joint positions. The

joints are said to be correctly estimated if the prediction error in pixel difference is

less than a certain threshold. Human Pose Estimation problem presents the following

challenges. 1). Human Size can be small or large depending on how near or far from

the camera the human image appears. 2) Body parts can have multiple appearances.

For example, a hand can be a fist or a palm, a limb can be vertical or horizontal. 3)

Human pictures are taken in 3D. Therefore, there may be many 2D pose appearances

on the same 3D pose, of which there are many 3D poses. To meet these challenges,

the following measures had been implemented in several previous works. 1. Multiscale

55

human detection. This is sometime called image pyramid or feature pyramid. An

image of feature x is scaled to all layer values l ∈ L, where L = {1, ..., ln}. 2. Mixture

of part types. To address different appearnaces of each human part, each human

part model is designed so that they consist of multiple different part types. Body

parts from training images are clustered into part type based on their relative joint

positions in image coordinates with respect to its neightboring joints. The underlying

assumption of this clustering is that the same group of relative joint positions with

respect to its neighboring joints would have a similar appearance. 3. Co-occurance

model. This model address how two neighboring parts are co-occurred with system of

biases. Each type of mixtures of neighboring nodes has a bias associated with it. These

measures are incoperated into a well known pictorial structure model where their edges

are quantified under the assumption that the energy of placing parts is varies solely

quadratically on relative distance like the energy of stretching or compressing springs

from their anchor positions with respect to their parent nodes. These are models we

inherited directly from [113]. Thus, we have three models combined into one single

large model. They are coocurrance model, deformable model, and appearance model.

The first two are called structural models in our abstract.

We propose a new method to learn the aforementioned models. We propose to learn

all models, and all their parameters, the way neural network learn their parameters:

by jointly learning all of them using stochastic subgradient descent. Unlike [113] where

they learn the appearance model prior to structural training, our method can learn

all parameters from random initialization. We noticed that the DPM unary filters

worked equally to carry out a convolutional operation during DPM inference. During

DPM inference, each unary filter is performing "sliding dot product" between feature

matrices, and weight matrices. This operation is equal to the weights of convolutional

layer of CNN acting on their input matrics. Thus, we designed the DPM unary

56

(a) Structured form of the model weights. (b) Vectorized form of the model weights.

(c) Neural Network form of the model weights on 2 topmost layers.

Fig. 4.1 Proposed method formulate Structured SVM two layer neural network, which
are the two topmost (blue and green) layers of c). The appearance model weights are
the bottom Convssvm Layer (green layer), which are a normal convolutional layer.
The Loss Augmented Inference on the top layer (blue layer) has pairwise weights, the
deformable model’s weight, and bias weights, the cooccurance model’s weight, which
can be seen as structural weights. The deformable weights,wefd , are shown as weights
between the edges in a), shown as subvector in concatenated vector of weights in
b), and shown as Loss Augmented Inference weights in c). The appearance model
weights,wt

f , are shown as weights of nodes in a), shown as subvector in concatenated
vector of weights in b), and shown as Convssvm layer in c).

filters, which varies over human parts and human part types, as convolution layer of

CNN. This DPM filters defines the appearance model’s weight since they give the

feature similarity scores. We designed the cooccurance model’s weight, bias weights,

as parameters defined on Loss Augmented Inference Layer. We designed the DPM

57

pairwise weights, the deformable weights, or simple the spring terms weights, as other

types of parameters defined on Loss Augmented Inference Layer. These designs are

shown in Figure 4.1. In this section, we show how Structured SVM on DPM can be

implemented as two-layer neural networks, the first of which is convolutional layer

(convssvm layer in Figure4.1) and the last of which is the Loss Augmented Inference

layer (Loss Augmented Inference layer in Figure 4.1). By transforming Structured

form of the model into neural network form of the model, our proposed method can

jointly learn structural model and appearance model, and can back propagate the

error to further learn the underlying appearance model feature extractor learnable

parameters (CNN layer in Figure4.1). In short, our proposed method translates the

Structured SVM model into neural network model, thus inheriting the neural network

innate ability to back propagate the error to lower layer, while precisely calculating

the Structured SVM loss, and still learn Structured SVM in the original way with

subgradient based method.

4.2.1 DPM Problem formulation

Our approach starts with the formulation of DPM as an instance of Structured SVM

learning. As [79] shows, the SSVM can be learned by subgradient descent. Let us start

with detection problem formulation

Let xi represent a matrix of RGB value of its training data, and yi represent

the ith training bounding boxes label of the form (Top Left Column, Top Left Row,

Bottom Right Column, Bottom Right Row) denotes [x1, y1, x2, y2]. Each row of yi

represents each bounding box for each part similar to [113]. Therefore yi is a matrix of

numparts× 4. The bold characters indicate that they are either vectors or matrices.

We first scale xi to multiple scales. To denote this scaling, let L = {1, ..., ln} denote

the set of all scaling levels. Let l ∈ L denote lth layer. By scaling image xi to multiple

58

scales, we create an image pyramid of all l ∈ L. The image pyramids are simply

multiple RGB images, each differing by their scales. Each of these difference size

images are pasted onto a zero image matrix. This creates a 4 dimensional matrix of size

width×hight×colorchannels×numberoflevels . The image pyramid, denoted as xiL,

is then fed to HOG feature extraction, denoted as Φh (xiL). Then the HOG-extracted

feature is fed to a CNN as deep pyramid features. We call this CNN: CnnFeat. The

result of CnnFeat of xiL is denoted as Φf (xiL)

4.2.2 Model and Detection Inferences

Our model based on [113], where there are 3 major submodels. These submodels are

delineated as follows.

Appearance Model

Appearance model is the individual filters for individual type of parts which model

designers wish to model. For example, we need head filters, body filters, etc. Since our

image representation usually has many channels, each of these models is represented

by a matrix of filter size times channels. A typical value would be 5x5x32, or 5x5x64,

for a filter of size 5x5, with 32 and 64 channels respectively. By doing the dot product

of the filter and the feature of the same size, one obtains a particular score for such a

feature. The domain of these filters are in RS×C , where S is the filter size, and C is

the number of channels. For each part and each type of part, there is an appearance

model filter associated. The appearance model is the appearance filter. The similarity

score created by a filter wt
f is

scoreappearance (y) = wt
f ·Φf (xL, y) (4.1)

59

Co-occurrence Model

Suppose there are m mixture types of a part, and n mixture types of a neighbor part,

the total bias among these two parts are m× n. This model gives the sum of local and

pairwise scores. For a parent node i, and a child node j the score of co-occurrence ij is

scorecooccurance (ti, tj) = b
titj

ij (4.2)

This can be thought of as bias to favor some particular local types, and pairwise

relationship among parent and child types. For example, if bt1t2
34 has a high value, this

means that the parent part number 3 type 1 is likely to connect to child part number

4 type 2.

Deformable Model

From each parent type ti to child part tj, we have anchor positions of the child w.r.t

parent so there is a total of ti × tj anchors from parent to child. The anchor positions

are trained to model by simply taking the average of each of all possible types of

connections. Since the anchor positions must be available prior to Structured SVM

training, the part types were calculated by simple K-mean clustering of each type

appearence to create different types of articulation. We employ a mixture of components

to solve many types of possible part appearances as does [113]. Let p ∈ P be the pth

body part, where P = {1, ..., pn} is the set of all parts. Let k ∈ K be kth types of a

particular part, where K = {1, ..., kn} is the set of all types of a particular parts. Let

Kp denote the total number of types K for a particular part p. We start with clustering

training image parts p ∈ P into Kp clusters. We now define ith sample’s Structured

SVM feature function. The Structured SVM has a DPM tree G = {V,E} feature. We

first define the unary feature Φf (xiL,yi) to be Φf (xiL) evaluating at position yi.We

60

then define the pair-wise features

Ψij = −
[
dxij dyij dx2

ij dy2
ij

]

where dxij = xpi−xpj +anchorx, and dyij = ypi−ypj +anchory . We denote Ψ as [Ψij],

∀ij ∈ E. Integrating unary and pairwise features of the tree G results in Φa = [Φf Ψ]

,where subscription a denotes the word all. The score created by deformable model of

an edge ij is

scoredefrom (i, j) = wijd ·Ψij (4.3)

Putting submodel together

For each node and edge of the pictorial structure, we concatenate each and every bias

weights, deformable weights, and appearance filter weights together into 2 types of

data structure. The first is struct type according to their component, and the second

one is vector type. With the vector type data structure, we create a large vector w, the

learnable parameters of Human Pose Estimation ready for Structured SVM learning.

score(t, y) =
∑
i∈V

wt
f ·Φf (xL,y) +

∑
ij∈E

b
titj

ij + wijd ·Ψij (4.4)

, or in matrix form,

score(t, y) = w ·Φa (xL,y) (4.5)

To find the location y whose value maximize the score, the above equation becomes:

ŷ = arg max
ŷ∈Y

w ·Φa (xL,y) (4.6)

This is the prediction function. The value ŷ is our prediction of part locations for an

unseen test image.

61

4.2.3 Subgradient optimization of Structured SVM

In this subsection, we introduce the Structured SVM and a means to solve Structured

SVM objective function. This section relies on the framework of [79], and [100].

Our work is to apply this framework of generic structured learning to Human Pose

Estimation.

The purpose of Structural SVM is to produce Structural Prediction by learning

the maximum margin classifier for each training data. Probabilistic Graphical Model

such as Markov Random Fields (MRF), or Conditional Random Fields (CRF) can use

Structured SVM during the learning phase to learn their weight parameters. Structured

SVM is not an algorithm in which one can just plug the data and produce learning or

classification like SVM, but a framework for which inference, loss, and feature modules

are required to be plugged in first. For example, if a Structured SVM is to be applied

with MRF, one must specify the MRF structure, which the Structured SVM will learn,

the MRF inference algorithm, the MRF feature function, the loss function, and the

loss augmented inference algorithm. The loss augmented inference algorithm is the

inference algorithm with loss function. Then the Structured SVM learns the weights

for which the prediction over training data is maximum. In our work, the purpose of

SSVM is to learn the structural prediction function of the form eq.4.6

The SSVM has the optimization of the form [79] In this subsection, we describe

how the work of [79] could be applied to our work. Application of their work to our

current problem was the inspiration behind the formulation in the next subsection. To

learn the model parameters of the eq.4.6, we define the objective function of SSVM,

similar to [79].

min
w,ξ

λ

2∥w∥
2 +

l∑
i=1

ξi

s.t. ∀i , ∀y ∈ Y \ yi : w · Φai (xi,yi) + ξi ≥ max
y∈Y

w · Φai (xi,y) + ∆ (y, yi)
(4.7)

62

By minimizing the above objective function, we can learn the parameters w which

maximize training accuracy for prediction function eq.4.6. The SSVM objective eq.4.7

can be solved by subgradient method as shown by [79]. In our context, the subgradient

of the objective loss function is defined by

∂Obji

∂w
= Φai (xi, ŷi)−Φai (xi,yi) (4.8)

where Obji is the minimization objective function eq.4.7. For bth batch many training

data, the gradient is

∂Objb

∂w
= 1
b

∑
b

Φab (xb, ŷb)−Φab (xb,yb) (4.9)

,where ŷb is the most violated constraint from Loss Augmented Inference.

In our context, the Loss Augmented Inference is defined as

ŷ = arg max
y∈Y

∆ (y,yi) + w ·Φa (xi,y)−w ·Φa (xi,yi) (4.10)

,where ∆ (y,yi) = 1− Area(y∩yi)
Area(y∪yi)

is standard one minus bounding box intersection

over union loss. We then apply subgradient update as normal stochastic gradient

descent.

4.2.4 SSVM as two-layer Neural Network

We extend the previously defined subgradient optimization of Structured SVM by back

propagating further down to the lower layer of the neural network. This is because

solving Structured SVM of the previous section can be implemented by a two-layer

neural network. On the top is Loss Augmented Inference layer, while the lower one

63

can be normal linear layer of Neural Network, in general. For our special case of DPM

as CNN, the lower layer is a standard convolution layer.

To solve SSVM with subgradient optimization, one must calculate the Loss Aug-

mented Inference ŷi so that the feature of the most violated constraint Φai (xi, ŷi) of

eq.4.8 can be calculated. We notice that the sliding dot product of wt
f over all Φf (xiL)

possible locations of ŷ is actually a convolution operation similar to convolutional

neural network. If we design this convolution operation as a layer of convolutional

layer in CNN, then the DPM filters are convolutional filters of CNN. The CnnFeat

topped with DPM filters are now called ConvSsvmCnn, with the DPM filters called

ConvSsvm layer. Their corresponding feed forward is

Φt
rf (x,y) =

∑
ȳ

wt
f (ȳ) Φa (x,y + ȳ) (4.11)

This eq.4.11 defined a lower layer of SSVM as a two-layer Neural Network. The quantity

is actually the respond maps of Φf (xiL) convoluted by DPM unary filters wt
f . Let us

denote Φr for the concatenation of all Φt
rf . Having the ConvSsvm layer constructed,

we now define the Loss Augmented Inference Layer in this two-layer Neural Network

context. As the name implies, the Loss Augmented Inference layer performs Loss

Augmented Inference and finds the slack loss of the objective function, and the ŷ, the

most violated constraint as the argument that maximizes the loss augmented inference

objective. The Loss Augmented Inference objective function eq.4.10 can be rewritten

64

using eq.4.4, eq.4.6, and eq.4.11, as follows:

Li = max
y∈Y

∆ (y, yi) +
∑
v∈V

{Φr (xiL, yv)−Φrv (xiL, yvi)}

+
∑

ef∈E

{wefd ·Ψef (xi,y)−wefd ·Ψef (xi,yi)}

+
∑

ef∈E

{
(
b

tetf

ef

)
y
−
(
b

tetf

ef

)
yi
} (4.12)

The term Φr (xiL,y)−Φr (xiL,yi) can be seen in the Neural Network sense as picking

two scalars from the matrix of lower layer, and performing subtraction. This eq.4.12

defined the upper layer of SSVM as two-layer Neural Network. From here, one can see

that w in eq.4.6 is now divided into two difference layers. The weights of Appearance

Model eq.4.1 is on the bottom convolutional layer. The weights of co-occurrence and

deformable models eq.4.2, eq.4.3 are on the top Loss Augmented Inference layer. Figure

4.1 visualizes the outcome of these two equations, eq.4.11, and eq.4.12.

The following are our back propagation rules for our two-layer Neural Network.

The Gradient of Top layer, the Loss Augmented Inference Layer, is

∂Lb

∂w
= 1
b

∑
b

{Ψb (xb, ŷb)−Ψb (xb,yb) +
[
δ
(
ŷtitj

)]
b
−
[
δ
(
y

titj

i

)]
b
} (4.13)

,where [δ (a)] is a vector whose elements are all zeros except the element position at a

The gradient of objective function w.r.t respond map layer, Φr (xiL), is

∂Li

∂Φr
= δ (yv, ŷv)− δ (yv, yiv) ,∀y ∈ Y,∀v ∈ V (4.14)

,where δ (a, b) = 1, if a = b, and δ (a, b) = 0, otherwise. This can be realized by creating

a zero matrix of the size Φr (x,y), and then set +1 at position ȳv, and −1 at position

yiv, and if it happens that some ȳv = yiv, then set 0 at that position.

65

The above two gradients define The Loss Augmented Inference Layer. For the

back propagation rule of ConvSsvm layers, which define the appearance layer of

pictorial structure, we can use a normal back propagation rule of Convolution layer of

Convolutional Neural Network.

4.2.5 Solving Inferences with Max-Sum Algorithm

To solve ŷ whose configuration maximizes the eq.4.12, we can use standard Max-Sum

algorithm.The max-sum algorithm seeks to find the solution of the combinatorial

optimization of the form,

L̂ = arg max
L

∑
i∈V

mi (li) +
∑

ij∈E

g (li, lj) (4.15)

,under Graph G = {V,E}. The Objective of the combinatorial optimization ,eq.4.12, is

ŷ = arg max
y∈Y

∑
v∈V

{Φr (xiL, yv)+∆ (yv, yiv)}+
∑

ef∈E

{wefd ·Ψef (xi,y)+
(
b

tetf

ef

)
y
} (4.16)

. This combinatorial objective is solved by Max-sum algorithm. Thus, the max-sum

algorithm is performed on the topmost layer of our neural network. The objective of

combinatorial optimization is solved by message passing. The message for vth node is

scorev (yv) = Φr (xiL, yv) + ∆ (yv, yiv) +
∑

k∈kids(v)
mk (yv) (4.17)

me (tf , lf) = max
te

(
b

tetf

ef + max
le

[scoree (te, tf) + wef · ψ (le − lf)]
)

(4.18)

Since there are a total of L× T possible prediction locations. Each message has

the calculation O (L2T 2) and for all K parts, the total calculation of the Max-Sum

Algorithm is O (KL2T 2). However, we use max-convolution distance transform [33] ,

the time complexity of this Max-Sum Algorithm reduces to O (KLT).

66

Fig. 4.2 Slack Loss, One minus Intersect over Union loss ,∆ (ŷ,yi), versus samples.

67

4.3 Experiment

We train our Structured SVM the same way one trains a neural network: Stochastic

Gradient Descent. Our network architecture could be a normal CNN connect with

newly formulated structured SVM neural network as the last two layers. We could

also simply connect the data layer with the newly formulated structured SVM neural

network as the last two layers. We implement the Loss Augmented Inference as a layer

of Caffe Library[49].

4.3.1 Data Preparation

PARSE dataset consists of 100 positive training samples, and 205 positive testing

samples. Every image of this dataset is a full body human usually with a sports theme.

Every sample has its corresponding human joint position as a label. Some of the human

parts are occluded in the image, yet the human guessing joint positions are provided.

There are a total of 14 joints labeled for each sample. This include head, torso, left

arm, right arm, left limb, right limb. The size of the images range from 110-450 x

110-450. There are sometimes 1 or 2 full human bodies in the image. Human body size

in the images also vary. The background usually contains no humans, except for small

heads of audience members on a sport screen. Human Poses in the dataset vary from

sitting to standing, and the limbs and arms can be doing martial arts or gymnastics.

Dataset is not yet ready for our algorithm to work with. Preprocessing is as follows.

The training data is mirror-flipped, and so are the training labels, and then added

to the original training data. Thus we have a double of our training data. We then

find the mid point of each of the two joints, creating a total of 26 joints and mid-joint

points. We change these points into boxes, with box size calculated by appropriate

averaging of the length between joints among the training data. At this stage, our

68

label to training algorithm is created as (x1, y1, x2, y2) for each box. There are 26 boxes

for each training label. This is our y on image space.

The training image is then passed through HOG pyramid feature. In this process,

a training image is resized to become multiple images of different sizes on the same

picture. This is called a pyramid of images. The image pyramid is the HOG extracted

to become a pyramid of features, which are then patched to a zero matrix, creating

Φh (xiL). Thus the matrix outside image boundaries has the value 0. This is shown

in Figure 4.3. These layers represent multiscale features of the image, ranging from

small to large. The brown rectangle inside the larger rectangle shows the real data

from HOG features. The blue area of the larger rectangle are all zeros. Note that the

brown rectangle is of a different size in each layer due to multiscale features. Here the

upper left of Figure 4.3 shows a batch of pyramid of features before feeding to Neural

Network. Typically, the feature may have a maximum size of about 150x150x32, which

means the feature size is 150x150 with 32 channels. The smallest size is usually about

30x30x32. Typically, there are 5-20 levels of a pyramid. A batch is usually composed

of 5 training images. The aforementioned feature pyramid of all levels and batch sizes

are then patched to zero matrix with a size of 150x150x32x (number of levels x number

of image per batch), a 4 dimensional matrix.

The label is added with feature pyramid parameters creating a practical label. This

practical label, together with batch data, are then converted to Lightning Memory-

Mapped Database (LMDB) so that Caffe GPU library could more efficiently do data

handling.

69

Fig. 4.3 Feature Pyramid is feeded to Structured SVM neural network as many layers.

70

4.3.2 Neural Network Structure

HOG-Conv-SSVM

The neural network structure is as follows: Data layer - Convolution layer CnnFeat

- Convolution layer ConvSsvm - Loss Augmented Inference layer. The reason we

put Convolutional Layer in the middle is to show that our method can learn the

middle deep learning feature extractor parameters. We start our weight initialization

with random initialization. Our mixture model for each node is as follows: Mixture =

{5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5}. This means that the first

node (head node) has 5 different mixture types, the second node has 5 different mixture

types, and so on. There are a total of 138 ∑i Mixture mixtures. The size of ConvSsvm

layer is 5 × 5 × 256 × 138 = 883200, where 138 is ∑i Mixture. The Loss Augmented

Inference has 0 weight elements of ∀v ∈ V, btv
v , and 1+∑i Mixture (i)×Mixture (i− 1) =

702 weight elements of ∀vq ∈ E, btvtq
vq , and 133× 4 = 532 weight elements of wdeform.

Therefore the Loss Augmented Inference layer has a total of 1234 weight elements.

Since we set the size of the kernel of CnnFeat to be 2×2×32.The CnnFeat has a total

of 2×2×32×256 = 32768 weight elements. Therefore our system has a total weight of

883200 + 1234 + 32768 = 917202 elements. Our batch size is set to 50, and the feature

size Φh is set to 140x140. The data layer has a size of 50× 32× 140× 140 = 31360000

elements. CnnFeat layer has the size of 50× 256× 139× 139 = 247308800 elements.

Our ConvSsvm layer has the size of 50× 138× 135× 135 = 125752500 elements. In

total, we need 404421300 elements to store our multilayer neural network data. The

total requirement for GPU memory for our system is 1284714404 bytes. Our back

propagating elements is all Neural Network layers except the data layer plus all weights.

There are 373,978,502 back propagating elements.

We train for 3000 iterations with learning rate of 0.005. We use the L2 regularization

terms with coefficient of 0.1. We use no momentum parameter.

71

4.3.3 PCP evaluation

PCP measures the rate of correctly detected limbs: a limb is considered correctly

detected if the distances between detected limb endpoints and ground truth limb

endpoints are within half of the limb length. This was initially defined in [35]. The

stricter version of PCP defined in [76] is due to a different interpretation of the definition

in [35].

"according to the definition of PCP from [35] the body part is considered correct if

both of its endpoints are closer to their ground truth positions than a threshold. The

code in Buffy toolkit requires that the average over endpoint distances is smaller than

the threshold." from [76]

There are 2 interpretations: the strict version of the intepretation as[76], and the

non strict version as used in [113]. We explain only the strict version of PCP because

it has been the standard of PCP for many years.

Starting with 26 bounding boxes, the PCP evaluation omitted the mid points to a

total of 14 joint points, from head to both toes. The 14 joint points create a total of 9

sticks. Additional body sticks are calculated by averaging the left shoulder and right

shoulder as upper body points and the left hip and right hip as lower body points.

There are thus 10 sticks for evaluations. For each test image, and for each stick, the

stick is said to be matched with ground truth if the ratio of difference with respect to

ground truth length of both end points differs less than a certain threshold. In other

words, the stick is said to be matched if d1
l
≤ thresh, and d2

l
≤ thresh. The PCP of

this dataset prediction for this stick is simply the number of matches divided by the

total number of sticks in the test set.

72

Table 4.1 Strict Percentage of Correct Point (PCP)[112] Comparison on PARSE dataset.

class Our Result Yang & Ramanan[113]
Head 59.0 77.6
Torso 75.1 82.9
L. arm 13.9 35.4
U. arm 34.6 55.1
L. leg 46.1 63.9
U. leg 55.1 69.0
total PCP 43.4 60.7

4.3.4 Implementation as a Caffe layer

Once Φh (xiL) on data layer passes through the CnnFeat layer, the Φf (xiL) is created.

A further forward pass through ConvSsvm layer creates Φr (xiL), the respond map.

This process is shown in Figure 4.3. The Loss Augmented Inference layer is implemented

using python layer of Caffe library[49]. The Loss Augmented Inference layer uses max-

sum algorithm to calculate Objective Function value. The max-sum algorithm outputs

the optimal level, the most violated constraint ŷ. This output feature is the value of

both Φa (xiL, ŷ), and Φa (xiL,yi), The Max-marginal value which maximized eq.4.16,

and the loss function ∆ (ŷ,yi). This is done through searching for each pyramid level,

then finding the best max marginal score. The higher score in the new pyramid level

will overwrite the previous result.

After the most violated constraint is calculated, we calculate gradient in eq. 4.13

, and eq. 4.14 exactly as written in these equations. The average gradient, and cost

function over batch size is calculated as normal mini-batch training of neural network.

4.3.5 Result

In the following subsections, we train our model with PARSE dataset with HOG-

Conv-SSVM architecture. We use the same model to test different datasets. During

73

Table 4.2 Strict Percentage of Correct Point (PCP)[112] Comparison on Fashionista
Dataset.

class Our Result Yamagushi et al[110]
Head 56.2 96.2
Torso 85.4 97.8
L. arm 14.6 58.6
U. arm 35.4 85.1
L. leg 60.0 87.3
U. leg 68.1 92.9
total PCP 49.8 84.1

Table 4.3 Strict Percentage of Correct Point (PCP)[112] Comparison on LSP Dataset.

class Our Result Yang & Ramanan[113]
Head 50.8 77.1
Torso 76.1 84.1
L. arm 12.0 35.9
U. arm 25.9 52.5
L. leg 49.7 65.6
U. leg 52.6 69.5
total PCP 40.7 60.8

training on PARSE datasets, we observe the gradient descent results in Loss Augmented

Inference Loss,Li of eq.4.12, of training samples reduced as shown in Figure 4.2. The

one-minus-intersect-over-union ,∆ (ŷ, yi) ,loss is reduced to around 30%-40%. The Li

reduced nicely from value of 50 to 0.5. This shows that our gradient based method is

correctly implemented.

Testing on PARRE dataset

We test our model on PARSE dataset [77].

74

We compare our results with the results from Yang and Ramanan [113] in Table 5.1.

The total PCP (as in [112]) is used as measurement. Our results do not compete with

their results. However, Figure 4.2 shows that our method is able to learn effectively.

Figure 4.4 shows the results of Pose Estimation. They are a sample of good detection

over PARSE test set. The results look very promising.

Testing on Fashion dataset

The Fashionista dataset [110] is an easy dataset. There are 250 training images, and

185 testing data, each of which has 26 bounding boxes already defined by dataset. The

training images are then mirror flipped to double the training data to 500 images. We

use HOG-Conv-SSVM neural network with full back propagation to do the detection.

We compare our results with the results from Yamaguchi et al[110] in Table 4.2.

Testing on LSP dataset

LSP dataset [50] contains 2000 posed annotated images of mostly athletes gathered

from Flickr using the tags shown above. The test set is from 1001 to 2000th images.

In total, there are 1000 test images. The images have been scaled such that the most

prominent person is roughly 150 pixels in length. Each image has been annotated with

14 joint locations. Left and right joints are consistently labelled from a person-centric

viewpoint. Forteen joint position labels are availabe with this order. Right ankle,

Right knee, Right hip, Left hip, Left knee, Left ankle, Right wrist, Right elbow, Right

shoulder, Left shoulder, Left elbow, Left wrist, Neck, Head top. We compare our

results with the results from Yang and Ramanan [113] in Table 4.3. The total PCP

(as in [112]) is used as measurement.

75

Fig. 4.4 Visualization of our result Human Pose Estimation from PARSE test dataset.
The green bounding boxes are a head. The yellow boudning boxes are a torso. The
cyan bounding boxes are a left arm. The blue bounding boxes are a right arm. The
red bounding boxes are a left limb. The deep blue bounding boxes are a right limb.

76

Fig. 4.5 Visualization of our result Human Pose Estimation trained with PARSE
training set and tested with LSP test dataset. The green bounding boxes are a head.
The yellow bounding boxes are a torso. The cyan bounding boxes are a left arm. The
blue bounding boxes are a right arm. The red bounding boxes are a left limb. The
deep blue bounding boxes are a right limb.

Chapter 5

Comparing different types of

Structured SVM on Human Pose

Estimation

5.1 Introduction

In this work, we study two types of Structured learning algorithms for Human Pose

Estimation. Our results show that two types of Structured SVM learn HPE with

comparable accuracy, and is comparable to standard Latent SVM accuracy. We

implemented Structured SVM with matlab Quadratic Programmer. Our source code

is available for download.

Chapter 4 presents a neural network based learning system invention. Chapter

4 tries to back propagate to a middle Convolutional layer of Convolutional Neural

Network to show that the back propagation of Structured SVM to Neural Network

can achieve Human Pose Estimation, yet the resulting PCP accuracy is not very good.

Yet comparing Chapter 4’s result with Ramanan is not appropriate, since the later

result has pretraining of each Appearance Model filters. In this Chapter, we learn our

78

Structured SVM with back propagation as previously defined in Chapter 4 without

having the middle Convolutional Layer. We also used pretraining of each Appearance

model filter exactly the same as Yang’s. We also compared the Structured SVM back

propagation with our own implementation of Joachim Structured SVM with standard

Matlab’s Quadratic Programmer. We wish to see all Structured SVM based method

to have a result PCP accuracy comparable to Yang’s method.

5.2 Human Pose Estimation Part base detection

For each node and edge of the pictorial structure, we concatenate each and every bias

weight, deformable weight, and appearance filter weight together into 2 types of data

structure. The first one is the struct type according to their component, and the second

one is the vector type. With the vector type data structure, we create a large vector

w, the learnable parameters of Human Pose Estimation ready for Structured SVM

learning.

score(t, y) =
∑
i∈V

wt
f ·Φf (xL,y) +

∑
ij∈E

b
titj

ij + wijd ·Ψij (5.1)

, or in matrix form,

score(t, y) = w ·Φa (xL,y) (5.2)

To find the location y whose value maximizes the score, the above equation becomes.

ŷ = arg max
ŷ∈Y

w ·Φa (xL,y) (5.3)

This formulation is suitable for Structure SVM learning.

79

Fig. 5.1 PARSE dataset. The blue Bounding boxes are our training label ŷ, which are
created by their joint, mid-joint positions. There are 14 joint positions in the original
PARSE dataset label. The mid-joint is calculated by finding the mid position of two
joints.

80

5.3 Learning Human Pose Estimation with Struc-

tured SVM

Let us focus on Pose Estimation as a Structural Prediction Problem. Here we have

a structure of a Human as shown in Figure 2.4. Our Structure Prediction is to

find bounding box locations associated with each node such that they match well to

the positions of human joint locations as shown in Figure 5.1. How can Structural

Prediction be achieved? In a machine learning way, SSVM does structural learning by

formulating the training data into statistical problem. In this case, how could we define

the structural prediction? Under SSVM one should look to the structural prediction as

the association of all structures and labels, SSVM is a supervised learning algorithm.

Dataset must provide bounding boxes y for each and every positive image. Now that y

are bounding boxes, they can be written (x1, y1, x2, y2), where x1, y1 is the matrix row

and column of top-left bounding box. Suppose we focus on (x1, y1) only, we have an

amount of pixels as a number of possible assignments for each node. We need all nodes,

thus y is a vector of size number of nodes. To think of it as structural prediction, we

think of it as sorting, the correct assignment of y to the training samples should be

the maximum of all other possible assignments of y.

Look at Figure 5.2. In this Figure, (x2,y2) is 2nd training data. Therefore, we

hope that for all possible assignments of y, y = y2 score the highest. In other words,

we want SSVM to predict ŷ = arg maxŷ∈Y w · Φa (xi,y). This is our prediction, or

detection function, which we can solve with max-sum algorithm. We can think of

this inner product as the score of assigning y. We can think of this prediction as

finding for all space of y the largest score value: the best score. Now if we can obtain

prediction equation sanctification, we can say that we correctly predict y2. We can

say we have performed structural prediction . In this sense, structural prediction is to

81

Fig. 5.2 Human Pose Estimation as SSVM sorting: This shows the idea of SSVM as
sorting. The correct bounding box assignment has a higher score than the rest of other
assignments.

Fig. 5.3 Hard Margin constraints of Structured SVM. If we can have w which sorts the
score w ·Φ (xi,yi), to the highest of all possible ways of sorting, then we achieve 100%
test accuracy by predicting the y with maximum score.

82

Fig. 5.4 Soft Margin constraints of Structured SVM

assign bounding box values y for all points. Our requirement for a dataset is that we

want 100% training accuracy. Meaning that for each and every data (xi,yi) we want

yi to be predicted out of all possible assignment of y as shown in Figure . If we can

do this, then we have 100% training accuracy. The Figure 5.3 shows our wish. The

learning problem is how to find a correct w such that the training accuracy is 100%

and that, as in normal SVM, its norm is the smallest. The above sentence can be

written as an objective function as follows:

Hard-margin Optimization Problem:

min
w

1
2∥w∥

2

s.t. ∀i , ∀y ∈ Y \ yi : w · δΦi (xi,y) ≥ 1
(5.4)

Look at the constraints of this objective function. What it actually says is that the

objective function must be minimized under the constraint that for each sample the

correct assignment must have the correct assignment yi the highest score compared

to all other possible assignments of y, and must be at least 1 unit score higher. This

follows the idea of maximum margin classification. In this case, the margin is 1. Instead

of assigning the margin value to be 1, we want this margin to change according to the

difference between the correct assignment yi and other possible assignments y. Loss

83

function ∆ (y,yi) is introduced to measure such distance. The Loss Function is defined

as

∆ (y,yi) = 1− Area (y ∩ yi)
Area (y ∪ yi)

(5.5)

. As the same as normal SVM, we can introduce Soft margin version. Altogether, the

Optimization Problem becomes: Soft Margin Optimization Problem:

min
w,ξ

1
2∥w∥

2 + C

m

m∑
i=1

ξi

s.t. ∀i , ∀y ∈ Y \ yi : w · δΦai (xi,y) ≥ ∆ (yi, y)− ξi

(5.6)

Soft Margin Objective function allows ξi to be an error from the best solution.

Then soft margin objective function minimizes for such an error. This is shown in

Figure 5.4 The problem remains. Even though the structural learning problem has

been formulated into a quadratic programming problem, we have a large number

of constraints to feed to quadratic programmer(QP). However, if we investigate our

problem, those “other y”,i.e “other y” means ∀y ∈ Y \ yi , with low scores on current

w is non-relevant, therefore, for each iteration of w, we only need to optimize over

those “other y”, which has a higher score than the correct y. This leads to cutting-

plane type algorithms to solve the QP. We can see each incorrect constraints as a

cutting plane. To feed a cutting plane algorithm, we find the “other y” which has

the highest violation of constraints, hence the name the most violoated constraint.

The cutting plane algorithm is shown in Algorithm 1. To compute the most violated

constraint of the form ŷ = arg maxŷ∈Y w ·Φa (xi, yi) + ∆ (y, yi) This function is called

Loss Augmented Inference. To use Structure SVM, one must be able to find over large

space of y two inferences: 1) Loss Augmented Inference,and 2) Structural Prediction

Inference, also known as test inference. One must also specify loss function ∆ (y, yi)

and the feature function Φa (x, y).

This is how to formulate Human Pose Estimation in an SSVM learning problem.

84

5.3.1 Solving Structured SVM

The method explained in this section is correct for multiclass classification Structured

SVM as well as general Structured SVM. Solving Human Pose Estimation problem

with Structured SVM can also be done using the method described in this section.

From Multiclass SVM to Structural SVM:k class classification. Training Samples

(x1, y1) , ..., (xn, yn). k class classification. Suppose we can train k weights wi,∀i ∈

{1, ..., k}, . Prediction is to choose ith class whose test score ŷ = arg maxŷ∈Y w ·

Φa (xi, yi) is the largest. The n-slack Structured SVM with marginal rescaling [101]

has the primal of the form

Before solving Structured SVM, make sure that your Loss Augmented Inference

Algorithm for solving The loss augmented inference

ŷ = arg max
ŷ∈Y

w ·Φa (xi,y) + ∆ (y,yi) (5.7)

is prepared. As one can see both Cutting plane Algorithm and Subgradient method

require this inference.

Training SSVM∆m
1 primal:

min
w,ξ

∥w∥2 + C

m

m∑
i=1

ξi

s.t. ∀i , ∀y ∈ Y \ yi : w · δΦai (xi,y) ≥ ∆ (yi, y)− ξi

(5.8)

where δΦai (xi,y) = Φai (xi,y)− Φai (xi,yiL) The constraints say that we want to find

a set of vector wi,∀i ∈ {1, ..., k} such that for each training sample (xi, yi) there is a

corresponding wi that maximizes the score value (or similarity measure) over other

w̸=i, and that for each training data, there is an error epsilon for which what said

earlier is not so true, and that we want the overall smallest magnitude or smallest

average error set.

85

The above optimization can be solved by Constraint QP solver. However, there are

still exponentially many constraints since there are exponentially many members of set

of possible y. How to put this constraint optimization to QP solver?

It turns out that we do not actually need solutions for all possible constraints.

The only constraints which are important are those constraints of the (xi, y̸=i) whose

score value Φai (xi,y ̸=i) is no smaller than the wishful maximum score training label

Φai (xi,yi). By including only those important constrants, we reduce the number

of constraints to a pragmatic level. To find those important constraints, one must

calculate the Loss Augmented Inference. [100] provides the cutting plane algorithm for

feeding the QP solver.

Optimize via Cutting Plane Algorithm

Algorithm 1 Cutting Plane Algorithm for Structural SVM (N-slack formulation)[101]
1: Input: (xi, yi) : ∀i ∈ {1, ..., n}, C, ϵ
2: Set: S ← ∅, w = 0, ϵ = 0
3: REPEAT:

4: ∀i ∈ {1, ..., n}
5: compute ŷ = arg maxŷ∈Y w ·Φa (xi, yi) + ∆ (y, yi)
6: compute ξ = maxy∈Y {0, ∆ (yi, y)−wT (Φa (xi, yi)−Φa (xi, y))}}
7: if ∆ (yi, y)−wT (Φa (xi, yi)−Φa (xi, y)) > ξi + ϵ

8: S ← S ∪ {yi}
9: optimize

min
w,ξ

1
2∥w∥

2 + C

m

m∑
i=1

ξi

s.t. ∀i ,∀y ∈ Y \ yi : w · δΦai (xi, y) ≥ ∆ (yi, y)− ξi

(5.9)

10: end if
11: end for

12: until no Si change during iteration

With the manageable number of constraints, we can solve QP with primal or dual

objective function. The n-slack Structured SVM with marginal rescaling has the dual

objective function of the form

86

Dual Objective

The Structured SVM primal formulation has the dual objective of the form,

Θ (α) = 1
2
∑

i,y ̸=yi

∑
j,ȳ ̸=yj

α(iy)α(jȳ)J(iy)(jȳ) +
∑

i,y ̸=yi

α(iy)∆(yiy, yi) (5.10)

where J(iy)(jȳ) = δΦi (y) δΦj (ȳ)

dual QP objective [101]:

α∗ = arg max
α

Θ (α)

s.t.

α ≥ 0∑
y ̸=yi

αiy ≤
C

n
,∀i = 1, ...,m

(5.11)

SSVM∆m
1 Dual Objective Function in matrix form.

ˆ̄α = arg max
ᾱ
−1

2 ᾱ
T Jα + hTᾱ

s.t.

ᾱ ≥ 0∑
y ̸=yi

αiy ≤
C

m

(5.12)

where ᾱ is the vector of αiy, and J = j(iy)(jy), and j(iy)(jȳ) = δΦiyδΦjȳ, h = ∆(yiy, yi) ,

all these ,∀iy, and X = ᾱ.

87

α =

{α11 α12 α13 ... α1n1}T

{α21 α22 α23 ... α2n1}T

...

{αm1 αm2 α13 ... αmnm}T

(5.13)

Φvec =

{δΦ11 δΦ12 δΦ13 ... δΦ1n1}T

{δΦ21 δΦ22 δΦ23 ... δΦ2n1}T

...

{δΦm1 δΦm2 δΦ13 ... δΦmnm}T

(5.14)

∆vec =

{∆ (y1, ŷ11) ∆ (y1, ŷ12) ∆ (y1, ŷ13) ... ∆ (y1, ŷ1n1)}T

{∆ (y2, ŷ21) ∆ (y2, ŷ22) ∆ (y2, ŷ23) ... ∆ (y2, ŷ2n1)}T

...

{∆ (ym, ŷm1) ∆ (ym, ŷm2) ∆ (ym, ŷm3) ... ∆ (ym, ŷmnm)}T

(5.15)

J = ΦvecΦvec
T (5.16)

The standard Quadratic Programming optimization is of the form

min
X

1
2XPXT + CTX̄

s.t. AeqX = Beq

lb ≤ X ≤ ub

GX ≤ u

(5.17)

88

We set our Aeq, and Beq to be empty. Our required constraints α ≥ 0 are achieved

by setting lb = 0, and ub is empty vector. We set P = J . C = −∆vec because we are

minimizing the negative objective of dual QP maximization.

How do we understand the subscription iy? The iy means there are many ys for each

i, and there are many is. This depends on constraint insertion. Since our cutting plane

algorithm guarantees that no yi being inserted into constraints, we can simply insert the

y, which violated constraint the most, into constraints, being sure that our constraints

are satisfying the domain ∀y ∈ Y \ yi. For example, suppose our current constraints

are ŷ11, ..., ŷ1R1 for the first training data, and ŷ21, ..., ŷ1R2 , for second training data,

where R1, R2 are the number of constraints inserted since the algorithm run, then

there are a total R1 +R2 number of αs. Therefore, the number of α is the number of

constraints inserted. Hence ᾱ = {{α11, α12, ..., α1R1}, {α21, α22, ..., α2R2}}T . The ᾱ ≥ 0

can be implemented by setting the lower bound of quadratic optimization to be zero.

Here we need to add inequality constraints ∑y ̸=yi
αiy ≤ C

m
to quadratic programmer.

This inequality meaning is "The summation over all violated constraints found at ith

training samples, bar yi, must be less than or equal C
m

". For example, suppose there

are 2 violated constraints found for ith sample, then

αiyviolate1 + αiyviolate2 ≤
C

m

Therefore, there are at most m inequalities. On quadratic programmer, one can

place this under GX ≤ u form of constraints. For example, if we have

α1y1 + α1y2 ≤
C

m

α2y1 ≤
C

m

(5.18)

In this case, there are two summation inequalities. The first one is the summation of

all recorded most violated constraints since the training started with the first training

89

sample. The second one is the summation of all recorded most violated constraints

since the training started with the first training sample. Note that there may be

different numbers of most violated constraints found in each training sample. This is

because the requirement of cutting plane algorithm is to accumulate the most violated

constraints only if their values are greater than ϵ. We can then input G =

1 1 0

0 0 1

 ,

ᾱ =
[
α1y1 , α1y2 , α2y1

]T

, and u = C
m

[
1, 1

]T

. In general, our

J = [δΦai (xi,yiy)] [δΦai (xi,yiy)]T

To find the optimal ŵ from the dual Lagrange multipliers α, we calculate

ŵ (α) =
∑

i

∑
y ̸=yi

α̂iyδΦai (xi,yiy)

. Or in the matrix form

ŵ = δΦT
aiᾱ (5.19)

.

Primal Objective

For primal objective quadratic programming, it is much more straight forward. We can

feed 5.9 to quadratic programmer. The above optimization can be solved for multiclass

SSVM with the CVX [45].

We strictly follow the formula given by Joachim. Loss Augmented Inference,

and Joint Feature location function ŷ,δΦai (xi,y). The Loss function ∆ (y,yi) =

1 − Area(y∩yi)
Area(y∪yi)

are jointly calculated by SSVM Loss Augmented inference function.

This Loss Augmented Inference function calculates "the most violoated constraint" as

shown in Algorithm 1 line 6. We then strictly follow Algorithm 1 by calculating 7. If

90

the current gap between loss augmented inference optimal value,w ·Φa (xi, ŷ)−w ·

Φa (xi,yi) + ∆ (y,yi) , and one minus intersect over union loss , ∆ (y,yi), is larger

than ith slack variable ξi by at least ϵ, then the most violated constraint tuple xi, ŷ is

unioned. Then the weights w is optimized with Structured SVM objective function

(line of Algorithm 1). This is iterated until the set S has no more change, which means

that all the gaps are smaller than ξi + ϵ.

Optimization via Back Propagation Method

Algorithm 2 Back Propagation Algorithm for Structural SVM (N-slack formula-
tion)(Chapter 4)

Input: (xi, yi) : ∀i ∈ {1, ..., n}, C, ϵ
2: compute ŷ = arg maxŷ∈Y w ·Φa (xi, yi) + ∆ (y, yi)

add back propagation g ← g + Φa (xi, ŷ)−Φa (xi, yi)
4: return g

Another method for optimizing Structured SVM is back propagation method. The

back propagation optimization is similar to gradient descent in its procedure. The

difference is that the subgradient method is used in the piecewise continuous objective

function with respect to w. In our risk minimization objective 5.20, our objective

function is a highly piecewise continuous function. By minimizing the regularized risk

c (w) objective[79], one can get the optimal weight w.

min
w,ξ

λ

2∥w∥
2 +

l∑
i=1

ξi

s.t. ∀i : w · Φai (xi,yi) + ξi ≥ max
y∈Y

w · Φai (xi,y) + ∆ (y, yi)
(5.20)

When some dimension of w changes its value, this causes our loss augmented

algorithm to compute different ŷ. Therefore, the objective value given by risk objective

5.20 abruptly changes, yet for every value w within the domain W, has its functional

91

value. If w changes too little, the loss augmented inference returns the same ŷ,

therefore the objective function remains continuous function. The aformentioned

objective function is clearly a piecewise continuous function. Thus our technique to

solve the convex optimization under piecewise continuous function is by subgradient

algorithm.

We use the method described in Chapter 4 to solve the eq. 5.20 with back

propagation algorithm.

5.4 Experiment

Data preparation is no different than in the previous Chapter. The neural network

structure is as follows. Data layer - Convolution layer ConvSsvm - Loss Augmented

Inference layer. We start our weight initialization with pretrianed weights as in [113].

Our mixture model for each node is as follows: Mixture is the same as in the previous

Chapter. There are total 138 of ∑i Mixture mixtures. The size of ConvSsvm layer is

5× 5× 32× 138 = 110400, where 138 is ∑i Mixture. The Loss Augmented Inference has

0 weight elements of ∀v ∈ V, btv
v , and 1 +∑

i Mixture (i)×Mixture (i− 1) = 702 weight

elements of ∀vq ∈ E, btvtq
vq , and 133× 4 = 532 weight elements of wdeform. Therefore

the Loss Augmented Inference layer has a total of 1234 weight elements. Therefore our

system has a total weight of 110400+1234 = 111634 elements. Figure 5.5. The majority

of one-minus-intersect-over-union ,∆ (ŷ, yi) ,loss is reduced to around 20%-30%, as

opposed to the previous Chapter of 20%-40%. The Li reduced nicely from the value of

50 to 0.3. This, perhaps, is due to the fact that we pretrained the Convssvm filters

before training with our Back Propagation algorithm.

92

Fig. 5.5 Slack Loss, One minus Intersect over Union loss ,∆ (ŷ,yi), versus samples

93

Table 5.1 Strict Percentage of Correct Point (PCP)[112] Comparison

object
class

Structured
SVM Quad-
proc

Structured
SVM Back
Propagation

Yang&
Ramanan
[113]

Head 79.0 76.1 77.6
Torso 85.4 56.9 82.9
L. arm 22.6 32.7 35.4
U. arm 48.5 47.8 55.1
L. leg 62.9 61.1 63.9
U. leg 72.0 65.1 69.0
total PCP 58.5 56.9 60.7

5.4.1 Result

Table 5.1 shows comparable PCP accuracy as we wished.

5.5 Conclusion

In this Chapter, we show that our Structured SVM back propagation, without a middle

Convolutional layer, can achieve accuracy comparable to LSVM.

Chapter 6

Conclusion

Currently there are many part based detection works which rely on convolutional neural

network as front end. It has been confirmed in many cases that classification and feature

extraction by back propagation of the classifier into deep learning feature extractor

gives better performance. We plan to use this newly invented layer, Structured SVM

neural network, on Deep Convolutional Neural Network for part based image detection

problems. In this work, we study the feasibility of such a plan by showing that reducing

loss of Structured SVM neural network can perform part based detection. In the future,

when we add this new layer to Deep Convolutional Neural network, we can create the

full end-to-end Neural Network for Human Pose Estimation problem, as well as other

part based detection problems.

Our work shows that the unary potential of Makov Random Fields can be learned

with neural network based feature extractor, and that the whole Makrov Random

Field based model can be learned with Structured SVM back propagating to Neural

Networks. Markov Random Field based models are very important in solving the

following problems: Image Segmentation problems, Stereo Vision problems, Image

deblurring problems. Our work shows that these computer vision problems could

be able to learn with Structured SVM Back propagating to Neural Network. Hence

96

through this work’s implication, we add to the methods for solving general computer

vision problem.

We proposed a new learning algorithm, Structured SVM Convolutional neural

network, to learn Human Pose Estimation model. We defined the Structured SVM as

two-layer neural network that can further back propagate the inference error to deep

learning feature extractor. Our Structured SVM within Structured SVM Convolutional

Neural Network learn its weights the same way it learns it weight without back

propagation. Our method works as a generic learning algorithm for broad deep learning

computer vision problems. Even though our result is not yet as good as state of the

art, our method can learn the model parameters of Human Pose Estimation without

negative samples. We believe our method can perform much better if we use deep

convolutional neural network as front end. Due to the time consuming nature of our

training, we have not yet tried to use deep convolutional neural network as front end.

In the future, we shall implement our method as full deep learning machine.

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J.,
Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

[2] Anand, A., Koppula, H. S., Joachims, T., and Saxena, A. (2013). Contextually
Guided Semantic Labeling and Search for 3D Point Clouds. International Journal
of Robotics Research.

[3] and U, M., Franc, V., and V, H. (2012). Detector of Facial Landmarks Learned by
the Structured Output {SVM}. In VISAPP ’12: Proceedings of the 7th International
Conference on Computer Vision Theory and Applications.

[4] Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and
people-detection-by-tracking. In 26th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR.

[5] Belongie, S., Malik, J., and Puzicha, J. (2000). Shape context: A new descriptor for
shape matching and object recognition. Advances in Neural Information Processing
Systems, 546:831–837.

[6] Bertelli, L., Yu, T., Vu, D., and Gokturk, B. (2011). Kernelized structural SVM
learning for supervised object segmentation. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

[7] Blaschko, M. B. and Lampert, C. H. (2008). Learning to localize objects with
structured output regression. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

[8] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A Training Algorithm
for Optimal Margin Classifiers. Proceedings of the 5th Annual ACM Workshop on
Computational Learning Theory.

[9] Branson, S., Beijbom, O., and Belongie, S. (2013). Efficient large-scale structured
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1806–1813.

98

[10] Branson, S., Perona, P., and Belongie, S. (2011). Strong supervision from weak
annotation: Interactive training of deformable part models. In Proceedings of the
IEEE International Conference on Computer Vision.

[11] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[12] Carreira, J., Agrawal, P., Fragkiadaki, K., and Malik, J. (2015). Human Pose
Estimation with Iterative Error Feedback. Nips’15, pages 1–12.

[13] Charles, J., Pfister, T., Magee, D., Hogg, D., and Zisserman, A. (2014). Upper
Body Pose Estimation with Temporal Sequential Forests. In Proceedings of the
British Machine Vision Conference 2014.

[14] Chen, K., Gong, S., and Xiang, T. (2011). Human pose estimation using structural
support vector machines. 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 846–851.

[15] Chen, X. and Yuille, A. (2015). Parsing occluded people by flexible compositions.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 07-12-June, pages 3945–3954. IEEE Computer Society.

[16] Chen, X. and Yuille, A. L. (2014). Articulated Pose Estimation by a Graphical
Model with Image Dependent Pairwise Relations. Advances in Neural Information
Processing Systems (NIPS), pages 1736–1744.

[17] Cherian, A., Mairal, J., and Alahari, K. (2014a). Mixing Body-Part Sequences for
Human Pose Estimation. CVPR 2014-IEEE

[18] Cherian, A., Mairal, J., Alahari, K., and Schmid, C. (2014b). Mixing Body-Part
Sequences for Human Pose Estimation. Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on.

[19] Ciregan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural
networks for image classification. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3642–3649. IEEE.

[20] Cires, D. and Meier, U. (2012). Multi-column Deep Neural Networks for Image
Classification. Applied Sciences.

[21] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20:273–297.

[22] Crammer, K. and Singer, Y. (2001). On The Algorithmic Implementation of
Multiclass Kernel-based Vector Machines. Journal of Machine Learning Research
(JMLR).

[23] Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients for Human
Detection. In CVPR ’05: Proceedings of the 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1, pages 886–893.
IEEE Computer Society.

99

[24] Dann, C., Gehler, P., Roth, S., and Nowozin, S. (2012). Pottics–the potts topic
model for semantic image segmentation. In Joint DAGM (German Association for
Pattern Recognition) and OAGM Symposium, pages 397–407. Springer.

[25] Dantone, M., Gall, J., Leistner, C., and Van Gool, L. (2014). Body Parts Dependent
Joint Regressors for Human Pose Estimation in Still Images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(11):2131–2143.

[26] Desai, C., Ramanan, D., and Fowlkes, C. C. (2011). Discriminative models for
multi-class object layout. International Journal of Computer Vision.

[27] Dong, J., Chen, Q., Shen, X., Yang, J., and Yan, S. (2014). Towards unified
human parsing and pose estimation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

[28] Dong, J., Chen, Q., Xia, W., Huang, Z., and Yan, S. (2013). A deformable mixture
parsing model with parselets. In Proceedings of the IEEE International Conference
on Computer Vision.

[29] Eichner, M. and Ferrari, V. (2012). Human pose co-estimation and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2282–2288.

[30] Eichner, M., Marin-Jimenez, M., Zisserman, A., and Ferrari, V. (2012). 2D
articulated human pose estimation and retrieval in (almost) unconstrained still
images. International Journal of Computer Vision, 99:190–214.

[31] Felzenszwalb, P. F., Girshick, R. B., Mcallester, D., and Ramanan, D. (2009). Ob-
ject Detection with Discriminatively Trained Part Based Models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1–20.

[32] Felzenszwalb, P. F. and Huttenlocher, D. P. (2004a). Distance transforms of
sampled functions. Cornell Computing and Information Science Technical Report
TR20041963, 4:1–15.

[33] Felzenszwalb, P. F. and Huttenlocher, D. P. (2004b). Distance transforms of
sampled functions. Cornell Computing and Information Science Technical Report
TR20041963.

[34] Felzenszwalb, P. F. and Huttenlocher, D. P. (2005). Pictorial structures for object
recognition. International Journal of Computer Vision, 61(1):55–79.

[35] Ferrari, V., Marin-Jimenez, M., and Zisserman, A. (2008). Progressive Search
Space Reduction for Human Pose Estimation. IEEE Conference on Computer Vision
and Pattern Recognition (2008), 2:1–8.

[36] Feyereisl, J., Kwak, S., Son, J., and Han, B. (2014). Object Localization based on
Structural SVM using Privileged Information. Nips.

[37] Fidler, S., Mottaghi, R., Yuille, A., and Urtasun, R. (2013). Bottom-up seg-
mentation for top-down detection. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

100

[38] Fischler, M. A. and Elschlager, R. A. (1973). The Representation and Matching
of Pictorial Structures Representation. IEEE Transactions on Computers.

[39] Forney G.D., J. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3):302–
309.

[40] Freund, Y. and Schapire, R. E. (1997). A decision theoretic generalization of on-line
learning and an application to boosting. Computer Systems Science, 57:119–139.

[41] Gilks, W. R. (2005). Markov chain monte carlo. Encyclopedia of Biostatistics.

[42] Girshick, R., Iandola, F., Darrell, T., and Malik, J. (2014). Deformable Part
Models are Convolutional Neural Networks. arXiv:1409.5403, page 8.

[43] Girshick, R. B., Felzenszwalb, P. F., and Mcallester, D. (2011). Object detection
with grammar models. Advances in Neural.

[44] Gkioxari, G., Hariharan, B., Girshick, R., and Malik, J. (2014). R-CNNs for Pose
Estimation and Action Detection. arXiv preprint arXiv:1406.5212.

[45] Grant, M. and Boyd, S. (2008). CVX: Matlab software for disciplined convex
programming.

[46] He, K., Sigal, L., and Sclaroff, S. (2014). Parameterizing object detectors in the
continuous pose space. In European Conference on Computer Vision, pages 450–465.
Springer.

[47] Jain, A., Tompson, J., Andriluka, M., Taylor, G. W., and Bregler, C. (2013).
Learning Human Pose Estimation Features with Convolutional Networks. arXiv
preprint arXiv: . . . , pages 1–10.

[48] Jain, A., Tompson, J., LeCun, Y., and Bregler, C. (2015). MoDeep: A Deep
Learning Framework Using Motion Features for Human Pose Estimation. In Cremers,
D., Reid, I., Saito, H., and Yang, M.-H., editors, Computer Vision – ACCV 2014 SE
- 21, volume 9004 of Lecture Notes in Computer Science, pages 302–315. Springer
International Publishing.

[49] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., and Darrell, T. (2014). Caffe: Convolutional Architecture for Fast Feature
Embedding. arXiv preprint arXiv:1408.5093.

[50] Johnson, S. and Everingham, M. (2010). Clustered Pose and Nonlinear Appearance
Models for Human Pose Estimation. Procedings of the British Machine Vision
Conference 2010, (i):12.1—-12.11.

[51] Johnson, S. and Everingham, M. (2011). Learning effective human pose estimation
from inaccurate annotation. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 1465–1472.

[52] Kai, W., Babenko, B., and Belongie, S. (2011). End-to-end scene text recognition.
In Computer Vision (ICCV), 2011 IEEE International Conference on.

101

[53] Lacoste-Julien, S., Jaggi, M., Schmidt, M., and Pletscher, P. (2012).
Block-coordinate frank-wolfe optimization for structural svms. arXiv preprint
arXiv:1207.4747.

[54] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code
Recognition.

[55] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2323.

[56] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998b). Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

[57] LeCun Yann, Cortes Corinna, and Burges Christopher (1998). THE MNIST
DATABASE of handwritten digits. The Courant Institute of Mathematical Sciences.

[58] Li, B., Hu, W., Wu, T., and Zhu, S. C. (2013). Modeling occlusion by discriminative
AND-OR structures. In Proceedings of the IEEE International Conference on
Computer Vision.

[59] Li, H., Lin, Z., Shen, X., Brandt, J., and Hua, G. (2015). A convolutional neural
network cascade for face detection.

[60] Li, S. Z. (2009). Markov random field modeling in image analysis. Springer Science
& Business Media.

[61] Lin, D., Fidler, S., Kong, C., and Urtasun, R. (2014). Visual semantic search:
Retrieving videos via complex textual queries. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

[62] Lin, L., Wang, X., Yang, W., and Lai, J. H. (2015). Discriminatively trained
and-Or graph models for object shape detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[63] Lin, L., Wu, T., Porway, J., and Xu, Z. (2009). A stochastic graph grammar for
compositional object representation and recognition. Pattern Recognition.

[64] Liu, F., Lin, G., and Shen, C. (2015). CRF learning with CNN features for image
segmentation. Pattern Recognition.

[65] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully Convolutional Networks for
Semantic Segmentation preprint. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

[66] Lowe, D. (1999). Object recognition from local scale-invariant features. Proceedings
of the Seventh IEEE International Conference on Computer Vision, 2.

[67] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110.

102

[68] Lu, H., Shao, X., and Xiao, Y. (2013). Pose estimation with segmentation
consistency. IEEE Transactions on Image Processing.

[69] Mottaghi, R., Chen, X., Liu, X., Cho, N. G., Lee, S. W., Fidler, S., Urtasun,
R., and Yuille, A. (2014). The role of context for object detection and semantic
segmentation in the wild. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

[70] Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimiza-
tion. Wiley-Interscience, New York, NY, USA.

[71] Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(7):971–987.

[72] Ouyang, W., Chu, X., and Wang, X. (2014). Multi-source Deep Learning for
Human Pose Estimation. 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 2337–2344.

[73] Özuysal, M., Fua, P., and Lepetit, V. (2007). Fast keypoint recognition in ten
lines of code. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

[74] Pishchulin, L., Andriluka, M., Gehler, P., and Schiele, B. (2013a). Poselet
conditioned pictorial structures. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 588–595.

[75] Pishchulin, L., Andriluka, M., Gehler, P., and Schiele, B. (2013b). Strong Ap-
pearance and Expressive Spatial Models for Human Pose Estimation. In Computer
Vision (ICCV), 2013 IEEE International Conference on, pages 3487–3494.

[76] Pishchulin, L., Jain, A., Andriluka, M., Thormahlen, T., and Schiele, B. (2012).
Articulated people detection and pose estimation: Reshaping the future. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 3178–3185.

[77] Ramanan, D. (2007). Learning to parse images of articulated bodies. Advances in
Neural Information Processing Systems, 19:1129–1136.

[78] Rantalankila, P., Kannala, J., and Rahtu, E. (2014). Generating Object Segmen-
tation Proposals Using Global and Local Search. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on.

[79] Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. a. (2006). (Online) Subgradient
Methods for Structured Prediction. Artificial Intelligence and Statistics, 2007.

[80] Rothrock, B., Park, S., and Zhu, S. C. (2013). Integrating grammar and segmen-
tation for human pose estimation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

103

[81] Sabzmeydani, P. and Mori, G. (2007). Detecting pedestrians by learning shapelet
features. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

[82] Sapp, B. and Taskar, B. (2013). MODEC: Multimodal decomposable models for
human pose estimation. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 3674–3681.

[83] Schwing, A., Hazan, T., Pollefeys, M., and Urtasun, R. (2011). Distributed message
passing for large scale graphical models. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

[84] Sermanet, P., Kavukcuoglu, K., Chintala, S., and Lecun, Y. (2013). Pedestrian
detection with unsupervised multi-stage feature learning. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages
3626–3633.

[85] Shen, J., Liu, G., Chen, J., Fang, Y., Xie, J., Yu, Y., and Yan, S. (2014). Unified
structured learning for simultaneous human pose estimation and garment attribute
classification. IEEE Transactions on Image Processing.

[86] Shi, C., Wang, C., Xiao, B., Zhang, Y., Gao, S., and Zhang, Z. (2013). Scene text
recognition using part-based tree-structured character detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[87] Shi-Xiong Zhang , Chaojun Liu, K. Y. and Gong, Y. (2015). DEEP NEURAL
SUPPORT VECTOR MACHINES FOR SPEECH RECOGNITION. Icassp, (1):4275–
4279.

[88] Sigal, L. and Black, M. J. (2006). Measure locally, reason globally: Occlusion-
sensitive articulated pose estimation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2, pages 2041–2048.

[89] Sun, J. and Ponce, J. (2013). Learning discriminative part detectors for image clas-
sification and cosegmentation. In Proceedings of the IEEE International Conference
on Computer Vision.

[90] Sun, Y., Wang, X., and Tang, X. (2013). Deep convolutional network cascade for
facial point detection. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 3476–3483.

[91] Szegedy, C., Toshev, a., and Erhan, D. (2013). Deep Neural Networks for Object
Detection. Advances in Neural Information . . . , pages 1–9.

[92] Tang, Y. (2013). Deep Learning using Linear Support Vector Machines. Deeplearn-
ing.Net.

[93] Telaprolu, M. and Savarese, S. (2012). An efficient branch-and-bound algorithm
for optimal human pose estimation. 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1616–1623.

104

[94] Theano Development Team (2016). Theano: A Python framework for fast compu-
tation of mathematical expressions. arXiv e-prints, abs/1605.02688.

[95] Tian, T. P. and Sclaroff, S. (2010). Fast globally optimal 2D human detection
with loopy graph models. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 81–88.

[96] Tian, Y., Zitnick, C. L., and Narasimhan, S. G. (2012). Exploring the Spatial
Hierarchy of Mixture Models for Human Pose Estimation. In Fitzgibbon, A.,
Lazebnik, S., Perona, P., Sato, Y., and Schmid, C., editors, Computer Vision –
ECCV 2012, volume 7576 of Lecture Notes in Computer Science, pages 256–269.
Springer.

[97] Tompson, J., Goroshin, R., Jain, A., Lecun, Y., and Bregler, C. (2015). Efficient
Object Localization Using Convolutional Networks. Cvpr, page 2014.

[98] Tompson, J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint Training of a
Convolutional Network and a Graphical Model for Human Pose Estimation. Advances
in neural information processing systems, pages 1799—-1807.

[99] Toshev, A. and Szegedy, C. (2013). DeepPose: Human Pose Estimation via Deep
Neural Networks. Arxiv preprint arXiv.

[100] Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support
vector machine learning for interdependent and structured output spaces. In ICML,
page 104. ACM Press.

[101] Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. (2005). Large
Margin Methods for Structured and Interdependent Output Variables. Journal of
Machine Learning Research (JMLR), 6:1453–1484.

[102] Tuzel, O., Porikli, F., and Meer, P. (2007). Human Detection via Classification
on Riemannian Manifolds. 2007 IEEE Conference on Computer Vision and Pattern
Recognition, 30(10):1–8.

[103] Vapnik, V. (2000). SVM method of estimating density, conditional probabil-
ity, and conditional density. 2000 IEEE International Symposium on Circuits
and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat
No.00CH36353), 2.

[104] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade
of simple features. Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, 1.

[105] Wan, L., Eigen, D., and Fergus, R. (2015). End-to-end integration of a Con-
volutional Network, Deformable Parts Model and non-maximum suppression. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition.

[106] Wang, F. and Li, Y. (2013). Beyond Physical Connections: Tree Models in
Human Pose Estimation. arXiv.org, cs.CV.

105

[107] Wang, X., Han, T. X., and Yan, S. (2009). An HOG-LBP human detector
with partial occlusion handling. Computer Vision, 2009 IEEE 12th International
Conference on.

[108] Wang, Y., Tran, D., and Liao, Z. (2011). Learning hierarchical poselets for human
parsing. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

[109] Xu, J., Schwing, A. G., and Urtasun, R. (2014). Tell Me What You See and I
Will Show You Where It Is. In Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on.

[110] Yamaguchi, K., Kiapour, M. H., Ortiz, L. E., and Berg, T. L. (2012). Parsing
clothing in fashion photographs. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

[111] Yang, J. and Yang, M. H. (2012). Top-down visual saliency via joint CRF and
dictionary learning. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.

[112] Yang, W., Ouyang, W., Li, H., and Wang, X. (2016). End-to-end learning of
deformable mixture of parts and deep convolutional neural networks for human pose
estimation. CVPR.

[113] Yang, Y. and Ramanan, D. (2011). Articulated pose estimation with flexible
mixtures-of-parts. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 1385–1392.

[114] Yao, B., Liu, Z., Nie, X., and Zhu, S.-C. (2013a). Animated Pose Templates for
Modelling and Detecting Human Actions. IEEE transactions on pattern analysis
and machine intelligence.

[115] Yao, R., Shi, Q., Shen, C., Zhang, Y., and Van Den Hengel, A. (2013b). Part-
based visual tracking with online latent structural learning. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[116] Zhang, L. and Van Der Maaten, L. (2013). Structure preserving object tracking.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition.

[117] Zhang, Y., Sohn, K., Villegas, R., Pan, G., and Lee, H. (2015). Improving object
detection with deep convolutional networks via Bayesian optimization and structured
prediction. IEEE Conference on Computer Vision and Pattern Recognition.

[118] Zhao, Y. (2011). Image Parsing via Stochastic Scene Grammar. Advances in
Neural Information Processing Systems (NIPS).

[119] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D.,
Huang, C., and Torr, P. H. S. (2015). Conditional Random Fields as Recurrent
Neural Networks. ICCV.

106

[120] Zhu, L., Chen, Y., Yuille, A., and Freeman, W. (2010). Latent hierarchical
structural learning for object detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

[121] Zhu, X. and Ramanan, D. (2012). Face detection, pose estimation, and landmark
localization in the wild. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

[122] Zuffi, S., Romero, J., Schmid, C., and Black, M. J. (2013). Estimating human
pose with flowing puppets. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3312–3319.

107

Biography

Author Peerajak Witoonchart. He graduated master in Electrical Engineering from

New Jersey Institute of Technology, Newark, New Jersey, GPA: 3.68, May 2002, with

master Thesis: Stereo Matching Algorithm by Propagation of Correspondences and

Stereo Vision Instrumentation. He graduated Bachelor in Electrical Engineering from

Thammasat University, Bangkok, Feb 1997.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Literature Review on Human Pose Estimationlearning algorithms
	1.3 Literature Review on Structured SVM
	1.4 Impact of our work
	1.5 Reading this Thesis

	Chapter 2 Background
	Chapter 3 Multiclass Structured SVMbackpropagation to Deep Learning
	3.1 Introduction
	3.2 Multiclass Classification with Structured SVM
	3.3 Experiment
	3.4 Conclusion

	Chapter 4 Structured SVM as two layerneural network on Human PoseEstimation
	4.1 Introduction
	4.2 DPM Problem formulation
	4.3 Experiment

	Chapter 5 Comparing different types ofStructured SVM on Human PoseEstimation
	5.1 Introduction
	5.2 Human Pose Estimation Part base detection
	5.3 Learning Human Pose Estimation with StructuredSVM
	5.4 Experiment
	5.5 Conclusion

	Chapter 6 Conclusion
	References
	Biography

