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CHAPTER 1
INTRODUCTION

A call function is a nonnegative real-valued function defined by

h.(v) = (v—2)" (1.1)

for z > 0 where (v — z)* = max{v — 2z,0}. There are many applications of call
function in finance. The collateralized debt obligation (CDO) tranche pricing is an
example of call function. The CDO is a security which is transferred into a product

and sold to investors.

The CDO is divided into different risk classes known as tranche. The spread of
a tranche is mostly determined by its credit rating, which is based on the default
probability of this tranche. Each tranche is assigned a different payment priority
and interest rate. Normally, the tranches primarily used in CDOs are typically
known as senior, mezzanine and equity. The senior tranche includes securities with
high credit ratings and tends to be low risk and therefore have lower returns. The
investors can choose to invest on different tranches according to their interest.

In the standard CDO tranche pricing with underlying n portfolios, the portfolio
i is assumed to have a recovery rate (the proportion of a bad debt that can be

recovered) R > 0. Then the percentage loss at time 7" is defined as the total loss



on the portfolio:

1-R) ¢
un) = B Y ten

where 7; is the dafult time of the i*" portfolio and

[ir<ry(z) =
0 otherwise.

For each CDO tranche, there exist a detachment point z, (a limit above which the
tranche loss does not increase ) and an attachment point z; (a limit below which
the tranche bears none of the loss ). The loss on the tranche is defined as the call
spread E[(L(T) — z)%] — E[(L(T') — 2z,)"]. The pricing problem can be reduced to
calculating the expectation of a call function, i.e., E[(L(T) — 2*)"| where z* is the
attachment or the detachment point of the tranche (see [6], [10], [12] and [13] for

more details). We see that

*

BT = )] = B (D T — 7250

and I, <7y is a Bernoulli random variable, it suffices to compute

E {(Z Iir<ry — ZV] where z = 1nz
i=1

*

> (0 is a constant.



Let Y1,Y5, ..., Y, be nonnegative integer-valued independent random variables

with E[Y;] = A\ < oo and A = A; + Ao+ -+ + A, (A\; may depend on n). Set

oSy
=1

Let Py be the Poisson random variable with parameter A > 0 i.e., P(Py =m) =
e
m!
mation by distribution of Py as n — oo (see [9], [14], [18] for more details). That

,m=0,1,.... It is well known that the distribution of V,, can be approxi-

is the reason we try to approximate
E[(Va — 2)"] by E[(Px — 2)*].

In 1972, Stein ([17]) proposed a general method obtaining a bound of difference
between the distribution of sum of random variables and the standard normal dis-
tribution. Chen ([3]) applied the Stein’s method to the Poisson approximation. In
1975, it was used to find a bound between the distribution of sum of random indi-
cators and a Poisson distribution. This method is called the Stein-Chen’s method.

In 2005, Goldstein and Reinert ([8]) introduced the zero bias transformation for
Poisson approximation. Let Y be a random variable taking nonnegative integer-
valued such that E[Y] < co. A random variable Y* is said to have the Y-Poisson

zero biased distribution if
EYf(Y)] = AE[f(Y" +1)]

for any function f such that E[Y f(Y)] exists. Jiao ([11], p.270) gave a distribution

of Y* as follow:
y+1)PY =y+1)

PY" =y) = ( Y]

where y =0,1,....
In 2009, Jiao and Karoui ([12]) find a uniform bound on Poisson approximation
of E[(V,, — 2)*] by the Stein-Chen’s method and zero bias transformation. In our

works, we improve the results of Jiao and Karoui ([12]) in many directions.



The following theorems are our main results.

Theorem 1.1. Let Y;* have the Y;-Poisson zero biased distribution fori =1,2,... n.

Then

sup |E[(V,, — 2)] = E[(Py — 2)T]| < (2¢* — 1)4,

z>0

where

i=1

+ Yo NE[¥ 07 - 1+ Y- )|

i=1

]

In the next theorem we improve the bound in Theorem 1.1 to a non-uniform

bound.
Theorem 1.2. Under the assumption of Theorem 1.1. and z > 1, we have

2er — 1)(1+ ))

BI(V, - )]~ B[P, - ]| < B2 L

On.

The next corollaries are a special case of Theorem 1.1 and Theorem 1.2 where

Y;’s are Bernoulli and Geometric random variables, respectively.

Corollary 1.3. If Y; ~ Ber(p;) fori = 1,2,...,n, then 6, in Theorem 1.1 and

Theorem 1.2 is pr Furthermore, in case of p=p1 =po = -+ = Pp, O = np-.
i=1

Corollary 1.4. Let 9,, be defined as in Theorem 1.1 and Theorem 1.2. IfY; ~
Geo(p;) fori=1,2,...,n then

5 = i Fl _fi)z e _3pi)3 . (1.2)

In 2009, Jiao and Karoui ([12]) applied the Stein-Chen’s method and zero bias
transformation to find a uniform bound on Poisson approximation of E[(V,, — z)"]

by adding correction terms. Theorem 1.5 is their result.



Theorem 1.5. [Jiao and Karoui ([12])] Under the assumption of Theorem 1.1
and let z € N,

‘E[(Vn — )" —E[(Py—2)T]-C} | < (2e* — 1)ey,

where

6 — 2ZA,-E[|Y;* YV Vil + 1)}

i=1

n 1 n 2
+2<Z)\f\/ar{Yi*—Yi}> —|—12(Z)\iEYi*—Y,~> (1.3)
i=1 i=1
and
Var(V,) = A ..
P _ Y\"n) M —Ayz—1
C= e N
Remark 1.6.

1) In case of Y; ~ Ber(p;), by Theorem 1.5, we have

n n % n 2
=435 +2<2p§<1 _pi>> N 1z<zp3) | (1.4)
=1 =1 =1

From the bounds in Corollary 1.3 and equality (1.4), it is easy to see that our
bounds are better than the bounds in Theorem 1.5.

1
2) In the case that Y;’s are identically distributed with p; = — where 6 > 1, the
n

1 1
order of the bounds in Theorem 1.5 and Corollary 1.3 are O <m> and O (—>

25—1
n 2 n
respectively. Hence the rate of convergence in Corollary 1.3 is sharper than that

in Theorem 1.5.
By 1) and 2), in case the Y; ~ Ber(p;), the correction term C] in Theorem
1.5 is not effective to reduce the order of the bound in (1.4).

Remark 1.7.
By Theorem 1.5 and the inequalities, |E[Y* —Y;]| < E|Y;*—Y;| and |[E[(Y —Y;)?]| <



E[|Y;* — Y;|%], we have

n n 2
QZAZ-E[}Q*—Y;} +22)\ZE[<YZ.*—YZ-) } < e,
=1 =1
1—pi 2(1 — p;
IfY; ~ Geolp;) for alli =1,2,....n then \; = B[Y;] = p‘p B[] = %
and
"L (201 —p)? (4 —pi) | 2(1 —py)?
Z[< p;3< p)+(p2p)}§en. (1.5)

i=1

It is easy to see that the first term in right hand side of (1.2) is less than the second
term in left hand side of (1.5). Note that

8(1—pi) <2(4—p;) fori=1,...,n.

Then

82”; (1 ;?pz-):‘” < 22": (L—p)*(4=pi)

3
i1 b;
Hence our bound is better than the bound in Theorem 1.5.

In standard CDO tranche pricing, we are interested in computing E[(V}, — 2)7]
where V,, is a sum of n independent Bernoulli random variables. Next theorem,
we use Stein ([18]), Neammanee and Thongtha ([16]) in order to add a correction

term.

Theorem 1.8. Fori=1,2,...,n, let Y; ~ Ber(p;),

n

Coatl = Z |:E[(,P)\pj — z)Jr — ('P)\ — z)+] — ij[('P)\,pj — z)Jr — (7))\*?]‘ +1-— z>+]:|

j=1
and [N — 1|V 1 =max{|A —1|,1}. Then

(i) sup |E[(V,, — 2)"] = E[(Px — 2)"] = Cea

220

22e* —1) [ = L\’
<= 7 : d
—|>\—1|v1( i) an

J=1



(it) |E[(Va = 2)"] = E[(Px — 2)"] = Cea

_ J
Z(JA =1V 1) -
z> 1.

Remark 1.9.

1) By Corollary 1.3, this bound tends to 0, where pr — 0 asn — oo. In

=1
n 2 ! n

this case, the rate (Zp?) wn Theorem 1.8 is sharper than the rate Zp? mn

J=1 J=1

Corollary 1.3.
2) In case that Y;’s are identically distributed with p; = % where 6 > 1, the
1 1
order of bound in Corollary 1.3 and Theorem 1.8 are O(W) and O (m)
n n

respectively. Hence the rate of convergence of the bound in Theorem 1.8 is sharper

than that of Corollary 1.5.

This thesis is organized as follows. In Chapter I1, we introduce Stein-Chen’s
method, zero bias transformation and some properties of Stein-Chen’s solution. In
Chapter I11, we use Stein-Chen’s method and zero bias transformation to find
bounds on |E[(Py — 2)*] — E[(V,, — 2)7]| (Theorem 1.1, Theorem 1.2, Corollary 1.3
and Corollary 1.4). In Chapter IV | in case that Y;'s are Bernoulli random variables,
we give bounds on the difference of E[(P) — 2z)*] and E[(V,, — 2)*] by adding some

correction terms (Theorem 1.8).



CHAPTER II
STEIN-CHEN’S METHOD AND ZERO BIAS
TRANSFORMATION

In this chapter, we introduce Stein-Chen’s method and zero bias transforma-

tion. We also give bounds of a solution of Stein’s equation for a call function.

2.1 Stein-Chen’s method

Stein ([17]) proposed a general method to obtain a bound for difference between
the distribution of sum of random variables and the standard normal distribution
in 1972. This method is free form Fourier transform but it relies on the differential

equation,

f'(0) =vf(v) = h(v) — E[h(Z)] veR (2.1)

where 7 is a standard normal random variable, f is an absolutely continuous such
that E|f'(Z)| < oo and h is a real valued measurable function with E[h(Z)] < oc.
The equation is called Stein’s equation for the standard normal distribution.
Let ¢ be the standard normal distribution function and x be a real number.

Let I, : R — R be defined by

1 fo<z
L(v) =

0 otherwise.



By (2.1) with h = I, we have
BIf'(V)=ViV)l = P(V < z) - &(x) (2.2)

for any random variable V. From (2.2), we can bound E[f'(V) — V f(V')] instead
of P(V < x)— ®(x) (see [1], [4], [15], [18] for more examples).

In 1975, Chen ([3]) applied the Stein’s method to the Poisson approximation.
It was used to find a bound of difference between the distribution of the sum of
random indicators and the Poisson distribution. This method is called the Stein-

Chen’s method and based on a Stein’s equation for Poisson distribution,
vf(v) = Af(v+1) = h(v) — Pr(h) 0=0,1,2,... (2.3)

where f,h are real-valued functions on N U {0}, P, is a Poisson random variable

with parameter A and Py(h) = E[h(P,)]. The solution of (2.3) for a given h is

falv) = (v ;v”! > ;\,—;(h(z’) — Pa(h)) forveN (2.4)

1=v

and f,(0) = 0. Many authors investigated bounds of this approximation. For ex-
ample, let Y7, ..., Y, be independent Bernoulli random variables with P(Y; = 1) =
pp=1—PY;=0).SetV, =Y, +---+Y,and A\ = p; +--- + p,. Stein ([17])
showed that, for any subset A of NU {0},

. 1\ ¢
P(V, € A)— P(Py € A)‘ < min (1, X) ;p?

(see [3] and [14] for more examples).
In this work, let h be a call function. That is h(v) = h.(v) = (v —2)*

where z > 0 and (v — z)™ = max{v — z,0}. By (2.3) in case of h = h,, we have

vf(v) = Af(v+1)=(v—2)" —E[(Py—2)7] v =0,1,2,... (2.5)
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where

N R DL Sy i R

|
J j=I<]

and [z] is the smallest integer greater than or equal to z. The solution g, of (2.5)

is given by

0 ifo=20

((z —2)" —E[(Py—2)T] ifv=1,2,...

)\” !

\ 1=

([12], pp. 167). Replace v by a random variable V" and take expectation of (2.5),

so we have
E[V (V)] = AE[f(V +1)] = E[(V = 2)"] = E[(Px» — 2)"]. (2.7)

Then, we find a bound

E[V (V)] — AE[f(V 4 1)] instead of E[(V — 2)T] — E[(P\ — 2)7].
In the proof of main results, we also need the following lemmas.
Lemma 2.1. The following properties hold:

(i) E[(Px — 2)T] < X\ for 2 > 0 and,
)\2

(ii) E[(Py—2)T] < — for z > 1.
z

Proof. (i) Let z > 0. Since (I —2)* <[ for [ >0,
= 1— z) w
E[(P) — z e Z

Ai Z—zw

o

=1



11

l!
I=[z]
e = (1= 2)N
< 2
~ 2] Z (-1
I=[z]
)\26—)\ > /\1—2
o1 2 T2
)\2€—>\ > )\1—2
B2
)\267)\ > )\172
z = (1-2)
-2
_ ¢ A oA
z
)\2
Tz

O

Lemma 2.2. Let z > 0 and Ag.(v) = g.(v+ 1) — g.(v) where g, be defined as
(2.6). Then forv=0,1,2,..., we have

(i) 1g=(v)| < € and,
(ii) |Ag.(v)| < 2e* — 1.

Proof. (i) Let v € NU {0}. Since ¢,(0) = 0, it suffices to prove (i) in the case of
v > 1. Note that



0<(v—1)!§:)\i(i_

A\ gl

i=v

and

Ot < (v—l)!iz’_)\i

12

7!

ST

W=D AN = (b= DIN
0<% ZF_Z il

By Lemma 2.1 (i) and (2.10), we have

0 (v —1)! i )\,—iE[(P,\ — )T =E[(Py — 2)7] (v—1)! Z ﬁ

AV 7!

1=V

i=v

1_ > it

= _ 2.9
A;v (v+1) (2:9)
1 o= At

< =

A ZZ:; (¢4 1)!
er—1

= 2.10

, (2.10)

1=v

<et—1. (2.11)



13

From (2.6), (2.8) and (2.11), we have

|9-(v)| =

LS M= 2t — B - )]

=0

< et
(ii) If v = 0 then, by (i),
|Ag.(0)] = |g.(1)] < e* < 2e* — 1. (2.12)

Let v > 1. Note that

Agz(”) - gz(v + 1) - gz(”)

= A(v) + B(v) (2.13)
where
Aw) = 1o 3 iy - S A,
B o
B = LS SRR -] - 1 Y SEIP - 2)7)

By (2.8), |A(v)| < €* and by (2.11), |B(v)| < e* — 1. Hence

[Ag:(v)] <A@ +[B(v)] < 2¢* ~ 1.

Lemma 2.3. Let z > 1. The following properties hold:
2er — 1

(i) |Ag:(v)] <

fii) |Agu(1)] < H 2= DA

forv e {2,3,4,...} and,

z
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Proof. Note that for i > v and i > [z], we have

vi+1l—2)—(i—2)F+1)| = v(i+1)—vz—i(i—|—1)+z(i—|—1)‘

=|—(G—v)(i+1)+z2(i—v)+=2

<|—-(@E—-v)(i+1)+z26i—-0v)+=
=@+ —v)—z(i—v)+z
=(@+1)(i—v)—z(i—v—1).
Hence for i > [z],
(i +1)(i—v) ifi>v
v(i—l—l—z)—(z’—z)(i—l—l)‘ < (2.15)
z iti=w.
(i) Let A(v) and B(v) be defined as in (2.14). Note that
N T (T [N U
A0 = 3oz 3 i) =S -
vl e A L =D)AL +
:AH423@+DN+¢—@ —<Av>§:ﬁ@—@
B 'Z( :z)v(zﬂ ZV—(U—U'; ;_U@—ZV
= N ‘ : i
= (v— 1)!; D) {v(z—l—l—z)*— (i — z) (z~|—1)]. (2.16)

If v > 2 then, by (2.15) and (2.16),

[e.9]

A)| = (v—1)!2%{@(2’—%1—z)—(i—z)(i—kl)”
< +(v—1) i (i_?}‘m

“o(w+1) ol
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i=v+1

_l i NV

Rl (1—1)
_1+°° N
S —wv-(itv—1)

IR A
_;+;+;v---(i—l—v—1)

1 - Al
=—|1+A

o T +iz2(1)(v+1) (z—l—v—l)}
1 - Al
< Z
SRRSO I )

1 N\
=214+ o

v_+ +§i!}

o
S_

v

A

e
< —. 2.17
< (217)

For v < z, by (2.15) and (2.16), we see that

A(v)] = (U—1)!ii1%[0(2'“—2)—(i—z)+(¢+1)”
SU!MZ]_TFS)ZW f: M 1 -2 — (i—z)(z’—l—l)‘
. U!Afﬂ—v[;('( - Z (i — )
SULRAEE >+_v_1 Zi; i;j =
< ”W]_v[;” =2 %(v - 1)!§; Jf;;
:% U!)\[ﬂ(}:_‘_li(lz;l!_Z)+(v_1)!f: (iAi_;)J

i=[z]
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O e (1 O B APER ~ S

7] [ ([z] = 1)! * 1)!i—§—v (i+v—2)!}
L (e =) gy 5 A

< z{ (Tz] = 1)! + 1)!i;_v iTo 2)!] (2.18)
1[vlAF1=v1 %0 \i

= 5[((21 SR ”!i%_v m] (2.19)

Let v > 2. If v = [z] — 1, then

=1 (2.20)

and

<\
=> - (2.21)
i=1
If v < [2z] —1, then
U!)\fz}—v—l B >\|’z~|—v—1 _ >\fz-\—v—1 (2 22)
(1 =18 (w+1)--([2] =1 = ([z] —v—1)! '
and
(v %g;v@+v—@!i3;v%~@+v—®
<

[e.e]

= > % (2.23)

i=[z]—v
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Hence by (2.19) - (2.23), for 2 < v < z we have

1 )\[z]fvfl 0 A
A)| < - | ————— —
Al < z {(fz} —v—1)! + ‘;_ i!}
I — X
. 2
i=[z]—v—1
IRSWY
<>\ 2
Tz ZZ; 1!
o
Tz
From this fact and (2.17),
o
|A(v)| < — for v € {2,3,...}. (2.24)
z
Next, we consider
v— Dl e X vl o~ N
3] = | P D IR )"~ i 3 P2
1=V i=v+
(V== N ! XN
=E((P =)'\ e 2 ) (2.25)
1=v i=v+1
By (2.9) and v > 2, we have
(TR ] RN U (e N
o<V UNA N A
ST ;'!_)\Q;U~~(v+i)
1 & Nit2
< :
A2 ; 2. (1+2)
1 = X
“w
et —1

(2.26)



and
vl =\ 1 — \it2
0 < —
)\”“izv;li' _)\Q;(U+1)---v—l—1+i)
1 A2
<= ,
e )\i+2

Then by (2.25) - (2.27) and Lemma 2.1 (ii), we have

et —1
\2

|B(v)| < E[(Px - 2)"]

e —1
< .
z

Hence by (2.24) and (2.28), we have

9:(v +1) = g:(v)| < |A(v)| + [B(v)]

(ii) Let v = 1. Then by (2.18), we have
LIAFIZ2(T2] = 2) = Y
A0S g 2 o= o

1A=
SHEE AP ]

18

(2.27)

(2.28)
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Thus
( > A1
11 if =
z{ —i—)\;(i_l)'} if [2] =2
[AM)] <
A )\[Z],3 o Pt
drt 3w 1
L i=[z]-1
1+ e
if =2
A 2
<
e\
— if 2
. if [2] >
1 A
LA (2.29)
z
By (2.10) and Lemma 2.1 (ii), we have
I N 1 X
_ +
BOI= P =711 5 2 7
A
-1
<E[(Py - 2)*]—
A
<= DA (2.30)
z
Hence, by (2.13), (2.29) and (2.30),
[Ag-(D] < [AM)] + |B(1)]
1+ (2e* — 1)\
— Z M
[

Next section, we introduce zero bias transformation. In the proofs of Theorem

3.1 and Theorem 3.2, we use this to rewrite the expression E[V f(V)]=AE[f(V +1)].
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2.2 Zero bias transformation

In 2005, Goldstein and Reinert ([8]) introduced the zero bias transformation for
Poisson approximation. Let Y be a random variable taking nonnegative integer-
values such that E[Y] = A < oco. A random variable Y* is said to have the

Y -Poisson zero biased distribution if
EYf(Y)] = AE[f(Y" +1)]

for any function f such that E[Y f(Y)] exists. Jiao ([11], pp. 270) give a distribu-

tion of Y* as follow:

(y+DPY =y+1)
E[Y] '

P(Y* = y) = (2.31)

where y =0, 1,.... Note that by (2.31), we have Y* > 0.

Proposition 2.4. Let Y ~ Ber(p) i.e. P(Y =1)=1—-P(Y =0) =p > 0. Then
Y*=0.

Proof. By (2.31), we have

Hence Y* = 0. ]

Proposition 2.5. Let Y ~ Geo(p), i.e. P(Y =vy) =p(l —p)¥ fory=0,1,2,...
and 0 < p < 1. Then

20=) g gy = 2L =PB=2)

p p

E[Y*] =

Proof. By (2.31) and the fact that E[Y] = L (see [5], pp. 60), we have

p

PY*=y) = vt 1)115?;]: e 1)2([;]_ D7 (y + p*(1 - p)¥




where y € NU {0}. Then
BV = v+ 0070~
= io?pr(l —p)’+ ioyﬁ(l —p)
= 23/2172(1 —p)" +p§yp(1 —p)"
= ioyzﬁ(l —p)! +pE(Y)
= f;yzpz(l —p)'+(1-p)
=;E[Y2] +(1-p)
and
EIY ) = 3P+ 10 -

=Y (1 —p)+ ) v’ (1—p)
y=0 y=0

=pY ¢’p(1—p)’+p>_y*p(1—p)
y=0

= PE[YY] + pE[Y?]

Note that the moment generating function of Y is m(t) =

t=0,1,..., (see [5], pp. 221). Hence

E[Y2] _ m”(o) _ (1 _pl))gz — p)

1 —p)(p® —6p+6)
p3

Y

E[Y? =m®(0) = (

21



22

Then
_(A-pC-p)+A—pp
p
_2(1—p)
p
and

By — =p)p*=6p+6) (1-p)(2=p)

p? p
_(=p)(p*—6p+6)+(1—p)(2—p)p
p2
_ (1—=p)(p* —6p+6+2p—p?)
p2
2(1-p)(3—2p)

= = .

]

Next we consider the sum of independent nonnegative integer-valued random

variables. The following proposition are shown by Jiao and Karoui ([12], pp. 167).

Proposition 2.6. For anyi =1,--- ,n, assume that Y;* have the Y;— Poisson zero

biased distribution. Let I be a random index independent of Yy,..., Y, Y\, ..., Y

n

Ai : : .
satisfying P(I = 1) = % Then VD + Y/ has the V,,—Poisson zero biased distri-

bution where V,, = Z Y, and Vn(i) =V,—-Y.
i=1



CHAPTER I11
BOUND ON POISSON APPROXIMATION FOR
CALL FUNCTION

Let Y1, Y5,...,Y, be nonnegative integer-valued independent random variables
with E[Y;] = A\; < oo and P, be a Poisson random variable with parameter \ =

)\1+)\2++/\n Define

The aim of this chapter is to find upper bounds of

\Em )~ E[(Py - 2)*]

by using Stein-Chen’s method and zero bias transformation.

Theorem 3.1. Let Y;* have the Y;-Poisson zero biased distribution fori=1,...,n.
Then

sup |E[(V,, — 2)T] = E[(Py — 2)T]| < (2¢* - 1)9,

2>0

where

=1

E[Y;" —Yi]

+ Z&-E{K*Oﬁ* — D+ Y(Y; - 1)
i=1

Proof. Let I be a random index independent of Y;,...,Y,, Y, ... Y," satistying

A . .
P(I =1) = % By Proposition 2.6, we know that v+ Y} has the V,,-Poisson
zero biased distribution where Vn(i) =1V, —Y,;. Then

E[Vag:(Va)] = AE[g. (V) + Y7 +1)] (3.1)
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where g, is the solution of a Stein’s equation for Poisson distribution and defined
as in (2.6).

Let Ag.(x) = g.(x + 1) — g.(z) and A?g.(z) = A(Ag.(z)) = Ag.(z + 1) —
Ag.(z). By (2.7) and (3.1), we have

E[(Vh = 2)"] = E[(Px — 2)"]
= E[Vngz(vn)] - )‘E[gz(vn + 1)]

=AE|g.(ViD + Y7 + 1) = g. (Vo + 1)}

=AE [0 (V" + Y7 +1) = g. (VD + Y + 1)}

r n

= AB| SOV + 7+ 1)~ VO + Vi 1) =)

i—1

—AZE[% VLY 1) = gV 4 Y+ ) =)
—)\ZE{gz D Y1) — g (V0 +Y+1)}E[H(I:i)]
—AZ { (VO 4 yr 4 1)—gz(Vn(i)+Y2+1)1

- Soasfp x4 -

Note that for a« € NU {0},

(a—1)VO0

g:(x +a) = go() + algo(2) + Y (((a=1)V0) = )A%.(z + )

=0
where (a — 1) V0 = max{a — 1,0} ([13], pp. 17). This implies that

E[gz(v,f“ﬂc*ﬂﬂ:E[gz<v;> 1) + Y Ag. (VO + 1)

+ ) (=1 Vo) = HA(VO +1+4)| (33)
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and

Elg.(V? +Yi+1)] =E {gz(w D+ 1) +YiAg (VO + 1)

(Y;—1)V0
+ Z VO0) = HA%G(VO +1+5)|.  (34)

Let ||Ag.|| = sup{|Ag.(v)|} and ||A%g.|| = sup{|A®g.(v)|}. Hence, by (3.3) and
v>1 v>1
(3.4),

'E[gz(Vé“ +Y7+1) - g.(VO 4+ Y + 1)]'

(v 1)\/0

=]E[<m*—mgz<vf> ] [ 1)V 0) — J)A20 (VO + 14 )

7=0

< 'E (Vi = Yo Ag. (VO + 1)} ‘
(Y —1)v0
‘e (Y7 =1) v 0) = A2 (V9 +1 m] \
L j=0
- (Y;—1)v0
+|E ((Y; —1) vV 0) —j)A2gz(VTEZ)+1+])H
L j=0
(Y —1)v0
< IlaglI|EY; - va| + 142, E[ (Y7 —1) v 0) —j)”
=0
(Y;—1)vo
T 1AZg,] E[ (Y= 1) v 0) —j)] \ (3.5)
=0
Note that
(Y7 —1)v0
> (=1 Vv0)—j)=0for ¥ =0,1
=0

and for Y* > 2,
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(Y =1)v0 vr—1
W= vy =)= > (Y —1-j)
j=0 j=0
— (V= 1)+ (Y —2) - 40
Y-
Ep Al
Then
(Y —1)V0
! Y*(Y*—1
S (- v = gy (3.6)
§=0

Similarly (3.6), we can show that

(Yi—1)V0
> vi-nvo ="y s (37)

By (3.2) and (3.5)-(3.7), we have
\E[(Vn B[Py - 2)*]
<1801 A

< lag >N
=1

]

+ MiAiE YA —1)+ V(Y —1)
2 — 3 (2

* 14 ZME[Y?O@* — 1)+ Yi(Yi - 1)}

i=1

-]

where we use the fact that |[A%g.|| = sup{|Ag.(v+ 1) — Ag.(v)|} < 2||Ag.]|.
v>1
By Lemma 2.2 (ii) and (3.8), we have

E[(V, — 2)T] = E[(Py — 2)1]| < (2¢* — 1)4,.
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In the next theorem we improve a bound in Theorem 3.1 to a non-uniform

bound.

Theorem 3.2. Let Y;* have the Y;-Poisson zero biased distribution fori=1,...,n

and z > 1. Then

< (2e* —1)(1+))

B[(Va = 2)"] = E[(Px — 2)"]| < ~ O
Proof. Let z > 1. By Lemma 2.3, we have
2er —1 1+ (2e* — 1)\
Ag.(0)] < max 21 LEEEZ DA
z z
2eM — 1 1
= > max{l, m + )\}
2eN — 1
< 2T {1+ A
(2e* —1)(1+)) (3.9)
—_ Z .
for v € {1,2,...}. Form this fact and (3.8) we have
2er — 1)(1+ A
B[(V, — 2)*] ~ Bl(Ps — o]| < BN
O

We can see that for z > 1 + A the bound in Theorem 3.2 is smaller than the
bound in Theorem 3.1.
The next corollaries are special cases of Theorem 3.1 and Theorem 3.2 where

Y;’s are Bernoulli and Geometric random variables, respectively.

Corollary 3.3. If Y; ~ Ber(p;) fori =1,2,...,n, then 6, in Theorem 3.1 and

Theorem 3.2 is pr Furthermore, in case of p=p1 = pa = -+ = DPn, 0p = np°.
i=1

Proof. Since Y; ~ Ber(p;), \; = E[Y;] = p;, E[Y?] = p; and by Proposition 2.4,



Y*=0for:=1,2,...n. Hence

5= S AEN V)
=1
= ilsz[Y;] + jzlpiE {Y}(YQ - 1)]
= Zn:p? + Zn:piE[Yf - Yi]
=1 =1
_ zp n Zp Bl - Bl
= anp? + ipi [pz- —pi]

=> v
i=1

+ ZAiE{Yi*(Y: — 1) +Y(Yi—1)
=1

Remark 3.4.
1) In case of Y; ~ Ber(p;), by Corollary 3.3 we have

n

sup [E[(V — 2)T] = E[(Px — 2)7]| < (2¢* — 1) pr

220 i=1
and by Theorem 1.5, we have

‘E[(V —2)T] = E[(Px—2)T] - CL | < (2¢* = 1)e,

where

n n ) n
€n = 42}7? + Q(pr(l —pi))? + 12(2]%2)2-
i—1 i—1 i—1

28

(3.10)

(3.11)

Form (3.10) and (3.11), it is easy to see that our bound is better than the bound

i Theorem 1.5.
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1
2) In case of Y;’s are identically distributed with p; = — where 6 > 1, we have
n

1 1

Hence our bound is sharper than bound in Theorem 1.5.
By 1) and 2), in case that Y; ~ Ber(p;), the correction term C in Theorem
1.5 is not effective to reduce the order of the bound (3.11).

Corollary 3.5. Let §,, be defined as in Theorem 3.1 and Theorem 3.2. If Y; ~
Geo(p;) fori=1,2,...,n then

5n=i {(1_%)2 Gl D )

2 3
i=1 i D;
L—p; ..
Proof. Since Y; ~ Geo(p;),\i = E[Yi] = i By Proposition 2.5, we have
bi
1—p)(2—p; 2(1 —p; 2(1 —p;))(3 — 2p;
D; Di b;
1—pi12(1 —p; 1—p; 1—p;)?
MEY — vy = Lo 2 op) 1op) (A -p)
Di Di Di b;
and
NE|YE (7 = 1) 4 (Y - )
_ L —p [2(1 —pi)(3 — 2p;) _ 2(1 —pi) + (1 —p)(2—pi) . L —ps
Y2 pf Pi p? i
_L-pi [8(1 —Pi)Q]
Di P
1—p)3
_ gl 329) '
p;
Hence

e

+) AE {Y:(Y: — 1)+ Y(Y; - 1)
=1
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=1 pZ pz
0
Remark 3.6.
IfY; ~ Geo(p;) for alli=1,2,...,n then, by Corollary 3.5, we have
n 1 _ i 2 1 _ ; 3
sup E[(V—Z)Jr]—E[(PA—z)*] S(QGA—l)Z {( 217) +8< 3p)
= i=1 p; D;
(3.12)
1—p; 2(1 — p,
Note that \; = E[Y;] = pz; ElY] = 2(1 - pi) and
o] ]
i=1
- 2]‘_124_1 21_Z2
—(QQA—UZ{ : p;g( 2, 2 p2p)} (3.13)
i=1 { i

It is easy to see that the first term in right hand side of (3.12) is less than the
second term in right hand side of (3.13). Note that

8(1—pi) <2(4—p;) fori=1,...,n.

Then
- 1 - 13 6 1 124_ 7
i=1 p; i=1 p;
Hence

worgalfr ]l

i=1

1 (3.14)

By Theorem 1.5 and the inequalities, |E[Y;* —Y;]| < E[Y;*—Y;| and |E[(Y* —Y;)?]| <
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E[|lY;* — Y;|%], we have

22”;&- M(Yf - m?} " ‘E[Y . m]

| <23 onm|ive - wiy - v+
=1

< €. (3.15)

Hence by (3.14) and (3.15), we have our bound is better than the bound in Theorem
1.5.



CHAPTER IV
REFINEMENT OF BOUND IN CASE OF BERNOULLI
RANDOM VARIABLES

In standard CDO tranche pricing, we are interested in computing E[(V;, — z7)]
where V}, is a sum of Bernoulli random variables ([12], [13] for more details).

Let Y1,Ys, ..., Y, be independent Bernoull random variables with P(Y; = 1) =
p; > 0 for i = 1,2,... n and P, be a Poisson random variable with parameter

A=p1+ps+ -+ ps. Define

In this chapter we improve the result in Corollary 3.3. We use the technique from
Stein ([18]), Neammanee and Thongtha ([16]) in order to add a correction term.

In the proof of the main result, we also need the following lemma.

Lemma 4.1. Let f be a real-valued function. For each j =1,2,...,n, we have
, Aep;
. Dj J
(Z) ( a X) 2 : il f »; Elf(Pr-y;)] and,
v v+1 :
g P 1 Elf(Pr_p.
(i) 35 w0 (1-5) 250 Bl (Pay, + 1)) | B (Prp)]]
=0 Z' pj pj

Proof. )LetT—%i(l—p]) Z ‘f . Then

v=0
p; T =AXI'— (XA —p;)T

£ 08 B (- E(-2)

v=0 = v=0 =0
[e'e) ) v v i [e'e) ) v+l v )\’L

=3 (8) -2 (1-%) S0
v=0 =0 v=0 =0
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“r 3 (1-8) S~ (1-%) X 16
-0+ (1-5) [0 - 0]
= 7(0) + i (1-) f
-3 (1-5) B
3 0mni
o EfP)
Hence + fj (1-2) Z 200 = SEPL,)

1 « AR
ii) Forj:1,2,...,n,1et5:§20(1—%> ST,
=0

Then by (i), we have

> wrn(1-2) S X

_ %g(v—kl)(l _%)Ug?_:f(iH%g(vﬂ)(l —%)U%f(v+l)
=S+ %i (1 - %) :0 §f(i) + % Uf;(v + 1)(1 - %)U(UAE)!]?(U +1)
:S+—2§ (1—%)vi§v;?,—:f(z)+§§ (/\—U!pj)”f(mtl)

= 5+ S UBII Py )|+ S (Pay, + ) (@)
and



|
>l >
M i
S S
< T~
— —
| |
> |3

> =
S

S N N Ny +

I
| — |
> =

¢ 1[M]e
P —

= —

| |
TR
[ e \_/@ v

e o HM@‘ <.

1= LI
= | >

kﬁ

—~

|
> =

e
N\
—

|

— NPy [

L -1 I I LM
< < )l
e

I
| |
3
i™
S ~
|
kS
=
_|_
=
+

E[f(PA—pj + 1)} +

Dj

34

(4.2)
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The following theorem is our main result.

Theorem 4.2. Let

n

Ceanl = Z [E[(P)\_pj — z)+ — (P — z)+] — ij[(P)\—pj — z)+ — (PA—pj +1—- Z)+]:|

=1

and [N — 1|V 1 =max{|A — 1|,1}. Then

() sup |EI(V, — 2)*] = EI(P — 2)*] - @wf;%%gﬁ%(§;@) and,
226)‘—1
() |EI(Va = 2)7] = BI(Py = 2)7] = Cun| < 222022 (}j%) where
z>1.

For z > 14 X, the non-uniform bound in (ii) is smaller than uniform bound in (i).

Proof. For h : NU{0} — R, Stein ([18], pp. 86) derived the equation
SIS ENORS W RO (43
j=1

where g, (h)(v) = g,(h)(v +2) — g,(h)(v+1), Vi) = Vo= Y], Pa(h) = E[A(P)] =

0 ifo=0

g,(h)(v) = | (4.4)
—(h(i) — Px(h)) ifv=1,2,...

In this proof, let h be a call function, i.e., h(v) = h,(v) = (v — 2)* for some

z > 0. Then by (4.3),

Bl (V)] = Pa(hz) + > piE[G, (h) (V)]



36

That is
E[(V, —2)"] = E[(Py - 2) ZpiE 9, (h2) (V). (4.5)
By g, : NU{0} — R and (4.3), we choose h = g, (h,). Then for j =1,2,....n,

E[g, (h2) (V)] = Pacy, ( Z PEELG, (3, (h) (V)] (4.6)
I=1,l#j

where V0V = v, — (Y; +Y)). Hence, by (4.5) and (4.6) we have

E[(Va = 2)"] = E[(Px = 2)”]

_ij,PA —Dpj gA +ij Z ple g>\ pj g>\ ))(V( ))]

j=1 I=1,l#j

That is
‘E[(V —Z) ] 73/\_2 ZPJPA —Dj g>\

- Xn:P? zn: p?E[éA,pj(gA(hz))(Vy’))].

J=1  I=1l#j

(4.7)

First, we will show that Zpﬂ?)\ —p;(G,(h2)) = Ceau. Note that by (4.4),

Prp; (95 (h2)) = E[g, (h2)(Pr—p, )]

v!

_ 0o 3 @) +2) — g, () £ 1)~

—e(Apj)[igx(h)<v+2 A = py)’ ZQA U+1<)\ p;)"

— R+ Ry + R3 — R4} (4.8)
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where

v=0 AY i=0 :
RS (A =p))" & A +
Rgzﬁ;(val) e ;Z'(z—z) ,
_1 > ()\—p])y ° A
R3 - X vZ:O \Y ; Fpk(hz%
1 [e%¢) ()\_p])v v+l
Ri= 5 ;(v +1), ZO S Pa(h.)
By Lemma 4.1, we choose f = h, then
e Pi
Ry = (P, - 2)) (4.9)
b
and
A—pj 1 + 1 +
Ry =P ;E[('Pk_pj +1-— 2) ] + _QEKP)\—pj — Z) ] . (410)
J J

To calculate R3 and Ry, we will apply Lemma 4.1 by letting f = 1. Hence

er P

b Px(h)
eN P
= E[(Py— 2)7] (4.11)

pj

and

v=0 =0
1 1
= 6>\_p] |:— + —2:| P)\(hz)
i Pj
1
— NP |:_ + _2:| E[(PA — z)+] (4.12)
i DPj
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By (4.8) - (4.12), we have

P)\_Pj (§>\ (hz)) = 6_(/\_pj) - Rl + RQ + R3 - R4
B[(Payy = 2)*] | El(Pay +1-2)]  El(Pay, —2)*)

Dj Dj P’

LE(P =2 B[Py -2 E[(Py—2)]

Dj D; pJQ :

_ Bl(Pry, —2)"] ~ E(Pr — 2)]
’;
= E[(Pr—p, —2)"]) = E[(Pr—p, + 1 - 2)"]
Pj
Thus
> 5P 00 (02)) = 3 [EI(Pry, = 2] - iRy — 217

Next, we will show that

St > PR, @A(hz)(Véj’”))]‘ = H(Z]o)

j=1 I=1l#j

and for z > 1,

0 2(2e* — 1)(1+ )
S8 S Bl 6 )V | < et (Z )

j=1 I=1,l#j

For h: NU {0} — R, Stein ([18], pp. 89) show that

N (1
13,0l < 2l i 5.1)
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where ||h||c = sup [|h(v)]. If h = g, (h.) then

veNU{0}

13, 3 (Bl < 201, () min (

1 1)
)\—pj7 ’

Observe that for A > 1, we have

and for 0 < A <1

Hence

E[g, . (3, (h.)(V9"))

IN

1d,.,, G (h)]

2(1g, (h2)lloo
— A=1v1l’

This implies,

ij Z PEELG, ., (9, (h:) (V7 )))]‘ < 2&91 1 v”;o (ij) L (4.14)

j=1 I=1,l#j

Note that

19, (h2) |00 = by 19, (h)(v +2) — g, (h:)(v + 1)

= sup ’gk(hzxv + 1) — g, (hZ)(U>|

veEN

=sup|g.(v+1) — g.(v)],
veEN

= sup |Ag.(v)] (4.15)

veEN

where the third equality follows form the fact that g, (h,)(v) = —g.(v) for all
v=0,1,... ([18], pp. 82).
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Hence, by Lemma 2.2 (ii), (3.9), (4.14) and (4.15), we have

>3 it @) < |ff1|‘v11(2p])7

=1 1=1,+#j

and for z > 1,

>3 sl @0y < 220D (Z )

j=11=1,l#j

From this fact, (4.7) and (4.13), we have

sup | E[(Vo, — 2)"] = E[(Px — 2)" = Cean| <

2>0

and for z > 1

'EKVn - Z)ﬂ — E[(P — Z)+ — Ceatl

A ()

Remark 4.3.
1) By Corollary 3.3, we have

E[(V. = 2)"] = E[(Px = 2)"]

sup
220

1)) p
=1

If Zp? — 0 as n — oo then this bound tends to 0 as n — oo. In this case, the
j=1
n 2 n
rate (ijz) i Theorem 4.2 is sharper than the rate Zp? in Corollary 3.3.
T j=1

2) In case of Y;’s are identically distributed with p; = where § > 1, we

no

n
1

have the order of bound in Corollary 3.3 and Theorem 4.2 are O(W) and
12—

1
@) m) respectively. Hence the rate of convergence of the bound in Theorem

4.2 1s sharper than the bound in Corollary 3.5.
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