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CHAPTER 1
INTRODUCTION

The Zermelo-Fraenkel set theory (ZF) is the most widely accepted axiomatic
system of mathematics. It is based on a collection of axioms introduced by FErnst
Zermelo (1871 - 1953) and Abraham Fraenkel (1891 - 1965). For more details on
ZF see [2] and [7] for example.

The Axiom of Choice (AC), initiated by Zermelo, is an important axiom in
mathematics and is independent from ZF. Many important theorems in many
areas of mathematics are obtained by AC. AC has many equivalent forms, for
example:

- Well-Ordering Theorem: every set can be well-ordered.

- FExistence of Bases: every vector space has a basis.

- Zorn’s Lemma: every nonempty partially ordered set in which every chain
has an upper bound contains a maximal element.

- Tychonoff’s Theorem: the product of a family of compact spaces is compact
in the product topology.

Many consequences of AC are very useful in mathematics, for example: ev-
ery infinite set has a denumerable subset, a countable union of countable sets is
countable, and an arbitrary product of nonempty sets is nonempty. However, AC
is a controversial axiom because of its nonconstructive method. AC may lead to
some paradoxes, for instance: the existence of non-measurable subsets of R and
Banach-Tarski Paradox. So we sometimes use weaker forms of AC in order to
avoid such paradoxes. For more details on AC see [8].

An important issue about AC concerns surjections. If there is an injection

from a nonempty set X into a set Y, then there is always a surjection from Y onto



X. Without AC, the converse of this statement is not necessarily true. This is a
consequence of AC. There are also other consequences of AC concerning surjections.

In this work, we introduce some new equivalent forms as well as some new weak
forms of AC concerning surjections and investigate some relationships among them.

The thesis is organized as follows. Chapter II gives preliminaries which provide
all basic concepts needed for this work. Chapter III discusses consequences of AC
concerning surjections. Our new equivalent forms and consequences of AC are
introduced. We also give some relationships among these new forms and other

relevant consequences of AC.



CHAPTER II
PRELIMINARIES

In this chapter, we give background on some concepts in set theory which are
needed for later work. All basic notions and definitions in set theory are defined
in the usual way. All theorems in this chapter are basic theorems which can be
proved in Zermelo-Fraenkel set theory (ZF). So their proofs will be omitted. The
details of Section 2.1-2.8 can be found in any axiomatic set theory textbooks, see
2] for example. For Section 2.9 see [5] and [10].

Throughout this work, we use a,b,c,..., A, B,C,... and these letters with
subscripts for sets. We write P(X) for the power set of X, R[X] for the image of
X under a relation R, R™! for the inverse relation, dom(R) for the domain and
ran(R) for the range of a relation R, |JX for the union of X, X x Y for the
Cartesian product and XUY for the disjoint union of X and Y.

2.1 Cardinal Numbers

Intuitively, the cardinality of a set is the number of all elements of a set. It
is defined so that any two sets have the same cardinality if there is a bijection
between them. We denote the cardinality of X by |X| and call it a cardinal
(number). We say X is equinumerous to Y, denoted by X =~ Y, if there is a

bijection from X onto Y. Therefore for any sets X and Y,

| X| =|Y]if and only if X = Y.

2.2 Finite Sets and Infinite Sets

Each natural number is constructed so that it is the set of all smaller natural

numbers, namely, 0 = &,1 = {0},2={0,1},3=1{0,1,2},... and so on.



Let w denote the set of all natural numbers. The basic properties of natural
numbers will be omitted and will be used in the ordinary way. For full details on

natural numbers see [2].

Definition 2.2.1. A set is finite if it is equinumerous to some natural number.

A set is infinite if it is not finite.
Theorem 2.2.2. Every finite set is equinumerous to a unique natural number.

So for any finite set X, we define the cardinal number of X to be the unique nat-
ural number which is equinumerous to X. A cardinal is finite if it is the cardinality

of a finite set. Otherwise, it is an infinite cardinal.

2.3 Cardinal Arithmetic

Definition 2.3.1. Let x and A be cardinal numbers, say x = |X| and A = |Y|.
We define

l. i+ A=|XUY| where X NY =g,

2. k- A=1]X x Y], and

3. k) = |Y X/, where ¥ X is the set of all functions from Y into X.
Remark. We may write kA for s - .

Note. For any cardinal K, Kk +0 =k, k-0 =0, k-1 =k, K =1, k! = Kk and

0% = 0 if & 0.
Theorem 2.3.2. For any set X, P(X) ~ *2.

Remark. For any sets X and Y, there is always a set X’ such that | X’'| = | X|
and X' NY = g, for example: X' = X x {z} for some z ¢ | JJY.



Theorem 2.3.3. Let k, A\ and p be cardinal numbers.

1. k+A=A+rKand k- A= \-k.

IS

RO A = (kN +pand k- (M- p) = (k- A) - oo
3 k(N p) = (5 A) + (k- ).

4. KM = AR

5. (K- A = Rl

6. (KMH = kME.

2.4 Ordering Cardinal Numbers

We say X is dominated by Y, written X <Y, if there is an injection from X
into Y, and we write X <* Y if X = & or there is a surjection from Y onto X.

We write X <Y if X <Y but X #2Y,and X <*Y if X <*Y but X £Y.
Theorem 2.4.1. For any sets X and Y, if X Y, then X <*Y.

Remark. We will discuss later that the converse of the above theorem is not

necessarily true without the Axiom of Choice.

Definition 2.4.2. A set X is said to be countable if X < w and X is denumer-
able if X ~ w.

Remark. Every subset of a countable set is countable and every infinite subset of

a denumerable set is denumerable.

Theorem 2.4.3. (Cantor-Bernstein Theorem)

For any sets X and Y, if X 2 Y andY X X, then X =Y.

Theorem 2.4.4. (Cantor’s Theorem)
For any set X, X % P(X).

Note. For any set X, since X < P(X), X < P(X).



Theorem 2.4.5. For any sets X and Y, if X 2* Y, then P(X) X P(Y).

Definition 2.4.6. For any sets X and Y, we define
| X| to be less than or equal to |Y|, written | X| < |V, if X <Y,
| X| to be less than |Y|, written | X| < |Y], if | X| < |Y| but | X| # |Y],
| X <*|Y|if X <*Y, and
(X[ <* [Y]if |X] < [Y] but [X] # [Y].

Remark. For any cardinal numbers x and A\, k < A implies K <* \.

Theorem 2.4.7. If X is finite and Y is infinite, then | X| < |Y|. As a result, an

infinite set has finite subsets of all cardinalities.
Theorem 2.4.8. Let k, A and p be cardinal numbers.
1. (Reflexivity) k < K.
2. (Transitivity) If K < X and XA < p, then k < p.
3. (Antisymmetry) If Kk < X and A < K, then K = \.
Corollary 2.4.9. Let k, A and p be cardinal numbers.
1. If k < A<, then k < p.
2. If Kk < A< pu, then k < p.

Theorem 2.4.10. For any cardinals k, A\ and w, if K <* X and X\ <* u, then

k<" L.

Corollary 2.4.11. Let k, A and p be cardinal numbers.
1. If Kk <* XN <* i, then k <* p.
2. If Kk <P XN < p, then k <* p.

Theorem 2.4.12. Let k, A\, i and v be cardinal numbers.

ILIfr<Aand p <v, then k+pu < A+ v.



2. If k< Aand p<v, thenk-pu < \-v.
3 Ifk <*Xand p <*v, then Kk + pu <* A+ v.
4. If Kk <" Xand p <* v, then k-t <* A -v.
Theorem 2.4.13. Let x, A and p be cardinal numbers. If kK < A, then
1. kP < AH,
2.t < p whenever pn # 0 or k # 0.

Theorem 2.4.14. For any cardinals k and X, if both k and X\ are greater than 1,
then kK + A < K- A.

2.5 Well-Ordered Sets

A (strict) partial ordering on a set X is a binary relation on X which is
irreflexive and transitive. A linear ordering on X is a partial ordering on X
whose every two members are comparable. A well-ordering R on X is a linear
ordering on X such that every nonempty subset of X has an R-least element. We
say a set X is well-ordered if there is a well-ordering on X.

In this section, we give some important theorems concerning well-ordered sets

used in this work.

Theorem 2.5.1. If X s well-ordered and Y =<* X, then Y can be well-ordered
andY <X X.

Theorem 2.5.2. If X and Y are well-ordered, then so is X UY .

Theorem 2.5.3. Let X and Y be well-ordered sets such that X orY is infinite.
Then

1 1X]+ Y] = max{|X],|Y]}.
2. 1X|- Y| =max{|X|,|Y]|} if X and Y are nonempty.

Corollary 2.5.4. For any infinite well-ordered set X, |X| = 2|X]|.



2.6 Ordinals

Definition 2.6.1. A set X is transitive if Vx € X,z C X.
Definition 2.6.2. For any set X, let €x= {(z1,22) € X x X | x; € 22}.

Definition 2.6.3. A set « is an ordinal (number) if « is transitive and €, is a

well-ordering on a.
Throughout this work, we use «, 3,7, ... for ordinals.
Example. Every natural number and w are ordinals.

Note that every member of an ordinal is also an ordinal and the relation € on

the class of ordinals is a well ordering. Thus we order ordinals as follows.

Definition 2.6.4. For any ordinals a and 3, we say
« is less than 3, written o < 3, if @ € 3, and

« is less than or equal to 3, written a < 3, if a < § or a = .
Notation. Let a +1=a U {a}.
Note that a + 1 is also an ordinal.

Definition 2.6.5. Let o be an ordinal.
« is a successor ordinal if « = 3+ 1 for some ordinal .

« is a limit ordinal if o # 0 and « is not a successor ordinal.

Theorem 2.6.6. Every well-ordered set is isomorphic to a unique ordinal (up to

a well-ordering of the set).

It follows from the above theorem that every well-ordered set is equinumerous
to some ordinals. We define the cardinality of a well-ordered set as the least ordinal

equinumerous to it.

Example. |w+ 1| = |w| = w. Thus w is a cardinal but w + 1 is not.



2.7 Alephs

Definition 2.7.1. The cardinality of an infinite well-ordered set is called an aleph.
Note that every aleph is an ordinal.

Theorem 2.7.2. Any two alephs, or two well-ordered sets, are always comparable,

i.e. for any well-ordered sets X and Y, | X| < |Y] or |Y| < |X]|.

Theorem 2.7.3. (Hartogs’ Theorem)
For any set X, there is the least aleph X such that X £ |X]|.

Definition 2.7.4. For any set X, the Hartogs number of X, denoted by R(X),
is a least aleph N such that X £ |X].

Notation. For any ordinal «, let a™ = R(a).

In an analogous way, for any set X, there exists a least aleph 8*(X) such that

N*(X) £* | X|. Such an aleph is called the Lindenbaum number of X.
Remark. For any set X, R(X) < V*(X).

Theorem 2.7.5. If A is a set of ordinals, then |J A is an ordinal which is the least

upper bound of A. Moreover, if A is a set of alephs, then | J A is an aleph.
Definition 2.7.6. Define an aleph X, recursively as follows:
NO =W,

ch—i—l = N7

«?

and

Ny = |J Ngif A is a limit ordinal.
B<A

Theorem 2.7.7. If X is an infinite well-ordered set, then |X| = R, for some

ordinal o.

2.8 The Axiom of Choice

The Axiom of Choice (AC) is an important axiom in mathematics and is inde-

pendent from ZF. That is AC and its negation cannot be proved from ZF. There
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are many equivalent forms of AC. We list some of them which are used in this
work below.

Well-Ordering Theorem: every set can be well-ordered.

Trichotomy Principle: for any sets A and B, A < Bor B < A.

Dual Trichotomy Principle: for any sets A and B, A <* B or B <* A.

Existence of Choice Functions: if A is a pairwise disjoint collection of nonempty
sets, then A has a choice function, i.e. a function f : A — [J A such that f(B) € B
for any B € A.

Ezistence of Maximal Functions: for any relation R, there is a function F' C R

such that dom(F) = dom(R).

2.9 Dedekind Infinite Sets and Weakly Dedekind Infinite
Sets

Without AC, it is no longer true that any two cardinals are comparable. More-
over, for an infinite set X, we cannot guarantee whether w < X or not. Therefore,

in the absence of AC, the following definitions are needed.

Definition 2.9.1. A set X is said to be Dedekind infinite if w < X. Otherwise,
X is Dedekind finite.

Definition 2.9.2. A set X is said to be weakly Dedekind infinite if w <* X.
Otherwise, X is weakly Dedekind finite.

Since X <X Y implies X <* Y for any sets X and Y, every Dedekind infinite
set is always weakly Dedekind infinite. Equivalently, every weakly Dedekind finite
set is always Dedekind finite. Without AC, a Dedekind finite set and a weakly
Dedekind finite set need not be finite. If AC holds, all these concepts of infinity
and finiteness are the same.

A cardinal number is (weakly) Dedekind infinite if it is the cardinality of
a (weakly) Dedekind infinite set, and it is (weakly) Dedekind finite if it is not
(weakly) Dedekind infinite.
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Theorem 2.9.3. The following statements are equivalent.
1. X is Dedekind infinite.
2. X = X UA for any finite set A.
3. There is a proper subset Y of X such thatY =~ X.
Theorem 2.9.4. The following statements are equivalent.
1. X 1s weakly Dedekind infinite.
2. P(X) is Dedekind infinite.

Theorem 2.9.5. Let X be an infinite set. If there is a proper subset Y of X such
that X X*Y, then X is weakly Dedekind infinite.



CHAPTER I11
THE AXIOM OF CHOICE AND SOME WEAK FORMS
CONCERNING SURJECTIONS

We are interested in the Axiom of Choice and some weak forms related to the
Partition Principle, the Cantor-Bernstein Theorem, the Trichotomy Principle, and

weakly Dedekind finite sets. These are divided into three sections as follows.

3.1 On the Partition Principle and the Cantor-Bernstein
Theorem

The Dual Cantor-Bernstein Theorem and the Partition Principle are both fa-

mous consequences of AC concerning surjections. They state that

Dual Cantor-Bernstein Theorem (CB*): for any sets X and Y, if
X =*Y and Y X* X, then X ~ Y.

Partition Principle (PP): for any sets X and Y, if X <*Y, then X <Y.

By the Cantor-Bernstein Theorem, we can see that PP implies CB*.
Nowadays, it is still an open problem whether CB* is equivalent to AC or
not (see [9]). In [1], Bernhard Banaschewski and Gregory H. Moore introduced a

natural refinement of CB*.

Refined CB*: for any sets X and YV, if f: X - Y and ¢g:Y — X are

surjections, then there is a bijection h: X — Y such that h C fUg™'.
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It has been shown in [1] that the Refined CB* is an equivalent form of AC.
It is still an open problem whether PP is equivalent to AC or not (see [9]). We

now introduce a refinement of PP and show that it is equivalent to AC.

Refined PP: for any sets X and VY, if f : Y — X is a surjection, then

there is an injection ¢ : X — Y such that g C f~.

Theorem 3.1.1. The Refined PP < AC.

Proof. (<) Assume AC. Then every set can be well-ordered. Let f:Y — X be a
surjection. Fix a well-ordering on Y. Since f is surjective, for any x € X, f~![{x}]
is nonempty and so f~![{x}] has a least element.

Define a function g : X — Y by g(x) = the least element of f~'[{x}]. Since f
is a function, ¢ is an injection. It is easy to see that g C f~!.

(=) Assume the Refined PP. We will show that for any relation R, there is a
function F' C R such that dom(F') = dom(R). This is an equivalent form of AC.

Let R be a relation. Define a function f : R — dom(R) by f(a,b) = a. Clearly,
f is surjective. By the assumption, there is a function g : dom(R) — R which is
injective and g C f~!. Let F' = ran(g). Then F C R and so dom(F) C dom(R).
To show that they are equal, let = € dom(R). Then g(z) € R, say g(z) = (a,b).
Since (z,g(z)) € g C f71, (g9(x),z) € f. Hence z = f(g9(x)) = f(a,b) = a €
dom(F) since (a,b) € ran(g) = F. Thus dom(F') = dom(R).

To show that F'is a function, let (a,b1), (a,by) € F. Then there are z1,xs €
dom(R) such that g(z;) = (a,b) and g(z2) = (a,by). Since g C f~', we obtain
that 1 = f(a,b1) = a = f(a,by) = x5 and then b; = by. Hence F' is a function. [
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Next, we will concentrate on some statements concerning N,,.

N,-CB*: for any set X, if X, <* | X| and |X| <* N,, then |X| =N,.
N,-PP: for any set X, if X, <* | X|, then R, < |X]|.

N,-AC: if X is a pairwise disjoint collection of nonempty sets such

that | X| =N,, then X has a choice function.

Since |X| <* N, implies that X can be well-ordered, it is easy to see that
N,-CB* is just a special case of the Cantor-Bernstein Theorem which is provable
without AC. On the other hand, X,-PP and X,-AC follow from AC and it has been
shown that “N,-PP” follows from “W,-AC”, while “Va,R,-AC” is a consequence
of PP that is weaker than PP (see [6]).

We now strengthen X,-PP to the Refined N,-PP.

Refined N,-PP: for any set X, if f : X — X, is a surjection, then there

is an injection ¢ : N, — X such that ¢ C f .

Theorem 3.1.1 shows that the Refined PP is equivalent to AC. We now show
that “the Refined X,-PP” is equivalent to “N,-AC”.

Theorem 3.1.2. The Refined R,-PP < X, ,-AC.

Proof. (=) Assume the Refined X,-PP. Let X be a pairwise disjoint collection of
nonempty sets such that | X|=N,. Say X = {Xs}sena-

Define a function f : [JX — N, by f(a) = B if a € Xz. Since any two
members of X are disjoint, f is well-defined. Since each member of X is nonempty,
f is surjective. By the assumption, there is an injection g : X, — (J X such that
g< fh

Define a function h : X — (JX by h(Xs) = ¢g(8). We will show that h is
a choice function for X. Let f € N,. Then (8,h(Xp)) = (8,9(8)) € g. Since
g C 7t (h(Xp),B) € f. So f(h(X3s)) = B. It follows from the definition of f that
h(Xg) € Xp.
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(<) Assume R,-AC. Let X be a set and f : X — N, be a surjection. Set
M = {f7'{B}] | B € N,}. Since f is a surjection, M is a pairwise disjoint
collection of nonempty sets where |M| = X,. By the assumption, there is a choice
function F' for M.

Define a function g : X, — X by ¢g(8) = F(f'[{5}]). Since any two members
of M are disjoint and F(f~'[{B8}]) € f~[{B}] for all B € X, F is injective and so
is g. To show that g C f~! let B € N,. So g(8) = F(f~'[{B}]) € f'[{8}] and
then f(g(8)) = B. Hence (8, g(8)) € [~ and thus g C [, 0

We now have some deductive relations of the above statements as shown in the

diagram below.

Refined PP |« - AC Refined CB*
PP
Va,N,-AC Va, Refined R,-PP CB*

Va,N,-PP
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3.2 On the Trichotomy Principle

The Trichotomy Principle is an equivalent form of AC. The main idea of the
Trichotomy Principle lies in the existence of an injection connecting arbitrary two

sets. It states that

Trichotomy Principle: for any sets X and Y, X <Y or Y < X.

In 2008, David Feldman and Mehmet Orhon extended the idea of the Tri-
chotomy Principle to the k-Trichotomy Principle (see [3]).

k-Trichotomy Principle: every family which is of cardinality k con-

tains two distinct sets X and Y such that X <Y.

Notice that the 2-Trichotomy Principle and the Trichotomy Principle are the
same statement and the principle for k£ > 2 seems to be weaker. Surprisingly, it has
been shown in [3] that for any natural number k& > 2, the k-Trichotomy Principle
is also equivalent to AC.

The following is another form of the Trichotomy Principle which concerns sur-

jections.

Dual Trichotomy Principle: for any sets X and YV, X <*Y or Y <* X.

Since X <Y implies X <* Y for any sets X and Y, it is obvious that the Dual
Trichotomy Principle follows from the Trichotomy Principle. Since, without AC,
we cannot guarantee that X <* Y implies X XY for arbitrary sets X and Y, the
Dual Trichotomy Principle seems to be weaker than AC. It is a surprise that the
Dual Trichotomy Principle is also equivalent to AC (see [11]).

We now extend the idea of the k-Trichotomy Principle to the k-Dual Trichotomy

Principle or k*-Trichotomy Principle.
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k*-Trichotomy Principle: every family which is of cardinality k con-

tains two distinct sets X and Y such that X <*Y.

In this section, k is a natural number greater than or equal to 2. We will show
that the k*-Trichotomy Principle is equivalent to AC.

Throughout this work, for a set X and [ € w, we write [X for the Cartesian
product [ x X. First, we will show that the k*-Trichotomy Principle implies that

every infinite set is weakly Dedekind infinite.

Lemma 3.2.1. Assume k*-Trichotomy Principle.
Let Ay, Ay, ... Ay be sets such that Ay = Ay <X --- <X Ai. Then there exist

m,n < k where n < m and a well-ordered set R such that R < A,, <=* A,UR.

Proof. Define py, = X*(Ay,) and p; = X*(p;41) for all 1 < j < k. Then py > po >
-++ > pp. Consider a family {A4;Up;}%_, and apply the k*-Trichotomy Principle,
we obtain m # n and A,Up, =<* A,Uu,, i.e. there exists a surjective map
[ AU, — AUy,

Let M == Y] N pn and A" := fHu, ~ fIM]]. Clearly, f[A'] and f[M]
are subsets of p,,, such that f[A|Uf[M] = pm. I |f[A]| < pin and |f[M]] < pim,
then pw,, = |f[A]| + |f[M]| = max{|f[A]|,|f[M]|} < pm which is not possible.
Then |f[A]| = pm or |f[M]| = pim. Since A, = Ay, X*(A4,) < N*(Ag) = e < fom,
SO fm A* Ap. Since A’ C A, and py,, A* A, pm A% A, so | f[A]| # pm. Hence
|f[M]| = pm, and then p, <* |M| < w,. This implies that n < m.

Let P := f~'[A,;,] N pt,. Since P C p,, is well-ordered, there is R C P such that
R~ f[P]C A,,. So R < A, 2* A,UR. O

Lemma 3.2.2. Let A be an infinite set, R an infinite well-ordered set and n > 0.

If R < nA, then R < A.

Proof. 1t is trivial if n = 1. Assume the statement holds for m and R < (m +1)A.
Then R <X mAUA, say by an injection f. Let X = f[R]NmA and Y = f[R] N A.
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Since R is an infinite well-ordered set and f is injective,

IR = |£[R] = |XUY| = [ X] +[¥| = max{]x], [V ]}.
Hence R~ X CmAor RxY CA. Thus R < mA or R < A. By the induction
hypothesis, we have R < A. O]

Lemma 3.2.3. If X is a weakly Dedekind finite set, then so is X for alll € w.

Proof. The proof proceeds by induction. Let | € w and X be a weakly Dedekind
finite set. Assume that [X is weakly Dedekind finite but (I + 1)X is weakly
Dedekind infinite. Then w =<* (I + 1)X = [XUX, so there is a surjection f :
IXUX — w. Since w A* [X and every infinite subset of w is equinumerous
to w, f[lX] is finite. Since f is a surjection, f[X] must be infinite and then
w= fIX] =2* X but X is weakly Dedekind finite, a contradiction. O

Theorem 3.2.4. The k*-Trichotomy Principle implies that every infinite set is
weakly Dedekind infinite.

Proof. Assume the k*-Trichotomy Principle. Suppose there is an infinite weakly
Dedekind finite set A. Then N*(A) = N,. Since A is weakly Dedekind finite, by
Lemma 3.2.3, so is [A for all [ € w. Since A < 24 < --- < kA, by applying
Lemma 3.2.1, R < mA <* nAUR for some m,n < k such that n < m and some
well-ordered set R. Since n < m, nA < mA. Since mA is weakly Dedekind finite
and nA C mA, mA A* nA. So nA % mA and it follows that nA < mA. Since
R <mA, |R| < X*(mA) = Ry, i.e. R is finite. Since A is infinite, R < A and so
nAUR =~ X for some X C nAUA =~ (n+ 1)A. Since (n + 1)A is weakly Dedekind
finite, nAUR % (n + 1)A. Tt follows that nAUR < (n + 1)A < mA. Hence we
can view nAUR as a proper subset of mA but mA <* nAUR where mA is weakly

Dedekind finite, a contradiction. O

We now obtain that if we assume the k*-Trichotomy Principle, then every
infinite set is weakly Dedekind infinite.
Next, we will show that the k*-Trichotomy Principle implies that every Dedekind

infinite set can be well-ordered and so can every infinite set.



19

Theorem 3.2.5. Assume k*-Trichotomy Principle.
If A is a Dedekind infinite set, then P(nA) ~ 2P(nA) ~ P(2nA) for some

new.

Proof. Let A be a Dedekind infinite set. Since A < 24 < --- < kA, by Lemma
3.2.1, there exist m,n € w and a well-ordered set R such that R < mA <* nAUR
where n < m. Since A is Dedekind infinite, if R is finite, then nAUR ~ nA.
Suppose R is infinite. Then R ~ 2R. Since R < mA, by Lemma 3.2.2, R < A <
nA. Hence there is a set X such that
nA~ XUR ~ XU2R ~ (XUR)UR ~ nAUR.

So mA <* nA and then P(mA) < P(nA). Since nA < mA, P(nA) <X P(mA). By
the Cantor-Bernstein Theorem, P(nA) ~ P(mA). Since

P(nd) ~ P(mA)
~ P(nAU(m — n)A)
~ P(nA) x P((m —n)A)
~ P(mA) x P((m —n)A)

P(mA) = P(nA) = P((m+ (m —n))A) and

P(nA) ~ P(mA) x P((m —n)A)
[P(mA) x P((m —n)A)] x P((m —n)A)
mA) x [P((m —n)A) x P((m —n)A)]

Q

Q

mA) x P(2(m —n)A)

Q

Q

Q

P(
P(
P((mA)U2(m —n)A)
P((m +2(m —n))A).

It follows, by induction, that P(nA) ~ P((m + q(m —n))A) for all ¢ € w. We
may choose ¢ = n. Since m > n and n(m —n) > n, m+n(m —n) > 2n. Set

Il =m+n(m —n). Then P(nA) ~ P(lA) where [ > 2n.
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Set r=1—2n. Thenn+r=I01—nandl+7r=2(—n). So

Hence there exists n' := [ — n such that P(n’A) =~ P(2n'A).
Notice that P(n’A) < 2P(n'A) = P(n'A) x P(n'A) ~ P(2n'A) =~ P(n'A).
Hence we obtain a natural number n’ such that P(n’A) ~ 2P(n'A) ~ P(2n'A). O

Definition 3.2.6. For any set A, define Q(A) = Q'(A) = AxP(A) and Q"' (A) =
Q(Q'(A)) for all ¢ > 1.

Remark. For any nonempty set A, A < Q(A).
The following lemma is Lemma 7 in [3].

Lemma 3.2.7. For a set A and a well-ordered set B, an injection [ : Q(A) —

AUB induces a canonical well-ordering of A.

Theorem 3.2.8. The k*-Trichotomy Principle implies that every Dedekind infinite

set can be well-ordered.

Proof. Fix a Dedekind infinite set S. By Theorem 3.2.5, there exists an n such
that P(nS) ~ 2P(nS) = P(2nS). Set A =nS. Then P(A) =~ 2P(A) = P(2A4).
Claim. For any p > 1, P(2Q"(4)) ~ P(Q"(4)).
For p =1,
P(2Q(A)) = P(2(A x P(A))) = P(A x 2P(A)) = P(A x P(A)) = P(Q(A)).
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Assume P(2QF(A)) ~ P(QP(A)). Since
P(QP(A)) = 2P(Q7(A)) 2 P(QP(A)) x P(QP(A)) = P(2Q"(A)) = P(Qr(A)),
P(QP(A)) =~ 2P(QP(A)) ~ P(2QP(A)). Then

Since Q(A) < Q*(A) < -+ < Q*(A), by Lemma 3.2.1, there exist m,n € w
where n < m and a well-ordered set R such that Q™(A) <* Q"(A)UR. Let
[ QAUR — Q™(A) be a surjection, X = f[Q"(A)] and Y = f[R]. Then
Q™ (A) = XUY where X <* Q™ !(A) and Y is a well-ordered set.

Since X <* Q™ '(A4), X X P(X) X P(Q™*(4)). So

Q(X) = X x P(X)
= PQ™H(A)) x P(Q™H(A))
~ P(2Q™H(A))
~ P(Q™(A)) (by the claim)
= QMHA) x P(Q™TH(A))
=Q"(A)
= XUy,

where Y is a well-ordered set. By Lemma 3.2.7, X can be well-ordered and so
Q™(A) is well-ordered. From S < nS = A < Q(A) <X Q™(A), we obtain that S

can be well-ordered. O
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Theorem 3.2.9. The k*-Trichotomy Principle implies AC.

Proof. Assume the k*-Trichotomy Principle. Let A be an infinite set. By Theorem
3.2.4, A is weakly Dedekind infinite and hence P(A) is Dedekind infinite. By
Theorem 3.2.8, P(A) can be well-ordered. Since A < P(A), A can also be well-
ordered. O

Therefore, we conclude that the following statements are all equivalent.
1. Every set can be well-ordered.

2. Trichotomy Principle

3. Dual Trichotomy Principle

4. k-Trichotomy Principle

5. k*Trichotomy Principle

For the equivalence of 1 and 2, 1 and 3, and 1 and 4 see [4], [11] and [3],

respectively.
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3.3 On Weakly Dedekind Finite Sets

It is clear that every finite set is (weakly) Dedekind finite. However, without
AC, we cannot guarantee that the converse of this statement is true.

The statement “every Dedekind finite set is finite” is a consequence of AC
which is weaker than AC (see [10]). In [10], Gregory H. Moore introduced many

statements which are equivalent to it. Some of them are listed below.

1. Every Dedekind finite set is finite.

2. Every infinite set has a denumerable subset.

3. If X is Dedekind finite and Y is Dedekind infinite, then | X| < |Y].
4. For any set X, X fworw <X X.

5. If X is Dedekind finite, then so is P(X).

Since X < Y implies X <* Y for any sets X and Y, we obtain that ev-
ery Dedekind infinite set is always weakly Dedekind infinite; equivalently, every
weakly Dedekind finite set is always Dedekind finite. It follows that the statement
“every Dedekind finite set is finite” implies that “every weakly Dedekind finite set
is finite”. In this section, we introduce some equivalent statements of the state-
ment “every weakly Dedekind finite set is finite” which correspond to those of the

statement “every Dedekind finite set is finite”.

Theorem 3.3.1. The following statements are equivalent.
1. Every weakly Dedekind finite set is finite.
2. Fvery infinite set has a denumerable partition.

3. If X is weakly Dedekind finite and Y is weakly Dedekind infinite, then | X| <
Y].

4. For any set X, X <*w orw <* X.
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5. If X is weakly Dedekind finite, then so is P(X).

6. If X is weakly Dedekind finite, then P(X) cannot be decomposed into two

infinite sets.

Proof. (1 = 2) Let X be an infinite set. By 1., X is a weakly Dedekind infinite.
Then there is a surjective map f : X — w. We have {f7'[{n}] | n € w)} is a
countable partition of X.

(2 = 1) Let X be an infinite set with a countable partition {A, | n € w}.
Define a function f : X — w by f(z) = the unique natural number n such that
x € A,. Clearly, f is surjective and hence X is weakly Dedekind infinite.

(1 = 3) Let X be weakly Dedekind finite and Y be weakly Dedekind infinite.
By 1., X is finite. Since Y is infinite, by Lemma 2.4.7, | X| < |Y].

(3= 1) Let X be weakly Dedekind finite. Since w is weakly Dedekind infinite,
by 3., | X| < |w|. Hence X is finite.

(1= 4) Let X be a set. Assume w £* X. By 1., X is finite and then X <* w.

(4 = 1) Let X be weakly Dedekind finite. Then w A* X. By 4., X <* w.
Since w is well-ordered, X < w. Hence X is finite.

(1= 5) Let X be weakly Dedekind finite. By 1., X is finite. So P(X) is finite
and hence P(X) is weakly Dedekind finite.

(5= 1) Let X be an infinite set. Define a function f: P(X) — w by

|Al 5 A is finite,
f(A) =
0 ;. otherwise.
Since X is infinite, by Lemma 2.4.7, f is surjective. Then P(X) is weakly Dedekind
infinite. By 5., X is weakly Dedekind infinite.
(1 = 6) Let X be weakly Dedekind finite. By 1., X is finite. So P(X) is finite
and hence it cannot be decomposed into two infinite sets.
(6 = 5) Let X be a set such that P(X) is weakly Dedekind infinite. Let
f: P(X) — w be a surjection. It is easy to see that P(X) can be decomposed

into two infinite sets f~![E] and f~![Q], where where E and O are the sets of even
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numbers and odd numbers, respectively. By 6., X is weakly Dedekind infinite.
[
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