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CHAPTER I

INTRODUCTION

1.1 Introduction

An important theorem in elementary number theory is the following.

Theorem 1.1. For an odd prime p, (Zpe)× is cyclic for all natural numbers e,

while (Z2)× = {1}, (Z4)× = ⟨−1⟩ and (Z2e)× = ⟨−1⟩ × ⟨5⟩ for all natural numbers

e ≥ 3.

Together with the Chinese remainder theorem, we can get the structure of

(Zn)×, i.e., (Z/nZ)×, for any natural number n.

Theorem 1.2. Let n be a natural number which can be factored into pe1
1 pe2

2 . . . pem
m

for some prime numbers p1, p2, . . . , pm and natural numbers e1, e2, . . . , em. Then

(Zn)× ∼= (Zp
e1
1

)× × (Zp
e2
2

)× × · · · × (Zpem
m

)×.

We are interested in the expanding of this result to some number fields. Using

a language in algebraic number theory, we have that Z is the ring of integers of

the field of rational numbers Q which is a number field of degree 1. This leads us

to study an analogue of the above theorem for number fields of other degrees. For

a number field K, let OK be the ring of integers of K and A be a non-zero ideal of

OK , we will study the structure of (OK/A)×. In 1910, A. Ranum [5] studied this

problem in all number fields of degree 2. Later, J.T. Cross [2] in 1983 and A.A.
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Allan [1] in 2005, apparently unawared of Ranum’s work, studied this problem in

the field of Gaussian numbers, which is a number fields of degree 2.

In this thesis we consider this problem when K is a number field of degree 3

such that the discriminant of K, disc(K), is square-free.

1.2 Preliminaries

In this section, we give notations, definitions and theorems used throughout the

thesis. Details and proofs can be found in [3] and [6].

1.2.1 The Ring of Integers

Definition. A number field is a finite extension of Q (in C).

Example 1.2.1. 1. A quadratic field is a number field of degree 2 over Q.

2. A cubic field is a number field of degree 3 over Q.

Definition. α ∈ C is an algebraic integer if it is a root of some monic polynomial

with coefficients in Z.

In algebraic number theory, an algebraic integer usually comes up much more

often than an integer in Z. So it is convenient to use the word integer for an

algebraic integer and use the word rational integer for a regular integer in Z.

Remark. α ∈ Q is an integer if and only if α ∈ Z.

Definition. The ring of all integers in a number field K is called the ring of

integers in K and denoted by OK .

From now one, let K a number field of degree n over Q.
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Definition. An embedding of K over Q in C is a one to one homomorphism

σ : K → C fixing Q pointwise.

Then there exist n embeddings of K over Q in C, say σ1 = idK , σ2, . . . , σn.

Definition. For α ∈ K, the norm of α is defined to be

NK(α) := σ1(α)σ2(α) . . . σn(α).

Definition. Let α1, α2, . . . , αn ∈ K. The discriminant of α1, α2, . . . , αn in K is

defined to be

discK(α1, α2, . . . , αn) := det[σi(αj)]2.

For α ∈ K, the discriminant of α is defined to be

discK(α) = discK(1, α, α2, . . . , αn−1)

Theorem 1.3. Let K be a number field of degree n over Q. Then OK is a free

abelian group (or Z-module) of rank n, i.e., it is isomorphic to the direct sum of n

subgroups each of which is isomorphic to Z.

Definition. A Z-basis {α1, . . . , αn} of OK is called an integral basis of K.

Note. An integral basis of K is also a basis of K over Q.

Proposition 1.4. Let {α1, . . . , αn} and {β1, . . . , βn} be any integral bases of K.

Then discK(α1, . . . , αn) = discK(β1, . . . , βn).

Definition. The discriminant of the field K is discK(α1, . . . , αn), where {α1, . . . , αn}

is an integral basis of K over Q. We denote it by disc(K) or δK .

Definition. Let f(x) ∈ Q[x] be a monic irreducible polynomial of degree n having

α ∈ C as a root. The discriminant of f , denoted by disc(f), is defined by

disc(f) := discQ(α)(α).
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Theorem 1.5. Let K = Q(α) for some α ∈ OK be of degree n. If discK(α) is

square-free, then δK = discK(α) and OK = Z[α].

1.2.2 Factorization in the Ring of Integers

Even Z which is the ring of integers of Q is a unique factorization domain, this is not

true in general for the ring of integers of number fields. For example Z[
√

−5] which

is the ring of integers of the number field Q(
√

−5) is not a unique factorization

domain. But for ideals in OK we have:

Theorem 1.6. Every non-zero proper ideal in OK can be written uniquely as a

product of prime ideals.

Theorem 1.7. If A is a non-zero ideal of OK, then OK/A is finite.

Definition. The norm of a non-zero ideal A in OK , denoted by N(A), is defined

to be |OK/A|.

Theorem 1.8. 1. For any α ̸= 0 in OK, N(⟨α⟩) = |NK(α)|.

2. For any non-zero ideal A and B in OK, N(AB) = N(A)N(B).

3. For a non-zero ideal A in OK, N(A) ∈ A.

Remark. If P is a non-zero ideal such that N(P ) = p a prime number, then P is

a prime ideal in OK .

Let K be a number field and p be a prime number in Z. Then pOK is a non-zero

ideal in OK . We will consider the prime factorization of pOK in OK . From now

on, the term prime ideal means non-zero prime ideal.

Theorem 1.9. Let p be a prime number and P be a prime ideal in OK. Then the

following are equivalent.
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1. P | pOK.

2. P ⊃ pOK.

3. P ⊃ pZ.

4. P ∩ Z = pZ.

5. P ∩ Q = pZ.

Definition. For pZ and P satisfying any of the above theorem, we say that P lies

over (above) pZ, or pZ lies under P .

Theorem 1.10. 1. Every prime P in OK lies over a unique prime pZ of Z.

2. Every prime pZ in Z lies under at least one prime P in OK.

The following theorem gives us all prime ideals of OK .

Theorem 1.11. Let K be a number field of degree n over Q such that OK = Z[α]

for some α ∈ OK with the minimal polynomial f(x) ∈ Z[x]. Let p be a prime

number and f(x) be the polynomial obtained from f by reducing all coefficients of

f modulo p.

Suppose that f(x) = f
e1
1 (x) · · · f

eg

g (x) is the factorization of f(x) in Zp[x]. Then

pOK = ⟨p⟩ = P e1
1 · · · P eg

g

is the prime factorization such that Pi = ⟨p, fi(α)⟩ where fi(x) is a monic poly-

nomial in Z[x] whose reduction modulo p is f i(x) and deg fi(x) = deg f i(x) and

N(Pi) = pdeg fi .

Using the previous theorem, we can find all prime ideals of OK by factorizing

⟨p⟩ for all prime numbers p.



CHAPTER II

SOME LEMMAS

Throughout the thesis, we sometimes have to deal with a long summation of ele-

ments in OK which we just want to say that the summation is in OK . For example

consider

(1 + 2p + 3p2)(2 + 5pα) = 2 + p(4 + 5α + 6p + 10pα + 15p2α).

Sometime we don’t care what exactly is the multiple of p, we just want to know

that it is p multiplies some element of OK . That is why we will use a square, �,

as a placeholder for a non-specific element of OK . That is we may write

(1 + 2p + 3p2)(2 + 5pα) = 2 + p�.

Note that � is a placeholder and is not a variable. That is, each � may not be

equal. We may write 2� + 4� = 2�.

Notation. For subgroups H and K of an abelian group G, if the product HK is

an (internal) direct product, i.e., H ∩ K = {1}, then we will write H ⊙ K for the

product HK.

Note. As ⊙ is associative, we can write a direct product of more than 2 subgroups

consecutively without parentheses. For example, for subgroups H, K and L of an

abelian group G, we can write

H ⊙ K ⊙ L.
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Theorem 2.1. Let G be an abelian group and H be a subgroup of G. Let g ∈ G

be an element of order p. If g /∈ H then H ⊙ ⟨g⟩.

Proof. Assume /∈ H. Suppose the product H⟨g⟩ is not direct. Then h = gk for

some h ∈ H r {1} and 1 ≤ k < p. It can be seen that k is relatively prime to p,

so there is l ∈ N such that kl ≡ 1 (mod p). Since g is of order p, g = gkl = hl ∈ H

which is a contradiction.

Theorem 2.2. Let G be a finite abelian group, H be a subgroup of G and g be an

element of G such that the order of g is pe for some prime number p and natural

number e ≥ 2. If H ⊙ ⟨gp⟩, then H ⊙ ⟨g⟩.

Proof. Suppose that H ⊙⟨gp⟩ and the product H⟨g⟩ is not direct. Then gk = h for

some k ∈ N and h ∈ H r{1}. So hp = gpk ∈ ⟨gp⟩ which also implies hp ∈ H ∩⟨gp⟩.

Since H ⊙ ⟨gp⟩, gpk = hp = 1. Since the order of g is a pe, pe−1 | k. As e ≥ 2, then

p | k. Together with the fact that gk = h, we get that h ∈ ⟨gp⟩ and H ∩⟨gp⟩ ̸= {1}.

Thus H⟨gp⟩ is not direct, which is a contradiction.

Next theorem is a generalization of Euler’s ϕ function to a number field. We

will concern only the case where the ideal is a power of a prime ideal. We can use

the Chinese remainder theorem to get a general formula.

Definition. A local ring is a commutative ring which has a unique maximal

ideal.

Theorem 2.3. Let R be a local ring with the maximal ideal P . Then

R× = R r P.

Theorem 2.4. For any number field K, prime ideal P of OK and natural number

e, OK/P e is a local ring with the maximal ideal P/P e.
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Theorem 2.5. Let P be a prime ideal of OK and e ∈ N. Then

|(OK/P e)×| = (N(P ) − 1)N(P )e−1.

Proof. By Theorem 2.3 and Theorem 2.4, it follows that

(OK/P e)× = OK/P e r P/P e.

By the third isomorphism theorem for rings, OK/P e

P/P e
∼= OK/P , so by Theorem 1.8(i)

|P/P e| = N(P )e−1. Thus

|(OK/P e)×| = |OK/P e| − |P/P e| = N(P )e − N(P )e−1 = (N(P ) − 1)N(P )e−1.

Definition. Let p be a prime number and n ∈ N. Denote the highest power m of

p such that pm | n by νp(n).

To find the structure of (OK/P e)×, we need to find the order of some elements

of (OK/P e)× by the application of the following lemmas and theorems.

Lemma 2.6. Let p be a prime and m ∈ N. If either

1. p ≥ 3 and m ≥ 2, or

2. p = 2 and m ≥ 3,

then m − νp(m) ≥ 2.

Proof. We first consider the case where p ≥ 3 and m = 2. Since p ≥ 3, νp(2) = 0,

so

m − νp(m) = 2 − νp(2) = 2 ≥ 2.
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Next for the case of any prime p, suppose for a contradiction that there exists

m ≥ 3 such that m − νp(m) < 2. Let l be the least of such m. So

l − νp(l) < 2. (1)

If p - l, then l − νp(l) = l − 0 ≥ 2, which contradicts (1). So p | l.

Let l = pl′. Since l′ < l, by the minimality of l, either l′ = 1, l′ = 2 or

l′ − νp(l′) ≥ 2. If l′ = 1, then l = p. So

l − νp(l) = p − νp(p) = p − 1 ≥ 2,

which contradicts (1). If l′ = 2, then

l − νp(l) = 2p − νp(2p) ≥ 2p − 2 ≥ 2

which also contradicts (1). Thus

l′ − νp(l′) ≥ 2. (2)

Substitute l = pl′ in (1), we get 2 > pl′ − νp(pl′) = pl′ − νp(l′) − 1, so

3 > pl′ − νp(l′) = (p − 1)l′ + (l′ − νp(l′)) ≥ (p − 1)l′ + 2, which implies that

1 > (p − 1)l′. This is impossible since both p − 1 and l′ are natural numbers.

Lemma 2.7. Let p be a prime number and a, m natural numbers such that 0 <

m ≤ pa. Then

νp(
(

pa

m

)
) = a − νp(m)

Proof. For any i ∈ N such that 0 < i < pa, we see that νp(i) = νp(pa − i). Consider
(

pa

m

)
= pa(pa − 1) · · · (pa − m + 1)

1(2) · · · (m − 1)m
.

Since νp(i) = νp(pa − i) for any 0 < i < pa, νp(pa − 1) = νp(1), ν(pa − 2) =

νp(2), . . . , νp(pa − m + 1) = νp(m − 1). Thus νp(
(

pa

m

)
) = νp(pa

m
) = a − νp(m).
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Theorem 2.8. Let a ∈ N and r, s ∈ Z. If p ≥ 3 is a prime number, then

(r + psα)pa = rpa + pa+1rpa−1sα + pa+2�.

If r and s are odd numbers, then

(r + 2sα)2a = r2a + 2a+1α + 2a+1α2 + 2a+2�.

Proof. Let p ≥ 3 be a prime number. Then

(r + psα)pa =
pa∑

m=0

(
pa

m

)
rpa−m(psα)m.

By the previous lemma, νp(
(

pa

m

)
) = a − νp(m) for m ≥ 2, it follows by Lemma 2.6,

νp(
(

pa

m

)
pm) = a − νp(m) + m ≥ a + 2.

for m ≥ 2. That is every terms from the third term onward (m ≥ 2) can be

combined into pa+2�. The first and second terms are clearly rpa and pa+1rpa−1sα,

respectively.

Again using the previous theorem, from the fourth term onward (m ≥ 3) of the

expansion of (r + 2sα)2a can be combine to 2a+2�, that is,

(r + 2sα)2a = r2a + 2a+1r2a−1sα + 2a+1(2a − 1)r2a−2s2α2 + 2a+2�.

Since r and s are odd, so does r2a−1s. So we can write

2a+1r2a−1sα = 2a+1(1 + 2�)α = 2a+1α + 2a+2�.

Similarly

2a+1(2a − 1)r2a−2s2α2 = 2a+1(1 + 2�)α2 = 2a+1α2 + 2a+2�.

That is

(r + 2sα)2a = r2a + (2a+1α + 2a+2�) + (2a+1α2 + 2a+2�) + 2a+2�.

= r2a + 2a+1α + 2a+1α2 + 2a+2�.
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Many literatures give only a formula for finding the discriminant of an irre-

ducible polynomial of the form x3 + ax + b ∈ Q[x].

Theorem 2.9. Let x3 + ax + b ∈ Q[x] be an irreducible polynomial. Then

disc(x3 + ax + b) = −4a3 − 27b2.

We can use the following theorem to obtain a formula for finding discriminant

of general monic irreducible cubic polynomials.

Theorem 2.10. Let f(x) ∈ Q[x]. Then for all a ∈ Q,

disc(f(x + a)) = disc(f(x)).

Theorem 2.11. If x3
ax2 + bx + c ∈ Q[x] is an irreducible polynomial, then

disc(x3 + ax2 + bx + c) = a2b2 − 4b3 − 4a3c − 27c2 + 18abc.

Proof. To make the coefficient of x2 vanishes, we substitute x − a
3 to x. Then

(x−a

3
)3 + a(x − a

3
)2 + b(x − a

3
) + c

= (x3 − 3x2(a

3
) + 3x(a2

9
) − a3

2
7) + a(x2 − 2x(a

3
) + a2

9
) + b(x − a

3
) + c

= x3 + (−a + a)x2 + (a2

3
− 2a2

3
+ b)x + (−a3

27
+ a3

9
− ab

3
+ c)

= x3 + (−a2

3
+ b)x + (2a3

27
− ab

3
+ c).

Thus

disc(x3 + ax2 + bx + c) = disc((x − a

3
)3 + a(x − a

3
)2 + b(x − a

3
) + c)

= −4(−a2

3
+ b)3 − 27(2a3

27
− ab

3
+ c)2

= −4(−a6

27
+ a4

3
b − a2b2 + b3)

− 27(4a6

729
+ a2b2

9
+ c2 − 4a4b

81
+ 4a3c

27
− 2abc

3
)

= a2b2 − 4b3 − 4a3c − 27c2 + 18abc.
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Sometimes we can use the structure of (Zm)× for some natural number m to

find the structure of (OK/A)× for some ideal A.

Theorem 2.12. Let A be an non-zero ideal of OK. If n is the least natural number

in A, then there is the natural embedding

(Zn)× ↪→ (OK/A)×.

Proof. Consider the natural homomorphism

Z → OK/A

a 7→ [a].

The kernel of this homomorphism is Z ∩ A which is an ideal of Z. Since A is a

non-zero ideal, 0 < N(A) ∈ A and N(A) ∈ Z, then Z∩ A is not a zero ideal. Thus

Z ∩ A = nZ

for some n ∈ N. Then by the first isomorphism theorem,

Zn = Z/nZ ↪→ OK/A.

Consequently,

(Zn)× = (Z/nZ)× ↪→ (OK/A)×

as desired. Moreover since Z ∩ A = nZ, n is actually the least natural number in

A.

We will concern when the ideal A in the above theorem is P e or ⟨pe⟩ where P

is a prime ideal lying over pZ and e ∈ N. Consider the least natural number n in

P e. Since p ∈ P , pe ∈ P e, so gcd(n, pe) ∈ P e. Since n is the least natural number

in P e, n = gcd(n, pe). Since P e is a proper ideal, n ̸= 1, thus n = pm for some

m ≥ 1. Hence

(Zpm)× ↪→ (OK/P e)×.



13

For ⟨pe⟩, we proceed similarly. Since pe ∈ ⟨pe⟩, then gcd(n, pe) ∈ ⟨pe⟩. Since n is

the least natural number in ⟨pe⟩, n = gcd(n, pe), thus n = pm for some m ≥ 1.

Also since pm ∈ ⟨pe⟩, ⟨pe⟩ | ⟨pm⟩, thus e ≤ m. This forces m = e. Hence

(Zpe)× ↪→ (OK/⟨pe⟩)×.



CHAPTER III

MAIN THEOREMS

Throughout this chapter, let K be a cubic field such that OK = Z[α] for some

α ∈ OK and disc(K) = discK(α) is square-free. This α will be a root of some

monic irreducible polynomial of degree 3, say f(x), in Z[x]. Thus in essence, we

study the structure of (Z[α]/A)× for all non-zero ideals A of Z[α]. Applying the

Chinese remainder theorem, we only need to consider the structure of (Z[α]/P e)×

for all prime ideals P of Z[α] and natural numbers e.

3.1 Categories of prime factorizations

We will apply Theorem 1.11 to consider possible factorizations of a monic cubic

polynomial f(x) (mod p). There are 5 possibilities:

1. f(x) ≡ (x + a)(x + b)(x + c) (mod p) for some a, b, c ∈ Z that are non-

congruent modulo p.

2. f(x) ≡ (x2 + a1x + a0)(x + b) (mod p) for some irreducible polynomial x2 +

a1x + a0 ∈ Z[x] and b ∈ Z.

3. f(x) ≡ (x + a)2(x + b) (mod p) for some a, b ∈ Z that are non-congruent

modulo p.

4. f(x) ≡ (x + a)3 (mod p) for some a ∈ Z.

5. f(x) (mod p) is irreducible.
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By using Theorem 1.11, each factorization of f(x) corresponds respectively to

the following 5 categories:

1. ⟨p⟩ = S1S2S3

2. ⟨p⟩ = QS

3. ⟨p⟩ = R2S

4. ⟨p⟩ = R3

5. ⟨p⟩ stays prime

where prime ideals in the factorization in each categories are distinct. Ideals de-

noted by S with or without a suffix are of norm p, N(R) = p and N(Q) = p2.

3.2 S in the first, second and third categories

This is the easiest case of ideals. Since S1, S2 or S3 does not make any different

from S, we will also call them S. We will show that OK/Se ∼= Zpe . We know that

|OK/Se|N(Se) = pe so it suffices to show that [0], [1], . . . , [pe − 1] are distinct in

OK/Se. Suppose not, then [a] = [b] for some 0 ≤ a < b < pe i.e. b − a ∈ Se. We

know that pe ∈ Se so the g.c.d of pe and b − a which is pl for some 0 ≤ l < e is also

in Se and so ⟨pl⟩ ⊆ Se. By the property of ideals in OK , Se divides ⟨pl⟩. From the

categorization above, the largest power of S dividing ⟨p⟩ is 1, so the largest power

of S dividing ⟨pl⟩ is l. Since l < e so Se - ⟨pl⟩ which is a contradiction. So we have

the following theorem.

Theorem 3.1. (OK/Se)× ∼= (Zpe)×.
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3.3 Q in the second category: ⟨p⟩ = QS.

Case: p = 2

In order for ⟨2⟩ to fall in the second category, by mean of Theorem 1.11, under

modulo 2, f(x) has to be factored into a product of two irreducible polynomials, a

linear and an irreducible quadratic polynomial modulo 2. Since there is only one

irreducible polynomial modulo 2, so

f(x) ≡ (x + a0)(x2 + x + 1) (mod 2)

for some a0 ∈ Z. We can simplify the proof by shifting the value of α. Since

Z[α] = Z[α + n] and disc(α) = disc(α + n) for any n ∈ Z, we can choose a new α

such that α is a root of a monic irreducible polynomial f(x) such that

f(x) ≡ x((x − a0)2 + (x − a0) + 1) ≡ x(x2 + x + 1) (mod 2)

without changing the structure of (OK/Qe)×. So f(x) = x3 + c2x
2 + c1x + 2c0 for

some natural number c0 and odd numbers c1 and c2. Now from f(x) ≡ x(x2+x+1)

(mod 2), the principle ideal ⟨2⟩ can be factorized to prime ideals as follows:

⟨2⟩ = ⟨2, α⟩⟨2, α2 + α + 1⟩.

That is Q = ⟨2, α2 + α + 1⟩. Thus 2e and (α2 + α + 1)e are in Qe. Using the fact

that α3 + c2α
2 + c1α + 2c0 = 0, we will show that (α2 + α + 1)e = rα2 + sα + t such

that 2 - r, s, t by induction. For e = 1 it is obvious. Now let e ≥ 1 and assume

that (α2 + α + 1)e = reα
2 + seα + te such that 2 - re, se, te. So

(α2+α+1)e+1 = (reα
2+seα+te)(α2+α+1) = reα

4+(re+se)α3+(re+se+te)α2+(se+te)α+te.

Using the fact that α3 = −c2α
2 − c1α − 2c0, we have

(α2 + α + 1)e+1 = (re + se + te − rec1 − rec2 − sec2 + rec
2
2)α2

+(se + te − 2rec0 − rec1 − sec1 + rec1c2)α + (te − 2rec0 − 2sec0 + 2rec0c2).
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Except c0, we know that every constant is odd, so coefficients of α2, α and α0

in the above expression are all odd. So we get the claim that there exists odd

numbers r, s, t such that rα2 + sα + t ∈ Qe. Also 2e ∈ Qe so multiply the previous

polynomial by an inverse of r modulo 2e, we have that α2 −d1α−d0 ∈ Qe for some

odd numbers d0 and d1. This means that in Qe, [α2] = [d1α + d0]. Together with

the fact that |OK/Qe| = 22e, we have that elements in OK/Qe can be represented

uniquely as follows:

OK/Qe = {[r + sα] | 0 ≤ r, s < 2e}.

Now we consider a generating set of (OK/Qe)×. By Theorem 2.5, the order of

(OK/Qe)× is 3(22e−2) and thus has an element of order 3, denoted by [h]. Now we

consider the part of elements of order power of 2. For e ≥ 3, by Theorem 2.8

[(1 + 2α)2e−1 ] = [1 + 2e�] = [1],

while

[(1 + 2α)2e−2 ] = [1 + 2e−1α + 2e−1α2 + 2e�]

= [1 + 2e−1α + 2e−1(d1 + d0α) + 2e�]

= [1 + 2e−1α + 2e−1(1 + α) + 2e�]

= [1 + 2e−1 + 2e�]

= [1 + 2e−1]

̸= [1].

Thus the order of [1 + 2α] is 2e−1 for all e ≥ 3. For e = 1, 2, we can see that the

order of [1 + 2α] is also 2e−1. And

(1 + 4α)2e−2 = 1 + 2e−2(4α) +
(

2e−2

2

)
(4α)2 + 2e�

= 1 + 2e�,
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while

(1 + 4α)2e−3 = 1 + 2e−3(4α) + 2e�

= 1 + 2e−1α + 2e�.

Thus the order of [1 + 4α] is 2e−2 for e ≥ 3 and the order is 1 for e = 1, 2. When

e = 1, (OK/Q)× is just a cyclic group of order 3.

(OK/Q)× = ⟨[h]⟩ ∼= Z3 ∼= (Z2)× × Z3.

When e = 2, consider the product of two subgroups generated by elements of order

2:

⟨[1 + 2α]⟩⟨[−1]⟩.

Since [1 + 2α] ̸∈ ⟨[−1]⟩, so by Theorem 2.1, the product is direct. Since the order

of (OK/Q2)× is 3(22), then together with [h], an element of order 3, we get that

(OK/Q2)× = ⟨[1 + 2α]⟩ ⊙ ⟨[−1]⟩ ⊙ ⟨[h]⟩ ∼= Z2 × Z2 × Z3 ∼= (Z22)× × Z2 × Z3.

Now for e ≥ 3, consider the product of three subgroups generated by elements of

order 2:

⟨[1 + 2e−1]⟩⟨[1 + 2e−1α]⟩⟨[−1]⟩.

Since e ≥ 3, [1 + 2e−1] ̸= [−1] and so ⟨[1 + 2e−1]⟩ ⊙ ⟨[−1]⟩. The previous direct

product contains only cosets representable by natural numbers so [1 + 2e−1α] /∈

⟨[1 + 2e−1]⟩ ⊙ ⟨[−1]⟩. By Theorem 2.1, we have

⟨[1 + 2e−1]⟩ ⊙ ⟨[1 + 2e−1α]⟩ ⊙ ⟨[−1]⟩.

By computations above, the product can be written as

⟨[(1 + 4α)2e−3 ]⟩ ⊙ ⟨[(1 + 2α)2e−2 ]⟩ ⊙ ⟨[−1]⟩.
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By Theorem 2.2,

⟨[1 + 4α]⟩ ⊙ ⟨[1 + 2α]⟩ ⊙ ⟨[−1]⟩.

It is a direct product of order (2e−2)(2e−1)(2) = 22e−2. Since the order of (OK/Qe)×

is 3(22e−2), thus together with an element [h] of order 3, We have

(OK/Qe)× = ⟨[1 + 4α]⟩ ⊙ ⟨[1 + 2α]⟩ ⊙ ⟨[−1]⟩ ⊙ ⟨[h]⟩

∼= Z2e−2 × Z2e−1 × Z2 × Z3

∼= (Z2e)× × Z2e−1 × Z3.

To summarize,

Theorem 3.2. Let Q be a prime ideal lying over 2 of norm 4. Then

(OK/Qe)× ∼= (Z2e)× × Z2e−1 × Z3.

Case: p ≥ 3

We find that it is easier to consider instead (OK/SeQe)× = (OK/⟨pe⟩)× and

use the isomorphism (OK/SeQe)× ∼= (OK/Se)× × (OK/Qe)× to get the structure

of (OK/Qe)×. Elements of OK/⟨pe⟩ can be represented uniquely by

OK/⟨pe⟩ = {[r + sα + tα2] | 0 ≤ r, s, t < pe}.

Since (OK/Q)× is the unit group of the field OK/Q, it is a cyclic group of order

p2−1. (OK/Q)× can be embedded into (OK/⟨p⟩)×, thus (OK/⟨p⟩)× has an element

[h] of order p2 − 1. So

hp2−1 = 1 + p�.

Then

hpe(p2−1) = 1 + pe�.

Let m be the order of [hpe ] in (OK/⟨pe⟩)×. Then m | p2 − 1 and hpem = 1 + pe� =

1 + p�, so the order of [h] in (OK/Q)× divides pem, i.e., p2 − 1 | pem. Since
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gcd(p2 − 1, pe) = 1, p2 − 1 | m, so m = p2 − 1, i.e., [hpe ] is of order p2 − 1 in

(OK/⟨pe⟩)×. When e = 1, (OK/Q)× is the group of units of the field OK/Q thus

is cyclic of order p2 − 1, so

(OK/Q)× ∼= Zp2−1.

Now for e ≥ 2, we have

(1 + pα)pe−1 = 1 + pe�

while

(1 + pα)pe−2 = 1 + pe−1α + pe�.

Similarly

(1 + pα2)pe−1 = 1 + pe�

while

(1 + pα2)pe−2 = 1 + pe−1α2 + pe�.

Let [g] be a generator of (Zpe)× embedded naturally in (OK/⟨pe⟩)× thus [gp−1] is

of order pe−1. Consider the product

⟨[g(p−1)pe−2 ]⟩⟨[1 + pe−1α]⟩⟨[1 + pe−1α2]⟩.

As always we will use Theorem 2.1 to show that the above product is direct.

The first subgroup only contains cosets representable by natural numbers, thus

[1 + pe−1α] ̸∈ ⟨[g(p−1)pe−2 ]⟩, so the product of the first two subgroups is direct.

Since (1 + pe−1α)l = 1 + lpe−1 + pe� so the product of the first two subgroup only

contains cosets representable by an element in the form r+sα. Hence [1+pe−1α2] /∈

⟨[gpe−2 ]⟩⟨[1 + pe−1α] and we have

⟨[g(p−1)pe−2 ]⟩ ⊙ ⟨[1 + pe−1α]⟩ ⊙ ⟨[1 + pe−1α2]⟩.
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By Theorem 2.2,

⟨[gp−1]⟩ ⊙ ⟨[1 + pα]⟩ ⊙ ⟨[1 + pα2]⟩

of order pe−1pe−1pe−1 = p3e−3. Since the order of (OK/⟨pe⟩)× is (p−1)(p2 −1)p3e−3.

Together with the fact that the element [gpe−1 ] is of order p−1 and [hpe ] is of order

p2 − 1, we have that

(OK/⟨pe⟩)× = ⟨[gpe−1 ]⟩ ⊙ ⟨[gp−1]⟩ ⊙ ⟨[1 + pα]⟩ ⊙ ⟨[1 + pα2]⟩ ⊙ ⟨[hpe ]⟩

∼= Zp−1 × Zpe−1 × Zpe−1 × Zpe−1 × Zp2−1.

Now (OK/⟨pe⟩)× ∼= (OK/Se)× × (OK/Qe)× ∼= Zpe−1(p−1) × (OK/Qe)×. Hence

(OK/Qe)× ∼= Zpe−1 × Zpe−1 × Zp2−1.

To summarize,

Theorem 3.3. Let Q be a prime ideal lying over p ≥ 3 of norm p2. Then

(OK/Qe)× ∼= Zpe−1 × Zpe−1 × Zp2−1.

3.4 R in the third category: ⟨p⟩ = R2S

We will see that under our assumption that the discriminant of K is square-free

prevents the case p = 2. To fall in this category, the minimal polynomial f(x) of

α will be congruent to (x + a0)(x + a1)2 (mod p) for some a0, a1 ∈ N such that

a0 ̸≡ a1 (mod p). We can shift the value of α to make f(x) ≡ (x + b0)x2 (mod p)

for some b0 ∈ N such that p - b0 and so

⟨p⟩ = ⟨p, α + b0⟩⟨p, α⟩2.

Since f(x) ≡ x3+b0x
2 (mod p), f(x) = x3+a2x

2+pa1x+pa0 for some a0, a1, a2 ∈ Z

such that p - a2 and a2 ≡ b0 (mod p). By Theorem 2.11

disc(f) = −4a3
1p

3 +
(
−27a2

0 + 18a1a2a0 + a2
1a

2
2

)
p2 − 4a0a

3
2p
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which is not square-free if p | a0 or p = 2. Thus in this section p ̸= 2 and p - a0.

Next we consider a representation set of OK/Re. First we need this lemma:

Lemma 3.4. For all e ≥ 1, there exist c0, c1 ∈ Z such that α2 + pc1α + pc0 ∈ Re

and p - c0.

Proof. We prove by induction. First R = ⟨p, α⟩ so α2 ∈ R. Let e ≥ 1 and

assume there exists c0, c1 such that α2 + pc1α + pc0 ∈ Re and p - c0. Since α ∈ R,

α(α2 + pc1α + pc0) ∈ Re+1. Using α3 = −a2α
2 − pa1α − pa0, we have

α(α2 + pc1α + pc0) = (pc1 − a2)α2 + (pc0 − pa1)α − pa0.

Since p - a2, p - pc1 − a2, thus pc1 − a2 have an inverse modulo pe+1 ∈ Re+1.

Multiply by the inverse, we have

(pc1 − a2)−1
(
(pc1 − a2)α2 + (pc0 − pa1)α − pa0

)
∈ Re+1.

So

α2 + (pc1 − a2)−1(pc0 − pa1)α − (pc1 − a2)−1pa0 ∈ Re+1.

We see that p | (pc1 − a2)−1(pc0 − pa1) and p | (pc1 − a2)−1pa0. Moreover, p -

a0(pc1 − a2)−1, so we get the lemma.

Now we can choose representations of cosets in (OK/Re)×. Since α2+c1α+c0 ∈

Re for some c0, c1 ∈ Z, a representation of any coset in (OK/Re)× can be chosen

in a form r + sα. We divide into two cases: an exponent of R is even or odd.

When an exponent of R is even, say it is 2e for some e ≥ 1. Since ⟨pe⟩ =

R2eSe ⊆ R2e, pe, peα ∈ R2e. Also |OK/R2e| = N(R2e) = p2e, thus OK/R2e can be

represented uniquely as

OK/R2e = {[r + sα] | 0 ≤ r, s < pe}.
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Similarly for an odd exponent, say it is 2e + 1 for some e ≥ 0. Since R2e+1 ⊇

R2e+1Se = ⟨pe⟩⟨p, α⟩ = ⟨pe+1, peα⟩, pe+1, peα ∈ R2e+1. Also |OK/R2e+1| = N(R2e+1) =

p2e+1, thus OK/R2e+1 can be represented uniquely as

OK/R2e+1 = {[r + sα] | 0 ≤ r < pe+1, 0 ≤ s < pe}.

Now we consider a generating set. First, some basic cases. (OK/R)× is the

unit group of the field OK/R, so is a cyclic group of order p − 1, i.e.,

(OK/R)× ∼= Zp−1.

Since OK/R2 = {[r + sα] | 0 ≤ r, s < p} has a subgroup isomorphic to Zp,

(OK/R2)× has a subgroup isomorphic to Zp−1. By Theorem 2.5, |(OK/R2)×| =

(p − 1)p, so

(OK/R2)× ∼= Zp−1 × Zp.

Similarly OK/R3 = {[r + sα] | 0 ≤ r < p2, 0 ≤ s < p}, which has a subgroup iso-

morphic to Zp2 . Thus (OK/R3)× has a subgroup isomorphic to Zp(p−1). By Lemma

3.4, [α2] = [−pa1α − pa0], so [α2] = [p�]. Thus for p ≥ 3, [αp] = [α2(α)αp−3] =

[pα�]. Thus for any [r + sα] ∈ (OK/R3)×,

[r + sα]p = [rp + prp−1sα + · · · + pr(sα)p−1 + αp] = [rp + pα�] = [rp].

And the order of [rp] in OK/R3 is at most p − 1. So the order of any element of

(OK/R3)× is at most p(p − 1), thus

(OK/R3)× ∼= Zp−1 × Zp × Zp.

Next we consider (OK/R2e)× and (OK/R2e+1)× for e ≥ 2. For p ≥ 5,

[(1 + α)p] = [1 + pα + p(p − 1)α2 + · · · + pαp−1 + αp].
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From Lemma 3.4, we know that [α2] = [pa1α + pa0] = [p�] and for any k ≥ 2,

[pαk] = [p2αk−2�] = [p2�].

Since p ≥ 5, [αp] = [α2][α2][αp−4] = [p�][p�][�] = [p2�]. Thus from the third

term of the expansion of [(1 + α)p] onward can be combined into p2�, that is,

[(1 + α)p] = [1 + pα + p2�].

We will see later that if p = 3, [1 + α]3 may not always be [1 + 3α + 32�]. From

Lemma 3.4, α2 + 3mα + 3n ∈ Qe for some m, n ∈ Z, that is, [α2] = [−3mα − 3n].

So [α3] = [−3mα2 − 3nα] = [−3m(−3mα − 3n) − 3nα] = [(9m2 − 3n)α + 9mn] =

[−3nα + 9�]. Thus

[(r + sα)3] = [r3 + 3r2sα + 3rs2α2 + s3α3]

= [r3 + 3r2sα + 3rs2(−3mα − 3n) + (−3ns3α + 9�)]

= [r3 + 3r2sα + 9� + (−3ns3α + 9�)]

= [r3 + 3(r2s − ns3)α + 9� + 9�]

= [r3 + 3(r2s − ns3)α + 9�].

Since we get m, n from Lemma 3.4, 3 - n, so n ≡ 1 or 2 (mod 3). We will

consider first the case n ≡ 2 (mod 3), we choose r = 1 and s = 2 so that the above

coset will be [(r +sα)3] = [1+3(2−2(8))α+9�] = [1+3α+9�]. We will consider

the case p = 3 when n ≥ 1 (mod 3) together with the case p ≥ 5 because both of

the cases has r, s ∈ Z such that [r + sα]p = [1 + pα + p2�]. For e ≥ 2,

(1 + pα + p2�)pe−1 = 1 + peα + pe+1�,



25

while

(1 + pα + p2�)pe−2 = (1 + p(α + p�))pe−2

= 1 + pe−1(α + p�) + pe�

= 1 + pe−1 + pe�

Since pe, peα ∈ R2e, pe+1, peα ∈ R2e+1,

OK/R2e = {[r + sα] | 0 ≤ r < pe and 0 ≤ s < pe},

and

OK/R2e+1 = {[r + sα] | 0 ≤ r < pe+1 and 0 ≤ s < pe},

then in both (OK/R2e)× and (OK/R2e+1)×, the order of [1 + pα + p2�] is pe−1.

Since for p ≥ 5, [1 + α]p = [1 + pα + p2�] and for p = 3, [1 + 2α]3 = [1 + 3α + 9�],

then for p ≥ 5, the order of [1 + α] is pe and for p = 3, the order of [1 + 2α] is pe.

Now let [g], be a generator of (Zpe)× naturally embedded in (OK/R2e)×, so the

order of [g] in (OK/R2e)× is (p − 1)pe−1. Consider the product

⟨[g(p−1)pe−2 ]⟩⟨[1 + pe−1α]⟩.

Since ⟨[g(p−1)pe−2 ]⟩ only contains cosets representable by natural numbers, [1 +

pe−1α] ̸∈ ⟨[g(p−1)pe−2 ]⟩ so by Theorem 2.1,

⟨[g(p−1)pe−2 ]⟩ ⊙ ⟨[1 + pe−1α]⟩.

Since [r + sα]p = [1 + pα + p2�] and [1 + pα + p2�]pe−2 = [1 + pe−1α], we then have

by Theorem 2.2 that,

⟨[gp−1]⟩ ⊙ ⟨[r + sα]⟩

is a direct product of order pe−1pe = p2e−1. Thus

⟨[g]⟩ ⊙ ⟨[r + sα]⟩
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is a subgroup of (OK/R2e)× of order p2e−1(p − 1) which is the same as the order of

(OK/R2e)×. Similarly, let [g] be a generator of (Zpe+1)× embedded in (OK/R2e+1)×.

Consider the product

⟨[g(p−1)pe−1 ]⟩⟨[1 + pe−1α]⟩.

Since ⟨[g(p−1)pe−1 ]⟩ only contains cosets representable by natural numbers, then

[1 + pe−1α] ̸∈ ⟨[g(p−1)pe−1 ]⟩. Thus by Theorem 2.1,

⟨[g(p−1)pe−1 ]⟩ ⊙ ⟨[1 + pe−1α]⟩

Similarly as in the above, we have by Theorem 2.2 that

⟨[gp−1]⟩ ⊙ ⟨[r + sα]⟩

is a direct product of order pepe = p2e. Thus

⟨[g]⟩ ⊙ ⟨[r + sα]⟩

is a subgroup of (OK/R2e+1)× of order p2e(p − 1) which is the same as the order

of (OK/R2e+1)×. Thus for p = 3,

(OK/R2e)× = ⟨[g]⟩ ⊙ ⟨[1 + 2α]⟩,

(OK/R2e+1)× = ⟨[g]⟩ ⊙ ⟨[1 + 2α]⟩,

and for p ≥ 5,

(OK/R2e)× = ⟨[g]⟩ ⊙ ⟨[1 + α]⟩,

(OK/R2e+1)× = ⟨[g]⟩ ⊙ ⟨[1 + α]⟩.

Now for the special case we left out earlier which is the case when p = 3 and

α2 + 3mα + 3n ∈ Re such that n ≡ 1 (mod 3). Recall that

[(r + sα)3] = [r3 + 3(r2s − ns3)α + 9�].
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1. If 3 | r, then

[(r + sα)3] = [r3 + 3(r2s − ns3)α + 9�] = [3�].

Since 3k ∈ Re for some k, [3�] is a zero-divisor in OK/Re, then [r + sα]

is also a zero-divisor, that is, [r + sα] ̸∈ (OK/Re)×, so we do not need to

consider this case.

2. If 3 - r and 3 | s, then

[(r + sα)3] = [r3 + 3(r2s − ns3)α + 9�] = [r3 + 9�].

3. If 3 - r and 3 - s, then

r2s − ns3 ≡ r2s − s3 ≡ r2s − s ≡ s(r2 − 1) ≡ s(1 − 1) ≡ 0 (mod 3).

Thus for any [r + sα] ∈ (OK/Re)×,

[(r + sα)3] = [r3 + 3(r2s − ns3)α + 9�] = [r3 + 9�].

By Theorem 2.5,

|(OK/R2e)×| = (3 − 1)32e−1 = 2(32e−1)

and

|(OK/R2e+1)×| = (3 − 1)32e = 2(32e).

Now we consider the structures of (OK/R2e)× for e ≥ 2. From the earlier |(OK/R2e)×| =

2(32e−1). Consider

(1 + 3α)3e−1 = 1 + 3e�,

while

(1 + 3α)3e−2 = 1 + 3e−1α + 3e�.
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Let [g] be a generator of (Z3e)× embedded naturally in (OK/R2e)×. Since [1 +

3e−1α] /∈ ⟨[g2(3e−2)]⟩, by Theorem 2.1,

⟨[g2(3e−2)]⟩ ⊙ ⟨[1 + 3e−1α]⟩.

By Theorem 2.2, we have

⟨[g2]⟩ ⊙ ⟨[1 + 3α]⟩

is a direct product of subgroups of order 3e−13e−1 = 32e−2. Thus ⟨[g]⟩ ⊙ ⟨[1 + 3α]⟩

is of order 2(32e−2). This means that ⟨[g]⟩ ⊙ ⟨[1 + 3α]⟩ is a subgroup of index 3 in

(OK/R2e)×. Since ⟨[g]⟩ ⊙ ⟨[1 + 3α]⟩ is isomorphic to Z2 × Z3e−1 × Z3e−1 , then the

structure of (OK/R2e)× is either

Z2 × Z3e × Z3e−1 or Z2 × Z3e−1 × Z3e−1 × Z3.

From the earlier, for any [r + sα] ∈ (OK/R2e)×, [r + sα]3 = [r3 + 9�], so [r +

sα]2(3e−1) = [r3 + 9�]2(3e−2) = [r3e−1 + 3e�]2 = [r2(3e−1)] = [1]. Thus the order of

any element in (OK/R2e)× is not greater than 2(3e−1). This means that

(OK/R2e)× ∼= Z2 × Z3e−1 × Z3e−1 × Z3.

Now consider (OK/R2e+1)×, which is of order (p − 1)p2e. Let [g] be a generator of

(Z3e+1)× embedded naturally in (OK/R2e+1)×. Then the subgroup ⟨[g]⟩⊙⟨[1+3α]⟩

which is of order 2(3e)(3e−1) = 2(32e−1) is of index 3 and isomorphic to Z2 ×Z3e ×

Z3e−1 . Hence the structure of (OK/R2e+1)× is either

Z2 × Z3e+1 × Z3e−1 , Z2 × Z3e × Z3e or Z2 × Z3e × Z3e−1 × Z3.

Similar to the above, any element in (OK/R2e+1)× is of order at most 2(3e) so the

first form is impossible. To show that the second form is also impossible, we need

the following lemma:
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Lemma 3.5. Let p be a prime number and e ∈ N. For any element (a, b) of order

pe in the additive group Zpe × Zpe, we can find an element (c, d), also of order pe,

such that

Zpe × Zpe = ⟨(a, b)⟩ ⊕ ⟨(c, d)⟩.

Proof. Since (a, b) is of order pe, (pe−1a, pe−1b) ̸= (0, 0). That is pe−1a ̸= 0 or

pe−1b ̸= 0. If pe−1a ̸= 0, then we choose (c, d) = (0, 1). Similarly, if pe−1b ̸= 0, we

choose (c, d) = (1, 0).

Suppose for a contradiction that (OK/R2e+1)× ∼= Z2 × Z3e × Z3e . Let [g] be a

generator of (Z3e+1)× naturally embedded in (OK/R2e+1)×, then the order of [g2] is

pe. By the Lemma 3.5 above, we can find [r+sα] of order 3e such that ⟨[g2]⟩⊙⟨[r+

sα]⟩. Since [r+sα]3 = [r3 +9�], [r+sα]3e−1 = [r3 +9�]3e−2 = [r3e−1 ]. Since [r+sα]

is of order 3e, [r3e−1 ] is of order 3. Since [g] is a generators of (Z3e+1)× embedded

naturally in (OK/R2e+1)×, ⟨[g2]⟩ will contains all coset of order 3 generated by

natural numbers, specifically [r3e−1 ]. Thus the product ⟨[g2]⟩⟨[r+sα]⟩ is not direct,

which is a contradiction. Hence the structure of (OK/R2e+1)× is not Z2 ×Z3e ×Z3e

either. This leaves only one possibility that is

(OK/R2e+1)× ∼= Z2 × Z3e × Z3e−1 × Z3.

Now that we established the structure of this special case, we will find out which

minimal polynomial f(x) that will make this special case occurs. We already have

that this special case occurs when there are m, n ∈ Z such that α2 +3mα+3n ∈ Re

and n ≡ 1 (mod 3). Let f(x) = x3 + ax2 + 3bx + 3c, that is α3 = −aα2 − 3bα − 3c.

For e = 1, 2 or 3 the structure of (OK/Re)× are the same as n ≡ 1 or 2 (mod 3).

Thus we consider e ≥ 4. We will use the following lemma:

Lemma 3.6. Let e ≥ 4 and α2 + 3mα + 3n ∈ Re. Then for any k, l ∈ Z, such

that α2 + kα + l ∈ Re, we have that 3 | l and n ≡ l
3 (mod 3).
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Proof. Since α2 + 3mα + 3n, α2 + kα + l ∈ Re, (3m − l)α + (3n − l) ∈ Re. If e

is even, e = 2i for some i ≥ 2, then from Page 23, last paragraph, 3i, 3iα ∈ R2i.

Suppose for contradiction that 3m − k ̸≡ 0 (mod 3i). Then (3m − l)α + (3n − l)

can be reduced by 3i ∈ Re to rα + (3n − l) ∈ R2i for some 0 < r < 3i. This makes

[rα + (3n − l)] = [0] in OK/R2i, which is a contradiction since we have that every

coset in {[r + sα] | 0 ≤ r, s < 3i} are distinct. That is r = 0 and 3n − l ∈ R2i.

Using the same argument we have 3i | 3n − l. Since i ≥ 2, 9 | 3n − l, then

3 | n− l
3 . If e is odd, e = 2i+1 for some i ≥ 2. Also from Page 24, first paragraph,

3i+1, 3iα ∈ R2i+1. We can show similarly to above that n ≡ l
3 (mod 3).

From the lemma we have that if we find one element α2 + 3mα + 3n ∈ Re such

that n ≡ 2 (mod 3), other elements of the form α2 + 3m′α + 3n′ ∈ Re will also

be such that n′ ≡ 2 (mod 3). Thus to show that there is no m, n ∈ Z such that

α2 + 3mα + 3n ∈ Re and n ≡ 1, we only need to show that there is m, n ∈ Z such

that α2 + 3mα + 3n ∈ Re and n ≡ 2 (mod 3).

Let e ≥ 4, assume α2 + 3mα + 3n ∈ Re. Then α3 + 3mα2 + 3nα ∈ Re+1.

α3 +3mα2 +3nα = (−aα2 −3bα−3c)+3mα2 +3nα = (3m−a)α2 +(3n−3b)α−3c.

Under inverse modulo 3k ∈ Re+1, α2 +(3m−a)−1(3n−3b)α−3c(3m−a)−1 ∈ Re+1.

Under modulo 3, −c(3m − a)−1 ≡ −c(−a)−1 ≡ ca−1 (mod 3). That is Re+1 will

fall in the special case if and only if a ≡ c (mod 3). To summarize

Theorem 3.7. Let e ≥ 2. If either

1. p ≥ 5, or

2. p = 3 and f(x) = x3 + ax2 + 3bx + 3c such that a ̸≡ c (mod 3), then

(OK/R)× = Zp−1,

(OK/Re)× = Zp−1 × Z
p⌊ e−1

2 ⌋ × Z
p⌊ e

2 ⌋
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If p = 3 and f(x) = x3 + ax2 + 3bx + 3c such that a ≡ c (mod 3), then

(OK/R)× = Z2,

(OK/Re)× = Z2 × Z
3⌊ e−1

2 ⌋ × Z
3⌊ e−2

2 ⌋ × Z3.

3.5 R in the fourth category: ⟨p⟩ = R3

Under our assumption that the discriminant of the minimal polynomial of α is a

square-free rational integer, this case does not actually occur because for ⟨p⟩ to

be factorized to R3, the minimal polynomial f(x) has to satisfy f(x) ≡ (x + a)3

(mod p) for some a ∈ N. We can shift the value of α to α − a without change

disc(f) so that f(x) ≡ x3 (mod p). This makes f(x) to be in the form f(x) =

x3 + pa2x
2 + pa1x + pa0 for some a0, a1, a2 ∈ Z. Input in Theorem 2.11, the

discriminant of f is

disc(f) = −27p2a2
0 − 4p3a3

1 + 18p3a0a1a2 + p4a2
1a

2
2 − 4p4a0a

3
2,

which is divisible by p2, thus is not square-free.

3.6 ⟨p⟩ stays prime

Case: p = 2

In order for ⟨2⟩ to stay prime, the minimal polynomial f(x) of α has to remain

irreducible under modulo 2. There are only two irreducible cubic polynomials

modulo 2, x3 + x + 1 and x3 + x2 + 1. Thus f(x) is congruent modulo 2 to one of

the two polynomials. That is f(x) = x3 − a2x
2 − a1x − a0 for some a0, a1, a2 ∈ Z

such that a0 is odd and either a1 or a2 is odd (we turn those signs to minus to

make some latter calculations less confusing, specifically because it makes α3 =
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a2α
2 + a1α + a0). We get that

α4 = α(a2α
2 + a1α + a0) = a2(a2α

2 + a1α + a0α) + a1α
2 + a0

= (a1 + a2
2)α2 + (a0 + a1a2)α + a0a2.

Now we consider a generating set of (OK/⟨2e⟩)×. First, since |(OK/⟨2e⟩)×| =

7(8e−1), (OK/⟨2e⟩)× has an element [h] of order 7. Now we consider the part with

elements of order power of 2. First one, 1 + 2α, is the same as the second category

Q when p = 2. We repeat the result here. For e ≥ 3

(1 + 2α)2e−1 = 1 + 2e�

while

(1 + 2α)2e−2 = 1 + 2e−1α + 2e−1α2 + 2e�.

Next

(1 + 2α2)2e−1 = 1 + 2e�

while

(1 + 2α2)2e−2 = 1 + 2e−1α2 + 2e−1α4 + 2e�

= 1 + 2e−1α2 + 2e−1
(
(a1 + a2

2)α2 + (a0 + a1a2)α + a0a2
)

+ 2e�
Since a0 is odd and either a1 or a2 is odd, a1 + a2

2 and a0 + a1a2 are both odd, so

the above expression can be reduced to

= 1 + 2e−1a0a2 + 2e−1α + 2e�.

Now we are ready to find the structure of (OK/⟨2e⟩)×. If e = 1, it is just a

cyclic group. For e = 2, consider ⟨[−1]⟩⟨[1 + 2α]⟩⟨[1 + 2α2]⟩ which is the product

of three subgroups, each generated by an element of order 2. [1 + 2α] ̸∈ ⟨[−1]⟩ so

the product of the first two subgroup is direct. Also the product of the first two

subgroups only contains coset representable by an element r+sα for some r, s ∈ Z.
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This makes [1 + 2α2] ̸∈ ⟨[−1]⟩⟨[1 + 2α]⟩. Together with [h], an element of order 7

in (OK/⟨22⟩)×,

(OK/⟨22⟩)× = ⟨[h]⟩ ⊙ ⟨[−1]⟩ ⊙ ⟨[1 + 2α]⟩ ⊙ ⟨[1 + 2α2]⟩.

Now for e ≥ 3, consider

⟨[52e−3 ]⟩⟨[−1]⟩⟨[1 + 2e−1a0a2 + 2e−1α]⟩⟨[1 + 2e−1α + 2e−1α2]⟩.

As usual we will use Theorem 2.1 to help showing that the previous product is

direct. (Z2e)× is embedded naturally in (OK/⟨2e⟩)×. Thus since [5] and [−1] form

a generating set of (Z2e)×, then ⟨[52e−3 ]⟩ ⊙ ⟨[−1]⟩ is direct. ⟨[52e−3 ]⟩ × ⟨[−1]⟩ only

contains cosets representable by r for some r ∈ Z thus the product of the first two

subgroups does not contain [1 + 2e−1a0a2 + 2e−1α]. This makes the product of the

first three subgroups direct. Again the product of the first three subgroups only

contains cosets representable by r + sα for some r, s ∈ Z so the full product is

direct. By Theorem 2.2, the product

⟨[5]⟩⟨[−1]⟩⟨[1 + 2α2]⟩⟨[1 + 2α]⟩

is also direct. It is a product of order (2e−2)2(2e−1)2e−1 = 23e−3. Combine with

[h], an element of order 7, we get

(OK/⟨2e⟩)× = ⟨[h]⟩ ⊙ ⟨[5]⟩ ⊙ ⟨[−1]⟩ ⊙ ⟨[1 + 2α]⟩ ⊙ ⟨[1 + 2α2]⟩

= Z7 × Z2e−2 × Z2 × Z2e−1 × Z2e−1 .

To summarize

Theorem 3.8. If the ideal ⟨2⟩ stays prime, then

(OK/⟨2e⟩)× ∼= Z7 × (Z2e)× × Z2e−1 × Z2e−1 .
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Case: p ≥ 3

This category use almost the same set of generators as the case Q when p ≥ 3

and also use the same explanation that

⟨[gp−1]⟩ ⊙ ⟨[1 + pα]⟩ ⊙ ⟨[1 + pα2]⟩.

One different is that since ⟨p⟩ is a prime ideal, (OK/⟨p⟩)× is a cyclic group of order

p3 − 1 generated by [h] for some h ∈ OK . It follows that hp3−1 = 1 + p�. Thus for

e ≥ 2,

h(p3−1)pe−1 = (1 + p�)pe−1 = 1 + pe�.

Since the order of h in (OK/⟨p⟩)× is p3 − 1, p3 − 1 divides the order of h in

(OK/⟨pe⟩)×. Hence [hpe−1 ] is of order p3 − 1 in (OK/⟨pe⟩)×. Thus

(OK/⟨pe⟩)× = ⟨[hpe−1 ]⟩ ⊙ ⟨[gp−1]⟩ ⊙ ⟨[1 + pα]⟩ ⊙ ⟨[1 + pα2]⟩

∼= Zp3−1 × Zpe−1 × Zpe−1 × Zpe−1 .

To summarize,

Theorem 3.9. Let p ≥ 3. If the ideal ⟨p⟩ stays prime, then

(OK/⟨pe⟩)× ∼= Zp3−1 × Zpe−1 × Zpe−1 × Zpe−1 .

3.7 Examples

Consider f(x) = x3 + x + 1. Since it is a monic polynomial of order 3, if f(x) is

not irreducible, then it has a root in Z dividing 1. Substituting 1 and −1 in f(x)

does not give 0, so x3 + x + 1 is irreducible. Let α be a root of f(x) and K = Q[α].

Since

disc(x3 + x + 1) = −4 − 27 = −31
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which is square-free, OK = Z[α] and disc(K) is also square-free. We select some

prime numbers to show some factorizations of ⟨p⟩ by using Theorem 1.11

1. Let p = 47. Since x3 + x + 1 ≡ (x + 12)(x + 13)(x + 22) (mod 47),

⟨47⟩ = ⟨47, α + 12⟩⟨47, α + 13⟩⟨47, α + 22⟩.

2. Let p = 3. Since x3 +x+1 (mod 3) ≡ (x−1)(x2 +x+2) ≡ (x+2)(x2 +x+2)

(mod 3),

⟨3⟩ = ⟨3, α + 2⟩⟨3, α2 + α + 2⟩.

3. Let p = 31. Since x3 + x + 1 ≡ (x + 17)2(x + 28) (mod 31),

⟨31⟩ = ⟨31, α + 17⟩2⟨31, α + 28⟩.

4. Let p = 2. Since x3 + x + 1 (mod 2) is irreducible, ⟨2⟩ is already a prime

ideal.

Using previous results, we have

1. ⟨47, α + 12⟩, ⟨47, α + 13⟩, ⟨47, α + 22⟩, ⟨3, α + 2⟩ and ⟨31, α + 28⟩ are ideals

we denoted by S in Section 3.1, thus

(OK/⟨47, α + 12⟩e)× ∼= (OK/⟨47, α + 13⟩e)× ∼= (OK/⟨47, α + 22⟩e)× ∼= (Z47e)×,

(OK/⟨3, α + 2⟩e)× ∼= (Z3e)×,

and

(OK/⟨31, α + 28⟩e)× ∼= (Z31e)×.

2. ⟨3, α2 + α + 2⟩ is a ideal in the second category which is denoted by Q. Thus

(OK/⟨3, α2 + α + 2⟩e)× ∼= Z3e−1 × Z3e−1 × Z8.
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3. ⟨31, α + 17⟩ is a ideal in the third category which is we denoted by R. Thus

(OK/⟨31, α + 17⟩e)× ∼= Z30 × Z
31⌊ e−1

2 ⌋ × Z31⌊ e
2 ⌋ .

4. ⟨2⟩ stays prime, so it is in the fifth category. Thus

(OK/⟨2⟩e)× ∼= Z7 × (Z2e)× × Z2e−1 × Z2e−1 .
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