การแจกแจงเลขโดดหลักแรกของอนุพันธ์ย่อยของคอปูลา

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2559
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็นของวิทยานิพนธธดั้งแตปีปการกึกษา 2554 ที่ให้บริการในคลังับญญาจุฟาบ (CUIR) เป็นเฟ้มข้อมูลของนิสิสเด้าของวิทยานิพนธีที่ส่งผ่านทางบัณติตวิทยาลัย
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University

FIRST DIGIT DISTRIBUTIONS OF PARTIAL DERIVATIVES OF COPULAS

By Mr. Anusorn Junchuay
Field of Study Mathematics
Thesis Advisor Associate Professor Songkiat Sumetkijakan, Ph.D.
Thesis Co-advisor Associate Professor Tippawan Santiwipanont

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

THESIS COMMITTEE
(Associate Professor Polkit/Sangvanich, Ph.D.)

Chairman
(Professor Kritsana Neammanee, Ph.D.)

(Associate Professor Songkiat Sumetkijakan, Ph.D.)

Thesis Co-advisor
(Associate Professor Tippawan Santiwipanont)

Examiner
(Jiraphan Suntornchost, Ph.D.)

External Examiner
(Associate Professor Wararit Panichkitkosolkul, Ph.D.)

อนุสรณ์ จันทร์ช่วย : การแจกแจงเลขโดดหลักแรกของอนุพันธ์ย่อยของคอปูลา . (FIRST DIGIT DISTRIBUTIONS OF PARTIAL DERIVATIVES OF COPULAS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : รศ.ดร.ทรงเกียรติ สุเมธกิจการ, อ.ที่ปรึกษาวิทยานิพนธ์ ร่วม : รศ.ทิพวัลย์ สันติวิภานนท์ 48 หน้า.

เราเสนอตัวบ่งชี้การขึ้นต่อกันของสองตัวแปรสุ่มที่มีฟังก์ชันการแจกแจงต่อเนื่อง การ ศึกษาของเรามีจุดเริ่มต้นจากข้อเท็จจริงที่ทราบกันดีว่าค่าคาดหมายของตัวแปรสุ่มหนึ่งภาย ใต้เงื่อนไขของอีกตัวแปรสุ่มหนึ่งถูกกำหนดอย่างสมบูรณ์โดยอนุพันธ์ย่อยของคอปูลาของสอง ตัวแปรสุ่มนั้น เราจึงศึกษาว่าฟังก์ชันการแจกแจงเลขโดดหลักแรกของอนุพันธ์ย่อยของคอปูลา ก่อให้เกิดตัววัดการขึ้นต่อกันหรือไม่ สิ่งที่เราสนใจคือค่าสูงสุดแบบบรรทัดฐานของฟังก์ชันการ แจกแจงเลขโดดหลักแรกของอนุพันธ์ยอยของคอปูลา เรายังแสดงว่าค่าสูงสุดแบบบรรทัดฐานนี้ บรรลุค่าต่ำสุดถ้าตัวแปรสุ่มอิสระต่อกัน และบรรลุค่าสูงสุดถ้าตัวแปรสุ่มขึ้นต่อกันอย่างสมบูรณ์ อย่างไรก็ตามเราพบ ตัวอย่างค้านของบทกลับ ของทั้งคู่ ท้าย ที่สุดเราเสนอวิธีการ คำนวณเชิง ตัวเลขของตัวบ่งชี้การขึ้นต่อกัน ถึงแม้ว่าทั้งความอิสระต่อกันและความขึ้นต่อกันอย่างสมบูรณ์ ไม่สามารถถูกแสดงลักษณะโดยตัวบ่งชี้การขึ้นต่อกัน แต่เราแสดงผ่านคอปูลาบางคลาสที่มี พารามิเตอร์ว่าค่าเชิงตัวเลขของตัวบ่งชี้การขึ้นต่อกันแปรผันตรงกับค่าของตัววัดการขึ้นต่อกัน ของซีเบิร์ก-สโทเมนอฟและของทรัตช์นิก

\#\# 5772205223 : MAJOR MATHEMATICS, KEYWORDS : MEASURES OF DEPENDENCE/ FIRST DIGIT DISTRIBUTIONS/ BIVARIATE COPULAS

ANUSORN JUNCHUAY : FIRST DIGIT DISTRIBUTIONS OF PARTIAL DERIVATIVES OF COPULAS. ADVISOR : ASSOC. PROF. SONGKIAT SUMETKIJAKAN, Ph.D., COADVISOR : ASSOC. PROF. TIPPAWAN SANTIWIPANONT, 48 pp.

We propose an indicator of dependence between two random variables X and Y whose distribution functions are continuous. The starting point of our investigation is the well-known fact that if C is the copula of X and Y, then the conditional expectations of Y given X and of X given Y are completely determined by the first partial derivatives of C. We then investigate whether the distributions of the first digits of $\partial_{1} C$ and $\partial_{2} C$ can give rise to a measure of dependence. Our candidates are normalized maxima of the first digit distributions of $\partial_{i} C$. We also show that these normalized maxima attain minimum value if X and Y are independent and attain maximum value when they are completely dependent. However, both converses are not true as we are able to produce counterexamples. At last, we introduce a numerical computation of the dependence indicators. Although neither independence nor complete dependence can be characterized by the dependence indicators, we illustrate via some parametric classes of copulas that their numerical values are directly proportional to those of the dependence measures introduced by Siburg-Stoimenov and of Trutschnig.

Department	. Mathematics and	Student's Signature
	Computer Science	Advisor's Signature
Field of Study	Mathematics	
Academic Year	2016	Co-advisor's signatur

ACKNOWLEDGEMENTS

I would first like to express to my thesis advisor, Associate Professor Dr.Songkiat Sumetkijakan and my thesis co-advisor, Associate Professor Tippawan Santiwipanont my deepest gratitude for their invaluable advice, patience and motivation throughout my research. Moreover, I largely appreciate their empathy and support that they always help me and give me viewpoint to deal with the problem in my real life.

I would also specially like to acknowledge Professor Dr.Kritsana Neammanee, the chairman, Dr.Jiraphan Suntornchost and Associate Professor Dr.Wararit Panichkitkosolkul, the committee members, for their insightful suggestions. Additionally, I would like to deeply thank all of my teachers who have taught me for my knowledge and skills.

My thanks also goes to Withayabandhit scholarship for financial support throughout the first year of my study.

Last but not least, expression my gratitude goes towards my parents for their encouragement upholding me in completion of my research. Also I thank my friends for enhancing me to strong and happy.

CONTENTS

Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
CHAPTER
1 INTRODUCTION 1
2 PRELIMINARIES 3
3 DEPENDENCE INDICATORS
FROM FIRST DIGIT DISTRIBUTIONS 19
3.1 Upper level functions 19
3.2 An indicator of dependence 27
4 NUMERICAL COMPUTATION 36
4.1 Numerical computation 36
4.2 Examples and comparisons 40
REFERENCES 43
APPENDIX 45
BIOGRAPHY 48

CHAPTER I

INTRODUCTION

In measuring the level of dependence between two random variables, since it largely depends on a given circumstance, measures of dependence are needed for consistency. Unsurprisingly, measures of dependence have been extensively studied. Their simple properties are ability to detect independence and complete dependence and invariance under certain types of transformations. Many dependence measures have been proposed and investigated via bivariate copulas owing to Sklar's theorem [10]. It says that copulas are functions describing the dependence structure of two random variables regardless of their marginal distributions. Such dependence measures are called copula-based measures of dependence. Via many copula-based measures of dependence, e.g. Siburg and Stoimenov's ω_{1} (see [15]) and Trutschnig's ζ_{1} (see [16]), it has become more transparent that dependence information is encoded in the first order partial derivatives of copulas. Also Darsow, Nguyen and Olsen [2] have shown that the first order partial derivatives of copulas coincide with the conditional distributions of one random variable given the other. From experiments, the first digit distribution yields some information about the function and is computationally robust for most copulas. This motivates us to propose a new dependence indicator based on the first digit distributions of the partial derivatives of copulas.

For $i=1,2$, we define functions $\mathrm{FD}_{d}\left(\partial_{i} C\right)$ and $\mathrm{MF}_{i}(C)$ to introduce a dependence indicator $\mu_{i}(C)$ of copula C as follows:

$$
\begin{gathered}
\mathrm{FD}_{d}\left(\partial_{i} C\right)=\frac{\lambda_{2}\left(\left\{(u, v) \in[0,1]^{2}: \text { the first digit of } \partial_{i} C(u, v) \text { is } d\right\}\right)}{\lambda_{2}\left(\left\{(u, v) \in[0,1]^{2}: \partial_{i} C(u, v)>0\right\}\right)} \in[0,1], \\
\mathrm{MF}_{i}(C)=\max _{d=1, \ldots, 9} \mathrm{FD}_{d}\left(\partial_{i} C\right) \in\left[\frac{1}{9}, 1\right] \quad \text { and } \mu_{i}(C)=\sqrt{\frac{9 \mathrm{MF}_{i}(C)-1}{8}} \in[0,1],
\end{gathered}
$$

where λ_{2} denotes Lebesgue measure on $[0,1]^{2}$. We shall only investigate μ_{1} as μ_{2} can be studied in a completely similar manner. We show that although μ_{1} lacks the ability to totally detect independence and complete dependence, it yields levels of dependence as
well as ω_{1} and ζ_{1} for certain parametric classes of copulas.
In Chapter II, we give a brief introduction to copulas and selected tools for proving the main results. Chapter III covers two sections. In the first section, theoretical facts of the upper level sets are proved. After all the prerequisites for $\mathrm{FD}_{d}, \mathrm{MF}_{1}$ and μ_{1} are ready, we prove the main results in the second section. The last chapter is devoted to numerical computation of μ_{1}, examples and comparisons.

CHAPTER II

PRELIMINARIES

First we introduce some notations used throughout this thesis. Let \mathbb{I} denote the closed unit interval $[0,1], \mathcal{B}(\mathbb{I})$ the Borel σ-algebra on \mathbb{I}, λ and λ_{2} the Lebesgue measures on \mathbb{I} and \mathbb{I}^{2}, respectively. We may simply write $\int_{A} \mathrm{~d} x$ for the Lebesgue integral on a subset A of \mathbb{I}. For any set $S, \mathbb{1}_{S}$ denotes a characteristic function of S. As usual, \mathbb{N}, \mathbb{Z} and \mathbb{R} denote the sets of natural, integer and real numbers, respectively. Let us start with a definition of copulas.

Definition 2.1. A bivariate copula is a function C from \mathbb{I}^{2} to \mathbb{I} with the following properties.
I. (Boundary conditions) For every u, v in $\mathbb{I}, C(u, 0)=0=C(0, v), C(u, 1)=u$ and $C(1, v)=v$.
II. (2-increasing property) For each rectangle $R:=\left(u_{1}, u_{2}\right] \times\left(v_{1}, v_{2}\right] \subseteq \mathbb{I}^{2}$,

$$
V_{C}(R):=C\left(u_{2}, v_{2}\right)-C\left(u_{2}, v_{1}\right)-C\left(u_{1}, v_{2}\right)+C\left(u_{1}, v_{1}\right) \geq 0 .
$$

Each copula C induces a unique measure μ_{C} on \mathbb{I}^{2} via $\mu_{C}(R):=V_{C}(R)$ for any rectangle $R \subseteq \mathbb{I}^{2}$ and a standard extension to all Borel subsets of \mathbb{I}^{2} using CarathéodoryHahn extension theorem. The support of C is defined as the support of its induced measure μ_{C}, i.e. it is the complement of the union of all open subsets of \mathbb{I}^{2} that are μ_{C}-null sets. Moreover, the induced measure μ_{C} is a doubly stochastic measure, as for every Borel subset B of \mathbb{I},

$$
\mu_{C}(\mathbb{I} \times B)=\lambda(B)=\mu_{C}(B \times \mathbb{I}) .
$$

Conversely, for each doubly stochastic measure μ, the copula corresponding to that measure μ is obtained by $C(u, v)=\mu([0, u] \times[0, v])$. In fact, this is a one-to-one correspon-
dence between the set of copulas and the set of doubly stochastic measures.

The joint continuity of copulas can be obtained from a simple fact that every copula C is Lipschitz, i.e. for every $u_{1}, u_{2}, v_{1}, v_{2} \in \mathbb{I}$,

$$
\left|C\left(u_{2}, v_{2}\right)-C\left(u_{1}, v_{1}\right)\right| \leq\left|u_{2}-u_{1}\right|+\left|v_{2}-v_{1}\right| .
$$

As a consequence, C is absolutely continuous in each argument, or, for all $u, v \in \mathbb{I}, t \mapsto$ $C(u, t)$ and $t \mapsto C(t, v)$ are absolutely continuous on \mathbb{I}. Another important property of copulas is the non-decreasing property in each argument being a virtue of the 2 -increasing property. By the Lebesgue Differentiation Theorem, this implies that for any $v \in \mathbb{I}$, the first order partial derivative $\overline{\partial_{1} C(u, v)}:=\frac{\partial}{\partial u} C(u, v)$ exists for almost all $u \in \mathbb{I}$ and for any $u \in \mathbb{I}$, the first order partial derivative $\partial_{2} C(u, v):=\frac{\partial}{\partial v} C(u, v)$ exists for almost all $v \in \mathbb{I}$ and the derivatives $\partial_{i} C(i=1,2)$ are measurable. For $u, v \in \mathbb{I}$ such that $\partial_{i} C(u, v)$ exists, $0 \leq \partial_{i} C(u, v) \leq 1(i=1,2)$. This is again a result of the Lipschitz condition. Moreover, using the 2-increasing property, it is straightforward to show that the partial derivatives of copulas are non-decreasing almost everywhere in the sense that for every $u, v \in \mathbb{I}$, the functions $t \mapsto \partial_{1} C(u, t)$ and $t \mapsto \partial_{2} C(t, v)$ are non-decreasing on a subset of \mathbb{I} of full measure.

Owing to Sklar's theorem, see [10], copulas become very useful.
Theorem 2.2 (Sklar's theorem). Let X and Y be random variables with distribution functions F and G, respectively, and joint distribution function H. Then there exists a (unique on $\operatorname{Ran} F \times \operatorname{Ran} G$) copula C such that for all $x, y \in \mathbb{R}$,

$$
\begin{equation*}
H(x, y)=C(F(x), G(y)) . \tag{2.1}
\end{equation*}
$$

Conversely, if C is a copula, F and G are distribution functions, then the function H defined by (2.1) is a joint distribution function with the margins F and G, respectively.

Additionally, the uniqueness of the copula of random variables immediately follows
when the marginal distribution functions are continuous. Because of this, we will assume that every random variable in this thesis has continuous distribution function. Here, under this assumption, we denote by $C_{X, Y}$ (called the copula of X and Y) the unique copula of random variables X and Y satisfying (2.1). When the random variables X and Y are understood, we may simply write C.

Surprisingly, the first order partial derivatives of copulas of random variables are related to the conditional probabilities of those random variables. We recall some basic facts on conditional probabilities.

For a random variable X, we denote by $\sigma(X)$ the σ-algebra generated by all inverse images of Borel sets under X, that is $\sigma(X): \equiv\left\{X^{-1}(B): B \in \mathcal{B}(\mathbb{R})\right\}$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra on \mathbb{R}.

Definition 2.3. Let X and Y be random variables on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$ with $\mathrm{E}[|X|]<\infty$. Then the conditional expectation of X with respect to Y is a random variable Z on a measurable space $(\Omega, \sigma(Y))$ satisfying

$$
\begin{equation*}
\int_{A} X \mathrm{dP}=\int_{A} Z \mathrm{dP} \text { for all } A \in \sigma(Y) \text {. } \tag{2.2}
\end{equation*}
$$

It is straightforward to show that set function on $\sigma(Y)$ defined by the left hand side of identity (2.2) is absolutely continuous with respect to P. Hence, by Radon-Nikodym Theorem, see [11], the conditional expectation is in fact the Radon-Nikodym derivative and it is unique up to a set of measure zero and we then denote by $\mathrm{E}[X \mid Y]$ the conditional expectation of X with respect to Y. Naturally, we define the conditional probability of $B \in \mathcal{F}$ given Y by $\mathrm{P}(B \mid Y):=\mathrm{E}\left[\mathbb{1}_{B} \mid Y\right]$. One can see that $\mathrm{P}(B \mid Y)$ is the unique (a.e.) $\sigma(Y)$-measurable function such that

$$
\mathrm{P}(A \cap B)=\int_{A} \mathbb{1}_{B} \mathrm{dP}=\int_{A} \mathrm{P}(B \mid Y) \mathrm{dP} \quad \text { for all } A \in \sigma(Y) .
$$

Let us summarize essential properties of the conditional expectation. For more details, see $[4,11,13,18]$.

Theorem 2.4. Let X and Y be random variables on a common probability space. Suppose that $\mathrm{E}[|X|]<\infty$.
I. $\mathrm{E}[\mathrm{E}[X \mid Y]]=\mathrm{E}[X]$
II. If $Y=c$ a.s. $(c \in \mathbb{R})$, then $\mathrm{E}[X \mid Y]=\mathrm{E}[X]$ a.s.
III. If X and Y are independent, then $\mathrm{E}[X \mid Y]=\mathrm{E}[X]$ a.s.
IV. If Z is $\sigma(Y)$-measurable and bounded, then $\mathrm{E}[Z X \mid Y]=Z \mathrm{E}[X \mid Y]$ a.s.

We are now ready to prove a surprising result.
Theorem 2.5. Let C be the copula, of random variables X and Y whose continuous marginal distributions are F and G, respectively. Then for all $x, y \in \mathbb{R}$,
I. $\mathrm{P}(Y \leq y \mid X)(\omega)=\mathrm{E}[\mathbb{1}\{Y \leq y\} \mid X](\omega)=\partial_{1} C(F(X(\omega)), G(y))$ a.e. $\omega \in \Omega$; and II. $\mathrm{P}(X \leq x \mid Y)(\omega)=\mathrm{E}\left[\mathbb{1}_{\{X \leq x\}} \mid Y\right](\omega)=\partial_{2} C(F(x), G(Y(\omega)))$ a.e. $\omega \in \Omega$.

Proof. Since $\mathrm{P}(X \leq x \mid Y)=\mathrm{E}\left[\mathbb{1}_{\{X \leq x\}} \mid Y\right]$ is the unique a.e. $\sigma(Y)$-measurable function such that

$$
\int_{A} \mathbb{1}_{\{X \leq x\}}(\omega) \mathrm{dP}(\omega)=\int_{A} \mathrm{E}\left[\mathbb{1}_{\{X \leq x\}} \mid Y\right](\omega) \mathrm{dP}(\omega)
$$

for all $A \in \sigma(Y)$. Note that $\partial_{2} C(F(x), G(Y(\cdot)))$ is $\sigma(Y)$-measurable. It suffices to show that

$$
\int_{A} \mathbb{1}_{\{X \leq x\}}(\omega) \mathrm{dP}(\omega)=\int_{A} \partial_{2} C(F(x), G(Y(\omega))) \mathrm{dP}(\omega)
$$

for $A=Y^{-1}((-\infty, a]), a \in \mathbb{R}$. By making changes of variables,

$$
\begin{aligned}
\int_{Y^{-1}((-\infty, a])} \partial_{2} C(F(x), G(Y(\omega))) \mathrm{dP}(\omega) & =\int_{-\infty}^{a} \partial_{2} C(F(x), G(y)) \mathrm{d} G(y) \\
& =\int_{0}^{G(a)} \partial_{2} C(F(x), v) \mathrm{d} v
\end{aligned}
$$

$$
\begin{aligned}
& =C(F(x), G(a))-C(F(x), 0) \\
& =C(F(x), G(a))=\mathrm{P}(X \leq x, Y \leq a) \\
& =\int_{\Omega} \mathbb{1}_{\{X \leq x\}}(\omega) \cdot \mathbb{1}_{\{Y \leq a\}}(\omega) \mathrm{dP}(\omega) \\
& =\int_{\{Y \leq a\}} \mathbb{1}_{\{X \leq x\}}(\omega) \mathrm{dP}(\omega) \\
& =\int_{Y^{-1}((-\infty, a])} \mathbb{1}_{\{X \leq x\}}(\omega) \mathrm{dP}(\omega),
\end{aligned}
$$

where we have applied the fundamental theorem of calculus and the Sklar's theorem. Using the uniqueness of the conditional expectation, II. immediately follows. I. can be proved in a similar way.

Next, we give important examples of copulas of random variables and their probabilistic meanings. First, the product copula $\Pi(u, v):=u v$ is sometimes called the independence copula Π because it is the copula of independent random variables.

Theorem 2.6. For random variables X and Y with continuous distribution functions, $C_{X, Y}=\Pi$ if and only if X and Y are independent.

Its proof directly follows from Sklar's theorem and will be omitted. We then give the copulas of completely dependent random variables in the sense defined as follows.

Definition 2.7. Let X and Y be random variables. Y is said to be completely dependent on X if there exists a Borel measurable function f such that $\mathrm{P}(Y=f(X))=1$. The copula $C_{X, Y}$ of X and Y is called a complete dependence copula. In the case that the function f is strictly monotonic, Y is said to be monotonically dependent on X and $C_{X, Y}$ is said to be a monotonic dependence copula. Moreover, X and Y are said to be mutually completely dependent if Y is completely dependent on X and X is completely dependent on Y or if there is an invertible Borel measurable function f with $\mathrm{P}(Y=f(X))=1$. Surely, such $C_{X, Y}$ is said to be a mutual complete dependence copula.

The copulas $W(u, v):=\max (u+v-1,0)$ and $M(u, v):=\min (u, v)$ are the most important examples of complete dependence copulas, as they are the two monotonic
dependence copulas. The following theorem was given in Schweizer and Wolff (see [14]).
Theorem 2.8. Let X and Y be random variables with continuous distribution functions.
I. $C_{X, Y}=W$ if and only if Y is strictly decreasingly dependent on X.
II. $C_{X, Y}=M$ if and only if Y is strictly increasingly dependent on X.

So, by Theorem 2.8, W and M are often called the countermonotonic and comonotonic copulas, respectively. Furthermore, W and M are pointwise lower and upper bounds, respectively, of copulas, i.e. $W \leq C \leq M$ for all copulas C.

The following theorem is given by Darsow, Nguyen and Olsen (see [2]). They gave equivalent forms of complete dependence for random variables.

Theorem 2.9. Let C be the copula of random variables X and Y having continuous marginal distributions. Then the following statements are equivalent.
I. Y is completely dependent on X. (X is completely dependent on Y.)
II. For $y \in \mathbb{R}, \mathrm{P}(Y \leq y \mid X) \in\{0,1\}$ a.s. (For $x \in \mathbb{R}, \mathrm{P}(X \leq x \mid Y) \in\{0,1\}$ a.s.)
III. For $v \in \mathbb{I}, \partial_{1} C(u, v) \in\{0,1\}$ almost every $u \in \mathbb{I}$. (For $u \in \mathbb{I}$, $\partial_{2} C(u, v) \in\{0,1\}$ almost every $v \in \mathbb{I}$.)

Moreover, by virtue of Theorem 2.9, one obtains the following corollary.
Corollary 2.10. Let C be the copula of random variables X and Y having continuous marginal distributions. Then the following statements are equivalent.
I. X and Y are mutually completely dependent.
II. For $u, v \in \mathbb{I}, \partial_{1} C(\cdot, v), \partial_{2} C(u, \cdot) \in\{0,1\}$ almost everywhere.

Next, we present methods for constructing copulas used in this thesis. The first one is a method for constructing patched copulas introduced by Zheng, Yang and Huang (see [19]). Recall from the identity (2.1) that a copula is the joint distribution function of two uniform random variables on \mathbb{I}. So, given a sample space Ω with probability measure P , let C be a copula, it is indeed a joint distribution function, of random variables U and V that are uniformly distributed on \mathbb{I}. Fix $m, n \in \mathbb{N}$, let $\left\{c_{i}\right\}_{i=1}^{m}$ and $\left\{d_{j}\right\}_{j=1}^{n}$ be such that

$$
0=c_{0}<c_{1}<\cdots<c_{m}=1 \quad \text { and } \quad 0=d_{0}<d_{1}<\cdots<d_{n}=1 .
$$

Let $I_{0}=\left[c_{0}, c_{1}\right]$ and $I_{i}=\left(c_{i}, c_{i+1}\right]$ for $i=1,2, \ldots, m-1, J_{0}=\left[d_{0}, d_{1}\right]$ and $J_{j}=\left(d_{j}, d_{j+1}\right]$ for $j=1,2, \ldots, n-1$. Then $\left\{I_{i} \times J_{j}: i \in N_{m-1}, j \in N_{n-1}\right\}$ is a partition of \mathbb{T}^{2}, where $N_{k}=\{0,1, \ldots, k\}$. For $i \in N_{m-1}, j \in N_{n-1}$, set $A_{i j}=\left\{\omega \in \Omega:(U(\omega), V(\omega)) \in I_{i} \times J_{j}\right\}$ then $\left\{A_{i j}: i \in N_{m-1}, j \in N_{n-1}\right\}$ is a partition of Ω. Using the law of total probability, one can derive that

$$
\begin{equation*}
C(u, v)=\mathrm{P}(U \leq u, V \leq v)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \mathrm{P}\left(A_{i j}\right) \mathrm{P}\left(U \leq u, V \leq v \mid A_{i j}\right) . \tag{2.3}
\end{equation*}
$$

One can show that each $\mathrm{P}\left(U \leq u, V \leq v \mid A_{i j}\right)$ is a joint distribution function on $I_{i} \times J_{j}$ whose continuous marginal distributions are $F_{i j}(u):=\mathrm{P}\left(U \leq u \mid A_{i j}\right)$ and $G_{i j}(v):=$ $\mathrm{P}\left(V \leq v \mid A_{i j}\right)$. Here, the continuities of $F_{i j}$ and $G_{i j}$ follow from the continuity of C. According to Sklar's theorem, there is a unique corresponding copula $C_{i j}$ such that

$$
\begin{equation*}
\mathrm{P}\left(U \leq u, V \leq v \mid A_{i j}\right)=C_{i j}\left(F_{i j}(u), G_{i j}(v)\right) . \tag{2.4}
\end{equation*}
$$

Plugging (2.4) into (2.3), we have

$$
\begin{equation*}
C(u, v)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \mathrm{P}\left(A_{i j}\right) C_{i j}\left(F_{i j}(u), G_{i j}(v)\right) . \tag{2.5}
\end{equation*}
$$

Note that $\left[\mathrm{P}\left(A_{i j}\right)\right]_{m \times n}$ is a doubly stochastic matrix. The decomposition in (2.5) is called the $\left(\left\{c_{i}\right\}_{i=1}^{m},\left\{d_{j}\right\}_{j=1}^{n}\right)$-patched decomposition of C or just patched decomposition of C if $\left\{c_{i}\right\}_{i=1}^{m}$ and $\left\{d_{j}\right\}_{j=1}^{n}$ are understood. This is in fact a generalization of patched
copulas, which was introduced by Zheng, Yang and Huang [19], in the sense that the unit square is partitioned into unequal-sized sub-rectangles. Any given copula C can be decomposed in the form of (2.5). On the whole, the converse is not true. However, we obtain the following characterization on some assumptions of the coefficients and marginal distributions. Indeed, the following theorem is a generalization of the case that $n=m$ and $c_{i}=d_{i}=\frac{i}{n}$ for all $i=0,1, \ldots, n$, which was given by Chaidee, Santiwipanont and Sumetkijakan (see [1]).

Theorem 2.11. For each $i=0,1, \ldots, m-1$ and $j=0,1, \ldots, n-1$, let $H_{i j}$ and $L_{i j}$ denote distribution functions over I_{i} and J_{j}, respectively, let $D_{i j}$ be a copula and $a_{i j} \geq 0$. The function D defined by

$$
D(u, v)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j} D_{i j}\left(H_{i j}(u), L_{i j}(v)\right), \quad u, v \in \mathbb{I},
$$

is a copula if and only if
I. for each $h=0,1, \ldots, m-1, \sum_{j=0}^{n-1} a_{h j} H_{h j}(u)=u-c_{h}$ for all $u \in I_{h}$; and II. for each $k=0,1, \ldots, n-1, \sum_{i=0}^{m-1} a_{i k} L_{i k}(v)=v-d_{k}$ for all $v \in J_{k}$.

Proof. (\Rightarrow) We prove I., the proof of II. is similar. Fix $h=0,1, \ldots, m-1$. Since for each $j \geq 0, H_{i j}\left(c_{h+1}\right)=1$ for all $i \leq h$ and $H_{i j}\left(c_{h+1}\right)=0$ for all $i>h$ and D is a copula,

$$
c_{h+1}=D\left(c_{h+1}, 1\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j} D_{i j}\left(H_{i j}\left(c_{h+1}\right), L_{i j}(1)\right)=\sum_{i=0}^{h} \sum_{j=0}^{n-1} a_{i j}
$$

which implies in particular that $\sum_{j=0}^{n-1} a_{i j}=c_{i+1}-c_{i}$ for all $i=0,1, \ldots, m-1$. We are now ready to show I. Let $u \in I_{h}$. So for each $j \geq 0, H_{i j}(u)=1$ for all $i<h$ and $H_{i j}(u)=0$ for all $i>h$. Then

$$
D(u, 1)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j} D_{i j}\left(H_{i j}(u), L_{i j}(1)\right)
$$

$$
\begin{align*}
& =\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j} D_{i j}\left(H_{i j}(u), 1\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} a_{i j} H_{i j}(u) \\
& =\sum_{i=0}^{h-1} \sum_{j=0}^{n-1} a_{i j}+\sum_{j=0}^{n-1} a_{h j} H_{h j}(u) \tag{2.6}\\
& =\sum_{i=0}^{h-1}\left(c_{i+1}-c_{i}\right)+\sum_{j=0}^{n-1} a_{h j} H_{h j}(u) \\
& =c_{h}+\sum_{j=0}^{n-1} a_{h j} H_{h j}(u) .
\end{align*}
$$

Thus I. follows because D is a copula.
(\Leftarrow) The statement $D(u, 0)=0=D(0, v)$ for $u, v \in \mathbb{I}$ follows directly from the condition $H_{i j}(0)=0=L_{i j}(0)$ and $D_{i j}$ is a copula for all i, j. Moreover, it is also straightforward to prove that D is 2-increasing by using the assumption that $H_{i j}$ and $L_{i j}$ are distribution functions, that $D_{i j}$ is 2 -increasing and that $a_{i j} \geq 0$. It remains to show that $D(u, 1)=u$ and $D(1, v)=v$. For each $h=0,1, \ldots, m-1$, let $u \in I_{h}$. Then

$$
D(u, 1)=\sum_{i=0}^{h-1} \sum_{j=0}^{n-1} a_{i j}+\sum_{j=0}^{n-1} a_{h j} H_{h j}(u)
$$

follows from equation (2.6), which is not a consequence of condition that D is a copula. Then the condition I. particularly gives $\sum_{j=0}^{n-1} a_{i j}=c_{i+1}-c_{i}$ for $i=0,1, \ldots, m-1$ and yields

$$
D(u, 1)=\sum_{i=0}^{h-1}\left(c_{i+1}-c_{i}\right)+\sum_{j=0}^{n-1} a_{h j} H_{h j}(u)=c_{h}+u-c_{h}=u .
$$

The last property required for definition of copulas is $D(1, v)=v$ for all $v \in \mathbb{I}$. It can be proved in a similar manner using II.

One can obtain a new copula from old by the following binary operation on the space of all copulas, denoted by \mathcal{C}. A binary operation $*$ on \mathcal{C} is defined as

$$
C * D(u, v)=\int_{\mathbb{I}} \partial_{2} C(u, t) \partial_{1} D(t, v) \mathrm{d} t \quad \text { for } C, D \in \mathcal{C} \text { and } u, v \in \mathbb{I} .
$$

This was introduced by Darsow, Nguyen and Olsen [2], they proved that $*$ is a binary operation on \mathcal{C} and $(\mathcal{C}, *)$ is a monoid with null element Π and identity M.

In the following theorem, they also proved that for any random variables X, Y and Z, the copula $C_{X, Z}$ can be decomposed into $*$-product of the copulas $C_{X, Y}$ and $C_{Y, Z}$ where some conditions on three random variables are assumed.

Theorem 2.12. Let X, Y and Z be random variables having continuous marginal distributions on a common probability space such that

$$
\mathrm{E}\left[\mathbb{1}_{\left\{X \in B_{1}\right\}} \cdot \mathbb{1}_{\left\{Z \in B_{2}\right\}} \mid Y\right]=\mathrm{E}\left[\mathbb{1}_{\left\{X \in B_{1}\right\}} \mid Y\right] \cdot \mathrm{E}\left[\mathbb{1}_{\left\{Z \in B_{2}\right\}} \mid Y\right] \text { a.s. }
$$

for any Borel sets B_{1}, B_{2}, one indeed says that X and Z are conditionally independent given Y. Then $C_{X, Z}=C_{X, Y} * C_{Y, Z}$.

Proof. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and F_{X}, F_{Y} and F_{Z} continuous distribution functions of X, Y and Z, respectively. Let $u, v \in \mathbb{I}$. If u or v are in $\{0,1\}$, it is obvious that $C_{X, Z}(u, v)=C_{X, Y} * C_{Y, Z}(u, v)$. Suppose that $u, v \notin\{0,1\}$. Since F_{X} and F_{Z} are continuous, by applying Intermediate Value Theorem, there exist real numbers x and z such that $F_{X}(x)=u$ and $F_{Z}(z)=v$. Then

$$
\begin{aligned}
& C_{X, Y} * C_{Y, Z}(u, v) \text { LALONGIKORN UNIVERSITY } \\
& =\int_{\mathbb{I}} \partial_{2} C_{X, Y}(u, t) \partial_{1} C_{Y, Z}(t, v) \mathrm{d} t \\
& =\int_{-\infty}^{\infty} \partial_{2} C_{X, Y}\left(F_{X}(x), F_{Y}(y)\right) \partial_{1} C_{Y, Z}\left(F_{Y}(y), F_{Z}(z)\right) \mathrm{d} F_{Y}(y) \\
& =\int_{\Omega} \partial_{2} C_{X, Y}\left(F_{X}(x), F_{Y}(Y(\omega))\right) \partial_{1} C_{Y, Z}\left(F_{Y}(Y(\omega)), F_{Z}(z)\right) \mathrm{dP}(\omega) \\
& =\int_{\Omega} \mathrm{E}\left[\mathbb{1}_{\{X \leq x\}} \mid Y\right](\omega) \mathrm{E}\left[\mathbb{1}_{\{Z \leq z\}} \mid Y\right](\omega) \mathrm{dP}(\omega) \\
& =\int_{\Omega} \mathrm{E}\left[\mathbb{1}_{\{X \leq x\}} \mathbb{1}_{\{Z \leq z\}} \mid Y\right](\omega) \mathrm{dP}(\omega)=\int_{\Omega} \mathrm{E}\left[\mathbb{1}_{\{X \leq x, Z \leq z\}} \mid Y\right](\omega) \mathrm{dP}(\omega) \\
& =\int_{\Omega} \mathbb{1}_{\{X \leq x, Z \leq z\}} \mathrm{dP}=\mathrm{P}(X \leq x, Z \leq z) \\
& =C_{X, Z}\left(F_{X}(x), F_{Z}(z)\right)=C_{X, Z}(u, v),
\end{aligned}
$$

where we have used changes of variables theorem in the second and third equalities, Theorem 2.5 in the fourth equality, the assumption that X and Z are conditionally independent given Y in the fifth equality, the definition of the conditional expectation in the seventh equality and Sklar's theorem in the next to last equality.

Moreover, Ruankong, Santiwipanont and Sumetkijakan (see [12]) gave the following special case frequently seen.

Corollary 2.13. Let X and Y be random variables having continuous marginal distributions and f a Borel measurable function. Then $C_{f(X), Y}=C_{f(X), X} * C_{X, Y}$.

They proved that $f(X)$ and Y are conditionally independent given X and then the corollary above immediately follows from Theorem 2.12.

Moreover, Darsow and Olsen [3] showed that the $*$-product on \mathcal{C} is jointly continuous with respect to the Sobolev norm.

Let $p \in \mathbb{N}$. The Sobolev norm $\|\cdot\|_{(p)}$ of a copula C is defined by

$$
\|C\|_{(p)}=\left(\int_{\mathbb{I}} \int_{\mathbb{I}}\left(\left|\partial_{1} C(u, v)\right|^{p}+\left|\partial_{2} C(u, v)\right|^{p}\right) \mathrm{d} u \mathrm{~d} v\right)^{1 / p}
$$

Theorem 2.14. The *-product on \mathcal{C} is jointly continuous with respect to the Sobolev norm. Formally, let $p \in \mathbb{N}$ and for any $n \in \mathbb{N}$, let C_{n}, D_{n}, C and D be copulas such that $\lim _{n \rightarrow \infty}\left\|C_{n}-C\right\|_{(p)}=0$ and $\lim _{n \rightarrow \infty}\left\|D_{n}-D\right\|_{(p)}=0$. Then $\lim _{n \rightarrow \infty}\left\|C_{n} * D_{n}-C * D\right\|_{(p)}=0$.

Since the Sobolev norm of a copula is defined in term of its derivatives, the following results are easily obtained.

Theorem 2.15. Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of copulas and C be a copula such that $\left(\partial_{i} C_{n}\right)_{n \in \mathbb{N}}$ converges to $\partial_{i} C$ almost everywhere for $i=1,2$, and let $p \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty}\left\|C_{n}-C\right\|_{(p)}=0$.

Proof. By the assumption, we have, for almost every $(u, v) \in \mathbb{I}^{2}$,

$$
\lim _{n \rightarrow \infty}\left|\partial_{i} C_{n}(u, v)-\partial_{i} C(u, v)\right|=0, \quad i=1,2 .
$$

Therefore,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|C_{n}-C\right\|_{(p)} \\
& =\lim _{n \rightarrow \infty}\left(\int_{\mathbb{I}} \int_{\mathbb{I}}\left(\left|\partial_{1}\left(C_{n}-C\right)\right|^{p}+\left|\partial_{2}\left(C_{n}-C\right)\right|^{p}\right) \mathrm{d} u \mathrm{~d} v\right)^{1 / p} \\
& \left.\left.=\left.\lim _{n \rightarrow \infty}\left(\left.\int_{\mathbb{I}} \int_{\mathbb{I}}\left(\mid \partial_{1} C_{n}-\partial_{1} C\right)\right|^{p}+\mid \partial_{2} C_{n}-\partial_{2} C\right)\right|^{p}\right) \mathrm{~d} u \mathrm{~d} v\right)^{1 / p} \\
& \left.\left.=\left(\left.\lim _{n \rightarrow \infty}\left(\left.\int_{\mathbb{I}} \int_{\mathbb{I}}\left(\mid \partial_{1} C_{n}-\partial_{1} C\right)\right|^{p}+\mid \partial_{2} C_{n}-\partial_{2} C\right)\right|^{p}\right) \mathrm{d} u \mathrm{~d} v\right)\right)^{1 / p} \\
& \left.\left.=\left(\left.\int_{\mathbb{I}} \int_{\mathbb{I}} \lim _{n \rightarrow \infty}\left(\left.\left(\mid \partial_{1} C_{n}-\partial_{1} C\right)\right|^{p}+\mid \partial_{2} C_{n}-\partial_{2} C\right)\right|^{p}\right)\right) \mathrm{d} u \mathrm{~d} v\right)^{1 / p} \\
& =0,
\end{aligned}
$$

where we have used the Dominated Convergence Theorem in the next to last equality.

Moreover, we will show that convergence of copulas in Sobolev norm $\|\cdot\|_{(p)}$ implies the existence of a subsequence whose first order partial derivatives converge pointwise almost everywhere.

Theorem 2.16. Let $p \in \mathbb{N}$ and $\left(C_{n}\right)_{n \in \mathbb{N}}$ a sequence of copulas and C a copula such that $\lim _{n \rightarrow \infty}\left\|C_{n}-C\right\|_{(p)}=0$. Then there exists a subsequence $\left(C_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\left(\partial_{i} C_{n_{k}}\right)_{k \in \mathbb{N}}$ converges to $\partial_{i} C$ almost everywhere for $i=1,2$.

Proof. Since $\lim _{n \rightarrow \infty}\left\|C_{n}-C\right\|_{(p)}=0$, we can find a strictly increasing sequence of positive integers $\left(n_{k}\right)_{k \in \mathbb{N}}$ such that $\int_{\mathbb{I}} \int_{\mathbb{I}}\left(\left|\partial_{1} C_{n_{k}}-\partial_{1} C\right|^{p}+\left|\partial_{2} C_{n_{k}}-\partial_{2} C\right|^{p}\right) \mathrm{d} u \mathrm{~d} v \leq \frac{1}{2^{k}}$. And then

$$
\begin{aligned}
& \int_{\mathbb{I}} \int_{\mathbb{I}} \sum_{k=1}^{\infty}\left(\left|\partial_{1} C_{n_{k}}-\partial_{1} C\right|^{p}+\left|\partial_{2} C_{n_{k}}-\partial_{2} C\right|^{p}\right) \mathrm{d} u \mathrm{~d} v \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{I}} \int_{\mathbb{I}}\left(\left|\partial_{1} C_{n_{k}}-\partial_{1} C\right|^{p}+\left|\partial_{2} C_{n_{k}}-\partial_{2} C\right|^{p}\right) \mathrm{d} u \mathrm{~d} v \leq \sum_{k=1}^{\infty} \frac{1}{2^{k}}<\infty .
\end{aligned}
$$

Consequently,

$$
\sum_{k=1}^{\infty}\left(\left|\partial_{1} C_{n_{k}}-\partial_{1} C\right|^{p}+\left|\partial_{2} C_{n_{k}}-\partial_{2} C\right|^{p}\right)<\infty \quad \text { a.e. }
$$

In particular,

$$
\sum_{k=1}^{\infty}\left|\partial_{1} C_{n_{k}}-\partial_{1} C\right|^{p}<\infty \quad \text { and } \quad \sum_{k=1}^{\infty}\left|\partial_{2} C_{n_{k}}-\partial_{2} C\right|^{p}<\infty \quad \text { a.e. }
$$

Thus, $\lim _{k \rightarrow \infty}\left|\partial_{i} C_{n_{k}}-\partial_{1} C\right|=0$ a.e. for all $i=1,2$.

Another interesting method for constructing copulas is according to the following procedure.
I. Place the support for M on \mathbb{I}^{2}.
II. Cut \mathbb{I}^{2} into a finite number of strips vertically.
III. Shuffle the strips (some of them can be flipped around their vertical axes of symmetry).
IV. Put them together again to form the square.

A copula whose support is obtained by the above method is called a shuffle of Min. The formal definition is given by Mikusiński, Sherwood and Taylor [9].

Definition 2.17. Let $n \in \mathbb{N}, 0=s_{0}<s_{1}<\cdots<s_{n}=1$ and $0=t_{0}<t_{1}<\cdots<t_{n}=1$ two partitions of \mathbb{I} and σ a permutation on $\{1,2, \ldots, n\}$. A copula C is called the shuffle of Min generated by $\left(n,\left\{s_{i}\right\},\left\{t_{i}\right\}, \sigma\right)$ if each $\left[s_{i-1}, s_{i}\right] \times\left[t_{\sigma(i)-1}, t_{\sigma(i)}\right]$ is a square in which C puts a probability mass $s_{i}-s_{i-1}$ spread uniformly on one of the diagonals. For each $i \in\{1,2, \ldots, n\}$, let $m(i)$ denote the slope of the diagonal of $\left[s_{i-1}, s_{i}\right] \times\left[t_{\sigma(i)-1}, t_{\sigma(i)}\right]$ on which the probability mass in that square is distributed. We also say that C is the shuffle of Min generated by ($n,\left\{s_{i}\right\},\left\{t_{i}\right\}, \sigma, m$).

Mikusiński, Sherwood and Taylor (see [9]) also gave a probabilistic meaning of shuffles of Min.

Theorem 2.18. Let X and Y be random variables with continuous distribution functions. Then $C_{X, Y}$ is a shuffle of Min if and only if there exists an invertible Borel measurable function with finitely many discontinuity points f such that $Y=f(X)$ a.s.

Durante, Sarkoci and Sempi [5] characterize shuffles of Min in terms of push-forward measures, let us recall the definition of push-forwards. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ a measurable space. For each measurable function $f: \Omega \rightarrow \Omega_{1}$, a pushforward of μ under f is a set function $f \star \mu$ on $\left(\Omega_{1}, \mathcal{F}_{1}\right)$ defined by $f \star \mu(A)=\mu\left(f^{-1}(A)\right)$ for every $A \in \mathcal{F}_{1}$. One can obtain that the push-forward $f \star \mu$ is a measure on \mathcal{F}_{1}. Moreover, if g is a measurable function from Ω_{1} to another measurable space $\left(\Omega_{2}, \mathcal{F}_{2}\right)$, then

$$
\begin{equation*}
(g \circ f) \star \mu=g \star(f \star \mu) . \tag{2.7}
\end{equation*}
$$

Before characterizing shuffles of Min, the notions of shufflings and measure-preserving functions are needed. A shuffling $S_{T}: \mathbb{I}^{2} \rightarrow \mathbb{I}^{2}$ is defined by

where $T: \mathbb{I} \rightarrow \mathbb{I}$. Note that $S_{T}{ }^{-1}=S_{T-1} \cdot$ A Borel measurable function $f: \mathbb{I} \rightarrow \mathbb{I}$ is measure-preserving if for any $B \in \mathcal{B}(\mathbb{I}), \lambda\left(f^{-1}(B)\right)=\lambda(B)$. Borel measurability of the inverse of a Borel measurable injection yields the measure-preserving of the inverse of a measure-preserving bijection. Moreover, the following result is also needed.

Lemma 2.19. Let $T: \mathbb{I} \rightarrow \mathbb{I}$ be a Borel measurable, S_{T} a shuffing and μ a doubly stochastic measure. Then the following statements are equivalent.
I. $S_{T} \star \mu$ is doubly stochastic measure.
II. T is a measure-preserving transformation.

Proof. Using doubly stochastic property of μ, one can directly show that for every Borel
set $B \subseteq \mathbb{I}$,

$$
\begin{aligned}
& S_{T} \star \mu(\mathbb{I} \times B)=\mu\left(S_{T}^{-1}(\mathbb{I} \times B)\right)=\mu(\mathbb{I} \times B)=\lambda(B), \\
& S_{T} \star \mu(B \times \mathbb{I})=\mu\left(S_{T}^{-1}(B \times \mathbb{I})\right)=\mu\left(T^{-1}(B) \times \mathbb{I}\right)=\lambda\left(T^{-1}(B)\right) .
\end{aligned}
$$

Then the lemma immediately follows.
Theorem 2.20 (The characterization of shuffles of Min). A copula C is a shuffle of Min if and only if there exists a piecewise-continuous measure-preserving bijection $T: \mathbb{I} \rightarrow \mathbb{I}$ such that $\mu_{C}=S_{T} \star \mu_{M}$.

Proof. (\Leftarrow) Let V be a uniform $(0,1)$ random variable. Then (V, V) is distributed according to M, i.e. the copula of V and V is M, and so $(V, V) \star \mathrm{P}=\mu_{M}$. Equations (2.7) and (2.8) yield, for all measurable transformation T of \mathbb{I},

$$
\begin{equation*}
(T \circ V, V) \star \mathrm{P}=\left(S_{T} \circ(V, V)\right) \star \mathrm{P}=S_{T} \star((V, V) \star \mathrm{P})=S_{T} \star \mu_{M} . \tag{2.9}
\end{equation*}
$$

Note that T is piecewise-continuous measure-preserving bijection by assumption and μ_{M} is doubly stochastic. Then by Lemma 2.19, $S_{T} \star \mu_{M}$ is doubly stochastic and so corresponds to a copula C. By equation (2.9), joint distribution function of $T \circ V$ and V is the connecting copula C. Thus, according to Theorem 2.18, C is a shuffle of Min. (\Rightarrow) Let C be a shuffle of Min. Then there exist uniform $(0,1)$ random variables U and V whose connecting copula is C. So $(U, V) \star \mathrm{P}=\mu_{C}$. Furthermore, by Theorem 2.18, there exists a piecewise-continuous bijection T on \mathbb{I} for which $U=T(V)$ a.s. Then

$$
(T \circ V, V) \star \mathrm{P}=(U, V) \star \mathrm{P}=\mu_{C} .
$$

Using (2.9), which is not a consequence of condition that T is measure-preserving, we obtain $\mu_{C}=S_{T} \star \mu_{M}$. Finally, Lemma 2.19 yields the measure-preserving of T.

The characterization of shuffles of Min leads Durante, Sarkoci and Sempi [5] to generalize the concept of shuffle of Min by dropping piecewise-continuous of T.

Definition 2.21. A generalized shuffle of Min is a copula C whose induced measure is

$$
\begin{equation*}
\mu_{C}:=S_{T} \star \mu_{M} \tag{2.10}
\end{equation*}
$$

for some measure-preserving bijection $T: \mathbb{I} \rightarrow \mathbb{I}$ (not necessary to be piecewise-continuous). Replacing M by a given copula D in (2.10), C is called a generalized shuffle of D. If the measure-preserving bijection T is piecewise-continuous, then C is called a shuffle of D.

The most useful properties used in the next chapter are listed in the following theorem. They are given by Ruankong, Santiwipanont and Sumetkijakan (see [12]).

Theorem 2.22. Let C and D be copulas. Then

1. C is a T-shuffle of D if and only if there exists a shuffle of Min A, defined by $\mu_{A}=S_{T} \star \mu_{M}$, such that $C=A * D$.
2. C is a generalized T-shuffle of D if and only if there exists a generalized shuffle of Min A, defined by $\mu_{A}=S_{\mathcal{T}} \star \mu_{M}$, such that $C=A * D$.

CHAPTER III

DEPENDENCE INDICATORS
 FROM FIRST DIGIT DISTRIBUTIONS

We divide this chapter into two sections. The first section covers theoretical facts of the upper level sets needed to prove main properties of the first digit distributions of partial derivatives of copulas. As a result, we obtain an indicator of dependence μ_{1} in the second section.

3.1 Upper level functions

Let $\mathcal{L}\left(\mathbb{I}^{2}\right)$ be the space of Lebesgue measurable subsets of \mathbb{I}^{2}. The function

$$
\rho(A, B):=\lambda_{2}(A \triangle B), \quad \text { for } A, B \in \mathcal{L}\left(\mathbb{I}^{2}\right)
$$

is a pseudometric on $\mathcal{L}\left(\mathbb{I}^{2}\right)$ where $A \triangle B:=(A \backslash B) \cup(B \backslash A) . \quad \rho$ becomes a metric if $\mathcal{L}\left(\mathbb{T}^{2}\right)$ is considered modulo the equivalence relation $\sim: A \sim B$ if and only if $\lambda_{2}(A \triangle B)=0$.

Definition 3.1. For a copula C, let $\Phi_{\partial_{1} C}$ be a function on \mathbb{I} defined by

$$
\Phi_{\partial_{1} C}(\alpha)=\left[\partial_{1} C\right]_{\alpha}:=\left\{(u, v) \in \mathbb{1}^{2}: \partial_{1} C(u, v) \text { exists and } \partial_{1} C(u, v) \geq \alpha\right\}
$$

$\left[\partial_{1} C\right]_{\alpha}$ are called upper α-level-sets, introduced by Fernández-Sánchez and Trutschnig [6]. We may sometimes write $\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v) \geq \alpha\right\}$ or just $\left\{\partial_{1} C \geq \alpha\right\}$ instead of $\left[\partial_{1} C\right]_{\alpha}$.

With respect to the metric ρ, we obtain the following theorems.

Theorem 3.2. For every copula C the upper level fuction $\Phi_{\partial_{1} C}$ has at most countably many discontinuities.

Proof. Let C be a copula and J_{C} a function on \mathbb{I} defined by

$$
J_{C}(\alpha)=\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha}\right)
$$

for all α in \mathbb{I}. Let $D_{J_{C}}$ denote the set of all discontinuities of J_{C}. Since J_{C} is decreasing, $D_{J_{C}}$ is countable. To show that every continuous point of J_{C} is a continuous point of $\Phi_{\partial_{1} C}$, let $\alpha \in \mathbb{I}$. Suppose that J_{C} is continuous at α. Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers in \mathbb{I} such that $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ converges to α and $\epsilon>0$. Then there exists an $N \in \mathbb{N}$ such that for all $n \geq N$,

$$
\left|J_{C}\left(\alpha_{n}\right)-J_{C}(\alpha)\right|<\epsilon .
$$

Fix $n \geq N$, then

$$
\begin{aligned}
\rho\left(\Phi_{\partial_{1} C}\left(\alpha_{n}\right), \Phi_{\partial_{1} C}(\alpha)\right) & =\rho\left(\left[\partial_{1} C\right]_{\alpha_{n}},\left[\partial_{1} C\right]_{\alpha}\right) \\
& =\lambda_{2}\left(\left(\left[\partial_{1} C\right]_{\alpha_{n}} \backslash\left[\partial_{1} C\right]_{\alpha}\right) \cup\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha_{n}}\right)\right) .
\end{aligned}
$$

Case 1: $\alpha_{n} \leq \alpha$
Then $\left[\partial_{1} C\right]_{\alpha} \subseteq\left[\partial_{1} C\right]_{\alpha_{n}}$ and so

$$
\begin{aligned}
\rho\left(\Phi_{\partial_{1} C}\left(\alpha_{n}\right), \Phi_{\partial_{1} C}(\alpha)\right) & =\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha_{n}} \backslash\left[\partial_{1} C\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha_{n}}\right)-\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha}\right) \\
& =J_{C}\left(\alpha_{n}\right)-J_{C}(\alpha)=\left|J_{C}\left(\alpha_{n}\right)-J_{C}(\alpha)\right|<\epsilon .
\end{aligned}
$$

Case 2: $\alpha_{n}>\alpha$
Then $\left[\partial_{1} C\right]_{\alpha_{n}} \subseteq\left[\partial_{1} C\right]_{\alpha}$ and so

$$
\begin{aligned}
\rho\left(\Phi_{\partial_{1} C}\left(\alpha_{n}\right), \Phi_{\partial_{1} C}(\alpha)\right) & =\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha_{n}}\right)=\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha}\right)-\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha_{n}}\right) \\
& =J_{C}(\alpha)-J_{C}\left(\alpha_{n}\right)=\left|J_{C}\left(\alpha_{n}\right)-J_{C}(\alpha)\right|<\epsilon .
\end{aligned}
$$

We conclude that $\rho\left(\Phi_{\partial_{1} C}\left(\alpha_{n}\right), \Phi_{\partial_{1} C}(\alpha)\right)<\epsilon$ for all $n \geq N$. This shows that $\Phi_{\partial_{1} C}$ is continuous at α. Hence, the set of all discontinuities of $\Phi_{\partial_{1} C}$ is a subset of $D_{J_{C}}$, which is countable. Therefore, $\Phi_{\partial_{1} C}$ has at most countably many discontinuities.

Theorem 3.3. Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of copulas and C a copula such that $\left(\partial_{1} C_{n}\right)_{n \in \mathbb{N}}$ converges to $\partial_{1} C$ almost everywhere. If $\alpha \in \mathbb{I}$ is a continuity point of $\Phi_{\partial_{1} C}$, then

$$
\lim _{n \rightarrow \infty} \rho\left(\left[\partial_{1} C_{n}\right]_{\alpha},\left[\partial_{1} C\right]_{\alpha}\right)=0 .
$$

Proof. To prove this, Egorov's Theorem is needed. Let us state here for convenience.
Egorov's Theorem. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, $E \in \mathcal{F}$ with $\mu(E)<\infty$ and let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real-valued measurable functions on E that converges pointwise to a real-valued measurable function f almost everywhere on E. Then for any $\epsilon>0$, there exists a measurable set A contained in E such that $\mu(E \backslash A)<\epsilon$ and $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f uniformly on A.

Let $\epsilon>0$. Since $\Phi_{\partial_{1} C}$ is continuous at α, there exists $\delta \in(0, \epsilon)$ such that for all $\beta \in \mathbb{I}$,

$$
\begin{equation*}
\text { if }|\alpha-\beta| \leq \delta \text { then } \lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \triangle\left[\partial_{1} C\right]_{\beta}\right) \leq \frac{\epsilon}{4} . \tag{3.1}
\end{equation*}
$$

Since $\left(\partial_{1} C_{n}\right)_{n \in \mathbb{N}}$ converges to $\partial_{1} C$ almost everywhere, by Egorov's Theorem, there exists a measurable set $Z \subseteq \mathbb{I}^{2}$ such that $\lambda_{2}(Z)<\frac{\epsilon}{4}$ and $\left(\partial_{1} C_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to $\partial_{1} C$ on $\mathbb{I}^{2} \backslash Z$. Thus there exists an $N \in \mathbb{N}$ such that for every $n \geq N$,

$$
\begin{equation*}
\mathrm{CHUL}_{(u, v) \in \mathbb{I}^{2} \backslash Z}\left|\partial_{1} C_{n}(u, v)-\partial_{1} C(u, v)\right| \leq \delta . \tag{3.2}
\end{equation*}
$$

We want to show that for every $n \geq N$,

$$
\rho\left(\left[\partial_{1} C_{n}\right]_{\alpha},\left[\partial_{1} C\right]_{\alpha}\right)<\epsilon .
$$

Fix $n \geq N$, then

$$
\begin{align*}
\rho\left(\left[\partial_{1} C_{n}\right]_{\alpha},\left[\partial_{1} C\right]_{\alpha}\right) & =\lambda_{2}\left(\left[\partial_{1} C_{n}\right]_{\alpha} \triangle\left[\partial_{1} C\right]_{\alpha}\right)=\lambda_{2}\left(\left(\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha}\right) \cup\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}\right)\right) \\
& =\lambda_{2}\left(\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha}\right)+\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}\right) . \tag{3.3}
\end{align*}
$$

It suffices to show that
(3.3.1) $\quad \lambda_{2}\left(\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha}\right)<\frac{\epsilon}{2}$ and
(3.3.2) $\quad \lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}\right)<\frac{\epsilon}{2}$.

If we obtain (3.3.1) and (3.3.2) then $\rho\left(\left[\partial_{1} C_{n}\right]_{\alpha},\left[\partial_{1} C\right]_{\alpha}\right)<\epsilon$ by (3.3).
Next, we prove the above two inequalities.
(3.3.1): Note that $\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha-\delta} \subseteq Z$. Indeed, let $(u, v) \in\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha-\delta}$. Then $\partial_{1} C_{n}(u, v) \geq \alpha$ and $(u, v) \notin\left[\partial_{1} C\right]_{\alpha-\delta}$. If $(u, v) \notin Z$, then $\partial_{1} C(u, v)<\alpha-\delta$ and so $\partial_{1} C_{n}(u, v)-\partial_{1} C(u, v)>\delta$, this contradicts (3.2). Thus $(u, v) \in Z$. Hence it follows that

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1} C_{n}\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha}\right) & \leq \lambda_{2}\left(\left[\partial_{1} C_{n}\right]_{\alpha} \mid\left[\partial_{1} C\right]_{\alpha-\delta}\right)+\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha-\delta} \backslash\left[\partial_{1} C\right]_{\alpha}\right) \\
& \leq \lambda_{2}(Z)+\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \triangle\left[\partial_{1} C\right]_{\alpha-\delta}\right) \\
& <\frac{\epsilon}{4}+\frac{\epsilon}{4} \text { by }(3.1) \\
& =\frac{\epsilon}{2} .
\end{aligned}
$$

(3.3.2): Note that $\left[\partial_{1} C\right]_{\alpha+\delta} \backslash\left[\partial_{1} C_{n}\right]_{\alpha} \subseteq Z$. Indeed, let $(u, v) \in\left[\partial_{1} C\right]_{\alpha+\delta} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}$. Then $\partial_{1} C(u, v) \geq \alpha+\delta$ and $(u, v) \notin\left[\partial_{1} C_{n}\right]_{\alpha}$. If $(u, v) \notin Z$, then $\partial_{1} C_{n}(u, v)<\alpha$ and so $\partial_{1} C(u, v)-\partial_{1} C_{n}(u, v)>\delta$, this contradicts (3.2). Thus $(u, v) \in Z$. Hence it follows that

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}\right) & \leq \lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \backslash\left[\partial_{1} C\right]_{\alpha+\delta}\right)+\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha+\delta} \backslash\left[\partial_{1} C_{n}\right]_{\alpha}\right) \\
& \leq \lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha} \triangle\left[\partial_{1} C\right]_{\alpha+\delta}\right)+\lambda_{2}(Z) \\
& <\frac{\epsilon}{4}+\frac{\epsilon}{4} \text { by (3.1) } \\
& =\frac{\epsilon}{2} .
\end{aligned}
$$

This completes the proof.

According to Theorems 3.2 and 3.3, point-wise a.e. convergence of a sequence of first partial derivative of copulas implies the convergence of the corresponding upper α -level-sets for all but at most countably many $\alpha \in \mathbb{I}$. Furthermore, Theorem 3.2 is very useful in our proof of tranformation invariance $\lambda_{2}\left(\left[\partial_{1} C_{X, Y}\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)$ where
f is invertible Borel measurable function and $\alpha \in \mathbb{I}$ is a continuity point of $\Phi_{\partial_{1} C_{f(X), Y}}$. To prove this, the following lemma is required.

Lemma 3.4. Let C be a copula and S a generalized shuffle of Min. Then

$$
\lambda_{2}\left(\left[\partial_{1}(S * C)\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha}\right)
$$

for any $\alpha \in \mathbb{I}$.

Proof. According to [17], for each $v \in \mathbb{I}, \partial_{1}(S * C)(u, v)=\partial_{1} C\left(T^{-1}(u), v\right)$ for almost every $u \in \mathbb{I}$ for some measure-preserving bijection $T: \mathbb{I} \rightarrow \mathbb{I}$. We prove this again. For a copula $A, K_{A}: \mathbb{I} \times \mathcal{B}(\mathbb{I}) \rightarrow \mathbb{I}$ is defined, for every $B \in \mathcal{B}(\mathbb{I})$, by

$$
K_{A}(U(\omega), B)=\mathrm{E}\left(\mathbb{1}_{B} \circ V \mid U\right)(\omega) \quad \text { almost all } \omega \in \Omega,
$$

where U and V are uniform $(0,1)$ random variables whose connecting copula is $A_{U, V}=A$. Then for every Borel subset G of \mathbb{I}^{2} we set $G_{u}:=\{v \in \mathbb{I}:(u, v) \in G\}$ and obtain

$$
\begin{aligned}
\mu_{A}(G) & =\mathrm{P}((U, V) \in G) \\
& =\int_{\Omega} \mathbb{1}_{G_{U(\omega}}(V(\omega)) \mathrm{dP}(\omega) \\
& =\int_{\Omega} \mathrm{E}\left(\mathbb{1}_{G_{U}} \circ V \mid U\right)(\omega) \mathrm{dP}(\omega) \\
& =\int_{\mathbb{I}} \mathrm{E}\left(\mathbb{1}_{G_{u}} \circ V \mid u\right) \mathrm{dP}_{U}(u) \\
& =\int_{\mathbb{I}} \mathrm{E}\left(\mathbb{1}_{G_{u}} \circ V \mid u\right) \mathrm{d} u \\
& =\int_{\mathbb{I}} K_{A}\left(u, G_{u}\right) \mathrm{d} u
\end{aligned}
$$

where $\mathrm{P}_{U}(B):=\mathrm{P}\left(U^{-1}(B)\right)$ for any $B \in \mathcal{B}(\mathbb{I})$. Notice that we have made a change of variable in the fourth equality and the uniqueness of Lebesgue measure, that it assigns to each bounded open interval its length, in the fifth equality. In particular, $\int_{\mathbb{I}} K_{A}(u, F) \mathrm{d} u=\lambda(F)$ for every $F \in \mathcal{B}(\mathbb{I})$. Next, let T be a measure-preserving bijection so that $\mu_{S}=S_{T} \star \mu_{M}$ (by Definition 2.21) and $\mu_{S * C}=S_{T} \star \mu_{C}$ (by Theorem
2.22). This leads to

$$
\begin{aligned}
\int_{E} K_{S * C}(t, F) \mathrm{d} t & =\mu_{S * C}(E \times F) \\
& =S_{T} \star \mu_{C}(E \times F) \\
& =\mu_{C}\left(\left(S_{T}\right)^{-1}(E \times F)\right) \\
& =\mu_{C}\left(T^{-1}(E) \times F\right) \\
& =\int_{T^{-1}(E)} K_{C}(t, F) \mathrm{d} t
\end{aligned}
$$

for every $E, F \in \mathcal{B}(\mathbb{I})$. Set $E:=[0, u]$ so that both sides of the above equation are viewed as increasing functions. Then $K_{S * C}(u, F) \equiv \frac{d}{d u} \int_{T^{-1}([0, u])} K_{C}(t, F) \mathrm{d} t$ for almost every $u \in \mathbb{I}$ where the left hand side follows from integrability of $K_{S * C}(\cdot, F)$. Moreover, it follows directly from the measure-preserving of T that

$$
\begin{aligned}
K_{S * C}(u, F) & =\frac{\mathrm{d}}{\mathrm{~d} u} \int_{T^{-1}([0, u])} K_{C}(t, F) \mathrm{d} t \\
& =\frac{\mathrm{d}}{\mathrm{~d} u} \int_{\mathbb{I}} \mathbb{1}_{T^{-1}([0, u))}(t) K_{C}(t, F) \mathrm{d} t \\
& =\frac{\mathrm{d}}{\mathrm{~d} u} \int_{\mathbb{\pi}} \mathbb{T}_{T^{-1}([0, u))}\left(T^{-1}(t)\right) K_{C}\left(T^{-1}(t), F\right) \mathrm{d} t \\
& =\frac{\mathrm{d}}{\mathrm{~d} u} \int_{\mathbb{I}} \mathbb{1}_{[0, u]}(t) K_{C}\left(T^{-1}(t), F\right) \mathrm{d} t \\
\text { CHUL } & =\frac{\mathrm{d}}{\mathrm{~d} u} \int_{[0, u]} K_{C}\left(T^{-1}(t), F\right) \mathrm{d} t \\
& =K_{C}\left(T^{-1}(u), F\right),
\end{aligned}
$$

for almost every $u \in \mathbb{I}$ where the last equality is obtained by again using integrability of $K_{C}\left(T^{-1}(\cdot), F\right)$. In particular, for every $v \in \mathbb{I}, \partial_{1}(S * C)(u, v)=\partial_{1} C\left(T^{-1}(u), v\right)$ for almost every $u \in \mathbb{I}$. Using Fubini's Theorem and measure-preserving property of T, the following equalities follow,

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1}(S * C)\right]_{\alpha}\right) & =\int_{\mathbb{I}} \int_{\mathbb{I}} \mathbb{1}_{\left\{\partial_{1}(S * C)(u, v) \geq \alpha\right\}} \mathrm{d} u \mathrm{~d} v \\
& =\int_{\mathbb{I}} \int_{\mathbb{I}} \mathbb{1}_{\left\{\partial_{1} C\left(T^{-1}(u), v\right) \geq \alpha\right\}} \mathrm{d} u \mathrm{~d} v
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{I}} \int_{\mathbb{I}} \mathbb{1}_{\left\{\partial_{1} C \geq \alpha\right\}} \circ T^{-1} \mathrm{~d} u \mathrm{~d} v \\
& =\int_{\mathbb{I}} \int_{\mathbb{I}} \mathbb{1}_{\left\{\partial_{1} C \geq \alpha\right\}} \mathrm{d} u \mathrm{~d} v \\
& =\lambda_{2}\left(\left[\partial_{1} C\right]_{\alpha}\right),
\end{aligned}
$$

for all $\alpha \in \mathbb{I}$.

Theorem 3.5. Let X and Y be random variables with continuous distribution functions. Then

$$
\lambda_{2}\left(\left[\partial_{1} C_{X, Y}\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)
$$

for every invertible Borel measurable function f and every continuity point α of $\Phi_{\partial_{1} C_{f(X), Y}}$.

Proof. Since f is Borel measurable, by Corollary 2.13,

$$
C_{f(X), Y}=C_{f(X), X} * C_{X, Y}
$$

Since $f(X)$ and X are mutually completely dependent, there exists a sequence of shuffles of Min $\left(S_{n}\right)_{n \in \mathbb{N}}$ such that $\left(\partial_{1}\left(S_{n} * C_{X, Y}\right)\right)_{n \in \mathbb{N}}$ converges pointwise to $\partial_{1}\left(C_{f(X), X} * C_{X, Y}\right)=$ $\partial_{1} C_{f(X), Y}$ almost everwhere. To prove this, we quote here without proof Theorem 3.1 in [12].

Theorem 3.1 in Ruankong, Santiwipanont and Sumetkijakan [12]. Let C be a mutual complete dependence copula. Then there exists a sequence of shuffles of Min $\left(S_{n}\right)_{n \in \mathbb{N}}$ that converges to C in the Sobolev norm $\|\cdot\|_{(2)}$.

As a virtue of the above theorem, there exists a sequence of shuffles of Min $\left(S_{n}\right)_{n \in \mathbb{N}}$ that converges to $C_{f(X), X}$ in the Sobolev norm $\|\cdot\|_{(2)}$. By Theorem 2.14,

$$
\lim _{n \rightarrow \infty}\left\|S_{n} * C_{X, Y}-C_{f(X), X} * C_{X, Y}\right\|_{(2)}=0
$$

Using Theorem 2.16, we can find a subsequence of $\left(S_{n} * C_{X, Y}\right)_{n \in \mathbb{N}}$, which, for convenience,
will again be denoted by $\left(S_{n} * C_{X, Y}\right)_{n \in \mathbb{N}}$, such that $\left(\partial_{1}\left(S_{n} * C_{X, Y}\right)\right)_{n \in \mathbb{N}}$ converges pointwise to $\partial_{1}\left(C_{f(X), X} * C_{X, Y}\right)=\partial_{1} C_{f(X), Y}$ almost everwhere. By virtue of Theorem 3.3, for every α in \mathbb{I} which is a continuity point of $\Phi_{\partial_{1} C_{f(X), Y}}$,

$$
\lim _{n \rightarrow \infty} \rho\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha},\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)=0
$$

This implies that $\left(\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)\right)_{n \in \mathbb{N}}$ converges to $\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)$. Indeed, let $\epsilon>0$. Then there exists a positive integer N such that for any integer $n \geq N$

Then

$$
\rho\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha},\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)<\epsilon .
$$

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)= & \lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha} \backslash\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
& +\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha} \cap\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
\leq & \lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha} \backslash\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
& +\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) .
\end{aligned}
$$

So we obtain that

$$
\begin{aligned}
& \lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)-\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
& \quad \leq \lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha} \backslash\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
& \quad \leq \rho\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha},\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) \\
& \quad<\epsilon .
\end{aligned}
$$

Similarly, for $n \geq N, \lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)-\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)<\epsilon$ and so we have

$$
\left|\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)-\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)\right|<\epsilon
$$

Hence $\left(\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)\right)_{n \in \mathbb{N}}$ converges to $\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right)$. Since, by Lemma 3.4,
$\lambda_{2}\left(\left[\partial_{1}\left(S_{n} * C_{X, Y}\right)\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C_{X, Y}\right]_{\alpha}\right)$ for all $n \in \mathbb{N}$,

$$
\lambda_{2}\left(\left[\partial_{1} C_{X, Y}\right]_{\alpha}\right)=\lambda_{2}\left(\left[\partial_{1} C_{f(X), Y}\right]_{\alpha}\right) .
$$

3.2 An indicator of dependence

First of all, we give the formal definition of the $i^{\text {th }}$ significant digit of non-zero real numbers.

Definition 3.6. Let $\mathfrak{m}: \mathbb{R} \backslash\{0\} \rightarrow[1,10)$ be defined by

$$
\mathfrak{m}(x)=r, \text { for } x \in \mathbb{R} \backslash\{0\},
$$

where r is the unique number in $[1,10)$ such that $|x|=r \times 10^{n}$ for some necessarily unique $n \in \mathbb{Z}$. Following [7], \mathfrak{m} is called the mantissa function. Let $D^{(i)}(x)$ denote the $i^{\text {th }}$ significant digit (or $i^{\text {th }}$ digit) of x. Formally, $D^{(i)}: \mathbb{R} \backslash\{0\} \rightarrow\{0,1,2, \ldots, 9\}$ is given by

$$
D^{(i)}(x)=\left(\left(t^{-1} \circ \mathfrak{m}\right)(x)\right)_{i}, \quad \text { for } x \in \mathbb{R} \backslash\{0\},
$$

where $(\cdot)_{i}$ is the coordinate projection $\left(c_{1}, c_{2}, \ldots\right)_{i}=c_{i}, t$ is the function $t\left(t_{0}, t_{1}, t_{2}, \ldots\right)=$ $\sum_{k=0}^{\infty} \frac{t_{k}}{10^{k}}$ for $t_{0} \in\{1,2, \ldots, 9\}$ and $t_{k} \in\{0,1,2, \ldots, 9\}$ for $k \in \mathbb{N}$, and t^{-1} is taken to be the terminating inverse when it is non-unique (e.g., $t^{-1}\left(0.1999 \ldots\right.$) $=t^{-1}(0.2)=$ $(2,0,0, \ldots))$. Note that this definition leads the first digit of $0.1999 \ldots$ to be 2 .

To ensure the well-defined property of first digit distributions of partial derivatives of copulas, the following results are useful.

Lemma 3.7. For every copula C and for $d=1,2, \ldots, 9$,

$$
\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right)
$$

is finite.

Proof. Since $\left\{\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right\}_{k=0}^{\infty}$ is a countable collection of pairwise disjoint sets,

$$
\begin{aligned}
\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right) & =\lambda_{2}\left(\bigcup_{k=0}^{\infty}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right)\right) \\
& \leq \lambda_{2}\left(\mathbb{T}^{2}\right)=1 .
\end{aligned}
$$

Lemma 3.8. For every copula C, $\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right) \neq 0$.

Proof. Suppose that $\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)=0$. So $\partial_{1} C(u, v)=0$ for almost every v in \mathbb{I} almost every u in \mathbb{I}. Then for almost every v in \mathbb{I},

$$
v=C(1, v)-C(0, v) \equiv \int_{\mathbb{I}} \partial_{1} C(u, v) \mathrm{d} u=0
$$

where the next to last equality follows from the absolute continuity of C in each argument. This is a contradiction and so $\lambda_{2}\left(\left\{(u, v) \in \mathbb{T}^{2}: \partial_{1} C(u, v)>0\right\}\right) \neq 0$.

Definition 3.9. For a copula C, let $\mathrm{FD}_{d}\left(\partial_{1} C\right)$ be the first digit distribution of $\partial_{1} C$ defined by

$$
\begin{align*}
\mathrm{FD}_{d}\left(\partial_{1} C\right) & =\frac{\lambda_{2}\left(\left\{(u, v) \in \mathbb{\mathbb { R }}^{2}: \text { the first digit of } \partial_{1} C(u, v) \text { is } d\right\}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)} \\
& =\frac{\left.\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10 k}}^{10^{k}} \backslash \partial_{1} C\right]_{\frac{d+1}{10^{k}}}^{10}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{T}^{2}: \partial_{1} C(u, v)>0\right\}\right)} \tag{3.4}
\end{align*}
$$

for $d=1,2, \ldots, 9$. Since $\partial_{1} C$ exists a.e. and $0 \leq \partial_{1} C \leq 1$ a.e., FD_{d} can be computed via upper α-level sets as (3.4).

Remark 3.10. By Lemmas 3.7 and 3.8, the first digit distributions of $\partial_{1} C$ are well-defined. Moreover, $\sum_{d=1}^{9} \mathrm{FD}_{d}\left(\partial_{1} C\right)=1$.

Proof. Since $\left\{\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right\}_{k \geq 0, d=1,2, \ldots, 9}$ is a countable collection of pairwise disjoint sets,

$$
\sum_{d=1}^{9} \mathrm{FD}_{d}\left(\partial_{1} C\right)=\sum_{d=1}^{9} \frac{\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)}
$$

$$
\begin{aligned}
& =\sum_{d=1}^{9} \frac{\lambda_{2}\left(\bigcup_{k=0}^{\infty}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right)\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)} \\
& =\frac{\lambda_{2}\left(\bigcup_{d=1}^{9} \bigcup_{k=0}^{\infty}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right)\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)} \\
& =\frac{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)}=1 .
\end{aligned}
$$

Definition 3.11. For a copula C, denote $\mathrm{MF}_{1}(C)=\max _{d=1,2, \cdots, 9} \mathrm{FD}_{d}\left(\partial_{1} C\right)$. To rescale so that it takes value in \mathbb{I}, let us define function μ_{1} on the space of all copulas \mathcal{C} by

$$
\mu_{1}(C)=\sqrt{\frac{9 \mathrm{MF}_{1}(C)-1}{8}}
$$

Remark 3.12. For a copula $C, \frac{1}{9} \leq \operatorname{MF}_{1}(C) \leq 1$ and so $0 \leq \mu_{1}(C) \leq 1$.

Proof. Suppose that $\mathrm{MF}_{1}(C)<\frac{1}{9}$. So $\sum_{d=1}^{9} \mathrm{FD}_{d}\left(\partial_{1} C\right)<1$, which is a contradiction.
Clearly, for $d=1,2, \ldots, 9, \mathrm{FD}_{d}\left(\partial_{1} C\right) \leq \sum_{d=1}^{9} \mathrm{FD}_{d}\left(\partial_{1} C\right)=1$. Then $\frac{1}{9} \leq \mathrm{MF}_{1}(C) \leq 1$.
Theorem 3.13. Let X and Y be random variables with continuous distribution functions. If Y is completely dependent on X, then $\mathrm{MF}_{1}\left(C_{X, Y}\right)=1$ and so $\mu_{1}\left(C_{X, Y}\right)=1$.

Proof. Since Y is completely dependent on $X, \partial_{1} C \in\{0,1\}$ almost everywhere. So for any $k \in \mathbb{N}$ and $d=1,2, \ldots, 9$, up to subsets of measure zero

$$
\left[\partial_{1} C\right]_{\frac{d}{10^{k}}}=\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=1\right\}=\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}
$$

Then

$$
\begin{aligned}
\mathrm{FD}_{1}\left(\partial_{1} C\right) & =\frac{\lambda_{2}\left(\left[\partial_{1} C\right]_{1}\right)+\sum_{k=1}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10^{k}}}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)} \\
& =\frac{\lambda_{2}\left(\left[\partial_{1} C\right]_{1}\right)+\sum_{k=1}^{\infty} 0}{\lambda_{2}\left(\left[\partial_{1} C\right]_{1}\right)}=1 .
\end{aligned}
$$

This implies that $\operatorname{MF}_{1}(C)=1$.

The converse is not true, that is, if $\operatorname{MF}_{1}(C)=1$ then the copula C is not necessarily a complete dependence copula. A counterexample can be constructed via patching method. Let $J_{0}=\left[0, \frac{1}{10}\right], J_{1}=\left(\frac{1}{10}, 1\right], a_{0}=\frac{1}{10}$ and $a_{1}=\frac{9}{10}$. And for each $j=0,1$, let L_{j} be the uniform distribution function on J_{j}. Then, by Theorem 2.11, the function C defined by

$$
\begin{equation*}
C(u, v)=\sum_{j=0}^{1} a_{j} M\left(u, L_{j}(v)\right)=\frac{1}{10} M\left(u, L_{0}(v)\right)+\frac{9}{10} M\left(u, L_{1}(v)\right), \quad \text { for } u, v \in \mathbb{I} \tag{3.5}
\end{equation*}
$$

is a copula.

Figure 3.1: Support of the copula defined in (3.5)

To show that $\operatorname{MF}_{1}(C)=1$, let $(u, v) \in \mathbb{I} \times J_{0}$. Then $L_{0}(v)=10 v$ and $L_{1}(v)=0$. So $C(u, v)=\frac{1}{10} \min \{u, 10 v\}$. Consequently, $\partial_{1} C(u, v)=0$ for all $(u, v) \in \mathbb{I} \times J_{0}$ such that $v<\frac{u}{10}$ and $\partial_{1} C(u, v)=\frac{1}{10}$ for all $(u, v) \in \mathbb{I} \times J_{0}$ such that $v>\frac{u}{10}$.

Next, let $(u, v) \in \mathbb{I} \times J_{1}$. Then $L_{0}(v)=1$ and $L_{1}(v)=\frac{1}{9}(10 v-1)$. Consequently, $C(u, v)=\frac{1}{10} u+\frac{9}{10} \min \left\{u, \frac{1}{9}(10 v-1)\right\}$. Therefore, $\partial_{1} C(u, v)=\frac{1}{10}$ for all $(u, v) \in \mathbb{I} \times J_{1}$ such that $v<\frac{9}{10} u+\frac{1}{10}$ and $\partial_{1} C(u, v)=1$ for all $(u, v) \in \mathbb{I} \times J_{1}$ such that $v>\frac{9}{10} u+\frac{1}{10}$. Then

$$
\mathrm{FD}_{1}\left(\partial_{1} C\right)=\frac{\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10^{k}}}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{T}^{2}: \partial_{1} C(u, v)>0\right\}\right)}
$$

$$
\begin{aligned}
& =\frac{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=1\right\}\right)+\lambda_{2}\left(\left\{(u, v) \in \mathbb{T}^{2}: \partial_{1} C(u, v)=\frac{1}{10}\right\}\right)}{\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=1\right\}\right)+\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=\frac{1}{10}\right\}\right)} \\
& =1,
\end{aligned}
$$

where the second equality is obtained by using $\partial_{1} C \in\left\{0, \frac{1}{10}, 1\right\}$ almost everywhere. This implies $\mathrm{MF}_{1}(C)=1$.

Theorem 3.14. $\mathrm{MF}_{1}(\Pi)=1 / 9$, i.e. $\mu_{1}(\Pi)=0$.

Proof. Note that

$$
\begin{aligned}
& \lambda_{2}\left(\left[\partial_{1} \Pi\right]_{1}\right)=\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} \Pi(u, v)=1\right\}\right) \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: v=1\right\}\right) \\
& =\lambda_{2}(\mathbb{I} \times\{1\})=0 \text {. } \\
& \text { Moreover, } \\
& \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} \Pi(u, v)>0\right\}\right)=\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: v>0\right\}\right)=\lambda_{2}(\mathbb{I} \times(0,1])=1 .
\end{aligned}
$$

Then for any $d=1,2, \ldots, 9$,

$$
\begin{aligned}
\mathrm{FD}_{d}\left(\partial_{1} \Pi\right) & =\sum_{k=1}^{\infty} \lambda_{2}\left(\left[\partial_{1} \Pi\right]_{\frac{d}{10^{k}} \backslash} \backslash\left[\partial_{1} \Pi\right]_{\frac{d+1}{10^{k}}}\right) \\
& =\sum_{k=1}^{\infty} \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{d}{10^{k}} \leq \partial_{1} \Pi(u, v)<\frac{d+1}{10^{k}}\right\}\right) \\
& =\sum_{k=1}^{\infty} \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{d}{10^{k}} \leq v<\frac{d+1}{10^{k}}\right\}\right) \\
& =\sum_{k=1}^{\infty} \lambda_{2}\left(\mathbb{I} \times\left[\frac{d}{10^{k}}, \frac{d+1}{10^{k}}\right)\right)=\sum_{k=1}^{\infty} \frac{1}{10^{k}}=\frac{1}{9} .
\end{aligned}
$$

This implies that $\mathrm{MF}_{1}(\Pi)=\frac{1}{9}$ and so $\mu_{1}(\Pi)=0$.

However, we found a copula $C \neq \Pi$ whose $\mu_{1}(C)=0$. Let $I_{0}=\left[0, \frac{1}{10}\right]$ and $I_{i}=\left(\frac{i}{10}, \frac{i+1}{10}\right]$ for $i=1,2, \ldots, 9$. For each $i \in\{0,1, \ldots, 9\}$ and $j \in\{1,2, \ldots, 9\}$, let F_{i}
be the uniform distribution function on $I_{i}, C_{i 0}=\Pi$ and $C_{i j}=M$. Then Theorem 2.11 implies that the function C defined by

$$
\begin{equation*}
C(u, v)=\sum_{i=0}^{9} \sum_{j=0}^{9} \frac{1}{100} C_{i j}\left(F_{i}(u), F_{j}(v)\right), \quad u, v \in \mathbb{I}, \tag{3.6}
\end{equation*}
$$

is a copula.

Figure 3.2: Support of the copula in (3.6)

To show that $\operatorname{MF}_{1}(C)=\frac{1}{9}$, for each $h, k \in\{0,1, \ldots, 9\}$, let $(u, v) \in I_{h} \times I_{k}$. Then $F_{i}(u)=1$ for all $i<h, F_{i}(u)=0$ for all $i>h, F_{j}(v)=1$ for all $j<k$ and $F_{j}(v)=0$ for all $j>k$. Consequently,

$$
\begin{aligned}
C(u, v) & =\sum_{i=0}^{h} \sum_{j=0}^{k} \frac{1}{100} C_{i j}\left(F_{i}(u), F_{j}(v)\right) \\
& =\sum_{i=0}^{h-1} \sum_{j=0}^{k-1} \frac{1}{100}+\sum_{i=0}^{h-1} \frac{10 v-k}{100}+\sum_{j=0}^{k-1} \frac{10 u-h}{100}+\frac{1}{100} C_{h k}(10 u-h, 10 v-k) \\
& =\frac{h k}{100}+\frac{h}{100}(10 v-k)+\frac{k}{100}(10 u-h)+\frac{1}{100} C_{h k}(10 u-h, 10 v-k) .
\end{aligned}
$$

Therefore, $\partial_{1} C(u, v)=\frac{k}{10}+\frac{1}{10} \partial_{1} C_{h k}(10 u-h, 10 v-k)$ for almost every $(u, v) \in I_{h} \times I_{k}$. In particular, for each $h \geq 0$, if $k=0$ then $\partial_{1} C(u, v)=\frac{1}{10} \partial_{1} \Pi(10 u-h, 10 v)=v$ for all $(u, v) \in I_{h} \times I_{0}$ and if $k>0$ then $\partial_{1} C(u, v)=\frac{k}{10}+\frac{1}{10} \partial_{1} M(10 u-h, 10 v-k)=\frac{k+1}{10}$ for all
$(u, v) \in I_{h} \times I_{k}$ such that $v>u-\frac{h}{10}+\frac{k}{10}$ and $\partial_{1} C(u, v)=\frac{k}{10}+\frac{1}{10} \partial_{1} M(10 u-h, 10 v-k)$ $=\frac{k}{10}$ for all $(u, v) \in I_{h} \times I_{k}$ such that $v<u-\frac{h}{10}+\frac{k}{10}$. This formula implies that $\partial_{1} C(u, v) \in\left[0, \frac{1}{10}\right]$ for all $(u, v) \in \mathbb{I} \times I_{0}$ and $\partial_{1} C(u, v) \in\left\{\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}, \frac{8}{10}, \frac{9}{10}, 1\right\}$ for almost every $(u, v) \notin \mathbb{I} \times I_{0}$. Next, fix $d=1,2, \ldots, 9$. First of all, notice that $\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)>0\right\}\right)=\lambda_{2}(\mathbb{I} \times(0,1])=1$. If $d=1$, then

$$
\begin{align*}
\mathrm{FD}_{1}\left(\partial_{1} C\right)= & \sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10^{k}}}\right) \\
= & \lambda_{2}\left(\left[\partial_{1} C\right]_{1}\right)+\lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10}}\right) \\
& +\sum_{k=2}^{\infty} \lambda_{2}\left(\left\{\partial_{1} C\right]_{\frac{1}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10^{k}}}\right) . \tag{3.7}
\end{align*}
$$

We consider the first, second and last terms of the above equation. Firstly,

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1} C\right]_{1}\right) & =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=1\right\}\right) \\
& =\lambda_{2}\left(\bigcup_{h=0}^{9}\left\{(u, v) \in I_{h} \times I_{9}: v>u-\frac{h}{10}+\frac{9}{10}\right\}\right) \\
& =\sum_{h=0}^{9} \lambda_{2}\left(\left\{(u, v) \in I_{h} \times I_{9}: v>u-\frac{h}{10}+\frac{9}{10}\right\}\right) \\
& =\sum_{h=0}^{9} \int_{\frac{h}{10}}^{\frac{h+1}{10}} \int_{u-\frac{h}{10}+\frac{9}{10}}^{1} 1 \mathrm{~d} v \mathrm{~d} u=\sum_{h=0}^{9} \frac{1}{200}=\frac{1}{20} .
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10}}\right) & =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{1}{10} \leq \partial_{1} C(u, v)<\frac{2}{10}\right\}\right) \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=\frac{1}{10}\right\}\right) \\
& =\lambda_{2}\left(\bigcup_{h=0}^{9}\left\{(u, v) \in I_{h} \times I_{1}: v<u-\frac{h}{10}+\frac{1}{10}\right\}\right) \\
& =\sum_{h=0}^{9} \lambda_{2}\left(\left\{(u, v) \in I_{h} \times I_{1}: v<u-\frac{h}{10}+\frac{1}{10}\right\}\right) \\
& =\sum_{h=0}^{9} \int_{\frac{h}{10}}^{\frac{h+1}{10}} \int_{\frac{1}{10}}^{u-\frac{h}{10}+\frac{1}{10}} 1 \mathrm{~d} v \mathrm{~d} u=\sum_{h=0}^{9} \frac{1}{200}=\frac{1}{20} .
\end{aligned}
$$

And the last term is

$$
\begin{aligned}
\sum_{k=2}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{1}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{2}{10^{k}}}\right) & =\sum_{k=2}^{\infty} \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{1}{10^{k}} \leq \partial_{1} C(u, v)<\frac{2}{10^{k}}\right\}\right) \\
& =\sum_{k=2}^{\infty} \lambda_{2}\left(\mathbb{I} \times\left[\frac{1}{10^{k}}, \frac{2}{10^{k}}\right)\right) \\
& =\sum_{k=2}^{\infty} \frac{1}{10^{k}}=\frac{1}{90}
\end{aligned}
$$

Therefore, by (3.7), $\mathrm{FD}_{1}\left(\partial_{1} C\right)=\frac{1}{9}$.
For $d>1$

$$
\begin{align*}
\mathrm{FD}_{d}\left(\partial_{1} C\right) & =\sum_{k=0}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right) \\
& =\lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10}}\right)+\sum_{k=2}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right) \tag{3.8}
\end{align*}
$$

Similarly, we consider two terms of equation (3.8). Firstly,

$$
\begin{aligned}
\lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10}}\right)= & \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{d}{10} \leq \partial_{1} C(u, v)<\frac{d+1}{10}\right\}\right) \\
= & \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v)=\frac{d}{10}\right\}\right) \\
= & \lambda_{2}\left(\left(\bigcup_{h=0}^{9}\left\{(u, v) \in I_{h} \times I_{d-1}: v>u-\frac{h}{10}+\frac{d-1}{10}\right\}\right)\right. \\
& \bigcup \bigcup_{h=0}^{9} \lambda_{2}\left(\left\{(u, v) \in I_{h} \times I_{d}: v<u-\frac{h}{10}+\frac{d}{10}\right\}\right) \\
= & \left.\sum_{h=0}^{9} \lambda_{2}\left(\left\{(u, v) \in I_{h} \times I_{d}: v<u-\frac{h}{10}+\frac{d}{10}\right\}\right)\right) \\
= & \sum_{h=0}^{9} \int_{\frac{h}{10}}^{\frac{h+1}{10}} \int_{u-\frac{h}{10}}^{\frac{d}{10}}+\frac{d-1}{10} 1 \mathrm{~d} v \mathrm{~d} u+\sum_{h=0}^{9} \int_{\frac{h}{10}}^{\frac{h+1}{10}} \int_{\frac{d}{10}}^{u-\frac{h}{10}+\frac{d}{10}} 1 \mathrm{~d} v \mathrm{~d} u \\
= & \sum_{h=0}^{9} \frac{1}{200}+\sum_{h=0}^{9} \frac{1}{200}=\frac{1}{20}+\frac{1}{20}=\frac{1}{10} .
\end{aligned}
$$

Secondly,

$$
\begin{aligned}
\sum_{k=2}^{\infty} \lambda_{2}\left(\left[\partial_{1} C\right]_{\frac{d}{10^{k}}} \backslash\left[\partial_{1} C\right]_{\frac{d+1}{10^{k}}}\right) & =\sum_{k=2}^{\infty} \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: \frac{d}{10^{k}} \leq \partial_{1} C(u, v)<\frac{d+1}{10^{k}}\right\}\right) \\
& =\sum_{k=2}^{\infty} \lambda_{2}\left(\mathbb{I} \times\left[\frac{d}{10^{k}}, \frac{d+1}{10^{k}}\right)\right) \\
& =\sum_{k=2}^{\infty} \frac{1}{10^{k}}=\frac{1}{90} .
\end{aligned}
$$

Thus, by (3.8), $\mathrm{FD}_{d}\left(\partial_{1} C\right)=\frac{1}{9}$. This shows that $\mathrm{MF}_{1}(C)=\frac{1}{9}$.

Naturally, under certain transformations of random variables, dependence level should not vary when random variables are transformed. In lieu of Theorems 3.2 and 3.5, we have to restrict such transformations to injective transformations with finitely many discontinuity points.

Theorem 3.15. Let X and Y be random variables with continuous marginal distributions. If f is an invertible Borel measurable function with finitely many discontinuity points, then $\operatorname{MF}_{1}\left(C_{X, Y}\right)=\operatorname{MF}_{1}\left(C_{f(X), Y}\right)$, i.e. $\mu_{1}\left(C_{X, Y}\right)=\mu_{1}\left(C_{f(X), Y}\right)$.

Proof. Its proof follows from Theorem 2.18 and Lemma 3.4.

CHAPTER IV

NUMERICAL COMPUTATION

In this chapter, we investigate a procedure for approximating first digit distributions of partial derivatives of copulas. Moreover, comparisons between μ_{1} and other measures of dependence are included.

4.1 Numerical computation

Definition 4.1. Let $a, b \in \mathbb{I}$ and the functions $f_{0, a}$ and $f_{1, b}$ be defined, for u in \mathbb{I}, by

$$
\begin{aligned}
& f_{0, a}(u)=\inf \left\{v \in \mathbb{I}: \partial_{1} C(u, v) \geq a\right\} \quad \text { and } \\
& f_{1, b}(u)=\sup \left\{v \in \mathbb{I}: \partial_{1} C(u, v)<b\right\} .
\end{aligned}
$$

Lemma 4.2. For $a, b \in \mathbb{I}, f_{0, a}$ and $f_{1, b}$ are measurable.

Proof. Let $\hat{\mathbb{I}} \subseteq \mathbb{I}$ be the set of full measure of u 's such that $\partial_{1} C(u, v)$ exists for almost every $v \in \mathbb{I}$. And for every $u \in \hat{\mathbb{I}}$, since we can redefine $\partial_{1} C(u, v)$ on a subset of \mathbb{I} of measure zero, we may assume that $\partial_{1} C(u, v)$ exists and is nondecreasing for all $v \in \mathbb{I}$. We also extend C in such a way that $C(u, v)=0$ if u or v is negative; $C(u, v)=1$ if $u>1$ and $v>1 ; C(u, v)=u$ for $v>1 ;$ and $C(u, v)=v$ for $u>1$. Let $c \in \mathbb{I}$. Using the nondecreasing property of $\partial_{1} C(u, \cdot)$, we obtain

$$
\begin{aligned}
\left\{u \in \hat{\mathbb{I}}: f_{0, a}(u)<c\right\} & =\left\{u \in \hat{\mathbb{I}}: \exists v<c, \partial_{1} C(u, v) \geq a\right\} \\
& =\bigcup_{n=1}^{\infty}\left\{u \in \hat{\mathbb{I}}: \partial_{1} C\left(u, c-\frac{1}{n}\right) \geq a\right\}, \text { and } \\
\left\{u \in \hat{\mathbb{I}}: f_{1, b}(u)>c\right\} & =\left\{u \in \hat{\mathbb{I}}: \exists v>c, \partial_{1} C(u, v)<b\right\} \\
& =\bigcup_{n=1}^{\infty}\left\{u \in \hat{\mathbb{I}}: \partial_{1} C\left(u, c+\frac{1}{n}\right)<b\right\} .
\end{aligned}
$$

They are measurable sets because any $\partial_{1} C\left(\cdot, c-\frac{1}{n}\right)$ and $\partial_{1} C\left(\cdot, c+\frac{1}{n}\right)$ are measurable.

Lemma 4.3. For $a, b \in \mathbb{I}$,

$$
\begin{aligned}
& \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\}\right) \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: f_{0, a}(u) \leq v<f_{1, b}(u)\right\}\right) .
\end{aligned}
$$

Proof. This follows from

$$
\begin{aligned}
& \left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\} \\
& \subseteq\left\{(u, v) \in \mathbb{I}^{2}: f_{0, a}(u) \leq v \leq f_{1, b}(u)\right\}, \\
& \left\{(u, v) \in \mathbb{I}^{2}: f_{0, a}(u)<v<f_{1, b}(u)\right\} \\
& \subseteq\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\} \\
& \quad \cup\left\{(u, v) \in \mathbb{I}^{2}: \partial_{1} C(u, v) \text { does not exist }\right\},
\end{aligned}
$$

and the fact that the graph of a measurable function has Lebesgue measure zero.

Then, for $n \in \mathbb{N}$, we also define functions $F_{0, a, n}$ and $F_{1, b, n}$ on \mathbb{I} for approximat$\operatorname{ing} \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: f_{0, a}(u) \leq v<f_{1, b}(u)\right\}\right)$. It is indeed a way to numerically compute $\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b\right.\right.$ and $\partial_{1} C(u, v)$ exists $\left.\}\right)$. As a result, we obtain numerical computation of the first digit distributions of partial derivatives of copulas.

Theorem 4.4. Denote the set of odd numbers by \mathcal{O}. Let $a, b \in \mathbb{I}$. For each $n \in \mathbb{N}$, let $J_{j}^{n}=\left[\frac{j-1}{n}, \frac{j}{n}\right)$ for $j=1,2, \ldots, n-1$ and $J_{n}^{n}=\left[\frac{n-1}{n}, 1\right]$ and define measurable functions

$$
\begin{aligned}
& F_{0, a, n}(u)=n \int_{\frac{j-1}{n}}^{\frac{j}{n}} f_{0, a}(t) \mathrm{d} t \quad \text { and } \\
& F_{1, b, n}(u)=n \int_{\frac{j-1}{n}}^{\frac{j}{n}} f_{1, b}(t) \mathrm{d} t,
\end{aligned}
$$

for $u \in J_{j}^{n}(j=1,2, \ldots, n)$. Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\#\left(\left(2 n\left\{(u, v) \in \mathbb{I}^{2}: F_{0, a, n}(u) \leq v<F_{1, b, n}(u)\right\}\right) \cap \mathcal{O}^{2}\right)}{n^{2}} \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\}\right),
\end{aligned}
$$

where, for any subset B of \mathbb{I}^{2} and $c \in \mathbb{R}, c B:=\{(c u, c v):(u, v) \in B\}$ and, for any finite set $A, \#(A)$ is the number of elements in A.

Before proving this theorem, the following definition and theorem are needed. For more details, see [13].

Nicely Shrinking Sets. Let $x \in \mathbb{R}$. A sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ of Borel subsets of \mathbb{R} is said to shrink to x nicely if there exists an $s>0$ and there is a sequence $\left(B\left(x, r_{n}\right)\right)_{n \in \mathbb{N}}$, with $\lim _{n \rightarrow \infty} r_{n}=0$, such that $B_{n} \subseteq B\left(x, r_{n}\right)$ and $\lambda\left(B_{n}\right) \geq s \cdot \lambda\left(B\left(x, r_{n}\right)\right)$ for all $n \in \mathbb{N}$, where $B(x, r):=\{y \in \mathbb{R}:|x-y|<r\}$ and λ is the Lebesgue measure on \mathbb{R}.

Lebesgue Point Theorem. Let $\overline{\mathbb{R}}$ be the extended real line $[-\infty, \infty]$ and let $f: \mathbb{R} \rightarrow \overline{\mathbb{R}}$ be an integrable function. For each $x \in \mathbb{R}$, a sequence $\left(B_{n}(x)\right)_{n \in \mathbb{N}}$ of Borel subsets of \mathbb{R} shrinks to x nicely. Then for almost every $x \in \mathbb{R}$,

$$
f(x)=\lim _{n \rightarrow \infty} \frac{1}{\lambda\left(B_{n}(x)\right)} \int_{B_{n}(x)} f \mathrm{~d} \lambda .
$$

Proof of Theorem 4.4. There are two technical functions which are useful in proving this theorem. Define measurable functions, for every $u \in \mathbb{I}$,

$$
\begin{aligned}
& f_{0, a, n}(u)=\sum_{k=0}^{n} \sum_{j=1}^{n} \frac{k}{n} \mathbb{1}_{F_{0, a, n}^{-1}\left(\frac{2 k-1}{2 n}, \frac{2 k+1}{2 n}\right]}\left(\frac{2 j-1}{2 n}\right) \mathbb{1}_{J_{j}^{n}}(u) \\
& \text { CHULAL } \\
& f_{1, b, n}(u)=\sum_{k=0}^{n} \sum_{j=1}^{n} \frac{k}{n} \mathbb{1}_{F_{1, b, n}^{-1}\left(\frac{2 k-1}{2 n}, \frac{2 k+1}{2 n}\right]}\left(\frac{2 j-1}{2 n}\right) \mathbb{1}_{J_{j}^{n}}(u) .
\end{aligned}
$$

The functions $f_{0, a}$ and $f_{1, b}$ may not exist at $\frac{2 j-1}{2 n}$. To get around this technicality, we have to use their average functions over the interval J_{j}^{n}, i.e. $F_{0, a, n}$ and $F_{1, b, n}$. Note that $f_{0, a}$ and $f_{1, b}$ are integrable and for each $u \in \mathbb{I}$, there exists $j_{u, n}=1,2, \ldots, n$ such that $u \in J_{j_{u, n}}^{n}$ for every $n \in \mathbb{N}$. Moreover, for each $u \in \mathbb{I}$, the sequence $\left(J_{j_{u, n}}^{n}\right)_{n \in \mathbb{N}}$ shrinks to u nicely with $r_{n}=\frac{1}{n}$ and $s=\frac{1}{2}$. Then, by Lebesgue Point Theorem, $\left(F_{0, a, n}\right)_{n \in \mathbb{N}}$ and $\left(F_{1, b, n}\right)_{n \in \mathbb{N}}$ converge a.e. to $f_{0, a}$ and $f_{1, b}$, respectively. Next, we will show that $\left(f_{0, a, n}\right)_{n \in \mathbb{N}}$ converges a.e. to $f_{0, a}$. Let $u \in \mathbb{I}$ be such that $\left(F_{0, a, n}(u)\right)_{n \in \mathbb{N}}$ converges to $f_{0, a}(u)$ and let $\epsilon>0$. Then there exists an $N_{1} \in \mathbb{N}$ such that $\frac{1}{N_{1}}<\epsilon$. Since $\left(F_{0, a, n}(u)\right)_{n \in \mathbb{N}}$
converges to $f_{0, a}(u)$, there exists an $N_{2} \in \mathbb{N}$ such that $\left|F_{0, a, n}(u)-f_{0, a}(u)\right|<\frac{\epsilon}{2}$ for every $n \geq N_{2}$. Let $n \geq \max \left(N_{1}, N_{2}\right)$. Then $u \in J_{j}^{n}$ for some $j=1,2, \ldots, n$. Thus $F_{0, a, n}\left(\frac{2 j-1}{2 n}\right)=F_{0, a, n}(u)$ and so $\frac{2 k-1}{2 n}<F_{0, a, n}(u) \leq \frac{2 k+1}{2 n}$ for some $k=0,1,2, \ldots, n$. This implies that $\left|F_{0, a, n}(u)-f_{0, a, n}(u)\right| \leq \frac{1}{2 n}$ because $f_{0, a, n}(u)=\frac{k}{n}$. Therefore,

$$
\left|f_{0, a, n}(u)-f_{0, a}(u)\right| \leq\left|f_{0, a, n}(u)-F_{0, a, n}(u)\right|+\left|F_{0, a, n}(u)-f_{0, a}(u)\right| \leq \frac{1}{2 n}+\frac{\epsilon}{2}<\epsilon .
$$

This shows that $\left(f_{0, a, n}\right)_{n \in \mathbb{N}}$ converges a.e. to $f_{0, a}$. In a similar way, $\left(f_{1, b, n}\right)_{n \in \mathbb{N}}$ converges a.e. to $f_{1, b}$. Then, because for any $n \in \mathbb{N},\left|f_{1, b, n}-f_{0, a, n}\right|$ is dominated by an integrable function on $\mathbb{I}, \mathbb{1}_{\mathbb{I}}$, and $\left(f_{1, b, n}-f_{0, a, n}\right)_{n \in \mathbb{N}}$ converges a.e. to $f_{1, b}-f_{0, a}$, we have, by the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{I}} f_{1, b, n}(u)-f_{0, a, n}(u) \mathrm{d} u=\int_{\mathbb{I}} f_{1, b}(u)-f_{0, a}(u) \mathrm{d} u .
$$

But, by Lemma 4.3,

$$
\begin{aligned}
& \lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\}\right) \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: f_{0, a}(u) \leq v<f_{1, b}(u)\right\}\right) \\
& =\int_{\mathbb{I}} f_{1, b}(u)-f_{0, a}(u) \mathrm{d} u,
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\mathbb{I}} f_{1, b, n}(u)-f_{0, a, n}(u) \mathrm{d} u & =\sum_{k=0}^{n} \sum_{j=1}^{n} \frac{k}{n^{2}}\left(\mathbb{1}_{F_{1, b, n}^{-1}\left(\frac{2 k-1}{2 n}, \frac{2 k+1}{2 n}\right]}-\mathbb{1}_{F_{0, a, n}^{-1}\left(\frac{2 k-1}{2 n}, \frac{2 k+1}{2 n}\right]}\right)\left(\frac{2 j-1}{2 n}\right) \\
& =\frac{\#\left(\left(2 n\left\{(u, v) \in \mathbb{I}^{2}: F_{0, a, n}(u) \leq v<F_{1, b, n}(u)\right\}\right) \cap \mathcal{O}^{2}\right)}{n^{2}} .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\#\left(\left(2 n\left\{(u, v) \in \mathbb{I}^{2}: F_{0, a, n}(u) \leq v<F_{1, b, n}(u)\right\}\right) \cap \mathcal{O}^{2}\right)}{n^{2}} \\
& =\lambda_{2}\left(\left\{(u, v) \in \mathbb{I}^{2}: a \leq \partial_{1} C(u, v)<b \text { and } \partial_{1} C(u, v) \text { exists }\right\}\right) .
\end{aligned}
$$

4.2 Examples and comparisons

In previous section, let us observe that we use measurable functions $F_{0, a, n}$ and $F_{1, b, n}$ as technical tools for proving Theorem 4.4. Nevertheless, we can unquestionably use smooth level curves of partial derivatives of copulas to approximate their first digit distributions. In this section, we numerically compute μ_{1} of some classes of copulas.

Example 4.1. A pair of random variables X and Y has the standard bivariate normal distribution with correlation coefficient $\rho \in(-1,1)$ if their joint probability density function is given by

$$
\phi(x, y ; \rho)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left(-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right)
$$

for $x, y \in \mathbb{R}$. One can show that the marginal distributions of X and Y are standard normal, denoted as Φ. Then let $N_{\rho}(x, y)$ denote the standard bivariate normal joint distribution function with correlation coefficient $\rho \in(-1,1)$ so that C_{ρ}, the Gaussian copula, is defined by Sklar's theorem

$$
C_{\rho}(\Phi(x), \Phi(y))=N_{\rho}(x, y) \quad(x, y \in \mathbb{R}) .
$$

One can show that $C_{0}=\Pi$. Moreover, we can extend continuously for $\rho \in\{-1,1\}$:

$$
\begin{aligned}
& C_{-1}(u, v):=\lim _{\rho \rightarrow-1} C_{\rho}(u, v)=\max (u+v-1,0), \\
& C_{+1}(u, v):=\lim _{\rho \rightarrow+1} C_{\rho}(u, v)=\min (u, v),
\end{aligned}
$$

for every $u, v \in \mathbb{I}$, so that C_{ρ} approaches W and M as ρ approaches -1 and 1 , respectively. Then partial derivatives of Gaussian copulas are

$$
\begin{aligned}
& \partial_{1} C_{\rho}(u, v)=\Phi\left(\frac{\Phi^{-1}(v)-\rho \Phi^{-1}(u)}{\sqrt{1-\rho^{2}}}\right), \\
& \partial_{2} C_{\rho}(u, v)=\Phi\left(\frac{\Phi^{-1}(u)-\rho \Phi^{-1}(v)}{\sqrt{1-\rho^{2}}}\right) .
\end{aligned}
$$

We then numerically compute μ_{1} of $C_{0.8}$, the Gaussian copula with $\rho=0.8$. Let us begin by considering level curves of $\partial_{1} C_{0.8}$. By Theorem 4.4, to approximate $\mathrm{FD}_{1}\left(\partial_{1} C_{0.8}\right)$ we

Figure 4.1: Level curves of Gaussian copula $\partial_{1} C_{0.8}$
firstly count grid points which lie above or on level curve $\left\{\partial_{1} C(u, v)=1\right\}$. Similarly, we find the number of grid points lying above or on level curve $\left\{\partial_{1} C(u, v)=\frac{1}{10^{i}}\right\}$ and below $\left\{\partial_{1} C(u, v)=\frac{2}{10^{2}}\right\}$ for every $i=1,2, \ldots, n$. The quotient of total of such grid points and the number of grid points such that $\partial_{1} C_{0.8}>0$ is an approximation of $\mathrm{FD}_{1}\left(\partial_{1} C_{0.8}\right)$. Thus, in a similar manner, an approximation of $\mathrm{MF}_{1}\left(C_{0.8}\right)$ is obtained and an approximate value of $\mu_{1}\left(C_{0.8}\right)$ follows. In Figure 4.2, μ_{1} of Gaussian copulas are graphed where the parameter ρ vary.

Figure 4.2: μ_{1} of Gaussian C_{ρ} (Left), Clayton C_{θ} (Center) and Frank C_{β} (Right) copulas

For various classes, we also numerically compute μ_{1} of Clayton and Frank copulas whose graphs are shown in Figure 4.2. Next, let us recall the definitions of some copulabased measures of dependence to compare their values with μ_{1} :

Figure 4.3: Graphs of $\mu_{1}(C)$ against $\omega_{1}(C)$ for Gaussian C_{ρ} (Left), Clayton C_{θ} (Center) and Frank C_{β} (Right) copulas

Figure 4.4: Graphs of $\mu_{1}(C)$ against $\zeta_{1}(C)$ for Gaussian C_{ρ} (Left), Clayton C_{θ} (Center) and Frank C_{β} (Right) copulas
I. (Siburg and Stoimenov [15])

$$
\omega_{i}(C)=\left(6 \int_{\mathbb{I}} \int_{\mathbb{I}}\left|\partial_{i} C(u, v)-\partial_{i} \Pi(u, v)\right|^{2} \mathrm{~d} u \mathrm{~d} v\right)^{1 / 2}, \quad i=1,2
$$

II. (Trutschnig [16])

$$
\zeta_{i}(C)=3 \int_{\mathbb{I}} \int_{\mathbb{I}}\left|\partial_{i} C(u, v)-\partial_{i} \Pi(u, v)\right| \mathrm{d} u \mathrm{~d} v, \quad i=1,2
$$

In the Figures 4.3 and 4.4, numerical values μ_{1} of Gaussian, Clayton and Frank copulas are plotted against ω_{1} and ζ_{1}, respectively. One can see that for all three classes considered, the values of μ_{1} vary quite proportional to both ω_{1} and ζ_{1}. This means that μ_{1} could be a good indicator of dependence. For finer detection, one can investigate in a future exploration dependence indicators based on the first two, three or more digit distributions of the partial derivatives of copulas.

REFERENCES

[1] Chaidee, N., Santiwipanont, T., Sumetkijakan, S.: Patched approximations and their convergence, Comm. Statist. Theory Methods 45(9), 2654-2664 (2016).
[2] Darsow, W.F., Nguyen, B., Olsen, E.T.: Copulas and markov processes, Illinois J. Math. 36(4), 600-642 (1992).
[3] Darsow, W.F., Olsen, E.T.: Norms for copulas, Int. J. Math. Math. Sci. 18(3), 417-436 (1995).
[4] Dudley, R.M.: Real Analysis and Probability, Cambridge, 2015.
[5] Durante, F., Sarkoci, P., Sempi, C.: Shuffles of copulas, J. Math. Anal. Appl. 352(2) 914-921 (2009).
[6] Fernández-Sánchez, J., Trutschnig, W.: Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and iterated function systems, J. Theoret. Probab. 28(4) 1311-1336 (2015).
[7] Hill, T.P.: Base-invariance implies Benford's law, Proc. Amer. Math. Soc. 123(3) 887-895 (1995)
[8] Meyer, C.: The bivariate normal copula, Comm. Statist. Theory Methods 42(13) 2402-2422 (2013).
[9] Mikusiński, P., Sherwood, H., Taylor, M.D.: Shuffles of min, Stochastica 13(1) 61-74 (1992).
[10] Nelsen, R.B.: An Introduction to Copulas, Springer, New York, 2006.
[11] Royden, H.L., Fitzpatrick, P.M.: Real Analysis, $4^{\text {th }}$ edition, Prentice Hall, Pearson, 2010.
[12] Ruankong, P., Santiwipanont, T., Sumetkijakan, S.: Shuffles of copulas and a new measure of dependence, J. Math. Anal. Appl. 398(1), 392-402 (2013).
[13] Rudin, W.: Real and Complex Analysis, McGraw Hill, New York, 1987.
[14] Schweizer, B., Wolff, E.F.: On nonparametric measures of dependence for random variables, Ann. Statist. 9(4), 879-885 (1981).
[15] Siburg, K.F., Stoimenov, P.A.: A measure of mutual complete dependence, Metrika 71(2), 239-251 (2010).
[16] Trutschnig, W.: On a strong metric on the space of copulas and its induced dependence measure, J. Math. Anal. Appl. 384(2), 690-705 (2011).
[17] Trutschnig, W., Sánchez, J.F.: Some results on shuffles of two-dimensional copulas, J. Statist. Plann. Inference 143(2), 251-260 (2013).
[18] Williams, D.: Probability with Martingales, Cambridge, 1991.
[19] Zheng, Y., Yang, J., Huang, J.Z.: Approximation of bivariate copulas by patched bivariate Fréchet copulas, Insurance Math. Econom. 48(2), 246-256 (2011).

จุฬาลงกรณ์มหาวิทยาลัย
Chulalongiorn University

APPENDIX : Examples of R code for calculating and plotting μ_{1}

In calculating, by applying Theorem 4.4, the approximate values μ_{1} of each example in this thesis, we use R code to compute that robust results. Let us give the code for MF_{1} and, as a result, μ_{1} used in Example 4.1.

```
n = 6000
#Define grid points used in calculating
m <- matrix(rep(seq(1, 2*n-1, by = 2),n),nrow=n)
mt <- t(m)
x <- m/(2*n)
y <- mt/ (2*n)
#Use parameter 0.5 in this example
r <- 0.5
#Define first derivative of Gaussian copula (parameter=r)
dG <- function(r) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
#Calculate first digit distribution
FG = matrix(nrow=1,ncol=9)
Z <- sum (dG>0)
for(d in 1:9)
{s=0;
for(i in 0:100){s=s+sum(dG>=d/(10-i))-sum(dG>=(d+1)/(10-i))};
FG[1,d]=s/Z}
#Set approximate value of MF_1 and mu_1
MF1 <- max(FG)
mu1 <- ((MF1-(1/9))*(9/8)) 00.5
```

For plotting μ_{1} against ω_{1} and ζ_{1}, the following R code is needed to calculate ω_{1} :

```
library(rmutil) #Load the package "rmutil"
Omega1 <- function(r){
#Define first derivative of Gaussian copula
dG<- function(x,y) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
#Define first derivative of Product copula
dPi<-function(x,y) y
integrand <- function(x,y) (dG(x,y)-dPi(x,y))^2
int<-int2(integrand, a=c(0,0), b=c(1,1))
return(int)}
```

while ζ_{1} use:

```
library(rmutil) #Load the package "rmutil"
Zeta1 <- function(r){
#Define first derivative of Gaussian copula
dG<- function(x,y) pnorm((qnorm(y)-(r*qnorm(x)))/sqrt(1-(r^2)))
#Define first derivative of Product copula
dPi<-function(x,y) y
integrand <- function(x,y) abs(dG(x,y)-dPi(x,y))
int<-int2(integrand, a=c(0,0), b=c(1,1))
return(int)}
```


BIOGRAPHY

Name	Mr. Anusorn Junchuay
Date of Birth	5 June 1991
Place of Birth	Nakhon Si Thammarat, Thailand
Education	B.Sc. (Mathematics) (First Class Honours), Chulalongkorn University, 2014
Scholarship	Witthayabandhit Scholarship
Publication	- Buthkhunthong, P., Junchuay, A., Ongeera, I., Santiwipanont, T. Sumetkijakan, S.: Local Kendall's Tau, Econometrics of Risk 583, 161-169 (2014). - Junchuay, A., Santiwipanont, T., Sumetkijakan, S.: Dependence indicators from first digit distributions, Proceedings of The 22nd Annual Meeting in Mathematics, PRO-01-1-PRO-01-10, 2017.
Conference	Speaker
	Dependence indicators from first digit distributions at The $22^{\text {nd }}$ Annual Meeting in Mathematics, 2-4 June 2017 Department of Mathematics, Faculty of Science
	Chiang Mai University, Chaing Mai, Thailand

