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CHAPTER I

INTRODUCTION

There is a cornerstone assumption in the financial market which is efficiency

market hypothesis (EMH) (Fama, 1970) stating that asset price totally reflects all

available information such as the past prices or the news about that stocks. EMH

is developed under the assumption that stocks are always traded at their fair values

because everyone knows all information about stocks, therefore, it is impossible

to buy the stock at a lower price or sell at a higher price than the market fair

price. Moreover, the future price depends on the random future information that

no one knows, thus, we cannot consistently earn an excess profit by predicting the

movement of the future prices using historical price. Hence, the technical analysis

based on the historical price will not work in the efficient market. Mathematically,

EMH implies that the returns or the increment of stocks prices should follow the

process that has independent and uncorrelated increments, which agree with the

properties of the Brownian motion. Hence, one can use the Brownian motion,

which is the Gaussian process that has independent and uncorrelated increments,

to describe some behavior of the asset price in the efficient market in order to

estimate or predict the behavior of the prices, which will be useful in financial

investment.

There is a long discussion in EMH. Some research (Lo, 1991) found that

in some stock markets, share prices may have the different property from the

assumption of EMH such as long-range dependence (LRD) (Beran, 1994), where

the current prices depend on prices in the past. In this case, the market price

cannot be described by the Brownian motion, then one required the fractional

Brownian motion (Mandelbrot and Ness, 1968) instead. In literature, one often
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refers to the parameter H, known as the Hurst index, in order to investigate the

efficiency of the markets; theoretically, if H is close or equal to 0.5, one often say

that the market is efficient, while H is quite different from 0.5, one expects the

existence of long-range dependence in the market (inefficient).

Capturing the behavior of the Hurst index is one way to investigate the

efficiency of the stock market. There are many methods to estimate the Hurst

index from the data series. The detrended fluctuation analysis (DFA) is one of

the well-known methods that have been used in investigating the long memory

behavior of data in various fields such as DNA sequences (Peng et al., 1994a),

heartbeat signals (Peng et al., 1994b), traffic data (Shang et al., 2008), and finan-

cial time series (Cajueiro and Tabak, 2004; Costa and Vasconcelos, 2003; Sukpitak

and Hengpunya, 2016). The idea of the DFA method is constructed based on the

power-law scaling of the fluctuation functions in order to obtain the Hurst index.

Study the efficiency of Thailand stock markets is one interesting topic in

general so that one can model financial assets using appropriate models. For ex-

ample, if one knows that the market is efficient, then one will consider a model

that relies on the Brownian motion. Otherwise, if the market is not efficient, one

would consider other processes such as the fractional Brownian motion. There

is few investigation of the efficiency of Thailand stock markets in the past. Ca-

jueiro and Tabak (2004) used R/S method to investigate the efficiency of emerging

market including Thailand SET market for the period of 1992-2002 and found no

conclusion about the efficiency of Thailand market in general, but they found that

the efficiency of all emerging markets is increasing over time. Sukpitak and Heng-

punya (2016) had investigated the efficiency of Thailand stock market by using

the DFA method to obtain the Hurst index for the Thailand SET and MAI indices

as numbers to check for efficiency. They showed that the SET market is efficient
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in recent years after 2012 by implying from DFA result that the Hurst indices look

close to 0.5 in that period, while the MAI market shows inefficiency at that time

(2002-2015).

In this thesis, we are interested in investigating the efficiency of Thailand

stock markets from both SET and MAI markets by extending the work of Sukpitak

and Hengpunya (2016). Instead of obtaining the Hurst index for the data series to

check for efficiency, we propose the investigation based on the confidence interval

of Hurst index for the efficient market, as suggested in general by Weron (2002).

This concept is more important for investigation of the efficiency of a market than

using the single Hurst index that represents the market efficiency because the

Hurst index usually varies in time, and it is not clear how close to 0.5 it should be

for concluding that the market is efficient. The confidence intervals of estimated

Hurst index for the efficient market are produced based on the assumption that

the sample of Brownian motion represents assets prices in efficient markets, which

are constructed using Monte Carlo simulation to simulate data and estimated its

Hurst index, then applying statistics to obtain properties, and finally using data

fitting techniques to get a suitable function for the confidence interval.

The rest of the thesis is organized as follows. The next chapter describes the

background knowledge of EMH, fractional Brownian motion (FBM), the DFA and

other background knowledge that are used in this research. Chapter 3 provides all

required steps used in this thesis for estimating the time-varying Hurst index and

constructing the empirical confidence interval. The empirical results and analysis

of the constructed empirical confidence interval, the efficiency of Thailand stock

market and the comparison between the efficiency of the SET market and the MAI

market are presented in Chapter 4. Finally, Chapter 5 provides the comments and

conclusion of the result. The R code for the work is shown in the appendix.



CHAPTER II

BACKGROUND KNOWLEDGE

2.1 Efficient Market Hypothesis (EMH)

The efficient market hypothesis (EMH) is introduced by Fama (1970) stating

that the asset price totally reflects its relevant information. EMH is developed

under the assumption that stocks are always traded at their fair values, because

everyone knows all information about stocks. Therefore, it is impossible to buy

the stock at the lower price or sell at the higher price than the market fair price.

Moreover, the future price depends on the random future information that no one

knows, thus, we cannot gain the excess profit by predicting the movement of the

future prices.

This knowledge of EMH is classified as the “weak-form EMH”, stating that

the assets prices reflect their past prices. Thus, the investment strategies that

based on the historical prices do not work in the case of that market is weak-form

efficient.

We say that the market is weak-form efficient (efficient, for short) when the

asset price reflects the information about the past prices, and the changes of the

price (returns) are independent in this hypothesis. Thus, one cannot predict the

movement of the future prices using the historical price. Hence, technical analysis

and other strategies based on the historical information will not be able to make

an abnormal profit in the weak-form efficient market.

Samuelson (1973) (Samuelson, 1973) suggested that the stock prices follow a
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martingale that is the expectation of the stock price at time t+1, yt+1, containing

all available information is equal to the stock price at time t

E(yt+1|Φt) = yt,

where Φt is the information available at time t which includes all past and the

present price of that stock . . . , yt–2, yt–1, yt.

He defined the return or price change as rt = yt+1–yt for consecutive times t

and t+ 1. Then

E(rt|Φt) = E(yt+1–yt|Φt) = 0,

that is the expected return based on information at time t or the average of market

profits and losses is zero and he then proved that the return is uncorrelated.

In conclusion, according to the EMH and Samuelson’s proof, stock prices

follow a martingale which is described in the next section and its returns are

uncorrelated and independent. Then the process that can use for representing a

stock price in the efficient market should be a martingale and have independent

and uncorrelated increments.

2.2 Brownian Motion

Definition 2.1 (Brownian motion). (see Olofsson and Andersson (2012), for ex-

ample) Brownian motion B(t) is a stochastic process in real time t ≥ 0 with the

following properties;
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1. (Independent increments) For all t0 < t1 < . . . < tm, the increments

B(t1)−B(t0), B(t2)−B(t1), . . . , B(tm)−B(tm−1)

are independent.

2. (Stationary increments) B(t)−B(s) follows a normal distribution with zero

mean and variance t− s where t ≥ s.

3. (Continuous paths) B(t), t ≥ 0 is a continuous function of t.

4. B(0) = 0.

The followings are some basic properties of the Brownian motion

1. From the Definition 2.1 (2), the increment B(t) − B(0) follows a normal

distribution then

B(t) = B(t)−B(0) ∼ N(0, t),

B(t) has a normal distribution with mean E[B(t)] = 0 and variance Var[B(t)] = t.

2. Covariance

For the covariance function, suppose t ≥ s. Since B(t) and B(t)−B(s) are

independent follow from the assumption of independent increment, we have

Cov(B(t), B(s)) = Cov(B(s) + (B(t)−B(s)), B(s))

= Var[B(s)] + Cov(B(s), B(t)−B(s))

= s+ 0

= s.



7

3. Correlation

Corr(B(s), B(t)) =
Cov(B(s), B(t))√

Var(B(s))
√

Var(B(t))
=

s
√
s
√
t

, where t ≥ s.

Definition 2.2 (Martingale). (see Olofsson and Andersson (2012), for example)

A stochastic process Xt, t ≥ 0 is a martingale if for any t, E[Xt] exists, and for

any s > 0

E[Xt+s|Φt] = Xt,

where Φt is the information about the process available at time t.

Theorem 2.3. Let B(t) be a Brownian motion. Then B(t) is a martingale.

Proof. Let Φt is the information about the process Bt. By Definition 2.1 (2),

B(t) ∼ N(0, t), then E[B(t)] = 0. Then, for t ≥ s,

E[B(t)|Φs] = E[B(s) + (B(t)−B(s))|Φs]

= E[B(s)|Φs] + E[B(t)−B(s)|Φs]

= B(s) + E[B(t)−B(s)],

Since t ≥ s , then B(t)−B(s) follows the assumption of stationary increment which

implies that E[B(t)−B(s)] = 0. Hence E[B(t)|Φs] = B(s)+E[B(t)−B(s)] = B(s).

So, B(t) is a martingale.

By weak-form EMH, one can use the Brownian motion to represent the move-

ment of stock prices in the efficient market since it has properties mentioned in

Section 2.1; i.e. the martingale and the uncorrelated and independent increments

properties.
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2.3 Hurst Index

In the case that the market is different from the efficient market, i.e. the

inefficient market, there are some studies found that the returns of stock prices

of some markets exhibit the behavior called “long-range dependence” or “long

memory”. If there exists the long-range persistence in the returns of the financial

assets, it means that the return is not random likes we assumed from the market

efficiency hypothesis. The existence of long-range dependence not only found in

the financial market but also found in many natural phenomena as well.

In 1951, Hurst (Hurst, 1956) observed 800 years of record of Nile river. He

found that the flow of Nile river is not random but have patterned. He describes

this phenomenon with the constant which later called the Hurst exponent or the

Hurst index, H follows his name. In 1968, Mandelbrot (Mandelbrot and Ness,

1968) proposed the method that could capture this phenomenon in financial data

which is R/S method.

Generally, the parameter H represents 3 cases of the long-memory property

of the increments of time series;

1. If H ∈ (0, 0.5), the increments of the series are negatively correlated and the

series exhibits antipersistent.

2. If H = 0.5, the increments are uncorrelated and the process corresponds to

the Brownian motion.

3. If H ∈ (0.5, 1), the increments of series are positively correlated and the

series is said to have long-memory or long range dependence.
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2.4 Long-range Dependence

Definition 2.4. (Beran, 1994) A stationary process Xt for time t ≥ 0 is said to

have the long-range dependence, if its autocorrelation function ρ(k) =
Cov(Xt, Xt+k)

Var(Xt)

where k is the lag or time difference at any time t, holds:

∞∑
k=−∞

ρ(k) = ∞. (2.1)

That is, the autocorrelations decay slowly to zero that their sum does not

converge.

Beran (1994) showed that if the autocorrelation ρ(k) is approximately equal

to

c|k|−α, (2.2)

with a constant c and a parameter α ∈ (0, 1) then Equation (2.1) holds.

2.5 Fractional Brownian Motion

To describe behavior of a process with the long-range dependence, we intro-

duce a stochastic process generalized from the Brownian motion that can exhibit

the long-range dependence, namely the fractional Brownian motion (FBM) (Man-

delbrot and Ness, 1968).

Definition 2.5. Let BH(t) for t ≥ 0 be a stochastic process with continuous

sample paths and such that

1. BH(t) is Gaussian.

2. BH(0) = 0.
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3. E[BH(t)−BH(s)] = 0 where t ≥ s.

4. Cov[BH(t), BH(s)] =
1
2

(
t2H + s2H − (t− s)2H

)
where t ≥ s .

for any H ∈ (0, 1), called the Hurst index. Then BH(t) is called the fractional

Brownian motion (FBM).

The difference between FBM and Brownian motion is the increments BH(t)−

BH(s) of FBM may be dependent. For a special case of FBM when H = 0.5, FBM

is the same as the Brownian motion.

We called the increment BH(t)− BH(s) of FBM as the fractional Gaussian

noise (FGN)

The covariance at lag k of FGN is defined as follows

γ(k) = Cov[BH(t)−BH(t− 1), BH(t+ k)−BH(t+ k − 1)]

=
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

Beran (1994) shows that ρ(k) is approximately equal to H(2H−1)k2H−2 for

k → ∞. Then for H > 0.5, the autocorrelation function ρ(k) follows the property

of long-range dependence in Equation (2.1) with α = 2 − 2H ∈ (0, 1). Hence,

FGN has the long-range dependence when H > 0.5 and other cases as described

in Section 2.3.

2.6 Detrended Fluctuation Analysis (DFA)

The DFA method (Peng et al., 1994a) is well-known and often used in general

for obtaining the Hurst index of data series. The idea of the DFA method is to

subtract linear trends from the time series and then calculate the fluctuation of the
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detrended data. Then we can investigate the long-range correlation in the data

using the power-law relationship (Taqqu et al., 1995) between fluctuation functions

and its time lag to produces the power-law scale, which is used to estimate the

Hurst index.

We apply the DFA method with the returns of the stock with the following

steps:

1. Calculating the returns of the stock when the return rt at time t is given

as the difference of logarithm of the consecutive daily closed prices yt, (yt

represents daily closed price at time t)

rt = ln(yt+1)− ln(yt) = ln
(
yt+1

yt

)
, for t = 1, 2, . . . , T,

2. Cumulating the difference from overall mean of the original time series

{rt}t=1,2,...,T to obtain a new time series,

X(t) :=
t∑

i=1

(ri − r̄) for t = 1, 2, . . . , T

, where r̄ =
1

T

∑T
i=1 ri.

3. Dividing {X(t)} into N =

⌊
T

τ

⌋
non-overlapping subseries In, for n =

0, 1, . . . , N − 1, of length τ where τ is the positive integer.

4. Finding the local linear trend Yτ (t) that fits the data in each subseries In

for n = 0, 1, . . . , N − 1.

5. Computing the fluctuation function F (τ) defined as the root mean square
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error of X(t) with respect to the linear trend function Yτ (t),

F (τ) =

√√√√ 1

T

T∑
t=1

[X(t)− Yτ (t)]
2.

6. Repeating all previous steps for different values of τ to get the relationship

between F (τ) and τ . In this work, we use τ from 5 to
⌊
N

5

⌋
as recommended

by Peng et al. (1994a) and Sukpitak and Hengpunya (2016).

7. Since F (τ) increases with the size τ , the relationship between F (τ) and τ

follows the power-law with the power law scale H, the Hurst index. The

value of the Hurst index is estimated from the slope of the log-log plot

between F (τ) and τ .

2.7 Normal Distribution

In this section, we provide the knowledge about the normal distribution

which related to the Brownian motion.

Definition 2.6. (Olofsson and Andersson, 2012) If a random variable X has a

probability density function (pdf)

f(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

, x ∈ R (2.3)

It is said to have the normal or Gaussian distribution with parameters µ and σ2,

written as X ∼ N(µ, σ2) which has mean E[X] = µ and variance Var[X] = σ2.

Theorem 2.7. (Olofsson and Andersson, 2012) Suppose that X ∼ N(µ, σ2) and

let

Z =
X − µ

σ
. (2.4)
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Then Z ∼ N(0, 1) which is called the standard normal distribution.

If the random variable X is normally distributed, then the probability that

X assumes any value in the interval a < X < b is

P (a < X < b) =
1

σ
√
2π

∫ b

a

e−(x−µ)2/2σ2

dx. (2.5)

The Equation (2.5) can be evaluated by the integral

P (Z ≤ z) = Φ(z) =
1√
2π

∫ z

−∞
e−t2/2dt

and using (2.4) to substitution and then get

P (a < X < b) = Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
.

The curve of probability density function of the normal distribution is called

the bell-shaped curve. It is symmetric with respect to the center x = µ.

2.8 Test for Normality

2.8.1 Skewness

The skewness is a statistical measure of the asymmetry of the probability dis-

tribution of a random variable about its mean. In other words, skewness tells the

amount and direction of departure from the horizontal symmetry. The skewness

of a pdf can be measured in terms of its third moment about the mean follows

E[(X − µ)3]

σ3
.
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The skewness of the normal distribution which is symmetric is equal to 0 (Larsen

and Marx, 2001). The sample skewness can be calculated as follows

1
n

∑n
i=1(xi − x̄)3

( 1
n

∑n
i=1(xi − x̄)2)3/2

,

where xi is the data from the sample and x̄ is the sample mean.

2.8.2 Kurtosis

The kurtosis is a statistical measure of the height of the peak of the proba-

bility distribution of a random variable. The kurtosis of a pdf can be measured in

terms of its fourth moment about the mean follows

E[(X − µ)4]

σ4
.

The kurtosis of the normal distribution is equal to 3 (Larsen and Marx, 2001).

The sample skewness can be calculated as follows

1
n

∑n
i=1(xi − x̄)4

( 1
n

∑n
i=1(xi − x̄)2)2

,

where xi is the data from the sample and x̄ is the sample mean.

2.8.3 Histogram Plots

The histogram is a graphical representation of the data. The histogram is

obtained by dividing the range of the data into equal-sized bins, then count the

number of points from the data in each range and plot the quantity into a graph.

The shape of the histogram is similar to the shape of the pdf of the distribution.

If the histogram of the sample data indicates a symmetric and no skew which

resembles the bell shape of the pdf of the normal distribution, then the normal
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distribution might be a model of the data.

2.8.4 Normal Q-Q Plots

The normal quantile-quantile (Q-Q) plots are plots of the empirical quantile

from the sample against the theoretical quantile from a standard normal distri-

bution. The normal Q-Q plot is another graphical representation of how well the

data are modeled by a normal distribution. The normal Q-Q plot from the normal

distributed data point should lies approximately on a straight line.

2.8.5 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) (Massey, 1951) test is used for testing the

assumption that the sample data are from a reference-distributed population. The

null hypothesis H0 that the data come from a certain distribution function F (x)

and the alternative hypothesis H1 is that a certain function Fx is not the distri-

bution of a population. Hence, if the p-value from the test is less than 0.05 then

the null hypothesis is rejected which means rejecting the assumption.

Let F̄ (x) be the corresponding sample distribution of an approximation of

F (x). The Kolmogorov-Smirnov test statistic, Dn, is defined by

Dn = sup
x

|F̄ (x)− F (x)|.

If the distribution of the sample is similar with the distribution F (x), then Dn is

closed to zero.

2.9 Confidence Intervals

The usual way to quantify the amount of uncertainty in an estimator is to

construct a confidence interval defined as the point estimator plus the margin
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of error with a specified confidence level. The confidence intervals are ranges of

numbers that have a high probability of containing the unknown parameter within

the ranges.

Random intervals can be constructed based on a confidence level. In practice,

the significance level α is usually chosen from 0.10, 0.05, and 0.01 which gives the

corresponding confidence intervals 100(1 − α)% which are 90%, 95% and 99%,

when α is equal to 0.10, 0.05 and 0.01, respectively.

From the property of the standard normal distribution, the confidence inter-

val is constructed based on P (Z ≥ zα/2) = α/2. For example, zα/2 = z0.025 = 1.96.

A 100(1 − α)% confidence interval for standard normal distribution is the range

of numbers

(µ− zα/2σ, µ+ zα/2σ).

2.10 Data of Thailand Stock Markets

The stock index is a statistical indicator representing the performance of the

given stock market. Investors use the stock index as a benchmark for tracking the

changes in a stock market, thus studying behavior of the stock index is useful in

helping investors to see overall behavior of the market. In this thesis, we study on

Thailand stock market established in 1975 through the index of the largest and

well known market : Stock Exchange of Thailand (SET) index which is calculated

from all stocks in the market that has big market capitalization and market of

alternative investment (MAI) index which is the market for small and medium

businesses that started from 2002.

The data is provided by http://siamchart.com/stock/ (Kurayami Corp.,

2016) in the period from 2 May 1975 to 29 August 2016 for the SET index and
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from 3 September 2002 to 29 August 2016 for the MAI index. The closed prices

and the returns of the SET and MAI markets are shown in Figures 2.1 and 2.2,

respectively. The other market information is in Table 2.1.

Index Number of listed companies Market capitalization Average trading volume

SET 522 15,079,272.11 10,943.80

MAI 134 425,364.18 1,056.38

Table 2.1: Market information at 31 December 2016
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Figure 2.1: Plots of the closed prices and the returns of SET index
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CHAPTER III

METHODOLOGY

In this chapter, we provide the methodology using in this thesis to accomplish

the two main objectives of the thesis;

1. To construct empirical confidence interval for the Hurst index based on the

sample of an efficient market to describe behavior of the efficiency of the

market.

2. To investigate behavior of the efficiency of Thailand stock markets using the

Hurst index with the DFA method.

We perform the same core method, DFA, for both objectives as described in Section

2.6. For the first objective, we construct the empirical confidence intervals using

the method provided in Section 3.1. Then, we consider the Hurst index from

return data of Thailand stock markets as the time-varying Hurst index as shown

in Section 3.2. Finally in Section 3.3, to complete the second objective, we apply

the constructed confidence interval from Section 3.1 with the data of the time-

varying Hurst index of Thailand stock markets from Section 3.2 for investigating

the behavior of the efficiency of Thailand stock markets.

3.1 Construction of Empirical Confidence Intervals

Theoretically, when one considers the Brownian motion as a representing

of efficient market prices, one would expect that the Hurst index is Heff = 0.5.

However, in the empirical study, it hardly gets the Hurst value exactly 0.5 by
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estimation. Therefore in this work, we construct the empirical confidence intervals

of the estimated of Hurst index (Ĥeff ) when the market is efficient by simulating

the sample from efficient markets of the population of the efficient market. Then

we simulate a large number of paths of returns as increments of Brownian motion

considered as independent and N(0, 1) distributed for each different data length as

the sample from efficient markets and estimate the Hurst index by DFA method.

In this work, we check the property of the normal distribution, rather than quantile

in Weron (2002), and then we construct the confidence interval function, as follows;

1. Simulate a sample from efficient matket of the population of the efficient

market. Then, sample the returns from the efficient market with 10,000

paths of return of Brownian motion where each point in a path is inde-

pendent and has N(0, 1) distributed, which is randomly generated by R

programming (Team, 2013) with the various data lengths in the forms of

N = 2k, where k = 8, 9, ..., 18.

2. Estimate the Hurst index using DFA method for each sample path to have

10,000 data of the Hurst index of each data length representing the estimated

Hurst index for each sample from efficient markets with different data length.

3. Obtain the statistical properties of the distributions of the estimated H

index for each data length. In this case, check for the normal distribution

using the histogram, normal Q-Q plot and Kolmogorov-Smirnov test. We

believe that the Hurst index from the sample of efficient markets has the

normal distribution Heff ∼ N(µ, σ2).

4. Build the confidence interval which follows the properties of normal distri-

bution. In this case, we consider the 90%, 95% and 99% confidence interval

as follow;

For the standard normal distribution Z ∼ N(0, 1) and 0 < α < 1, we
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consider (1− α)100% confidence interval from

P (−zα/2 < Z < zα/2) = 1− α.

Following the results from Step 3, we assume that the Hurst index for the

efficient market has the normal distribution Heff ∼ N(µ, σ2) where Z =

Heff − µ

σ
then we consider a (1−α)100% confidence interval of the estimated

Hurst index when the market is efficient as follow;

P

(
−zα/2 <

Heff − µ

σ
< zα/2

)
= 1− α,

P
(
µ− zα/2σ < Heff < µ+ zα/2σ

)
= 1− α,

The (1 − α)100% confidence interval of the estimated Hurst index for the

sample of efficient markets (Ĥeff ) is

(
H̄eff − zα/2seff , H̄eff + zα/2seff

)
, (3.1)

where H̄eff is the sample mean of Heff and seff is the sample standard

deviation of Heff .

5. To obtain confidence intervals for other data lengths different from the

lengths simulated in Step 1 (N = 28, 29, . . . , 218), we construct the functions

representing the lower and upper bounds based on the confidence intervals of

the estimated Hurst index obtained in Step 4 as functions of data length N .

The construction of the functions is performed based on the knowledge of

data fitting using the linear regression for suitable form of functions. In this

case, we have 11 data points (lower/upper bounds of the confidence inter-

vals) for N = 28, 29, . . . , 218 to produce the best-fit functions. The functions

will be constructed for 90%, 95% and 99% confidence intervals.
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Note The functions for the lower and upper bounds will be used later to obtain

the confidence intervals when the measurement of the Hurst indices for various

time windows (data lengths).

3.2 Time-varying Hurst Index

In this work, we extend the idea of Sukpitak and Hengpunya (2016) by

computing the Hurst index as time-varying Hurst index using various time window

size. In general, the value of H is not constant over time, one can consider using

sliding time windows to get a local value of H. There is still no conclusion which

size of time windows is the best. The previous work just suggests using time

window size that is neither too big nor too small, the period around 3-4 years is

often used as in (Costa and Vasconcelos, 2003; Sukpitak and Hengpunya, 2016).

In this work, we estimate the value of the time-varying Hurst index of Thai-

land Stock market returns (SET and MAI markets) by using different sliding time

windows sizes 300, 512, 700, 1024 and 1500 for SET market and 300, 512, 700,

1024 for MAI market. For example, time window of size 512, we estimate the

Hurst index using DFA method of the first 512 data and refer to it as the local

value of the Hurst index at time 512. Next, we advance the time series to the next

day and estimate the local Hurst index at time 513 using data from day 2 to day

513 and repeat this process until the last day of data. The obtained time-varying

H-index of the markets will be investigated for efficiency based on the confidence

intervals.

3.3 Efficiency of Thailand Markets

To investigate the efficiency of Thailand markets, we use the data provided

by http://siamchart.com/stock/ from 2 May 1975 to 29 August 2016 for SET
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index and 3 September 2002 to 29 August 2016 for MAI index. We do the following

for each data series (SET and MAI indices).

1. Compute the confidence interval of the estimated Hurst index for efficient

markets (Ĥeff ) for each time windows sizes using formula obtained from

step 5 in Section 3.1.

2. Fit the time-varying Hurst index obtained from Section 3.2 for each windows

size with the corresponding confidence interval.

3. Investigate the efficiency for each windows size at each 90%, 95% and 99%

confidence intervals.



CHAPTER IV

RESULTS

The study of efficiency of Thailand stock markets in this thesis consists of

two main steps;

1. Construct confidence interval of the estimated Hurst index for efficient mar-

kets (Ĥeff ) at 90%, 95%, 99% confidence intervals based on the Monte

Carlo simulation of paths of the returns of the Brownian motion in differ-

ent lengths, then applied DFA method to get the Hurst index, and study

statistical behavior to obtain the confidence interval as presented in Section

4.1.

2. Apply the confidence intervals of Ĥeff from step 1 with the time-varying

Hurst index of the markets (the SET and MAI markets) using different time

windows (data lengths). The results are discussed in Section 4.2.

4.1 Empirical Confidence Intervals

Based on the construction of confidence intervals of the estimated Hurst

index when the market is efficient observed in Section 3.1, we simulate 10,000

paths of returns of the Brownian motions as a sample returns from the efficient

markets with different data lengths in the form of 2k, where k = 8, 9, ..., 18, and

apply the DFA method to obtain the Hurst index for each path. Table 4.1 shows

the statistic of the Hurst indices Ĥeff for each data length. As results, the skewness

that is close to zero and the kurtosis that is close to three, which are similar to the

properties of the normal distribution. To confirm that the obtained distributions
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behave like normal distributions, we check the histograms (see Figure 4.1), the

normal Quantile-Quantile plots (see Figure 4.2) and the Kolmogorov-Smirnov test

(see Table 4.2) as discussed in Section 2.8.

Data length Mean Median Std.Dev. Skewness Kurtosis
28 0.518 0.517 0.063 0.090 2.982
29 0.512 0.512 0.046 0.037 2.912
210 0.509 0.508 0.034 -0.007 2.953
211 0.508 0.508 0.027 -0.047 2.932
212 0.506 0.506 0.021 -0.026 3.012
213 0.505 0.505 0.018 -0.041 2.988
214 0.504 0.504 0.015 -0.026 3.012
215 0.504 0.503 0.013 0.010 3.000
216 0.503 0.503 0.011 0.011 2.972
217 0.503 0.503 0.010 0.021 3.029
218 0.502 0.502 0.009 -0.008 2.941

Table 4.1: Table of statistical summary shows that mean and median are
approximately equal to 0.5 for each data lengths
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Figure 4.1: Histogram plots of the simulated Hurst indices
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Histogram of data length 212
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Figure 4.1: Histogram plots of the simulated Hurst indices
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Figure 4.2: Normal Q-Q plots of the simulated Hurst indices
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Figure 4.2: Normal Q-Q plots of the simulated Hurst indices

Kolmogorov-Smirnov Distance Kolmogorov-Smirnov p-value
28 0.010 0.319
29 0.006 0.852
210 0.006 0.830
211 0.006 0.858
212 0.006 0.892
213 0.009 0.440
214 0.005 0.967
215 0.008 0.622
216 0.006 0.814
217 0.004 0.998
218 0.007 0.780

Table 4.2: Table of statistic from Kolmogorov-Smirnov test

In Figure 4.1, each histogram of Ĥeff fits quite well with the corresponding

normal distribution curve created from the obtained mean and standard deviation

of Ĥeff (Table 4.1) for all data lengths. To confirm with other statistical analysis,

the normal Quantile-Quantile plots in Figure 4.2, shows the relation between the
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sample quantiles and the theoretical quantiles from the normal distribution, which

are almost linear implying that the sample distributions behave like the normal

distributions. For Kolmogorov-Smirnov test, shown in Table 4.2, the distance is

very small and the p-value is above 0.05, which fail to reject the null hypothesis

that the distributions of Ĥeff from simulated paths are normally distributed at a

significance level of 0.05 for all data lengths.

This statistical analysis of the Hurst index when the market is efficient ob-

tained from Monte Carlo simulations of 10,000 sample paths for each data length

gives the result that the Ĥeff is normally distributed with the corresponding mean

and variance given in Table 4.1. Therefore, the construction of confidence inter-

val of Ĥeff for each data length is obtained via the fitted normal curve shown in

Figure 4.1, where the result is described in the next section.

4.1.1 Confidence Intervals

In this work, we are interested in obtaining the confidence intervals of the

Hurst index for efficient markets Ĥeff at 90%, 95%, and 99% confidence intervals

for each data length. The intervals are obtained using the normal curves with

means and standard deviation are given in Table 4.1.

For example, for data length 28, the mean and standard deviation of the

sample are H̄eff = 0.518 and seff = 0.063, so the 95% level confidence interval

which is calculated as describe is Section 3.1 is (H̄eff −z0.025seff , H̄eff +z0.025seff )

which is (0.395,0.641) as shown in Table 4.3. The confidence intervals at all

levels for all data lengths are given in Table 4.3, with the plot given in Figure

4.3. As expected in general that the intervals approach 0.5 as the data lengths

approach infinity. We also observed that the higher percents of levels have the

bigger intervals will be see Table 4.3 and Figure 4.3, as expected from the formula
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(3.1) from Section 3.1.

Data length Lower 90% Upper 90% Lower 95% Upper 95% Lower 99% Upper 99%

28 0.415 0.621 0.395 0.641 0.357 0.679

29 0.437 0.587 0.423 0.602 0.395 0.630

210 0.453 0.564 0.443 0.575 0.422 0.596

211 0.464 0.551 0.455 0.560 0.439 0.576

212 0.471 0.541 0.465 0.548 0.452 0.561

213 0.476 0.534 0.470 0.539 0.459 0.550

214 0.480 0.528 0.475 0.533 0.466 0.542

215 0.483 0.524 0.479 0.528 0.471 0.536

216 0.484 0.521 0.481 0.524 0.474 0.531

217 0.487 0.518 0.484 0.521 0.478 0.527

218 0.488 0.516 0.485 0.519 0.480 0.524

Table 4.3: The lower and upper bound of the confidence intervals from generated
Hurst index
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Figure 4.3: The upper and lower bounds of Hurst indices when the market is efficient
for 90%, 95%, 99% confidence intervals at various data lengths. The filled shapes
represent the lower bounds and the unfilled shapes represent the upper bounds when
the red, green and blue shapes belong to 90%, 95% and 99% confidence level,
respectively.
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4.1.2 Functions of Confidence Intervals

The confidence intervals when the market is efficient at 90%, 95%, 99%

confidence intervals for 11 data lengths (from Table 4.3) are used to generate

functions for the lower and upper bounds of confidence intervals as functions of

the data length N . The functions are obtained via data fitting techniques as

described as follows.

For example, at 95% level for the lower bound, the plot of 0.5−H and log2(N)

is shown in Figure 4.4(a) where H is the lower bound of 95% confidence interval

presented in Table 4.3. The data-point behaves like the exponential decay. After

scaling by log-log plot (see Figure 4.4(b)), the data looks almost linear, and by

linear fitting we obtain log2(0.5 − H) = 3.92819 − 3.490524 ln(log2(N)) only if

H < 0.5 in the case of the lower bound. To obtain the function, we solve for

H to get, in this case fL(N) = H = 0.5 − 2−3.490524 ln(log2(N))+3.92819 as in Table

4.4. When applying for time windows in Section 3.2, we compute the confidence

interval using the equation in Table 2, for example, when N=1500,

the lower bound of 95% CI : 0.5−2−3.490524 ln(log2(1500))+3.928190 = 0.4490993,

the upper bound of 95% CI : 0.5+2−3.558221 ln(log2(1500))+4.495110 = 0.5675098.

We perform similar technique for constructing the upper bound function,

using the data of H−0.5 instead of 0.5−H in constructing the lower bound function

and perform the same for 90% and 99% confidence intervals and finally get the

functions of upper bounds and lower bounds as shown in Table 4.4.
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Level Lower bound functions Upper bound functions

90 0.5− 2−3.481834 ln(log2(N))+3.609013 0.5 + 2−3.563098 ln(log2(N))+4.287324

95 0.5− 2−3.490524 ln(log2(N))+3.928190 0.5 + 2−3.558221 ln(log2(N))+4.495110

99 0.5− 2−3.500689 ln(log2(N))+4.401579 0.5 + 2−3.551823 ln(log2(N))+4.831190

Table 4.4: Empirical 90%, 95% and 99% confidence intervals for data length N

4.2 Efficiency of Thailand Stock Market

To study the behavior of the efficiency of Thailand stock market, we apply

our constructed confidence intervals at 90%, 95%, 99% with the data of the Hurst

index estimated by the DFA method of Thailand stock market based on the SET

index with 5 different time windows sizes of 300, 512, 700, 1024 and 1500 and also

apply with the MAI index (we do not consider at time windows size of 1500 which

is too large for the MAI index), we represent time-varying Hurst index of the MAI

market as the comparison of time-varying Hurst index of the SET index and MAI

index with same time windows sizes as mentioned above.

4.2.1 Time-varying Hurst Index of the SET Index

The results of the time-varying Hurst index of the SET index for various

time windows sizes (data lengths) of 300, 512, 700, 1024 and 1500 are presented

in Figure 4.5 which is also indicated the confidence intervals when the market is

efficient (bounds) at 90%, 95%, 99% levels by dash lines, where outer bound is

for 99% and the inner bound is for 90%. Note also that the intervals are smaller

when the time windows are bigger. We observed that the results of the H-indices

from these time windows behave quite similar (Figure 4.5). They show that from

the start of the SET market to 1991, the Hurst indices are often outside the

confidence intervals of Ĥeff at 90% level, which can conclude that the SET market
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is inefficient during this period, when considered at 90% level. This conclusion of

inefficiency at this period agrees with Sukpitak and Hengpunya (2016). However,

when considered at 99%, the H-indices are both within and outside the interval,

which gives no conclusion on the inefficient of the SET market during this time.

When look closely at the period 1988-1990, all figures gives the H-indices that are

outside the 99% confidence interval, which imply that the SET market is inefficient

during this time, and move downward the confidence intervals quite rapidly after

that. We also can conclude from the results of these figures that we fail to reject

that the SET market is efficient after 2004 where the H-indices stay within the

90%,95% and 99% confidence intervals for all time windows, which again agree

with the conclusion obtained in Sukpitak and Hengpunya (2016) and Cajueiro and

Tabak (2004) that the emerging markets become more efficient over time.
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(a) Time-varying Hurst index of the SET market with time window size 300
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(b) Time-varying Hurst index of the SET market with time window size 512

Figure 4.5: Time-varying Hurst index of the SET market
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(d) Time-varying Hurst index of the SET market with time window size 1024
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Figure 4.5: Time-varying Hurst index of the SET market
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4.2.2 Comparison between the Efficiency of the SET Market and MAI

Markets

The results of time-varying H-indices of the MAI market for time window

sizes 300, 512, 700 and 1024 compared with the SET market are shown in Figure

4.6. The 90%, 95%, 99% levels of confidence intervals are indicated in Figure 4.6

to investigate the efficiency of the market. Figure 4.6 shows that the Hurst indices

of the MAI market move almost in the direction parallel to the SET market, but

have higher values than those from the SET market from the beginning of the

market. The similarity of the behavior of the H-indices of these two markets

confirms that both markets are driven under the same environments such as the

laws and regulations in Thailand, agreeing with Sukpitak and Hengpunya (2016).

In the work of Sukpitak and Hengpunya (2016) that studied the efficiency of the

MAI market from 2002 to 2016 with time window size 1024 concluded that the

MAI market is not efficient from the beginning to 2016 because the values of H-

indices of the MAI market are around 0.6. However, in this study we observed

from Figure 4.6 that we fail to reject that the MAI market is quite efficient within

99% confidence interval for the periods 2007-2009 and 2013-2016. Moreover, we

also observed the raising of Hurst indices of the SET and MAI markets after 2009

might be the effect of Hamburger crisis in late 2008 which agree with Lim et al.

(2008) that the financial crisis makes the increasing of the inefficiency of the market

(H-indices). Therefore, this result of the investigation of the efficient market under

confidence intervals can give more details of the behavior of the time-varying Hurst

index, when compared with the single value of the Hurst index.



37

0.
4

0.
5

0.
6

0.
7

0.
8

Time

H

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

0.
4

0.
5

0.
6

0.
7

0.
8

SET index
MAI index
90% CI
95% CI
99% CI

SET index vs MAI index of time windows 300
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Figure 4.6: The comparison between the time-varying Hurst index of the SET and
MAI markets
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(c) The comparison between the time-varying Hurst index of the SET and MAI
markets with time window size 700
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Figure 4.6: The comparison between the time-varying Hurst index of the SET and
MAI markets



CHAPTER V

CONCLUSIONS AND DISCUSSIONS

In this work, we construct confidence intervals as indicators in measuring

the efficiency of markets instead of using the value of Hurst index at 0.5 as the

threshold from previous studies. The construction of confidence intervals is per-

formed based on statistical simulation, where we assumed that the prices in the

efficient market follows the Brownian motion.

The obtained confidence intervals is applied to investigated the efficiency of

Thailand markets (SET and MAI markets). As explained in the previous sections,

the results show that the SET market is quite efficient after 2004, based on the

time-varying Hurst indices using various time windows and 90%, 95%, 99% con-

fidence intervals of the estimated Hurst index when the market is efficient. The

results for the MAI market are also similar to Sukpitak and Hengpunya (2016)

that the MAI market is inefficient from starting in 2002 to 2013 but H-indices

move in the similar way as the SET market; however, we might conclude that the

MAI market is efficient from 2007-2009 and after 2013.

In this work, we have showed a way to investigate and obtained the result

that the efficiency of Thailand markets correspond with the previous result in

Sukpitak and Hengpunya (2016). However, the way we looked at the efficiency is

performed via the confidence interval that is constructed using statistical simula-

tion of Brownian motion to represent the efficient market.

The conclusion from this study suggests that for efficient markets one can

use Brownian motion in a model to describe financial prices. However, when the
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markets are not efficient, one need to be careful in order to model the asset prices

using the Brownian motion, one may need to use the fractional Brownian motion

instead.

5.1 Discussions

The result of this study is limited with some assumptions of the sample

when constructing the confidence interval that is based on the sample of efficient

market. Thus, when apply these intervals to observed data, we can only conclude

the inefficiency when the H-indices are outside the confidence interval. One can

make this study more complete to investigate the efficiency of the market by

following suggestions;

1. One can improve the confidence intervals to measure the efficiency by using

the simulations of samples for both efficient and inefficient markets.

2. Since it is not known in general about the range of estimated Hurst index

for efficient market, one may need to apply additional hypothesis testing or

other techniques to investigate the market efficiency.

3. Another way to construct confidence interval is analyzing the DFA method,

which may involved some mathematical knowledge to investigate the bound

of the noise (error) of the method, which can lead to more accurate in

constructed confidence interval.



REFERENCES

Beran, J. 1994. Statistics for Long-Memory Processes. Chapman and Hall/CRC.

Cajueiro, D. O. and Tabak, B. M. 2004. The hurst exponent over time: testing the asser-

tion that emerging markets are becoming more effcient. Physica A: Statistical

Mechanics and its Applications 336.3-4 (2004): 521–537.

Costa, R. L. and Vasconcelos, G. 2003. Long-range correlations and nonstationarity in

the brazilian stock market. Physica A: Statistical Mechanics and its Applications

329.1-2 (November 2003): 231–248.

Fama, E. F. 1970. Efficient capital markets: a review of theory and empirical work. The

Journal of Finance 25.2 (1970): 383–417.

Hurst, H. E. 1956. The problem of long-term storage in reservoirs. International

Association of Scientific Hydrology 1.3 (1956): 13–27.

Kurayami Corp. 2016. Set index historical [Online]. Available from: http://siam-

chart.com/stock/ [2016,August].

Larsen, R. J. and Marx, M. L. 2001. An Introduction to Mathematical Statistics and Its

applications. Prentice-Hall,Inc.

Lim, K.-P., D.Brooks, R., and H.Kim, J. 2008. Financial crisis and stock market

efficiency: empirical evidence from asian countries. International Review of

Financial Analysis 17 (2008): 571–591.

Lo, A. W. 1991. Long-term memory in stock market prices. Econometrica 59.5 (1991):

1279–1314.

Mandelbrot, B. B. and Ness, J. W. V. 1968. Fractional brownian motions, fractional

noises and applications. SIAM Review 10.4 (1968): 422–437.



42

Massey, F. J. 1951. The kolmogorov-smirnov test for goodness of fit. Journal of the

American Statistical Association 46.253 (1951): 68–78.

Olofsson, P. and Andersson, M. 2012. Probability, Statistics, and Stochastic Processes.

John Wiley & Sons, Inc.

Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., and Goldberger,

A. L. 1994a. Mosaic organization of DNA nucleotides. Physical Review E 49.2

(1994): 1685–1689.

Peng, C.-K., Havlin, S., Stanley, H. E., and Goldberger, A. L. 1994b. Quantification

of scaling exponents and crossover phenomena in nonstationary heartbeat time

series. Chaos: An Interdisciplinary Journal of Nonlinear Science 5.1 (1994): 82–

87.

Samuelson, P. A. 1973. Proof that properly anticipated prices fluctuate randomly. The

Bell Journal of Economics and Management Science 4.2 (1973): 369–374.

Shang, P., Lu, Y., and Kamae, S. 2008. Detecting long-range correlations of traffic

time series with multifractal detrended fluctuation analysis. Chaos, Solitons &

Fractals 36.1 (2008): 82–90.

Sukpitak, J. and Hengpunya, V. 2016. Efficiency of thai stock markets: detrended

fluctuation analysis. Physica A: Statistical Mechanics and its Applications 458

(2016): 204–209.

Taqqu, M. S., Teverovsky, V., and Willinger, W. 1995. Estimators for long-range depen-

dence: an empirical study. Fractals 3 (1995): 785–798.

Team, R. C. 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. Available from: http://

www.R-project.org/ .

Weron, R. 2002. Estimating long-range dependence: finite sample properties and con-

fidence intervals. Physica A: Statistical Mechanics and its Applications 312.1-2

(2002): 285–299.



APPENDIX



APPENDIX A

SOURCE CODE

A.1 Construction of Confidence Intervals

A.1.1 Monte Carlo Simulation

1 library(nonlinearTseries)

2 for (k in 8:18)

3 {nrSamples <- 10000

4 data_len <- 2^k

5 e <- list(mode="vector",length=nrSamples)

6 for (i in 1:nrSamples) {

7 e[[i]] <- rnorm(data_len)

8 }

9
10 white.estimation = c()

11 for (i in 1:nrSamples)

12 {

13 dfa.analysis = dfa(time.series = e[[i]],

14 window.size.range=c(5,floor(data_len/5)), do.plot=FALSE)

15 white.estimation[i] = estimate(dfa.analysis,do.plot=FALSE)

16 }

17 save(white.estimation, file=paste("rnorm_",nrSamples,".rda",sep=""))

18 }

19
20 #save(white.estimation, file="whitenoise.rda")

21 #load("whitenoise.rda")

A.1.2 Statistical Summary of Simulated Hurst Indices

1 library(xtable)

2 library(normtest)
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3 ##############import monticarlo data#######

4 load("DATA/rnorm_10000sample_len256.rda")

5 r2_8 <- white.estimation

6 load("DATA/rnorm_10000sample_len512.rda")

7 r2_9 <- white.estimation

8 load("DATA/rnorm_10000sample_len1024.rda")

9 r2_10 <- white.estimation

10 load("DATA/rnorm_10000sample_len2048.rda")

11 r2_11 <- white.estimation

12 load("DATA/rnorm_10000sample_len4096.rda")

13 r2_12 <- white.estimation

14 load("DATA/rnorm_10000sample_len8192.rda")

15 r2_13 <- white.estimation

16 load("DATA/rnorm_10000sample_len16384.rda")

17 r2_14 <- white.estimation

18 load("DATA/rnorm_10000sample_len32768.rda")

19 r2_15 <- white.estimation

20 load("DATA/rnorm_10000sample_len65536.rda")

21 r2_16 <- rnorm_10000sample_len65536

22 load("DATA/rnorm_10000sample_len131072.rda")

23 r2_17 <- rnorm_10000sample_len131072

24 load("DATA/rnorm_10000sample_len262144.rda")

25 r2_18 <- rnorm_10000sample_len262144

26
27 ###########histogram,qq plot##########

28 for (i in 8:18)

29 {data <-get(paste("r2_",i,collapse ="",sep=""))

30 MyMean <- mean(data)

31 MyMedian <- median(data)

32 MySd <- sd(data)

33
34 hist(data, breaks=30,prob=TRUE,xlab="H",font.main = 2,main=substitute(paste("Histogram

of data length ", 2^i),list(i=i)))

35 #,xlim=c(0.3,0.8),ylim=c(0,1500))

36 curve(dnorm(x, mean=MyMean, sd=MySd),

37 col="darkblue", lwd=2, add=TRUE, yaxt="n")

38 legend("topleft", legend = c(paste("Mean =", round(MyMean, 3)),

39 paste("Median =",round(MyMedian, 3)),

40 paste("Std.Dev =", round(MySd, 3))),

41 bty = "n",cex=0.85)

42 #qqnorm(data,main=substitute(paste("Normal Q-Q Plot of data length ", 2^i),list(i=i)))

43 }
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44
45 #########stat summary##############

46 for (i in 8:18)

47 {data <-get(paste("r2_",i,collapse ="",sep=""))

48 MyMean <- mean(data)

49 MyMedian <- median(data)

50 MySd <- sd(data)

51
52 }

53
54 r_df <- data.frame(r2_8,r2_9,r2_10,r2_11,r2_12,r2_13,r2_14,r2_15,r2_16,r2_17,r2_18)

55 summ_r_df <- data.frame(apply(r_df, 2, mean),apply(r_df, 2, median)

56 ,apply(r_df, 2, sd),apply(r_df, 2, skewness),apply(r_df, 2,

kurtosis))

57 colnames(summ_r_df) <- c("Mean", "Median", "Std.Dev.", "Skewness", "Kurtosis")

58 xtable(summ_r_df,digits=rep(3,6))

59
60 ############# normality test ###############

61 library(normtest)

62
63 norm_df <- data.frame()

64 for (i in 8:18)

65 {data <-get(paste("r2_",i,collapse ="",sep=""))

66 MyMean <- mean(data)

67 MyMedian <- median(data)

68 MySd <- sd(data)

69 kstest <-ks.test(data, "pnorm",MyMean,MySd)

70 }

71 colnames(norm_df) <- c("ks D","ks pvalue")

72 rownames(norm_df) <- c("$2^8$","$2^9$","$2^10$","$2^11$","$2^12$","$2^13$","$2^14$","$

2^15$","$2^16$","$2^17$","$2^18$")

73 xtable(norm_df,digits=c(0,3,3))

74
75 #######CI#############

76 r_mean <- colMeans(r_df)

77 r_sd <- apply(r_df, 2, sd)

78
79 df_CI <- c()

80 for (CI in c(90,95,99))

81 {up <- 1-(1-CI/100)/2

82 r_err <- qnorm(up)*r_sd #0.975 for 95 CI

83 r_lower <- r_mean-r_err
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84 r_upper <- r_mean+r_err

85
86 df_CI <- cbind(df_CI,r_lower,r_upper)

87 }

88
89 rownames(df_CI) <- c("$2^8$","$2^9$","$2^10$","$2^11$","$2^12$","$2^13$","$2^14$","$

2^15$","$2^16$","$2^17$","$2^18$")

90 colnames(df_CI) <- c("lower 90%","upper 90%","lower 95%","upper 95%","lower 99%","

upper 99%")

91 xtable(df_CI,digits=c(0,3,3,3,3,3,3))

92
93 df_CI <- data.frame(df_CI)

A.1.3 Regression Fit for Constructing Function of Confidence Interval

1 load("DATA/rnorm_10000sample_len256.rda")

2 r2_8 <- white.estimation

3 load("DATA/rnorm_10000sample_len512.rda")

4 r2_9 <- white.estimation

5 load("DATA/rnorm_10000sample_len1024.rda")

6 r2_10 <- white.estimation

7 load("DATA/rnorm_10000sample_len2048.rda")

8 r2_11 <- white.estimation

9 load("DATA/rnorm_10000sample_len4096.rda")

10 r2_12 <- white.estimation

11 load("DATA/rnorm_10000sample_len8192.rda")

12 r2_13 <- white.estimation

13 load("DATA/rnorm_10000sample_len16384.rda")

14 r2_14 <- white.estimation

15 load("DATA/rnorm_10000sample_len32768.rda")

16 r2_15 <- white.estimation

17 load("DATA/rnorm_10000sample_len65536.rda")

18 r2_16 <- rnorm_10000sample_len65536

19 load("DATA/rnorm_10000sample_len131072.rda")

20 r2_17 <- rnorm_10000sample_len131072

21 load("DATA/rnorm_10000sample_len262144.rda")

22 r2_18 <- rnorm_10000sample_len262144

23
24 r_df <- data.frame(r2_8,r2_9,r2_10,r2_11,r2_12,r2_13,r2_14,r2_15,r2_16,r2_17,r2_18)

25
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26 r_mean <- colMeans(r_df)

27 r_sd <- apply(r_df, 2, sd)

28
29 #Can change CI in range of 90,95,99

30 CI <- 95

31 up <- 1-(1-CI/100)/2

32 r_err <- qnorm(up)*r_sd #0.975 for 95 CI

33 r_lower <- r_mean-r_err

34 r_upper <- r_mean+r_err

35
36 #Regression fit for lower bound

37 k=8:18

38 x=2^k

39
40 plot(log(log2(x)),log2(0.5-r_lower))

41 abline(lsfit(log(log2(x)),log2(0.5-r_lower)))

42
43 lowerfit_new <- lsfit(log(log2(x)),log2(0.5-r_lower))

44 # x is log2(N)

45 lowerfn_new <- function(x) 0.5-2^(lowerfit_new$coefficients[[2]]*log(x)+lowerfit_new$

coefficients[[1]])

46 c(lowerfit_new$coefficients[[2]],lowerfit_new$coefficients[[1]])

47 # [1] -3.490524 3.928190 for 95

48 # [1] -3.481834 3.609013 for 90

49 # [1] -3.500689 4.401579 for 99

50 ##lowerfn_new <- function(x) 0.5-2^((-3.490524)*log(x)+3.928190)

51
52 #Regression fit for upper bound

53 plot(log(x),log2(r_upper-0.5))

54 plot(log(log2(x)),log2(r_upper-0.5))

55 abline(lsfit(log(log2(x)),log2(r_upper-0.5)))

56
57 upperfit_new <- lsfit(log(log2(x)),log2(r_upper-0.5))

58 upperfit_new

59 c(upperfit_new$coefficients[[2]],upperfit_new$coefficients[[1]])

60 upperfn_new <- function(x) 0.5+2^(upperfit_new$coefficients[[2]]*log(x)+upperfit_new$

coefficients[[1]])

61
62 plot(8:18,r_lower,type="p",col=3,pch=25,bg=3,xaxt="n",ylim=c(0.3,0.7),ylab="H",xlab="

Data lengths")

63 par(new=T)
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64 plot(8:18,lowerfn_new(8:18),type="l",col="black",ylim=c(0.3,0.7),lty=3,axes=FALSE,ann=

FALSE)

65 par(new=T)

66 plot(8:18,r_upper,type="p",col=3,pch=24,bg="white",ylim=c(0.3,0.7),axes=FALSE,ann=

FALSE)

67 par(new=T)

68 plot(8:18,upperfn_new(8:18),type="l",col="black",ylim=c(0.3,0.7),lty=3,axes=FALSE,ann=

FALSE)

69 par(new=F)

70 ticks <- 8:18

71 labels <- sapply(ticks, function(i) as.expression(bquote(2^ .(i))))

72 axis(1, at=log2(datasize(8:18)), labels=labels)

73
74 legend("topright",inset=0.1, legend = c("upper bounds of 95% CI","lower bounds of 95%

CI","regression fit"),

75 pch=c(2,25,NA), col=c(3,3,1),pt.bg =c(0,3,NA),lty=c(NA,NA,3),cex=0.8,bty="n")

A.2 Time-varying Hurst Indices

A.2.1 Construction of time-varying Hurst indices

1 df <-read.csv("C:/Users/Sirapat/Google Drive/Thesis - AMCS/data_MAI_prepared.csv")

2 mai_df <- df[2:length(df[,2]),c(2,4)]

3 plot(df[,c(2,3)],main="MAI price")

4 plot(mai_df,main="MAI return")

5
6 w <- 300 #moving size

7 L <- length(set_df[,2]) #3407 for mai not include the first day

8
9

10 library(nonlinearTseries)

11 H = c()

12 for (k1 in 2:(L-w+1))

13 {

14 dfa.analysis = dfa(time.series = set_df[k1:(k1+w-1),2],

15 window.size.range=c(5,floor(w/5)), do.plot=FALSE)

16 H[k1] = estimate(dfa.analysis,do.plot=FALSE)

17 k1=k1+1

18 }
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19
20 k=2:(L-w+1);

21 plot(k,H[2:length(H)],type="l")

22 save(H,file="H_mai_300.RDA")

A.2.2 Time-varying Hurst Indices of SET Index

1 dfs <-read.csv("C:/Users/Sirapat/Google Drive/Thesis/Master/data_SET_prepared.csv")

2 set_df <- dfs[2:length(dfs[,2]),c(2,4)]

3
4 set_date <- as.Date(set_df[,1],format="%d-%b-%y")

5 set_return <- set_df[,2]

6 set_price <- dfs[2:length(dfs[,2]),c(2,3)][,2]

7
8
9 library(zoo)

10 set <- zoo(set_return,set_date)

11 plot(set,xlab="Time",ylab="Returns",xaxt="n")

12 ticks <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "2 years")

13 axis(1, at = ticks, labels =F, tcl = -0.25)

14 ticksm <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "4 years")

15 axis(1, at = ticksm, labels =format(ticksm, "%Y"), tcl = -0.5)

16
17
18 setprice <- zoo(set_price,set_date)

19 plot(setprice,xlab="Time",ylab="Closed Price",xaxt="n")

20 ticks <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "2 years")

21 axis(1, at = ticks, labels =F, tcl = -0.25)

22 ticksm <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "4 years")

23 axis(1, at = ticksm, labels =format(ticksm, "%Y"), tcl = -0.5)

24
25 ##### Set limit date for plot ###########

26 x_lim_set=c(as.Date("30-Apr-75", format="%d-%b-%y"),

27 as.Date("29-Aug-16", format="%d-%b-%y"))

28
29 for(win_length in c(300,512,700,1024,1500,2048))

30 {

31 x <- log(win_length,2)

32 lowerfn_95 <- function(x) 0.5-2^((-3.490524)*log(x)+3.928190)

33 lowerfn_90 <- function(x) 0.5-2^((-3.481834)*log(x)+3.609013)
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34 lowerfn_99 <- function(x) 0.5-2^((-3.500689)*log(x)+4.401579)

35 #upper

36 upperfn_95 <- function(x) 0.5+2^(-3.558221*log(x)+4.495110)

37 upperfn_90 <- function(x) 0.5+2^(-3.563098*log(x)+4.287324)

38 upperfn_99 <- function(x) 0.5+2^(-3.551823*log(x)+4.831190)

39
40 Hsetdata<- paste("H_SET_",win_length,".RDA",sep="")

41 load(Hsetdata)

42 H.set <- H

43
44 par(mar=c(3.5, 4.1, 1, 1.5),mgp=c(2,0.7,0))

45 H_set <- NULL

46 H_set <- H.set[2:length(H.set)]

47 Hset <- zoo(H_set,set_date[(win_length+1):length(set_date)])

48 plot(Hset,ylim=c(0.35,0.8),xlim=x_lim_set,xlab="Time",ylab="H",col=1,xaxt="n")

49
50 ticks <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "2 years")

51 axis(1, at = ticks, labels =F, tcl = -0.25)

52 ticksm <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "4 years")

53 axis(1, at = ticksm, labels =format(ticksm, "%Y"), tcl = -0.5)

54 Hticks <- seq(0.35,0.8,0.05)

55 axis(2, at = Hticks, labels =F, tcl = -0.25)

56
57 abline(h=0.5,col="Black",lty=2)

58 abline(h=lowerfn_90(x),col=2,lty=3)

59 abline(h=upperfn_90(x),col=2,lty=3)

60 abline(h=lowerfn_95(x),col=3,lty=4)

61 abline(h=upperfn_95(x),col=3,lty=4)

62 abline(h=lowerfn_99(x),col=4,lty=2)

63 abline(h=upperfn_99(x),col=4,lty=2)

64 legend("topright", legend = paste("SET index of time windows ",win_length,sep=""),

65 lty=c(1,1), col=c(1,3),cex = 1,bty = "n")

66 legend("topleft", legend = c("90% CI","95% CI","99% CI" ),

67 lty=c(3,4,2), col=c(2,3,4),bty = "n",cex = 0.9)

68 }

A.2.3 Comparison between Time-varying of SET and MAI Index

1 library(zoo)

2
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3 df <-read.csv("C:/Users/Sirapat/Google Drive/Thesis/Master/data_MAI_prepared.csv")

4 dfs <-read.csv("C:/Users/Sirapat/Google Drive/Thesis/Master/data_SET_prepared.csv")

5 mai_df <- df[2:length(df[,2]),c(2,4)]

6 #mai_df[,1] date

7 set_df <- dfs[2:length(dfs[,2]),c(2,4)]

8
9 mai_date <- as.Date(mai_df[,1],format="%d-%b-%y")

10 mai_return <- mai_df[,2]

11 mai_price <- df[2:length(df[,2]),c(2,3)][,2]

12 set_date <- as.Date(set_df[,1],format="%d-%b-%y")

13 set_return <- set_df[,2]

14
15 maiprice <- zoo(mai_price,mai_date)

16 plot(maiprice,xlab="Time",ylab="Closed Price",xaxt="n")

17 ticks <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "2 years")

18 axis(1, at = ticks, labels =F, tcl = -0.25)

19 ticksm <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "4 years")

20 axis(1, at = ticksm, labels =format(ticksm, "%Y"), tcl = -0.5)

21
22 maireturn <- zoo(mai_return,mai_date)

23 plot(maireturn,xlab="Time",ylab="Return",xaxt="n")

24 ticks <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "2 years")

25 axis(1, at = ticks, labels =F, tcl = -0.25)

26 ticksm <- seq(as.Date("1975/1/1"), as.Date("2016/1/1"), "4 years")

27 axis(1, at = ticksm, labels =format(ticksm, "%Y"), tcl = -0.5)

28
29
30 ##### Set limit date for plot ###########

31 x_lim_set=c(as.Date("30-Apr-75", format="%d-%b-%y"),

32 as.Date("29-Aug-16", format="%d-%b-%y"))

33 x_lim_mai=c(as.Date("03-Sep-02", format="%d-%b-%y"),

34 as.Date("29-Aug-16", format="%d-%b-%y"))

35
36 ############# plot for both SET and MAI ##################

37 for(win_length in c(300,512,700,1024,1500,2048))

38 {

39 x <- log(win_length,2)

40 lowerfn_95 <- function(x) 0.5-2^((-3.490524)*log(x)+3.928190)

41 lowerfn_90 <- function(x) 0.5-2^((-3.481834)*log(x)+3.609013)

42 lowerfn_99 <- function(x) 0.5-2^((-3.500689)*log(x)+4.401579)

43 #upper

44 upperfn_95 <- function(x) 0.5+2^(-3.558221*log(x)+(4.495110))
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45 upperfn_90 <- function(x) 0.5+2^(-3.563098*log(x)+(4.287324))

46 upperfn_99 <- function(x) 0.5+2^(-3.551823*log(x)+(4.831190))

47
48 Hmaidata<- paste("H_MAI_",win_length,".RDA",sep="")

49 load(Hmaidata)

50 H.mai <- H

51
52 Hsetdata<- paste("H_SET_",win_length,".RDA",sep="")

53 load(Hsetdata)

54 H.set <- H

55
56 H_set <- NULL

57 H_set <- H.set[2:length(H.set)]

58 Hset <- zoo(H_set,set_date[(win_length+1):length(set_date)])

59
60 H_mai <- NULL

61 H_mai <- H.mai[2:length(H.mai)]

62 Hmai <- zoo(H_mai,mai_date[(win_length+1):length(mai_date)])

63
64 par(mgp=c(2,0.7,0))

65 plot(Hset,ylim=c(0.35,0.8),xlim=x_lim_mai,xlab="Time",ylab="H",col=1,xaxt="n")

66 ticks <- seq(as.Date("2002/1/1"), as.Date("2016/1/1"), "years")

67 axis(1, at = ticks, labels =format(ticks, "%Y"))

68 Hticks <- seq(0.35,0.8,0.05)

69 axis(2, at = Hticks, labels =F, tcl = -0.25)

70
71 par(new=T)

72 plot(Hmai,ylim=c(0.35,0.8),ann=F,xaxt="n",ylab=F,col=3,xlim=x_lim_mai)

73 par(new=F)

74 abline(h=0.5,col="Black",lty=2)

75 abline(h=lowerfn_90(x),col=2,lty=3)

76 abline(h=upperfn_90(x),col=2,lty=3)

77 abline(h=lowerfn_95(x),col=3,lty=4)

78 abline(h=upperfn_95(x),col=3,lty=4)

79 abline(h=lowerfn_99(x),col=4,lty=2)

80 abline(h=upperfn_99(x),col=4,lty=2)

81 legend("topleft", legend = c("SET index","MAI index","90% CI","95% CI","99% CI"),

82 lty=c(1,1,3,4,2), col=c(1,3,2,3,4),cex = 0.8,bty = "n")

83 legend("topright", legend = paste("SET index vs MAI index of time windows ",win_

length,sep=""),

84 ,cex = 1,bty = "n")

85 }
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