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THAI ABSTRACT 

ธีศิษฏ์ มคะปุญโญ : แผนการจับวัตถุที่เสถียรและมีประสิทธิภาพ โดยใช้บริเวณสัมผัสอิสระ
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INDEPENDENT CONTACT REGION AND CAGING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ. 
ดร. อรรถวิทย์ สุดแสง{, หน้า. 

งานวิจัยส่วนใหญ่ค านวณหาท่าจับที่เหมาะส าหรับการจับวัตถุใดๆ ด้วยการวัดความมั่นคง
ของท่าจับนั้น ซึ่งมักจะใช้คุณสมบัติทางฟิสิกส์ที่เรียกว่า คุณสมบัติแรงแบบปิด (force-closure) 
วิธีการหาท่าจับวัตถุแบบนี้มักจะท างานได้ดีในทางทฤษฎี  แต่มักเกิดข้อผิดพลาดเวลาใช้งานบน
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ค านวณได้มีโอกาสส าเร็จมากขึ้น หนึ่งในนั้นก็คือ การกักขังวัตถุ (caging) และบริเวณสัมผัสอิสระ 
(independent contact regions) งานวิจัยนี้จึงศึกษาถึงความเป็นไปได้ที่จะน าเทคนิคทั้งสองมา
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ประสาทเทียม (artificial neural network) ให้รู้จ าท่าจับที่เหมาะส าหรับการจับวัตถุใดๆ โดยใช้
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A conventional way to find a proper grasp to grab and hold any object is to 
measure its stability which usually is based on physical constraint called force-closure. 
This execution works well from the theoretical point of view but often fails on an 
actual robot due to many reasons such as intrinsic errors in robot’s system and a 
disparity between real and simulated physics. Several research works introduced 
methods to alleviate those issues and increase the success rate of grasping for a real 
robot. Caging and Independent Contact Region are ones of them. In this work, we 
investigate a method to find a grasp that is more stable and robust by combining those 
two techniques which result in a learning-based approach that utilizes an artificial 
neural network to find a proper grasp based on those techniques and some heuristic 
methods. 
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Chapter 1 Introduction 

Robots play an indispensable role in automated manufacturing processes 
where they carry out a set of predefined tasks in the structured environment of a 
factory such as material transport, part assembly, and packaging. They proved to be 
reliable and more cost-effective than human labor. Nowadays, robot application 
applies to many domains and consumer products such as service and entertainment. 
The interaction between the robot and surrounding environment plays a vital role in 
those applications. One of the most common interaction is object manipulation where 
a robot carries out a set of actions to accomplish a specific task on a specified object, 
e.g., hammering a nail, pouring water into a glass and opening a door. Those tasks look 
simple yet very challenging for a robot in an unstructured environment. Despite 
decades of effort, object manipulation in an unstructured environment is still, in 
general, an open problem. 

One of the most crucial actions in many manipulation tasks is grasping, i.e., to 
immobilize and hold an object. This action is simple for human yet very challenging 
for a robot because, with present technology, it is difficult to accurately predict or 
simulate the physical interaction between a robot’s end effector (i.e., a gripper or an 
anthropomorphic hand) and an object. So, in robotics theories, the grasping problem 
is usually simplified to make its computation feasible. One of the most popular 
grasping models is called dexterous grasping which limits the physical interaction to a 
set of contact points where a robot’s fingertip touches the object. A general statement 
of the dexterous grasping problem is as follow: given the position and shape of an 
object to be grasped, find a grasp, which is a set of contact points or a robot’s 
configuration, that satisfies specific properties which is suitable for a given task. 

Early grasping research works in the late 80s and early 90s focused mainly on 
force and mobility analysis of a grasp and an object such as the concept of force-
closure and form-closure. Those conditions have served as the foundation for many 
conventional grasp planning methods often called analytical approach. They usually 
assumed a known, perfect object model and robot control. This assumption works 
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well in ideal scenarios such as simulation, but it is hardly satisfied in practice due to a 
limitation of computational power and sensor’s hardware. Even the smallest error in 
sensor data may cause a catastrophic failure in grasping process. One of the most 
common errors in grasping is a premature contact where one of the robot’s fingers 
prematurely touches and moves an object from its original pose. The change in object 
position makes the actual contact points deviated from the planned ones and may 
cause a grasp to become unstable and ultimately failed. 

There are several approaches to mitigate positional errors and improve the 
success rate of grasping. For example, Nguyen introduced the concept of Independent 
Contact Regions (ICRs) which is a set of contact regions on an object surface that 
satisfies the force-closure property. When a robot makes a grasp within those contact 
regions, the grasp will tolerate positioning errors as long as it remains within the contact 
regions. Thus, its force-closure property is still valid. Another interesting approach is a 
method based on a kinematic constraint called caging. A robot forms a cage when an 
object cannot move arbitrarily far from the robot’s hand. There are several advantages 
If a robot achieves a cage during grasping. Firstly, a cage is a good waypoint to form a 
stable grasp in some situations. For two-fingered grasp, either squeezing or stretching 
fingers while maintaining a cage will result in a form-closure grasp, i.e., an object is 
immovable within grasp. Secondly, it is easier to repositioning contact points or re-
grasp an object since an object cannot move arbitrarily far from robot’s hand. Caging 
is also a smart way to move an object around since it requires less control precision 
and guarantees that an object remains within a limited region (cage). 

During our research, we found that conventional methods based on analytical 
approach, such as caging and force-closure property, are inflexible and failed to 
recognize many grasps that are good from the human’s perspective. Since the 
emergence of machine learning in the early 2000s, many novel grasp planning methods 
tried to learn the quality of a grasp by training a learning model from examples and 
demonstrations on a real robot. Those methods are called data-driven grasp planning 
methods and often categorized as an empirical approach in robotic grasping. The data-
driven methods usually classified a grasp into two classes: good grasps and bad grasps. 
This approach is very good at adapting to various scenarios, but it is also hard to 
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understand why it succeed and how to implement the method correctly. Both 
conventional and novel approaches have their distinct advantages and drawbacks. In 
the light of this, our new grasp planning method aims at implementing a hybrid method 
between both approaches to eliminate their drawbacks while maintaining their 
advantages.  

The culmination of our research in the grasp planning method based on caging, 
ICRs, and data-driven grasp planning methods consists of 1) a heuristic method to 
measure an ability of a grasp to cage an object called partial cage 2) a simple iterative 
algorithm to find ICRs for two-fingered grasp. 3) a set of grasping features to learn the 
grasp quality via a simple neural network. 4) qualitative analysis on learning the grasp 
quality from the grasping feature and the grasps labeled by the human survey.  

A partial cage explores a way to assess caging ability of a grasp that cannot 
cage an object entirely. The crux of the partial cage is to measure how hard for an 
object to move arbitrarily far from a grasp. In this work, we deploy a physics simulator 
and a motion planning method to move an object randomly until it is far from a grasp 
and analyze object’s trajectories to determine an ability to cage of a grasp. 

The iterative ICRs algorithm provides a parallelizable and straightforward way 
to find the largest ICRs on an object. We proved that a pair of triangles form ICRs if all 
pairs of their extreme points satisfy force-closure properties and utilize this fact to 
iteratively expand ICRs originated from every pair of triangles on an object represented 
by a triangular mesh. In the experiment, the algorithm efficiently found the largest ICRs 
on objects with more than 20,000 triangles within a few seconds using parallel 
computational power on GPU. 

Our data-driven method utilizes a simple neural network to learn a good grasp 
from features derived from both analytical and heuristic methods. We demonstrate it 
in the simplest scenario which is a two-fingered grasp for a 2D object. The grasp 
samples are labeled by 1) volunteers with no prior knowledge of robotic grasping 2) 
three individuals who had background knowledge in grasping theory 3) heuristic 
methods that determine the label of a grasp on the predefined objects. In the 
experiment, we review the grasps obtained from the survey, investigate the suitable 
structure for a neural network to learn the grasp quality, and verify our model against 
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the collected data. This investigation provides remarkable clues about the 
fundamental problems in the robotic grasping and finally leads to the final chapter, 
our opinions about the present and future state of the robotic grasping. 

After the introduction, this thesis is structured as follows. Chapter 2 summarizes 
fundamental knowledge and briefly reviews related works in robotic grasping. Chapter 
3 presents our contributions toward grasp planning methods based on caging and 
independent contact regions. We introduced a heuristic method to measure an ability 
of a grasp to cage an object called partial cage and a simple and a novel parallel 
algorithm to find independent contact regions for a two-fingered grasp on a 3D object. 
0 discusses our hybrid method that deploys machine learning to learn a good grasp 
from its properties derived from both analytical and heuristic methods. Finally, Chapter 
5 expresses our opinions for the current state of robotic grasping and its future.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 

Chapter 2 Definitions and Literature review 

In this chapter, we discuss terminologies that often used in robotic grasping 
including the related research topics to provide fundamental knowledge and 
background of our works. Additionally, we also briefly discuss classical works and 
similar studies in this field. 
 

2.1 Space Definition in Grasping 

Analytical grasping involves calculation in various fields such as kinematic, 
geometric and physics problems. Many studies utilize n-dimensional spaces to explain 
and visualize a grasp in a specific field and use it to solve a grasping problem. In this 
section, we describe the definition of spaces that often used in caging and ICRs. The 
most common one is a working space which is the physical coordinate space that 
describes relative position and orientation of a robot and an object to be grasped. A 
wrench space visualizes forces and torques that apply to an object from robot’s grasp. 
Lastly, a configuration space represents kinematic states of an object relative to 
robot’s grasp or vice versa.  
 

2.1.1 Workspace 

Workspace usually refers to a 2D or 3D real coordinate space that robot can 
operate in the scene. For 2D workspace, a polygon or a curved function usually 
represents an object to be grasped. While in 3D, it can be in many forms depending 
on several types of input such as points cloud, polyhedral, triangle mesh, and 
composition of primitive shapes. Manipulator often represented as a set of fingers, is a 
part of the robot that interacts and manipulates the target. For simplicity, it usually 
represents by a set of points in workspace because, in theory, we only interest 
interaction between object and manipulator that occurs at the contact point where 
finger's tip touches an object. This way, grasping computation can be invariant to 
manipulator mechanics.  
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(a) immobilizing grasp 
workspace 

 

 
 

(b) immobilizing grasp 
configuration space 

 

(c) caging workspace 

 

 
 

(d) caging configuration space 

Figure 1 Example of workspace and configuration space. 
In workspace (figure (a) and (c)), a blue polygon represents an object, and black 
dots represent fingertips that act as obstacles and gain control over the target. A 
green region in figure (c) illustrates caging set, an independent region of each finger 
placement that can cage the object. In configuration space (figure (b) and (d)), red 
and orange polygons are the area that the object cannot translate into without 
colliding one or more fingers and the blue dot is the origin of configuration space 
that represents the current position of the object in the workspace. It also exhibits a 
significant difference between immobilizing grasp and caging, an area of isolated 
free space. 
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2.1.2 Wrench space 

Wrench space represents force and torque that exert on an object in 6D space 
(3D for 2D workspace). It can efficiently resolve resultant force and moment that act 
on the rigid body and evaluate its linear and angular velocity. A wrench that represents 
forces and torque applied to contact points is called primitive wrench. The 
arrangement of the primitive wrenches, especially their convex hull, determines the 
capability of a grasp to resist against any forces acting to an object. The convex hull of 
primitive wrenches is often called grasp wrench space. In some articles, the wrench 
subspace that formulates a specific task objective is called task wrench space. It is 
usually an ellipsoid or a convex hull of wrenches that represent minimum force and 
torque needed to be exerted to complete the objective. The analysis of both grasp 
wrench space and task wrench space can determine the likelihood of a given grasp 
completing a given task. 
 

2.1.3 Configuration space 

Configuration space describes all possible motion states of the finger position 
in workspace having an object as an obstacle or vice versa. Figure 1 shows an example 
mapping between workspace and configuration space. A subspace that an object does 
not overlap fingers is called free configuration space, in short, free space. The 
application of configuration space mostly notable in kinematics such as finding a 
collision-free path that connects between two configurations, determine a degree of 
freedom and formulate a cage that bound an object within a limited space. When all 
fingers’ position is fixed relative to each other, they are called preshape or finger 
formation. Some works represented finger formation as a shape function. The 
parameter of shape function controls distribution and internal structure of finger 
formation. When fingers surround an object and completely isolate object's free space 
as depicted in Figure 1(d), a cage is formed. In other words, fingers cage an object when 
there is no path connecting an initial pose to an arbitrarily far configuration without 
colliding with an obstacle. Such path, if existed, called an escaped path. It is sufficient 
to assume that an arbitrarily far configuration is a state that the convex hull of an 
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object did not overlap with the convex hull of a finger formation. Sometimes, it is 
sufficient to evaluate grasp pose and caging set only on the object boundary. Contact 
space can express a finger position on a planar object's boundary with a single 
parameter: object perimeter. Some research works computed the optimal grasp pose 
and caging set in this space because their algorithms only compute on the object 
boundary, not free space. 
 

2.2 Analytical Grasp Planning 

In robotics, dexterous grasping refers to a grasp that only utilizes fingertips to 
grasp or manipulate an object. Limiting the physical interaction of a grasp to fingertips 
simplifies the grasping problem and make it easier to simulate the physical interaction 
between a grasp and an object. A grasp is usually a set of contact points where robot's 
fingertip touches and exerts force and torque to manipulate an object. Roboticists 
often represent a contact point by a pair of fingertip’s position on an object and its 
contact normal, a directional vector that perpendicular to object surface on that 
position. So, grasping problem is simplified to the determination of a suitable set of 
contact points or approach direction to grasping a given object. A method that solves 
the grasping problem, i.e., finding a set of contact points to grasp an object, is often 
called grasp planning. There are generally two types of grasp planning method: 
analytical and empirical. In this section, we briefly discuss the first one, analytical grasp 
planning methods while the upcoming section explores empirical grasp planning 
methods. 

The analytical grasp planning derives from the mechanical model and the 
physical interaction between an object and robot’s hand. It usually involves 
calculation of grasp quality from a set of sampling grasps and returns a grasp with the 
highest quality to perform a grasping task. Grasp quality is an index that indicates 
goodness of a grasp. There are several grasp qualities associated with the analysis of 
physics and kinematics model of a grasp. In this section, we will discuss exceptional 
grasp qualities from analytical approach such as force-closure, ICRs and caging. 
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2.2.1 Stable Grasp, Force-Closure, and Form-Closure Property 

Grasp stability is an ability to keep the object in an equilibrium state. It plays a 
crucial role in many conventional grasp planning methods to determine the quality of 
a grasp. They analyzed grasp stability from magnitude and direction of the force that 
a grasp can exert on an object through a set of contact points to resist the external 
force acting on an object, e.g., gravitational force. In general cases, we assume that 
external forces are not known beforehand, so they are arbitrary in both direction and 
magnitude. As such, an ability to resist forces and torques in any directions became a 
necessary condition for a stable grasp, and this ability is often called force-closure 
property. 

Another property that also defines grasp stability is form-closure which 
stemmed from object’s kinematics. A grasp is form-closure when robot’s fingertips 
(contact points) placed along object boundary in a specific formation that will prevent 
any object movement. In other words, an object is immobilized and cannot move 
without colliding one or more fingertips. This stability criterion uses fingertips as 
geometrical constraints that obstruct all object motion as illustrated in Figure 1(a) and 
(b).  

Form closure is closely related to force closure property. Rimon and Burdick 
[1] showed that form closure grasp is equivalent to force closure grasp with frictionless 
contact. The difference between form closure and force closure grasp had been 
pointed out by Bicchi [2]. He stated that the difference between the two is the 
perspective when analyzing the problem. 

A conventional method verifies the force-closure property of a grasp in wrench 
space. If the origin of wrench space lies strictly within grasp wrench space, a convex 
hull formed by wrenches that can be exerted by a grasp through contact points, such 
grasp satisfies force-closure property [3]. Liu [4] verified the force-closure condition by 
solving the linear optimization problem while Zhu et al. [5] tested the condition using 
collision detection in wrench space.  

There are several grasp qualities associated with the force-closure property. For 
example, Kirkpatrick et al. [6] and Ferrari and Canny [7] introduced a grasp quality 
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based on the shortest distance between the origin of wrench space and the boundary 

of grasp wrench space. This quality metric is often called 𝜖-metric. It had been widely 
used in many grasp planning and simulator to evaluate grasp stability and realize the 
optimal grasp for grasping task. Recently, Zheng [8] introduced an efficient way to 

compute 𝜖-metric using an iterative method. A grasp with two soft fingers simplifies 
the force-closure condition to the intersection between double-sided friction cones 
and contact points [9, 10]. Our works utilized this method to verify the force-closure 
property of two-finger grasps. The implementation details can be found in Appendix 
A. Xiangyang et al. [11, 12] proposed a quality metric called Q-distance as the highest 
scale factor of a task wrench space that still contains within in a grasp wrench space. 
Shi and Koonjul [13] developed a real-time grasp planning method for the multi-
fingered robotic hands. They simplified the high-dimensional grasping problem by 
decomposing it into the lower ones using two proposed strategies called the 
intersected volume and the finger curling planes. They verified the method on three 
different robotic hands with the bin-picking and kitting tasks. 

There are grasp qualities that based on the characteristic of grasp’s geometry. 
In planar grasp, it is desirable to spread contact points uniformly over object surface 
to improve grasp stability. Byong-Ho et al. [14] proposed a quality index to quantify 
the uniformity of contact points distribution from the internal angles of a polygon 
formed by contact points. The optimal polygon is the one corresponding to a regular 
polygon, i.e., its internal angles are all equaled. To minimize the effect of inertial and 
gravitational force, some quality indices [15-17] use the distance between the center 
of mass of an object and the center of a polygon formed by contact points. Several 
works [18-21] provided comprehensive reviews on grasp quality and analytical grasping 
in details. 
 

2.2.2 Independent Contact Regions 

Nguyen [22] introduced a concept of an Independent Contact Regions (ICRs) 
for planar grasps which is a set of contact regions such that if a robot places each 
fingertip within its respective regions, a grasp is always force-closure. This approach 
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improves robustness against errors in finger placement; thus, it is easier to grasp an 
object. 

Pollard [23] proposed a similar method which generates families of grasps from 
a single grasp. It preserved grasp quality of a sampled grasp and represented the 
families as a set of independent contact regions. 

Roa et al. [24] sampled a force-closure grasp and optimized its quality by 
swapping the current set of contact points with their respective neighborhood with 
higher grasp quality. Later, they used a similar approach to synthesize independent 
contact regions in [25-27]. Given an initial set of contact points, the independent 
contact regions were expanded by repeatedly adding the neighbor contact points 
which could substitute the original ones while maintaining grasp quality within a certain 
threshold. Krug et al. [28] and Dang-Vu et al. [29] improved the efficiency of an 
algorithm in the previous works. They relaxed the constraints of the inclusion of 
neighborhood which increased the size of ICRs. In [30], they focused on the user-
defined priority of contact points for ICRs’ inclusion. This feature allowed users to 
change the ICRs’ shape to meet the task objective. Phoka et al. [31, 32] found the 
optimal independent contact regions for two-finger planar grasp on a polygonal object. 
They formulated a grasp in a 2D contact space and constructed the independent 
contact regions which span across multiple consecutive edges of the polygon. Our 
proposed method in Section 3.2 is closely related to Roa’s works [25-27], but we 
expand all contact regions simultaneously instead of synthesizing only a single set of 
independent contact regions. 

Rosales et al. [33] integrated ICRs concept into Inverse Kinematics (IK) algorithm 
for motion planning of robotic hand. They formulated ICRs problem as constraints in 
IK and maximize region-to-region contact surface between an object and a hand. Jeong 
and Cheong [34] utilized the concept of the independent contact regions in an in-hand 
manipulation task. They maintain grasp stability while a robot changing a grasp pose 
by moving its fingertips strictly within independent contact regions. Fontanals et al. 
[35] integrated independent contact regions into a motion planning called Bidirectional 
Rapidly-Exploring Random Tree (Bi-RRT). Their algorithm concurrently synthesized ICRs 
and finds motion path toward those ICRs, thus faster than conventional methods which 
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solve those problems sequentially. Alvarado et al. [36] proposed an algorithm to 
synthesize independent contact regions for articulated objects such as tongs and 
scissors. They introduced a new wrench space called Generalized Wrench Space 
specifically for those articulated objects. 
 

2.2.3 Cage 

Kuperberg [37] introduced the definition of caging. He stated that a polygon, 

𝑃, in the plane is captured by a set of 𝑛 points, 𝐶 if 𝑃 cannot be moved arbitrarily 

far from its original position without overlapping at least one point of 𝐶. Simply put, 

caging has an ability to limit object movement within specific space around points 𝐶, 
in this case, a set of robot's fingers or a group of mobile robots. Caging does not need 
to make direct contact with an object. Thus, it is easier to achieve than grasping which 
requires precise control for finger's positioning on the object surface. 

There are several ways to construct a cage for a given object. A robot can cage 
an object by evenly place a sufficient number of fingers around an object in a circle 
formation such that an object cannot pass a gap between any two adjacent fingers. 
Sudsang and Vongmasa [38, 39] addressed the maximal width of the gap such that an 
object cannot pass a circle formation of the fingers. 

Pipattanasomporn et al. introduced several algorithms to find two-fingered 
cages for 2D and 3D objects [40-42]. They proved that a cage is satisfied if we maintain 
the separating distance under (squeezing) or over (stretching) certain threshold. To find 
the threshold and formulate a cage, they expressed caging as a graph search problem 
on the object surface and free configuration space where the cost function on the 
graph’s nodes and edges is separation distance between fingers. They utilized an 
algorithm similar to A* search to find cages on the proposed graph. Allen et al. [43] 
introduced a similar concept for two-fingered cage on a planar object. They proposed 
a graph on contact space called caging graph formed by critical configurations (e.g., an 
immobilizing grasp and a puncture grasp) on the contact space and derived cages 
around those configurations from the graph. 
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Several algorithms focus on a cage with three or more fingers and limited 
degrees of freedom. Erickson et al. [44] analyzed the configuration space to find a set 
of possible position for the last finger in a three-fingered cage when the other two 
fingers are stationary. This specific case of the three-fingered cage was further studied 
in [45, 46].  Pipattanasomporn et al. generalized their algorithm in [41] to arbitrary 
dimension with an arbitrary number of fingers [47, 48]. They introduced conditions for 
finger arrangement called dispersion control and derived the cost function of graph 
search problem from those conditions. 

In some scenarios, partially limiting the object movement might be more 
desirable than a complete cage since the caging algorithms are computationally 
expensive. Suarod et al. [49] proposed a heuristic method to determine the number 
of fingers and their position that loosely cage a planar object. Their algorithm initially 
finds a set of fingers that cages an object with a fixed orientation. Then, it iteratively 
improves the initial formation by adding or shifting the fingers if it found an escape 
path when rotating an object by a small angle. Makapunyo et al. [50, 51] introduced 
the concept of the partial cage, an empirical method to measure how much effort an 
object would take to escape finger formation. We will explore and discuss the 
definition of the partial cage and its measurement methods in Section 3.1. Later, Makita 
and Nagata [52] applied the concept of the partial cage to their two-fingered 
manipulator inspired from a fish trap, i.e., its limbs form a partial cage leaving a small 
gap that an object can enter and leave it. They evaluated the effect of the finger 
arrangements on the partial cage in a 2D simulation. Mahler et al. [53] introduced the 
energy-bounded caging analysis on a planar space (EBCA-2-D). They analyzed the 
influence of a force field such as gravity force when a manipulator partially caged an 
object. They estimated the minimal energy required for an object to escape an energy-
bounded cage via the collision analysis and sampling-based approach.  

A robot can utilize the concept of caging in various manipulation tasks. For 
examples, a robot can move an object using a cage since the object would move along 
the manipulator that cages it [54-59]. The caging concept also utilized in manipulating 
a constrained object such as doorknob and drawer's handle [60, 61]. The fundamental 
idea is that a manipulator does not have to be rigidly attached to an object throughout 
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the entire process. A manipulator has some degree of freedom as long as it cages an 
object and the task constraint is satisfied. This increased range of possible motion 
provides more feasible solutions and improve the success rate of those tasks. Vahedi 
and Stappen [62] provided comprehensive analysis and algorithms of two and three 
fingers caging for a polygonal object. Makita and Wan [63] summarized the studies on 
caging and its application in the robotic grasping.  
 

2.2.4 Caging grasp 

Several studies focused on grasp planning methods that exploit the 
relationship between caging and grasping. They introduced several ways to integrate 
those two concepts and introduced a novel approach called caging grasp. This 
approach is closely related to the primary objective of this thesis, the integration of 
caging and independent contact regions. 

Gopalakrishnan and Goldberg [64] proposed an algorithm to grasp a deformable 
object using two fingertips. They introduced a deform closure grasp which immobilizes 
a deformed object when the gripping force transforms the area around the contact 
points into concave sections making them a form-closure grasp which requires positive 
works to release an object from the grasp. Vahedi and Stappen [45] studied the 
relationship between a cage and an immobilizing grasp for a three-finger hand and a 
convex polygonal object. They also introduced an algorithm which determines if a 
given finger arrangement is a cage or not. 

Rodriguez et al. [65] introduced a concept called the pregrasping cage. A 
pregrasping cage has a straightforward strategy that leads to an immobilizing grasp. The 
most trivial case of a pregrasping cage is a manipulator with two fingers. Its caging 
property remains valid as long as separation distance, a distance between two fingers, 
is kept below (squeezing) or above (stretching) a certain threshold. Under this 
condition, all two fingers cages are either squeezing cage, stretching cage or both [66]. 
This characteristic of pregrasping cage provides an easy method to grasp an object: 
depending on the type of cage, either close or open the fingers until forming an 
immobilizing grasp. The squeezing and stretching conditions guarantee that an object 
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cannot escape while manipulator is trying to grasp it. Thus, accurate positioning or 
closed-loop control is not necessary.  

Maeda et al. [67] introduced caging-based grasping which utilizes both caging 
and grasping properties to manipulate an object. Their robot’s fingers had two layers. 
The outer layer was soft while the inner layer was rigid. They caged an object using 
rigid layer and grasped an object using the soft layer. Wan et al. [68, 69] synthesized a 
squeezing cage from configuration space for the planar object. They showed that a 
cage tolerates uncertainty from object shape and it is suitable for power grasp tasks in 
the simulation.  
 

2.3 Empirical Grasp Planning 

The grasping in a real robot prefers obtaining a sufficiently good grasp as fast 
as possible instead of slowly acquiring the best possible grasp. Borst et al. [70] showed 
that a simple grasp planning that randomly generated grasp candidates and filtered 
them using simple heuristic is sufficient to find relatively good grasps. A grasp planning 
method that relies on grasp sampling and ranking them based on predefined grasping 
experience is often called empirical approach or data-driven grasp planning method. 
Since the early 2000s, the empirical approach had been a highly active area of research 
in robotic grasping. They extract salient features from a set of sampling grasps and use 
statistical methods or learning models to recognize and predict the characteristics of 
good grasps. The sampling data come from several sources such as the human 
demonstration, simulation, and real robot grasps. Grasp planning methods usually 
derive the grasp’s features from grasp analysis, speculation, and vision-based 
descriptor. We also proposed another data-driven method that predicts grasp quality 
based on grasp analysis, speculation, and the data collected from the human’s survey 
in the 0. Unlike previous works in this field, we combined several grasp quality metrics 
including a heuristic of caging and independent contact regions with the neural 
networks and made the qualitative analysis to verify our method in predicting the grasp 
quality from the human perspective. 
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Several works segmented an unknown object into primitive shapes [71, 72] or 
superquadrics [73, 74] and synthesized grasp candidates from them. Recently, several 
works applied machine learning and artificial intelligence to solve the grasping 
problem. Miller et al. [72] provided several strategies to grasp an object which 
decomposed into primitive shapes. They substituted a grasp with a predefined hand 
posture called preshape and an approach direction instead of a set of contact points. 
Saxena et al. [75, 76] identified a good grasp using supervised learning. Their method 
learned potential features from synthetic data and obtained the grasp position from 
two or more images. Huebner et al. [71] focused on grasping the small part of an 
object. They decomposed an object model into primitive shapes such as a box, sphere 
and, cylinder, then synthesized a good grasp on those shapes independently. 

Detry et al. [77] learned a grasp through experience by repeatedly grasping an 
object in various direction and update the probabilistic model from the results. El-
Khoury et al. [74] represented each part of an object as a superquadratic and then 
learned which parts of an object that robot can effortlessly grasp. They assumed that 
objects in everyday tasks have a handle which is a natural graspable part of an object. 
By learning how to identify object’s handles from synthetic data, their algorithm 
generated the best force-closure grasp using the method presented in [78]. Bohg et al. 
[79] reconstructed an object model from a single depth image. They estimated the 
occluded part of an unknown object while assuming that objects possessed one or 
more planar symmetry. Then, they utilized a conventional grasp planning to obtain 
the final grasp pose. Klingbeil et al. [80] analyzed raw depth images to identify the 
graspable part of an object and controlled a manipulator to pick up an object and 
read a barcode attached to it. They evaluated a firm grasp by fitting a cross-section of 
a depth image in the interior of a parallel gripper and found series of similar cross-
section to maximize the contact surface between an object and manipulator. Kootstra 
et al. [81] constructed a hierarchical structure of contour and surface extracted from 
stereo camera to represent an unknown object and proposed several grasp synthesis 
methods for this object representation. Fischinger et al. [82] proposed a Haar-like 
feature representation called Height Accumulated Feature. They extracted this feature 
from the height of objects in a scene. Then, they used Support Vector Machine to 
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learn good grasps from the pattern of those features and successfully grasped an 
object from a pile of items. 

Dang and Allen [83] proposed a semantic grasp planning method which satisfies 
both stable property and a task objective. They used shape context descriptor and a 
stochastic grasp planner [84] to match a good grasp similar to a set of predefined 
candidates which satisfy task constraints, e.g., when pouring water from a mug, the 
hand must not block the open area of a mug. Sergey et al. [85] proposed a grasp 
planning method using hand-eye coordination to learn how to grasp an object from a 
monocular image. They trained a big convolutional neural network to predict the 
probability of a successful grasp from images during the grasping process. Guo et al. 
[86] proposed a hybrid neural network combining information from both visual and 
tactile sensing. It increased the accuracy of the grasp detection which suggested that 
visual sensing and tactile sensing complement each other, and both are important for 
the robotic grasping. Borg et al. [87] provided a comprehensive review on data-driven 
grasping and its related topics. 

Mahler et al. developed a cloud-based system called Dex-Net 1.0 [88] to learn 
robust grasps from a massive database of 3D object models. Their system integrated 
several learning-based algorithms to recognize the object similarity [89] and predict 
robust grasps [90, 91] using the probability of force-closure [92] as a grasp quality 
metric. They tested the system’s scalability and parallelization on the Google Cloud 
Platform and claimed that it reduced runtime by three orders of magnitude. Later, 
they introduced the Dex-Net version 2.0 [93] and version 3.0 [94]. In the second version, 
they introduced a new learning model called Grasp Quality Convolutional Neural 
Network (GQ-CNN). They integrated and tested the system in a real robot to grasp the 
objects on a table using the data from an RGB-D sensor. The third version applied GQ-
CNN on the vacuum-based end effector (e.g., suction cup) and introduced a new 
physical contact model to analyze a single-point suction grasp. They evaluated the 
system on a real robot equipped with a pneumatic suction gripper. Tian et al. [95] 
introduced a cloud-based robotics system called Berkeley Robotics and Automation 
as a Service (BRASS). It allowed a robot to communicate with the remote grasp 
planning system, the Dex-Net 1.0 [88], and acquire a set of suitable grasp candidates 
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for an object. They verified the service on a real robot and tested the effect of network 
latency during the operation.  
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Chapter 3 Novel Caging and Independent Contact Region methods 

Our first (and several) attempt(s) at combining caging and ICRs is to improvise 
existing methods and apply simple logical process to query the best grasp. For 
examples, select N best grasps from method A, then use method B to find the best 
one among those N grasps. Another way is to design a simple mathematical formula 
to evaluate grasp’s score based on the outcomes of method A and B. Those naïve 
approaches sounded plausible at first, but we stuck at the very last step: how to verify 
and compare our approach against existing ones? Since we pointed out that force-
closure property alone is insufficient to determine a good grasp, what measurement 
method should we choose to verify our hypothesis? Due to those philosophical 
questions, we realized that a gap between grasping theories and practical grasping is 
more significant than we predicted and there is no ground-truth in measurement for 
the goodness of all grasps. In the end, we changed our approach toward machine 
learning discussed in the next chapter. Before that, we would like to share the 
experiences on development and improvising novel methods to find cages and 
independent contact regions namely Partial Cage and Iterative Independent Contact 
Region. 
 

3.1 Partial cage 

The concept of caging which captures an object within a limited region around 
fingers is an additional feat that makes a grasp more robust. It is especially true for a 
two-fingered grasp since a cage can trivially change into a form-closure grasp by either 
squeezing or stretching the fingers. We can establish a simple measurement for a grasp 
based on its ability to cage an object, for example, we prefer a grasp that associates 
with a cage than a grasp that has no cage. To compare two grasps that both associates 
with a cage, we can evaluate the characteristic of their cages such as their sizes and 
shape. However, how to compare grasps with no cages? There is no formal way to 
evaluate such cases before. Thus, we introduce a novel concept called partial cage 
and a heuristic method to evaluate its ability to cage an object. A partial cage is a 
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finger formation which does not cage an object entirely but can obstruct its mobility 
in some ways. The idea of measuring partial cage’s quality is straightforward; how hard 
is it for an object to escape arbitrarily far from finger formation? 
 

 
Figure 2 An example of a partial cage in the workspace (Left) and simplified 

configuration space (Right) that only allow translation. 
 

3.1.1 Partial cage definition 

Let formulate our partial cage in 2D space (see Figure 2). An object to be 

(partially) caged, 𝑂, is a red polygon defined by a sequence of points in the workspace. 

The initial fingers position, 𝐹0, are defined by a set of green points and have a fixed 
formation constraint, i.e., every pair of fingers in a set always preserves a fixed distance. 

Each configuration state, 𝑠 = (𝑥𝑠, 𝑦𝑠 , 𝜃𝑠) ∈ 𝑆𝐸(2), in the fingers’ configuration 

space 𝐶𝐹  represents a pose of fingers relative to their initial position at the origin, 

𝑠0 = (0,0,0), which is a green point in configuration space. In another word, the 
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corresponding fingers position at 𝑠 in configuration space, 𝐹𝑠 , can be calculated from 

the initial fingers position 𝐹0: 

𝐹𝑠 = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒(𝑟𝑜𝑡𝑎𝑡𝑒(𝐹𝑠0
, 𝜃𝑠), 𝑥𝑠, 𝑦𝑠) 

There are several essential sets of 𝑠 in our partial cage problem. The red region 
in Figure 2 is a set of configuration states where one or more fingers intersect with an 
object. Those states are invalid since fingers cannot physically overlap with an object. 
The configuration states in other regions (blue and orange) did not have such 
intersection and fingers can move freely within or between those regions. The orange 
region is a set of valid states where the convex hull of an object intersects with the 
convex hull of fingers. We consider states in the orange region as partial cages and 
determine their ability to cage an object by an escaped path, a path that connects 
them to an out-of-cage state in the blue region. We define a path in configuration 
space as a series of valid states which have a direct, collision-free path connect 
between adjacent states. An out-of-cage state is a state where the convex hull of an 
object did not intersect with convex hull of fingers. In this context, an object 
successfully escapes (moved arbitrarily far) from fingers when it reached an out-of-cage 
state.  
 

3.1.2 Partial cage quality measurement 

Next, we introduce the idea of a heuristic method that predicts the quality of 
partial cage, i.e., how hard an object to escape from fingers? Let us consider a 
straightforward case of a cage where two fingers are forming a squeezing cage on a 
planar object. Suppose further that a cage is critical, i.e., if fingers move slightly away 
from each other, an object will be able to escape from those fingers. The further the 
fingers move away, the easier an object can escape (see Figure 3 (a)). In this scenario, 
it is easy to determine an ability to cage an object based on the distance between 
fingers, but the distance alone cannot justify other cases (see Figure 3 (b) and (c)). 
Ideally, we would like to have a quality metric that can distinguish partial cages based 
on the distance to the nearest critical cages. However, measuring the exact distance in 
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configuration space and finding the nearest critical cages are not trivial tasks, so our 
measurement relies on the probability that the object escapes from fingers instead. 
 

 
(a)  

 
(b)  

 
(c)  

Figure 3 The quality of partial cage may depend on many properties: (a) for fixed 
finger formations different only in the distance between fingers, the shorter one 
(green pair) should have better quality than longer ones (orange and red pairs). (b) A 
higher number of fingers usually means better quality. (c) The assumption of 
distance between fingers is invalid when comparing between arbitrary formations. 
The green pair should have the worst quality since it is very close to out of cage 
state. 
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In real-world scenarios, the probability of object escaping depends on the 
characteristic of a task, for example, if a robot wants to lift an object, a cage that excels 
at preventing object escaped due to gravity force should score better than a cage that 
emphasizes on preventing object moving against gravity. However, if there is no prior 
knowledge of a task, we are left to assume that task space is uniform. Of course, it 
would be more practical if the quality can be adjusted to align with task objective. Our 
first work [50] demonstrates a very naïve method to compare partial cage quality based 
on the length of an escaped path and runtime used for finding an escaped path in 
simulator under several conditions. 

In [51], we assumed that task space is uniform, so we moved an object around 
randomly until it freed from fingers and formed an escaped path starting from an initial 
position to an out-of-cage state. Our method sampled a set of escaped paths and 
made some quantitative analyses from those paths that resulted in a quantitative 
value that represent the quality of partial cage. Our framework consisted of two steps. 
The first step was sampling escaped paths of the partial cage using probabilistic-based 
path planning such as probabilistic roadmap (PRM) [96], single-query bi-directional 
probabilistic roadmap (SBL) [97] and rapidly-exploring random tree (RRT) [98]. A path 
planning takes geometrical information of an object and position of fingers as input 
and finds escaped paths by randomly sample the valid configuration states and 
connect them until forming an escaped path. Due to probabilistic nature of these 
planners, they will eventually find escaped paths if they exist and there are sufficient 
time and resource. The second step was the estimation of partial cage quality from 
escape paths in the previous step. Our method examined escaped paths under several 
scoring criterions such as the number of escape paths and some properties of the 
paths, e.g., length and curvature. Then, those scores are aggregated to represent the 
quality of partial cage. 
 

3.2 Iterative ICRs algorithm 

Given a force-closure grasp on the object surface, there always exists 
independent contact regions (ICRs) around associated contact points. For example, a 
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two-fingered grasp has two ICRs, i.e., one ICR for each finger. A grasp will always satisfy 
force-closure property if its contact points remain within their associated ICRs. In 
general cases, we prefer a grasp with larger ICRs since it can tolerate more errors in 
finger placements (i.e., the position of contact points) and more comfortable to be 
executed. Several works  [25-28, 99] synthesized a grasp with large ICRs by sampling a 
sub-optimal force-closure grasp then expanded independent contact regions around 
its contact points. Our algorithm also follows this concept, but instead of working on 
a single grasp at a time, it expands several force-closure grasps simultaneously. Our 
expansion process performs in the iterative fashion where ICRs would gradually expand 
to adjacent regions until finding a grasp with the largest ICRs. This process utilizes our 
recursive definition of ICRs, which allows efficient parallel implementation on GPU. 

         
Figure 4 The left image shows examples of adjacency sets 𝐴𝑖

ℎ  on a spherical mesh 

centered at a red triangle 𝑡𝑖  with various adjacency distance ℎ ranging from 0 (red) 

to 9 (blue). The right image shows examples of stable sets 𝑆𝑖
ℎ associated with 

each adjacency set on another side of the sphere. Note that, by definition, lower 

adjacency sets are a subset of higher ones (𝐴𝑖
ℎ ⊂ 𝐴𝑖

𝑔
| 𝑔 > ℎ) and higher stable 

sets are a subset of lower ones (𝑆𝑖
ℎ ⊂ 𝑆𝑖

𝑔
| 𝑔 < ℎ) 

3.2.1 Concept 

In our work, a triangular mesh represents the object surface. The ICRs that is of 
our interest is a set of triangles. Besides the convenience of representation, this 
simplification allows us to take full advantage of connectivity of mesh structure and 
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simplify the expansion process. Let consider the triangular mesh of object surface as 

an undirected graph, 𝐺, where each node denotes a triangle in mesh, and an edge 
connects between adjacent triangles which share the same triangle’s edge. The 

number of edges in the shortest path between associated nodes in 𝐺 is the adjacency 
distance between two triangles (see the left image in Figure 4). We define contact 

regions in term of adjacency distance between nodes in 𝐺 called adjacency set. 
 
Definition 1 An adjacency set 𝐴𝑖

ℎ  is defined as a set of all triangles 𝑡𝑗  such 

that adjacency distance between 𝑡𝑗  and 𝑡𝑖  in 𝐺 is not greater 

than ℎ.  
 

Our method represents ICRs as a pair of adjacency sets at the same adjacency 
distance. To quickly determine which pair of adjacency sets satisfies ICRs condition, let 

define a set of triangles that satisfy ICRs condition with adjacency set 𝐴𝑖
ℎ  as stable set 

𝑆𝑖
ℎ (see Figure 4). 

 
Definition 2 A stable set 𝑆𝑖

ℎ is defined as a set of all triangles 𝑡𝑗  that can 

form ICRs with every triangle in the adjacency set 𝐴𝑖
ℎ . In other 

words, triangle 𝑡𝑗  forms ICRs with adjacency set 𝐴𝑖
ℎ . 

 
From the definition of the stable set, it is trivial to prove that any pair of 

adjacency set forms ICRs if they are a subset of each other associated stable set. 
 
 
Corollary 3 A pair of adjacency set (𝐴𝑖

ℎ  and 𝐴𝑗
ℎ ) forms ICRs if and only if 

it satisfies one of the following conditions: 𝐴𝑖
ℎ ⊂ 𝑆𝑗

ℎ or 

𝐴𝑗
ℎ ⊂ 𝑆𝑗

ℎ . 
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The smallest adjacency sets having zero adjacency distance are the sets of one 

triangle, i.e., 𝐴𝑖
0 = {𝑡𝑖}. For their associated stable sets 𝑆𝑖

0, we determine ICRs 

condition between triangles: 𝑡𝑖  and all other triangles. A pair of triangles forms ICRs 
for two-fingered grasp if all pairs of their extreme points, one from each triangle, 
satisfied the force-closure condition. See Appendix A and B for more details about ICRs 
condition for two triangles. 

For adjacency sets and stable sets with higher adjacency distance, we construct 
them from recursive relationship using simple set operations. In another word, a higher-

distance adjacency set 𝐴𝑖
ℎ+1 is the union of lower ones: 𝐴𝑖

ℎ  and all 𝐴𝑗
ℎ where 

associated triangles 𝑡𝑗  are adjacent to triangle 𝑡𝑖 . Similarly, a new stable set 𝑆𝑖
ℎ+1 is 

the intersection of lower ones: 𝑆𝑖
ℎ and 𝑆𝑗

ℎ where associated triangles 𝑡𝑗  are adjacent 

to triangle 𝑡𝑖 . The mathematic formulations of those recursive relations are: 
 

Adjacency set Stable Set 

𝐴𝑖
0 = {𝑡𝑖} 𝑆𝑖

0

= {∀𝑡𝑗|(𝑡𝑖 , 𝑡𝑗) 𝑓𝑜𝑟𝑚𝑠 𝐼𝐶𝑅𝑠} 

𝐴𝑖
1 = {𝑡𝑖} ∪ {∀𝑡𝑗|𝑡𝑗  𝑎𝑑𝑗. 𝑡𝑜 𝑡𝑖} 𝑆𝑖

ℎ = ⋂ 𝑆𝑗
ℎ−1

∀𝑗|𝑡𝑗∈𝐴𝑖
1

 

𝐴𝑖
ℎ = ⋃ 𝐴𝑗

ℎ−1

∀𝑗|𝑡𝑗∈𝐴𝑖
1

  
 
 

 

3.2.2 Algorithm 

From the recurrent relations and Corollary 3, ICRs expansion consists of series 

of set operations on those sets. Let 𝐴ℎ and 𝑆ℎ denotes a collection of all adjacency 

sets and stable sets with adjacency distance ℎ, respectively. We implement those 

collections as 𝑛 × 𝑛 matrices where 𝑛 is the number of triangles in object mesh. 

Each row in a matrix M[𝑖,∗] represents all members in a set 𝑀𝑖  where each cell 

M[𝑖, 𝑗] is true if 𝑡𝑗 ∈ 𝑀𝑖 , otherwise, it is false. From this point onwards, we will use 
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notions of sets (𝐴𝑖
ℎ , 𝑆𝑖

ℎ ), collections (𝐴ℎ , 𝑆ℎ ) and matrices (A, S) interchangeably 
since they represent the same thing. 
 

 
Figure 5 Flowchart of the algorithm. The scripted characters, 𝒜, 𝒮, ℛ, 𝒽, 𝒾, 𝒿, 

denote variables in our algorithm while non-scripted characters 𝐴, 𝑆 denote 
collections of adjacency sets and stable sets defined as recurrent relations in 
Section 3.2.1, respectively. 
 

Figure 5 visualizes the overall process of our method. Starting from zero 

adjacency distance, 𝒽 = 0, The first step of our algorithm initializes two matrices: 

𝒜, and 𝒮. The first one is, by definition, an identity matrix while the latter one is the 
results of ICRs tests between all pairs of triangles. Then, the process alternates 
between finding ICRs and updating matrices to higher adjacency distance. The 
algorithm finds all possible ICRs in current adjacency distance by testing which pairs of 

adjacency sets, (𝒜𝒾
𝒽, 𝒜𝒿

𝒽), form valid ICRs via a subset operation: 𝐴𝑖
ℎ ⊂ 𝑆𝑗

ℎ . The 

algorithm saves valid ICRs as triplets (𝒾, 𝒿, 𝒽) in a collection ℛ𝒽 . If the current ICRs 

collection is empty, the algorithm is terminated and return ℛ, all ICRs found so far. 
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Otherwise, the algorithm increases adjacency distance 𝒽 by one and computes new 

matrices, 𝒜 and 𝒮, using recurrent relation defined in the previous section. The 
algorithm continues back and forth between finding and updating until there is no new 

ICRs found in finding ICRs step. The returned collection ℛ are all pairs of adjacency 
sets having the same adjacency distance and satisfy ICRs condition. Appendix C 
discusses the pseudo-code of this algorithm in more details. Figure 6 visualizes notable 

sets: 𝐴𝑖
ℎ , 𝑆𝑖

ℎ , 𝐴𝑗
ℎ  at several iterations of our algorithm on a spherical object. 

 

3.2.3 ICRs Comparison 

After we obtain a set of valid ICRs from our algorithm, we need to find a method 
to choose the best ICRs among the candidates. When a robot is grasping an object, it 
only needs one solution, the optimal ICRs, preferably large and the size of its contact 
regions are equally the same. The contact points at Its center represents the preferable 
positions to grasp an object. So, we introduce a simple method to measure the quality 

of any ICRs from its contact regions’ size. Let 𝑁1 and 𝑁2 be the number of triangles 
in two contact regions of given ICRs. Their quality is calculated as: 
 

𝑄(𝑁1, 𝑁2) = (𝑁1 + 𝑁2) × (𝛼 −
|𝑁1 − 𝑁2|

𝑁1 + 𝑁2
) 

 

The constant 𝛼 is a coefficient that weights between two properties of ICRs: 

the total size of contact regions (𝑁1 + 𝑁2) and the difference in size of contact 

regions (|𝑁1 − 𝑁2|). In this work, we choose 𝛼 =
4

3
 which makes the ratio of 

quality between the best and the worst ICRs being 4 to 1. To be precise, let 2𝑛𝑡  be 
the total number of triangles of all contact regions in ICRs. The best ICRs has its contact 

regions with equal size: 𝑁1 = 𝑁2 = 𝑛𝑡 . While the worst one has one of its contact 

regions with no triangle, i.e., 𝑁1 = 2𝑛𝑡; 𝑁2 = 0. So, the constant 𝛼 is calculated 
by solving the equation: 
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𝑄(𝑛𝑡 , 𝑛𝑡) = 4𝑄(2𝑛𝑡 , 0) 
 

Using this method to measure the quality of all valid ICRs produced by our 
algorithm, we choose contact points at the center of each contact region in the highest 
quality ICRs to represent the optimal place to grasp a given object. 
 

3.2.4 Optimization and parallelization 

The runtime of our algorithm rapidly grows proportional to the number of 
triangles of an object. In our preliminary experiment, a naïve implementation based 
on the pseudo-code shown in Appendix C takes up to several minutes to process an 
object with 10,000 triangles. This slow performance is not suitable for real-time 
application. So, we exploit the fact that our algorithm mostly composed of simple set 
operations which are embarrassingly parallel and deploy several optimizations and 
parallelization techniques to improve its performance. We test the performance of our 
parallel implementation using Open Multi-Processing [100], Compute Unified Device 
Architecture [101] in the next section. 

Open Multi-Processing, also known as OpenMP, is a multi-threading library that 
manages parallel regions of the code through a set of unique keywords and APIs. It 
can efficiently parallelize any for-loop block with a single line of code: #pragma omp 

parallel for. The OpenMP library will automatically fork new threads, distribute 
workloads in each iteration of a for-loop block and concurrently execute them on a 
multi-core CPU. By default, the number of running threads matches the number of 
physical cores of CPU. In our OpenMP implementation, we ensure that each iteration 
in the for-loops are independent of each other and parallelize every outer for-loops 
to make it run several times faster than the single-threaded implementation. 
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𝒽 = 0 𝒽 = 5 

    
𝒽 = 10 𝒽 = 15 

 

  

 

 𝒽 = 20  

Figure 6 Visualization of ICRs represented by a pair adjacency sets, 𝐴𝑖
ℎ  (red) and 

𝐴𝑗
ℎ  (blue), at different iteration of our algorithm. The teal dot centered at left 

spheres is a triangle 𝑡𝑖  while pink dot on the right side is a triangle 𝑡𝑗  on the 

opposite side of the sphere. The green region on the right side is a stable set 𝑆𝑖
ℎ . 

The blue region lying inside the green region implies that 𝐴𝑗
ℎ is a subset of 𝑆𝑖

ℎ , 

therefore (𝐴𝑖
ℎ , 𝐴𝑗

ℎ) are ICRs. 
 

Compute Unified Device Architecture, also known as CUDA, is a parallel 
framework for general purpose programming with Nvidia graphics card. It allows 
developer direct access to parallel computation power within GPU through a particular 
function called kernel. Like parallel for-loop in OpenMP, a program concurrently 
executes code in a kernel function in one or more groups of CUDA threads in GPU 
called blocks. The hierarchy of threads and blocks provides a more detailed level of 
control for thread’s resource management in GPU such as shared memory and 
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thread’s synchronization. In our CUDA implementation, we develop several kernel 
functions to distribute and process the workloads in each for-loop block of original 
pseudo-code shown in Appendix C. Our kernel functions follow the performance 
guideline presented in [102] to maximize GPU power to its utmost potential. For 
example, the number of CUDA threads and blocks for each kernel function are 
adjusted according to occupancy calculator [103] to maximize utilization of GPU 
resources. Minimize overhead due to data transfer such as allocating data with the 
aligned memory address, maximize coalescing data access in global memory and 
utilize the shared memory for frequently used data to reduce redundant global 
memory access. For more detail in CUDA optimization, please refer to [102]. 

Lastly, the most crucial part of our optimization is the data structure that 

represents a collection of adjacency set 𝒜 and stable set 𝒮. In the previous section, 
we represented those sets are as a boolean matrix which stores membership of a set 
individually in a boolean variable to simplify our algorithm, but in the real 
implementation, a boolean matrix is very inefficient in both memory space and 
processing time. So, we encode a boolean matrix in a matrix of 32-bit integers and 
utilize a bit-wise operation, e.g., bitwise-or and bitwise-and, to efficiently perform set 

operations such as union and intersection, respectively. To be precise, a 𝑛 × 𝑛 

boolean matrix is converted to a 𝑛 × ⌈
𝑛

32
⌉ integer matrix where the 

(𝑗 mod 32)th bit of the integer at the 𝑖th row and the (𝑗 32⁄ )th column 

represents the membership of 𝑡𝑗  in a set 𝑀𝑖 . Furthermore, since an adjacency set is 
usually small, we use sparse matrix format called Compressed Row Storage (CRS) to 

only keep track of the non-zero integers in a collection of adjacency set 𝒜. The CRS 
format significantly improve the efficiency of subset operation in finding ICRs step of 
our algorithm. 
 

3.2.5 Experiment 

We verify our algorithm with several test objects as shown in Figure 7. Some of 
them are synthesized from 3D modeling program [104] while the rest are real objects 
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obtained from 3D scanner available on the internet [105, 106]. All test objects are 
preprocessed (surface resampling and artifact removal) with MeshLab [107] to make 
their triangles relatively equilateral and have approximately 20,000 triangles (except 
for sphere S, M and L). In the experiment, we test our algorithm with three values of 

half-angle of friction cone 𝜃: 10, 15, 20 degrees. To verify parallelization of our 
algorithm, we implement it in C++ for a total of five versions: CPU, OMP1, OMP2, 
OMP4, and GPU. The first one is a standard implementation with no parallel 
computation. OMP1, OMP2, and OMP4 run concurrently on CPU using OpenMP. The 
suffix number indicates the number of threads used in that version. The final one runs 
concurrently on GPU using CUDA. 

We implement the testing program with Visual Studio 2013 on Window 8.1. The 
hardware specifications are Intel Core i5 (3.2GHz with four processor cores), 8GB of RAM 
and Nvidia GeForce GTX 760 with 4 GB internal memory. The libraries used in the 
program are Open Asset Import Library [108] for reading 3D models from files, 
Visualization Toolkit [109] for model visualization, OpenMP 2.0 [100] and CUDA 6.5 
[101] for parallel computing. 

Table 1 shows the result and average runtime of all implementation for large 
objects. The runtime is averaged from three trials and converted to speedup ratio 
compared to the CPU version. The fastest version is naturally GPU while the slowest 
one is OMP1. OMP1 is slightly slower than CPU due to additional overhead of thread 
creation and management in OpenMP. A sphere object requires the longest processing 
time because Its ICRs are large and uniformly spread across its surface. Table 2 shows 
result and average runtime for spherical objects with vary size. The speedup gained 
from parallelization is negligible for a tiny object with a few hundred triangles. When 
an object has more than thousands of triangles, the GPU version outperforms other 
versions in every test cases. 

Figure 8 depicts the best ICRs for each object. According to our ICRs quality 

measurement 𝑄, the optimal ones bias toward a pair of equally-large contact regions 
as described in Section 3.2.3. Every version of our algorithm yields precisely same 
results as shown in Table 1 and Table 2. Figure 9 visualizes the relative quality of the 
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best ICRs associated with all triangles on each object. The lowest quality is shown as 
red while the highest quality is blue. A pair of flat surface on the opposite side of an 
object is usually the best position for grasping an object (blue region). The strange 
color pattern on the spherical object is caused by the arrangement of triangles on its 
surface. In theory, a spherical object should have uniform color (i.e., a red sphere) 
since the quality of ICRs at any points on the smooth sphere are equal. 

 

3.2.6 Conclusion 

In this work, we introduce a new concept to synthesize ICRs for a two-fingered 
grasp on a 3D object model. We prove that the intersection between a set of points 
and double cones is sufficient for verifying the force-closure condition between two 
points and between two triangles. Given an object model and friction coefficient as 
input, our algorithm iteratively expands contact regions centered at every triangle on 
the object surface and find a pair of contact regions that satisfy force-closure property 
and form the largest Independent Contact Region. 

Our algorithm is composed of simple operations which are suitable for parallel 
computation. We implement and test parallel implementations on CPU using OpenMP 
and on GPU using CUDA. In the experiment, we test our algorithm performance with 
several models with more than 20,000 triangles. The experimental result shows that 
the parallel implementation on GPU can efficiently find the solution in less than one 
second on average which should be suitable for real-time application. 

The concept of using adjacency set and stable set to synthesize an 
independent contact region is promising and has much potential to be explored. For 
instance, we can sacrifice the correctness of algorithm for faster computation. The idea 
is to apply knowledge of hand model as constraints for the initial stable set to reduce 
unnecessary computation in the unreachable region and improve the efficiency. In the 
future work, we would like to explore heuristic function to replace the costly ICR test 
in verification step. The triangle's position and normal are promising features to identify 
an independent contact region quickly. This modification may significantly improve the 
speed of framework at the cost of inaccuracy and possible false-positive solutions. We 
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also plan to support an object that represented in point cloud from a depth camera 
such as Kinect.  
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Banana 
(20,000) 

 
Choco Icing 

(20,000) 

 
Cube 

(20,000) 

 
Cup 

(20,000) 

 
Deodorant 

(20,000) 

 
Melon 

(20,000) 

 
Pepper 
(20,000) 

 
Pitcher 
(20,000) 

 
Shower Gel 

(20,000) 

 
Sphere 
(20,480) 

 
Sphere L 
(5,120) 

 
Sphere M 

(1,280) 

 
Sphere S 

(320) 

 
Tin 

(19,999) 
Figure 7 Image of all test objects in the experiment. The number in parenthesis 
indicates the number of triangles of an object. Cube and Spheres are created using 
Blender [104]. Choco icing, deodorant, tin, pitcher, shower gel, and cup are from KIT 
object model database [105]. All fruit models are 3D scanned objects from Artec 
Gallery [106].  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45 

 
Banana 

 
Choco Icing 

 
Cube 
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Deodorant 

 
Melon 
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Pitcher 

 
Shower Gel 

 
Sphere 

 
Sphere L 

 
Sphere M 

 
Sphere S 

 
Tin 

Figure 8 Transparent objects illustrate their largest ICRs when 𝜃 is 20 degrees. The 
ICRs are a pair of adjacency sets indicated by red and green regions which lay inside 
each other stable sets indicated by yellow and blue regions. 
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Banana 

 
Choco Icing 

 
Cube 
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Sphere M 

 
Sphere S 

 
Tin 

Figure 9 Transparent objects illustrate the relative quality of ICRs found in each 

triangle according to our measurement function 𝑄. The quality is sorted by hue 
color starting from red (lowest), yellow, green and blue (highest). 
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Table 1 Result and runtime comparison for large objects 

Object # of 
triangles 

𝜃 Best 
h 

Best 
ICRs size 

CPU 
(ms) 

Speed up ratio w.r.t. CPU 
OMP

1 
OMP

2 
OMP

4 
GPU 

Banana 20000 

10 1 4, 4 3026.07 0.60 1.13 1.55 41.88 

15 3 20, 21 3566.83 0.64 1.17 1.52 23.56 

20 4 35, 35 4262.91 0.67 1.21 1.49 17.30 

Choco 
Icing 

20000 

10 3 19, 21 3243.25 0.62 1.13 1.56 34.57 

15 5 50, 53 4009.50 0.65 1.15 1.55 22.79 

20 7 96, 93 5045.62 0.67 1.18 1.52 18.09 

Cube 20000 

10 6 54, 72 5533.68 0.70 1.27 1.51 24.88 

15 9 147, 147 7506.37 0.73 1.33 1.47 22.43 
20 13 287, 287 9901.59 0.75 1.37 1.46 20.79 

Cup 20000 

10 3 20, 20 4010.68 0.70 1.26 1.66 26.52 

15 5 46, 49 4898.33 0.71 1.25 1.61 19.07 
20 7 90, 89 6082.88 0.73 1.27 1.60 15.70 

Deodorant 20000 

10 4 33, 36 4027.44 0.64 1.10 1.54 28.50 

15 7 87, 89 5372.40 0.69 1.15 1.57 22.21 
20 10 178, 165 7147.23 0.72 1.18 1.59 19.00 

Melon 20000 
10 5 41, 41 3751.98 0.64 1.15 1.53 21.47 
15 7 105, 102 5031.62 0.67 1.17 1.50 15.00 

20 11 233, 246 7475.40 0.70 1.21 1.51 11.97 

Pepper 20000 
10 4 31, 27 3531.52 0.64 1.16 1.54 25.78 
15 6 69, 73 4734.62 0.68 1.23 1.50 17.38 

20 10 158, 184 6585.05 0.71 1.25 1.48 13.64 

Pitcher 20000 
10 3 20, 20 3667.75 0.65 1.21 1.64 29.73 
15 5 42, 43 4853.01 0.73 1.33 1.67 20.47 

20 6 66, 72 6244.24 0.76 1.38 1.68 16.94 

Shower 
Gel 

20000 
10 4 33, 35 3350.12 0.61 1.13 1.54 31.32 
15 7 89, 82 4179.91 0.66 1.18 1.51 21.05 
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20 10 177, 189 5240.01 0.68 1.22 1.49 16.29 

Sphere 20480 
10 10 160, 160 21005.82 0.80 1.17 1.97 28.75 
15 15 336, 336 33625.12 0.81 1.18 1.99 30.35 

20 20 575, 575 46917.55 0.81 1.20 2.01 32.21 

Tin 19999 
10 4 31, 34 3228.81 0.62 1.14 1.57 31.28 
15 6 64, 68 3774.61 0.65 1.16 1.58 22.14 

20 8 101, 95 4386.81 0.67 1.20 1.56 17.73 

Average - 

10 - - 5307.01 0.70 1.17 1.69 28.38 
15 - - 7413.85 0.73 1.20 1.70 23.42 

20 - - 9935.39 0.75 1.23 1.71 20.75 
All - - 7552.08 0.73 1.20 1.70 24.18 

 
Table 2 Result and runtime comparison for spherical objects with vary size 

Object # of 
triangles 

𝜃 Best 
h 

Best 
ICRs size 

CPU 
(ms) 

Speed up ratio w.r.t. CPU 

OMP
1 

OMP
2 

OMP
4 

GPU 

Sphere S 320 

10 0 1, 1 1.33 0.91 1.48 1.52 1.29 

15 0 1, 1 1.37 0.74 1.30 1.52 1.21 
20 1 4, 4 1.54 0.77 1.27 1.53 0.96 

Sphere M 1280 
10 1 4, 4 17.11 0.78 1.34 2.43 5.41 
15 2 10, 10 21.14 0.74 1.36 2.47 4.47 

20 4 29, 29 27.33 0.75 1.38 2.53 3.74 

Sphere L 5120 
10 4 31, 31 370.56 0.69 1.15 2.40 16.62 
15 7 79, 79 549.82 0.71 1.25 2.50 14.85 

20 9 132, 132 761.30 0.73 1.28 2.64 13.58 
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Chapter 4 Grasping with machine learning 

With the current technology, it is still impossible to predict or simulate real-
world physical interactions correctly in a computer. Thus, a grasp planning based on 
solely physical properties such as force-closure condition does not work well in 
practical application. It is inflexible and fails to deal with random errors and noises 
which are very common when working with real-world data. In our opinions, grasp 
quality that determines the success rate of a grasp is a very subjective term which 
depends on several factors, e.g., task objective of a grasp, characteristic of robot’s arm 
and manipulator and the surrounding environment. An analytical grasp planning that 
only focuses on contact points is unaware of changes in those factors. It will only 
choose the same grasp for the same object in every situation which may be suitable 
for some cases, but inadequate for the rests. On the other hand, a grasp planning that 
based on learning from examples, also known as data-driven grasping and empirical 
approach, is more practical and versatile because it can implicitly deal with those 
issues with a learning model such as support vector machine and neural network. 
Given enough time and samples, it is an excellent choice for dealing with erroneous 
data and hidden factors in the grasping problem. In general, a learning model 
significantly improves the success rate of a grasp compared to the conventional 
methods that assume complete data and ideal scenario. Thus, the empirical approach 
was gradually becoming more and more popular since the beginning of the 2000s to 
this date.  

In the light of this new approach, we investigate the cooperation between our 
previous methods, caging and ICRs, and learning model. The general idea is to extract 
features related to caging and ICRs and use them to predict grasp quality in a learning 
model along with other notable properties of a grasp such as a curvature at contact 
points and distance to the center of an object. We demonstrate our idea by 
implementing it as a neural network that predicts grasp quality for a two-fingered grasp 
in 2D and tests our neural network with both synthetic and human-labeled data. The 
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synthetic data uses a heuristic method to generate grasp quality of known objects. We 
gather the human-labeled data from undergraduate students in our department. 
 

4.1 Learning model 

Machine learning dominates many fields of research ranging from speech 
recognition and synthesis to image segmentation and labeling. Many grasp planning 
methods utilized machine learning as discussed in (see Section 2.3). Their approaches 
relied on visual-based object recognition, i.e., learn to recognize a good grasp based 
on labeled images in a training set. The existed methods usually learned grasp quality 
as a binary classification problem, i.e., labeling grasps as good or bad only. Furthermore, 
their works often used image descriptors as the input of their learning models such as 
the scale invariant feature transform (SIFT) and the histogram of oriented gradients 
(HOG) or, otherwise, directly use the image from the visual sensor. This visual-based 
approach might work well in object recognition and image processing problems, but 
we highly doubt its performance in robotic grasping since grasping is not solely about 
the image of an object to be grasped. It involves physical interactions between hand 
and object which cannot be deduced from the image. So, unlike existed methods, we 
apply knowledge from grasping theory and utilize grasping features such as force-
closure, independent contact regions and other heuristics as the input of our neural 
network. Additionally, we choose regression approach to learn grasp quality and map 
output, i.e., grasp quality, to a decimal starting from 0 (bad) to 1 (good) instead of 
binary classification. The fundamental idea is to let our neural networks recognize grasp 
quality based on a grasp, not an object. Thus, our methods should be able to cope 
with unknown objects with ease. 

In this work, we focus on a two-fingered grasp of a polygonal object in 2D, i.e., 
a pinch grasp to pick up an object from the top. We train a neural network to predict 
grasp quality from a grasp, a pair of contact points on a polygon. To find the best grasp 
for a given object, it randomly samples a set of grasps on that object, predicts their 
quality and returns a grasp with highest grasp quality as output.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

51 

 
Figure 10 An overview of preparing training data for our neural network. An object is 
a simple polygon (blue square) defined by its four corners (black dots). The 
preprocessing step generates Its contact points, along with their normal, (yellow 
dots with black lines). Next, a grasp defined as a pair of contact points is labeled 
with its quality and transforms to an instance in the dataset by extracting its 
features. 
 

4.2 Data representation 

An object is a simple polygon (no self-intersecting edges) denoted by a series 
of its vertices. It is preprocessed to generate a predefined set of contact points. We 
denote a grasp as a pair of contact points in this predefined set, and its quality is a 
scalar value between zero (bad grasp) to one (good grasp), inclusive. To learn grasp 
quality, we extract features of a grasp as a scalar vector and map each value to a 
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unique feature of a grasp discussed in the next section. Our method normalizes the 
values within the range between zero and one, inclusive. 

Figure 10 illustrates the overall process of preparing grasp data to be learned 
in a neural network. The first step is preprocessing an object by generating its contact 
points. The contact points consisted of position and normal are spread evenly on the 
object surface. In this work, we fix the number of contact points on an object at one 
hundred. Next, we label grasps defined as a pair of contact points from the 
preprocessing step by its quality. We collect grasp quality from two sources: synthetic 
data and human-labeled data as discussed in Section 4.3. Then, for each labeled grasp, 
a set of grasping features is extracted from contact points and an object. Section 4.4 
discusses heuristic methods for feature extraction used in this work. Finally, a dataset 

for training our neural network is a scalar matrix of size 𝑛 × (𝑚 + 1) where 𝑛 is 

the number of labeled grasp and 𝑚 is the number of grasping features. 
 

4.3 Grasp quality labeling 

In training dataset, there are two kinds of labeled grasps: synthetic and human-
labeled. The synthetic data is a predefined set of labeled grasps based on heuristic 
methods. It ensures the fundamental knowledge of grasp quality according to ordinary 
senses of most humans and filters out grasps that are trivially not feasible. For 
examples, a grasp having both contact points on the same edge of an object is 
inadequate, so its quality should be zero. On the other hand, a grasp on the opposite 
edge of a square should be good grasp and have high quality. Appendix D discusses 
the heuristic methods to generate synthetic data.  

The second type of the dataset is grasps labeled human. We believe that 
learning grasps labeled by a human should provide adaptability for our neural network 
to handle the implicit knowledge of grasping such as task objective and properties of 
the environment. In this work, we assume the task as picking up an object from 
tabletop using a pinch grasp and ask grasp’s quality from human, but in the future, it 
should gradually replace human-labeled grasps with the actual grasps from real robot 
when it is performing the task. 
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Our first attempt at collecting human-labeled grasps was using the survey 
program (Figure 11) to ask the grasp quality from volunteers in our engineering 
department. The program randomly generates a grasp on an object and asks a user for 
its quality ranging from zero (bad grasp) to one (good grasp). The program only 
generates force-closure grasps since randomly generating grasps with no precondition 
produced mostly undesirable grasps with a minimal set of good grasps. The users can 
skip, stop and resume the survey at any time they wished and send the results through 
the internet. 

In the preliminary experiment, we found that a neural network failed to 
recognize grasps labeled by volunteers and incorrectly classified the undesirable grasps 
as the good ones. We speculate that several reasons for this unsatisfactory outcome 
in the Section 4.5.1. In the second attempt, we improved the survey by introducing 
five labels associated with the grasp quality: Worst (0), Bad (0.25), Mediocre (0.5), Good 
(0.75), and Best (1). The new survey had 100 predefined grasps per object for a total 

of 1,300 grasps. To make a balanced dataset, we trained a neural network using 𝒟𝑠 
and used it to classify grasps into 3 groups: the high-quality grasps with a score higher 
than 0.8, low-quality grasps with a score lower than 0.2 and the rest are middle-quality 
grasps. we distributed the 100 grasps per object in the following ratio: 20 high-quality 
grasps, 20 low-quality grasps, 51 middle-quality grasps, and 9 duplicated grasps. We 
randomly selected 3 duplicated grasps from each prior group to examine the 
consistency of the collecting data. Lastly, instead of volunteer, we survey three 
individuals who have background knowledge in robotic grasping using the new program 
shown in Figure 12. 
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Figure 11 A simple survey program for gathering human-labeled data from 
volunteers. The program assumes a simple scenario where a volunteer is picking up 
an object (the blue polygon) from tabletop using a pinch grasp (the green circles) 
and then ask the quality of that grasp. 
 

 
Figure 12 An improved version of the survey program after receiving feedback from 
the first one. It has five separate labels for grasp’s quality and a fixed number of 
grasps in the survey (100 grasps per object; for a total of 1,300 grasps). A user needs 
to label all grasps to complete the survey. It collected grasps labeled by three 
individuals who are knowledgeable about the grasping theory.  
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4.4 Grasping features 

The grasping feature is an essential part of our neural network. They define 
learning capability of the network since grasp’s feature is the input data that directly 
map a grasp to its quality. So, grasping features should have several criterions: 1) Its 
value can be normalized (i.e., have a fixed finite range). 2) The features should not be 
affected when the workspace is arbitrarily translated and rotated (i.e., invariant to 
translation and rotation). 3) It should provide a meaningful semantic to make our 
neural network quickly learn grasp quality from the dataset.  

In a neural network, we use a total of 8 grasping features: force-closure (𝑓𝑓𝑐 ), 

heuristic force-closure (𝑓ℎ𝑓𝑐 ), linear mobility (𝑓𝑙𝑚), approachability (𝑓𝑎 ), distance to 

the center of an object (𝑓𝑜𝑐 ), the curvature of contact points (𝑓𝑐 ), size of ICRs (𝑓𝑖𝑠) 

and density of ICRs (𝑓𝑖𝑑 ). Those features are inspired from heuristic methods and 
conventional grasping theory. Roa and Suárez [21] reviewed a collection of notable 
grasp quality measurements that can be used as grasp’s features. According to their 
work, our features are associated with the location of contact points which can be 

further classified as features based on geometric relation (𝑓𝑜𝑐 , 𝑓𝑖𝑠 and 𝑓𝑖𝑑 ) and 

features based on the limitation of finger’s forces (𝑓𝑓𝑐 and 𝑓ℎ𝑓𝑐 ). Unlike other 
features, linear mobility, approachability and curvature are not grasp quality 
measurement. They are heuristic methods that encode the location of contact points 
based on object’s shape near that location. 

The first feature 𝑓𝑓𝑐 is derived from the force-closure condition of a two-
fingered grasp in [22] which stated that the segment between two contact points must 

strictly lay within friction cone of those contact points. To put it simply, 𝑓𝑓𝑐 is 
calculated from the largest angle between normal of contact points and the segment 

between those two points. Let (𝒑𝑎, 𝒏𝑎) and  (𝒑𝑏 , 𝒏𝑏) be position and normal 

of contact points in a grasp. Cosine of the largest angle 𝑓𝑓𝑐 can be calculated as: 
 

𝑓𝑓𝑐 = min (𝒏𝑎 ∙
𝒑𝑎 − 𝒑𝑏

‖𝒑𝑎 − 𝒑𝑏‖
, 𝒏𝑏 ∙

𝒑𝑏 − 𝒑𝑎

‖𝒑𝑏 − 𝒑𝑎‖
)   
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A grasp is force-closure if the angle acos(𝑓𝑓𝑐) is less than half-angle of 

friction cone 𝜃. The force-closure feature 𝑓𝑓𝑐  is the normalized value of the largest 

angle 𝑓𝑓𝑐 : 
 

𝑓𝑓𝑐 = {

0, if 𝑓𝑓𝑐 > cos(𝜃)

𝑓𝑓𝑐 − cos(𝜃)

1 − cos(𝜃)
, if 𝑓𝑓𝑐 ≤ cos(𝜃)

 

 

The heuristic version of the force-closure feature 𝑓ℎ𝑓𝑐 is a special case of 𝑓𝑓𝑐 

such that half-angle of friction cone is maximized; 𝜃 = 180°: 
 

𝑓ℎ𝑓𝑐 =
𝑓𝑓𝑐 + 1

2
 

 

 
𝑓𝑙𝑚 = 0.35625 

 
𝑓𝑙𝑚 = 0.675 

 
𝑓𝑙𝑚 = 0.9375 

Figure 13 Examples of linear mobility feature 𝑓𝑙𝑚 sampled uniformly in 16 
directions. The color of an arrow indicates the number of contact points (green dots) 
that collide with an object (blue polygon) if the object moves in that direction. The 
red ones collide with both contact points while the yellow ones collide with exactly 
one contact point and the green ones did not collide at all. 
 

The linear mobility feature 𝑓𝑙𝑚 is a simplified version of caging. We did not 
use caging as a grasping feature directly because 1) Two contact points are insufficient 
to cage a convex object. 2) Caging only determines if a grasp cage an object or not. It 
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lacks a meaningful way to differentiate two distinct grasps that both cage (or not cage) 
an object. On the other hand, the partial cage introduced in the Section 3.1 is not 
suitable to represent caging feature due to its slow verification process. Thus, we 
simplified the concept of the partial cage as the linear mobility which only considers 
the linear motion of an object that can escape a grasp. In other words, if an object is 
only moving in a straight line, how many directions an object could move arbitrarily 
far without colliding with contact points? A good grasp should limit object movement 
as much as possible. This feature is consistent and provide more level of detail than 
caging. A caged object cannot move arbitrarily far from a grasp, it is also cannot move 
arbitrarily far in any direction. On the other hand, if an object can move arbitrarily far 
in at least one direction, it means that a grasp failed to cage an object. 

We test the object mobility in the workspace by casting rays from each contact 
point in the opposite direction. If any rays collide with an object, an object cannot 
move arbitrarily far in that direction. In this work, we measure linear mobility by the 
ratio of non-movable directions sampled uniformly from 16 fixed directions as shown 
in Figure 13. Note that, this method is sensitive to workspace’s rotation, e.g., if the 
workspace of the middle square in Figure 13 rotates a little bit, all sampled direction 

will make an object collides with a grasp and the value of 𝑓𝑙𝑚 will change. This 
behavior can be mitigated by increasing number of sampled directions. 

Let 𝑁𝑑  be the number of sampled direction and 𝑅𝑐
𝑖  be the set of directions 

that an object is blocked by a contact point 𝑖 ∈ {1,2}. The linear mobility feature 
is calculated as: 
 

𝑓𝑙𝑚 = 0.9 ×
2

𝑁𝑑
× max (0, ‖𝑅𝑐

1 ∪ 𝑅𝑐
2‖ −

𝑁𝑑

2
)

+ 0.1 ×
‖𝑅𝑐

1 ∩ 𝑅𝑐
2‖

𝑁𝑑
 

 
The first term is the normalized value of object’s linear mobility based on the 

number of directions that at least one contact point blocks the object (the number of 
red and yellow arrows in Figure 13). The second term is the redundant factor of linear 
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mobility based on the number of directions that is blocked by every contact points 
(only the red ones).  

The approachability feature 𝑓𝑎 is closely related to linear mobility feature. It 
tests if contact points in a grasp can easily be reached when the robot moves fingers 
in a straight line toward them. It is calculated from the summation of predefined 
directions that contact point does not collide with an object weighted by the angle 

between that direction and normal of a contact point. Let 𝒓𝑗  be the  𝑗𝑡ℎ vector of a 

set of directions as defined in linear mobility feature and 𝐹𝑖,𝑗 ∈ {0,1} is a boolean 

value indicated that a contact point 𝑖 can move arbitrarily far without colliding with 

an object in 𝒓𝑗  direction or not. The approachability feature is calculated as: 
 

𝑓𝑎 =
∑ ∑ max(0, 𝐹𝑖,𝑗 × 𝒓𝑗 ∙ 𝒏𝑖)

𝑁𝑑
𝑗=1

2
𝑖=1

𝑁𝑑
 

 

Next, 𝑓𝑜𝑐 is a heuristic feature based on the distance between a grasp and the 
center of an object. It is calculated from the shortest distance from the center of an 

object to the segment between two contact points of a grasp (𝐷𝑐 ) normalized by the 
distance from the top-left corner to the bottom-right corner of object’s bounding box 

(𝐷𝑜 ). 
 

𝑓𝑜𝑐 = 1 −
𝐷𝑐

𝐷𝑜
 

 

The curvature 𝑓𝑐 encodes the curviness of surface around grasp’s contact 

points. It samples a set of contact points within 0.2 × 𝐷𝑜 radius centered at each 
contact points of a grasp and estimates curviness by measuring angular distances from 
each point to a reference hyperplane (a line in 2D). The hyperplane’s origin is an 
average of all sampled points’ positions, and its normal is a normalized vector from 
the sum of all sampled points’ normal vectors. If reference hyperplanes cannot be 

determined (i.e., its normal is zero), then 𝑓𝑐 is set to one. 
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Let 𝑆𝑥 = {(𝒑1, 𝒏1), (𝒑2, 𝒏2), … , (𝒑𝑛, 𝒏𝑛)} be a set of contact 

points around grasp’s contact point 𝑥. The hyperplane’s origin 𝒑ℎ and normal 𝒏ℎ 
can be calculated as: 
 

𝒑ℎ =
∑ 𝒑𝑖

𝑛
𝑖=1

𝑛
 

𝒏ℎ =
∑ 𝒏𝑖

𝑛
𝑖=1

‖∑ 𝒏𝑖
𝑛
𝑖=1 ‖

 

 

The curviness score at a contact point 𝑥 is: 
 

𝑓𝑐(𝑆𝑥) =
∑ |𝒏ℎ ∙

𝒑𝑖 − 𝒑ℎ

‖𝒑𝑖 − 𝒑ℎ‖
| + (1 −

𝒏ℎ ∙ 𝒏𝑖 + 1
2

)𝑛
𝑖=1

2𝑛
 

 
The curviness score of a grasp is the mean of curviness score at each contact 

points: 
 

𝑓𝑐(𝑆𝑥 , 𝑆𝑦) =
𝑓𝑐(𝑆𝑥) + 𝑓𝑐(𝑆𝑦)

2
 

 

 The last two features, 𝑓𝑖𝑠 and 𝑓𝑖𝑑 , derive from the concept of Independent 
Contact Regions. In this work, we limit the scope of searching ICRs to the eleven 
adjacent contact points centered at the current grasp. Hence, for each grasp, the 
method test 121 force-closure grasps. For example, if a grasp has contact points at the 

index (3, 71), it will verify force-closure grasps formed by two sets of contact points: 

(98,99,0,1, … ,7,8) and (66,67, … ,75,76). We use a simple force-closure 

test in 𝑓𝑓𝑐 instead of the iterative ICRs algorithm in the previous chapter because of 
the size of the problem. The iterative method calculates the ICRs centered at every 
grasps on an object simultaneously, however, when extracting grasping feature, we 
only interest in a tiny set of ICRs centered at some grasps. 
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The ICRs density computes the ratio of force-closure grasps formed by the 
adjacent contact points near the current grasp. Similarly, the method calculates the 
ICRs size from the highest adjacency distance which all pairs of contact points within 
the adjacent regions still form a force-closure grasp. The method normalizes the ICRs 
density by the number of all possible grasps and the ICRs size by the maximum 
adjacency distance. 
 

4.5 Experiment 

In this work, we investigate the potential of using a neural network to predict 
grasp’s score from grasping features defined in section 4.4. Section 4.5.1 describes the 
dataset used in this experiment collected from the survey and synthesized from 
heuristic methods. Next, we trained neural networks with different structures and used 
10-fold cross-validation to find the most suitable structure to predict the grasp quality. 
Then, we demonstrated the satisfactory grasps according to the neural networks 
trained with different datasets and analyzed their results on both known and unknown 
objects qualitatively. Lastly, we explored the influence of each grasp’s feature toward 
the grasp quality evaluated from the neural networks. 

 

4.5.1 Dataset 

Our neural networks were trained and tested with labeled grasps from 13 
different objects as shown in Figure 14 using 10-fold cross-validation. We also 
qualitatively tested the neural networks on the ten unknown objects as shown in 
Figure 15. We group labeled grasps into several sets by their sources: synthetic dataset 

𝒟𝑠 (18,863 grasps), volunteer dataset 𝒟𝑣 (4,922 grasps) and datasets from three 

individuals 𝒟𝑎 , 𝒟𝑏 , and 𝒟𝑐 (1,300 grasps per dataset) as discussed in Section 4.3. 
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Figure 14 The test objects in the experiment. 
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Bed 

 
Bird 

 
Fish 

 
Guitar 

 
Hammer 

 
Horse 

 
Sink 

 
Teddy Bear 

 
Television 

 

 
Toilet 

 

Figure 15 All unknown objects obtained from [110] available on 
http://www.mfdemirci.etu.edu.tr/index.html. We use OpenCV [111] to convert 
silhouette images to polygonal contours. 
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Figure 16 The histogram of the quality of grasps in the synthetic dataset (𝒟𝑠) and 

the volunteer dataset (𝒟𝑣 ). The Y-axis is the number of labeled grasps that have 
their quality less than or equal to the value on the X-axis. This histogram shows 
9,915 synthetic grasps obtained from only five objects as described in Appendix D. It 
excludes 8,948 zero-quality grasps which have their contact points on the same 

edge of an object. So, the total number of labeled grasps in 𝒟𝑠 is 18,863 grasps. On 

the other hand, the number of labeled grasps in the dataset 𝒟𝑣 is 4,922 grasps. 
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Figure 17 Histogram of labels of 1,300 different grasps from the survey of the three 

individuals (𝒟𝑎 , 𝒟𝑏 , and 𝒟𝑐 ) and the labels calculated from the neural network 

trained with the synthetic dataset (𝒟𝑠). Each survey consists of 100 grasps per 
object for a total of 1,300 grasps. We classify grasps into five labels based on 
grasp’s score in the following order: A grasp scored lower than 0.1 is the worst. A 
grasp scored higher than 0.9 is the best. A bad grasp has the score lower than 0.35. 
A good grasp has the score higher than 0.65. The other grasps are mediocre. 
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Table 3 The confusion matrix and F1 score between dataset 𝒟𝑎 and 𝒟𝑏 . 

𝒟𝑏

𝒟𝑎
 Worst Bad Mediocre Good Best F1 score 

Worst 290 70 29 9 0 0.8430 
Bad 0 76 115 46 1 0.3214 
Mediocre 0 68 116 118 6 0.3671 
Good 0 21 64 89 50 0.3539 
Best 0 0 0 17 115 0.7566 

Root-mean-square error 0.2193  Avg. F1 0.5284 
 

Table 4 The confusion matrix and F1 score between dataset 𝒟𝑎 and 𝒟𝑐 . 

𝒟𝑐

𝒟𝑎
 Worst Bad Mediocre Good Best F1 score 

Worst 308 76 11 3 0 0.8701 
Bad 2 106 96 33 1 0.4492 
Mediocre 0 37 141 124 6 0.4732 
Good 0 15 40 87 82 0.3610 
Best 0 0 0 11 121 0.7076 

Root-mean-square error 0.1917  Avg. F1 0.5722 
 

Table 5 The confusion matrix and F1 score between dataset 𝒟𝑏 and 𝒟𝑐 . 

𝒟𝑐

𝒟𝑏
 Worst Bad Mediocre Good Best F1 score 

Worst 289 1 0 0 0 0.9633 
Bad 18 113 75 27 2 0.4819 
Mediocre 3 94 129 89 9 0.4216 
Good 0 24 80 122 53 0.4544 
Best 0 2 4 20 146 0.7644 
Root-mean-square error 0.1879  Avg. F1 0.6171 
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Figure 16 and Figure 17 show histograms of the grasp’s quality in the datasets. 

We programmatically labeled 9,915 grasps in 𝒟𝑠 for only five objects based on prior 
knowledge of the object’s characteristic such as a grasp having contact points on the 
opposing edges of a square or grasping the concave part of an object (see Appendix D 

for the detailed algorithm). The other 8,948 grasps in 𝒟𝑠 are not shown on Figure 16. 
Those grasps had zero quality due to our simple heuristics: a grasp with its contact 
points being placed on the same edge of an object is undesirable. On the other hand, 
the labeled grasps in the other datasets are evenly distributed among all objects. 

From the preliminary analysis, we found several problems in the volunteer 

dataset (𝒟𝑣 ) when training the neural networks. They failed to converge after training 
for a predefined number of iteration and they often erroneously labeled undesirable 
grasps as the good ones. We speculated that the survey method had several faults 
and the quality of collected data was poor. For example, asking a numerical value of 
the grasp quality from volunteers might be inappropriate because it is hard for a human 
to consistently match a numerical value to the proper grasp quality. The volunteers 
who inexperience in the robotic grasping provided inconsistent data and significantly 
raised the error rate when training a neural network. Furthermore, labeled grasps from 
volunteers were limited to the force-closure grasps. This limitation caused the neural 
networks failed to correctly classify the non-force-closure grasps. So, in the second 
attempt, we redesigned the survey as discussed in the Section 4.3 and collected the 

data from three individuals to create three datasets (𝒟𝑎 , 𝒟𝑏 , and 𝒟𝑐 ) their 

combination (𝒟𝑎𝑏 , 𝒟𝑎𝑐 , 𝒟𝑏𝑐 , and 𝒟𝑎𝑏𝑐 ). 
Due to the grasps collected from each volunteer being unique, we unable to 

make the meaningful comparison and analysis from 𝒟𝑣 . On the other hand, the grasps 

in the datasets 𝒟𝑎 , 𝒟𝑏 , and 𝒟𝑐 are the same, hence, we compared their labels 
against each other as shown in Table 3, Table 4, and Table 5. The last column in the 
table shows the F1 score for each label. We also computed a root-mean-square error 
from the difference in numerical values associated with each label (0 for worst, 0.25 
for bad, 0.5 for mediocre and so on). There was a total of 117 pairs of identical grasps 
in the survey. So, we verified the consistency of a dataset using the root-mean-square 
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error from those duplicated grasps. The duplicated errors of the dataset 𝒟𝑎 , 𝒟𝑏 , and 

𝒟𝑐 were 0.0693, 0.0981, and 0.1059, respectively. 
From the F1 score, the most consistent labels were the worst grasp and the 

best grasp. Most grasps belonging to those labels had unique characteristics that 
everyone could effortlessly decide their quality such as the grasps having contact 
points on the same edge, the grasps on the opposing parallel edges, and the grasps 
on the concave part of an object. On the other hand, the participants addressed the 
remaining three labels differently based on their criterion and preference. There were 
540 grasps that all three participants chose the same label. There were 137 
controversial grasps that at least one of them chose a negative label (worst or bad) 
and another one chose a positive label (good or best). 

From those statistics, we conjectured that, for more than half of the possible 
grasps in the survey, the participants unable to consistently evaluate their quality from 
the position of contact points on the object surface alone. There were several useful 
feedbacks from the participants about this issue. They complained about some 
discrepancies between a grasp shown on the screen and the actual human’s grasp 
that they are familiar. For examples, the former one lacks the sense of touch, 
gravitational direction, and the scale of the object’s size relative to their hand. The 
difference in the number of dimensions and the limited perspective also influenced 
their indecisiveness. Furthermore, the participants were hesitant to assess the quality 
of grasps that they never performed or grasps on an imaginary object that they never 
seen before.  

 

4.5.2 Neural network 

The grasp planning method extracts all grasping features from the grasp’s 
position and the object shape as described in Section 4.4 and uses them to predict 
the grasp quality via a multi-layered neural network. The first layer contains input 
nodes, i.e., all grasping features. The last layer is a single node that returns grasp quality 
in the range between zero and one, inclusive. We trained and tested several neural 
networks with different structures against datasets described in the previous section. 
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We implemented the neural networks with an open-source framework called 
Open Neural Networks (OpenNN) [112]. For simplicity, the neural networks only used 
hyperbolic tangent and linear function as the activation function and used a root-
mean-square error as the loss function. For training strategy, we selected an 
evolutionary algorithm to initialize the weights of a neural network and chose a Quasi-
Newton Method as the main training method. The training process ran until reaching 
the maximum iteration (50 generations for initialization and 250 iterations for the main 
training). For other parameters, we used the default values provided by the OpenNN 
framework. 
 

4.5.3 Neural network’s structure selection 

We tested the neural networks with 14 different structures (two types of 
activation functions and seven different sizes) to find the suitable structure to learn 

the grasp quality from the introduced features. The first type (𝒩𝑡 ) used a hyperbolic 
tangent function as activation function for all node in the network while another type 

(𝒩𝑚) alternated the activation function in each layer between a linear function and 
a hyperbolic tangent function. The network’s size defined the number of nodes and 
layers between the input layer and the output layer of a neural network. The first four 

sizes had the number of layers equal to the number of nodes in each layer: 1x1 (𝒩1), 

3x3 (𝒩3), 5x5 (𝒩5) and 11x11 (𝒩11). Another 3 sizes had different number of node 

in each layer in the following arrangement: 5-3-2 (𝒩5𝑑 ), 10-8-6-4-2 (𝒩10𝑑 ) and 20-

17-14-11-8-5-2 (𝒩20𝑑 ). So, the 14 structures in this experiment are 𝒩𝑡1, 𝒩𝑡3, 𝒩𝑡5, 

𝒩𝑡11, 𝒩𝑡5𝑑 , 𝒩𝑡10𝑑 , 𝒩𝑡20𝑑 , 𝒩𝑚1, 𝒩𝑚3, 𝒩𝑚5, 𝒩𝑚11, 𝒩𝑚5𝑑 , 𝒩𝑚10𝑑 , 

and 𝒩𝑚20𝑑 . We use 10-fold cross-validation to find the most suitable structure with 

the minimal loss when predicting grasp quality in 𝒟𝑠 . 
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Figure 18 Loss rate of the neural networks with different structure when training with 

𝒟𝑠 . The X-axis is the number of iteration and the Y-axis is the root-mean-square 
error or loss value in each iteration. The loss rate was mostly stabilized after 

training for 100 iterations. The loss value of the best network’s structure, 𝒩𝑡20𝑑 , is 
0.08435 at the end of the training.   
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Table 6 The loss value and correlation from 10-fold cross-validation of the neural 

networks with different structure when training and testing with 𝒟𝑠 
Network Loss Correlation 

𝒩𝑡1 0.217647 0.951281 

𝒩𝑡3 0.152478 0.976421 

𝒩𝑡5 0.139474 0.980331 

𝒩𝑡11 0.106467 0.988574 

𝒩𝑡5𝑑 0.136908 0.980985 

𝒩𝑡10𝑑 0.107634 0.988267 

𝒩𝑡20𝑑 0.087651 0.992231 

𝒩𝑚1 0.212847 0.953447 

𝒩𝑚3 0.163008 0.972972 

𝒩𝑚5 0.139576 0.980287 

𝒩𝑚11 0.144535 0.978837 

𝒩𝑚5𝑑 0.162464 0.973152 

𝒩𝑚10𝑑 0.138001 0.980699 

𝒩𝑚20𝑑 0.105523 0.98876 
 
Figure 18 shows the loss value of the neural networks with different structure 

during their training. Most network converged after training for 100 iterations. Their final 
loss value and training time were proportional to the network’s size. The larger network 
usually took more training time but yielded lower loss value. Table 6 summarizes the 
average loss and correlation of 10-fold cross-validation for all network structures. The 

networks that use only hyperbolic tangent as activation function (𝒩𝑡 ) are slightly 

better than the network with alternated activation function (𝒩𝑚) for every network’s 
size except the smallest one. With the highest correlation and the lowest loss value, 

the network 𝒩𝑡20𝑑  is the best structure to predict grasps in 𝒟𝑠 . The worst ones are 

𝒩𝑡1 and 𝒩𝑚1 which produce comparable high loss value. So, we choose 𝒩𝑡20𝑑 
as the network’s structure to create all neural networks in the following experiments. 
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Table 7 The loss value and correlation from 10-fold cross-validation of the neural 

network 𝒩𝑡20𝑑 when training and testing with difference dataset 
Dataset Loss Correlation 

𝒟𝑠 0.094403 0.991011 

𝒟𝑣 0.515416 0.500545 

𝒟𝑎 0.338635 0.870762 

𝒟𝑏 0.288942 0.903661 

𝒟𝑐 0.353308 0.871573 

𝒟𝑎𝑏 0.314196 0.883716 

𝒟𝑎𝑐 0.334485 0.876039 

𝒟𝑏𝑐 0.319692 0.885351 

𝒟𝑎𝑏𝑐 0.324606 0.879583 
 

4.5.4 Result and analysis of grasp quality prediction 

We trained and tested the neural network 𝒩𝑡20𝑑  with different datasets. 
Table 7 shows the loss value and correlation from 10-fold cross-validation. The dataset 

that easiest to predict was the synthetic dataset 𝒟𝑠 while the most unpredictable 

one was the volunteer dataset 𝒟𝑣 . Both are the bad examples of poor distribution in 
a dataset. The grasps in synthetic dataset focused on only five simple objects. A neural 
network could learn some reasonable grasps on those objects but failed to cope with 
the objects with a more complex shape.  On the other hand, the volunteer dataset 
only contained force-closure grasps. A neural network was incapable of learning the 

quality of the non-force-closure grasps from 𝒟𝑣 . 
To ensure that the neural networks could learn and predict the grasp quality from the 
survey data, we conducted another survey to collect the data from the same 

participants. Then, we compared the label between the newly collected data (𝒟𝑎
2, 

𝒟𝑏
2, and, 𝒟𝑐

2) and the ones evaluated by the neural networks trained with the old 

data (𝒫𝑎 , 𝒫𝑏 , and, 𝒫𝑐 ) as shown in Table 8, Table 9, and, Table 10. The overall result 
was acceptable. The worst and best labels were the most predictable ones. More than 
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half of wrong labels were adjacent to the right one (e.g., predict the best grasp, but it 

is a good grasp). The accuracy of 𝒫𝑏 and 𝒫𝑐  was consistent with the result from 10-

fold cross-validation. However, there was significant contrast between the labels in 𝒫𝑎 

and 𝒟𝑎
2. The neural network mistakenly identified most good grasps as the best grasps 

and failed to differentiate between mediocre and good grasps. From the post-survey 

interview, we found that, in 𝒟𝑎
2, the participant hesitated to judge the quality of 

stretching grasps and the expectation of the best grasps in the second survey is higher 
than the first one. 

The neural networks trained by those datasets evaluated all possible grasps on 
the 13 known objects and the ten unknown objects. We visualized the best 20 grasps 
with the highest quality according to their estimation in Figure 19 - Figure 40. The 
known objects were used in the survey program and the training of the neural networks 
while the unknown objects were the ones that the neural networks never perceived 
before. 

We grouped and qualitatively analyzed the best grasps on the test objects 

based on their shapes: simple objects 𝒪𝑠 (circle, diamond, and, square), complex 

objects 𝒪𝑝 (hShape, ring, and, sShape), daily objects 𝒪𝑑  (bottle, driller, and, glass), 

concave objects 𝒪𝑐  (hConcave, hConcaveSmall, simpleConcave, and, 
vConcaveSmall). The best grasps usually gathered into some small clusters on the 
object surface. This behavior indicates that a neural network should learn some tacit 
knowledge or preferences of choosing the desirable grasps from a dataset. The best 
grasps from the combining datasets generally shared similarity with the original ones. 
They should represent the common conception of the grasp quality which participants 
agreed. 
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Table 8 The confusion matrix and F1 score between human and predicted labels 

𝒫𝑎

𝒟𝑎
2  Worst Bad Mediocre Good Best F1 score 

Worst 182 51 19 15 3 0.6868 
Bad 50 120 54 25 10 0.4624 
Mediocre 23 57 124 114 42 0.4000 
Good 5 32 63 104 172 0.3270 
Best 0 0 0 2 33 0.2237 
Root-mean-square error 0.2636  Avg. F1 0.4200 

 
Table 9 The confusion matrix and F1 score between human and predicted labels 

𝒫𝑏

𝒟𝑏
2  Worst Bad Mediocre Good Best F1 score 

Worst 194 27 12 1 0 0.7854 
Bad 64 185 48 27 16 0.6167 
Mediocre 2 43 115 44 3 0.4925 
Good 0 5 77 151 104 0.5059 
Best 0 0 8 37 137 0.6199 
Root-mean-square error 0.1991  Avg. F1 0.6041 

 
Table 10 The confusion matrix and F1 score between human and predicted labels 

𝒫𝑐

𝒟𝑐
2  Worst Bad Mediocre Good Best F1 score 

Worst 178 34 15 8 5 0.7120 
Bad 48 121 76 46 30 0.4165 
Mediocre 17 80 113 50 17 0.4209 
Good 14 18 50 120 69 0.4520 
Best 3 7 6 36 139 0.6164 
Root-mean-square error 0.2754  Avg. F1 0.5236 
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The objects in the group 𝒪𝑠 were all convex and uncomplicated. The 
predicted grasps were force-closure and reasonable except the ones from the 
volunteer dataset which nominated the non-force-closure grasps on the square and 
the diamond. Those non-force-closure grasps were mistakenly chosen due to the lack 

of those type of grasps in the dataset 𝒟𝑣 .  

The objects in 𝒪𝑝 had a lot of concave parts and parallel edges. From the 
analytical perspective, they had both squeezing and stretching cages and force-closure 
grasps. Due to the diversity of feasible grasps, the best grasps from each dataset were 
mostly unique. This trait was especially true for the ring which had the best grasps 

scattered all over its surface. Some datasets biased toward squeezing grasps (𝒟𝑠 , 𝒟𝑏 , 

and, 𝒟𝑐 ) while some other datasets biased toward stretching grasps (𝒟𝑣 and 𝒟𝑎 ). 
All of them were reasonable and justified. 

The objects in 𝒪𝑑  represented some daily items that have the easy-to-grasp 
part. Most humans instinctively hold those objects at their handle (i.e., driller’s grip, 
glass’s stem, and middle part of a bottle). Most neural networks failed to recognize 
the graspable part on the objects. We believed that the reasons for failure were 1) lack 
of relevant samples in the datasets 2) the grasping features lacked necessary 
information for a neural network to learn about those parts. However, all neural 
networks managed to find reasonable grasps except the ones trained with bad 

datasets, 𝒟𝑠 and 𝒟𝑣 . 

The last group, 𝒪𝑐 , emphasized simple objects with concave sections. We 
expected that the neural networks should learn to grasp those objects on the concave 
parts since it has an ability to cage an object. It was work well for the simpleConvex. 
However, for the other three objects, most neural networks inclined toward the grasps 

on parallel edges. The ones that nominated the caging grasps are 𝒟𝑠 , 𝒟𝑐 , and its 

variants (𝒟𝑎𝑐 , 𝒟𝑏𝑐 , and, 𝒟𝑎𝑏𝑐 ). This evidence indirectly suggested that two out of 
three participants preferred the grasps on opposing edges than the grasps on the 
concave parts of an object. 
 The best grasps on the unknown objects were diverse and inconclusive, but 
most of them were reasonably good considering the underlying problem of the 
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object’s shape. We suspected that the chaotic results were caused by the 
representation of an object, a polygon. It failed to express the smooth surface of an 
object accurately and affected the grasping features that relied on the contact normal. 
The uneven surface, e.g., zigzag lines, replaced the smooth surface of an object during 
the conversion from an image of object’s silhouette to a polygon using the 
“findContours” function in the OpenCV library. The neural networks mistakenly 
predicted the quality of grasps on the uneven surface. This problem profoundly 
affected the curvy objects such as bird, fish, guitar, and, teddy bear.  
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Figure 19 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 20 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 21 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 22 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 23 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 24 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 25 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 26 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 27 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 28 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 29 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 30 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 31 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 32 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 33 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 34 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 35 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 36 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 37 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 38 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 39 The best 20 grasps according to the neural networks trained by different 
datasets. 
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Figure 40 The best 20 grasps according to the neural networks trained by different 
datasets. 
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4.5.5 The contribution of the grasping feature 

We estimated the contribution of each grasping feature introduced in Section 
4.4 by removing one feature at a time from neural networks, trained them and 
performed 10-fold cross-validation, then, compared its loss against the original one. 
Table 11 shows the loss comparison obtained from the neural networks trained with 
different datasets. We believe that the difference in the loss values between the 
original neural network and the one trained without a specific feature should indirectly 
indicate how much influence of that feature affect the capability of the neural 
networks. The positive value indicates that the accuracy of a neural network without 
the specific feature is worse than the original network. Therefore, that particular feature 
is essential for the evaluation of the grasp quality. Conversely, the negative value 
means a neural network has a better performance without the specific feature, and 
that feature misleads the prediction of grasp quality in the neural network. If the 
difference is insignificant, it indirectly indicates that the particular feature is irrelevant 
to the grasp quality. This investigation also told us the general concept of the 
participant’s preference when they assessed the grasp quality in the survey program. 

Unsurprisingly, the most notable features of a neural network trained from 

synthetic dataset were the distance-to-center (𝑓𝑜𝑐 ), the heuristic-force-closure (𝑓ℎ𝑓𝑐 ), 

the linear mobility (𝑓𝑙𝑚) and, the density of ICRs (𝑓𝑖𝑑 ) which influenced predicted 
grasp’s scores positively. The heuristic methods in Appendix D indirectly utilized those 

grasping features to generate the grasps in 𝒟𝑠 . There was no remarkable grasping 

feature in 𝒟𝑣 due to its inconsistency as discussed in the Section 4.5.1. According to 
Table 11, All participants had diverse preferences when evaluating the grasp quality. 

The first one, 𝒟𝑎 , focused on 𝑓𝑙𝑚 , the ability to cage an object. The second one, 

𝒟𝑏 , preferred 𝑓𝑖𝑠 , 𝑓ℎ𝑓𝑐 and 𝑓𝑙𝑚 ; the size of ICRs as the first criteria and the heuristic 

of the force-closure condition and caging as secondary choices. The last one, 𝒟𝑐 , 

leaned toward 𝑓𝑙𝑚 , 𝑓𝑐 , and, 𝑓𝑓𝑐 ; the caging ability and the force-closure condition 
while also considered the curvature of contact points. In general, the most crucial 

grasping feature is linear mobility (𝑓𝑙𝑚) which measures how many directions an object 
can freely move without colliding with the grasp and directly relates with an ability of 
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a grasp to cage an object. Lastly, the force-closure feature (𝑓𝑓𝑐 ) had the most negative 
impact on the accuracy of the learning model. 

  
Table 11 The feature contribution based on the neural networks trained from 
different datasets. The value is a percentage difference of the loss values between 
the original neural network and a neural network which removed a specific feature. 

 𝑓𝑐 𝑓𝑎 𝑓𝑓𝑐 𝑓𝑙𝑚 𝑓ℎ𝑓𝑐 𝑓𝑖𝑠 𝑓𝑖𝑑  𝑓𝑜𝑐 
𝒟𝑠 12.79 21.83 12.16 30.71 35.28 8.34 34.44 60.85 

𝒟𝑣 -3.54 -0.62 -3.33 2.71 -1.01 0.20 -1.87 0.13 

𝒟𝑎 -5.25 -0.46 -8.71 11.60 -10.18 -6.55 -5.84 -4.28 

𝒟𝑏 2.47 1.96 -4.45 3.93 4.07 4.81 1.38 -3.44 

𝒟𝑐 7.17 4.65 5.98 7.73 0.51 2.44 1.75 0.40 

𝒟𝑎𝑏 0.09 2.15 -0.95 5.50 0.72 -0.52 -0.60 1.40 

𝒟𝑎𝑐 -2.60 -0.24 0.35 8.77 1.13 1.00 1.35 1.31 

𝒟𝑏𝑐 -1.51 -0.35 -7.53 3.28 -1.00 -3.55 -2.69 -4.11 

𝒟𝑎𝑏𝑐 -1.80 -0.63 -3.48 4.80 -2.00 -0.08 0.79 -2.27 
 

4.6 Conclusion 

We investigated an empirical approach to predict the grasp quality based on 
grasping features from both analytical and heuristic method. The samples of the grasp 
quality were collected from the human survey and synthesized from predefined 
heuristics. We explored a suitable structure of neural networks for the task and the 
contribution of the introduced features toward the accuracy of the neural networks. 

The results of the experiment indicated the feasibility and flexibility of 
proposed method. It can recognize the desirable grasps on various objects based on 
different training data. We analyzed the preferences of the individuals when they 
evaluate the grasp quality from the contribution of the grasping features. Lastly, we 
found some untenable evidence on the limitation of evaluating the grasp quality based 
on the force analysis and the contact points. 
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Chapter 5 Future of Grasping 

This chapter is dedicated to our speculation on the current state of robotic 
grasping and its future direction. There is no experiment nor solid proof to support our 
claims, just purely opinions and suggestions on the topic. To sum up this chapter in 
two sentences: Dexterous grasping based on force analysis did not work well on a real 
robot, and the next breakthrough of robotic grasping should be one of those studies: 
re-definition of robotic grasping, soft-body manipulator, haptic sensing and learning-
based grasp planning method. 

With current technology, it is still impossible to predict or simulate a seemingly 
simple, yet complex physical interaction such as grasping an object with 100% accuracy 
within limited time and resources. The precise prediction requires an insurmountable 
amount of information and complete control of the environment to prevent 
unaccountable factors that might interfere with the outcome. Such requirements are 
impractical and overwhelmingly hard to accomplish in a real robot operated in the 
human-friendly environment. Furthermore, It is questionable that any grasp planning 
method can objectively classify a grasp as good or bad based on the number of fingers 
and object’s shape. Furthermore, a grasp might instantly change from success to failure 
the moment when a robot failed to maintain the equilibrium state of an object which 
is hardly detectable from a visual sensor. The likelihood of choosing some grasps over 
the others might arise from some other factors such as a task objective, 
approachability, comfortability, and the physical states of a robot’s hand and an 
object. For example, a grasp for handling a tool might be different from a grasp for 
moving an object around. The kinematics of a robot’s hand and relative position 
between the hand and an object also influences the feasibility of a grasp. Lastly, the 
characteristic of the surface of a robot’s hand and an object (e.g., softness, fragility, 
stickiness, and slipperiness) also affects the physical interaction of a grasp. In fact, from 
our perspective, the position of human grasp largely depends on mood, concentration, 
and personal preferences. Additionally, the preference of human grasps might change 
over time due to knowledge learning from prior experiences. In robotics, robot’s hand 
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or manipulator also has diverse models with various kinds of kinematics and controls 
that affect the preference of choosing one grasp over the others. 

The dexterous grasp planning is a reasonable post-grasped analysis at best and 
an unreliable hint for grasp planning at worst. The fundamental problems of 
conventional dexterous grasp planning originate from several aspects such as over-
simplified physical models, unrealistic assumptions, ambiguous definition of a good 
grasp and its verification. For example, many studies focused on the force-closure 
property of a grasp after it reached an equilibrium state and introduced grasp quality 
measurements based on analysis of forces that robot’s fingers exert on an object. This 
approach usually assumes that: 

• Everything is a rigid body. 

• Robot’s sensors and controls are accurate and precise. 

• Substitute a grasp by a set of contact points where robot’s fingertips 
touch an object. 

• Use Coulomb frictional model for frictional forces and know the 
frictional coefficient between robot’s fingertips and an object 
beforehand. 

• Robot’s fingertips can exert arbitrary force at contact points. 

• The robot can accurately place every fingertip at contact points at the 
same time. 

• The robot can accurately exert forces at contact points to balance out 
external forces applied on an object and keep it at equilibrium state. 

Those meticulous and detailed assumptions are unrealistic and hard to achieve 
for a commercial-grade robot outside strictly controlled environment. 

Additionally, the verification process of grasping result and its reproducibility in 
a real robot is another controversial topic in robotic grasping. This groundless 
complication arose from a straightforward question during our research: How to 
compare grasps synthesized from a grasp planning method that combine both ICRs 
and caging and the ones from conventional methods? In grasp theory, a stable grasp 
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is a good one and a conventional grasp planning method usually measured by the 
goodness of a grasp from force analysis such as force-closure condition. How to add 
caging to this existing quality measurement? Alternatively, is it better to introduce a 
new one? As a matter of fact, what is the standardized way to classify a grasp as good 
or bad/ success or failure? Some studies claimed that a grasp is successful if a real 
robot picked an object up and a grasp remained stable for a predefined amount of 
time, while the others grasped an object and intentionally shook it a few times to 
prove that a grasp can tolerate some external forces. On the other hand, task-oriented 
studies deemed a grasp is useful if a robot accomplished the task objective with it 
(e.g., moving an object to the designated place or emptying a bucket of gadgets). 

In our opinion, using only contact points to represent a grasp is unreliable and 
insufficient to determine that such grasp can be achieved or not. In fact, the definition 
of dexterous grasping is overly simplified and ambiguous. We doubt that the resulting 
grasps executed based on contact points reflect the performance of a grasp 
represented by those contact points or the grasp planning that synthesizes them. Many 
other factors might influence the result of grasping such as the manipulator’s 
kinematics, the presence of finger’s links and palm, distribution of forces exerted on 
an object, object’s physical states and gravity force. They are inherent properties of a 
manipulator, an object, and the environment. It might be hard to observe or control 
them accurately. Thus, grasp planning based on perfect information is impractical. With 
all those lengthy persuasions, we firmly believe that analytical methods are not 
suitable and insufficient for autonomous robot’s grasp planning and we should revise 
grasp planning methods from another perspective, for example, a learning-based 
approach. 

In our opinion, there is no silver bullet to the grasping problem that can make 
any robot grasps any object in any situation. It is practically impossible to correctly 
express the problem in mathematical expressions or physics models when dealing 
with noisy information from sensors and all kinds of different systems in each robot. 
Furthermore, grasping is a continuous process and usually is a part of more 
complicated operations. Isolating grasping from its actual context increases the 
problem’s complexity (e.g., a grasp that can resist arbitrary force might be an extreme 
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condition for picking up an object from the ground) and its solution might be 
incompatible with the actual task (e.g., a grasp might be unreachable by a robot). 
Different situations have different requirements. It is easier to devise a specific method 
to solve a specific task. In this case, it might be easier to let a robot develop a grasp 
planning method best fit for its demand through trial and error.  

With the emergence of learning-based grasp planning methods, haptic sensors 
and soft-body robots, the direction of robotic grasping should incline toward a grasp 
that maximizes contact surface between whole hand and an object instead of a grasp 
which only utilizes contacts on fingertips. Grasping an object by enclosing it with soft-
body manipulator should be much easier to achieve than making fingertips touching 
their designated places at the same time. In our opinion, the visual cue of an object 
did not play a crucial role in grasping. It only provides a general position and shape of 
an object which leads to the initial pose that is easy to grasp an object. The critical 
part of the grasping process is how manipulator reacts when making contacts with an 
object. The information collected from touching an object or haptic sensing should 
provide necessary data for grasp planning to make a fine-tuned adjustment in fingers’ 
and hand’s pose best fitted for grasping an object in a closed-loop feedback control 
system. The fine-tuning process might be a learning-based method that specially 
trained for specific robot’s hand, sensors and task objective.  

The process described above is the outlines of robotic grasping that we envision 
it in the future. The approach is still very abstract and raises several problems of its 
own. For example, how to design a learning model to recognize good grasp? How to 
maintain equilibrium state from haptic data? How to implement a reliable and robust 
control system for soft-body manipulator? How to integrate soft hand and haptic 
sensors? How to manage the transition between approaching an object using visual 
cue and fine-tuning grasp’s pose based on haptic sensing? All those open problems 
are left for the future studies. 
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APPENDIX 

A. Force-closure condition between two points 

Nguyen [22] stated that two soft fingers contacted object surface at points, 𝒑 

and 𝒒, achieve force-closure if and only if the segment 𝒑𝒒̅̅ ̅̅  joining two contact points 
lies strictly inside both of the friction cones or lies strictly inside both of the inverse 
friction cones. A simple approach to determine the force-closure conditions is to use 
an intersection test between double cone and point. We derive a force-closure test 
between two contact points from the inequalities in [113]. Let friction cone’s half angle 

be 𝜽 and two contact points with their normals be (𝒑𝒙, 𝒏𝒙) and (𝒑𝒚, 𝒏𝒚). A 
two-soft-finger grasp at those contact points achieves force-closure if all following 
predicates return true: 
 

ℱ𝑝(𝒑𝑥 , 𝒏𝑥 , 𝒑𝑦 , 𝒏𝑦) =

=

((𝒑𝑦 − 𝒑𝑥) ⋅ 𝒏𝑥)
2

> cos2 𝜃 × ‖𝒑𝑦 − 𝒑𝑥‖
2

∧ ((𝒑𝑥 − 𝒑𝑦) ⋅ 𝒏𝑦)
2

> cos2 𝜃 × ‖𝒑𝑦 − 𝒑𝑥‖
2

∧ ((𝒑𝑦 − 𝒑𝑥) ⋅ 𝒏𝑥) × ((𝒑𝑥 − 𝒑𝑦) ⋅ 𝒏𝑦) > 0

 

 

The first inequality verifies that the point 𝒑𝑥 lies strictly inside the friction cone 

or the inverse friction cone at the point 𝒑𝑦 . Likewise, the second inequality ensures 

that the point 𝒑𝑦 lies in the cones at point 𝒑𝑥 . The last one determines that those 
points both lie either in the friction cones (squeezing grasp) or in the inverse cones 
(stretching grasp). 

This method verifies the force-closure condition for a grasp with two soft-
fingers. It is more straightforward than the conventional ones that test for origin-

containment in the wrench space, e.g., 𝜖-metric. It also yields more accurate results 

since it does not approximate a friction cone as a 𝑁-sided pyramid which is widely 
used in many conventional grasp planning. 
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B. The condition of Independent contact regions between two triangles 

The algorithm can efficiently determine if a pair of triangles form ICRs by testing 

the force-closure condition between all pairs of their extreme points. Let 𝑒𝑥𝑡(𝑡𝑖) 

be a function that returns a set of extreme points of a triangle 𝑡𝑖 . The ICR test between 

two triangles, 𝑡𝑎 and 𝑡𝑏 , with their normals, 𝒏𝑎 and 𝒏𝑏 , can be defined as: 
 

ℱ𝑡(𝑡𝑎, 𝒏𝑎 , 𝑡𝑏 , 𝒏𝑏) = ⋀ ℱ𝑝(𝒗, 𝒏𝑎, 𝒖, 𝒏𝑏)

∀𝒗∈𝑒𝑥𝑡(𝑡𝑎),∀𝒖∈𝑒𝑥𝑡(𝑡𝑏)

 

 
The proof has two parts. The first part is the ICR test between a point and a 

segment. Then, the second part generalizes the ICR test between two triangles. 
 
Theorem 4  A contact point (𝒑𝑟 , 𝒏𝑟) achieves force-closure with any contact 

point 𝒑𝑥 on the segment 𝒑𝑠𝒑𝑡̅̅ ̅̅ ̅̅  with normal 𝒏𝑥 if (𝒑𝑟 , 𝒏𝑟) 
achieves force-closure with both endpoints of the segment, 

(𝒑𝑠, 𝒏𝑥) and (𝒑𝑡 , 𝒏𝑥). 
Proof Without loss of generality, we only consider a scenario where contact 

points lie strictly inside friction cones since it can prove the inverse-

cone case in the same manner. Let 𝒞(𝒑, 𝒏) be a cone originated at 

point 𝒑, its axis aligns with 𝒏 and the aperture is 2𝜃. A force-closure 

test between (𝒑𝑎, 𝒏𝑎) and (𝒑𝑏 , 𝒏𝑏) can be written as two point-

and-cone intersection tests, 𝒑𝑎 ∈ 𝒞(𝒑𝑏 , 𝒏𝑏) ∧ 𝒑𝑏 ∈

𝒞(𝒑𝑎, 𝒏𝑎). Using geometrical deduction, it is trivial to show that a 

force-closure test is equivalent to 𝒑𝑎 ∈ 𝒞(𝒑𝑏 , 𝒏𝑏) ∩

𝒞(𝒑𝑏 , −𝒏𝑎). Let shorten the right-hand side of the previous 

statement to 𝒞𝑏𝑎 = 𝒞(𝒑𝑏 , 𝒏𝑏) ∩ 𝒞(𝒑𝑏 , −𝒏𝑎). Since a cone 
is convex, an intersection between two cones is also convex. By the 
definition of convexity, it is sufficient to show that both endpoints of 

the segment, 𝒑𝑠 and 𝒑𝑡 , lie strictly in an intersection between two 
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cones (𝒑𝑠 ∈ 𝒞𝑟𝑠 and 𝒑𝑡 ∈ 𝒞𝑟𝑡 , respectively) to proof that any 

points 𝒑𝑥 in the segment 𝒑𝑠𝒑𝑡̅̅ ̅̅ ̅̅  lie strictly in 𝒞𝑟𝑥 . Hence, a contact 

point (𝒑𝑟 , 𝒏𝑟) achieves force-closure with any contact point 𝒑𝑥 

on the segment 𝒑𝑠𝒑𝑡̅̅ ̅̅ ̅̅  with normal 𝒏𝑥 if (𝒑𝑟 , 𝒏𝑟) achieves force-

closure with both endpoints of the segment, (𝒑𝑠, 𝒏𝑥) and 

(𝒑𝑡 , 𝒏𝑥). 
 

Corollary 5 A triangle 𝑡𝑎 with contact normal 𝒏𝑎 form an independent contact 

region with a triangle 𝑡𝑏 with contact normal 𝒏𝑏 if and only if all 
pairs of extreme points between two triangles achieve force-closure. 

Proof Let 𝒑𝑥 be any points inside 𝑡𝑎 and 𝑃 be a set of points that lies on 

the edges of 𝑡𝑎 . Similarly, let 𝒑𝑦 and 𝑄 be counterparts of 𝒑𝑥 and 

𝑃 in 𝑡𝑏 . It is obvious that every 𝒑𝑥 lies on a segment which has 

both endpoints in 𝑃 and any point in 𝑃 lies on segment which has 

extreme points of 𝑡𝑎 as its endpoint. Those statements also apply 

to 𝒑𝑦 and 𝑄 in 𝑡𝑏 . Theorem 4 implies that every possible pair of 

𝒑𝑥 and 𝒑𝑦 achieve force-closure if every pair of points in 𝑃 and 𝑄, 
one from each set, achieve force-closure. Furthermore, every pair of 

points between 𝑃 and 𝑄 achieve force-closure if every pair of their 
endpoints, the extreme points of each triangle, achieve force-closure. 

In other words, every possible pair of 𝒑𝑥 and 𝒑𝑦 achieve force-

closure and triangle 𝑡𝑎 form an independent contact region with 𝑡𝑏 

if all pairs of extreme points between 𝑡𝑎 and 𝑡𝑏 achieve force-
closure. 
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C. The pseudo code of iterative ICRs algorithm 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

function IterativeIcr(int n, Mat A1, Mat S0) 

  int h ← 0 

  Mat A ← I 

  Mat S ← S0 

  (int, int, int)[] ans ← empty array 

  bool finished ← false 

  while not finished do 

    finished ← true 

    for int i ← 0 to n – 2 do 

      for int j ← i + 1 to n – 1 do 

        if is_subset_of(A[i, *], S[j, *]) is true then 

          finished ← false 

          ans[] ← (i, j, h) 

        end if 

      end for 

    end for 

    if finished is true then 

      return ans 

    end if 

    Mat newA ← A 

    Mat newS ← S 

    for int i ← 0 to n – 1 do 

      for int j ← 0 to n – 1 do 

        if A1[i, j] is true then 

          newA[i, *] ← union(newA[i, *], A[j, *]) 

          newS[i, *] ← intersect(newS[i, *], S[j, *]) 

        end if 

      end for 

    end for 

    h ← h + 1 

    A ← newA 

    S ← newS 

  end while 

end function 

 
 
 
 
 
Explanation of symbols and variables: 
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• n is the number of triangles in an object mesh. 

• Mat is a 𝑛 × 𝑛 boolean matrix that represent a collection of an adjacency 

set or a stable set. the value at row 𝑖 and column 𝑗 of a matrix, M[i, j], is true 

if a triangle 𝑡𝑖  is a member of the set 𝑀𝑗 , otherwise, it is false. M[i, *] is the 

𝑖𝑡ℎ row of matrix M which represents the set 𝑀𝑖 . 

• A1 is a matrix of 𝐴1, i.e., adjacency matrix of undirected graph 𝐺. Note that 
each row of this matrix contains at most 3 members because, by definition, 
two triangles are adjacent only if they share the same edge. 

• S0 is a matrix of 𝑆0.  By the definition of the stable set, S0[i, j] is true if the 

pair of triangles, 𝑡𝑖  and 𝑡𝑗 , forms a valid ICRs, otherwise, it is false. 

• I is an identity matrix such that I[i, j] is true if i equals to j. Otherwise, it is 
false. 

• h is the current adjacency distance ℎ starting from zero and increases by one 
at the end of each iteration of the algorithm. 

• A and S are boolean matrices that represent collections of adjacency sets and 

stable sets at adjacency distance h. In short, they denote 𝐴ℎ  and 𝑆ℎ , 
respectively. 

• ans is an array that contains all ICRs found in our algorithm. We denote ICRs as 

an integer triplet (𝑥, 𝑦, 𝑧) that represents a pair of adjacency sets 

(𝐴𝑥
𝑧 , 𝐴𝑦

𝑧 ). Note that the operation at line 13 in the pseudo code is appending 
a new triplet into this array. 

• There are three set operations in this algorithm: union, intersect and 
is_subset_of. All three operations receive two sets (in this context, two rows of 
boolean matrices) as input. The first two operations return a set while the last 
one returns a boolean value. Those operations can be written in pseudo-code 
as follow: 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

function union(bool[n] left, bool[n] right) 

  bool[n] result 

  for int i ← 0 to n - 1 do 

    result[i] ← left[i] or right[i]  

  end for 

  return result 

end function 

 

function intersect(bool[n] left, bool[n] right) 

  bool[n] result 

  for int i ← 0 to n - 1 do 

    result[i] ← left[i] and right[i]  

  end for 

  return result 

end function 

 

function is_subset_of(bool[n] left, bool[n] right) 

  for int i ← 0 to n - 1 do 

    if left[i] is true and right[i] is false then 

      return false 

    end if  

  end for 

  return true 

end function 

 

• The time complexity is 𝑂(ℎ𝑚𝑎𝑥𝑛3) where ℎ𝑚𝑎𝑥 is the maximum value 
adjacency distance h, i.e., number of iteration of outer-most while loop. 

• The memory complexity is 𝑂(𝑛2) which is the size of a boolean matrix. 
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D. Synthetic data for training grasp quality 

Grasps generated for the synthetic dataset can be classified into two types as 
zero-score and non-zero-score. The zero-score grasps are the ones which have both 
contact points on the same edge of a polygonal object. We introduce non-zero-score 
grasps for only five simple objects: circle, square, diamond, hConcaveSmall and 
vConcaveSmall. We use different heuristic methods to calculate scores based on the 
position of grasp’s contact points on some parts of each object, for example, grasps 
for square and diamond are only synthesized when their contact points are on the 
opposing edges.  

• Circle 
The precondition of non-zero-score grasps for the circle is the angle 

between contact normal must be higher than 90 degrees. The method 
generates the grasps for circle because we want neural networks to recognize 
grasp quality invariant to rotation transform. In our opinion, an ideal grasp on 
our circle, which is a 16-sided polygon, should have contact points at the center 
of opposing edges. So, the algorithm calculates the score from the position of 
contact points on the circle’s edge and the angle between contact normals. A 
grasp at the center of circle’s edge is better than a grasp near the corner of 
circle’s edge. Since the circle is convex, a grasp with the higher angle between 
contact normals is better than the ones with a lower angle. So, the algorithm 
averages the final score from two factors: the angle between contact normal 
(𝑠𝑐𝑜𝑟𝑒𝑎𝑛𝑔𝑙𝑒) and the distance from contact points to the end points of their 
edge (𝑠𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒). 
 

𝑠𝑐𝑜𝑟𝑒𝑎𝑛𝑔𝑙𝑒 = −𝒏𝑎 ∙ 𝒏𝑏 
𝑠𝑐𝑜𝑟𝑒𝑒𝑎 = min(‖𝒆𝑎1 − 𝒑𝑎‖, ‖𝒆𝑎2 − 𝒑𝑎‖) 
𝑠𝑐𝑜𝑟𝑒𝑒𝑏 = min(‖𝒆𝑏1 − 𝒑𝑏‖, ‖𝒆𝑏2 − 𝒑𝑏‖) 

𝑠𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒 =
𝑠𝑐𝑜𝑟𝑒𝑒𝑎 + 𝑠𝑐𝑜𝑟𝑒𝑒𝑏

𝐿𝑒
 

𝑠𝑐𝑜𝑟𝑒 = 0.5𝑠𝑐𝑜𝑟𝑒𝑎𝑛𝑔𝑙𝑒 + 0.5𝑠𝑐𝑜𝑟𝑒𝑒𝑑𝑔𝑒  
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𝒑𝑥 and 𝒏𝑥 are position and normal of a contact point 𝑥. 𝑒𝑥1and 𝑒𝑥2 are 

the end points of the edge touched by a contact point 𝑥. 𝐿𝑒 is the edge 
length of each side of a polygon. 
 

• Diamond and Square 
The precondition for synthetic grasps of diamond and square is the 

position of their contact points must be on the opposing edges. The best grasp 
for square is precisely the one having contact points at the center of opposing 
edges while the worst one has contact points at the opposing diagonal corner. 
We want a neural network to learn that the grasps placed on the opposing 
edge should have similar quality if the position of their contact points is 
relatively close. The algorithm averages the score from two types of normalized 
distance: distance between contact points (𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡) and distance between a 

contact point to the center of an object (𝑠𝑐𝑜𝑟𝑒𝑐𝑒𝑛𝑡𝑒𝑟) at the origin (0, 0). 𝐿𝑒 is 

edge length and 𝐿𝑑  is the diagonal length of an object. In this case, both 
square and diamond have the same values: 20 units for edge length and √800 

for diagonal length. 
 

𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡 = 1 −
‖𝒑𝑎 − 𝒑𝑏‖ − 𝐿𝑒

𝐿𝑑 − 𝐿𝑒
 

𝑠𝑐𝑜𝑟𝑒𝑐𝑒𝑛𝑡𝑒𝑟 = 1 −
‖𝒑𝑎‖ + ‖𝒑𝑏‖ − 𝐿𝑒

𝐿𝑑 − 𝐿𝑒
 

𝑠𝑐𝑜𝑟𝑒 = 0.5𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡 + 0.5𝑠𝑐𝑜𝑟𝑒𝑐𝑒𝑛𝑡𝑒𝑟  
 

• hConcaveSmall and vConcaveSmall 
Similar to the previous objects, the precondition for synthetic grasps of 

hConcaveSmall and vConcaveSmall is the position of their contact points must 
be on the opposing parallel edges and the opposing concave parts of an object. 
The calculation of grasp’s score on opposing parallel edges is the same as the 
one used for square and diamond. For concave parts, the algorithm calculates 
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the score from the distance from the contact points to the main axis, (x-axis 
for hConcaveSmall and y-axis for vConcaveSmall). Since grasping the objects 
on its concave parts is preferred and more stable due to its ability to cage an 
object (i.e., pregrasping cage). 

𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡 = 1 −
|𝑑𝑠𝑎||𝑑𝑠𝑏|

𝐿𝑒
2  

𝑠𝑐𝑜𝑟𝑒 = 0.3 + 0.7𝑠𝑐𝑜𝑟𝑒𝑑𝑖𝑠𝑡  

Circle 
 

Diamond 
 

Square 

 
hConcave 

 
vConcave 

Figure 41 Example of labeled grasps generated from heuristic methods. Grasp 
quality of each grasp is visualized as its color starting from lowest (orange), medium 
(yellow) to highest (green). 
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