ผลกระทบจากการกระเจิงของชั้นบรรยากาศไอโอโนสเฟียร์ต่อค่าความถูกต้องทางตำแหน่ง โดยใช้ข้อมูล จีเอ็นเอสเอส ที่ จุฬาลงกรณ์มหาวิทยาลัย

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมสำรวจ ภาควิชาวิศวกรรมสำรวจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

Effect of ionosphere scintillation phenomenon on positioning accuracy using GNSS observation at Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Program in Survey Engineering Department of Survey Engineering Faculty of Engineering Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Chulalongkorn University

หัวข้อวิทยานิพนธ์	ผลกระทบจากการกระเจิงของชั้นบรรยากาศไอโอโนส
	เฟียร์ต่อค่าความถูกต้องทางตำแหน่ง โดยใช้ข้อมูลจีเอ็น
	เอสเอส ที่ จุฬาลงกรณ์มหาวิทยาลัย
โดย	นางสาวพิมลพรรณ มานุจำ
สาขาวิชา	วิศวกรรมสำรวจ
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ศาสตราจารย์ ดร. เฉลิมชนม์ สถิระพจน์
คณะวิศวกรรมศาสตร์ จุฬาลง	กรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน
หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต	
	คณบดีคณะวิศวกรรมศาสตร์
(รองศาสตราจารย์ ดร. สุพจน์ เตชวรสินสกุล)	
คณะกรรมการสอบวิทยาบิพบส์	
	A SWEDBLOSSELDDS
(รองศาสตราจารย ดร.เพศ	กาล สนตธรรมนนท)
	อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
(ศาสตราจารย์ ดร. เฉลิมช	านม์ สถิระพจน์)
2	กรรมการ
(ผู้ช่วยศาสตราจารย์ ดร. สรรเพชญ ชื้อนิธิไพศาล)	
CHULALO	กรรมการภายนอกมหาวิทยาลัย

(ดร. ปณิธาน ศรีนวลดี)

พิมลพรรณ มานุจำ : ผลกระทบจากการกระเจิงของชั้นบรรยากาศไอโอโนสเฟียร์ต่อค่า ความถูกต้องทางตำแหน่ง โดยใช้ข้อมูลจีเอ็นเอสเอส ที่ จุฬาลงกรณ์มหาวิทยาลัย (Effect of ionosphere scintillation phenomenon on positioning accuracy using GNSS observation at Chulalongkorn University) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร. เฉลิม ชนม์ สถิระพจน์, หน้า.

เป็นที่ทราบโดยทั่วไปว่าค่าคลาดเคลื่อนจากชั้นบรรยากาศ Ionosphere เป็นค่าความคลาด เคลื่อนที่สำคัญในการรังวัดสัญญาณดาวเทียม GNSS ซึ่งค่าคลาดเคลื่อนจากชั้นบรรยากาศ Ionosphere จะทำให้ค่าความถูกต้องเชิงตำแหน่งจากการังวัดสัญญาณดาวเทียม GNSS มีค่าลดลง มี สาเหตุมาจากปริมาณรวมของอิเล็กตรอนอิสระในชั้นบรรยากาศ Total Electron Content (TEC) มี ความผันผวนและเปลี่ยนแปลงอย่างรวดเร็ว โดยเรียกปรากฏการณ์นี้ว่าสภาวะการกระเจิงของ สัญญาณดาวเทียม GNSS ในชั้นบรรยากาศ Ionosphere (Ionosphere Scintillation) ซึ่งจะเกิดขึ้น ้บ่อยครั้งมากขึ้นโดยเฉพาะอย่างยิ่งช่วงที่เกิดปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์ (Solar Maximum) ในบทความนี้ใช้ข้อมูลสัญญาณดาวเทียม GNSS ที่สถานี CUSV ช่วงปี 2013 ในการ ทดลอง โดยทำการวิเคราะห์ค่า S4 index โดยใช้โปรแกรม Rxtools สัญญาณดาวเทียม GNSS ที่ ได้รับผลกระทบจาก Ionosphere Scintillation จะถูกคัดเลือกและประมวลผล ผลการทดลองที่ได้ สามารถสรุปได้ว่า ดาวเทียมที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation (S4 index สูง กว่า 0.6) จะมีค่า TECU ที่ผันผวนมากกว่าปกติ นอกจากนั้นค่า S4 index สำหรับดาวเทียมที่มีมุมสูง ต่ำนั้น มีค่าใกล้เคียงกับค่า S4 index ที่ได้จากดาวเทียมที่เกิดผลกระทบจาก Ionosphere scintillation ดังนั้นผู้ทำงานวิจัยในด้านนี้จึงควรคัดเลือกดาวเทียมที่เกิด Ionosphere scintillation ในดาวเทียมที่มีค่ามุมสูงมากกว่า 10 องศาขึ้นไป เพื่อป้องกันการผิดพลาดในการคัดเลือกดาวเทียมที่ เกิด Ionosphere scintillation มาใช้ในงานวิจัยต่อไป และค่าความถูกต้องเชิงตำแหน่งที่ได้จากการ ประมวลผลด้วยข้อมูลที่ได้จากที่ได้จากสัญญาณดาวเทียมปกติ นั้นดีกว่าค่าความถูกต้องเชิงตำแหน่งที่ ได้จากสัญญาณดาวเทียมที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation ดังนั้นจึงไม่ควร น้ำดาวเทียมดังกล่าวมาใช้ในการประมวลผลร่วมกับดาวเทียมปกติดวงอื่นๆ

ภาควิชา วิศวกรรมสำรวจ สาขาวิชา วิศวกรรมสำรวจ ปีการศึกษา 2560

ลายมือชื่อนิสิต	
ลายมือชื่อ อ.ที่ปรึกษาหลัก	

5770506821 : MAJOR SURVEY ENGINEERING

KEYWORDS: IONOSPHERE SCINTILLATION, TOTAL ELECTRON CONTENT, SOLAR MAXIMUM

PIMONPAN MANUJUM: Effect of ionosphere scintillation phenomenon on positioning accuracy using GNSS observation at Chulalongkorn University. ADVISOR: PROF. CHALERMCHON SATIRAPOD, Ph.D., pp.

It is well known that the ionospheric bias is considered as the main error source in the GNSS observations. The ionospheric bias degrades the accuracy of GNSS positioning results especially when the fluctuation and rapid change in Total Electron Content (TEC) occur. This phenomenon is usually called an 'Ionosphere Scintillation' which occurs much more often in the Solar Maximum year. This paper analyzes the GNSS data during the period of 2013 collected at the CUSV station. The S4 index, is calculated from the GNSS signals via the Rxtools software. The results can be summarized as follows. The Satellites effected by the Ionosphere scintillation phenomenon (S4 index higher than 0.6) have a more volatile TECU than normal. In addition, the S4 index for low-elevation angle satellites is similar to the S4 index obtained from satellites that are impacted by lonosphere scintillation. Therefore, Researchers in this field should select lonosphere scintillation satellites with a high elevation angle of more than 10 degrees to prevent mistakes in selecting the satellite effected by Ionosphere scintillation in the next research. And the positional accuracy from processing with the data obtained from the normal satellite signal is better than the positional accuracy from satellite signals that are disturbed by the lonosphere scintillation phenomenon. Therefore, satellite effected by Ionosphere scintillation should not be used in processing with other normal satellites.

Department: Survey Engineering Field of Study: Survey Engineering Academic Year: 2017

Student's Signature	
Advisor's Signature	

กิตติกรรมประกาศ

งานวิจัยฉบับนี้สำเร็จลุล่วงไปด้วยดีเนื่องจากผู้วิจัยได้รับความช่วยเหลือ ดูแลเอาใจใส่ เป็น

อย่างดีจากหลายๆฝ่าย โดยเฉพาะอาจารย์ที่ปรึกษา ขอขอบพระคุณ ศ.ดร. เฉลิมชนม์ สถิระพจน์ อาจารย์ที่ปรึกษาวิทยานิพนธ์ ที่ได้ให้ แนวคิด ความรู้ รวมถึงคำปรึกษาต่าง ๆ ที่มี ประโยชน์ ในการทำวิจัย จนสามารถทำางานวิจัยครั้งนี้ ได้สำเร็จ ซึ่งถือเป็นประโยชน์และความรู้ที่ มีคุณค่าอย่างยิ่ง

ขอบพระคุณ บริษัท อินฟรา พลัส จำกัด ซึ่งเป็นผู้สนับสนุนและอนุเคราะห์ให้ผู้วิจัยได้ นำเอาโปรแกรม Inertial Explorer version 8.70 มาใช้ในการวิเคราะห์ข้อมูล ซึ่งถือเป็นสิ่งที่มี คุณค่าอย่างยิ่ง

ขอบพระคุณ รศ.ดร.ไพศาล สันติธรรมานนท์ ประธานคณะกรรมการสอบวิทยานิพนธ์ ผศ..ดร.สรรเพชญ ซื้อนิธิไพศาล กรรมการสอบวิทยานิพนธ์ และ ดร.ปณิธาน ศรีนวลดี กรรมการ ภายนอกมหาวิทยาลัย ที่กรุณาให้คำแนะนำ พร้อมทั้งแนวความคิดรวมไปถึงคำติชมต่างๆที่ทำให้ วิทยานิพนธ์ฉบับนี้มีความสมบูรณ์

ขอบพระคุณอาจารย์ทุกท่านในภาควิชาวิศวกรรมสำรวจ ที่ให้ความรู้ในการศึกษา ปลูกฝังการทำงานทางด้านการสำรวจและงานวิจัย รวมไปถึงขอบคุณมิตรภาพดี ๆ จาก พี่ ๆ น้อง ๆ นิสิตภาควิชาวิศวกรรมสำรวจทุกคนที่ คอยช่วยเหลือและคำปรึกษามาโดยตลอด

ขอบพระคุณพี่สุคณิศร์ สกาวรัตนานนท์ ที่ได้ให้ความช่วยเหลือในด้านแนวคิด ความรู้ รวมถึงคำปรึกษาต่างๆที่มีประโยชน์ในการทำวิจัย จนสามารถทำงานวิจัยครั้งนี้ได้สำเร็จ

ขอบพระคุณ บิดา มารดา รวมถึงครอบครัว ที่สนับสนุนทั้งแรงกาย และกำลังใจซึ่งทำให้ ผู้วิจัยสามารถทำงานวิจัยครั้งนี้สำเร็จด้วยดี

สารบัญ

N N
บทคัดย่อภาษาไทยง
บทคัดย่อภาษาอังกฤษจ
กิตติกรรมประกาศฉ
สารบัญช
สารบัญรูปภาพฌ
สารบัญตารางฐ
บทที่ 1 บทนำ1
1.1 ความเป็นมาและความสำคัญ1
1.2 วัตถุประสงค์2
1.3 ขอบเขตการวิจัย2
1.3.1 ขอบเขตเนื้อหาที่ศึกษา2
1.4 ขั้นตอนดำเนินการวิจัย
1.5 ประโยชน์ที่คาดว่าจะได้รับ
บทที่ 2 แนวคิดและทฤษฏีที่เกี่ยวข้องการการการการการการการการการการการการการก
2.1 Solar Maximum
2.2 Ionosphere Scintillation8
2.3 TEC
2.4 Slant and Vertical TEC11
2.5 S4 index12
2.6 งานวิจัยที่เกี่ยวข้อง14
บทที่ 3 วิธีการดำเนินงานวิจัย17
3.1 การดำเนินงานวิจัย17

หน้า

บทที่ 4 22	
บทที่ 5 อภิปรายผล สรุปผลการวิจัย และข้อเสนอแนะ	48
5.1 อภิปรายผล	48
5.2 สรุปผลการวิจัย	
5.3 ข้อเสนอแนะ	
	51
รายการอ้างอิง	
ประวัติผู้เขียนวิทยานิพนธ์	
จุฬาลงกรณ์มหาวิทย	
	ERSITY

หน้า

สารบัญรูปภาพ

เรื่อง	หน้า
รูปที่ 1. 1 สถานี CUSV ที่ ดาดฟ้าตึก4 คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย	.3
รูปที่ 2. 1 แสดงปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์	.7
รูปที่ 2. 2 แสดงพื้นที่และความถี่ในการเกิดปรากฏการณ์กระเจิงของสัญญาณดาวเทียม	.8
รูปที่ 2. 3 แสดงผลกระทบของเครื่องรับสัญญาณจีพีเอส ที่เกิดขึ้นจาก1	.0
รูปที่ 2. 4 แสดงผลของกระเจิงของสัญญาณดาวเทียม ต่อแอมพลิจูดของสัญญาณดาวเทียม	
GPS1	.1
รูปที่ 2. 5 การเปรียบเทียบค่าเฉลี่ยของค่าปริมาณอิเล็กตรอนสุทธิ1	.4
รูปที่ 2. 6 ค่าความผิดพลาดในการระบุตำแหน่งของเครื่องรับสัญญาณจีพีเอส1	.6
รูปที่ 3. 1 รูปเครื่องรับ Septentrio1	.8
รูปที่ 3. 2 แสดงตัวอย่างข้อมูล SBF file ที่ได้จากเครื่องรับ Septentrio1	.8
รูปที่ 3. 3 ภาพแสดงผังวิธีดำเนินงานวิจัย2	21
รูปที่ 4. 1 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด	
Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN3 คือดวงที่	
เกิด Ionosphere scintillation	22
รูปที่ 4. 2 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด	
Ionosphere scintillation จำนวน 5 ดวง2	22
รูปที่ 4. 3 แสดงตำแหน่งของดาวเทียม ของวันที่ 5 เมษายน 20132	25
รูปที่ 4. 4 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด	
Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN19 คือดวงห์	7
เกิด Ionosphere scintillation2	26
รูปที่ 4. 5 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด	
Ionosphere scintillation จำนวน 5 ดวง2	26
รูปที่ 4. 6 แสดงตำแหน่งของดาวเทียม ของวันที่ 8 เมษายน 2013	51

รูปที่ 4. 7 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด
Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN19 คือดวงที่
เกิด Ionosphere scintillation32
รูปที่ 4. 8 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด
Ionosphere scintillation จำนวน 5 ดวง32
รูปที่ 4. 9 แสดงตำแหน่งของดาวเทียม ของวันที่ 9 เมษายน 2013
รูปที่ 4. 10 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 2 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยรวมดาวเทียมที่เกิด Ionosphere
scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA
รูปที่ 4. 11 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 2 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere
scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA
รูปที่ 4. 12 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere
scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA40
รูปที่ 4. 13 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere
scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA40
รูปที่ 4. 14 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere
scintillation 1 ดวง41
รูปที่ 4. 15 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere
scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA41
รูปที่ 4. 16 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 5 เมษายน 2013 จาก
การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere
scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 17 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 5 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA42
รูปที่ 4. 18 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 6 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA43
รูปที่ 4. 19 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 6 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA43
รูปที่ 4. 20 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 8 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA44
รูปที่ 4. 21 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 8 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA44
รูปที่ 4. 22 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 9 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA
รูปที่ 4. 23 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 9 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA45
รูปที่ 4. 24 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 10 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA46
รูปที่ 4. 25 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 10 เมษายน 2013 จาก การประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดล้างลิงที่ได้จาก PANDA

รูป ก. 1 แสดงการตั้งค่า observation rate Elevation mask และช่วงเวลาการประมวลผล55
รูป ก. 2 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบ SPP โดยการไม่ใช้ PPP file56
รูป ก. 3 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบใช้ code56
รูป ก. 4 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบไม่นำเอา Glonass มาคำนวณ57
รูป ข. 1 แสดงการดาว์นโหลดข้อมูลสถานี CUSV จาก IGS60
รูป ข. 2 แสดงการไฟล์ที่ต้องทำการดาว์นโหลดข้อมูลสถานี CUSV จาก IGS60
รูป ข. 3 แสดงการเข้าสู่หน้าจอ command line61
รูป ข. 4 แสดงการรันคำสั่ง crx2rnx
รูป ข. 5 แสดงผลการรันคำสั่ง crx2rnx
รูป ข. 6 แสดงการเข้าสู่หน้าจอ command line63
รูป ข. 7 แสดงการรันคำสั่ง sbf2ismr
รูป ข. 8 แสดงผลการรันคำสั่ง sbf2ismr

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สารบัญตาราง

เรื่อง หน้	า
ตารางที่ 3.2 แสดงตัวอย่างค่า S4 index เฉลี่ยของดาวเทียมแต่ละดวงของสถานีฐาน CUSV	
ในช่วงที่เกิดช่วงที่เกิด Scintilation ณ วันที่ 2 เมษายน 2013 ที่ได้จาก RxTools19	
ตารางที่ 3.3 แสดงค่าผลการประมวลผลหาค่าพิกัดเฉลี่ยของสถานีฐาน CUSV ณ วันที่ 1-10	
ตารางที่ 4.1 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด	
Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN3 คือดวงที่	
เกิด Ionosphere scintillation	
ตารางที่ 4, 2 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียนดางที่ไปเกิด	
$\frac{1}{2} \log \log \log 2 \log \log$	
ตารางท 4. 3 แสดงคา IEC ของวนท 8 เมษายน 2013 เดยประกอบดวยดาวเทยมดวงทเกด	
Ionosphere scintillation 1 ดวง และดวงทเมเกดจานวน 4 ดวง PRN19 คอดวง	
พิเศาต ionosphere scintillation28	
ตารางที่ 4. 4 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด	
lonosphere scintillation จำนวน 5 ดวง	
ตารางที่ 4. 5 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด	
Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN19 คือดวง	
ที่เกิด Ionosphere scintillation34	
ตารางที่ 4. 6 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด	
Ionosphere scintillation จำนวน 5 ดวง36	
ตารางที่ 4. 7 แสดงค่าต่างพิกัดจากพิกัดอ้างอิงที่ได้จากการประมวลผลในกรณีที่รวมเอา	
ดาวเทียมที่เกิด Ionosphere scintillation 1ดวง และในกรณีที่ใช้ดาวเทียมปกติ	
เพียงอย่างเดียว	
ตารางที่ 5_1 แสดงค่าคาาบคลาดเคลื่อบที่เพิ่มขึ้บจากพิกัดอ้างอิงที่ได้จากการประบาลผลใบกรกี	
ที่รวมเอาดาวเทียมที่เกิด Ionosphere scintillation 1ดวง	

ตาราง ค. 1 แสดงค่า Ionospheric Scintilation Monitor Record ได้จาก sbf2ismr	
Program ของวันที่ 5 เมษายน 2013 โดยดาวเทียมดวงที่3 คือดวงที่เกิด Ionosphere	
scintillation60	5

CHULALONGKORN UNIVERSITY

บทที่ 1 บทนำ

1.1 ความเป็นมาและความสำคัญ

ในปัจจุบันการรังวัดตำแหน่งด้วยเครื่องรับสัญญาณ GNSS สัญญาณจะเดินทางผ่านชั้น บรรยากาศ Ionosphere ซึ่งทำให้เกิดค่าคลาดเคลื่อนขนาดใหญ่ในขั้นตอนการประมวลผล เมื่อ สัญญาณ GNSS เดินทางผ่านจะทำให้เกิดความล่าข้าของสัญญาณทำให้ระยะทางที่วัดได้ยาวกว่าความ เป็นจริง มีสาเหตุมาจากสัญญาณ GNSS เดินทางผ่านชั้นบรรยากาศ Ionosphere ที่มีการ เปลี่ยนแปลงความหนาแน่นของจำนวน Electron ซึ่งสามารถวัดได้จากค่าปริมาณรวมของ อิเล็กตรอนอิสระในชั้นบรรยากาศ Total Electron Content (TEC) โดยจะกระทบกับข้อมูลซูโด เรนจ์และข้อมูลเฟสคลื่นส่งทำให้ข้อมูลที่วัดได้เกิดความผิดพลาด ทำให้ค่าพิกัดที่ได้จากการรังวัดมี ความผิดพลาด และทำให้เกิดสภาวะการหลุดของสัญญาณดาวเทียม บางช่วงเวลาจะเกิดการ เปลี่ยนแปลงของปริมาณอิเล็กตรอนสุทธิ (TEC) อย่างรวดเร็วซึ่งมีสาเหตุมาจากปรากฏการณ์วัฏจักร สูงสุดของดวงอาทิตย์(Solar Maximum) ทำให้ปริมาณอิเล็กตรอนสุทธิเกิดความแปรปรวนสูงทำให้ ยากในการขจัดค่าความคลาดเคลื่อนชนิดนี้ในขั้นตอนการประมวลผล โดยเรียกปรากฏการณ์นี้ว่า สภาวะการกระเจิงของสัญญาณดาวเทียม GPS ในชั้นบรรยากาศ Ionosphere (Ionosphere Scintillation)

Ionosphere Scintillation เกิดจากปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์ เป็น ปรากฏการณ์ที่เกิดขึ้นทุกๆ11ปี ซึ่งปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์จะทำการรบกวน อิเล็กตรอนอิสระที่อยู่บนชั้นบรรยากาศ Ionosphere มากกว่าช่วงเวลาปกติ เมื่อสัญญาณ GNSS เดิน ทางผ่านชั้นบรรยากาศ Ionosphere ขณะที่เกิดปรากฏการณ์ Ionosphere Scintillation จะทำให้ เกิดการกระเจิงของสัญญาณดาวเทียม ซึ่งเป็นสาเหตุที่ทำให้เกิดความล่าช้าในการรับสัญญาณ และใน กรณีที่ความแรงของสัญญาณต่ำในบางดาวเทียมขณะทำการรับสัญญาณจะทำให้เกิดการหลุดของ สัญญาณดาวเทียม (Loss of lock) จะทำให้ได้จำนวนดาวเทียมขณะรับสัญญาณลดลงและอาจมีผล รุนแรงถึงขั้นไม่สามารถรับสัญญาณดาวเทียมได้เลย ซึ่งจะส่งผลให้เกิดความผิดพลาดทางตำแหน่งมาก ขึ้น (Kintner.et.al, 2007) โดยเฉพาะอย่างยิ่งในการประยุกต์ใช้ที่การหาตำแหน่งมีความสำคัญ เช่น บนเครื่องบินที่ต้องการทราบตำแหน่งของเครื่องบินตลอดเวลาเพื่อความปลอดภัย ซึ่งเครื่องบินส่วน ใหญ่รับสัญญาณดาวเทียมได้แค่ในรูปแบบ psuedorange

ในปัจจุบันได้มีการศึกษาปรากฏการณ์ Ionosphere Scintillation พบว่าโดยส่วนใหญ่แล้วจะ เกิดที่บริเวณขั้วโลกเหนือ ขั้วโลกใต้ และบริเวณเส้นศูนย์สูตร ซึ่งประเทศไทยได้ตั้งอยู่ในบริเวณใกล้กับ เส้นศูนย์สูตร ทำให้ได้รับอิทธิพลจากการเกิดปรากฏการณ์ Ionosphere Scintillation ซึ่ง ปรากฏการณ์ Ionosphere Scintillation สามารถอธิบายได้ด้วยตัวแปร S4 index, phase scintillation index, Rate of TEC Index (ROTI), Total Electron Content (TEC), Signal to Noise ratio (S/N)

ในการที่จะศึกษาและติดตามปรากฏการณ์นี้ จากความร่วมมือของจุฬาลงกรณ์มหาวิทยาลัย, สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง (KMITL) และสำนักงานสำรวจอวกาศแห่ง ประเทศญี่ปุ่น (JAXA) เครื่องตรวจจับการกระเจิงของสัญญาณดาวเทียม GPS ในชั้นบรรยากาศ Septentrio ได้ถูกติดตั้งในประเทศไทยสามเครื่อง (สองเครื่องติดตั้งในกรุงเทพมหานคร ส่วนอีกหนึ่ง เครื่องติดตั้งที่จังหวัดชุมพร) ซึ่งในงานวิจัยนี้ใช้ข้อมูลสัญญาณดาวเทียม GNSS ที่ถูกรบกวนด้วย ปรากฏการณ์ lonosphere scintillation จากสถานีจุฬาลงกรณ์มหาวิทยาลัย โดยทำการวิเคราะห์ค่า S4 index จากสัญญาณดาวเทียมรูปแบบ psuedorange โดยใช้โปรแกรม Rxtools ในการ ประมวลผลเพื่อคัดเลือกสัญญาณดาวเทียมที่เกิดการกระเจิงของสัญญาณที่เกิดการกระเจิงของสัญญาณ ดาวเทียม GNSS รวมไปถึงการเปรียบเทียบค่าความถูกต้องเชิงตำแหน่งที่ได้จากการประมวลผลด้วย ข้อมูลที่ได้จากสัญญาณดาวเทียมที่ถูกรบกวนด้วยปรากฏการณ์ lonosphere scintillation ร่วมกับ ข้อมูลดาวเทียมที่ได้จากสัญญาณดาวเทียมปกติ

1.2 วัตถุประสงค์

เพื่อให้เห็นถึงคุณสมบัติและพฤติกรรมที่เปลี่ยนแปลงไปของค่า TEC ในช่วงเวลาปกติและช่วงที่ เกิดปรากฏการณ์ Ionosphere scintillation รวมไปถึงการนำค่า TEC มาวิเคราะห์และคัดเลือก สัญญาณดาวเทียมที่ใช้ในการคำนวณตำแหน่งพิกัด

1.3 ขอบเขตการวิจัย

1.3.1 ขอบเขตเนื้อหาที่ศึกษา

งานวิจัยนี้มุ่งเน้นการศึกษาวิเคราะห์ค่า TEC ระหว่างสัญญาณที่ดี และสัญญาณที่เกิดการ กระเจิงของสัญญาณดาวเทียม GNSS อันเกิดจากปรากฏการณ์ Ionosphere scintillation โดย ใช้ค่าพารามิเตอร์ที่เกี่ยวข้องกับปรากฏการณ์ คือ S4 index มาทำการศึกษาและเปรียบเทียบค่า ความถูกต้องเชิงตำแหน่งที่ได้จากการประมวลผลของข้อมูลสัญญาณดาวเทียมที่ถูกรบกวนด้วย ปรากฏการณ์ Ionosphere scintillation ร่วมกับข้อมูลดาวเทียมที่มีสัญญาณดาวเทียมปกติ โดยชุดดาวเทียมที่ใช้ในการทดลอง จะมีอย่างน้อย 4 ดวงที่เหมือนกันเพื่อให้ค่า DOP ใกล้เคียง กัน โดยกำหนดค่า Elevation Marks 10 – 20 องศา ตามจำนวนชุดดาวเทียมที่ใช้ ณ ช่วงเวลา ที่ทำการทดลองเพื่อควบคุมความคลาดเคลื่อนที่อาจจะเกิดจาก Multipath และสัญญาณ ดาวเทียมที่มาจากมุมสูงดาวเทียมต่ำ

1.3.2 ขอบเขตพื้นที่การศึกษา

ในงานวิจัยนี้ทำการรับสัญญาณ GNSS ที่ดาดฟ้าตึก4 คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ซึ่งเป็นหนึ่งในสถานี IGS (International GNSS Service)

รูปที่ 1. 1 สถานี CUSV ที่ ดาดฟ้าตึก4 คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

1.3.3 ข้อมูลที่ใช้ในการวิจัย

ข้อมูล GPS ในช่วงเดือนเมษายน ของปี 2013 เนื่องจากเป็นปีที่เกิดปรากฏการณ์วัฏจักร สูงสุดของดวงอาทิตย์ (Solar Maximum) นำข้อมูลมาจากสถานีรังวัดสัญญาณดาวเทียม แบบต่อเนื่อง ของ IGS ตั้งอยู่ที่ดาดฟ้าของตึก 4 คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย (CUSV) ระยะเวลาของข้อมูลที่นำมาใช้จะเลือกมาจากวันที่มีค่า S₄ Indax สูงกว่า0.5ขึ้นไปเป็น ระยะเวลาติดต่อกันหลายepoch โดยจากข้อมูลที่นำมาวิเคราะห์จะได้พบว่ามีจำนวน 7 วันที่มี ค่า S₄ Indax สูงกว่า0.5 ติดต่อกันหลาย epoch ดังนี้ คือวันที่ 2,3,5,6,8,9,10 เมษายน 2013 จะใช้ข้อมูลจากเครื่องรับสัญญาณ รุ่น Septentrio ซึ่งสามารถรับสัญญาณได้เพียง GPS ระบบ เดียว โดยใช้จานรับสัญญาณ Trimble Zephyr Geodetic (TRM41249.00 SCIT) รับสัญญาณ ตลอด 24 ชั่วโมง บันทึก ข้อมูลทุก 0.2 วินาที นามสกุลไฟล์ที่ได้คือ SBF

	-
เขต	ปทุมวัน
จังหวัด	กรุงเทพมหานคร
ประเทศ	ไทย
Approximate Position (ITRF)	1122
ค่าพิกัดแกน X (m)	-1132913.7678
ค่าพิกัดแกน Y (m)	6092530.5657
ค่าพิกัดแกน Z (m)	1504633.5192
Latitude (N is +)	+134409.29
Longitude (E is +)	+1003202.07
Elevation (m,ellips.)	76.06

ตารางที่	1. 1	รายละเอียด	สถานที่ตั้งเ	.ครื่องรับ	เส้ญญาณ
	1		1	5	

เสารับสัญญาณ	TRM41249.00 NONE
หมายเลขเสารับสัญญาณ	60078678
ตำแหน่งอ้างอิงของเสารับ	BAM
สัญญาณ	
Radome Serial Number	N/A
Antenna Cable Type	TIMES LMR 400
Antenna Cable Length	30 m
วัน เดือน ปี ที่ติดตั้ง	2008-05-12T00:00Z
วัน เดือน ปี ที่รื้อถอน	2015-06-15T00:00Z
ข้อมูลเพิ่มเติม	cable is in conduit

ตารางที่	1	2	รายละเอียดเสารับสัญญาญ
	1.	Ζ	า เดยอะคดผเย เว่าอเท็เก็ เห

1.3.4 โปรแกรมที่ใช้ในการวิจัย

- โปรแกรม RxTools version 1.10.2rc1 ในการวิเคราะห์ข้อมูลช่วงที่เกิด ปรากฏการณ์ Ionosphere scintillation

- โปรแกรม Inertial Explorer version 8.70 ในการประมวลผลด้วยข้อมูลค่ารัง วัดซูโดเรนจ์ (Pseudo range) ในช่วงที่เกิด Ionosphere scintillation

- โปรแกรม Position and Navigation Data Analyst (PANDA) ที่พัฒนาโดย ศูนย์วิจัย GNSS มหาวิทยาลัยวู่ฮั่นเพื่อหาตำแหน่งจุดเดี่ยวความละเอียดสูง ใช้เป็นค่าพิกัดอ้างอิงในการ เปรียบเทียบผลที่ได้จากการโปรแกรม Inertial Explorer

1.4 ขั้นตอนดำเนินการวิจัย

- 1.4.1 ศึกษางานวิจัยและทฤษฏีที่เกี่ยวข้อง เช่น S4 index, Phase scintillation index, ROTI, Signal to Noise ratio (S/N)
- 1.4.2 รวบรวมข้อมูลที่ใช้ประมวลผลทั้งหมดในการทำงานจากเครื่องรับสัญญาณจากดาวเทียม GNSS Septentrio แล้วใช้โปรแกรม Rxtools ในการเลือกข้อมูลในช่วงที่เกิดปรากฏการณ์ Ionosphere Scintillation และข้อมูลในช่วงที่ไม่เกิดปรากฏการณ์
- 1.4.3 นำข้อมูลทั้งสองช่วงมาทำการประมวลผลข้อมูล เปรียบเทียบค่า TEC ในช่วงเวลาปกติกับ ช่วงที่เกิดปรากฏการณ์ Ionosphere scintillation
- 1.4.4 แบ่งข้อมูลออกเป็นสองชุด โดยชุดแรกนำค่าที่ได้จากดาวเทียมดวงที่ได้รับผลกระทบจาก การเกิดปรากฏการณ์ Ionosphere Scintillation มาทำการตัดข้อมูล และชุดที่สองจะไม่ ทำการตัดดาวเทียมดวงที่ได้รับผลกระทบจากการเกิดปรากฏการณ์ออก แต่ละชุด ดาวเทียมจะมีดาวเทียมที่เหมือนกันอย่างน้อย 4 ดวง
- 1.4.5 คำนวณค่าความคลาดเคลื่อนของพิกัดที่ได้จากการประมวลผล
- 1.4.6 วิเคราะห์ค่าพิกัดที่ใช้อ้างอิงจากสถานี CUSV
- 1.4.7 นำข้อมูลที่ได้จากการประมวลผลในขั้นตอนที่
 1.4.6 มาเปรียบเทียบข้อมูลที่ได้จากการ
 วิเคราะห์ความคลาดเคลื่อนของค่าพิกัดที่ใช้อ้างอิงจากสถานี CUSV
- 1.4.8 วิเคราะห์ข้อมูล สรุปผลที่ได้ และจัดทำรูปเล่มวิทยานิพนธ์
- 1.4.9 นำเสนองานวิจัย

1.5 ประโยชน์ที่คาดว่าจะได้รับ

สามารถนำค่า TEC ในช่วงเวลาปกติและช่วงที่เกิดปรากฏการณ์ Ionosphere scintillation มา วิเคราะห์และคัดเลือกสัญญาณดาวเทียมที่ใช้ในการคำนวณตำแหน่งพิกัดเพื่อคำนวณหาตำแหน่งที่ดี ขึ้น

บทที่ 2 แนวคิดและทฤษฏีที่เกี่ยวข้อง

2.1 Solar Maximum

ปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์ (Solar Maximum) เป็นปรากฏการณ์ที่มีผลกระทบ ต่อการส่งสัญญาณดาวเทียม GPS ซึ่งปรากฏการณ์นี้จะทำให้เกิดพายุแม่เหล็กไฟฟ้าไปรบกวน สัญญาณดาวเทียมที่ส่งผ่านในชั้นบรรยากาศ Ionosphere เกิด Ionosphere scintillation ของ สัญญาณดาวเทียมมากกว่าช่วงเวลาปกติ ซึ่งวัฏจักรสูงสุดของดวงอาทิตย์นั้น 11 ปีจะเกิดขึ้นหนึ่งครั้ง ซึ่งตรงกับช่วงปี 2013-2014 (Parkinson & Spiker, 1996)

รูปที่ 2. 1 แสดงปรากฏการณ์วัฏจักรสูงสุดของดวงอาทิตย์ (ที่มา:http://wired.jp/2013/09/18/startup-wants-your-ipad-to-be-a-3d-scanner-surveying-device-and-more/)

2.2 Ionosphere Scintillation

Ionosphere Scintillation คือปรากฏการณ์ที่สัญญาณดาวเทียมเกิดความผันผวนจากการเดิน ทางผ่านชั้นบรรยากาศ Ionosphere ในพื้นที่ที่มีความหนาแน่นของอิเล็กตรอนสูง ซึ่งทำให้เครื่องรับ สัญญาณดาวเทียมทั้งแบบความถี่เดียวและสองความถี่ในพื้นที่เส้นศูนย์สูตร ไม่สามารถรับสัญญาณ ดาวเทียมที่มีการผันผวนของแอมพลิจูดและเฟสได้ หรือเรียกว่าสภาวะสัญญาณดาวเทียมหลุด (loss of lock) (Parkinson & Spiker, 1996)

โดยปกติ Ionosphere Scintillation จะเกิดขึ้นบ่อยครั้งในบริเวณแถบเส้นศูนย์สูตร(±10° geomagnetic latitude), บริเวณรอบๆขั้วโลก(65° - 75° geomagnetic latitude) และบริเวณขั้ว โลก(>75° geomagnetic latitude) ดังรูปที่ 2.2 และจะบ่อยมากขึ้นในช่วงที่เกิดเหตุการณ์ Solar Maximum (Shaw & Ward, 2010)

รูปที่ 2. 2 แสดงพื้นที่และความถี่ในการเกิดปรากฏการณ์กระเจิงของสัญญาณดาวเทียม (*ที่มา:http://www.insideGPS.com/node/1579)*

ขั้นบรรยากาศ Ionosphere มีส่วนประกอบของพลาสมา ซึ่งส่งผลกระทบทำให้สัญญาณการ ส่งผ่านทางคลื่นวิทยุมีการเปลี่ยนแปลงไป ผลกระทบดังกล่าว ประกอบไปด้วย

ส่งผลให้กลุ่มคลื่นมีความเร็วลดลง เมื่อเปรียบเทียบกับความเร็วในชั้นบรรยากาศอื่น

เช่น

$$V_{g} = c \sqrt{1 - \frac{\omega^{2}_{pe}}{\omega^{2}}}$$
(1)

โดยที่

$$\omega_{\rm pe} = \sqrt{\frac{n_{\rm e}q^2}{\epsilon m_{\rm e}}} \tag{2}$$

เมื่อ

V_g คือ ความเร็วของคลื่น

c คือ ความเร็วแสง (3×10⁸ m/s)

 $\omega_{
m pe}$ คือ ความถี่ของพลาสมา (ความถี่ของพลาสมา โดยปกติมีค่าอยู่ ระหว่าง 1-10 MHz)

n_e คือ ความหนาแน่นของประจุไฟฟ้า

 ${f \epsilon}m_e$ คือ ค่าคงที่ไดอิเลกทริคของสุญญากาศ

การลดลงของความเร็วในการแพร่กระจายของสัญญาณ ทำให้เกิดความล่าช้าในการเดินทางของ สัญญาณที่ตัวรับสัญญาณทำให้เกิดความคลาดเคลื่อนทางตำแหน่ง

การเพิ่มขึ้นของอัตราความเร็ว เมื่อเปรียบเทียบกับอัตราความเร็วในชั้นบรรยากาศอื่น เช่น

CHULALONGKO
$$V_{\varphi} = \frac{c}{\sqrt{1 - \frac{\omega^2 pe}{\omega^2}}}$$
 (3)

โดยที่

 $V_{oldsymbol{arphi}}$ คือ ความเร็วของเฟส

C คือ ความเร็วแสง (3×10⁸ m/s)

ω_{pe} คือ ความถี่ของพลาสมา (ความถี่ของพลาสมา โดยปกติมีค่าอยู่ระหว่าง 1-10 MH)

ω คือ ความถี่เชิงมุม (rad/s)

 ความผิดปกติที่เกิดจากความหนาแน่นของพลาสมา ส่งผลให้สัญญาณเกิดการ กระจายของสัญญาณ ทำให้เครื่องรับไม่สามารถรับข้อมูลที่มีประสิทธิภาพได้ เมื่อความ

ผิดปกติทั้งสามวิธี ที่ปรากฏในชั้นบรรยากาศ ส่งผลให้การแสดงสัญญาณเปลี่ยนแปลง ตลอดเวลา ดังแสดงในรูปที่ 2.3

รูปที่ 2. 3 แสดงผลกระทบของเครื่องรับสัญญาณจีพีเอส ที่เกิดขึ้นจาก *ขั้นบรรยากาศไอโอโนสเฟียร์ เมื่อมีการแพร่กระจายของลัญญาณทั่วชั้นบรรยากาศ*อันเกิดจากความ หนาแน่นของพลาสมา (ที่มา: (Abiyot & Lassi, 2013)

2.3 TEC

ปริมาณอิเล็กตรอนสุทธิ (Total electron Content : TEC) เป็นตัวแปรที่สำคัญที่ก่อให้เกิด ผลกระทบต่อสัญญาณดาวเทียมที่ทะลุผ่านขั้นบรรยากาศ Ionosphere ตามแนวเส้นทาง โดยทำให้ คลื่นสัญญาณดาวเทียมเดินทางด้วยความเร็วต่างจากความเร็วแสง มีผลให้ซูโดเรนจ์เดินทางได้ช้าลง ระยะทางที่วัดได้จึงยาวกว่าที่ควรจะเป็น ในทางกลับกันเฟสของคลื่นส่งจะเดินทางได้เร็วขึ้น ดังนั้น ระยะทางจึงสั้นกว่าที่ควรจะเป็น โดยค่าคลาดเคลื่อนจะขึ้นอยู่กับความยาวของเส้นทางที่สัญญาณนั้น เดินทางผ่านชั้นบรรยากาศ และยิ่งค่า TEC มากขึ้น สัญญาณดาวเทียมก็จะเดินทางล่าซ้ายิ่งขึ้น Ionosphere ปริมาณอิเล็กตรอน 1 x 10¹⁶ อิเล็กตรอนต่อตารางเมตร เรียกว่า TEC unit โดยปริมาณ อิเล็กตรอนตามแนวเส้นทางอยู่ระหว่าง 10¹⁶ ถึง 10¹⁹ ต่อตารางเมตร (Parkinson & Spiker, 1996) โดยการวัด TEC ทำได้โดยวิธีที่หนึ่งการวัดค่าปริมาณอิเล็กตรอนสุทธิโดยอาศัยการวัดซูโดเรนจ์ (Pseudo range measurement) และวิธีที่สองการวัดค่าปริมาณอิเล็กตรอนสุทธิโดยอาศัยเฟสของ คลื่นส่ง (Carrier phase measurement) ค่าปริมาณอิเล็กตรอนสุทธิ คือค่าของปริมาณอิเล็กตรอนต่อพื้นที่หน้าตัดเท่ากับ 1 ตาราง เมตร ระหว่างจุดสองจุดที่ทำการสังเกต โดยสามารถคำนวณค่าปริมาณอิเล็กตรอนสุทธิได้จาก

$$\text{TEC} = \int_{s}^{R} N_{e} ds$$

โดยที่

ค่าปริมาณอิเล็กตรอนสุทธิที่ได้จากการคำนวณจะมีหน่วยเป็นหน่วยค่าปริมาณ อิเล็กตรอนสุทธิ (TEC Unit : TECU) โดย 1 TECU = 10¹⁶ electrons/m²)

N_e คือ ค่าความหนาแน่นอิเล็กตรอน

S คือ ระยะทางระหว่างดาวเทียม GPS กับเครื่องรับสัญญาณ GPS

HULALONGKORN UNIVERSITY

รูปที่ 2. 4 แสดงผลของกระเจิงของสัญญาณดาวเทียม ต่อแอมพลิจูดของสัญญาณดาวเทียม GPS และค่า TEC ที่วัดได้ (ที่มา: (Abiyot & Lassi, 2013)

2.4 Slant and Vertical TEC

TEC สามารถวัดได้จากค่าอิเล็กตรอนอิสระที่อยู่ในชั้นบรรยากาศไอโอโนสเฟียร์ ตลอดตามแนว ระหว่างดาวเทียมกับเครื่องรับ ค่าดังกล่าวสามารถวัดเป็นปริมาณเรียกได้ว่า Slant TEC **(TEC**_{sl}) โดยสามารถคิดได้จาก ค่าของ TEC ที่อยู่ในมุมความสูงที่แตกต่างกัน Slant TEC ต้องนำไปเปลี่ยนเป็น Vertical TEC **(TEC**_v**)** ซึ่งสามารถนำมาแปลงเป็นแบบจำลองชั้นของไอโอโนสเฟียร์ (MSLM) โดย Vertical TEC สามารถหาได้จาก Slant TEC ดังนี้ (GPStation6 GISTM Receiver TEC Estimation and Calibration, 2015)

$$M(\epsilon) = \frac{TEC_v}{TEC_{sl}} = \left[1 - \left(\frac{R_e Cos(\epsilon)}{R_e + h_{sp}}\right)^2\right]^{\frac{1}{2}}$$
(5)

โดยที่ R_e คือ รัศมีของโลก

 $\mathbf{h_{sp}}$ คือ ความสูงของชั้นไอโอโนสเฟียร์ (โดยมากจะอยู่ที่350-450 กิโลเมตร) โดยส่วนมากจะกำหนดค่า $\mathbf{R_e} \ \mathbf{h_{sp}}$ จะตั้งที่6371 และ450 กิโลเมตร ตามลำดับ

2.5 S4 index

S₄ index ซึ่งเป็นดัชนีชี้วัดสำหรับแสดงปริมาณ Ionosphere scintillation ของสัญญาณ ดาวเทียม GPS แบบ psuedorange ในชั้น Ionosphere ยิ่งมีค่าสูงยิ่งแสดงถึงค่า Ionosphere scintillation ที่สูงตามไปด้วย โดยมีค่าระหว่าง 0-1 ไม่มีหน่วย ค่าที่อยู่ระหว่าง 0-0.5 จะถือว่าเป็น การเกิด scintillation ในระดับที่ไม่รุนแรง ค่าที่มากกว่า 0.5 จะถือว่าเป็นการเกิด scintillation ใน ระดับที่รุนแรง (Petrovski & Tsujii., 2012) โดยสามารถคำนวณได้จากความเข้มข้นของสัญญาณดัง สมการที่ 4

$$S_4 = \sqrt{\frac{\langle P^2 \rangle - \langle P \rangle^2}{\langle P \rangle^2}}$$
(7)

โดยที่

จุฬาลงกรณ์มหาวิทยาลัย

คื

 ${f S}_4$ คือ ดัชนีชี้วัดสำหรับแสดงค่า Ionosphere scintillation ของสัญญาณดาวเทียม ในชั้น Ionosphere

$$\langle {
m P}
angle = rac{1}{N} \sum_{0}^{N-1} {
m P}$$
 คือ ค่าเฉลี่ยความเข้มข้นสัญญาณ ณ ช่วงเวลาหนึ่ง

 $\langle {\rm P}^2 \rangle = {1 \over N} \sum_0^{{\rm N}-1} {\rm P}^2$ ช่วงเวลาหนึ่ง

$$P = 10^{\frac{SNR}{10}}$$
 คือ ค่าความ
SNR คือ อัตราส่ว

คือ ค่าความเข้มข้นของสัญญาณหน่วยเป็น Watt คือ อัตราส่วนระหว่างสัญญาณที่ดีต่อสัญญาณรบกวน ณ

2.5.1 การคำนวณ S₄ Index

ค่า S4 ในคอลัมน์ 8, 33 และ 47 คือค่าส่วนเบี่ยงเบนมาตรฐานของความแรงของสัญญาณที่ มีความถี่ 50 เฮิรตซ์ใน 1 นาที สำหรับค่าแก้ S4 อยู่ในคอลัมน์ที่ 8, 34 และ 48 ใช้สำหรับแก้ค่า คลาดเคลื่อนที่เกิดจากสัญญาณรบกวนจากคลื่นความร้อน ทั้งนี้ค่า S4 ที่ได้ถูกรบกวนด้วยคลื่น ้ความร้อน จึงต้องนำเอามาใส่สมการเพื่อกำจัดออกไป สามารถคำนวณได้จากสมการดังนี้

$$X = S4_{total}^2 - S4_{correction}^2 \tag{8}$$

$$S4_{corrected}^{2} = \begin{cases} \sqrt{X} \text{ if } X > 0\\ 0 \text{ if } X \le 0 \end{cases}$$
(9)

WN TOW PRN S4 Index

ซึ่งจากนั้นจะได้ค่า S4 Index ที่นำมาใช้ในการวิจัยดังที่แสดงในตารางที่ 2.1

1734	479040	3	0.591
1734	479100	3	0.695
1734	479160	3	0.609
1734	479220	3	0.605
1734	479340	3	0.565
1734	479400	3	0.791
1734	479460	3	0.529
1734	479520	3	0.584
1734	479580	าวิทยวลัย	0.593
1734	479760		0.590
1734	480060	3	0.979
1734	480120	3	0.950
1734	480240	3	0.967
1734	480300	3	0.721
1734	480360	3	0.779
1734	480420	3	0.566
1734	480480	3	0.854
1734	480540	3	0.893

ตารางที่ 2. 1 แสดงค่า S₄ Index ที่ได้จากการคำนวณ ของวันที่ 5 เมษายน 2013 โดยดาวเทียมดวง ที่3 คือดวงที่เกิด Ionosphere scintillation

2.6 งานวิจัยที่เกี่ยวข้อง

 2.6.1 การวิเคราะห์ค่าปริมาณอิเล็กตรอนสุทธิจากสัญญาณจีพีเอสที่สถานี กรุงเทพมหานคร ในปี 2557 (อธิวัฒน์ เฉียบแหลม, ประเสริฐ เคนพันค้อ, พรชัย ทรัพย์นิธิ, 2557)

ได้มีการศึกษาเกี่ยวกับค่าปริมาณอิเล็กตรอนสุทธิในชั้นบรรยากาศไอโอโนสเฟียร์มี ความสัมพันธ์ต่อค่าหน่วงเวลาในสัญญาณดาวเทียม ได้ทำการวิเคราะห์ค่าปริมาณอิเล็กตรอนสุทธิ ที่สถานีกรุงเทพมหานคร โดยทำการคำนวณและปริมาณค่าอิเล็กตรอนสุทธิจากสัญญาณจีพีเอส จากนั้นทำการปรับแก้ค่าความคลาดเคลื่อนดาวเทียมและความคลาดเคลื่อนเครื่องรับ จากการ วิเคราะห์พบว่าค่าเฉลี่ยที่ในเวลากลางวันช่วงเวลาประมาณ 03.00 น. ถึง 12.00 น. (UTC) มี ค่าสูงสุดเท่ากับ 20.6052 TECU และ 19.0912 TECU ตามลำดับ และต่ำสุดในเวลากลางคืน ช่วงเวลาประมาณ 21.00 ถึง 23.00 น. (UTC) เท่ากับ 0.1189 TECU และ 0.7930 TECU ตามลำดับ

รูปที่ 2. 5 การเปรียบเทียบค่าเฉลี่ยของค่าปริมาณอิเล็กตรอนสุทธิ ระหว่าง วันที่ 20 มีนาคม กับวันที่ 8 ตุลาคม ในปี พ.ศ.2552

2.6.2 GNSS station characterization for ionospheric scintillation applications (Romano et al., 2013)

ในงานวิจัยนี้ได้ทำการศึกษา Ionospheric scintillations โดยศึกษาผลกระทบต่อ เฟส และ แอมพลิจูดของคลื่นส่งจาก ระบบน้ำ ทางบนพื้นผิวโลกด้วยดาวเทียม (GNSS) ซึ่ง ้ปรากฏการณ์นี้มัก เกินขึ้นได้เมื่อคลื่นมีการเคลื่อนที่ผ่านบริเวณที่มีความหนาแน่นของ อิเล็กตรอนมากผิดปกติ ซึ่งปรากฏการณ์นี้จะส่งผลให้เกิดการกระเจิงของสัญญาณจนทำ ให้ ระบบนำทางนั้นแย่ลงทั้งในส่วนของ สมรรถนะ ความแม่นยำ และ ขีดความสามารถ ดัชนีที่ จะส่งผลต่อการผันผวนคือ S4 index คือดัชนีชี้วัดสำหรับแสดงค่า lonosphere scintillation ของสัญญาณดาวเทียมในชั้น Ionosphere ข้อมูลเหล่านี้ได้จากการวัดค่า อิเล็กตรอนใน GISTM (Global Ionospheric Scintillation and Total Electron Content Monitor) บริเวณตอนเหนือของยุโรป (ประมาณ 53 องศาเหนือ ถึง 70 องศาเหนือ) ใน กระบวนการศึกษาสามารถกระทำ ได้จากการรับสัญญาณที่ความถี่ 50Hz ขึ้นไปแล้วทำการ ้บันทึกค่าโดยสถานีฐานที่ตั้งอยู่ในพื้นที่ต่างๆกระจายออกไป โดยแต่ละสถานีมีคุณลักษณะ เฉพาะตัวทางด้านสภาพแวดล้อมในการรับสัญญาณ ตัวแปรที่ใช้ในการวัดคุณภาพของ ้สัญญาณ เช่นค่า L1,L2 หรือ อัตราส่วนสัญญาณรบกวน โดยข้อมูลเหล่านี้หาได้จากกราฟที่ ทำการบันทึกค่าจากสถานีต่างๆแล้วนำมาวิเคราะห์จนสามารถขจัดสัญญาณรบกวนและคลื่น หลายวิถี โดยคำนวณหาค่า Fresnal zone (Rf) จากสูตร Rf = $\sqrt{\lambda D}$ ซึ่ง คือ λ ความยาว ของคลื่น และ คือ D ระยะห่างระหว่างสิ่งกีดขวางที่ก่อให้เกิดคลื่นหลายวิถีและจากการ พิจารณาช่องว่างประมาณ 90 เมตร ห่างกับเสารับสัญญาณ และความสูงของเสารับสัญญาณ ประมาณ 80 เมตรและความสูงของตึกประมาณ 10 เมตร สามารถนำมาคำนวณหามุมสูง ดาวเทียมที่เหมาะสมในการขจัดความคลาดเคลื่อนนี้ได้ และจากการขจัดค่าผิดพลาดที่เกิด ้จากสัญญาณรบกวนและคลื่นหลายวิถีออกไป ทำให้สามารถวัดค่า S₄ index ได้ถูกต้องมาก ขึ้น ประโยชน์ของการศึกษาในครั้งนี้คือการนำคุณลักษณะด้านสภาพแวดล้อมของสถานีฐาน มาวิเคราะห์เพื่อหาความสัมพันธ์และหาเกณฑ์ในการตัดสัญญาณที่ถูกรบกวน เพื่อที่จะใช้ กรองสัญญาณรบกวนออกทำให้ได้ค่า TEC และการวัดการกระเจิงของสัญญาณดาวเทียมได้ดี ยิ่งขึ้น

2.6.3 ผลกระทบของความผิดปกติในชั้นบรรยากาศIonosphereต่อความแม่นยำในการระบุ

ตำแหน่งจีพีเอส (สุทัศน์ จงสินทวี, ประเสริฐ เคนพันค้อ และพรชัย ทรัพย์นิธิ, 2557) งานวิจัยนี้ ได้ทำการศึกษา ความผิดพลาดในชั้นบรรยากาศไอโอโนสเฟียร์จากการ วิเคราะห์ข้อมูลจีพีเอสที่สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบังเพื่อคำนวณ ตำแหน่งและค่า dilution of precision ในช่วงเวลาที่มีความผิดปกติของค่าปริมาณสุทธิ อิเล็กตรอนสุทธิโดยใช้ค่า ROTI ในการตรวจสอบความผิดปกติในชั้นบรรยากาศไอโอโนส เฟียร์ซึ่งเกิดในวันที่ 1 กันยายน ค.ศ. 2012 และวันที่ไม่เกิดปรากฏการณ์คือ วันที่ 4 กันยายน ค.ศ. 2012 โดยที่เครื่องรับสัญญาณจีพีเอสกำหนดค่ามุมของดาวเทียมไม่น้อยกว่า 15องศา

บทที่ 3 วิธีการดำเนินงานวิจัย

ในงานวิจัยนี้ใช้โปรแกรม RxTools version 1.10.2rc1 ในการวิเคราะห์ข้อมูลช่วงที่เกิด ปรากฏการณ์Ionosphere scintillation โดยทำการแปลงข้อมูลSBF File เป็นข้อมูล ismr (Ionospheric scintillation monitoring records) และข้อมูล Observation จากนั้นทำการคัดเลือก ช่วงเวลาที่มีดาวเทียมที่เกิดผลกระทบจากค่า S4 index ที่มากกว่า 0.5 ที่บ่งบอกถึงดาวเทียมดวงนั้น เกิด Ionosphere scintillation อย่างรุนแรง จากนั้นทำการคำนวณค่าพิกัดช่วงเวลาที่เกิด Ionosphere scintillation ใช้โปรแกรม Inertial Explorer version 8.70 ในการประมวลผลด้วยข้อ มูลค่ารังวัดซูโดเรนจ์ (Pseudo range) ในช่วงที่เกิด Ionosphere scintillation จากนั้นจะแบ่งข้อมูล เป็น 2 ชุด ชุดแรกจะทำการเลือกดาวเทียมดวงที่เกิด Ionosphere scintillation มาจำนวน 1 ดวง เพื่อประมวลผลร่วมกับดาวเทียมปกติ จำนวน 4 ดวง ชุดที่ 2 จะทำการเลือกดาวเทียมปกติ มาจำนวน 5 ดวง มาประมวลผล โดยทั้ง 2 ชุดข้อมูลใช้ช่วงเวลาเดียวกัน และทำการคำนวณค่าพิกัดเพื่อทำเป็นค่า พิกัดอ้างอิง โดยใช้โปรแกรม PANDA หาตำแหน่งจุดเดียวความละเอียดสูง จากนั้นทำผลที่ได้จาก โปรแกรมได้จากการโปรแกรม Inertial Explorer ของทั้ง 2 ชุดข้อมูล มาเทียบกับค่าพิกัดอ้างอิงที่ได้ จาก PANDA

3.1 การดำเนินงานวิจัย

จากวัตถุประสงค์หลักในงานวิจัยนี้เพื่อให้เห็นถึงคุณสมบัติและพฤติกรรมที่เปลี่ยนแปลงไปของค่า TEC ในช่วงเวลาปกติและช่วงที่เกิดปรากฏการณ์ Ionosphere scintillation รวมไปถึงการนำค่า TEC มาวิเคราะห์และคัดเลือกสัญญาณดาวเทียมที่ใช้ในการคำนวณตำแหน่งพิกัด โดยการประมวลผล จะแบ่งเป็น 2 ชุดข้อมูลได้แก่การเก็บรวบรวมข้อมูลสัญญาณGPS ช่วงเวลาที่เกิดปรากฏการณ์ Scintillation และ ช่วงเวลาที่ไม่เกิดปรากฏการณ์ Scintillation

3.1.1 การเก็บรวบรวมข้อมูลสัญญาณ GPS

ทำการดาวน์โหลดข้อมูลที่ใช้ในการวิจัยนี้ ได้มาจากสถานี CUSV ซึ่งเป็นหนึ่งในสถานี IGS ใช้เครื่องรับสัญญาณ GNSS รุ่น Septentrio จำนวน 1 เครื่อง ที่สถานี CUSV โดยมีอัตราการ บันทึกข้อมูลอยู่ที่ 5 ครั้งต่อวินาที ใช้ข้อมูลในช่วงปี 2013 มาวิเคราะห์ผล และ ข้อมูล Rinex ที่ ได้จากสถานีฐาน CUSV โดยมีอัตราการบันทึกข้อมูลอยู่ที่ 0.067 ครั้งต่อวินาที เมื่อเราได้ SBF file มาแล้วก็ทำการแปลงไฟล์ SBF แปลงเป็นไฟล์. 130 ด้วยวิธี Hatanaka เพื่อมาใช้ร่วมกับ ข้อมูล Navigation ที่ได้จาก IGS มารวมเป็นข้อมูล .130 .13N .13G ที่ใช้ในการประมวลผล

รูปที่ 3. 1 รูปเครื่องรับ Septentrio

SEPT3330.13_	30/11/2556 4:30	Septentrio Binary	701,338 KB
SEPT3340.13_	1/12/2556 4:30	Septentrio Binary	666,316 KB
SEPT3350.13_	2/12/2556 4:30	Septentrio Binary	698,004 KB
SEPT3360.13_	3/12/2556 4:30	Septentrio Binary	695,105 KB
SEPT3400.13_	7/12/2556 4:30	Septentrio Binary	683,223 KB
	Net 194	01	

รูปที่ 3. 2 แสดงตัวอย่างข้อมูล SBF file ที่ได้จากเครื่องรับ Septentrio

3.1.2 การคำนวณค่าพิกัดช่วงเวลาที่เกิด Ionosphere scintillation

ใช้โปรแกรม Inertial Explorer version 8.70 ในการประมวลผลด้วยข้อมูลค่ารัง วัดซูโดเรนจ์(Pseudo range) ในช่วงที่เกิด Ionosphere scintillation จากนั้นจะแบ่งข้อมูลเป็น 2 ชุด ชุดแรกจะทำการเลือกดาวเทียมดวงที่เกิด Ionosphere scintillation มาจำนวน 1 ดวง เพื่อประมวลผลร่วมกับดาวเทียมปกติ จำนวน 4 ดวง ชุดที่ 2 จะทำการเลือกดาวเทียมปกติ มา จำนวน 5 ดวง มาประมวลผล โดยทั้ง 2 ชุดข้อมูลใช้ช่วงเวลาเดียวกัน

DD MM YY	PRN	GPS time of week	ค่าเฉลี่ย S4 index ช่วงที่เกิด
			Scintilation
02/04/2013	1	222420 - 223860	0.008
	7	222420 - 223860	0.026
	8	222420 - 223860	0.673
	11	222420 - 223860	0.026
	13	222420 - 223860	0.233
	28	222420 - 223860	0.078

ตารางที่ 3.1 แสดงตัวอย่างค่า S4 index เฉลี่ยของดาวเทียมแต่ละดวงของสถานีฐาน CUSV ในช่วงที่เกิดช่วงที่เกิด Scintilation ณ วันที่ 2 เมษายน 2013 ที่ได้จาก RxTools

3.1.3 การคำนวณค่าพิกัดเพื่อทำเป็นค่าพิกัดอ้างอิง

ใช้โปรแกรม PANDA หาตำแหน่งจุดเดี่ยวความละเอียดสูง เพื่อใช้เป็นค่าพิกัดอ้างอิงใน จากนั้นทำผลที่ได้จากโปรแกรมได้จากการโปรแกรม Inertial Explorer มาเทียบกับค่าพิกัด อ้างอิงที่ได้จาก PANDA ผลการประมวลผลหาค่าพิกัดเฉลี่ยของสถานีฐาน CUSV ณ วันที่ 1-10 เมษายน 2013โดยค่าที่ได้แสดงดังตารางที่ 3.2

DD MM YY	Easting	Northing	Ellipsoidal
			Height
01/04/2013	665854.535	1519047.319	74.254
02/04/2013	665854.536	1519047.318	74.265
03/04/2013	665854.537	1519047.318	74.258
04/04/2013	665854.534	1519047.318	74.269
05/04/2013	665854.537	1519047.310	74.281
06/04/2013	665854.536	1519047.309	74.282
07/04/2013	665854.539	1519047.314	74.274
08/04/2013	665854.540	1519047.315	74.296
09/04/2013	665854.537	1519047.315	74.297
10/04/2013	665854.541	1519047.316	74.292
ค่าเฉลี่ย	665854.537	1519047.315	74.277

ตารางที่ 3.2 แสดงค่าผลการประมวลผลหาค่าพิกัดเฉลี่ยของสถานีฐาน CUSV ณ วันที่ 1-10 เมษายน 2013

<u>หมายเหตุ</u> เงื่อนไขการประมวลผล ข้อมูล 24 ชั่วโมง ประมวลผลข้อมูลทุกๆ 30 วินาที มุมสูง ดาวเทียม 10 องศา (สถานีรังวัดCUSV ตั้งอยู่บนชั้นดาดฟ้า ตึกสี่คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย) ระบบพิกัดอ้างอิงที่ใช้ UTM zone 47N ทำการแปลงพิกัดโดยอ้างอิงจาก <u>http://geostore.rtsd.mi.th/wcts/</u>

20

รูปที่ 3. 3 ภาพแสดงผังวิธีดำเนินงานวิจัย

บทที่ 4 ผลการศึกษา

ผลการเปรียบเทียบค่า TEC (TECU) ของดาวเทียมที่เกิดปรากฏการณ์ Ionosphere scintillation กับดาวเทียมที่ไม่เกิดปรากฏการณ์ Ionosphere scintillation ในช่วงเวลาที่นำมา การที่นำดาวเทียมที่ได้รับผลกระทบจากปรากฏการณ์ Scintillation 1 ดวงมาคำนวณร่วมกับ ดาวเทียมปกติ 4 ดวง แยกตามวันเวลาและชุดดาวเทียมที่ใช้ในการประมวลผลทั้งหมด ดังเช่น ตัวอย่างด้านล่าง

รูปที่ 4. 1 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง PRN3 คือดวงที่เกิด Ionosphere scintillation

CHULALONGKORN UNIVERSITY

รูปที่ 4. 2 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด

lonosphere scintillation จำนวน 5 ดวง

Epoch	PRN3	PRN7	PRN11	PRN13	PRN23
479040	132.182	82.147	57.754	57.754 54.603	
479100	135.047	82.109	56.764	54.794	56.104
479160	143.243	78.958	56.831	56.441	58.627
479220	138.760	78.282	58.383	57.754	57.732
479340	138.398	80.348	57.593	56.764	58.513
479400	141.168	77.540	55.298	56.831	57.446
479460	139.883	78.511	57.754	57.754 58.383	
479520	121.377	79.139	56.088	57.593	56.523
479580	141.349	76.997	54.794	55.298	56.799
479760	161.312	75.141	54.917	57.754	60.188
480060	170.136	76.207	54.223	56.088	59.389
480120	178.961	74.103	54.603	54.794	56.733
480240	163.763	74.017	56.441	54.917	56.266
480300	156.164	73.808	52.109	54.223	57.504
480360	148.565	73.303	54.937	54.603	60.997
480420	151.359	73.208	53.946	56.441	56.333
480480	152.756	72.970	55.622	52.109	56.047
480540	154.153	73.618	56.155	54.937	58.732

ตารางที่ 4.1 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง **PRN3 คือดวงที่เกิด** Ionosphere scintillation

Epoch	PRN7	PRN11	PRN13	PRN19	PRN23
479040	82.147	57.754	54.603	97.967	57.399
479100	82.109	56.764	54.794	88.647	56.104
479160	78.958	56.831	56.441	90.561	58.627
479220	78.282	58.383	57.754	90.999	57.732
479340	80.348	57.593	56.764	94.607	58.513
479400	77.540	55.298	56.831	94.540	57.446
479460	78.511	57.754	58.383	94.397	58.484
479520	79.139	56.088	57.593	95.949	56.523
479580	76.997	54.794	55.298	95.721	56.799
479760	75.141	54.917	57.754	97.767	60.188
480060	76.207	54.223	56.088	96.006	59.389
480120	74.103	54.603	54.794	98.538	56.733
480240	74.017	56.441	54.917	97.967	56.266
480300	73.808	52.109	54.223	95.559	57.504
480360	73.303	54.937	54.603	93.074	60.997
480420	73.208	53.946	56.441	95.254	56.333
480480	72.970	55.622	52.109	94.911	56.047
480540	73.618	56.155	54.937	97.177	58.732

ตารางที่ 4. 2 แสดงค่าTEC ของวันที่ 5 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด Ionosphere scintillation จำนวน 5 ดวง

05032013_479040_480540_G7_11_13_19_23 - Sky View (All Visible)

รูปที่ 4. 3 แสดงตำแหน่งของดาวเทียม ของวันที่ 5 เมษายน 2013

Chulalongkorn University

รูปที่ 4. 4 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง **PRN19 คือดวงที่เกิด** Ionosphere scintillation

รูปที่ 4. 5 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด Ionosphere scintillation จำนวน 5 ดวง

Fnoch	PRN19	PRN1	PRN7	PRN11	PRN13
122200	100.100	44.450	(0.25)	(0.05)	
133320	100.128	46.659	62.356	54.013	53.905
133380	105.164	46.288	61.033 54.042		52.953
133440	111.199	47.030	58.995	52.966	52.477
133500	102.222	45.279	58.929	53.766	55.343
133560	111.399	46.868	54.578	55.098	56.419
133620	109.791	47.049	50.418	53.223	52.468
133680	110.952	45.221	54.198	52.014	51.030
133740	118.396	46.459	58.891	52.642	53.382
133800	124.508	43.099	57.272	50.510	49.679
133860	113.370	46.507	60.728	54.232	49.869
133920	113.180	47.716	65.831	52.947	49.203
133980	114.465	45.878	65.745	50.643	48.108
134040	107.906	51.143	65.126	46.911	53.429
134100	114.874	49.867	59.291 49.625		48.022
134160	115.902	44.888	59.081	52.138	56.971
134220	117.283	45.964	63.489	50.396	56.657
134280	117.283	46.849	53.084	48.625	55.562
134340	119.215	41.909	55.445	47.149	52.297
134400	117.444	42.823	60.300	50.015	55.124
134460	123.232	44.127	62.527	49.967	53.734
134520	122.737	44.365	60.271	49.082	53.667
134580	122.261	42.708	63.812	50.462	59.703
134640	129.839	45.774	64.602	49.834	57.285
134700	126.954	47.459	58.234	51.014	54.838
134760	131.933	43.498	58.243	49.996	50.278
134820	132.781	42.585	58.415	47.978	50.126
134880	127.688	44.241	58.910	49.729	49.802
134940	134.085	43.936	60.119 48.463 4		43.101
135000	139.244	45.079	59.633	48.920	44.805
135060	128.354	45.869	55.664	49.644	34.200
135120	134.370	42.861	49.923	45.769	40.197
135180	138.054	43.346	55.111	45.826	40.930

Epoch	PRN19	PRN1	PRN7	PRN11	PRN13
135240	139.896	39.110	48.762	47.111	44.767
135300	141.738	42.680	49.980	45.798	45.062
135360	143.861	41.214	51.894	46.845	47.365
135420	144.680	40.662	46.791	47.169	45.738
135540	147.083	42.965	47.572	48.101	44.367
135600	148.285	44.127	43.288	48.911	46.604
135660	149.487	42.775	47.981	52.204	51.925
135720	153.305	39.548	49.523	51.890	49.165
135780	158.312	43.118	48.476	54.546	48.479
135840	129.734	42.556	50.047	52.699	46.195

ตารางที่ 4. 3 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง **PRN19 คือดวงที่เกิด** Ionosphere scintillation

Epoch	PRN1	PRN7	PRN11	PRN13	PRN23
133320	46.659	62.356	54.013	53.905	41.492
133380	46.288	61.033	54.042	52.953	43.091
133440	47.030	58.995	52.966	52.477	40.425
133500	45.279	58.929	53.766	55.343	42.939
133560	46.868	54.578	55.098	56.419	51.363
133620	47.049	50.418	53.223	52.468	47.575
133680	45.221	54.198	52.014	51.030	45.823
133740	46.459	58.891	52.642	53.382	47.394
133800	43.099	57.272	50.510	49.679	46.147
133860	46.507	60.728	54.232	49.869	47.156
133920	47.716	65.831	52.947	49.203	46.670
133980	45.878	65.745	50.643	48.108	50.221
134040	51.143	65.126	46.911	53.429	47.051
134100	49.867	59.291	49.625	48.022	47.108
134160	44.888	59.081	52.138	56.971	48.936
134220	45.964	63.489	50.396	56.657	49.707
134280	46.849	53.084	48.625	55.562	50.012
134340	41.909	55.445	47.149	52.297	48.679
134400	42.823	60.300	50.015	55.124	52.306
134460	44.127	62.527	49.967	53.734	46.832
134520	44.365	60.271	49.082	53.667	50.764
134580	42.708	63.812	50.462	59.703	51.440
134640	45.774	64.602	49.834	57.285	51.068
134700	47.459	58.234	51.014	54.838	51.382
134760	43.498	58.243	49.996	50.278	45.185
134820	42.585	58.415	47.978	50.126	51.811
134880	44.241	58.910	49.729	49.802	46.718
134940	43.936	60.119	48.463	43.101	47.203

Epoch	PRN1	PRN7	PRN11	PRN13	PRN23
135000	45.079	59.633	48.920	44.805	41.958
135060	45.869	55.664	49.644	34.200	44.500
135120	42.861	49.923	45.769	40.197	42.548
135180	43.346	55.111	45.826	40.930	48.279
135240	39.110	48.762	47.111	44.767	43.119
135300	42.680	49.980	45.798	45.062	39.207
135360	41.214	51.894	46.845	47.365	47.270
135420	40.662	46.791	47.169	45.738	46.242
135540	42.965	47.572	48.101	44.367	47.470
135600	44.127	43.288	48.911	46.604	48.231
135660	42.775	47.981	52.204	51.925	48.231
135720	39.548	49.523	51.890	49.165	48.231
135780	43.118	48.476	54.546	48.479	48.231
135840	42.556	50.047	52.699	46.195	48.231

ตารางที่ 4. 4 แสดงค่าTEC ของวันที่ 8 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด Ionosphere scintillation จำนวน 5 ดวง

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

08042014_133200_135840_G1_7_11_13_23_19 - Sky View (All Visible)

รูปที่ 4. 6 แสดงตำแหน่งของดาวเทียม ของวันที่ 8 เมษายน 2013

รูปที่ 4. 7 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง **PRN19 คือดวงที่เกิด** Ionosphere scintillation

รูปที่ 4. 8 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด Ionosphere scintillation จำนวน 5 ดวง

Epoch	PRN819	PRN1	PRN7	PRN11	PRN13
219600	91.303	46.649	86.326	62.390	49.783
219660	93.084	44.374	75.284	57.830	49.022
219720	93.065	47.935	79.663	55.946	52.677
219780	85.135	49.363	76.064	59.972	54.734
219840	101.623	52.295	74.808	55.155	58.370
219900	88.524	48.630	69.067	57.821	54.610
219960	102.632	52.961	57.215	62.295	52.582
220020	104.088	55.208	50.304	62.562	54.791
220080	99.062	56.997	49.066	63.371	51.050
220140	98.748	56.550	49.885	57.897	52.392
220200	100.661	58.654	46.372	63.571	57.504
220260	103.317	51.695	51.960	65.608	58.599
220320	95.711	52.885	44.725	63.923	53.534
220380	98.367	46.554	48.143	62.657	52.001
220440	87.753	53.684	54.055	64.866	52.325
220500	108.591	53.523	51.189	66.046	52.278
220560	116.654	52.171	43.992	67.655	53.963
220620	105.069	53.932	58.243	70.063	52.230
220680	109.334	56.388	46.725	RS 72.576	56.876
220740	120.767	56.436	55.711	70.758	50.269
220800	122.138	55.550	49.847	68.797	53.763
220860	111.476	53.865	52.874	69.235	58.380
220920	122.804	56.445	57.834	69.920	57.313
220980	125.993	60.291	56.539	67.350	60.455
221040	129.182	63.290	57.120	70.939	54.638
221100	118.035	63.566	56.358	70.197	53.934
221160	130.562	62.071	52.903	69.197	57.123
221220	124.032	65.689	52.827	71.853	56.514

Epoch	PRN819	PRN1	PRN7	PRN11	PRN13
221280	128.982	62.128	50.809	50.809 68.197	
221340	126.117	62.471	52.075	70.768	56.504
221400	124.451	61.786	51.066	70.511	51.116
221460	126.964	60.605	44.973	73.700	54.829
221520	130.896	61.500	47.477	73.043	56.714
221580	131.191	60.662	54.531	71.643	55.771
221640	134.665	63.385	55.378	66.960	56.304
221700	139.083	61.624	46.125	65.599	51.107
221760	126.916	62.871	49.828	71.053	47.632
221820	138.378	64.004	50.780	54.403	53.163
221880	141.196	57.273	48.324	46.359	47.204
221940	144.756	54.713	52.703	41.657	52.582
222000	144.061	56.369	50.266	45.702	59.255
222060	149.621	52.618	58.272	49.596	58.218
222120	145.013	42.613	58.272	49.596	58.218

ตารางที่ 4. 5 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่เกิด Ionosphere scintillation 1 ดวง และดวงที่ไม่เกิดจำนวน 4 ดวง **PRN19 คือดวงที่เกิด** Ionosphere scintillation

Epoch	PRN1	PRN7	PRN11	PRN13	PRN23
219600.000	46.649	86.326	62.390	49.783	58.741
219660.000	44.374	75.284	57.830	49.022	55.495
219720.000	47.935	79.663	55.946	52.677	47.327
219780.000	49.363	76.064	59.972	54.734	39.464
219840.000	52.295	74.808	55.155	58.370	38.959
219900.000	48.630	69.067	57.821	54.610	49.079
219960.000	52.961	57.215	62.295	52.582	49.003
220020.000	55.208	50.304	62.562	54.791	44.862
220080.000	56.997	49.066	63.371	51.050	46.080
220140.000	56.550	49.885	57.897	52.392	40.778
220200.000	58.654	46.372	63.571	57.504	39.055
220260.000	51.695	51.960	65.608	58.599	39.740
220320.000	52.885	44.725	63.923	53.534	46.347
220380.000	46.554	48.143	62.657	52.001	44.928
220440.000	53.684	54.055	64.866	52.325	39.045
220500.000	53.523	51.189	66.046	52.278	44.148
220560.000	52.171	43.992	67.655	53.963	47.765
220620.000	53.932	58.243	70.063	52.230	38.626
220680.000	56.388	46.725	72.576	56.876	44.966
220740.000	56.436	55.711	70.758	50.269	41.339
220800.000	55.550	49.847	68.797	53.763	43.472
220860.000	53.865	52.874	69.235	58.380	43.405
220920.000	56.445	57.834	69.920	57.313	48.727
220980.000	60.291	56.539	67.350	60.455	48.841
221040.000	63.290	57.120	70.939	54.638	46.204
221100.000	63.566	56.358	70.197	53.934	47.518
221160.000	62.071	52.903	69.197	57.123	50.764

Epoch	PRN1	PRN7	PRN11	PRN13	PRN23
221220.000	65.689	52.827	71.853	56.514	42.786
221280.000	62.128	50.809	68.197	60.007	43.833
221340.000	62.471	52.075	70.768	56.504	43.415
221400.000	61.786	51.066	70.511	51.116	48.308
221460.000	60.605	44.973	73.700	54.829	44.043
221520.000	61.500	47.477	73.043	56.714	48.241
221580.000	60.662	54.531	71.643	55.771	51.678
221640.000	63.385	55.378	66.960	56.304	55.409
221700.000	61.624	46.125	65.599	51.107	54.876
221760.000	62.871	49.828	71.053	47.632	52.677
221820.000	64.004	50.780	54.403	53.163	52.268
221880.000	57.273	48.324	46.359	47.204	49.022
221940.000	54.713	52.703	41.657	52.582	51.087
222000.000	56.369	50.266	45.702	59.255	46.185
222060.000	52.618	58.272	49.596	58.218	46.451
222120.000	42.613	58.272	49.596	58.218	46.451

ตารางที่ 4. 6 แสดงค่าTEC ของวันที่ 9 เมษายน 2013 โดยประกอบด้วยดาวเทียมดวงที่ไม่เกิด Ionosphere scintillation จำนวน 5 ดวง

09042014_219600_222120_G1_7_11_13 - Sky View (All Visible)

รูปที่ 4. 9 แสดงตำแหน่งของดาวเทียม ของวันที่ 9 เมษายน 2013

จากผลการทดลอง การที่นำดาวเทียมที่ได้รับผลกระทบจากปรากฏการณ์ Scintillation 1 ดวงมาคำนวณร่วมกับดาวเทียมปกติ 4 ดวง ด้วยวิธี SPP ด้วยมูลค่ารังวัดซูโดเรนจ์ โดยใช้ ซอฟต์แวร์ Inertial Explorer มีค่าความถูกต้องต่ำกว่า การประมวลโดยเลือกดาวเทียมปกติมาประมวลผล ทั้งหมด และความถูกต้องของค่าพิกัดที่ได้เมื่อนำเอาไปคำนวณด้วย ค่ารังวัดซูโดเรนจ์ (Pseudo range) ร่วมกับข้อมูลจากดาวเทียมดวงอื่นที่ไม่ได้รับผลกระทบจากปรากฏการณ์ Scintillation

วันที่	หมายเลข ดวงที่เกิด (ค่า S4)	ชุดดาวเทียม	DE	DN	DH	3D (m)	ค่า ต่าง
2/4/2013	8 (0.673)	G8_1_7_11_13	1.559	1.151	1.803	2.647	1 0 1 2
		G1_7_11_13_28	0.916	0.245	1.33	1.634	1.013
3/4/2013_1	28 (0.643)	G28_1_7_11_8	1.43	1.256	6.066	6.357	2 6 0 0
		G8_1_7_11_17	3.203	0.613	1.866	3.757	2.600
3/4/2013_2	28 (0.711)	G28_1_7_11_17	2.099	0.71	1.493	2.672	0.252
		G8_1_7_11_17	1.356	1.476	1.355	2.42	0.252
5/4/2013	3 (0.703)	G3_7_11_13_23	1.906	1.391	3.288	4.047	2 (02
		G7_11_13_19_23	1.107	0.502	0.598	1.355	2.092
6/4/2013	11 (0.671)	G_1_7_17_28_20	0.903	1.092	1.963	2.421	0 5 1 1
	1	G1_7_17_28_20	1.63	0.884	0.456	1.91	0.511
8/4/2013	19 (0.768)	G19_1_7_11_13	0.508	0.318	1.142	1.29	0.220
	ຈຸ ທ	G1_7_11_13_23	0.613	0.294	0.665	0.951	0.559
9/4/2013	19 (0.758)	G19_1_7_11_13	0.648	0.948	1.05	1.556	0 7 2 7
		G1_7_11_13_23	0.607	0.266	0.498	0.829	0.121
10/4/2013	23 (0.609)	G23_1_7_11_13	0.697	0.227	2.626	2.727	0.260
		G1_7_8_11_13	1.147	0.1	2.171	2.458	0.209

ตารางที่ 4. 7 แสดงค่าต่างพิกัดจากพิกัดอ้างอิงที่ได้จากการประมวลผลในกรณีที่รวมเอาดาวเทียมที่ เกิด Ionosphere scintillation 1ดวง และในกรณีที่ใช้ดาวเทียมปกติเพียงอย่างเดียว หมายเหตุ แทนชุดข้อมูลที่มีดาวเทียมดวงที่เกิดปรากฏการณ์ Scintillation เมื่อทำการพล็อตค่าต่างจากพิกัดอ้างอิงราย epoch ทั้งทางดิ่ง และทางราบของการ ประมวลผล ทั้งสองรูปแบบ โดยค่าทางดิ่งแกว่งไปมาค่อนข้างสูงกว่าทางราบ แสดงผลได้ดังรูปที่ 4.10

รูปที่ 4. 10 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 2 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยรวมดาวเทียมที่เกิด Ionosphere scintillation 1** ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 11 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 2 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 12 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 13 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 14 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 15 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 3 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 16 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 5 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 17 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 5 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 18 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 6 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 19 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 6 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 20 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 8 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 21 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 8 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 22 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 9 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 23 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 9 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 24 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 10 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ **โดยใช้ดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง** เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

รูปที่ 4. 25 แสดงค่าต่างทางราบ และทางดิ่งของแต่ละ epoch ของวันที่ 10 เมษายน 2013 จากการ ประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ โดยใช้ดาวเทียมที่ไม่เกิด Ionosphere scintillation ทั้งหมด เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA

บทที่ 5 อภิปรายผล สรุปผลการวิจัย และข้อเสนอแนะ

ในบทนี้ จะกล่าวถึงการอภิปรายผลการวิจัย และสรุปผลการวิจัยในประเด็นต่าง ๆ และ ข้อจำกัดในการศึกษาวิจัยในครั้งนี้ รวมถึงข้อเสนอแนะในการนำผลการวิจัยหรือเทคนิควิธีการที่ นำเสนอในงานวิจัยนี้ ไปใช้ประโยชน์ในอนาคต

5.1 อภิปรายผล

ในงานวิจัยนี้ใช้ข้อมูลสัญญาณดาวเทียม GPS ที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation จากสถานี IGS ชื่อ CUSV ที่ติดตั้งอยู่ที่คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โดยทำการวิเคราะห์ค่า S4 index โดยใช้โปรแกรม Rxtools ในการประมวลผลเพื่อคัดเลือกสัญญาณ ดาวเทียมที่เกิดการกระเจิงของสัญญาณดาวเทียม GPS ในชั้นบรรยากาศ แล้ววิเคราะห์ค่า TEC ระหว่างสัญญาณที่ดีและสัญญาณที่เกิดการกระเจิงของสัญญาณดาวเทียม GPS รวมไปถึงการ เปรียบเทียบค่าความถูกต้องเชิงตำแหน่งที่ได้จากการประมวลผลด้วยข้อมูลที่ได้จากสัญญาณดาวเทียม ที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation ร่วมกับข้อมูลดาวเทียมที่ได้จากสัญญาณ ดาวเทียมปกติ

ในการประมวลผลเพื่อหาความแตกต่างเชิงตำแหน่งของพิกัดที่ได้ จากข้อมูลที่ได้จากสัญญาณ ดาวเทียมที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation ร่วมกับข้อมูลดาวเทียมที่ได้จาก สัญญาณดาวเทียมปกติ ได้มีการกำหนดค่าพื้นฐานในการประมวลผลให้เหมือนกันทั้งหมด โดยที่ค่า observation rate เท่ากับ 1 วินาที ค่ามุมสูงดาวเทียม 10-20 องศา ทำการคัดเลือกดาวเทียมชุด เดียวกันอย่างน้อย 4 ดวง ช่วงเวลาที่ใช้ในการประมวลผลช่วงเดียวกัน ทำให้ผลที่ได้นั้นมีความถูกต้อง มากขึ้น

เมื่อพิจารณาจากค่า RMSE ของค่าต่างทางตำแหน่งที่ได้จากการประมวลผลข้อมูลด้วยข้อมูลค่า รังวัดซูโดเรนจ์ ค่า RMSE ที่ได้จากกการใช้สัญญาณดาวเทียม GPS ที่ไม่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation ทั้งหมด จำนวน 5 ดวง เทียบกับค่าพิกัดอ้างอิงที่ได้จาก PANDA มีค่า ความถูกต้องที่ดีกว่า ค่า RMSE ที่ได้จากการประมวลผลด้วยข้อมูลค่ารังวัดซูโดเรนจ์ ที่รวมสัญญาณ ดาวเทียม GPS ที่ถูกรบกวนด้วยปรากฏการณ์ Ionosphere scintillation 1 ดวง (ดาวเทียมที่มีค่า S4 index สูงกว่า 0.5) ร่วมกับดาวเทียมปกติ ในทุกวันที่พบช่วงการเกิด Ionosphere scintillation

5.2 สรุปผลการวิจัย

จากผลการทดลองที่ได้สรุปได้ว่าเมื่อเกิดปรากฏการณ์ Ionosphere scintillation พิกัดอ้างอิงที่ ได้จากการประมวลผลในกรณีที่รวมเอาดาวเทียมที่เกิด Ionosphere scintillation 1 ดวง นอกจาก จะมีค่าความถูกต้องน้อยลงแล้ว ค่าต่างทางตำแหน่งหรือค่าความคลาดเคลื่อนที่เพิ่มขึ้นนั้นแตกต่าง ออกไปในแต่ละวันและช่วงเวลารวมถึงชุดดาวเทียมที่เลือกมาประมวลผล ดังตารางที่ 5.1 ซึ่ง ความสัมพันธ์ระหว่าง ค่า S4 index และ% ค่าความคลาดเคลื่อนที่เพิ่มขึ้น นั้นไม่มีความสัมพันธ์ที่ ซัดเจน

วันที่	ค่า S4 index	ค่าต่าง 3D เกิด/ไม่	% ค่าความคลาด
		เกิด	เคลื่อนที่เพิ่มขึ้น
02/04/2013	0.673	2.647/1.634	61.995
03/04/2013	0.643	6.537/3.757	69.204
03/04/2013	0.711	2.672/2.420	10.413
05/04/2013	0.703	4.047/1.355	192.974
06/04/2013	0.671	2.421/1.910	26.753
08/04/2013	0.768	1.290/0.951	35.646
09/04/2013	0.758	1.556/0.829	87.696
10/04/2013	0.609	2.727/2.458	10.943

ตารางที่ 5. 1 แสดงค่าความคลาดเคลื่อนที่เพิ่มขึ้นจากพิกัดอ้างอิงที่ได้จากการประมวลผลในกรณีที่ รวมเอาดาวเทียมที่เกิด Ionosphere scintillation 1ดวง

จากผลการเปรียบเทียบค่า TEC (TECU) ของดาวเทียมที่เกิดปรากฏการณ์ Ionosphere scintillation กับดาวเทียมที่ไม่เกิดปรากฏการณ์ Ionosphere scintillation สรุปได้ว่า ดาวเทียมที่ ้เกิดเกิดปรากฏการณ์ Ionosphere scintillation จะมีค่า TEC ที่แกว่งไปมามากกว่าดาวเทียมปกติ และมีความสอดคล้องกับค่า S4 index ที่วัดได้

จากผลการทดลองที่ได้สรุปได้ว่าเมื่อเกิดปรากฏการณ์ Ionosphere scintillation ในช่วงที่ เป็นปี Solar maximum ดาวเทียมบางดวงที่ถูกผลกระทบต่อปรากฏการณ์นี้ ไม่เหมาะสมที่จะนำมา ประมวลผลร่วมกับดาวเทียมปกติดวงอื่นๆ เพราะจะทำให้ค่าความถูกต้องที่ได้นั้นลดน้อยลง ยิ่งไปกว่า นั้นยังพบว่าค่า S4 index สำหรับดาวเทียมที่มีมุมสูงต่ำนั้น มีค่าใกล้เคียงกับค่า S4 index ที่ได้จาก ดาวเทียมที่เกิดผลกระทบจาก Ionosphere scintillation ดังนั้นผู้ทำงานวิจัยในด้านนี้จึงควรคัดเลือก ดาวเทียมที่เกิด Ionosphere scintillation ในดาวเทียมที่มีค่ามุมสูงมากกว่า 10 องศาขึ้นไป เพื่อ ป้องกันการผิดพลาดในการคัดเลือกดาวเทียมที่เกิด Ionosphere scintillation มาใช้ในงานวิจัยต่อไป

5.3 ข้อเสนอแนะ

ในส่วนของชุดดาวเทียมอื่นๆ ไม่ว่าจะเป็น GLONASS, GALILEO รวมไปถึง COMPASS ก็ สามารถถูกผลกระทบต่อปรากฏการณ์ Ionosphere scintillation ในช่วงที่เป็นปี Solar maximum จึงควรมีการทดลองเพิ่มเติมเกี่ยวกับผลกระทบต่อดาวเทียมที่ต่างๆกัน เช่นกัน รวมไปถึงการนำ ดาวเทียมแต่ละชุดมาคำนวณร่วมกันในแช่วงการเกิด Ionosphere scintillation เพื่อเปรียบเทียบค่า ความถูกต้องเชิงตำแหน่งที่ได้จากการประมวลผลด้วยข้อมูลที่ได้จากสัญญาณดาวเทียมที่ถูกรบกวน ด้วยปรากฏการณ์ Ionosphere scintillation ร่วมกับข้อมูลดาวเทียมที่ได้จากสัญญาณดาวเทียมปกติ ในบางสภาพแวดล้อมที่มีข้อจำกัดในการรับสัญญาณดาวเทียม (ในเมือง หรือในพื้นที่ที่ถูกบดบัง) หรือ ในอุปกรณ์ที่การรู้ตำแหน่งมีความสำคัญ และมีความจำเป็นต้องรับดาวเทียมได้อย่างน้อย 4 ดวงตลอด การทำงาน (อากาศยานต่างๆ) ประกอบกับสัญญาณดาวเทียมที่ได้จากดาวเทียมได้อย่างน้อย 4 ดวงตลอด การทำงาน (อากาศยานต่างๆ) ประกอบกับสัญญาณดาวเทียมที่ได้จากดาวเทียมได้อย่างน้อย 4 ดวงตลอด การทำงาน (อากาศยานต่างๆ) ประกอบกับสัญญาณดาวเทียมที่ได้จากดาวเทียมที่เกิดผลกระทบจาก Ionosphere scintillation นั้นมีความแรงของสัญญาณที่อ่อนมากจนทำให้เครื่องรับสัญญาณทั่วไป ดัดสัญญาณตาวเทียมนั้นทิ้งไป เพราะลักษณะใกล้เคียงกับ Noise จึงควรมีการศึกษาเพิ่มเติมเพื่อทำ การคงสัญญาณไว้ในการประมวลผล โดยคำนวณค่าถ่วงน้ำหนักที่เหมาะสมเข้าไปแทนเพื่อให้ยัง สามารถคำนวณค่าพิกัดของอุปกรณ์นั้นๆต่อไปได้ในสภาพที่เกิด Ionosphere scintillation สูงในช่วง ที่เป็นปี Solar maximum

รายการอ้างอิง

Chulalongkorn University

Abiyot, B., & Lassi, R. (2013). Estimating the Rate Of TEC Index, ROTI, via Bayesian Inversion.

Joanna C. Hinks, B. O. H., Mark L. Psiaki, Paul M. Kintner. (

2008). Evaluating GPS Receiver Robustness to Ionospheric Scintillation

M. Abdullah, A. F. M. Z., Y. H. Ho and S. Abdullah. (2009). TEC and Scintillation Study

of Equatorial Ionosphere: A Month Campaign over

Sipitang and Parit Raja Stations, Malaysia. 44-49.

Nikolai Hlubek1, Jens Berdermann1, Volker Wilken1, Stefan Gewies1, Norbert

Jakowski1, Mogese Wassaie2,, & Damtie2, a. B. (2014). Scintillations of the GPS,

GLONASS, and Galileo signals at equatorial latitude. 4(

J. Space Weather Space Clim.). doi: https://doi.org/10.1051/swsc/2014020 Parkinson, B. W., & Spiker, J. J. (1996). *Global Positioning System: Theory and Application volume 1*: American Institute of Aeronautics and Astronautics. Petrovski, I. G., & Tsujii., T. (2012). *Digital Satellite Navigation and Geophysics*: Cambridge University Press.

Romano, V., Spogli, L., Aquino, M., Dodson, A., Hancock, C., & Forte, B. (2013). GNSS station characterisation for ionospheric scintillation applications. *Advances in Space Research, 52*(7), 1237-1246. doi:http://dx.doi.org/10.1016/j.asr.2013.06.028 Shaw, G., & Ward, N. (2010). *GPS Availability During Solar Maximum: a Threat to Maritime Navigation. Research and RadioNavigation General Lighthouse Authorities.* United Kingdon and Ireland: United Kingdon and Ireland.

Yin, L. P. P. (2014). Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data. *1*, 11-18.

ขั้นตอนการประมวลผลแบบจุดเดี่ยว (Single point positioning: SPP) ช่วงเวลาที่เกิด Ionosphere scintillation ในโปรแกรม Inertial Expoler 8.70

- ในการประมวลผลนี้เราตั้งค่าการ observation rate แบบ 1 วินาที
- และตั้งค่า Elevation mask ที่ 20 องศา (แล้วแต่ข้อมูลในแต่ละช่วงวันและเวลา)
- ใส่ช่วงเวลาที่เกิด Ionosphere scintillation ในช่อง Start และ END

Precise Point Po	sitioning (PPP) Settings			?	Х
General Meas	urement User	Cmds				
Processing I Interval: Process Start: 309 End: 310 Precise Files Allow pro Status: Du	nterval and Tim 1.00 v s entire time rang 360.0 sec 920.0 sec (SP3 and Clock iccessing without ial frequency, no	e Range (SOW) ec week: 1734 Week: 1734 c) precise files precise files pres	Signal Pre-filterir Elevation mask: L1 Locktime Cu C/N0 Reject 20.0	ng toff: 4.00 tion Tolerance: dB-H	v der sec Iz	g c
Satellite/Bas	eline Omissions					
Where	PRN	Baseline	Time	^	Add	
Process	G02	All	All		Edit	
Process	G03	All	All		Remov	ve
Process	G04	All	All			_
Process	G06	All	Al	~		
	0.000			OK	Can	icel

รูป ก. 1 แสดงการตั้งค่า observation rate Elevation mask และช่วงเวลาการประมวลผล

Chulalongkorn University

- ทำการตัดดาวเทียมที่ไม่ต้องการออกโดย กดที่ Add
- ทำการใส่คำสั่งให้ ประมวลผลแบบ PPP จะมีหน้าต่างขึ้นมาแสดง โปรแกรมจะประมวลผล แบบ PPP โดยการโหลด precise file แต่ถ้าเราไม่ต้องการก็เอาเครื่องหมายถูกออก ในการ ประมวลผลนี้เราจะไม่ทำการโหลด precise file และประมวลผลแบบ SPP

re processing encor	Description	
No Precise Files	PPP will use broadcast ephemeris data if no precise	files available
lore information		

รูป ก. 2 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบ SPP โดยการไม่ใช้ PPP file

	t Positioning	(PPP) Settir	ngs				?	Х
General N	leasurement	User Cmds						
List of Us	er-Added Con	nmands						
							Сору	
							Delete	
							~	
							Clear	
Edit Com	mand Info							
Command								
	a.		Value(s)	[multiples se	parated by s	paces]:		
PPP_CO	DEONLY	~ =	Value(s)	[multiples se	parated by s	paces]:		
PPP_CO Format:	DEONLY OFF/ON	~ =	Value(s)	[multiples se	parated by s	paces]:		
PPP_CO Format:	DEONLY OFF/ON	✓ =	Value(s)	[multiples se	parated by s	paces]:		
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	= est added he	re if ON	(multiples se	parated by s	paces]:]
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	✓ = best added he ly processing	Value(s) ON rre if ON	[multiples se	parated by s	paces]:]
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	✓ = best added he ly processing	Value(s) ON re f ON	[multiples se	parated by s	paces]:]_]
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	v =	value(s) ON re if ON	multiples se	parated by s	paces]:]_]
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	v = vest added he	Value(s) ON re ff ON	w Entry	parated by s	paces]:]_]
PPP_CO Format: Usage: Desc:	DEONLY OFF/ON Command b do code on	v =	Value(s) ON rre if ON	w Entry	parated by s	paces]:		

รูป ก. 3 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบใช้ code

 ถ้าเราไม่ต้องการเอา Glonass มาประมวลผลให้ทำการเลือกที่ Enable Glonass แล้วเลือก ไม่เอา Glonass
Precise Point Po	ositioning (PPP) Set	tings			?	×
General Mea	surement User Cmd	8				
Measureme	nt Standard Deviation	IS				-
Code:	7.00 r	n Carrier	phase: 0.020	m		
Doppler:	1.000 r	m∕s ∏Aut	omatic			
Outlier Det	ection Level:	lomal	 ✓ Outlier 	Settings		
	nt Usage de /camier clocks (Trin	ble)				
Use Do	opler for velocity deter	mination				
Use trop	ospheric error state w	ith spectral den	sity: Medium	✓ 5.0e-010	m^2/	s
Constellatio	n Usage					
Enable	GLONASS					
Enable	BeiDou					
						_
				OK	Cano	el

รูป ก. 4 แสดงการตั้งค่าให้โปรแกรมประมวลผลแบบไม่นำเอา Glonass มาคำนวณ

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

คุณลักษณะเฉพาะ	ค่าตัวเลข
ขนาด	กว้าง 14 ซม x ยาว 25 ซม x สูง 3.7 ซม
น้ำหนัก	0.98 กิโลกรัม
อุณหภูมิในการใช้การ	-40 องศาเซลเซียส ถึง +60 องศาเซลเซียส
ความคลาดเคลื่อนในการวัด	ทางราบ 1 มม. + 1 ppm
แบบสถิต	ทางดิ่ง 2 มม. + 1 ppm
การรับสัญญาณ	136 ช่องรับสัญญาณ สามารถรับและบันทึก ข้อมูล
	สัญญาณดาวเทียมในรูปแบบ L1, L2, L5 ของ GPS
	GLONASS และ Galileo ได้

ตาราง ข. 1 คุณลักษณะเฉพาะของเครื่องรับสัญญาณดาวเทียมรุ่น Septentrio PolarRxS

คุณลักษณะเฉพาะ	ค่าตัวเลข
หมายเลขเครื่องรับ	4549261303
เวอร์ชันเฟิร์มแวร์	1.1-5
มุมสูงดาวเทียม	0 องศา
วัน เดือน ปี ที่ติดตั้ง	2008-05-12T00:00Z
วัน เดือน ปี ที่รื้อถอน	2015-06-15T00:00Z
ขนาด	กว้าง 22.5 ซม x ยาว 6.5 ซม x สูง 14 ซม
น้ำหนัก จุฬาลงก	1.6 กิโลกรัม
อุณหภูมิในการใช้การ LALON	-40 องศาเซลเซียส ถึง +65 องศาเซลเซียส
ความคลาดเคลื่อนในการวัด	ทางราบ 5 มม. + 1 ppm
แบบสถิต	ทางดิ่ง 10 มม. + 1 ppm
การรับสัญญาณ	24 ช่องรับสัญญาณ สามารถรับและบันทึก ข้อมูล
	สัญญาณดาวเทียมในรูปแบบ GPS L1 C/A
	Code,L2C, L1/L2 ,WAAS และ EGNOS ได้

ตาราง ข. 2 คุณลักษณะเฉพาะของเครื่องรับสัญญาณดาวเทียมรุ่น Trimble Net RS

<u>วิธีการดาว์นโหลดข้อมูลสถานี CUSV จาก IGS</u>

- 1. ใช้โปรแกรม SBF Analyzer ในการดูข้อมูลช่วงที่เกิด Ionosphere scintillation
 - โดยการเลือกไฟล์ GPS ที่ได้จากสถานี CUSV มาทำการวิเคราะห์
- ใช้โปรแกรม SBF Converter ในการแปลงไฟล์ข้อมูลที่ได้จากสถานี CUSV ให้เป็น Rinex File
 - จะได้ ดังนี้ SEPT0900.130
- 3. นำค่าที่เป็น .rinex เปิดในโปรแกรม Notepad++ เพื่อดูช่วงวันที่และเวลาที่เกิด
- 4. เปิดเว็บ http://sopac.ucsd.edu/dataBrowser.shtml
 - ทำการเลือกช่วงเวลาเดียวกันกับข้อมูลที่เราใช้วิเคราะห์ใน SBF Analyzer (ตรง Data type ให้เราเลือก obs จากนั้นก็เลือก nav)

	Da
Data for one or more sites	
Data type: obs ▼	
Date range: Start Date 2013-03-26 End Date 2013-03-26 Year 2014 Start DayOfYear 001 End DayOfYear 002	
Sites: cusv (space delimited, max=20)	
Get Data by Site	
จหาลงกรณ์มหาวิทยาลัย	

รูป ข. 1 แสดงการดาว์นโหลดข้อมูลสถานี CUSV จาก IGS

เมื่อได้ข้อมูลมาแล้วให้กดดาวน์โหลด ที่ตัวเลข 100

รูป ข. 2 แสดงการไฟล์ที่ต้องทำการดาว์นโหลดข้อมูลสถานี CUSV จาก IGS

- ในขั้นตอนนี้เราจะได้ 2 ไฟล์คือ ไฟล์ cusv0850.13d และ cusv0850.13n
- 5. จากนั้นเราก็จำนำเอาไฟล์ cusv0850.13d ซึ่งเป็น ฮาตานากะ ไฟล์ มาแปลงให้เป็น Rinex
 - เอาไฟล์ RNXCMP_4.0.7_Windows_bcc มาไว้ในคอม จากนั้นไปที่โฟลเดอร์ bin
 - นำเอาไฟล์ cusv0850.13d ไปวางไว้ใน bin

 คลิกขวาที่ปุ่ม start จากนั้นเลือก Run แล้วพิมพ์คำว่า cmd กดok จะปรากฏหน้าจอ ตามรูปด้านล่าง

C:\WINDOWS\system32\cmd.exe	_	×
Microsoft Windows [Version 10.0.10586] (c) 2015 Microsoft Corporation. All rights reserved.		^
C:\Users\ARM>		
		v.

รูป ข. 3 แสดงการเข้าสู่หน้าจอ command line

- จากนั้นพิมพ์โค้ด cd (ที่อยู่ของไฟล์ที่เราต้องการใช้) แล้วกด enter
- ตัวอย่าง cd C:\Users\ARM\Desktop\RNXCMP_4.0.7_Windows_bcc\bin
- จากนั้นจะได้ตามรูปข้างล่าง จากนั้นเราก็พิมพ์คำสั่ง crx2rnx เว้นวรรค แล้วตามด้วย ไฟล์ที่เราต้องการ)เสร็จแล้วกด enter
- ตัวอย่าง crx2rnx cusv0850.13d

รูป ข. 4 แสดงการรันคำสั่ง crx2rnx

- ก็จะปรากฏไฟล์ข้อมูลที่เราต้องการในโฟลเดอร์ bin

Home Sha	re View						
	🔏 Cut	←	X 🛛			✓ Open ▼	Select all
Quick Copy Paste	Paste shortcut	ove Copy	Delete Re	name	New	Properties History	Invert selecti
Clipboar	d	Oraz	inize		New	Open	Select
→ • ↑ <mark> </mark> « [Desktop > RNXCMP_4.0.	.7_Windows_b	cc → bin		~ č) Search bin	
Quick access	Name	^		Date n	nodified	Туре	Size
Desktop 🖈	crx2rnx			12/12/	2558 20:20	Application	82 KB
Documents 🖈	CRZ2RNX			17/7/2	555 19:16	Windows Batch File	2 KB
	CRZ2RNX1			17/7/2	555 19:16	Windows Batch File	3 KB
Distance of	cusv0850.13d		_	9/9/25	59 12:09	13D File	948 KB
Pictures 🖈	cusv0850.13 n		ר	9/9/25	59 12:25	13N File	100 KB
13085	cusv0850.130		-	9/9/25	59 13:55	130 File	3,065 KB
Local Disk (D:)	rnx2crx			12/12/	2558 20:20	Application	286 KB
THESIS	RNX2CRZ			9/9/25	59 12:12	Windows Batch File	1 KB
use_in_proposa	RNX2CRZ1			17/7/2	555 19:16	Windows Batch File	3 KB
OneDrive	📧 splname			28/5/2	553 10:56	Application	52 KB

รูป ข. 5 แสดงผลการรันคำสั่ง crx2rnx

<u>วิธีตรวจสอบดาวเทียมที่เกิด Ionosphere scintillation</u>

- 1. เลือกไฟล์ข้อมูลที่เป็นไฟล์ .sbf ในช่วงที่เราต้องการแล้วนำไปใส่ในโฟลเดอร์ for_cu
- 2. คลิกขวาที่ปุ่ม start จากนั้นเลือก Run แล้วพิมพ์คำว่า cmd กดok จะปรากฏหน้าจอตามรูป ด้านล่าง

รูป ข. 6 แสดงการเข้าสู่หน้าจอ command line

- จากนั้นพิมพ์โค้ด cd (ที่อยู่ของไฟล์ที่เราต้องการใช้) แล้วกด enter

ตัวอย่าง cd C:\Users\ARM\Desktop\for_CU

 จากนั้นพิมพ์คำสั่ง sbf2ismrเว้นวรรค-fเว้นวรรคจากนั้นพิมพ์ร แล้วกด Tab เลื่อนไป เรื่อยๆจนกว่าจะเจอไฟล์ที่เราต้องการ เว้นวรรค-rเว้นวรรค พิมพ์ชื่อไฟล์ที่เราต้องการ เสร็จแล้วกด Enter ดัง ตัวอย่าง

sbf2ismr -f SEPT0020.14_ -o SEPT0020 แล้วกด Enter

รูป ข. 7 แสดงการรันคำสั่ง sbf2ismr

Adr	ninistrator: C:\Windows\	system32\cmd.exe	- 🗆 🗙
D:\phd\for_CU\for_CU>sbf2	smr -f SEPT0020.14_	_o_SEPT0020_test	· · · · · · · · · · · · · · · · · · ·
¦			
RxType: PolaRxS_PRO sbf2ismr-5.0.0	SN:3000182	RxVersi	ion:2.3.4
Time (GPS): 21:30:00 0	Jan 2014 (TOW:423 ¦	000 WN:1773>	
4 Phi60 Sig LT C/NO	CCD TotS4 Phi60	Ph160 i 51g Ll	
; [deg][[ECU]; [: [rad] ; [s][dBHz]	ILdBHZJ [m]	Lradji Is.	ILdBH2J LmJ
IGN 6 50.3 ILICH 66	3 36.1 0.37 0.22	0.09 ; L2C	
E5b		0.06 i E5a	
IG28 49 27.8 ILICH 127		0.03 i L2C	
G17 37 30.2 (L1CH 92) 9 0.04 (L5	'3 46.4 0.13 0.07 	0.03 i L2C 926	41.3 0.17 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			- <u></u>
1007 40 31.0 LLCH 147. 8 0.03 L5		0.03 1 120 14713	42.3 0.22 0.0
L5 C13 2 51 0 114C0 216			
- $$ $+$ L5 $$ $$ $+$ L5 $$ $$		0.78 ! I.5	
 BN2 2 81.9 ULCA 6		:L2CA 658	27.0 1.50 0.5

รูป ข. 8 แสดงผลการรันคำสั่ง sbf2ismr

 จากนั้นทำการเปิดไฟล์ด้วย excel แล้วทำการคัดเลือกดาวเทียมที่มีค่า S4 index มากกว่า 0.5 เพื่อหาช่วงเวลาในการเกิด lonosphere scintillation

ภาคผนวก ค. แสดงรายละเอียด Ionospheric Scintilation Monitor Record ที่ได้จากการใช้โปรแกรม sbf2ismr

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1734	479040	3	884	0	18	39.1	0.601	0.111	0.101	0.177	0.262	0.269	0.273	-0.203
1734	479100	3	884	35	18	38.7	0.705	0.116	0.089	0.14	0.19	0.192	0.192	-0.299
1734	479160	3	884	35	18	38.8	0.62	0.115	0.088	0.132	0.171	0.176	0.176	0.227
1734	479220	3	884	35	17	39.6	0.614	0.105	0.094	0.159	0.227	0.24	0.242	0.496
1734	479340	3	884	36	17	39.9	0.574	0.101	0.085	0.157	0.221	0.226	0.229	0.846
1734	479400	3	884	36	16	38.4	0.8	0.12	0.098	0.17	0.228	0.242	0.242	0.811
1734	479460	3	884	36	16	40.3	0.538	0.096	0.056	0.098	0.117	0.122	0.124	1.029
1734	479520	3	884	36	15	36.1	0.605	0.157	0	0	0	0	0	0.8
1734	479580	3	884	36	15	40.6	0.6	0.094	0	0	0	0	0	0.059
1734	479760	3	884	37	14	38.8	0.601	0.115	0	0	0	0	0	2.393
1734	480060	3	884	38	12	38.3	1.025	0.122	0	0	0	0	0	-1.789
1734	480120	3	884	38	12	37.4	1.019	0.136	0	0	0	0	0	-2.271
1734	480240	3	884	38	11	37.3	1.175	0.137	0	0	0	0	0	0.566
1734	480300	3	884	39	11	38.3	0.731	0.122	0	0	0	0	0	-1.7
1734	480360	3	884	39	11	37.8	0.79	0.13	0	0	0	0	0	-2.262
1734	480420	3	884	39	10	36.5	1.166	0.15	0	0	0	0	0	-2.033
1734	480480	3	884	39	10	36.5	0.867	0.151	0	0	0	0	0	0.55
1734	480540	3	884	40	10	36.9	1.041	0.144	0	0	0	0	0	-0.382

ตาราง ค. 1 แสดงค่า Ionospheric Scintilation Monitor Record ได้จาก sbf2ismr

Program ของวันที่ 5 เมษายน 2013

()[scece-\$->>>>]()

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0.253	137.427	-0.541	135.685	0.322	141.168	0.135	132.182	-0.144	18104	500	18095	19.3	0.186	15.655
0.313	130.582	0.02	135.19	-0.276	134.181	-0.18	135.047	-0.124	18164	500	18155	17.4	0.172	15.169
0.518	132.229	0.344	130.535	0.701	129.992	1.031	143.243	0.301	18224	500	18215	18.9	0.298	23.111
0.331	138.845	-0.487	139.512	0.07	136.256	0.185	138.76	0.898	18284	500	18275	19.8	0.226	18.356
0.341	134.685	0.389	140.169	-0.433	141.844	-0.123	138.398	0.533	18404	500	18395	18.9	0.194	16.577
0.561	146.861	-0.123	137.57	-0.59	148.098	0.265	141.168	-0.013	18464	500	18455	17.8	0.283	22.441
0.444	135.018	0.438	136.732	-0.027	140.654	0.461	139.883	-0.326	18524	500	18515	21	0.296	23.494
0.781	133.657	32.478	152.059	-0.425	145.262	0.058	121.377	22.805	18584	500	8	16	0.339	24.895
0.575	0	0	0 -	0	0 H	0	0	0 8	34	500	29	23.8	0.429	30.563
0.406	148.965	0.614	154.819	1.054	152.392	2.562	161.312	0.248	214	500	209	17.4	0.251	19.722
0.741	0	0	0	0	0	0	0	0	57	500	53	15.7	0.274	22.688
1.351	171.469	23.612	161.588	0.457	0	0	178.961	0	17	500	12	17.4	0.49	34.341
2.238	0	0	0	0	0	0	0	0	8	500	3	17.6	0.562	37.472
1.453	0	0	0	0	0	0	0	0	27	500	23	20.5	0.523	34.341
0.533	151.773	0.129	137.389	0.595	158.332	-19.21	148.565	0.576	87	500	16	17.8	0.48	32.964
0.833	0	0	0	0	0	0	0	0	1	500	0	12.3	0.418	30.371
0.556	0	0	0	0	0	0	0	0	61	500	40	15.1	0.509	33.473

31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
2.16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.07	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.09	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.07	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.98	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2.03	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.96	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0 /	0	0	0	0	0	0	0	0	0	0
						cco@)>								

~ ~ ~			

46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001404
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001075
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001526
0	0	0	0	0	1 01	2.075	0	3 10 8	168	0	0	0	0	0.00129
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000881
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.001553
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.000617
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

*หมายเหตุ รายละเอียดแต่ละ column

- Col 1: WN, GPS Week Number
- Col 2: TOW, GPS Time of Week (seconds)
- Col 3: SVID
- Col 4: Value of the RxState field of the ReceiverStatus SBF block
- Col 5: Azimuth (degrees)
- Col 6: Elevation (degrees)
- Col 7: Average Sig1 C/N0 over the last minute (dB-Hz)
- Col 8: Total S4 on Sig1 (dimensionless)

Col 9: Correction to total S4 on Sig1 (thermal noise component only)

(dimensionless)

- Col 10: Phi01 on Sig1, 1-second phase sigma (radians)
- Col 11: Phi03 on Sig1, 3-second phase sigma (radians)
- Col 12: Phi10 on Sig1, 10-second phase sigma (radians)
- Col 13: Phi30 on Sig1, 30-second phase sigma (radians)
- Col 14: Phi60 on Sig1, 60-second phase sigma (radians)
- Col 15: AvgCCD on Sig1, average of code/carrier divergence (meters)
- Col 16: SigmaCCD on Sig1, standard deviation of code/carrier divergence (meters)
- Col 17: TEC at TOW 45 seconds (TECU)
- Col 18: dTEC from TOW 60s to TOW 45s (TECU)
- Col 19: TEC at TOW 30 seconds (TECU)
- Col 20: dTEC from TOW 45s to TOW 30s (TECU)
- Col 21: TEC at TOW 15 seconds (TECU)
- Col 22: dTEC from TOW 30s to TOW 15s (TECU)
- Col 23: TEC at TOW (TECU)
- Col 24: dTEC from TOW 15s to TOW (TECU)
- Col 25: Sig1 lock time (seconds)
- Col 26: sbf2ismr version number

Col 27: Lock time on the second frequency used for the TEC computation (seconds)

Col 28: Averaged C/N0 of second frequency used for the TEC computation (dB-Hz)

Col 29: SI Index on Sig1: (10*log10(Pmax)-

10*log10(Pmin))/(10*log10(Pmax)+10*log10(Pmin)) (dimensionless)

Col 30: SI Index on Sig1, numerator only: 10*log10(Pmax)-10*log10(Pmin) (dB)

Col 31: p on Sig1, spectral slope of detrended phase in the 0.1 to 25Hz range (dimensionless)

Col 32: Average Sig2 C/N0 over the last minute (dB-Hz)

Col 33: Total S4 on Sig2 (dimensionless)

Col 34: Correction to total S4 on Sig2 (thermal noise component only)

(dimensionless)

Col 35: Phi01 on Sig2, 1-second phase sigma (radians)

Col 36: Phi03 on Sig2, 3-second phase sigma (radians)

Col 37: Phi10 on Sig2, 10-second phase sigma (radians)

Col 38: Phi30 on Sig2, 30-second phase sigma (radians)

Col 39: Phi60 on Sig2, 60-second phase sigma (radians)

Col 40: AvgCCD on Sig2, average of code/carrier divergence (meters)

Col 41: SigmaCCD on Sig2, standard deviation of code/carrier divergence (meters)

Col 42: Sig2 lock time (seconds)

Col 43: SI Index on Sig2 (dimensionless)

Col 44: SI Index on Sig2, numerator only (dB)

Col 45: p on Sig2, phase spectral slope in the 0.1 to 25Hz range (dimensionless)

Col 46: Average Sig3 C/N0 over the last minute (dB-Hz)

Col 47: Total S4 on Sig3 (dimensionless)

Col 48: Correction to total S4 on Sig3 (thermal noise component only)

(dimensionless) Col 49: Phi01 on Sig3, 1-second phase sigma (radians)

Col 50: Phi03 on Sig3, 3-second phase sigma (radians)

Col 51: Phi10 on Sig3, 10-second phase sigma (radians)

Col 52: Phi30 on Sig3, 30-second phase sigma (radians)

Col 53: Phi60 on Sig3, 60-second phase sigma (radians)

- Col 54: AvgCCD on Sig3, average of code/carrier divergence (meters)
- Col 55: SigmaCCD on Sig3, standard deviation of code/carrier divergence (meters)
- Col 56: Sig3 lock time (seconds)
- Col 57: SI Index on Sig3 (dimensionless)
- Col 58: SI Index on Sig3, numerator only (dB)
- Col 59: p on Sig3, phase spectral slope in the 0.1 to 25Hz range (dimensionless)
- Col 60: T on Sig1, phase power spectral density at 1 Hz (rad^2/Hz)
- Col 61: T on Sig2, phase power spectral density at 1 Hz (rad^2/Hz)
- Col 62: T on Sig3, phase power spectral density at 1 Hz (rad^2/Hz)

CHULALONGKORN UNIVERSITY

ประวัติผู้เขียนวิทยานิพนธ์

ประวัติผู้เขียนวิทยานิพนธ์

ชื่อ: นางสาวพิมลพรรณ มานุจำ

วันเดือนปีเกิด: 31 ตุลาคม 2534

คุณวุฒิทางการศึกษา:

พ.ศ. 2556 วิทยาศาสตร์บัณฑิต (วท.บ.) สาขาภูมิศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ผลงานทางวิชาการ:

พิมลพรรณ มานุจำ, สุคณิศร์ สกาวรัตนานนท์ และ เฉลิมชนม์ สถิระพจน์ (2561) "ผลกระทบจากการกระเจิงของชั้นบรรยากาศไอโอโนสเฟียร์ต่อค่าความ ถูกต้องทางตำแหน่งของ GNSS" งานประชุมวิชาการเทคโนโลยีอวกาศและภูมิสารสนเทศแห่งชาติ Geoinfotech 2018, 1-2 กุมภาพันธ์ 2561

