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Chapter 1

Introduction

1.1 Introduction

Fossil has been employed as a main energy source until now. Not only fossil
fuels shortages in the near future but also emission of CO2 lead to world problem
such as global warming and climate change [1]. Green fuel production is one of the
most effective ways to alleviate the problem especially in transportation sector. Bio
fuel can be produced from various raw materials such as palm, corn, waste cooking
oil, micro algae via various methods such as biodiesel, hydrothermal liquid fraction

and hydrotreating.

Air freight transportation is the fastest and most reliable shipping method and
accounting for around 10% of global transportation energy [2]. Around 1.5-1.7 billion
barrel (47-53 billion gallons) of jet fuel per year was reported for the consumption of
worldwide aviation industry [3]. Moreover, Fig 1 shows jet fuel consumption of Thailand

per year, which increases continuously [4].
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Fig. 1.1 Jet fuel consumption of Thailand in 2009-2013



Moreover, CO, emissions from aviation sector have been included in the EU
emissions trading system (EU ETS) since 2012. This is critical as incremental of emissions
costs. Expenses of ETS can be reduced by purchasing carbon credit of CERs (Certified

Emission Reduction) from Clean Development Mechanism (CDM) [5, 6]

Hydrotreating is a suitable process for converting bio oil to biofuel because
various products such as green diesel, bio jet fuel and gasoline can be obtained [1].
These products show the similar properties with fossil fuel, especially the heating
value. Bio fuel, obtained from the hydrotreating process, can be utilized directly or
blend together with conventional fossil fuel [7]. HZSM-5 has been proven as an
effective zeolite catalyst for cracking [8]. This is because it provides lower coke
formation and good thermal stability [9]. Ni catalyst demonstrated high activity and
stability comparable to noble metals such as Pt, Pd and Ru [10]. In addition, Cu as co-
catalyst, which was used with Ni-based catalyst, can significantly improve the activity,

selectivity and stability for hydrodeoxygenation reaction [11].

The first generation biofuels are mainly obtained from edible crop plants.
However, bio fuel manufacture from edible crops was affected to expensive raw
material, this effect is called “Food Chain Material” [12]. Microalgae is non-edible and
can grow in low space acreage, which has high lipid content, higher product/area ratio
than other plants for produce bio oil. However, to achieve high, it requires high
performance cultivation technology [13]. Waste oil is one of a most promising
feedstock since low cost without changing in agricultural land use. Palm fatty acid
distillate (PFAD), an inedible byproduct from palm oil refinery is of interest since oil

palm is the most potential production among the existing Thailand's major oil crops.



1.2 Research Objectives

To produce bio jet fuel via hydrotreating process in single step reaction using

Ni and Cu catalyst doping on HZSM-5
1.3 Scope of work

1.3.1 Perform catalysts screening in batch reactor, HZSM-5 with 15% loading
metal catalyst on HZSM-5 with different Cu/Ni weight ratio (15Ni/HZSM-
5, 10Ni5Cu/HZSM-5, 7.5Ni7.5Cu/HZSM-5) were tested at operating
temperature of 375°C, H, pressure of 50 bar, reaction time of 3 h. Bio
jet yield and carbon deposition on catalyst were evaluated.

1.3.2  Investicate the continuous hydrotreating process with selected
NiCu/HZSM-5. LHSV was varied from 1-5 h™ at the temperature of 400°C,
H, pressure of 40 bar, H,/oil ratio of 100.

1.3.3  Bio jet fuel product was compared with ASTM D 1655.



1.4 Research methodology

Preparation of HZSM-5
by hydrothermal.

A 4
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l
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Fig. 1.2 Research methodology for screening catalyst



Characterization of HZSM-5 Palm oil

(Commercial-grade)

l

Impregnation Ni and Cu

catalyst on HZSM-5
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[ Characterization of NiCu/HZSM-5 j
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[ Continuous hydrotreating process ]

v

' !
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Fig. 1.3 Research methodology for continuous process
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Fig. 1.4 Characterization methodology



2.1 Bio jet fuel

Chapter 2
Theory

Bio jet fuel is an alternative fuel from oils or animal fats through chemical

process which its property closed to jet A or jet A-1 followed by American Society for

Testing and Materials ASTM D 1655 and/or aviation turbine fuel containing synthesized

hydrocarbons (hydroprocessed esters and fatty acids, HEFA) followed ASTM D 7566.

This specification and detailed requirements of aviation turbine fuels are summarized

in Table 2.1.

Table 2.1 Detailed Requirements of Aviation Turbine Fuels

Property D 1655 D 7566 ASTM Test Method
COMPOSITION
Acidity, total mg KOH/g max 0.1 0.10 D 3242
Aromatics, vol.% max 25 25 D 1319
min = 8
Sulfur, mercaptan, weight % max 0.003 0.003 D 3227
Sulfur, total weight % max 0.3 0.3 D 1266, D 1552, D 2622
VOLATILITY
Distillation temperature, °C:
10 % recovered, temperature max 205 205 D 86
Final boiling point, temperature ~ max 300 300 D 86
Distillation residue, % max 1.5 1.5 D 86
Distillation loss, % max 1.5 1.5 D 86
Flash point, °C min 38 38 D 56
Density at 15°C, kg/m3 775to 840 775to 840 D 1289
FLUIDITY
Freezing point, °C max -47 -47 D 2386
Viscosity -20°C, mm?*/s max 8 8 D 445
COMBUSTION
Net heat of combustion, MJ/kg min 42.8 42.8 D 4529




Property D 1655 D 7566 ASTM Test Method

One of following requirements

shall be met:

(1) Luminometer number, or  min 45 - D 1740
(2) Smoke point, mm, or min 25 25 D 1322
(3) Smoke point, mm, and min 18 18 D 1322
Naphthalenes, vol, % max 3.0 3.0 D 1840
CORROSION
Copper strip, 2 h at 100°C max No.1 No.1 D 130

Contaminants

Existent gum, mg/100 mL max 7 7 D 381

2.2 Hydrotreating process
2.2.1 Reaction

Bio jet fuel can be produced by hydrotreating of triglycerides through two step
processes: (1) adding hydrogen to remove oxygen from feedstock. There are three
major reaction pathways including decarbonylation, decarboxylation and
hydrodeoxygenation and (2) further refining the product to conform the jet fuel
specifications such as heat of combustion, freezing point (these reactions are including
isomerization and cracking), as showed in Fig. 2.1 [9, 14]. The H, consumption for
hydrotreating of triglycerides can be ordered by the following: hydrodeoxygenation
(HDO) > decarbonylation (DCO) > decarboxylation (DCO,) [15].

Hydrogenation Hydrogenolysis +H[édmdmxygena_‘220 N R_le,l3 .\
CH,0-CO-R= CH,0-CO-R= "2 , iso-R-CH;
2 tH, 72 +H, +H, -CO-H,0 omecaion, 150-R-CH
C‘H-O-CO-R= C‘H-O-CO-R= cH R-COOH Decarbonylaton » R-H H
-C ) .
CH,0-CO-R= CH,0-COR= " +H €Oy | o e light-R-CH,

Unsaturated Samrated Decarboxylation
Triglycerides Triglycerides

Fig. 2.1 Reaction pathway of hydrotreating process

Fig. 2.2 shows the potential energy diagram of hydrogen adsorption on Ni, Cu
and NiCu surface. The hydrogen adsorption energies or activation barriers was reported

in many literatures [16-18]. Each hydrogen molecule can easily adsorb on Ni surfaces,



while the hydrogen adsorption energies on Cu shows the value around 1.6 eV. The
large difference of the binding energies of hydrogen bound to Ni and Cu makes the
spillover of hydrogen from Ni to Cu energetically unpreferred. However, the hydrogen
atoms on Ni sites could be supplemented from gas phase hydrogen after the hydrogen
atoms spillover from hydrogen saturated Ni to Cu, the whole process is
thermodynamically preferred, giving the hydrogen dissociative adsorption on Cu is
exothermic process (0.2 eV). The spillover of hydrogen from Ni to Cu could be
promoted by increasing the chemical potential of hydrogen on Ni, which could be
achieved by increasing hydrogen adsorption pressure and temperature, or weakening

the interaction between Ni and hydrogen [19].

/ iEa~0.4eV
\
* A.‘

Ni(111)

Fig. 2.2 Potential energy diagram of hydrogen on Ni, Cu and NiCu surface [19].
2.2.2 Catalyst

Zeolites catalyst, HZSM-5 has decency for catalytic cracking processes (change
heavier component into smaller) because of it has highly crystalline, highly acidic, good
activity and well-characterized zeolites. These active sites can promote
decarboxylation and decarbonylation [20, 21]. Furthermore, low Si/Al ratio of HZSM-5
catalyst had high acid density which these could promoted isomerization and cracking

[91.
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Metal catalyst, often used in the deoxygenation of triglycerides are noble
metals (Pt, Pd, Rh) and transition metals (Ni, Co) [22]. Moreover, the metal catalyst Pd,
Pt and Ni were strongly promoted decarbonylation, decarboxylation reaction [23] and
methanation reaction [14]. Noble metals showed high activity and stability but their
high cost made the process for biofuels production ineffective on a large scale. On the
other hand, the transition metals present a low cost and good activity as noble metal

for upgrading bio oil [24, 25].

Moreover, addition of Cu to Ni/ZrO, catalyst showed a significant reduction in
gasification activity, which increased the yield of HDO products (liquid hydrocarbon),
preventing the formation of carbon and limiting the sintering on active phases of
catalysts [26, 27]. The influence of modification of the Ni catalysts by Cu metals
(geometry, electronic properties, and active sites) are in relation to their catalytic
properties [26]. Nickel of Group VII metal has free d-orbitals delocalized in the
conductivity band and copper of Group 1B also has free d-electrons. Therefore, Ni

interaction with the Group 1B metal caused the filling of d-zone [28].
2.2.3 Operating conditions

The HDO pathway is exothermic reaction which should be operated at low
temperature. However, the DCO and DCO, pathway are endothermic reaction which
not followed the trend of HDO pathways. Therefore, it should be investigated
temperature of three major pathways to find optimal condition [14]. Moreover, high
temperature was promoted cracking and isomerization due to there are endothermic

reactions [29].

The adsorbed hydrogen on active sites surface of catalyst is the function of the
hydrogen pressure, the increase of hydrogen pressure raised the solubility of hydrogen
in reactant (vegetable oil) across the catalyst surface. The HDO reaction is the main

pathway due to the larger amount of hydrogen at active site [14].

Moreover, the increase in contact time (low LHSV) lead to higher product yield
and high iso/normal alkane ratio because of allowing longer contact time between

reactant and catalyst [14].
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2.3 Raw material (biomass)

Currently, there are several kinds of raw materials for bio fuel production such
as palm, corn, soybean, algae and other. However, these raw materials were not
satisfying because use edible vegetable oil to produce bio fuel was caused some
concern in the food chain material affecting the increased in raw material prices. Palm
fatty acid distillate (PFAD) was interested as one of a potential feedstock because PFAD
was nonedible crops and it was a by-product from palm oil refinery. The fatty acid

compositions of PFAD are similar to palm oil as summarized in Table 2.2 [14] [30].

Table 2.2 Fatty acid compositions of palm oil and PFAD

Compositions (wt.%)

Fatty acid Formula

Palm oil PFAD
Lauric acid CioH260; 0.4 -
Myristic acid CiaH250, 0.8 1.1
Palmitic acid CigH3205 37.4 49.0
Palmitoleic acid Ci6H3005 0.2 0.2
Stearic acid CigH3605 3.6 4.1
Oleic acid CigH340, 45.8 35.8
Linoleic acid CigH320; 11.1 8.3
Linolenic acid CigH3005 0.3 0.3
Arachidic acid CyoHagOs 0.3 0.3
Eicosenoic acid CyoH350; 0.1 0.2
Tetracosenoic acid  CyqHg0, - 0.6

2.4 Catalyst deactivation

A major problem of hydrotreating process is deactivation of catalyst via loss of
active site. There are many causes including poisoning, coking or fouling, phase

transformation.
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Poisoning causes the loss in activity due to the strong chemisorption on the
active site of impurities in the reactant. A poison could be blocking an active site or
may alter the absorptivity of other species essentially by an electronic effect.
Moreover, poisons can change the chemical nature of active site or result in the
formation of new compounds, so that the catalyst performance is definitively altered
[31]. A conceptual two-dimensional model of sulfur poisoning of ethylene

hydrogenation on a metal surface is shown in Fig. 2.3 [32].

Fig. 2.3 Conceptual model of poisoning by sulfur atoms of a metal surface during

ethylene hydrogenation [32].

Fouling is one of the causes for catalyst deactivation. Fouling is the physical
deposition of species from fluid phase on the catalyst surface, which results in activity
loss due to blockage of sites and pores. Mechanical deposition of carbon and coke in
porous catalyst were forming processes also involve chemisorption of different kinds
of carbons or condensed hydrocarbons. Typically, carbon is a product of CO
disproportionation while coke is produced by decomposition or condensation of
hydrocarbon on catalyst. Possible effects of fouling by carbon or coke on the
functioning of a supported metal catalyst were showed in Fig. 2.4. Carbon might be (1)
chemisorb strongly as a monolayer or physically adsorb in multilayers and in either
case block access of reactants to metal surface site, (2) totally encapsulate a metal

particle and thereby completely deactivate that particle and (3) plug micro and
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mesoporous such that access of reactants is denied to many crystallites in side these
pores. Finally, in extreme cases, strong carbon filaments may build-up in pores to the
extent that they stress and fracture the support material, ultimately causing

disintegration of catalyst pellets and plugging of reactor voids [32].

Carbon Support Particle

Metal
Crystallite

Fig. 2.4 Conceptual model of fouling, crystallite encapsulation and

pore plugging of a supported metal catalyst due to carbon deposition [32].

Sintering is thermally induced deactivation of catalyst results from (1) loss of
catalytic surface area due to crystallite growth of the catalytic phase, (2) loss of support
area due to support collapse and of catalytic surface area due to pore collapse on
crystallites of the active phase. The processes of crystallite and atomic migration as

shows in Fig. 2.5 [32].

Metal
Crystallite

<« A

Support

Fig. 2.5 Two conceptual models for crystallite growth due to

sintering by (A) atomic migration or (B) crystallite migration [32].
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Coke deactivation is a main cause in hydrotreating process by hydrocracking
reaction which is the breakdown of a large molecule into smaller, especially at high
temperature. These coke affected to the activity, selectivity and stability of the catalyst
because coke formed on the catalyst which blocked access reactant to active sites

[31, 33].
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Chapter 3

Literature review

3.1 Bio fuel

Currently, the bio fuel from biomass consists of two major process which are
biodiesel and deoxygenation process. Biodiesel is product from transesterification and
esterification process of triglycerides with methanol. Biodiesel or fatty acid methyl
esters (FAMEs) has C=C bond and C=0 bonds remaining in the molecules. Therefore,
biodiesel shows low thermal stability, low heating value, high viscosity and low
oxidation stability because of its high oxygen content and unsaturated bond. On the
other hand, green fuel or production from deoxygenation process has better properties
than those of biodiesel such as high cetane number, zero oxygen containing, high

thermal stability and high oxidation stability [23].

Biodiesel has the similar combustion properties with petroleum diesel, but
biodiesel had more unsaturated bonds and showed higher oxygen content than
petroleum diesel. Catalytic cracking could decrease oxygen content in molecular
structure. Consequently, hydroprocessing is the key for development of technologies

to produce renewable bio fuels [34].

3.2 Deoxygenation process

There are many literatures about deoxygenation process such as: changing feed
stock in process for appropriate in each region, find optimum condition in process
(Temperature, H, Pressure, LHSV, feed rate) and find suitable catalyst for
deoxygenation reaction. Al-Muhtaseb et al. [35] used date pits for supported catalyst
and bio oil in deoxygenation process. Owing to date pits are considered as one of the
major agricultural wastes in Oman. Guo et al. [26] studied about using algae bio oil in
catalytic hydrodeoxygenation. The algae bio oil was interested in this process because
the length of hydrocarbon in the algae bio oil was in range of C;-C;; and the oil boiling

point was approximately 100-300°C. Date pits oil and algae bio oil have high lipid
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contents, thus, the two oils were suitable to be used in the process as Srifa et al. [14]
used palm oil (feed stock) in catalytic hydrotreating. In Thailand, palms are the major
industrial crops to produce palm oil in palm oil refinery, which this process has palm
fatty acid distillate (PFAD) as by-product. That causes PFAD was interested as raw

material for value added by catalytic hydroprocessing to produce green fuel.

In part of reaction condition and catalyst, Chen et al. [9] used 10Ni/HZSM-5
with reaction conditions at 280°C, H, pressure of 0.8 MPa, LHSV of 4 h™ and highly
purified H,/0il molar ratio of 15. The 10 wt.% Ni/HZSM-5 provided a high selectivity of
88.2% for Cs-Cyg liquid alkane, which liquid alkane has 8% of gasoline alkane, 32.5% of
jet alkane and 47.7% of diesel alkane. The interesting point in this research was
10Ni/HZSM-5 reported high content of carbon deposition after operation of 80 h that
resulting in the decrease in the conversion of FAMEs to 30.1%. Guo et al. [26] studied
the catalytic hydrodeoxygenation of algae bio oil over NiCu/ZrO, catalyst with reaction
condition at 350 °C, H, pressure of 2 MPa. This catalyst showed the highest activity of
HDO efficiency of 82% for 15.71Ni6.29Cu/ZrO, catalyst, which had higher HDO efficiency
than S-NiMo/AlL,O5 catalyst and lower coke deposit on catalyst. Thus, the addition of
Cu with Ni catalyst could promote the increasing of HDO efficiency and decreasing of
coke deposit on catalyst. For noble metal, Sotelo-Boyas et al. [29] studied about noble
metal catalyst compared with bimetal catalyst for renewable diesel production from
the hydrotreating. The interesting result in this work was the bimetal catalyst
(NiMo/ALO3) showed lower yield of diesel than noble metal catalyst (Pt-HY) due to
the less acidity of Pt-HY. The research of Srifa et al. [23] showed catalytic activity was
in the order of Co > Pd > Pt > Ni for green diesel production in hydrodeoxygenation

of palm oil.

Moreover, there are many researches in the topic of green fuel or
deoxygenation as well. They investigated about reaction condition, catalyst, feed stock

and process as shows in Table 3.1 (Batch process) and Table 3.2 (Continuous process).
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Table 3.1 Batch process
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Table 3.2 Continuous process
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Chapter 4

Experimental

4.1 Material

The PFAD used in this experiment was provided from Patum Vegetable Oil CO,,
LTD., Thailand and refined palm olein from Morakot Industries PCL., Thailand. HZSM-5
pellet was purchased from Riogen. Inc., USA. TPABr, Na,SiOs, A(NOs)ze 9H,0, Ni(NO,),
6H,0 and Cu(NOs), « 3H,0O were purchased from S.M. Chemical CO., LTD., Thailand.

4.2 Catalyst preparation

The HZSM-5 (Si/Al molar = 20) was prepared by 0.03 mol of tetrapropyl
ammonium bromide (TPABr) as a structure-directing substance dissolved in 50 ml of DI
water. 1 mol of sodium silicate and 0.05 mol of aluminium nitrate were dissolved
separately in each 20 ml of Dl water. Si and Al precursors were added in TPABr solution
dropwise under stirring and controlled in the range of pH value of 10.5-10.6 and then,
stired for 30 minute at room temperature. The obtained gel was putted in an
autoclave, then heated the mixture to 200°C and held for 24 h. The product was
washed with DI water until pH equals to neutral. After that, this powder was dried at

110°C for overnight. Finally, it was calcined under air atmosphere at 550°C.

The obtained NaZSM-5 was further ion-exchanged to achieve HZSM-5 by the
following steps: 1 ¢ of NaZSM-5 was stirred with 20 ml of 1 M NH4;NO5 solution for 2 h
and then repeated for 3 times. Then, washed with DI water until pH equals 7, dried at
110°C for overnight. Finally, it was calcined under air atmosphere at 550°C for 5 h. The
preparation method of NiCu/HZSM-5 catalyst was shown in Fig.4.1.
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Fig. 4.1 NiCu/HZSM-5 catalyst preparation

For continuous hydroprocessing, commercial pellet HZSM-5 (2.0 mm dimeter)
was employed as support. It was dried at 110°C for overnight before use. The HZSM-5
supported NiCu catalyst was prepared by incipient wetness impregnation. Firstly,
aqueous solution of Ni(NOs),-6H,0 and Cu(NOs),-3H,0 were mixed to obtain Cu/Ni mass
ratio 12.5Ni2.5Cu wt.%. After that, the mixture of Ni and Cu was dropped on HZSM-5,
and was dried by oven at 110°C for overnight to remove moisture. Finally, the resultant

substance was calcined at 550°C for 5 h to obtain 12.5Ni2.5Cu/HZSM-5 catalyst.
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4.3 Catalyst characterization

The crystal structure of catalyst was analyzed by X-ray diffraction (XRD) (Bruker
of D8 Advance, 26 in the range of 5°-80°).

N, physisorption on BET method was applied to find specific surface area, pore
volume and pore diameter of catalyst (using Micromeritics ASAP 2020) at liquid nitrogen

temperature of -196°C.

Acidic sites of catalyst were determined by NH;-TPD method (Micromeritics
Chemisorb 2750 Pulse Chemisorption System). Firstly, the sample (0.1 g) was prepared
into U tube of TPX machine under a He gas flow at ramp rate of 10°C/min to 500°C
and held for 30 min. After that, the system was cooled down to 100°C and then
ammonia was adsorbed until its saturation for 1 h. Finally, removing excess ammonia
under the He gas flow until completely about 1 h and then the system was heated

up to 550°C at ramp rate of 10°C/min to desorb ammonia.

Scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM
and EDX) were applied to investigate the morphology of catalyst (Hitachi mode S-
3400N for SEM while Link Isis series 300 program for EDX).

Coke deposition of used catalyst was determined by thermogravimetric analysis

(TGA). The sample was heated up to 1000°C with the ramp rate of 10°C/min.

4.4 Hydrotreating process

To find the optimum Cu/Ni ratio in catalyst, 15Ni wt.%, 12.5Ni2.5Cu wt.%,
10Ni5Cu wt.% and 7.5Ni7.5Cu wt.% on HZSM-5 were investigated. The hydrotreating
reactions were tested in 100 ml batch reactor with internal diameter of 40 mm and
equipped with a mechanical stirrer. The operation limits of reactor were total pressure
of 100 bar and 600°C. The catalysts were pre-reduced at reduction temperature of
550°C under hydrogen gas flow rate of 30 ml/min for 2h. Then, the feed consisted of
the warmed PFAD (80°C) and the reduced catalyst in a weight ratio of PFAD:catalysts
of 30:1. H, gas was charged into the reactor to the initial pressure of 50 bar. The reactor

was then heated up to target temperature (375°C) and the reaction was proceeded for
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3 h under stirring speed of 400 rpm. After the reactor was cooled down to room
temperature, the gas and liquid products were collected. Fig.4.2 showed the schematic

of batch catalytic hydrotreating process for screening catalyst.

Green product

H, tank

Autoclave

Fig. 4.2 Schematic of batch catalytic hydrotreating process for catalyst screening

Fig.4.3 showed the schematic of continuous catalytic hydrotreating process of
palm oil, which was carried out in high-pressure fixed-bed reactor with an internal
diameter of 0.952 cm, length of 40 cm and volume of 30 cm®. The catalyst (7.2 g. with
a catalyst bed volume of 7 ml) was loaded into a reactor and reduced before start the
reaction by heating catalyst to 450°C under H, gas flow for 2 h. After the system was
reduced to the room temperature, palm oil was fed by HPLC feeding pump and mixed
with a H, gas flow in preheater at 100°C. Then, the mixture was introduced into the
reactor at 400°C, H, pressure of 40 bar, LHSV of 1-5 h'l. Condenser and gas-liquid

separator were used to collect the gas and liquid products.
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Fig. 4.3 Schematic diagram of continuous catalytic hydrotreating process

4.5 Product analysis

The gas products (H,, CO, CO,, C;-C4 alkanes) were analyzed by GC (Shimadzu-
14b) equipped with a pack column (Porapax Q, 30 mx0.25 mm), and thermal
conductivity detector (TCD). The composition of liquid product was analyzed by GC-
FID (Shimadzu-14b) equipped with a capillary column (DB-2887, 30mx0.25 mm) and
GC-MS (Shimadzu QP2010) equipped with a capillary column (Rtx-5MS, 30 mx0.25 mm)
and MS detector. The conversion of feed, product selectivity and product yield were

calculated using the following Equations (1), (2) and (3) respectively [30].

Feed —Product
360+ 360+ 100 1)

Conversion(%) =
Feedzgo+

Product sg_>z90—Feed zo—
150—250 150—250 X 100 )

f oy —
Jet fuel selectivity(%) Feodyeo, —Productseos

Jet fuel Yield(%) = Conversion X Selectivityi X Liquid fraction . (3)
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Here, Feedsq, is weight percent of the feed having boiling point higher than
360°C. Productse, is weight percent of the product having boiling point higher than
360°C.

Feedisp_o50 and Product;sy_ps50 are weight percent of the feed and products,

respectively, which have a boiling point between 150 and 250°C (jet fuel molecules).

Moreover, the fraction distillated of boiling point between 65 to 150°C were
defined as gasoline range and boiling point between 150 to 360°C were defined as

diesel range [30].
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Chapter 5

Results and discussion

This chapter is divided into two parts. Part 5.1 represented the effect of
monometallic catalyst (15Ni wt.9%/HZSM-5) and bimetallic catalyst (12.5Ni2.5Cu wt.%,
10Ni5Cu wt.% and 7.5Ni7.5Cu wt.%/HZSM-5) in batch hydrotreating process with
autoclave reactor. Part 5.2 illustrated the selected 12.5Ni2.5Cu wt.% loading on

commercial pellet-type HZSM-5 catalyst in continuous hydrotreating process.

5.1 Effect of different %ometal loading catalysts (NiCu/HZSM-5)
5.1.1 Catalyst characterization
5.1.1.1 X-ray diffraction (XRD)

XRD patterns of the catalysts are shown in Fig. 5.1. The XRD patterns of HZSM-
5 gave a typical pattern of MFI structure (28 around 23.0°and 23.8° corresponding to
the major peak of [303] and [503] crystal plane [37]. The XRD pattern of NiO showed
the crystalline pattern as the standard NiO pattern. All diffraction peaks can be well
indexed as face-centered cubic phase at 26 =37.1°,43.1°, 62.6°, 75.3° and 79.1° which
are assignable to [111], [200], [220], [311] and [222] crystal planes, respectively. [38]
The XRD diffraction peaks of all Cu-loading catalysts exhibited at 28 = 37.1° and 43.1°

which are assignable to [111] and [220] crystal planes [38].
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Fig. 5.1 The XRD patterns of monometallic (15Ni wt.%.) and bimetallic
(12.5Ni2.5Cu wt.%, 10Ni5Cu wt.% and 7.5Ni7.5Cu wt.%) on HZSM-5 supported

catalyst.

5.1.1.2 Ammonia temperature programmed desorption (NH5-TPD)

Ammonia temperature programmed desorption (NHs-TPD) is a common
technique to determine the acidity on the surface of catalysts. The strong and weak
acidities were related to the desorption temperature. Moreover, the total amount of
ammonia desorption was considered to correspond with the amount of total acidity

at surface of catalysts [9].
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Table 5.1 Acidity from NH5-TPD of NiCu/HZSM-5 catalysts

Acid density (mmol H*/g cat)

Samples Total acid site
Weak acid site Strong acid site
HZSM-5 0.92 1.04 1.96
15Ni/HZSM-5 1.28 0.61 1.89
12.5Ni2.5Cu/HZSM-5 1.28 0.80 2.07
10Ni5Cu/HZSM-5 1.19 0.80 2.00
7.5Ni7.5Cu/HZSM-5 1.11 0.88 1.98

NH4-TPD profiles of catalysts were determined in the temperature range of 100-
800°C. According to Fig.5.2, the two maximum desorption peaks for each catalyst were
shown in TPD curves. The peak at high temperature was denoted as strong acid site,
whereas another peak at low temperature was assigned to weak acid site [39]. These
desorption peaks were de-convoluted and summarized to obtain the amount of weak
and strong acid densities as reported in Table 5.1. For HZSM-5 supported catalyst, two
distinct desorption peaks of NH; appeared about 240°C and 435°C. The desorption
peak at low temperature was defined as weak acid while the peak centered at high
temperature was defined as strong acid [39]. After Ni and Cu loading, the peak position
of weak and strong acidic sites shifted to higher temperature which caused by Brgnsted
and Lewis acid sites. From the research reported that the Lewis acid sites could
originate from the high dispersion of copper species at high temperature [40]. In
addition, the strong acid was decreased while weak acid was increased after Ni and
NiCu was added due to Brgnsted acid protons of Ni** and Cu?* [9, 40]. The total acid
sites of NiCu/HZSM-5 catalysts were in the range of 1.89-2.07 mmol H'/g. cat.
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Fig. 5.2 NH5-TPD profiles of NiCu/HZSM-5 with different Cu/Ni ratios.
5.1.1.3 Hydrogen temperature programmed reduction (H,-TPR)

H,-TPR was applied to investigate the activation temperature of NiCu/HZSM-5
catalyst for HDO reaction. The H,-TPR profile of catalysts were given in Fig. 5.3.
The 15wt.%Ni/HZSM-5 revealed a significant peak at temperature approx. 400°C, which
was attributed to the reduction of NiO. The reduction peak between 230°C and 300°C
was likely associated with the reduction of Cu®" to Cu’ [26]. The peaks higher than
300°C were associated the reaction of bimetallic NiCu species [41] and the reduction
of Ni** to Ni° [26]. As reported by TPR curve of NiCu/HZSM-5 catalysts, the reduction
peaks shifted to a low temperature (centered at approximately 340°C for 12.5Ni2.5Cu,
285°C for 10Ni5Cu and 240°C for 7.5Ni7.5Cu on HZSM-5 supported catalyst,
respectively) compared with 15Ni/HZSM-5. As a consequence, NiCu/HZSM-5 catalyst
was conducted. The result revealed that it could promote the metal oxide reduction.
This was because temperature reduction was dropped after Cu was added on

Ni/HZSM-5 catalyst [28]. This observation recommended that the Gibbs free energy of
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reduction of bimetallic NiCu sample was lower for this oxide (-100.65 kJ/mol at 25°C)
than for NiO (-12.31 kJ/mol at 25°C) [42].

Furthermore, Table 5.2 summarized the reducing temperature and the amount
of oxygen atoms removed which were measured by H,-TPR analysis with different
Cu/Ni ratios. NiCu/HZSM-5 displayed the amounts of oxygen atoms which were

removed in the range of 0.02-0.04 mmol/¢.

Table 5.2 Reducing temperature and amount of oxygen atoms removed

Oxygen atoms removed

Samples Tonax (°C)
(x10° mol/g) (x10* atom/g)
15Ni/HZSM-5 430 0.04 2.53%10%
12.5Ni2.5Cu/HZSM-5 380 0.03 1.98x10%
10Ni5Cu/HZSM-5 340 0.03 1.79%x10%
7.5Ni7.5Cu/HZSM-5 320 0.02 1.95%x10%

7 5Ni7.5Cu/HZSM-5
-
[y
2 1ONISCU/HZSM-5
o
(]
'_
ASNQ.SCWHZSM—S
15NI/HZSM-5
100 200 300 400 500

Temperature (°C)

Fig. 5.3 H,-TPR profiles of NiCu/HZSM-5 with different Cu/Ni ratios.



5.1.1.4 Scanning electron microscopy analyses and energy dispersive x-ray

spectroscopy (SEM-EDX)
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Fig. 5.4 SEM-EDX images of NiCu/HZSM-5 with different Cu/Ni ratios

(red points are NiO and green points are CuO)
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From Fig.5.4a-5.4e, SEM images (a. HZSM-5, b. 15Ni/HZSM-5, c. 12.5Ni2.5Cu/HZSM-5,
d. 10Ni5Cu/HZSM-5, e. 7.5Ni7.5Cu/HZSM-5), indicated the similar particle size (approximate
5 um) and had hexagonal cubic morphology. According to Fig.5.4f-5.4i, EDX mapping
images of catalysts, which are f. 15Ni/HZSM-5, ¢. 12.5Ni2.5Cu/HZSM-5, h.
10NiI5Cu/HZSM-5, i. 7.5Ni7.5Cu/HZSM-5, showed well dispersed of Ni and Cu on
catalyst surface. Furthermore, the percent weight of metal on the catalyst surface

measured by EDX technique was according with the percent weight of loaded metal.
5.1.1.5 No-physisorption

The physical structure properties of NiCu/HZSM-5 catalysts were shown in
Table 5.3. Bare HZSM-5 support had BET surface area of 332.1 m”/g. After impregnation
with Ni and NiCu, the BET surface area decreased to 263.45 m?/g for 15Ni/HZSM-5 and
232.11-262.99 m?%/g for NiCu/HZSM-5 with different Cu/Ni loading ratios. In this case, it
could be explained by the SEM images in Fig.5.4 that they showed well dispersed of
Ni and Cu particles on catalyst surface but the added Ni and NiCu might block the
channels of HZSM-5 catalyst surface, leading to decrease in surface area and increase
in pore size [43, 44]. In addition, the pore sizes of catalysts were in the range of 21.2

to 27.8 A° which are macro sizes.

Table 5.3 BET surface areas, pore volume and pore size of NiCu/HZSM-5 catalysts

BET Surface area Pore Volume Pore Size
Catalyst )

(m?/g) (cm?/g) (A°)
HZSM-5 332.15 0.178 21.4
15Ni 263.45 0.183 27.8
12.5Ni2.5Cu 238.45 0.133 22.3
10Ni5Cu 232.11 0.150 25.4
7.5Ni7.5Cu 262.99 0.139 21.2

Determined by N, physisorption
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5.1.2 Catalyst hydroprocessing
5.1.2.1 Effect of catalysts

Fig. 5.5 shows the effect of different Ni and Cu loading on PFAD conversion and
selectivity of the liquid product. under the reaction conditions temperature of 375°C,
H, pressure of 50 bar and 3 h of reaction time. The product yield is displayed in Fig.
5.6 and summarized in Table 5.4. Comparing to HZSM-5, doping with 15wt% Ni
provided slightly PFAD conversion; however, selectivity of diesel decreased with
increasing of gasoline selectivity. This is because Ni could promote cracking of Ni-H,
bond activity for 15Ni/HZSM-5. In addition, the added 2.5wt.%Cu on HZSM-5 could
improve the activity of Ni due to H, spillover. However, the excess amount of Cu
loading (5wt.%, 7.5wt%) caused the reduction of Ni activity because the content of Ni

on catalyst decreased and Cu might be block active site [45].

As a result, 12.5Ni2.5Cu/HZSM-5 provided the highest conversion and jet fuel
yield of 94.79% and 39.27%, respectively. In detail, each hydrogen molecule could
easily adsorb on Ni surfaces than Cu surfaces because Cu had higher biding energies of
hydrogen bond than Ni. In addition, the large difference of the binding energies of
hydrogen bound to Ni and Cu makes the spillover of hydrogen from Ni to Cu
energetically unpreferred. Therefore, the hydrogen atoms on Ni sites could be
supplemented from gas phase hydrogen after the hydrogen atoms spillover from Ni to
Cu which promoting hydrogenation reaction. Moreover, the spillover of hydrogen from
Ni to Cu could be promoted by increasing the chemical potential of hydrogen on Ni,
which could be achieved by increasing hydrogen adsorption pressure and temperature,
or weakening the interaction between Ni and hydrogen [28]. However, the further
increase of Cu in excess on catalyst had affect to active hydrogen would be too weak

because the Cu block the Ni on surface catalysts [19].



Table 5.4 Effect of catalysts on liquid products
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Selectivity (%) Yield (%)
Conversion  Liquid
Catalyst Green Bio  Green
(%) fraction Gasoline Bio jet Gasoline
diesel jet diesel
HZSM-5 76.75 0.70 23.41 43.35 33.24 12.58 2329 17.86
15Ni/HZSM-5 78.49 0.74 28.90 43.27 27.83 16.78 2513 16.17
12.5Ni2.5Cu/HZSM-5 94.79 0.83 36.90 49.92 13.18 29.03 39.27  10.37
10Ni5Cu/HZSM-5 67.86 0.86 14.98 44.97 40.05 8.75 26.24  23.38
7.5Ni7.5Cu/HZSM-5 65.98 0.86 19.48 44.96 35.56 11.05 2551  20.17
100
I Conversion
VZZZZZ2) Gasoline selectivity
Jet fuel selectivity
80 1 [ Green diesel selectivity
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Fig. 5.5 Effect of catalysts on conversion and selectivity from the liquid product in

batch reactor (Temperature of 375°C, H, pressure of 50 bar, reaction time of 3 h,,

catalyst of 1 g. and PFAD of 30 g.).
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Fig. 5.6 Effect of catalysts on product yield

Table 5.5 Compositions of liquid product by GC-MS analysis (vol.%)

Composition HZSM-5 15Ni/HZSM-5 12.5Ni2.5Cu/HZSM-5
N-alkane 36.70 34.82 27.67
Iso-alkane 49.05 a7.87 48.74
Alicyclic 2.92 4.08 5.52
Alkylbenzene 5.73 7.24 10.36
Toluene 2.66 2.12 3.60
Alkene 2.12 2.84 2.63
Alkyne 0.81 1.01 1.47
Iso/Normal ratio 1.34 1.37 1.76
Aromatic 8.39 9.38 13.96
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Table 5.5 shows the composition of liquid products which were n-alkane, iso-
alkane, alicyclic, alkybenzene, toluene, alkene, alkyne, iso/normal ratio and aromatic.
HZSM-5 and 15Ni/HZSM-5 had a similar iso/normal ratio and aromatic content. The
12.5Ni2.5Cu/HZSM-5 exhibited the highest iso/normal ratio of 1.76 and aromatic
content of 13.96 vol.%. High isomerization and aromatization product is preferred for
jet fuel because the better cold flow property and heat of combustion. From this
result, it could be said that doping with 2.5% Cu (12.5Ni2.5Cu/HZSM-5) could improve
the isomerization and aromatization reaction which might be the fact that hydrogen

was saturated on surface area of catalyst by hydrogen spillover.

5.1.2.2 Deactivation of catalysts

Fig. 5.7 shows the TGA analysis of spent catalysts at 40-1000°C. The weight loss
at the temperature lower than 200°C was approximate 3% for all catalysts which
should be corresponding to the amount of water desorption while the temperature
between 200-420°C was a volatile substance. The weight loss of carbon was depended
on temperature between 420-670°C. From this figure, HZSM-5 promoted the highest
amount of coke formation ca. 8 wt.%. 15Ni/HZSM-5 had amount of coke formation ca.
7 wt%. Although 12.5Ni2.5Cu/HZSM-5 exhibited much higher activity,
12.5Ni2.5Cu/HZSM-5 showed amount of coke formation approx. 5 wt.%. which was
similar to that of 10Ni5Cu/HZSM-5 and slightly higher than 7.5Ni7.5Cu/HZSM-5. This
might be due to the fact that the hydrogen spillover of active hydrogen was saturated

on surface area when Cu was added and therefore preventing coke formation [26].
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Fig. 5.7 TG analysis of the catalysts
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5.2 Effect of NiCu/HZSM-5 in continuous hydrotreating process

5.2.1 Catalyst characterization

5.2.1.1 X-ray diffraction (XRD)

XRD patterns of HZSM-5 powder and commercial pellet-type HZSM-5 were

shown in Fig. 5.8. They exhibited a typical pattern of MFI structure (26 around 23.0°and

23.8° corresponding to the major peak of [303] and [503] crystal planes, respectively

[37]. Fig. 5.9 showed the XRD pattern of 12.5Ni2.5Cu/HZSM-5 powder compared with

the commercial pellet-type. The XRD pattern of NiO showed the crystalline pattern as

the standard NiO pattern. The diffraction peaks can be well indexed as face-centered

cubic phase at

20 =37.1°, 43.1°, 62.6°, 75.3° and 79.1° which are assignable to [111],

[200], [220], [311], and [222] crystal planes, respectively [38]. The XRD diffraction peaks

of all Cu-loading catalysts exhibited at 26 = 37.1° and 43.1° which are assignable to

[111] and [220] crystal planes, respectively [38].
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Fig. 5.8 The XRD patterns of HZSM-5 in-house synthesized powder and

commercial pellet-type catalyst
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5.2.1.2 Ammonia temperature programmed desorption (NH;-TPD)

NH5-TPD profiles of catalysts were recorded in the temperature range of
100-800°C. NH5-TPD profile of 12.5Ni2.5Cu/HZSM-5 powder and commercial pellet-
type were shown in Fig. 5.10. As summarized in Table 5.6, the total acid density of
commercial pellet-type HZSM-5 catalyst was lower than that of powder catalyst. This
was because commercial pellet-type catalyst had Si/Al ratio of 25 whereas the in-

house synthesized powder catalyst had Si/Al ratio of 20.

12.5Ni2.5Cu/HZSM-5 (Powder)

TCD Signal

12.5Ni2.5Cu/HZSM-5 (Pellet)

200 400 600 800

Temperature (OC)

Fig. 5.10 NH5-TPD profiles of 12.5Ni2.5Cu/HZSM-5 commercial pellet-type catalyst

Table 5.6 Acidity from NH;-TPD of 12.5Ni2.5Cu/HZSM-5 catalysts powder and

commercial pellet-type

Acid density (mmol H'/g cat) Total
Samples
Weak acid site Strong acid site acid site
12.5Ni2.5Cu/HZSM-5 (Powder) 1.28 0.80 2.08

12.5Ni2.5Cu/HZSM-5 (Pellet) 0.67 0.57 1.24
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5.2.1.3 Hydrogen temperature programmed reduction (H,-TPR)

The report in Fig. 5.11 by TPR curve of commercial pellet-type HZSM-5 catalyst,
the reduction peaks of NiO and CuO shifted to a higher temperature compared with
that of powder catalyst. In addition, the high reduced temperature by H,-TPR analysis
of commercial pellet-type HZSM-5 catalyst was found at 430 °C.

12.5Ni2.5Cu/HZSM-5 (Powder)

TCD Signal

12.5Ni2.5Cu/HZSM-5 (Pellet)

200 300 400 500

Temperature (°C)
Fig. 5.11 H,-TPR profiles of 12.5Ni2.5Cu/HZSM-5 commercial
pellet-type catalyst

5.2.1.4 Scanning electron microscopy analyses and energy dispersive x-ray
spectroscopy (SEM-EDX)

From Fig.5.12a-5.12c, SEM images of 12.5Ni2.5Cu/HZSM-5 indicated the similar
particle size (approximate 2 pm). According to Fig.5.12d, EDX mapping images of
catalyst showed well dispersed of Ni and Cu on catalyst surface. Furthermore, from
the result of EDX, it was found that percent weight of metal on catalyst surface was

similar to the calculated metal loading.
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Fig. 5.12 SEM-EDX images of 12.5Ni2.5Cu/HZSM-5 commercial pellet-type catalyst

(red points are NiO and green points are CuO)

5.1.1.5 Np-physisorption

The physical structure properties of NiCu/HZSM-5 catalysts were shown in
Table 5.7. Pellet-type HZSM-5 had BET surface area of 328.1 m?/g. After impregnation
with 12.5%Ni and 2.5%Cu, the BET surface area decreased to 246.4 mz/g. In addition,
the pore size of catalysts was in the range of 36.4 to 38.5 A° which was bigger than the
pore size of HZSM-5 powder.
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Table 5.7 BET surface areas, pore volume and pore size of NiCu/HZSM-5 powder and

commercial pellet-type

BET Surface

Pore Volume

Catalyst Pore Size (A°)
area (m%/g) (cm?/g)
HZSM-5 (Powder) 332.1 0.178 21.4
12.5Ni2.5Cu/HZSM-5 (Powder) 238.4 0.133 22.3
HZSM-5 (Pellet) 328.1 0.316 38.5
12.5Ni2.5Cu (Pellet) 246.4 0.224 36.4

5.2.2 Catalyst hydroprocessing

5.2.2.1 Effect of LHSV

Fig. 5.13-5.14 showe the effect of LHSV on hydroprocessing performance

(conversion, selectivity and product yield) under the reaction conditions of 400°C, 40

bar and reaction time 4 h. As summarized in Table 5.8, the catalysts had similar liquid

fraction of 0.75 LHSV at 1 h''. Conversion decreased from 96.07% to 90.1 and 46.61%

when increased LHSV from 1 to 2 and 5 h'. Similar tendency of jet yield as a function

of LHSV can be observed. This result could be explained by the fact that lower LHSV,

lower residence time for deoxygenation and cracking. However, at LHSV of 1 h™, the

flow of liquid product was not smooth and steady state operation is difficult to reach.

Table 5.8 Effect of LHSV on liquid products

Selectivity (%) Yield (%)
Conversion Liquid
LHSV (h™) Green Green
(%) fraction Gasoline Bio jet Gasoline  Bio jet
diesel diesel
1 96.07 0.75 22.02 71.09 6.89 15.87 51.22 4.96
2 90.10 0.75 28.69 62.46 8.56 18.63 40.56 5.74
5 46.41 0.75 27.17 49.80 23.03 9.46 17.34 8.02
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Fig. 5.15 Effect of LHSV on a gas product composition

Gas product composition including H,, CO, CO, and CHy4 are shown in Fig.

5.15. It is worth to note that due to the presence of CO, CO,, water and hydrogen, the
reactions such as water gas shift and methanation could also take place. Therefore,
identifying the reaction between decarboxylation and decarbonylation is difficult.
However, it is obvious that the fraction of H, decreased with decreasing LHSV because
H, consumption from deoxygenation and cracking reaction. Moreover, H, consumption
by methanation was more pronounced with lower LHSV as indicating by high fraction

of methane.
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Table 5.9 Composition of liquid product (before distillation) and bio jet range product
(after distillation) of 12.5Ni2.5Cu/HZSM-5 pellet by GC-MS analysis (vol.%)

Composition Liquid product Bio jet fuel
N-alkane 19.61 25.77
Iso-alkane 33.97 49.53
Alicyclic 4.75 2.47
Alkylbenzene 26.87 22.02
Toluene 11.85 -
Alkene 1.02 0.20
Alkyne 1.94 -
Iso/Normal ratio IS 1.92
Aromatic 38.72 22.02

Table 5.9 shows the composition of liquid product (before distillation) and bio
jet range product (after distillation) of 12.5Ni2.5Cu/HZSM-5 commercial pellet-type
which were n-alkane, iso-alkane, alicyclic, alkybenzene, toluene, alkene, alkyne,
iso/normal ratio and aromatic. Liquid product had iso/normal ratio and aromatic of
1.73 and 38.72 vol.%, respectively. After liquid product was distilled to bio jet fuel,
iso/normal ratio increased to 1.92 because iso-alkane compositions were mainly found
in jet range (Cy-C44) while aromatic volume decreased to 22.02 because some aromatics
were in the range of light hydrocarbon (Cs-Cg) such as toluene, methylbenzene. From
this result, iso/normal ratio was similar with hydrotreating process in batch reactor
(12.5Ni2.5Cu/HZSM-5 powder catalyst). Furthermore, Table 5.10 showed the net heat
of combustion and aromatic volume at 42.29 MJ/kg and 24.49%, respectively which

comply to ASTM D 1655 and ASTM D 7566.

Table 5.10 Quality of bio jet fuel compared with ASTM D 1655 and ASTM D 7566

Property D 1655 D 7566  Bio jet fuel

Net heat of combustion (MJ/kg) ~ min 42.8 42.8 42.92
Aromatic, vol. % max 25 25 22.02
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5.2.2.2 Stability and deactivation of catalyst

To investigate the catalyst stability, 12.5Ni2.5Cu/HZSM-5 was used continuously
for the the catalytic hydroprocessing of palm oil at 400°C, H, pressure of 40 bar, LHSV
of 2 h™ and H,/oil molar ratio of 100. As shown in Fig. 5.16, high catalyst stability is
observed over 36 h; however, conversion decreased from 90.09% to 36.50% after the
operation time of 103 h. Comparing to research used 10Ni/HZSM (Si/Al = 25) and
operation conditions at lower temperature of 280°C, H, pressure of 40 bar, LHSV of 1
h™* and H,/oil molar ratio of 15 in catalytic hydroprocessing of FAME aiming to produce

diesel. They revealed that conversion decreased from 85% to 30% within 80 h [9].
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Fig. 5.16 Stability of 12.5Ni2.5Cu/HZSM-5 in catalytic hydroprocessing
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Chapter 6 Conclusions and recommendation

6.1 Conclusions

In this study, the bimetallic NiCu/HZSM-5 catalysts were prepared by incipient
wetness impregnation. The physicochemical properties of catalysts were investigated
by XRD, NHs-TPD, H,-TPR, SEM-EDX, N,-physisorption. The different loadings of Cu/Ni
mass ratio of the catalyst were studied in batch reactor for catalyst screening. At the
operating temperature of 375°C, initial H, pressure of 50 bar and reaction time of 3 h,
12.5Ni2.5Cu/HZSM-5 exhibited the highest PFAD conversion of 94.79% and provided a
highest bio jet yield of 39.27%. The 12.5Ni2.5Cu/HZSM-5 catalyst was selected for
further use in continuous hydrotreating process. The reactions were operated at
temperature of 400°C, H, pressure of 40 bar, H,/oil molar ratio of 100. The most
suitable LHSV of 2 h™* condition was found to achieve high conversion (90.1%) and jet
yield (40.6%) with a stable operation. The conversion gradually dropped over 80 h of
the operating time (approx. 65.0% conversion) and then suddenly drops to 36.5%
conversion at 103 h. It might be caused by coke deposition on surface catalyst of the
catalyst. To examine the properties of the bio jet fraction, liquid products were
distillated to obtain the jet range product. The distilled bio jet contained the net heat
of combustion and aromatic volume of 42.29 MJ/kg and 24.49%, respectively which

comply to ASTM D 1655 and ASTM D 7566.
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6.2 Recommendations

1. The liquid products of continuous hydrotreating process with 12.5Ni2.5Cu on
HZSM-5 had high aromatic content including alkylbenzene and toluene. After
distillation, these components are mainly in lighter fraction. It is suggested to
analyze a possibility of using this light fraction as a chemical solvent rather than

gasoline fuel.

2. The properties of bio jet fuel such as density, viscosity, freezing point and the
others should analyze to compare with ASTM D 1655 and ASTM D 7566. In this
thesis does not report because the properties require high amount of bio jet

fuel.
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Appendix A

Calculation for catalyst preparation

A.1 Calculation of weight and volume of component for ZSM-5 synthesis (Si/Al mole

ratio = 20)
Formula:

SiO, 1 mol : AUNO3); 0.05 mol : TPABr 0.03 mol : H,O 60 mol

Example 1: Basis on H,0O 6 mol
SiO, 0.1 mol : ANO3); 0.005 mol : TPABr 0.003 mol : H,O 6 mol
Si0,0.1 mol: 0.1 mol X 2L =6g

1 mol
AUNO,); 0.005 mol : 0.005 mol x 2228 E 1876
TPABr 0.003 mol : 0.003 mol x 22228 26g =0.79g
H,0 6 mol : 6 mol x —=. xl—ml—108g

A.2 lon Exchange: preparation of NH;NO5; 1 M in 100 ml H,O

100
NHGNO; 100 ml: NH;NO5 80 X — =8¢

A.3 Impregnation: preparation of 10Ni5Cu on 2 g. of HZSM-5 supported catalyst

10 g of Ni 1molofNi 1 molofNi(NO3), - 6H,0 290.81 g of Ni(NO3), - 6H,0 1
X X X X ——
85 g of (HZSM — 5) * 58.69 g of Ni 1 mol of Ni 1 mol of Ni(NO3), - 6H,0 =~ 0.97
=1.201 g of Ni(NO,), - 6H,0

2 gof (HZSM — 5) x

5gof Cu 1molof Cu 1 molof Cu(NO3),6H,0 241.6 g of Cu(NO3), - 6H,0 1
2 gof (HZSM - 5) x X X X X —
85 g of (HZSM —5)  63.55 gof Cu 1 mol of Cu 1 mol of Cu(NO3), - 6H,0 = 0.98

= 0.456 g of Ni(NO5), - 6H,0




Appendix B

Calculation for acid density of catalyst

Calculation of the total acid sites by ammonia temperature program

desorption (NH5-TPD) is as following:

From the calibration curve of 15%NH; in Ar gas.
y = 36.093 - x

y is concentration of acid

x is total peak area

y

Then: Acid denSIty p weight of catalyst

Example 1:
total peak area = 1.221

weight of catalyst = 0.0548 ¢

y ~36.093 x 1.221
weight of catalyst 0.0548

Acid density = = (0.802 mmol/g
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Appendix C

Calculation for oxygen atoms removed of catalyst

Calculation of the oxygen atoms removed by hydrogen temperature program

reduction (H,-TPR) is as following:

From the AgO is standard
Basis:  AgO could remove O of 100%

AgO 123.86¢:0 16 ¢
_0.16x0.1

AgO 01¢:0= 738
Weight of O = 0.0129 ¢

=0.0129¢g
Molecular weight of O = 16 ¢/mol
Mole of O = 0.0129/16 = 0.0008074 mol

Area of Ag (from H,-TPR) = 63.57 : O removed 0.0008074 mol

Example 1: 0.0850 g of 12.5Ni2.5Cu/HZSM-5 catalyst had total peak area of 100.79

Area of AgO 63.57 : O removed 0.0008074 mol
Area of catalyst  100.79 : O removed = 0'00082;‘;?100'79 = (0.0012801 mol
Oremoved  0.0012801

Amount of O removed =

= = 0.01506 mol
weight of catalyst 0.0850 mol/g

atoms

Total of O removed ( ) = Amount of O removed X Avogadro’s number

Avogadro’s number = 6.022 X 1023 atoms/mol

atoms

So: Total of O removed ( ) = 0.01506 X 6.022 x 1023 = 9.1 x 102! at‘;ms
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