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CHAPTER I 

INTRODUCTION 

 

1.1 GENERAL 

 One of the most important research areas that have gained a lot of attentions 

during the past two these decades is nano-mechanics. There is a significant growth in 

the applications related to the nano-scale structures recently such as electronic 

conductors, magnetic storage mediums and hard surface coatings. Some highlights of 

utilizing nano-scale structures are the size of the structures, which have at least one of 

the overall dimensions is between 1 and 100 nano-meter [1], and some special 

properties or behaviors that become significant when the structure size is reduced to 

nano-scale such as size-dependent behavior [2]. Despite those benefits, another effect, 

which is usually ignored at the macro-scale structure, has to be considered in the set of 

governing equations of the nano-structure system called the surface free energy effects. 

Various models have been formulated to capture the size-dependent behavior but the 

model established by Gurtin and Murdoch [3, 4], called the theory of surface elasticity, 

is selected in this study due to its attractive features both in terms of computational 

efficiency and level of accuracy gained. The model is later proven promising by 

atomistic and molecular static simulations of nano-scale plates and bars subjected to 

uniaxial loading and pure bending conducted by Miller and Shenoy, [5]. The Gurtin-

Murdoch model has been utilized by many researchers to solve various solid mechanics 

problems in which all the studies were also taken into account the surface energy 

effects. Such problems can be simply classified as the problems of an elastic layer, with 

either an underlying rigid base or half-space, undergoing axisymmetric or plane-strain 

deformations. Despite many problems with the surface energy effects being widely 

examined in recent decades, a multi-layered structure is one of the structure types that 

has not been extensively investigated when the surface stress influence is considered. 

 Multi-layered structures have been used for centuries in many interesting 

problems in the fields such as aerospace engineering, electrical engineering, 

geomechanics etc. The concept of multi-layered structure is that the structure is 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

constructed with a number of layers in which material properties and thickness of each 

layer can be different. Being able to possess multiple properties makes multi-layered 

structure system more suitable to many practical situations than the conventional 

homogeneous structural system. While mechanical behavior of the multi-layered 

structures has been vastly studied for many decades, none of them takes into account 

the surface energy effects. This study presents a novel solution scheme for an analysis 

of a multi-layered elastic medium subjected to axisymmetric loading with the surface 

energy effects by adopting the Gurtin-Murdoch surface elasticity theory. After the 

scheme is fully developed, several parameters of the multi-layered structures are then 

studied to understand their influences on mechanical behaviors. The solutions obtained 

from this study can also be used as benchmarks solutions in the development of various 

analytical approaches, such as FEM and BEM, and provide the useful mechanical 

behaviors of the multi-layered structures when the surface energy effects are 

considered. 

 

1.2 OBJECTIVES AND SCOPES OF THE PRESENT STUDY 

 The objectives and scopes of this study are: 

 1. To develop an efficient solution scheme for investigating a multi-layered 

elastic medium under axisymmetric loading and surface energy effects. 

 2. To investigate the influence from various parameters, such as material 

parameters, surface properties, layering, size dependency etc., on elastic fields of a 

multi-layered elastic medium under axisymmetric loading and surface energy effects.  

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 

CHAPTER II 

LITERATURE REVIEWS 

  

 For more than a century, the effect of surface was noticed and introduced by 

Gibbs [6]. The definition of surface quantities was defined, which is the surface free 

energy as the reversible work per unit area needed to create a new surface and, for the 

solid surface, the surface stress as the reversible work per unit area needed to elastically 

stretch a pre-existing surface. Therefore, the correlation between the surface free energy 

and the surface stress was developed from the thermodynamics of solid surfaces which 

refer the surface stress as a term of variation of the surface free energy with respect to 

the surface strain [7]. In addition, another important quantity used to illustrate the 

influence of surface energy effect is the ratio of surface free energy and Young’s 

modulus, which is a parameter with a dimension of length [8]. The value of this length, 

called the intrinsic length, in the case of a soft solid, is much higher than a conventional 

solid due to the smaller number of their elastic modulus and thus the surface influence 

becomes significant [9]. Apart from these discoveries, the surface elasticity is still the 

attractive fields to be explored by many researchers, especially in the area of mechanics 

of surface. 

Plenty of approaches have been used by many scientists to capture the 

mechanical behaviors of nano-scale structures, which exhibits the noticeable surface 

energy influence due to its dimension. In this study, the continuum mechanics approach 

is chosen due to its attractive features in terms of computational efficiency and level of 

accuracy gained. To study the mechanical behavior at nano-scale level in the context of 

continuum mechanics, a mathematical framework known as the theory of surface 

elasticity, which is based on the modified continuum mechanics concept developed by 

Gurtin and Murdoch [3, 4], has been employed by many researchers. According to this 

model, the surface is represented by a zero-thickness layer perfectly bonded to the bulk 

and is governed by a constitutive law that is different from the bulk material. This 

surface elasticity model is later proven to be promising and attractive by the supportive 

results obtained from atomistic and molecular static simulations [5, 10] for modeling a 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

various kind of nano-scale problems with the consideration of surface energy effects. 

Furthermore, despite the surface stresses are generally anisotropic and surface 

crystallographic direction dependent [10], but in the analysis of nano-scale problems, 

it is acceptable and sufficient to consider the stresses as isotropic due to the effort used 

to compute anisotropic surface stresses is prohibitive. Another well-known continuum 

based theory which developed to take into account the size-dependent material behavior 

is the strain gradient elasticity theory by Mindlin [11]. Even the theory has not been 

extensively employed due to the higher-order governing equations, its simplified 

version was then developed to obtain the analytical solution of numerous continuum 

mechanics problems [12]. 

 Analytical solutions of many problems in the context of continuum mechanics 

have been widely examined by adopting the Gurtin-Murdoch model to study various 

kinds of boundary value problems with the consideration of surface energy influence 

over last several decades. For instance, several researchers investigated the problems 

involving nano-inclusions and nano-inhomogeneities [13], ultra-thin elastic film [14], 

thin plate [15], nano-indentation problems [16], elastic layer on rigid foundation [17, 

18], crack problems [19, 20], nanoplates [21] and elastic layer on half-space [22]. 

 Despite the surface influence on many problems has been extensively studied 

by using the continuum mechanics, stress analysis of a multi-layered structure has not 

been reported in the literature when the surface influence is considered. To emphasize 

the significance of multi-layered structures, a great number of problems can be found 

such as most electrical circuits in electrical engineering, composite laminate materials 

which used in aerospace engineering and construction [23], micro- and nano-electro-

mechanical system (MEMS and NEMS). Extensive studies have been conducted to 

examine this type of structures in many applications without the surface energy effects, 

for instance, T. Senjuntichai, R.K.N.D. Rajapakse and Y. Sapsathiarn studied 

mechanics of multi-layered poroelastic medium in terms of statics and dynamics 

subjected to axisymmetric and plane conditions [24-26], the dispersion of shear and 

surface waves in multi-layered solid media are investigated by Haskell [27], Zhu et al. 

[28] used X-ray diffraction, transmission electron microscopy and nanoindentation to 

investigate the microstructure, hardness and creep behavior of Cu/Ni multi-layered 

structure where the thickness of layers are in nanoscale. Focusing on nano-scale 
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structures, a multi-layered nano structures can be seen in a wide range of nano-scale 

inventions such as semiconductor materials, dielectric, insulating materials, 

magnetic/optical storage mediums and hard surface coatings [28, 29]. However, the 

presence of the surface energy effects makes nano-scale mechanics of the multi-layered 

structures different from those in macro-scale. In this study, a numerical solution 

scheme based on continuum mechanic is constructed with the capability to analyze 

multi-layered structures when the surface energy effect is included. By treating the 

medium as an elastic continuum, the results from the continuum scheme can be 

obtained with relatively low usage of computational resources compared to those 

obtained by atomistic simulations. Although the results from the continuum model is 

approximated but the accuracy level is still acceptable and high enough to make the 

model quite attractive to researchers. Moreover, the combination of the multi-layered 

solution scheme and the influence of the surface energy effects presented in this study 

allows users to examine several problems of multi-layered structures with the surface 

effects being considered. Thus, this research is essential to provide important 

information on mechanical behaviors of this particular multi-layered structures to other 

researchers for further studies in the area of nano-mechanics. 
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CHAPTER III 

EXACT STIFFNESS MATRIX SCHEME 

 

 This chapter starts with the basic equations and general solutions that can 

be applied to solve the boundary value problems of a multi-layered elastic 

medium, with the surface energy effects, resting on a rigid base as shown in Figure 

3.1. The basic governing equations of bulk and surface materials with the 

consideration of surface effects based on Gurtin-Murdoch model are expressed. 

The standard Love’s representation and Hankel integral transform are employed 

to derive the general solutions of the bulk material.  Thereafter, an exact stiffness 

matrix scheme, which is used to solve the boundary value problem, is presented. The 

stiffness matrices for each layer can be obtained from the general solutions for 

displacements and stresses expressed in the Hankel transform space. The global 

stiffness matrix is obtained by considering the boundary and continuity of traction 

and displacements at the boundary and interfaces. The solution to the global 

equation system yields the displacements and stresses in the Hankel transform 

space at the top surface and each interface of the multi-layered elastic medium 

under surface energy effects and axisymmetric loading. 

 

3.1 BASIC EQUATIONS  

   Consider an elastic medium under the influence of surface energy at 

surface subjected to the applied traction on its surface. According to Gurtin-

Murdoch surface elasticity theory, the medium consists of two different parts, i.e. 

the bulk material and the surface, which is a zero-thickness layer perfectly bonded 

to the bulk material without slipping. The field equations of the bulk material are 

identical to those given by the classical elasticity.  For the surface, the field 

equations are represented by the generalized Young-Laplace equation [30]. The 

material constants of the bulk are also different to those at the surface.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

The governing equations of bulk material, which are the equilibrium 

equation, constitutive law and kinematics relationship, without the body forces are 

shown below respectively: 

 

, 0ij j =         (3.1a) 

2ij ij ij kk   = +        (3.1b)

( ), ,

1

2
ij i j j iu u = +        (3.1c) 

 

where the terms 
ij , 

ij  and iu  represent the stress tensor components, strain tensor 

components and displacement vector components respectively. In addition, Lamé 

constants of bulk material are denoted by   and  .  

 The governing equations of the surface, expressed by the generalized 

Young-Laplace equation [3, 4, 30], are given for boundary conditions for surface 

element, surface constitutive law and surface kinematics relationship respectively 

as 

 

0

, 0s

i ij j in t  + + =        (3.2a) 

( ) ( ) , 3 3,2 ;s s s s s s s s s s su u                    = + − + + + =  (3.2b) 

( ), ,

1

2

s s su u     = +        (3.2c) 

 

In eq. (3.2), the surface quantity terms are labeled by the superscript “ s ”. The 

material constants s , 
s  and s  represent the surface Lamé constants of the surface 

and the residual surface stress or surface tension under unstrained condition 

respectively; jn  denotes the unit normal vector to the surface; and 
0

it  denotes the 

prescribed surface traction. It should be noted that, for a given surface orientation 

of a pure/semiconductor at a specific temperature, the value of 
s  is constant. In 

addition, the Greek subscripts,  ,   and  , denote the field quantities of the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 

surface and employ the value of 1 and 2 , while the Latin subscripts, ,i j  and k , 

take the value of 1, 2  and 3 .  

The third term in eq. (3.2b) is the out-of-plane component of the surface 

stress that is the pre-existing surface tension in the deformed configuration 

multiplied with the out-of-plane surface gradient which its unit vector tangent to 

the surface in the deformed state. This term is often ignored in past studies that 

employed the Gurtin-Murdoch theory as results of the assumption of infinitesimal 

deformations in undeformed configuration. In contrast, the contribution to the 

constitutive equation, eq. (3.2b), of the out-of-plane term is not negligible in the 

deformed state and of the same order as other terms. Thus, even in the case of 

small deformations, this out-of-plane term could become significant [16, 18, 20, 

31]. The governing equations for the bulk material and the surface for the case of 

axisymmetric problems are presented next. 

  

3.2 GENERAL SOLUTIONS FOR AXISYMMETRIC PROBLEMS 

 Consider a cylindrical coordinate system ( ), ,r z , which is rotationally 

symmetric about the z-axis. The field equations of the bulk material undergoing 

axisymmetric deformations are identical to the classical governing equations [32]. 

On the surface, the field equations can be expressed as generalized Young-Laplace 

equations [30], surface constitutive relations and strain-displacement relations [3, 

4]. The generalized Young-Laplace equations of the surface are given by 

 

0

0
0

s ss

rrrr
zr rz

d
t

dr r

 


=

−
+ + + =      (3.3a) 

0

0
0

s s

zr zr
zz zz

d
t

dr r

 


=
+ + + =       (3.3b) 

 

The surface constitutive relations are 

 

( ) ( )2s s s s s s s s

rr rr        = + + + +     (3.3c) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 

( ) ( )2s s s s s s s s

rr        = + + + +     (3.3d) 

s
s s z
zr

du

dr
 =         (3.3e) 

 

In addition, the strain-displacement relations of the surface are 

 

s
s r
rr

du

dr
 =         (3.3f) 

s
s ru

r
 =         (3.3g) 

  

where 
0

rt  and 
0

zt  denote the traction applied on radial and vertical directions 

respectively. 

 For axisymmetric problems, the governing equation of the bulk material is 

expressed in the following biharmonic equation [32]. 

 

2 2 0   =         (3.4) 

 

where   is Love’s strain potential and 2 represents the Laplacian operator in 

the cylindrical coordinate, which can be expressed as, 

 

2 2
2

2 2

1

r r r z

  
 = + +

  
      (3.5) 

 

Applying the Hankel integral transform to eq. (3.4) results in 

 

( ) ( )
2

2
2 2 2

0 20
, 0

d
r J r dr z

dz
  

  
   = −  = 

 
    (3.6) 

  

where  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 

 

 ( ) ( )0
0

, z J r rdr 


 =         (3.7) 

 

and ( )nJ   denotes the Bessel functions of the first kind of order n . The solution 

to the eq. (3.6) is given by 

 

( ), ( ) ( )z zz A Bz e C Dz e  − = + + +     (3.8) 

 

where A , B , C  and D  are the arbitrary functions to be obtained by applying the 

appropriate boundary conditions. 

 Consequently, the general solutions for stresses and displacements in the 

bulk material can be expressed, in a cylindrical coordinate, as shown below [32]: 

 

( ) ( )
( )

( )
3

2 2

0 130 0

2
2rr

d d d
J r d J r d

dz dz r dz

 
          

   +  
= + + − 

 
   (3.9a) 

( )
( )

( )
3

2 2

0 130 0

2d d d
J r d J r d

dz dz r dz


 
        

   +  
= − + 

 
    (3.9b) 

( ) ( ) ( )
3

2

030
2 3 4zz

d d
J r d

dz dz
        

   
= + − + 

 
    (3.9c) 

( ) ( )
2

2 2

120
2zr

d
J r d

dz
       

  
= + +  

 
      (3.9d) 

( )2

1
0

r

d
u J r d

dz

 
  



+ 
=         (3.9e) 

( )
2

2

020

2
z

d
u J r d

dz

 
   



   +
= −  

 
       (3.9f) 

 

3.3 BOUNDARY VALUE PROBLEM 

 The boundary value problem of a multi-layered elastic medium under 

surface stress influence and axisymmetric surface loading is presented in this 

section. The layers and the surfaces of the multi-layered medium is shown in 

Figure 3.1 where the 2nd to the thN  surface could be called “interface”. The stress 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 

boundary conditions at the top surface and the displacement boundary conditions 

at the rigid base of the multi-layered medium as shown in Figure 3.1 are given 

below. 

 

  
1

(1) ( )s

zz z z zT p r =− + =       (3.10a) 

  
1

(1) ( )s

zr r z zT q r =− + =       (3.10b) 

 
1

0
Nz zu += =         (3.10c) 

 

where ,r z =  and 

 

 
1

1 1

2

1
1 2

1s s s s
s sz z z

z z z

z z z z

d du d u du
T

dr dr dr r dr


=

= =

    
= + +    
     

   (3.10d) 

 
1

1 1

2

1
1 2 2

1
1

s s s s s
s sr r r r

r z z

z z z z

d u d u du u
T

dr r dr r dr r


=

= =

    
= + + + −    
     

  (3.10e) 

        

In addition, 1 1 12s s s  = +  is a surface material constant corresponding to the 1st 

material surface properties. The superscript denotes the index of the layer and the 

subscript stands for the index number of the surface, normally represented by the 

parameter n  which takes the value of 1 to N  for the layer index and 1N +  for the 

surface index. Apart from those indices, the superscript letter “ s ” is shown to 

denote the surface parameters. The terms ( )p r  and ( )q r  are the axisymmetric 

traction, applying in the normal and tangential directions respectively, on the top 

surface. The terms 
s

zu  and 
s

ru  are the displacements of the surface corresponding 

to their subscript which have the displacements continuity condition which means 

each surface is adhered to the nearby lower boundary of the upper layer and the 

upper boundary of the lower layer without slipping. In addition, the terms 
s

zT  and 

s

rT  represent the contribution from the surface energy effects in the normal and 

tangential directions respectively. These terms are normally ignored in the macro-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 

scale problems but in the nano-scale problems, these effects have to be considered 

at the top surface and every interface. Thus, the traction and displacements 

continuity conditions at the thn  surface, where 2,3,...,n N= , can be written as the 

following equations. 

 

  ( 1) ( ) 0
n

n n s

zz zz z z zT −

=− − =       (3.11a) 

  ( 1) ( ) 0
n

n n s

zr zr r z zT −

=− − =       (3.11b) 

 
( ) ( 1)

n n n

n s n

z z z z z z
u u u  

−

= = =
= =       (3.11c) 

 

The terms on the right-hand side of the eqs. (3.11a) and (3.11b) can be referred to 

the discontinuity of traction at the thn  surface. Since the present problem is 

subjected to only the top surface loading, the terms on the right-hand side are equal 

to zero. However, if there is traction applied at the layer interface, the right-hand 

side terms are non-zero and this calculation scheme is still viable. 

To solve this boundary value problem, the continuity condition of traction 

and displacements at each surface, eqs. (3.11a) to (3.11c), have to be considered 

with the boundary conditions, eqs. (3.10a) to (3.10c). For the problem shown in 

Figure 3.1, the condition number of the equation system is extremely large when 

using the high value of   for the equation system to be solved conventionally due 

to the presence of mis-matching exponential terms in the equations system [24]. 

The large condition number indicates the ill-conditioning of the system, which 

results in the low numerical stability of the system. To avoid the low numerical 

stability, the exact stiffness matrix scheme, [24, 33], is adopted to solve this 

boundary value problem related to a multi-layered medium with surface energy 

effects. 

 

3.4 FORMULATION OF EXACT STIFFNESS MATRIX SCHEME 

 An exact stiffness matrix method is selected to examine the behaviors of a 

multi-layered elastic medium from the relationship between the displacements and 

the stresses at each layer. A multi-layered medium consisting of N  layers of 
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different properties and thicknesses over a rigid base is considered as shown in 

Figure 3.1. The general solutions given by eqs. (3.9a) to (3.9f),  the displacements 

and the stresses in the bulk, can be expressed in the Hankel transform space in the 

following matrix form. 

 

( , ) ( , ) ( , ) ( )
T

z ru z u z z     =  R c      (3.12a) 

( , ) ( , ) ( , ) ( )
T

zz zrz z z       =  S c      (3.12b) 

 

where 

 

( ) ( ) ( ) ( ) ( )( )
T

n n n n nA B C D  =  c      (3.12c) 

( ) ( )

( ) ( )( )
( )

( )

2 2

( , )

1 1

n n

z z z z

n nn
n

n

z z z z

e z e e z e

z

e z e e z e

   

   

 

    




 

− −

− −

    
    − − − − − +

         =     
     

− − + +    
    

R
 (3.12d) 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( , )

n n

z z z z

n n

n n

n n

z z z z

n n

e z e e z e

z

e z e e z e

   

   

 

   
  

 

   

− −

− −

    
 + − − +   
       

=  
    
− +    

        

S  (3.12e) 

 

In addition, the dimensionless quantities from the above equations are defined by 

 

 

2s s s

n n n  = +         (3.13a) 

( )
( )

(1) (1)

1

(1) (1) (1)

2

2

s  

  

+
 =

+
       (3.13b) 

( )
( )

(1)

n
n 




=         (3.13c) 
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( )
( )

(1)

n
n 




=         (3.13d) 

( ) ( )( ) n nn  = +        (3.13e) 

(1)

s
s

n
n





=


        (3.13f) 

(1)

s
s

n
n





=


        (3.13g) 

( )

( )

2

sn
n

n n

 



=         (3.13h) 

( )

( )

2

sn
n

n n

 



=         (3.13i) 

/z z=          (3.13j) 

 

/r r=          (3.13k) 

 

  =          (3.13l) 

 

in which the superscript letter “T ” represents the transpose of a vector or a matrix. 

The superposed bar symbol, “ ”, denotes the non-dimensional quantities with 

respect to the properties of the first layer, eqs. (3.13a) to (3.13l), where the Tilde 

symbol, “ ”, denote the non-dimensional quantities in their Hankel transform 

space. 

For the thn  layer, the displacement and the stress vectors of top and bottom 

surfaces of the bulk can be formulated by using eqs. (3.12a) and (3.12b). 

 

( )

( )

1 ( )
1

1

( , )
( , )

( , )
................... ( )

( , )
( , )

( , )

nz
n

n

nr n

nz n
n

nr

u z
z

u z

u z
z

u z












+

+

+

 
  
  

=   
   

  
 

R

c

R

    (3.14a) 
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( )

( )

1 ( )
1

1

( , )
( , )

( , )
................. ( )

( , )
( , )

( , )

nzz
n

n

nzr n

nzz n
n

nzr

z
z

z

z
z

z

 


 


 


 

+

+

+

 −
  

−   
=   

   
  

 

-S

c

S

    (3.14b) 

 

Apart from the stresses in the bulk, due to the presence of the surface 

energy effects, the terms corresponded to the effect 
s

zT  and 
s

rT  need to be 

considered in the same manner as the stresses. By considering the displacements 

continuity condition, eq. (3.11c), together with the general solutions of normal 

displacement, radial displacement and their derivatives, eq. (3.9e) and (3.9f), the 

surface stresses can be represented as shown in the following equation 

 

( )

( , )
( , )

( , ) ............. ( )

0 0

0

s

z n

nns
nr n

T z
z

T z




 

 −
   −
  − =   

   
  

 

Z

c      (3.15a) 

 

where ( , )
s

z nT z  and ( , )
s

r nT z  are the Hankel transform of 
s

zT  and 
s

rT , 

respectively, and the detail of the matrices nZ  is shown below 

 

 ( )

( ) ( )

( ) ( )
2

2 2

( , )

1 1

n n

z z z z

n n n nn n

n

z z z z

n n n n

e z e e z e

z

e z e e z e

   

   

 
   

   
 

   
 

− −

− −

    
    − − + − − −

       =  
    

− − + +    
    

Z
 (3.15b) 

 

 Thereafter, the relationship between the displacements and the stresses at 

each layer is formulated. The stresses expressed in this relationship are the stresses 

in the bulk combining with the surface stresses of the surface located between the 

layers. From the eqs. (3.14b) and (3.15a), the stresses terms can be merged as 

shown below. 
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( )

( )

1 ( )
1

1

( , ) ( , )
( , ) ( , )

( , ) ( , ) ................................. ( )
( , ) 0

( , )
( , ) 0

s
nzz z n n

n nns
nzr nr n

nzz n
n

nzr

z T z
z z

z T z

z
z

z

  
 

   
 


 

+

+

+

  − −
    −

−     −+ =     
     

    
   

-S Z

c

S

 (3.16) 

 

 In view of eq. (3.14a) and eq. (3.16), the following relationships can be 

established for the 
thn  layer: 

 

 ( ) ( ) ( )n n n=σ K u         (3.17a) 

 

where 

 
( )

1

1

( , ) ( , )

( , ) ( , )

( , )

( , )

s

n z nzz

s

n n r nzr
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3.5 GLOBAL STIFFNESS MATRIX 

 The advantage of using technique of global stiffness matrix is that the condition 

number of the equation system is relatively low compared to the conventional technique 

[24]. To assemble the global stiffness matrix of the multi-layered elastic medium, the 

continuity conditions of traction and displacements at each surface are needed. From 

the continuity conditions in the eq. (3.11a) to (3.11c) and the relationship between the 
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displacements and the stresses at each layer in the eq. (3.17a), the global equation 

system can then be established as 

 

 * * *=K U F         (3.18a) 

 

in which 

 

*

2

1
( ) ( ) 0 0 0 0

2

T

P Q 


 =  F      (3.18b) 

*
1 1 2 2 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )

T

N Nz r z r z ru z u z u z u z u z u z     + + =  U  (3.18c) 

 

and the matrix *
K  is the global stiffness matrix established by assembling the matrix 

( )n
K  from the eq. (3.17d) with the consideration of the continuity conditions of traction 

and displacements from eq. (3.11a) to (3.11c) of each surface. The functions ( )P   and 

( )Q   are the Hankel transform of the normalized surface loading, i.e. (1)( ) /p r   and 

(1)( ) /q r   respectively. The solution to the above global equation system yields the 

Hankel transforms of the displacements at each layer interface. Hankel transforms of 

the stresses at the layer interfaces can then be obtained by substituting the solution to 

the displacements into eq. (3.17a). Finally, the displacement and stress fields can be 

determined by applying an accurate numerical quadrature scheme. In the next chapter, 

the procedure and the details of the numerical quadrature scheme are provided 

following by the verification of the scheme on existing solutions. Thereafter, parametric 

studies investigation are conducted based on practical models to study the influence of 

various parameter on elastic fields of the layered medium. 
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Figure 3.1. A multi-layered elastic medium over a rigid base under axisymmetric 

surface loading  
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CHAPTER IV 

NUMERICAL RESULTS AND DISCUSSION 

 

4.1 NUMERICAL SCHEME VERIFICATION 

 A computer code is developed based on the exact stiffness matrix scheme to 

evaluate the displacements and stresses of a multi-layered elastic medium with the 

presence of the surface energy effects. The tasks performed by the computer code 

follows the detail described in the section 3.4 and 3.5. First, the stiffness matrices 

corresponding to each layer is computed from the input parameters for specified values 

of Hankel transform parameter  . These stiffness matrices are then assembled into the 

global stiffness matrix form of eq. (3.18a), and the displacement vector, eq. (3.18c), is 

obtained by solving the global stiffness equation for each specified value of  . 

Thereafter, the displacements at the top surface and each interface are obtained by 

evaluating the semi-infinite integrals with respect to   in the displacement vector by 

using numerical quadrature scheme based on 21-point Gauss-Kronrod rule [34]. To 

obtain the stresses, the relation of stresses and displacements of the thn  layer shown in 

the eq. (3.17a) and (3.17d) have to be evaluated after the displacement vector is 

obtained, and the same integral process applied to the displacement is then performed 

on the obtained the stress solution. 

 Two verification models have been chosen to verify the present solution 

scheme. To test the scheme of elastic functionally graded layer, called FG layer, over 

an underlying half-space subjected to uniformly distributed loading, the solution by 

Katebi and Selvadurai (2013) [35] is chosen. The FG layer is modelled as a multi-

layered medium with their elastic material properties vary through the layer thickness 

by the grading exponential function 0

0( )
m z

z e
 =  where m  is the grading constant and 

0  is the shear modulus corresponding to the material of the top surface with the 

constant Poisson’s ratio of 0.5. The FG layer is divided into a number of sublayers 

where each layer has the same thickness, the shear modulus within each layer is 

constant and it is computed at the mid-height of the layer. The appropriate number of 
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sublayers to represent the FG layer is studied and as the normalized thickness of the 

layer is 1.0, ten sublayers are acceptable, in which the error occurred from this model 

is less than 0.01%. To improve the accuracy, the FG layer can be divided where 

thickness of each layer is different corresponding to the gradient of the grading 

function. The properties of the remaining half-space are the same as the properties of 

the material at the lower surface of the layer. The half-space is modelled as 10 sublayers 

of elastic layers with uniform thickness of 0.1 on a relatively large elastic layer over 

rigid base. The medium is subjected to the internal axisymmetric uniform vertical 

loading applied at the interface between FG layer and homogeneous half-space. The 

internal loading function is expressed as the following equation 

 

 ( )0( )p r p H a r= −         (4.1) 

 

where ( )H a r−  is the Heaviside step function, a  is the loading radius and 0p  is the 

loading magnitude. The ratio of the layer thickness to the radius of the loading /H a  is 

set to 1.0. The verification of the vertical displacement at the interface along the radial 

direction is illustrated in Figure 4.1a for the case where m  = 0.25, 1.0 and 1.5, and the 

normal stress along the vertical direction when /H a  ratio is set to 2.0 for the case when 

m  = 0.0, 0.5 and 1.0 is presented in Figure 4.1b. Both solutions show excellent 

agreement with the corresponding existing solutions [35]. 

 The second verification, with Tirapat et al. (2017) [22], is conducted by 

comparing with the solution for an infinite elastic layer of Si [100] over an underlying 

half-space of Al [111] subjected to the same loading as the first verification, applied to 

the top surface, with the ratio of the layer thickness to the loading radius of 1.0. The 

material properties and surface properties of Si [100] and Al [111] are shown in Table 

4.1 [5, 36]. The upper layer of Si [100] is divided into 10 sublayers and the half-space 

Al [111] is also divided into 10 sublayers and a half-space to ensure the capability of 

the scheme to handle the multi-layered structure. In addition, the surface energy effects 

are considered only on the top surface and the interface, no effects on any interface 

between sublayers. The excellent agreement between the two solutions can be observed 

in both displacement and stress profiles shown in Figure 4.2a and 4.2b. 
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4.2 NUMERICAL SOLUTIONS 

 4.2.1 Multi-layered medium over rigid base 

 The influence of surface energy effects and the size-dependency effect have 

been studied in this section. The capability of the program when subjected to various 

loading cases is demonstrated. A model of Si/Al multi-layered medium resting on a 

rigid base is selected since Si/Al multi-layered structure is one of the most well-known 

systems for micro- and nano-electronic materials [37]. The multi-layered medium 

consists of two different materials stacking alternately throughout the total thickness, 

H . The odd layers are Si [100] and the even layers are Al [111] where the thicknesses 

of both layers, 1h  and 2h , are both equal to 0.2 nm. The thickness of the medium is equal 

to 1 µm and subjected to top surface axisymmetric loading with the loading function as 

shown in eq. (4.1) where the normalized thickness a , /a  , equal to 1.0. The boundary 

value problem is illustrated in Figure 4.3. The material properties of Si [100] and Al 

[111] are shown in Table 4.1 where the surface properties of Si [100] are selected as 

the properties of the top surface and the surface properties of Al [111] are hypothetically 

selected as the properties of the other surfaces, called interfaces. From Table 4.1, the 

material length scale   of Si [100] is equal to 0.16739 nm which is used as the structure 

length scale to normalize every dimensional parameter. Therefore, the normalized 

thickness of each layer is equal to 1.195 and the loading radius is equal to 0.16739 nm. 

In addition, the superposed bar symbol “ ” implies that the parameter below the symbol 

is normalized with the material length scale. 

 After all the parameters are set, then the model is ready for investigations. 

Figure 4.4 shows the vertical displacement and the normal stress of the Si/Al multi-

layered medium at different profiles along the radial direction for the cases where the 

surface energy effects are considered and ignored. The monitoring profiles for the 

displacement are the top surface where z  = 0.0 nm, the second surface where z  = 0.2 

nm and the third surface where z  = 0.4 nm while for the stress, the same set of 

monitoring profiles are used except for the first profile, a profile of the middle of the 

first layer where z  = 0.1 nm is used instead. It can be implied from the results that the 

influence of the surface energy effects is significant to the vertical displacement and 
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normal stress at all profiles shown in Figure 4.4, especially the profile at the depth close 

to the top surface where the loading is applied. 

 Moving onto the study of influence of the surface energy effects at the interface, 

since the surface elastic properties of the interfaces between two specific materials are 

still not defined yet, the investigation on the influence at the interfaces by varying the 

surface elastic properties at each interface is beneficial. The residual surface stress of 

the interfaces 2

s  is varied whereas the residual surface stress of the top surface 1

s  

remain the same. The results, displacements at the top surface and stresses at the profile 

z  = 0.1 nm, are obtained with the ratio of the residual surface stress of the interface to 

the top surface,  R , being -0.5, 1.0, 2.0 and 5.0 while the value of  s
 remains the same 

for all cases. The similar trends can be observed in all the results shown in Figure 4.5, 

i.e. the value at every points of all the results converged to zero when the ratio increases. 

This means that the increment of the effects renders the medium stiffer than those with 

lesser value of the  R  ratio, and the residual surface stress at every interface contributes 

significantly to the results in this model. Note that the surface elastic constant  s
 

contributes negligible influence on the results compared to the residual surface stress 

s  [17]. 

 Although the size dependency effect has been studied by various researchers, 

the effect on a multi-layered medium is the topic that has not been discussed yet. The 

numerical experiments have been conducted on a default model to obtain vertical 

displacement and normal stress at the depth of z  = 0.0 nm for the displacement, z  = 

0.1 nm for the stress and /r a  = 0.5 for both fields while varying the parameter a . The 

ratio /H a  is kept constant for every a . The influence of the size dependency effect is 

illustrated in Figure 4.6 which indicates the trend of the elastic fields when the 

parameter a  is changed. The differences between the elastic fields with the surface 

energy effects and without the effects are reduced when a  is increased. However, the 

differences are significant when the value of a  is small, approximately below 2.0. 

Additionally, the results of the present study do agree well with the work from 

Rungamornrat et al. [18]. 
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 The capability of the numerical scheme in terms of applied loading cases is also 

investigated in this study. Three different types of axisymmetric loading cases are 

chosen with the same amount of total force, namely, uniformly distributed vertical 

loading as shown in eq. (4.1), the contact pressure from the flat-ended rigid punch and 

the contact pressure from the paraboloid revolutionary rigid punch. The second and 

third loading cases are the assumed forms of loading function which provides the 

similar contact pressure to flat-ended rigid punch and paraboloid revolutionary rigid 

punch indentation problem respectively when applied to the homogeneous half-space 

medium. The assumed form of loading function of the flat-ended rigid punch is 

expressed in the following equation[38] 

 

 (1) 2

0( ) ( / ) / (1 ( / ) ) ( )p r p a r a H a r= − −      (4.2a) 

 

and the assumed form of loading function for paraboloid revolutionary case [38] is 

 

 (1) 2

0( ) ( / ) (1 ( / ) ) ( )p r p a r a H a r= − −      (4.2b) 

 

where ( )H a r−  is the Heaviside step function. The vertical displacement of the top 

surface and the normal stress at the profile z  = 0.1 nm are plotted in Figure 4.7. The 

vertical displacement of the flat ended and paraboloid revolutionary cases shown in 

Figure 4.7 reflects the flat and paraboloid shapes respectively. The influence of surface 

energy effects can be found on all results corresponding to the three loading cases. The 

flat ended loading case provides the maximal displacement whereas the paraboloid 

revolutionary case provides the minimal. On the stress result, the influence of the 

surface energy effects is significant only under the contact area of the loading where 

/ 1.0r a  . 

 

 4.2.2 Functionally graded elastic medium 

 The second model is a model of functionally graded layer on a homogeneous 

elastic medium overlying a rigid based. The elastic properties of the FG layer vary in 
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the z-direction from the elastic properties of Si [100] at the depth 0.0z =  to the elastic 

properties of Al [111] at the depth 1z h=  where 1h  is the normalized thickness of the 

FG layer as shown in Figure 4.8. The variational pattern of the elastic properties of the 

FG layer is determined by the grading function in which the exponential function, 

0

0( )
mL z

L z L e=  where m  is the grading constant and 0L  is the Lame’ constants of Si [100], 

is selected for every cases of this model. The value of the grading constant m  is 

obtained by back calculation from the known elastic properties at the depth 0.0z =  and 

1z h= . The FG layer is divided into 10 sublayers where the elastic properties of each 

layer are assigned in the same manner as the verification model. The underlying 

homogeneous elastic layer is a layer of Al [111] and its layer thickness is equal to 2h . 

The 2 1/h h  ratio is set to 9.0 where the ratio /H a  and the loading radius a  are both set 

to 1.0. This model is subjected to the same loading case as the multi-layered model, eq. 

(4.1). The surface elastic properties of the top surface and the interface of this model 

are equal to the surface properties of Si [100] and Al [111] respectively. 

 The top surface vertical displacement corresponding to the variation of the 

thickness ratio between upper and lower layer are illustrated in Figure 4.9 with /H a  

being fixed at 1.0. Since Al [111] has lower elastic properties than Si [100], the obtained 

displacement then becomes maximal when the thickness of Al [111] is 9.0, which is the 

largest thickness considered in the Figure 4.9. 

 Studying the influence of the total thickness H  on the top surface vertical 

displacement of the FG layer model when the total thickness is increased whereas the 

first layer thickness remains the same is presented in Figure 4.10. As the thickness 

increases, the influence of the surface energy effects increases. 

 The vertical displacement profiles along the radial direction at each profile 

through the thickness of the multi-layered medium have been plotted to study the 

surface energy influence as the distance between the selected profiles and the top 

surface increases. The results illustrated in Figure 4.11 can be implied in the same way 

as the multi-layered model, i.e. the influence of the surface energy effects on the 
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displacement is lower when the distance between the profile and the top surface 

increases. 

 Turning to investigate the effect of the residual surface stress s  on the FG layer 

problem. Figure 4.12 shows the displacements profiles at the top surface and the 

stresses profiles at the interface between the FG layer and the homogeneous layer with 

the value of  R  being -0.5, 1.0, 2.0 and 5.0. The similar trend to the Si/Al multi-layered 

model can be observed in Figure 4.12 where the presence of the residual surface stress 

increases the stiffness of the elastic medium. 

 Another point of interest is the influence of grading function to the solutions. 

To investigate the difference between the grading function of the FG layer, three 

grading functions, namely, linear, exponential and power law distributed grading 

function, have been employed to observe the variation of the top surface vertical 

displacement and normal stress at the interface. The linear and power law distributed 

grading function can be expressed as (1)( ) (1 )L z L mz= +  where 
( ) (1) (1)

1( ) / ( )Nm L L L h= −  and 

(1)

1( ) (1 / )mL z L z h= +  where ( ) (1)

2log ( / )Nm L L=  respectively when 1z h . The special case of 

the FG layer has been introduced to emphasize the difference between the results among 

gradation functions. The elastic properties of the top surface and the interface, 

previously assigned as the properties of Si [100] and Al [111] respectively, are 

substituted by the 1st material and the 2nd material for this special case, which are 1  = 

100 GPa,  1 1/   = 1.5 for the 1st material and 2  = 10 GPa, 2 2/   = 1.5 for the 2nd 

material. The ratio 2 1/h h  for this special case is set to 1.5, the thickness 1h  is 0.4, the 

ratio /H a  is kept to 1.0 and the surface quantities at the top surface and the interface 

remain unchanged from the FG model. The results show that the stiffest grading 

function is the linear distribution, followed by the exponential and the power law 

respectively as shown in Figure 4.13. However, the results also show that the selection 

of grading function is significant only for the extreme cases where the variation of 

elastic properties and the thickness is large enough. 
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4.3 APPLICATIONS OF FUNDAMENTAL SOLUTIONS 

 The obtained results from the previous sections are based on a multi-layered 

medium configuration over a rigid base subjected to some cases of axisymmetric 

surface loading. However, many practical problems can also be handled by this 

calculation scheme. In the aspect of the applied loading, the scheme allows the user to 

analyze problems subjected to any arbitrary axisymmetric loading by simply plug-in 

the loading in their Hankel transform space into the numerical scheme. The loading 

cases in the Hankel transform space that have been frequently used are a concentrated 

point load 0( ) 2P p =  with the loading magnitude of 0p , a concentrated ring load 

0 0( ) ( ) 2P p J a  =  where a  is the radius of the ring loading, and the uniform annular 

load by making use of the superposition method of two uniformly distributed 

loading[32]. The other types of loading, including tangential loading, in the Hankel 

transform space can also be obtained by the method of inversion from the known 

function. Those loading cases can be applied on various situations such as when the 

medium is contacted by tubular elements, when the friction is considered, or when it is 

subjected to other complex form of pressure. Another aspect is that the scheme can be 

used to analyze boundary value problems where the loading is applied to the interface 

instead of surface, and the loading can also be applied to multiple interfaces or top 

surface with different loading functions at once. This can be useful in the further 

applications when there are some practical applications, which is related to the internal 

loading in the nano-scale systems or some macro-scale problems related to soft elastic 

solids. 

 Furthermore, the present solution can be extended to deal with the nano 

indentation problems. By attaching an additional indentation computational scheme to 

the calculation procedure to compute mixed boundary value problems, the top surface 

contact pressure can be generated, and the results of the boundary value problem can 

be obtained by the numerical scheme presented in this study afterward. This 

development will be a huge improvement since indentation techniques have been 

employed in practice to solve numerous problems, for instance, arbitrary punch profile 

indentation problems [38]; or using indentors for depth-sensing indentation tests to 

measure mechanical properties in nano-scale [39].  
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Table 4.1: Material properties of Si [100] and Al [111] 

([5, 10, 36]) 

 

Material parameters Si [100] Al [111] 

λ [GPa] 78.0849 58.1700 

μ [GPa] 40.2256 26.1300 

λs [N/m] 4.4939 6.8511 

μs [N/m] 2.7779 -0.3760 

τs [N/m] 0.6056 0.9108 

κs [N/m] 10.0497 6.0991 

Λ [nm] 0.16739 0.15288 
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(a) 

 

 

(b) 

 

Figure 4.1. Comparison of (a) normalized vertical displacement profiles at the 

interface; and (b) normalized normal stress profiles along the z-axis of a FG layer 

over an elastic half-space 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29 

 
(a) 

 

 

(b) 

 

Figure 4.2. Comparison of radial profiles of (a) normalized normal stress; and (b) 

normalized shear stress of a layer elastic half-space with the influence of surface 

energy effects 
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Figure 4.3. A multi-layered medium consisting of Si [100] and Al [111] under 

vertical surface loading 
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(a) 

 

 

(b) 

Figure 4.4. Radial profiles of elastic fields of the Si/Al multi-layered medium at 

defferent depths: (a) normalized vertical displacement; and (b) normalized normal 

stress 
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(a)                                                                   (b) 

  

  

(c)                                                                 (d) 

 

Figure 4.5. Radial profiles of elastic fields of the Si/Al multi-layered medium with 

different  R  ratios: (a) normalized vertical surface displacement; (b) normalized radial 

surface displacement; (c) normalized normal stress at z  = 0.1 nm; (d) normalized 

shear stress at z  = 0.1 nm 
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(a) 

 

 

(b) 

 

Figure 4.6. Variation of elastic fields of the Si/Al multi-layered medium with 

normalized loading radius a  at different depths: (a) normalized vertical displacement; 

(b) normal stress  
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(a) 

 

 

(b) 

 

Figure 4.7. Radial profiles of elastic fields of the Si/Al multi-layered medium under 

different types of surface loading: (a) normalized vertical surface displacement; and 

(b) normalized normal stress at z  = 0.1 nm  
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Figure 4.8. A FG layer over an elastic medium under uniform vertical surface loading  
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Figure 4.9. Radial profiles of normalized vertical surface displacement of the FG 

elastic medium with different 2 1/h h  ratios  
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Figure 4.10. Radial profiles of normalized vertical surface displacement of the FG 

elastic medium with different /H a  ratios  
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Figure 4.11. Radial profiles of normalized vertical displacement of the FG elastic 

medium at different depths  
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(a)                                                                   (b) 

  

 

 

(c)                                                                 (d) 

 

Figure 4.12. Radial profiles of elastic fields of the FG elastic medium with different 

 R  ratios: (a) normalized vertical surface displacement, (b) normalized radial surface 

displacement; (c) normalized normal stress at the interface, (d) shear stress at the 

interface  
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(a) 

 

 

(b) 

 

Figure 4.13. Radial profiles of elastic fields of the FG elastic medium with different 

grading functions: (a) normalized vertical surface displacement; and (b) normalized 

normal stress at the interface  
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CHAPTER V 

CONCLUSION 

 

 The mathematical model for solving a multi-layered elastic medium, with 

consideration of the surface energy effects, and subjected to axisymmetric loading is 

developed in this study. The standard Love’s representation and the Hankel integral 

transform are adopted to obtain general solutions of each layers, which are assembled 

and numerically solved by the exact stiffness matrix method. To capture the surface 

energy effects, the surface elasticity theory by Gurtin-Murdoch is adopted. The 

parametric studies have been carried out for two models, a multi-layered medium over 

a rigid base and a functionally graded elastic medium with the intentions to portray the 

capabilities of the calculation scheme on different multi-layered models and to study 

the influence of the surface energy effects on elastic fields of the layered medium. 

 The numerical results show that, apart from numerous uses of the multi-layered 

scheme presented in previous works, this scheme can handle the multi-layered 

problems or functionally graded problem with the presence of the surface energy 

effects, in which the value of surface elastic properties of the top surface and each 

interface can be assigned individually. The results indicate that the surface elastic 

properties, especially the residual surface stress, of the top surface and interfaces have 

a great influence on both displacement and stress results. The results also indicate that 

the residual surface stress of the same surface as the loading plane, i.e. the top surface, 

has the most impact on the results compared to that of the interfaces. Other parameters 

can also affect the influence of the surface energy effects as well, for instance, the 

loading radius and the elastic material properties. The outcomes of this study can be 

used in various ways, for instance, the present solution can be used as benchmark 

solutions in the development of numerical approaches such as FEM and BEM for 

the analysis of multi-layered structures with the influence of surface energy effects This 

solution scheme can be further modified to analyze other practical multi-layered 

systems with the surface energy effects such as indentation problems.
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