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equation of a multi-layered system is assembled by considering the continuity of
traction and displacements at each layer interface. The numerical solutions to the global
equation yield displacements and stresses at the interfaces of the layered medium under
axisymmetric loading. The obtained results reveal that the elastic fields are significantly
influenced by the surface elastic properties, the loading radius and the elastic material
properties of each layer. The proposed solution scheme can be used to examine a variety
of practical problems, and the solutions can also be used as benchmark solutions in the
development of FEM and BEM for more complicated problems related to multi-layered
systems with the influence of surface energy effects.

Department: Civil Engineering Student's Signature .

Field of Study: Civil Engineering Advisor's Signature
Academic Year: 2017



Vi

ACKNOWLEDGEMENTS

This study was supported by the Civil Engineering 100-year Chula
scholarship. This support is thankfully acknowledged.

First, 1 wish to express my sincere appreciation to my thesis advisor,
Professor Dr. Teerapong Senjuntichai, for his supports on my work. His priceless
advices and great encouragements help me to go through every works throughout
the course in Chulalongkorn University. Moreover, | do appreciate countless of
valuable suggestions from my senior colleagues, Mr. Supakorn Tirapat and Mr.
Suraparb Keawsawasvong, which help me go through hard times, owe my loving
thanks to my family for supporting me unconditionally. Finally, I would like to thank
everyone who has supported directly and indirectly in every processes of the study,

this thesis would not be successful without everyone.



CONTENTS

Page

THAT ABSTRACT e iv
ENGLISH ABSTRACT ...t v
ACKNOWLEDGEMENTS. ... vi
CONTENT St nre e n e nn e ne e vii
LIST OF TABLES. ...t ne e iX
LIST OF FIGURES ... X
LIST OF ABBREVIATIONS ... ..o Xii
CHAPTER © ..ottt b e ne e nnn e 1
INTRODUCGTION ...ttt 1
1.1 GeNEIAl.....c..ceeee e S R e e e e e e 1
1.2 Objectives and scopes of the present StUdY ..........ccceeveeveeieiieie e, 2
CHAPTER 1.t ettt 3
LITERATURE REVIEWS ... e 3
CHAPTER T oottt 6
EXACT STIFFNESS MATRIX SCHEME ..o 6
3.1 BaSIC EQUALIONS .....eeiiieriiiiieiteeieciee ettt ste et s et e e ste s e steeneeneesteeresneenreas 6
3.2 General solutions for axisymmetric problems............cccocvveviiieiecie e 8
3.3 Boundary value problem............cccooveiiiiiiicic e 10
3.4 Formulation of exact stiffness matrix SCheEMe ..........ccocooviriiiininiisseee 12
3.5 Global StIffNESS MALMIX.......ciiveiriiieieiier s 16
CHAPTER TV ettt 19
NUMERICAL RESULTS AND DISCUSSION ......cooiiiiiiiiienieiee e 19
4.1 Numerical scheme VErification ...........cccoviiiiiiiiiiccc e 19
4.2 NUMEriCal SOIULIONS ........oviiiiiiiiece e 21
4.2.1 Multi-layered medium over rigid Dase .........cccevveiiienie i 21

4.2.2 Functionally graded elastic medium..........ccccccvevieiiieniie e 23

4.3 Applications of fundamental SOIULIONS ...........ccoviiiiiiiecie 26

CHAPTER V s 41



Page

CONCLUSION. ..ttt sttt ie e b e e abe e te e saeesnbeesneeas 41
REFERENGCES ... ..ottt ettt 42
A I 1 TP TP OPRSUPOPRUROTN 46



LIST OF TABLES

Table Page
Table 4.1: Elastic and surface properties of Si [100], Al [111] and Ni [110] .........27



LIST OF FIGURES

Figure Page
Figure 3.1. A multi-layered elastic medium over a rigid base under axisymmetric
SUMACE 10adING .. .o, 18
Figure 4.1. Comparison of (a) normalized vertical displacement profiles at the
interface; and (b) normalized normal stress profiles along the z-axis of a FG
layer over an elastic half-space .............coooiiiiiiii i 28
Figure 4.2. Comparison of radial profiles of (a) normalized normal stress; and (b)
normalized shear stress of a layer elastic half-space with the influence of
surface energy effects .........oiieiiiii 29
Figure 4.3. A multi-layered medium consisting of Si [100] and Al [111] under
vertical surface 10ading .........oovvviiiriiiiiiiii i 30
Figure 4.4. Radial profiles of elastic fields of the Si/Al multi-layered medium at
defferent depths: (a) normalized vertical displacement;
and (b) normalized normal StreSS .........cocoeeviiriiiiiiii e, 31
Figure 4.5. Radial profiles of elastic fields of the Si/Al multi-layered medium with

different 7, ratios: (a) normalized vertical surface displacement; (b)

normalized radial surface displacement; (c) normalized normal stress at
z =0.1 nm; (d) normalized shear stressat z =0.1nm ......................... 32
Figure 4.6. Variation of elastic fields of the Si/Al multi-layered medium with

normalized loading radius a at different depths: (a) normalized vertical
displacement; (b) normal Stress ........c.oviiiiiriii 33
Figure 4.7. Radial profiles of elastic fields of the Si/Al multi-layered medium under
different types of surface loading: (a) normalized vertical surface
displacement; and (b) normalized normal stressat z =0.1nm............... 34
Figure 4.8. A FG layer over an elastic medium under uniform vertical surface
JOAAING ... v ittt e raeeaee s s e 35
Figure 4.9. Radial profiles of normalized vertical surface displacement of the FG

elastic medium with different h, /h, ratios ..............coovoieeeeiiiiii.. 36



Xi

Figure Page

Figure 4.10. Radial profiles of normalized vertical surface displacement of the FG

elastic medium with different H /@ ratios ...............oeoveeeeeeecneeennn. 37
Figure 4.11. Radial profiles of normalized vertical displacement of the FG elastic

medium at differentdepths ... 38
Figure 4.12. Radial profiles of elastic fields of the FG elastic medium with different

7, ratios: (a) normalized vertical surface displacement, (b) normalized radial

surface displacement; (c) normalized normal stress at the interface, (d) shear
stress at the INterface ..., 39
Figure 4.13. Radial profiles of elastic fields of the FG elastic medium with different
grading functions: (a) normalized vertical surface displacement; and (b)
normalized normal stress at the interface .................oooiiiiiiiiiiininn 40



c($)

*

H(a-r)
3. (¢)
K(ﬂ)

*

3|

p(r)
Po
q(r)

LIST OF ABBREVIATIONS

loading radius;

matrix contained Hankel arbitrary functions of each layer;
vector of external force at the n" surface;

thickness of an elastic layer;

total thickness of the whole medium;

Heaviside step function;

Bessel functions of the first kind of order n;
stiffness matrix of the n™ layer;

global stiffness matrix of the medium;

grading parameter;
layer or surface index;

unit normal vector in the i-direction;

number of layers;

an applied normal traction;
magnitude of loads;

an applied tangential traction;
radial coordinate;

displacement matrix of the bulk material;

stress matrix of the bulk material;

surface traction in the i-direction;

surface stress term in the i-direction;

displacement of the bulk material in the i-direction;

displacement of the surface in the a-direction;

generalized displacement vector of the equation system;

displacement vector for the n" layer;

vertical coordinate;

Xii



Xiil

Z.(2.7) surface stress matrix of the n" surface;
8 radial-direction nondimensional surface parameter;
o, vertical-direction nondimensional surface parameter;

Kronecker delta;

& strain components of the bulk material;

g;a surface strain components of the surface;

K* surface material constant;

A Lame’ constant of the bulk material;

A surface Lame’ constant of the material;

A material length scale;

7, Lame’ constant of the bulk material;

u’ surface Lame’ constant of the material;

£ integral transform parameter;

ot stress components of the bulk material;

a;a surface stress components of the surface;

¢ stress vector for the n" layer;

7t residual surface stress;

s ratio of the interface residual surface stress to the top surface’s;
o Love’s strain potential;

0] sum of the Lame’s constant and the shear modulus;

Vv? Laplacian operator



CHAPTER I

INTRODUCTION

1.1 GENERAL

One of the most important research areas that have gained a lot of attentions
during the past two these decades is nano-mechanics. There is a significant growth in
the applications related to the nano-scale structures recently such as electronic
conductors, magnetic storage mediums and hard surface coatings. Some highlights of
utilizing nano-scale structures are the size of the structures, which have at least one of
the overall dimensions is between 1 and 100 nano-meter [1], and some special
properties or behaviors that become significant when the structure size is reduced to
nano-scale such as size-dependent behavior [2]. Despite those benefits, another effect,
which is usually ignored at the macro-scale structure, has to be considered in the set of
governing equations of the nano-structure system called the surface free energy effects.
Various models have been formulated to capture the size-dependent behavior but the
model established by Gurtin and Murdoch [3, 4], called the theory of surface elasticity,
is selected in this study due to its attractive features both in terms of computational
efficiency and level of accuracy gained. The model is later proven promising by
atomistic and molecular static simulations of nano-scale plates and bars subjected to
uniaxial loading and pure bending conducted by Miller and Shenoy, [5]. The Gurtin-
Murdoch model has been utilized by many researchers to solve various solid mechanics
problems in which all the studies were also taken into account the surface energy
effects. Such problems can be simply classified as the problems of an elastic layer, with
either an underlying rigid base or half-space, undergoing axisymmetric or plane-strain
deformations. Despite many problems with the surface energy effects being widely
examined in recent decades, a multi-layered structure is one of the structure types that
has not been extensively investigated when the surface stress influence is considered.

Multi-layered structures have been used for centuries in many interesting
problems in the fields such as aerospace engineering, electrical engineering,

geomechanics etc. The concept of multi-layered structure is that the structure is



constructed with a number of layers in which material properties and thickness of each
layer can be different. Being able to possess multiple properties makes multi-layered
structure system more suitable to many practical situations than the conventional
homogeneous structural system. While mechanical behavior of the multi-layered
structures has been vastly studied for many decades, none of them takes into account
the surface energy effects. This study presents a novel solution scheme for an analysis
of a multi-layered elastic medium subjected to axisymmetric loading with the surface
energy effects by adopting the Gurtin-Murdoch surface elasticity theory. After the
scheme is fully developed, several parameters of the multi-layered structures are then
studied to understand their influences on mechanical behaviors. The solutions obtained
from this study can also be used as benchmarks solutions in the development of various
analytical approaches, such as FEM and BEM, and provide the useful mechanical
behaviors of the multi-layered structures when the surface energy effects are

considered.

1.2 OBJECTIVES AND SCOPES OF THE PRESENT STUDY

The objectives and scopes of this study are:

1. To develop an efficient solution scheme for investigating a multi-layered
elastic medium under axisymmetric loading and surface energy effects.

2. To investigate the influence from various parameters, such as material
parameters, surface properties, layering, size dependency etc., on elastic fields of a

multi-layered elastic medium under axisymmetric loading and surface energy effects.



CHAPTER Il

LITERATURE REVIEWS

For more than a century, the effect of surface was noticed and introduced by
Gibbs [6]. The definition of surface quantities was defined, which is the surface free
energy as the reversible work per unit area needed to create a new surface and, for the
solid surface, the surface stress as the reversible work per unit area needed to elastically
stretch a pre-existing surface. Therefore, the correlation between the surface free energy
and the surface stress was developed from the thermodynamics of solid surfaces which
refer the surface stress as a term of variation of the surface free energy with respect to
the surface strain [7]. In addition, another important quantity used to illustrate the
influence of surface energy effect is the ratio of surface free energy and Young’s
modulus, which is a parameter with a dimension of length [8]. The value of this length,
called the intrinsic length, in the case of a soft solid, is much higher than a conventional
solid due to the smaller number of their elastic modulus and thus the surface influence
becomes significant [9]. Apart from these discoveries, the surface elasticity is still the
attractive fields to be explored by many researchers, especially in the area of mechanics
of surface.

Plenty of approaches have been used by many scientists to capture the
mechanical behaviors of nano-scale structures, which exhibits the noticeable surface
energy influence due to its dimension. In this study, the continuum mechanics approach
is chosen due to its attractive features in terms of computational efficiency and level of
accuracy gained. To study the mechanical behavior at nano-scale level in the context of
continuum mechanics, a mathematical framework known as the theory of surface
elasticity, which is based on the modified continuum mechanics concept developed by
Gurtin and Murdoch [3, 4], has been employed by many researchers. According to this
model, the surface is represented by a zero-thickness layer perfectly bonded to the bulk
and is governed by a constitutive law that is different from the bulk material. This
surface elasticity model is later proven to be promising and attractive by the supportive

results obtained from atomistic and molecular static simulations [5, 10] for modeling a



various kind of nano-scale problems with the consideration of surface energy effects.
Furthermore, despite the surface stresses are generally anisotropic and surface
crystallographic direction dependent [10], but in the analysis of nano-scale problems,
it is acceptable and sufficient to consider the stresses as isotropic due to the effort used
to compute anisotropic surface stresses is prohibitive. Another well-known continuum
based theory which developed to take into account the size-dependent material behavior
is the strain gradient elasticity theory by Mindlin [11]. Even the theory has not been
extensively employed due to the higher-order governing equations, its simplified
version was then developed to obtain the analytical solution of humerous continuum
mechanics problems [12].

Analytical solutions of many problems in the context of continuum mechanics
have been widely examined by adopting the Gurtin-Murdoch model to study various
kinds of boundary value problems with the consideration of surface energy influence
over last several decades. For instance, several researchers investigated the problems
involving nano-inclusions and nano-inhomogeneities [13], ultra-thin elastic film [14],
thin plate [15], nano-indentation problems [16], elastic layer on rigid foundation [17,
18], crack problems [19, 20], nanoplates [21] and elastic layer on half-space [22].

Despite the surface influence on many problems has been extensively studied
by using the continuum mechanics, stress analysis of a multi-layered structure has not
been reported in the literature when the surface influence is considered. To emphasize
the significance of multi-layered structures, a great number of problems can be found
such as most electrical circuits in electrical engineering, composite laminate materials
which used in aerospace engineering and construction [23], micro- and nano-electro-
mechanical system (MEMS and NEMS). Extensive studies have been conducted to
examine this type of structures in many applications without the surface energy effects,
for instance, T. Senjuntichai, R.K.N.D. Rajapakse and Y. Sapsathiarn studied
mechanics of multi-layered poroelastic medium in terms of statics and dynamics
subjected to axisymmetric and plane conditions [24-26], the dispersion of shear and
surface waves in multi-layered solid media are investigated by Haskell [27], Zhu et al.
[28] used X-ray diffraction, transmission electron microscopy and nanoindentation to
investigate the microstructure, hardness and creep behavior of Cu/Ni multi-layered

structure where the thickness of layers are in nanoscale. Focusing on nano-scale



structures, a multi-layered nano structures can be seen in a wide range of nano-scale
inventions such as semiconductor materials, dielectric, insulating materials,
magnetic/optical storage mediums and hard surface coatings [28, 29]. However, the
presence of the surface energy effects makes nano-scale mechanics of the multi-layered
structures different from those in macro-scale. In this study, a numerical solution
scheme based on continuum mechanic is constructed with the capability to analyze
multi-layered structures when the surface energy effect is included. By treating the
medium as an elastic continuum, the results from the continuum scheme can be
obtained with relatively low usage of computational resources compared to those
obtained by atomistic simulations. Although the results from the continuum model is
approximated but the accuracy level is still acceptable and high enough to make the
model quite attractive to researchers. Moreover, the combination of the multi-layered
solution scheme and the influence of the surface energy effects presented in this study
allows users to examine several problems of multi-layered structures with the surface
effects being considered. Thus, this research is essential to provide important
information on mechanical behaviors of this particular multi-layered structures to other

researchers for further studies in the area of nano-mechanics.



CHAPTER 11

EXACT STIFFNESS MATRIX SCHEME

This chapter starts with the basic equations and general solutions that can
be applied to solve the boundary value problems of a multi-layered elastic
medium, with the surface energy effects, resting on a rigid base as shown in Figure
3.1. The basic governing equations of bulk and surface materials with the
consideration of surface effects based on Gurtin-Murdoch model are expressed.
The standard Love’s representation and Hankel integral transform are employed
to derive the general solutions of the bulk material. Thereafter, an exact stiffness
matrix scheme, which is used to solve the boundary value problem, is presented. The
stiffness matrices for each layer can be obtained from the general solutions for
displacements and stresses expressed in the Hankel transform space. The global
stiffness matrix is obtained by considering the boundary and continuity of traction
and displacements at the boundary and interfaces. The solution to the global
equation system yields the displacements and stresses in the Hankel transform
space at the top surface and each interface of the multi-layered elastic medium

under surface energy effects and axisymmetric loading.

3.1 BASIC EQUATIONS

Consider an elastic medium under the influence of surface energy at
surface subjected to the applied traction on its surface. According to Gurtin-
Murdoch surface elasticity theory, the medium consists of two different parts, i.e.
the bulk material and the surface, which is a zero-thickness layer perfectly bonded
to the bulk material without slipping. The field equations of the bulk material are
identical to those given by the classical elasticity. For the surface, the field
equations are represented by the generalized Young-Laplace equation [30]. The
material constants of the bulk are also different to those at the surface.



The governing equations of bulk material, which are the equilibrium
equation, constitutive law and kinematics relationship, without the body forces are

shown below respectively:

oy, -0 (3.1a)

0 =2pE; + A6, (3.1b)
L 3.1

gijzi(ui,ﬁuj,i) (3.1c)

where the terms iy & and u; represent the stress tensor components, strain tensor

components and displacement vector components respectively. In addition, Lamé

constants of bulk material are denoted by A and z.

The governing equations of the surface, expressed by the generalized
Young-Laplace equation [3, 4, 30], are given for boundary conditions for surface
element, surface constitutive law and surface kinematics relationship respectively

as

Oy + 0N+ =0 (3.2a)
Oy =T Opy + 2(,uS —rs)gﬂa +(ﬂ,S +rs)8y/5ﬁa +7°Uy 05, =7°U;,  (3.2b)

£ :%(u;ﬁ+u;a) (3.2¢)
In eq. (3.2), the surface quantity terms are labeled by the superscript “s$”. The
material constants A°, #° and 7° represent the surface Lamé constants of the surface
and the residual surface stress or surface tension under unstrained condition
respectively; n; denotes the unit normal vector to the surface; and ti0 denotes the
prescribed surface traction. It should be noted that, for a given surface orientation

of a pure/semiconductor at a specific temperature, the value of 7° is constant. In

addition, the Greek subscripts, «, g and y, denote the field quantities of the



surface and employ the value of 1 and 2, while the Latin subscripts, i,j and k,

take the value of 1, 2 and 3.

The third term in eq. (3.2b) is the out-of-plane component of the surface
stress that is the pre-existing surface tension in the deformed configuration
multiplied with the out-of-plane surface gradient which its unit vector tangent to
the surface in the deformed state. This term is often ignored in past studies that
employed the Gurtin-Murdoch theory as results of the assumption of infinitesimal
deformations in undeformed configuration. In contrast, the contribution to the
constitutive equation, eq. (3.2b), of the out-of-plane term is not negligible in the
deformed state and of the same order as other terms. Thus, even in the case of
small deformations, this out-of-plane term could become significant [16, 18, 20,
31]. The governing equations for the bulk material and the surface for the case of

axisymmetric problems are presented next.

3.2 GENERAL SOLUTIONS FOR AXISYMMETRIC PROBLEMS

Consider a cylindrical coordinate system (r,6,z), which is rotationally

symmetric about the z-axis. The field equations of the bulk material undergoing
axisymmetric deformations are identical to the classical governing equations [32].
On the surface, the field equations can be expressed as generalized Young-Laplace
equations [30], surface constitutive relations and strain-displacement relations [3,
4]. The generalized Young-Laplace equations of the surface are given by

do,. o, -0, 0

drrr + 18 - +Gzr|Z=0+tl‘ :O (3.3&)
do: o 0
d—rzr+%+(7u|z:0 +tz :O (33b)

The surface constitutive relations are

oy =7+ (A0 +2p° )] + (A0 + 1778, (3.3¢)



oy =1" Jr(/IS + 2;15)559 +(/1S +7° )gfr (3.3d)
o, =1 dd_ur: (3.3¢)

R (3.3)
r dr .
s U

gy = (3:39)

where t° and t? denote the traction applied on radial and vertical directions

respectively.
For axisymmetric problems, the governing equation of the bulk material is

expressed in the following biharmonic equation [32].
VVAD =0 (3.4)

where @ is Love’s strain potential and V?represents the Laplacian operator in

the cylindrical coordinate, which can be expressed as,

V2—8—2+12+6—2 (3.5)
or’ ror 0z '

Applying the Hankel integral transform to eq. (3.4) results in

j:rvzvzmo(gr)dr =£§—;— ZJ D(¢&,2)=0 (3.6)

where
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D(¢, z)=J:CDJO(§r)rdr (3.7)

and J, (&) denotes the Bessel functions of the first kind of order Nn. The solution

to the eq. (3.6) is given by
®(&,2)=(A+Bz)e ** +(C + Dz)e* (3.8)

where A, B, C and D are the arbitrary functions to be obtained by applying the
appropriate boundary conditions.
Consequently, the general solutions for stresses and displacements in the

bulk material can be expressed, in a cylindrical coordinate, as shown below [32]:

- 9{

B jg{dd) deZD} (§ )dg“ MI é:deD (§r) £ (3.9b)

u)e* Z}Jo(fr)df—wj‘:ézz—?\ll(gr)dg (3.92)

0

L =I§°e{ H)E* d—q’} (¢r)de (3.90)
o =], 5[ }J (ér)dé (3.9d)

“ﬂf 520@ J, (¢r)d¢ (3.9¢)
u,=[; e{d > “#2”5 }Jo(fr)df (3.9f)

3.3 BOUNDARY VALUE PROBLEM

The boundary value problem of a multi-layered elastic medium under
surface stress influence and axisymmetric surface loading is presented in this

section. The layers and the surfaces of the multi-layered medium is shown in

Figure 3.1 where the 2" to the N" surface could be called “interface”. The stress
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boundary conditions at the top surface and the displacement boundary conditions
at the rigid base of the multi-layered medium as shown in Figure 3.1 are given

below.

~{oQ+T} ., =p(r) (3.10a)
~{oP+T7} ., =a(r) (3.10b)
TR (3.10¢)

where o =r,z and

N S 2,8 S
g, = dr, [ du, +77 : u;+1di (3.10d)
' dr \ dr 4 dr® r dr -

s s 2,8 s S
g = dz, 144 +K g uz, +Edur _u_; (3.10e)
' dr r ), dr® rdr r -

In addition, « =24 +4 is a surface material constant corresponding to the 1%

TS

z

S
r

material surface properties. The superscript denotes the index of the layer and the
subscript stands for the index number of the surface, normally represented by the
parameter n which takes the value of 1 to N for the layer index and N +1 for the
surface index. Apart from those indices, the superscript letter “S” is shown to

denote the surface parameters. The terms p(r) and q(r) are the axisymmetric
traction, applying in the normal and tangential directions respectively, on the top
surface. The terms U, and U, are the displacements of the surface corresponding

to their subscript which have the displacements continuity condition which means
each surface is adhered to the nearby lower boundary of the upper layer and the

upper boundary of the lower layer without slipping. In addition, the terms T,” and

T. represent the contribution from the surface energy effects in the normal and

tangential directions respectively. These terms are normally ignored in the macro-
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scale problems but in the nano-scale problems, these effects have to be considered

at the top surface and every interface. Thus, the traction and displacements
continuity conditions at the n™ surface, where n=2,3,..., N, can be written as the

following equations.

{o0P o -T2}/, =0 (3.11a)
{oi - -T2}|,., =0 (3.11b)
wll L =ugl =u (3.11c)

The terms on the right-hand side of the egs. (3.11a) and (3.11b) can be referred to

the discontinuity of traction at the n"™ surface. Since the present problem is
subjected to only the top surface loading, the terms on the right-hand side are equal
to zero. However, if there is traction applied at the layer interface, the right-hand
side terms are non-zero and this calculation scheme is still viable.

To solve this boundary value problem, the continuity condition of traction
and displacements at each surface, eqgs. (3.11a) to (3.11c), have to be considered
with the boundary conditions, egs. (3.10a) to (3.10c). For the problem shown in
Figure 3.1, the condition number of the equation system is extremely large when
using the high value of & for the equation system to be solved conventionally due
to the presence of mis-matching exponential terms in the equations system [24].
The large condition number indicates the ill-conditioning of the system, which
results in the low numerical stability of the system. To avoid the low numerical
stability, the exact stiffness matrix scheme, [24, 33], is adopted to solve this
boundary value problem related to a multi-layered medium with surface energy

effects.

3.4 FORMULATION OF EXACT STIFFNESS MATRIX SCHEME

An exact stiffness matrix method is selected to examine the behaviors of a
multi-layered elastic medium from the relationship between the displacements and

the stresses at each layer. A multi-layered medium consisting of N layers of
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different properties and thicknesses over a rigid base is considered as shown in
Figure 3.1. The general solutions given by egs. (3.9a) to (3.9f), the displacements
and the stresses in the bulk, can be expressed in the Hankel transform space in the

following matrix form.

[1.ED) w@E D] =REDD (3.12a)

(022 ou@D)] =SE 2@ (3.12b)
where

(@ =[A" B® c DT (3.12¢)

7/ [Progf @) N o™ ]
= —e% {—z——ﬁ)_]e"’” —ef’ {—z+—ﬁ)_Je‘fz
R(”)(E,E)Z(ai(n)é] e @7 (3.12d)
Y7,

S (E,7) =(a)("’2) L - (3.12¢)

a)(n)g

In addition, the dimensionless quantities from the above equations are defined by

K=+ A (3.13a)

i3 (A0 +2u®)
A= 2:[(1) (2940 (3.13b)

(m
- U
ﬂ =

1
,U()

(3.13¢c)
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—m ™
2" = L@ (3.13d)
7
o =1" 4+ 1" (3.13e)
—s K';
K= (3.13f)
—s Tr?
Tn = ﬂ(l)A (3139)
(n) 3
: “;_(’f) (3.13h)
7]
"7, .
5, = e (3.13i)
Yl
z=z7/A (3.13))
r=r/A (3.13k)
E=EA (3.131)

in which the superscript letter “T * represents the transpose of a vector or a matrix.
The superposed bar symbol, “ > denotes the non-dimensional quantities with
respect to the properties of the first layer, egs. (3.13a) to (3.13l), where the Tilde
symbol, N denote the non-dimensional quantities in their Hankel transform
space.

For the n™ layer, the displacement and the stress vectors of top and bottom

surfaces of the bulk can be formulated by using egs. (3.12a) and (3.12b).

8 (e

SR O c™ (&) (3.144)
Uz(§1fn+l) R(n)(g,gml)

Ur(f,g, Zn+l)
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~0u(&,2n)
—ou (£,21)
Oun (E,Enﬂ)
ou (&, 2na)

S c™ (&) (3.14b)

Apart from the stresses in the bulk, due to the presence of the surface
energy effects, the terms corresponded to the effect T, and T° need to be

considered in the same manner as the stresses. By considering the displacements
continuity condition, eq. (3.11c), together with the general solutions of normal
displacement, radial displacement and their derivatives, eq. (3.9e) and (3.9f), the

surface stresses can be represented as shown in the following equation

“T2(&,20) 7@

Te@z)lo| ™ (@) (3.150)
0 0
0

where T.(&,z.) and Tr(&z.) are the Hankel transform of T° and T°,

z

respectively, and the detail of the matrices Z, is shown below

N Py - N G CA N
—5.e7" —[z+%]5nefz -5, —{z— ad _Ja‘nefZ
o0&

_7/r|e_EE (_24_%] yne_gg }/neEE [24_%] ynegE

Thereafter, the relationship between the displacements and the stresses at
each layer is formulated. The stresses expressed in this relationship are the stresses
in the bulk combining with the surface stresses of the surface located between the
layers. From the egs. (3.14b) and (3.15a), the stresses terms can be merged as

shown below.



—Oz (E’ En)
o (£, 20)
Oz (E,Enﬂ)

Oz (E, En+l)

“T2(&,20)
“T(&,20)

'S(n) (E_Z! E") - Zn (E_Z’ E")

()

(3.16)
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In view of eq. (3.14a) and eq. (3.16), the following relationships can be

established for the n™ layer:

6™ = KMy™

where

6" =

_[au(g,an)ni@,a)
—[azr(E,En)ni(E,En)

Oz

O zr

U (&,20)
Ur(g,gn)

B u; (E, Em—l)

Ur (E, Em—l)

-SM (&, za

(E,Enﬂ)
(E, En+l)

)—Zn(g,gn)

J
]

3.5 GLOBAL STIFFNESS MATRIX

RV (&, z0) |

(3.17a)

(3.17h)

(3.17¢)

(3.17d)

The advantage of using technique of global stiffness matrix is that the condition

number of the equation system is relatively low compared to the conventional technique

[24]. To assemble the global stiffness matrix of the multi-layered elastic medium, the

continuity conditions of traction and displacements at each surface are needed. From

the continuity conditions in the eq. (3.11a) to (3.11c) and the relationship between the
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displacements and the stresses at each layer in the eq. (3.17a), the global equation

system can then be established as

KU =F (3.18a)
in which
F*:%[P(E) Q&) 0 0 - 0 o]T (3.18b)

U=[0:@z) w@n) wEz) w@En) - wuEzw) uEm] (@18)

and the matrix K" is the global stiffness matrix established by assembling the matrix

K™ from the eq. (3.17d) with the consideration of the continuity conditions of traction

and displacements from eq. (3.11a) to (3.11c) of each surface. The functions P(£) and
Q(¢) are the Hankel transform of the normalized surface loading, i.e. p(r)/x® and
q(r)/ 1 respectively. The solution to the above global equation system yields the

Hankel transforms of the displacements at each layer interface. Hankel transforms of
the stresses at the layer interfaces can then be obtained by substituting the solution to
the displacements into eq. (3.17a). Finally, the displacement and stress fields can be
determined by applying an accurate numerical quadrature scheme. In the next chapter,
the procedure and the details of the numerical quadrature scheme are provided
following by the verification of the scheme on existing solutions. Thereafter, parametric
studies investigation are conducted based on practical models to study the influence of

various parameter on elastic fields of the layered medium.
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Figure 3.1. A multi-layered elastic medium over a rigid base under axisymmetric

surface loading
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CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

4.1 NUMERICAL SCHEME VERIFICATION

A computer code is developed based on the exact stiffness matrix scheme to
evaluate the displacements and stresses of a multi-layered elastic medium with the
presence of the surface energy effects. The tasks performed by the computer code
follows the detail described in the section 3.4 and 3.5. First, the stiffness matrices
corresponding to each layer is computed from the input parameters for specified values

of Hankel transform parameter &. These stiffness matrices are then assembled into the

global stiffness matrix form of eq. (3.18a), and the displacement vector, eq. (3.18c), is

obtained by solving the global stiffness equation for each specified value of £&.

Thereafter, the displacements at the top surface and each interface are obtained by

evaluating the semi-infinite integrals with respect to & in the displacement vector by
using numerical quadrature scheme based on 21-point Gauss-Kronrod rule [34]. To

obtain the stresses, the relation of stresses and displacements of the n™ layer shown in
the eqg. (3.17a) and (3.17d) have to be evaluated after the displacement vector is
obtained, and the same integral process applied to the displacement is then performed
on the obtained the stress solution.

Two verification models have been chosen to verify the present solution
scheme. To test the scheme of elastic functionally graded layer, called FG layer, over
an underlying half-space subjected to uniformly distributed loading, the solution by
Katebi and Selvadurai (2013) [35] is chosen. The FG layer is modelled as a multi-
layered medium with their elastic material properties vary through the layer thickness

by the grading exponential function x(z)= u,e™’ where m is the grading constant and
M, 1s the shear modulus corresponding to the material of the top surface with the

constant Poisson’s ratio of 0.5. The FG layer is divided into a number of sublayers
where each layer has the same thickness, the shear modulus within each layer is

constant and it is computed at the mid-height of the layer. The appropriate number of
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sublayers to represent the FG layer is studied and as the normalized thickness of the
layer is 1.0, ten sublayers are acceptable, in which the error occurred from this model
is less than 0.01%. To improve the accuracy, the FG layer can be divided where
thickness of each layer is different corresponding to the gradient of the grading
function. The properties of the remaining half-space are the same as the properties of
the material at the lower surface of the layer. The half-space is modelled as 10 sublayers
of elastic layers with uniform thickness of 0.1 on a relatively large elastic layer over
rigid base. The medium is subjected to the internal axisymmetric uniform vertical
loading applied at the interface between FG layer and homogeneous half-space. The

internal loading function is expressed as the following equation

p(r)=p,H (a-r) 4.1)

where H(a-r) is the Heaviside step function, a is the loading radius and p, is the

loading magnitude. The ratio of the layer thickness to the radius of the loading H/a is

set to 1.0. The verification of the vertical displacement at the interface along the radial

direction is illustrated in Figure 4.1a for the case where m =0.25, 1.0 and 1.5, and the

normal stress along the vertical direction when H /a ratio is set to 2.0 for the case when

m = 0.0, 0.5 and 1.0 is presented in Figure 4.1b. Both solutions show excellent
agreement with the corresponding existing solutions [35].

The second verification, with Tirapat et al. (2017) [22], is conducted by
comparing with the solution for an infinite elastic layer of Si [100] over an underlying
half-space of Al [111] subjected to the same loading as the first verification, applied to
the top surface, with the ratio of the layer thickness to the loading radius of 1.0. The
material properties and surface properties of Si [100] and Al [111] are shown in Table
4.1 [5, 36]. The upper layer of Si [100] is divided into 10 sublayers and the half-space
Al [111] is also divided into 10 sublayers and a half-space to ensure the capability of
the scheme to handle the multi-layered structure. In addition, the surface energy effects
are considered only on the top surface and the interface, no effects on any interface
between sublayers. The excellent agreement between the two solutions can be observed

in both displacement and stress profiles shown in Figure 4.2a and 4.2b.
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4.2 NUMERICAL SOLUTIONS
4.2.1 Multi-layered medium over rigid base

The influence of surface energy effects and the size-dependency effect have
been studied in this section. The capability of the program when subjected to various
loading cases is demonstrated. A model of Si/Al multi-layered medium resting on a
rigid base is selected since Si/Al multi-layered structure is one of the most well-known
systems for micro- and nano-electronic materials [37]. The multi-layered medium
consists of two different materials stacking alternately throughout the total thickness,
H. The odd layers are Si [100] and the even layers are Al [111] where the thicknesses

of both layers, h, and h,, are both equal to 0.2 nm. The thickness of the medium is equal
to 1 um and subjected to top surface axisymmetric loading with the loading function as

shown in eg. (4.1) where the normalized thickness a,alA, equal to 1.0. The boundary
value problem is illustrated in Figure 4.3. The material properties of Si [100] and Al
[111] are shown in Table 4.1 where the surface properties of Si [100] are selected as
the properties of the top surface and the surface properties of Al [111] are hypothetically
selected as the properties of the other surfaces, called interfaces. From Table 4.1, the
material length scale A of Si [100] is equal to 0.16739 nm which is used as the structure
length scale to normalize every dimensional parameter. Therefore, the normalized

thickness of each layer is equal to 1.195 and the loading radius is equal to 0.16739 nm.

In addition, the superposed bar symbol “ o implies that the parameter below the symbol
is normalized with the material length scale.

After all the parameters are set, then the model is ready for investigations.
Figure 4.4 shows the vertical displacement and the normal stress of the Si/Al multi-
layered medium at different profiles along the radial direction for the cases where the
surface energy effects are considered and ignored. The monitoring profiles for the
displacement are the top surface where z = 0.0 nm, the second surface where z = 0.2
nm and the third surface where z = 0.4 nm while for the stress, the same set of
monitoring profiles are used except for the first profile, a profile of the middle of the
first layer where z = 0.1 nm is used instead. It can be implied from the results that the
influence of the surface energy effects is significant to the vertical displacement and
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normal stress at all profiles shown in Figure 4.4, especially the profile at the depth close
to the top surface where the loading is applied.

Moving onto the study of influence of the surface energy effects at the interface,
since the surface elastic properties of the interfaces between two specific materials are
still not defined yet, the investigation on the influence at the interfaces by varying the

surface elastic properties at each interface is beneficial. The residual surface stress of
the interfaces z, is varied whereas the residual surface stress of the top surface z;
remain the same. The results, displacements at the top surface and stresses at the profile
z = 0.1 nm, are obtained with the ratio of the residual surface stress of the interface to
the top surface, 7, being -0.5, 1.0, 2.0 and 5.0 while the value of «* remains the same
for all cases. The similar trends can be observed in all the results shown in Figure 4.5,

i.e. the value at every points of all the results converged to zero when the ratio increases.

This means that the increment of the effects renders the medium stiffer than those with

lesser value of the 7, ratio, and the residual surface stress at every interface contributes

significantly to the results in this model. Note that the surface elastic constant «°
contributes negligible influence on the results compared to the residual surface stress
° [17].

Although the size dependency effect has been studied by various researchers,
the effect on a multi-layered medium is the topic that has not been discussed yet. The
numerical experiments have been conducted on a default model to obtain vertical

displacement and normal stress at the depth of z = 0.0 nm for the displacement, z =
0.1 nm for the stress and r/a = 0.5 for both fields while varying the parameter a. The

ratio H/a is kept constant for every a. The influence of the size dependency effect is

illustrated in Figure 4.6 which indicates the trend of the elastic fields when the
parameter ais changed. The differences between the elastic fields with the surface
energy effects and without the effects are reduced when a is increased. However, the

differences are significant when the value of a is small, approximately below 2.0.
Additionally, the results of the present study do agree well with the work from
Rungamornrat et al. [18].
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The capability of the numerical scheme in terms of applied loading cases is also
investigated in this study. Three different types of axisymmetric loading cases are
chosen with the same amount of total force, namely, uniformly distributed vertical
loading as shown in eq. (4.1), the contact pressure from the flat-ended rigid punch and
the contact pressure from the paraboloid revolutionary rigid punch. The second and
third loading cases are the assumed forms of loading function which provides the
similar contact pressure to flat-ended rigid punch and paraboloid revolutionary rigid
punch indentation problem respectively when applied to the homogeneous half-space
medium. The assumed form of loading function of the flat-ended rigid punch is

expressed in the following equation[38]

(1) =(py | 13) 1 J(L=(r [2)})H(a~T) (4.2a)

and the assumed form of loading function for paraboloid revolutionary case [38] is

p(r) = (py/ #¥a)\(L-(r /@) )H(@-r) (4.2b)

where H(a-r) is the Heaviside step function. The vertical displacement of the top

surface and the normal stress at the profile z = 0.1 nm are plotted in Figure 4.7. The
vertical displacement of the flat ended and paraboloid revolutionary cases shown in
Figure 4.7 reflects the flat and paraboloid shapes respectively. The influence of surface
energy effects can be found on all results corresponding to the three loading cases. The
flat ended loading case provides the maximal displacement whereas the paraboloid
revolutionary case provides the minimal. On the stress result, the influence of the

surface energy effects is significant only under the contact area of the loading where

r/a<l0.

4.2.2 Functionally graded elastic medium

The second model is a model of functionally graded layer on a homogeneous

elastic medium overlying a rigid based. The elastic properties of the FG layer vary in
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the z-direction from the elastic properties of Si [100] at the depth 7=0.0 to the elastic

properties of Al [111] at the depth E:E where h_l is the normalized thickness of the

FG layer as shown in Figure 4.8. The variational pattern of the elastic properties of the

FG layer is determined by the grading function in which the exponential function,

L(z) = L,e™"* where m is the grading constant and L, is the Lame’ constants of Si [100],

is selected for every cases of this model. The value of the grading constant m is

obtained by back calculation from the known elastic properties at the depth z=0.0 and

2=h. The FG layer is divided into 10 sublayers where the elastic properties of each

layer are assigned in the same manner as the verification model. The underlying

homogeneous elastic layer is a layer of Al [111] and its layer thickness is equal to h,.

The h, /h, ratio is set to 9.0 where the ratio H/a and the loading radius a are both set

to 1.0. This model is subjected to the same loading case as the multi-layered model, eq.
(4.1). The surface elastic properties of the top surface and the interface of this model
are equal to the surface properties of Si [100] and Al [111] respectively.

The top surface vertical displacement corresponding to the variation of the

thickness ratio between upper and lower layer are illustrated in Figure 4.9 with H/a
being fixed at 1.0. Since Al [111] has lower elastic properties than Si [100], the obtained
displacement then becomes maximal when the thickness of Al [111] is 9.0, which is the
largest thickness considered in the Figure 4.9.

Studying the influence of the total thickness H on the top surface vertical
displacement of the FG layer model when the total thickness is increased whereas the
first layer thickness remains the same is presented in Figure 4.10. As the thickness
increases, the influence of the surface energy effects increases.

The vertical displacement profiles along the radial direction at each profile
through the thickness of the multi-layered medium have been plotted to study the
surface energy influence as the distance between the selected profiles and the top
surface increases. The results illustrated in Figure 4.11 can be implied in the same way
as the multi-layered model, i.e. the influence of the surface energy effects on the
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displacement is lower when the distance between the profile and the top surface
increases.

Turning to investigate the effect of the residual surface stress z° on the FG layer
problem. Figure 4.12 shows the displacements profiles at the top surface and the
stresses profiles at the interface between the FG layer and the homogeneous layer with

the value of 7, being -0.5, 1.0, 2.0 and 5.0. The similar trend to the Si/Al multi-layered

model can be observed in Figure 4.12 where the presence of the residual surface stress
increases the stiffness of the elastic medium.

Another point of interest is the influence of grading function to the solutions.
To investigate the difference between the grading function of the FG layer, three
grading functions, namely, linear, exponential and power law distributed grading
function, have been employed to observe the variation of the top surface vertical

displacement and normal stress at the interface. The linear and power law distributed

grading function can be expressed as L(z)=L?1+mz) where m=(L")-L?)/(Lh) and

L(z)=L®@+2/h)" where m=1log, (L™ /L) respectively when z <h . The special case of
the FG layer has been introduced to emphasize the difference between the results among
gradation functions. The elastic properties of the top surface and the interface,
previously assigned as the properties of Si [100] and Al [111] respectively, are

substituted by the 1% material and the 2" material for this special case, which are g, =

100 GPa, 4 /g = 1.5 for the 1% material and u, = 10 GPa, 4,/ u, = 1.5 for the 2"
material. The ratio h_zlﬁ for this special case is set to 1.5, the thickness h_1 is 0.4, the

ratio H/a is kept to 1.0 and the surface quantities at the top surface and the interface
remain unchanged from the FG model. The results show that the stiffest grading
function is the linear distribution, followed by the exponential and the power law
respectively as shown in Figure 4.13. However, the results also show that the selection
of grading function is significant only for the extreme cases where the variation of

elastic properties and the thickness is large enough.
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4.3 APPLICATIONS OF FUNDAMENTAL SOLUTIONS

The obtained results from the previous sections are based on a multi-layered
medium configuration over a rigid base subjected to some cases of axisymmetric
surface loading. However, many practical problems can also be handled by this
calculation scheme. In the aspect of the applied loading, the scheme allows the user to
analyze problems subjected to any arbitrary axisymmetric loading by simply plug-in
the loading in their Hankel transform space into the numerical scheme. The loading
cases in the Hankel transform space that have been frequently used are a concentrated

point load E(E) = p,/2z with the loading magnitude of p,, a concentrated ring load

5(5) = pOJO(Ea)/Zﬂ where a is the radius of the ring loading, and the uniform annular

load by making use of the superposition method of two uniformly distributed
loading[32]. The other types of loading, including tangential loading, in the Hankel
transform space can also be obtained by the method of inversion from the known
function. Those loading cases can be applied on various situations such as when the
medium is contacted by tubular elements, when the friction is considered, or when it is
subjected to other complex form of pressure. Another aspect is that the scheme can be
used to analyze boundary value problems where the loading is applied to the interface
instead of surface, and the loading can also be applied to multiple interfaces or top
surface with different loading functions at once. This can be useful in the further
applications when there are some practical applications, which is related to the internal
loading in the nano-scale systems or some macro-scale problems related to soft elastic
solids.

Furthermore, the present solution can be extended to deal with the nano
indentation problems. By attaching an additional indentation computational scheme to
the calculation procedure to compute mixed boundary value problems, the top surface
contact pressure can be generated, and the results of the boundary value problem can
be obtained by the numerical scheme presented in this study afterward. This
development will be a huge improvement since indentation techniques have been
employed in practice to solve numerous problems, for instance, arbitrary punch profile
indentation problems [38]; or using indentors for depth-sensing indentation tests to

measure mechanical properties in nano-scale [39].



Table 4.1: Material properties of Si [100] and Al [111]

([5, 10, 36])
Material parameters  Si[100] Al [111]
A [GPa] 78.0849  58.1700
u [GPa] 40.2256  26.1300
2° [N/m] 4.4939 6.8511
& [N/m] 2.7779 -0.3760
7° [N/m] 0.6056 0.9108
x* [N/m] 10.0497 6.0991

A [nm] 0.16739  0.15288
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Figure 4.1. Comparison of (a) normalized vertical displacement profiles at the
interface; and (b) normalized normal stress profiles along the z-axis of a FG layer
over an elastic half-space
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Figure 4.4. Radial profiles of elastic fields of the Si/Al multi-layered medium at
defferent depths: (a) normalized vertical displacement; and (b) normalized normal

stress
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Figure 4.7. Radial profiles of elastic fields of the Si/Al multi-layered medium under
different types of surface loading: (a) normalized vertical surface displacement; and

(b) normalized normal stress at z = 0.1 nm
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Figure 4.9. Radial profiles of normalized vertical surface displacement of the FG

elastic medium with different h, /h, ratios
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Figure 4.11. Radial profiles of normalized vertical displacement of the FG elastic

medium at different depths
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CHAPTER V

CONCLUSION

The mathematical model for solving a multi-layered elastic medium, with
consideration of the surface energy effects, and subjected to axisymmetric loading is
developed in this study. The standard Love’s representation and the Hankel integral
transform are adopted to obtain general solutions of each layers, which are assembled
and numerically solved by the exact stiffness matrix method. To capture the surface
energy effects, the surface elasticity theory by Gurtin-Murdoch is adopted. The
parametric studies have been carried out for two models, a multi-layered medium over
arigid base and a functionally graded elastic medium with the intentions to portray the
capabilities of the calculation scheme on different multi-layered models and to study
the influence of the surface energy effects on elastic fields of the layered medium.

The numerical results show that, apart from numerous uses of the multi-layered
scheme presented in previous works, this scheme can handle the multi-layered
problems or functionally graded problem with the presence of the surface energy
effects, in which the value of surface elastic properties of the top surface and each
interface can be assigned individually. The results indicate that the surface elastic
properties, especially the residual surface stress, of the top surface and interfaces have
a great influence on both displacement and stress results. The results also indicate that
the residual surface stress of the same surface as the loading plane, i.e. the top surface,
has the most impact on the results compared to that of the interfaces. Other parameters
can also affect the influence of the surface energy effects as well, for instance, the
loading radius and the elastic material properties. The outcomes of this study can be
used in various ways, for instance, the present solution can be used as benchmark
solutions in the development of numerical approaches such as FEM and BEM for
the analysis of multi-layered structures with the influence of surface energy effects This
solution scheme can be further modified to analyze other practical multi-layered

systems with the surface energy effects such as indentation problems.
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