การลดปริมาณมอนอเมอร์ที่หลงเหลือในวัสดุแผ่นฐานจัดพันที่มีส่วนประกอบพื้นฐาน เป็นเมทิลเมทาคริเลตโดยการแช่น้ำในอ่างอัลตร้าโซนิก

นางสาวปจิมา ไทยธรรมยานนท์

CHULALONGKORN UNIVERSIT

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมจัดฟัน ภาควิชาทันตกรรมจัดฟัน คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2557 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย RESIDUAL MONOMER REDUCTION IN THE MMA-BASED ORTHODONTIC BASE-PLATE MATERIALS BY WATER IMMERSION IN ULTRASONIC BATH

Miss Pajima Thaitammayanon

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Orthodontics Department of Orthodontics Faculty of Dentistry Chulalongkorn University Academic Year 2014 Copyright of Chulalongkorn University

Thesis Title	RESIDUAL MONOMER REDUCTION IN THE MMA-	
	BASED ORTHODONTIC BASE-PLATE MATERIALS	
	BY WATER IMMERSION IN ULTRASONIC BATH	
Ву	Miss Pajima Thaitammayanon	
Field of Study	Orthodontics	
Thesis Advisor	Associate Professor Chintana Sirichompun	
Thesis Co-Advisor	Associate Professor Chairat Wiwatwarrapan	

Accepted by the Faculty of Dentistry, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

_____Dean of the Faculty of Dentistry

(Assistant Professor Suchit Poolthong, Ph.D.)

THESIS COMMITTEE

Chairman

(Professor Smorntree Viteporn)

_____Thesis Advisor

(Associate Professor Chintana Sirichompun)

_____Thesis Co-Advisor

(Associate Professor Chairat Wiwatwarrapan)

External Examiner

(Associate Professor Thosapol Piyapattamin, Ph.D.)

ปจิมา ไทยธรรมยานนท์ : การลดปริมาณมอนอเมอร์ที่หลงเหลือในวัสดุแผ่นฐานจัดพ้นที่มี ส่วนประกอบพื้นฐานเป็นเมทิลเมทาคริเลตโดยการแช่น้ำในอ่างอัลตร้าโซนิก (RESIDUAL MONOMER REDUCTION IN THE MMA-BASED ORTHODONTIC BASE-PLATE MATERIALS BY WATER IMMERSION IN ULTRASONIC BATH) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ทญ. จินตนา ศิริฐมพันธ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ชัยรัตน์ วิวัฒน์วรพันธ์, 82 หน้า.

วัตถุประสงค์: เพื่อเปรียบเทียบปริมาณมอนอเมอร์ที่ตกค้างระหว่างวัสดุออโธคริลกับออโธพลาสท์ และเพื่อเปรียบเทียบปริมาณมอนอเมอร์ที่ตกค้างในวัสดุแผ่นฐานจัดพันชนิดบ่มด้วยตัวเอง ระหว่างวิธีการลด ปริมาณมอนอเมอร์ที่แตกต่างกัน

วัสดุและวิธีการ: เตรียมชิ้นงานรูปแผ่นกลมขนาด 3x50 มิลลิเมตร จำนวน 96 ชิ้นงาน โดยใช้วัสดุ ออโธคริล (เดนทาลรุม, ประเทศเยอรมัน) และออโรพลาสท์ (เวอเทคซ์, ประเทศเนเธอร์แลนด์) ทำตามคำแนะนำ ของปริษัทผู้ผลิต และตามขั้นตอนไอเอสโอ 20795-2 (2013) แบ่งชิ้นงานแต่ละยี่ห้อออกเป็นแปดกลุ่ม (กลุ่มละ 6 ชิ้นงาน) กลุ่มที่ I ไม่ผ่านกระบวนการใด เป็นกลุ่มควบคุม กลุ่มที่ II และ III เป็นกลุ่มแช่น้ำอุณหภูมิห้อง (25 องศา เซลเซียส) เป็นเวลา 24 และ 72 ชั่วโมง ตามลำดับ กลุ่มที่ IV-VIII เป็นกลุ่มที่แช่น้ำอุณหภูมิ 50 องศาเซลเซียสใน อ่างอัลตร้าโซนิกเป็นเวลา 3, 5, 10, 15 และ 20 นาที ตามลำดับ วัดปริมาณมอนอเมอร์ที่ตกค้างโดยใช้เครื่องโคร มาโทกราฟฟีของเหลวสมรรถนะสูง วิเคราะห์ข้อมูลโดยใช้การวิเคราะห์ความแปรปรวนแบบสองทาง ตามด้วย การวิเคราะห์ความแปรปรวนแบบทางเดียวและการทดสอบของทูกีย์เอชเอสดีที่ระดับนัยสำคัญ 0.05

ผลการทดลอง: ในกลุ่ม II-VIII กลุ่มออโธคริล มีปริมาณมอนอเมอร์ที่ตกค้างน้อยกว่ากลุ่ม ออโธพลาสท์อย่างมีนัยสำคัญทางสถิติ ในกลุ่มออโธคริล ปริมาณมอนอเมอร์ที่ตกค้างในกลุ่ม II-VIII น้อยกว่า กลุ่ม I อย่างมีนัยสำคัญทางสถิติ ขณะที่กลุ่ม VIII น้อยกว่ากลุ่ม II,III อย่างมีนัยสำคัญทางสถิติในกลุ่ม ออโธพลาสท์ ปริมาณมอนอเมอร์ที่ตกค้างในกลุ่ม I และ II ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ แต่ใน กลุ่ม III มีปริมาณมอนอเมอร์ที่ตกค้างน้อยกว่ากลุ่ม I อย่างมีนัยสำคัญ ปริมาณมอนอเมอร์ที่ตกค้างในกลุ่ม VI, VII และ VIII ไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ แต่ในกลุ่ม VIII มีปริมาณมอนอเมอร์ที่ตกค้างน้อยกว่า กลุ่ม VI อย่างมีนัยสำคัญ

สรุปผลการทดลอง: ในวิธีการลดมอนอเมอร์วิธีเดียวกัน ปริมาณมอนอเมอร์ที่ตกค้างในวัสดุออโธคริล ต่ำกว่าวัสดุออโธพลาสท์ การแช่น้ำอุณหภูมิ 50 องศาเซลเซียสในอ่างอัลตร้าโซนิก เป็นเวลา 10-20 นาที ลด ปริมาณมอนอเมอร์ที่ตกค้างในวัสดุแผ่นฐานอะคริลิกจัดพันได้ใกล้เคียงหรือดีกว่าการแช่น้ำที่อุณหภูมิห้องเป็น เวลา 24 และ 72 ชั่วโมง อย่างไรก็ตามใช้เวลาน้อยกว่า

ภาควิชา	ทันตกรรมจัดฟัน	ลายมือชื่อนิสิต
สาขาวิชา	ทันตกรรมจัดฟัน	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา		ลายมือชื่อ อ.ที่ปรึกษาร่วม
	2001	

5675810332 : MAJOR ORTHODONTICS

KEYWORDS: RESIDUAL MONOMER / ORTHODONTIC BASE-PLATE MATERIALS / WATER IMMERSION / ULTRASONIC BATH

PAJIMA THAITAMMAYANON: RESIDUAL MONOMER REDUCTION IN THE MMA-BASED ORTHODONTIC BASE-PLATE MATERIALS BY WATER IMMERSION IN ULTRASONIC BATH. ADVISOR: ASSOC. PROF. CHINTANA SIRICHOMPUN, CO-ADVISOR: ASSOC. PROF. CHAIRAT WIWATWARRAPAN, 82 pp.

Objective: To compare the levels of residual monomer between Orthocryl and Orthoplast; and to compare the levels of residual monomer in self-cured orthodontic base-plate materials among the different reduction methods.

Materials and methods: A total of 96 disc specimens (3x50 mm) were prepared from Orthocryl[®] (Dentaurum, Germany) and Orthoplast[®] (Vertex, The Netherlands), according to the instructions of the manufacturers and ISO 20795-2 (2013). The specimens from each brand were divided into eight groups (6 specimens per group). Group I were left untreated as controls. Groups II and III were immers ed in the-room-temperature (25°C) water for 24 and 72 hours, respectively. Groups IV-VIII were immersed in 50°C water of an ultrasonic bath for 3, 5, 10, 15 and 20 minutes, respectively. The level of residual monomer was determined by using high performance liquid chromatography. Data were analyzed by a two-way ANOVA, followed by a one-way ANOVA Tukey's HSD *post hoc* test at 0.05 significant level.

Results: In group II-VIII, the Orthocryl groups showed a statistically significantly lower residual monomer level than the Orthoplast groups. In the Orthocryl groups, the levels in group II-VIII were significantly lower than group I, while the level in group VIII was significantly lower than those in groups II, III. In the Orthoplast groups, no significant differences existed between group I and II, but the level in group III was significantly lower than that in groups I. The levels in group VI, VII and VIII were not significantly differences with those in groups III, but the level in group VIII was significantly lower than that in groups VI.

Conclusion: In the same monomer reduction method, the levels of residual monomer in Orthocryl were lower than those in Orthoplast. Water immersion at 50°C in an ultrasonic bath for 10-20 minutes reduced the amount of residual monomer in an orthodontic acrylic base-plate material, which was similar to or better than water immersion for 24 and 72 hours at room temperature. However, less time was required.

Department: Orthodontics Field of Study: Orthodontics Academic Year: 2014

Student's Signature	
Advisor's Signature	
Co-Advisor's Signature	

ACKNOWLEDGEMENTS

This research paper is made possible through the help and support from everyone, including: parents, teachers, family, friends, and in essence, all sentient beings.

First, I would like to thank Associate Professor Chintana Sirichompun for her advice and dedication to my thesis.

Second, I would like to thank Associate Professor Chairat Wiwatwarrapan for his suggestion and support.

Third, I would like to thank the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530265-AS) for the support.

Finally, I sincerely thank to my parents, family, and friends, who support me to succeed my work. The product of this research paper would not be possible without all of them.

CONTENTS

F	Page
THAI ABSTRACT iv	1
ENGLISH ABSTRACT	1
ACKNOWLEDGEMENTSv	i
CONTENTSvi	i
List of diagramsix	<
List of figures	<
List of tablesx	i
CHAPTER I INTRODUCTION	
Background and Rationale1	
Research Questions2	2
Objectives	2
Research Hypotheses2	2
Limitations	
Expected Benefits and Applications	}
Research Design	}
Conceptual Framework4	ļ
CHAPTER II LITERATURE REVIEW5	5
Acrylic resins5	5
Methyl methacrylate (MMA)5	5
Polymethyl methacrylate (PMMA)6	3
Chemically activated acrylic resins7	7
Manipulation technique for removable orthodontic appliances)

Page

Residual monomer	9
Effects of residual monomer	10
Method for reduction of residual monomer	11
Ultrasonic cleaning	13
CHAPTER III RESEARCH METHODOLOGY	15
Materials and methods	15
Research equipment	15
Variables	19
Sample size	19
Research methodology	20
Study for powder: liquid ratio for each specimen	20
Preparation of experimental specimen discs	21
Preparation of solutions for extraction monomer	22
Preparation of calibration solutions for high-performance liquid chromatography (HPLC)	23
Methods for extraction of monomer	23
High-performance liquid chromatography (HPLC) test	24
Determination of the percentage of methyl methacrylate	25
Data analysis	31
CHAPTER IV RESULTS	32
CHAPTER V DISCUSSION AND CONCLUSION	
Discussion	
Conclusion	42

REFERENCES	
VITA	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University Page

List of diagrams

Diagram 1 Preparation of experimental specimen discs	26
Diagram 2 Categorization of control and experimental groups	27
Diagram 3 Preparation of solutions for extraction monomer	28
Diagram 4 Preparation of calibration solutions	28
Diagram 5 Method of extraction monomer	29
Diagram 6 Summary of experimental methods	30

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

List of figures

Figure 1 Methyl methacrylate molecule	. 6
Figure 2 Chemical structure of PMMA	.7
Figure 3 Orthocryl [®] (Dentaurum, Germany)1	16
Figure 4 Orthoplast [®] (Vertex, The Netherlands)1	16
Figure 5 A stainless steel mould1	17
Figure 6 Polishing machine1	17
Figure 7 Ultrasonic bath (FZ 40 KHz., VGT-1990 QTD, China)1	18
Figure 8 High-performance liquid chromatography1	18
Figure 9 A disc specimen1	19
Figure 10 The level of residual monomer after water immersion	38
Figure 11 The level of residual monomer after water immersion at 50°C in an	
ultrasonic bath at different time3	38
Figure 12 Standard calibration curve4	19

Chulalongkorn University

List of tables

Table 1 Means (wt%) and standard deviations of residual monomer concentration of
the MMA-based orthodontic base-plate materials $(n = 6)$
Table 2 Means (wt%) and standard deviations of residual monomer concentration of
the MMA-based orthodontic base-plate materials (n = 12) 37
Table 3 Experimental data in the Orthocryl groups
Table 4 Experimental data in the Orthoplast groups 58
Table 5 Normality test 66
Table 6 A two-way ANOVA 67
Table 7 A one-way ANOVA

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER I

Background and Rationale

Based on methacrylates, polymeric materials have been widely used in the construction of both active and passive removable orthodontic appliances for many years. Orthodontic appliances are used for newborn cleft lip and palate patients, space maintenance, tipping teeth, overbite reduction, thumb deterrent, block-movements, and retention after treatment. The appliances are used in children, adult and older patients. Moreover, the base plate of orthodontic appliance was kept in contact with oral mucosa for a long time during treatment.

Polymerization of the orthodontic acrylic resin is an additional reaction that requires the activation of an initiator, such as benzoyl peroxide, and is then decomposed by the addition of a chemical activator, such as dimethyl-p-toluidine. Curing process is followed by conversion of methyl methacrylate (MMA) to polymethyl methacrylate (PMMA). During polymerization reaction of acrylic resins, not all the monomers are converted into polymers. Some unreacted monomers called residual monomers are therefore left.

When the orthodontic base plate contacts with saliva and mucosa, residual monomer will be leached from the acrylic resin to the oral environment. The residual monomer can cause local and systemic reactions such as erythema, necrosis, pain and burning sensation. Allergy from the residual monomer is varied among each patient (1, 2). In Orthodontics, Goncalves et al reported on a 60-year-old woman who had an allergic reaction to the residual MMA after the insertion of a retainer for one month (1).

It has been reported that residual monomer in dental acrylic resin has deleterious effects on many of its properties, such as water sorption, hardness, flexural strength, dimensional stability, tensile strength, and biocompatibility. Consequently, it is desirable to reduce the residual MMA content in the dental acrylic resin to as low a level as possible, prior to an insertion in the patient's mouth. It has been recommended that the residual monomer content of autopolymerized acrylic resins could be reduced by an immersion in water for 24 hours before usage (3). However, this method takes a long time for the reduction of residual monomer.

Ultrasonic bath has been used in cleaning the dental instrument. Several studies found that ultrasonic bath was used to extract chemical substance and nutrient in industry (4, 5). However, the effectiveness of ultrasonic bath in promoting residual monomer reduction in orthodontic acrylic resin has not been investigated.

The aim of this study is to compare the level of residual methyl methacrylate monomer of self-cured orthodontic base-plate materials after water immersion at room temperature and after water immersion in ultrasonic bath.

Research Questions

1. Do the levels of residual monomer in Orthocryl differ from those in Orthoplast?

2. Do the levels of residual monomer in self-cured orthodontic base-plate materials by different reduction methods differ among each other?

จุฬาลงกรณ์มหาวิทยาลัย ค.....

Objectives

1. To compare between the levels of residual monomer in Orthocryl and those in Orthoplast.

2. To compare the levels of residual monomer in self-cured orthodontic baseplate materials among the different reduction methods.

Research Hypotheses

1. H_0 : The levels of residual monomer in Orthocryl do not significantly differ from those in Orthoplast at 0.05 significant level.

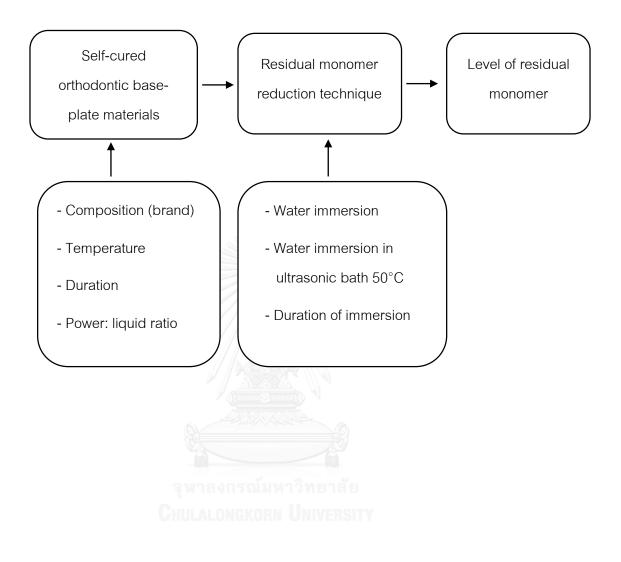
 H_{A} : The levels of residual monomer in Orthocryl significantly differ from those in Orthoplast at 0.05 significant level.

2. H_0 : The reduction methods do not significantly affect the levels of residual monomer in self-cured orthodontic base-plate materials at 0.05 significant level.

 H_A : A minimum of one reduction method significantly affects the level of residual monomer in self-cured orthodontic base-plate materials at 0.05 significant level.

Limitations

- 1. This research is an experimental study in vitro.
- 2. Specimens are prepared by the spray-on technique to imitate the orthodontic laboratory procedure.
- 3. Temperature of ultrasonic bath is set at 50°C.
- 4. Distilled water is used for the water immersion process.


Expected Benefits and Applications

- Less time for reducing the level of residual monomer in the orthodontic baseplate.
- 2. Faster and safer delivery of a removable orthodontic appliance to patients.

Research Design

An experimental study

Conceptual Framework

CHAPTER II LITERATURE REVIEW

Acrylic resins

Acrylic resins is derivatives of ethylene and vinyl group in their structural formula. The acrylic resins used in dentistry are the esters of:(6)

- 1. Acrylic acid, CH₂=CHCOOH
- 2. Methacrylic acid, $CH_2 = C(CH_3)COOH$

Most of removable orthodontic appliances are made of acrylic resins. The properties of materials are not ideal but present a compromise between physical properties on the one hand and ease to use and cost on the others (7).

Methyl methacrylate (MMA) (Figure 1)

Liquid monomer, MMA, is mixed with the PMMA, which is supplied in the form of powder. The monomer partially dissolves the polymer to form a plastic dough-like material. MMA is a clear and transparent liquid at room temperature with the following physical properties:(8)

Molecular weight	=	100
Melting point	=	-48°C
Boiling point	=	100.8 °C
Density	=	0.945 g/ml at 20 °C
Heat of polymerization	ן =	12.9 kcal/mol

MMA exhibits a high vapor pressure and is an excellent organic solvent. Although the polymerization of the MMA can be initiated by ultraviolet, visible light, or heat, it is commonly polymerized in dentistry by the use of a chemical initiator (8).

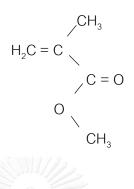


Figure 1 Methyl methacrylate molecule

Polymethyl methacrylate (PMMA) (Figure 2)

PMMA is a transparent resin of water-like clarity that is transparent to light in the visible and ultraviolet ranged down to a wavelength of 250 nm. It is a hard resin with a Knoop hardness number of 18 to 20 KHN. It possesses an approximate tensile strength of 60 MPa and a density of 1.19 g/cm³. Its modulus of elasticity is approximately 2400 MPa.

The main advantage of PMMA is ease of processing. Although it is a thermoplastic resin, it is usually moulded by mixing the MMA monomer with the polymer powder. The monomer plasticizes the polymer to dough-like consistency and can then be easily moulded initially in the mold space.

Like all acrylic resins, PMMA exhibits a tendency to absorb water by imbibition. Its non-crystalline structure possesses a high internal energy. Thus, molecular diffusion can occur in the resin because less activation energy is required (8). $\begin{array}{cccccccc} O-CH_{3} & O-CH_{3} & O-CH_{3} \\ & I & I & I \\ C=O & C=O & C=O \\ & I & I & I \\ --CH_{2}-C-CH_{2}-C-CH_{2}-C-- \\ & I & I & I \\ CH_{3} & CH_{3} & CH_{3} \end{array}$

Figure 2 Chemical structure of PMMA

Chemically activated acrylic resins

The chemically activated acrylic resins polymerize at room temperature. They are also known as 'self-curing', 'cold cure' or 'autopolymer' resins. In cold cured acrylic resins, the chemical initiator (benzoyl peroxide) is activated by another chemical (dimethyl-ptoluidine), which is present in the monomer. Therefore, the fundamental difference between the heat- and the self-cure resins is the method of activating benzoyl peroxide (9).

Composition of chemically activated acrylic resins

Powder

- PMMA and other copolymers (5%): dissolved by monomer
- Benzoyl peroxide: Initiator
- Compounds of mercuric sulfide, cadmium sulfide: Opacifiers
- Dibutyl phthalate: Plasticizer
- Dyed organic fillers and inorganic particles like glass fibres or beads: Fillers

Liquid

- MMA monomer: Dissolves polymer
- Dimethyl-p-toluidine: Activator
- Dibutyl phthalate: Plasticizer
- Glycol dimethacrylate (1% to 2%): Cross linking agent
- Hydroquinone (0.006%): Inhibitor

Chemical stages of polymerization: The polymerization reaction can be summarized as follows: (10) Powder (polymer) + liquid (monomer) \rightarrow polymer + heat (exothermic reaction)

When the powder and liquid components are mixed, the tertiary amine causes decomposition of benzoyl peroxide, producing free-radicals. Polymerization is then initiated. MMA dissolves into the PMMA beads, forming a material of doughy consistency.

Concurrently, dimethyl-p-toluidine comes in contact with benzoyl peroxide, generating benzyl free-radicals that go on to initiate the chemical reaction for free-radical additional polymerization. Polymerization in the two-part chemical-cured acrylic resin is free-radical addition across an aliphatic C=C double bond. As polymerization progresses, the amount of aliphatic C=C double bond decreases. Often, the reaction is not complete, so there will be a finite amount of monomer (MMA) remaining in the chemical-cured acrylic. The polymerization is never as complete as that of the heat-curing type; self-cured resin usually contains 3%-5% residual monomer, in comparison with approximate 0.2%-0.5% free monomer found in resin processed in boiling water (9).

Self-cured resins have some advantages, such as an excellent esthetic property, easily fabrication and repair. Its disadvantages are lack of color stability, shrinkage, presence of residual monomer, and cracking or crazing. However, the problem of residual monomer has not totally been solved. Because of the subsequent oxidation of the tertiary amine, the color stability of the self-cured resins is inferior to that of the heat-curing type. The condition can be minimized by adding certain stabilizing agents to prevent such oxidation. In addition, the polymerization may be consummated by the use of a more stable activators.

Manipulation technique for removable orthodontic appliances

In orthodontics, the manipulation technique for preparation of removable orthodontic appliances is the spray-on technique, in which the polymer is saturated by its monomer. Whilst the doughing technique, in which liquid and powder are mixed together, is widely utilized in prosthodontics.

Goncalves et al (11) found that the level of residual monomer in the doughing technique was not significantly different from the spray-on technique at the initial time and at 24 hours after preparation. However, Ica et al (12) found that the residual monomer release rate in acrylic resin prepared with the doughing technique was higher than that with the spray-on technique. Therefore, the spray-on technique is recommended for preparation of the orthodontic base plates.

CHULALONGKORN UNIVERSITY

Residual monomer

During the polymerization reaction of acrylic resins, not all the monomers are converted into polymers; therefore, some unreacted monomers called residual monomers are left. The concentration of residual monomer is varied dependent on the methods and the conditions of polymerization (13-18).

Some researchers have also reported that self-cured acrylic resin has higher levels of residual monomer, when compared to the heat-cured acrylic resin (19, 20). Baker et al (3) detected higher amounts of residual MMA in the saliva of subjects wearing dentures made from self-cured resins, when compared to those made from heat-cured resins. Moreover, Sadamori et al (21) also reported that residual monomer content in acrylic dentures could be detected for up to several years after usage. While it appeared that most of the residual monomer was lost after about five years, a complete loss of the residual monomer content may take many more years.

Effects of residual monomer

1. Allergy

Removable orthodontic appliances were used for many months or years and kept in contact with the oral mucosa for a long period. The residual monomer of acrylic resins and its dilution have been widely investigated. During the first 24 hours after polymerization, the presence of unreacted residual monomer has been indicated. MMA is considered an allergen and can cause local adverse reactions, such as erythema, edema, a burning sensation, fissures, necrosis, pain (22, 23), and even some systemic reactions (24), such as labial edema, difficulty in swallowing, chronic urticaria, and hypersalivation (22, 25).

Generally, allergic reactions to acrylic are local manifestations, but clinical presentations can be differed. For orthodontic acrylic resin, Goncalves et al (1) reported an allergic reaction to MMA self-curing acrylic resin during orthodontic treatment in a 60-year-old woman patient, after an orthodontic retainer had been inserted. A localized hypersensitive reaction on the palate, hypersalivation, a bitter taste in the mouth, and difficulty swallowing were revealed. For prosthesis acrylic resin, Ruiz Genao et al (23) mentioned labial edema in a case of an allergy to MMA, after an insertion of the prosthesis. Moreover, 22 patients suffering from burning mouth syndrome and five cases showing an allergy to MMA, as well as a high residual monomer concentration in their dentures, were reported (26).

Many studies agree that residual monomer releasing into the oral environment is a main cause of allergic reactions. Therefore, orthodontists should try to reduce the residual monomers from the self-cured orthodontic base-plate materials. It is essential to keep minimal levels of residual monomer.

2. Mechanical properties

The level of residual monomer in the acrylic resin is related to the mechanical properties. Dogan et al (27) found a positive correlation between water sorption and residual monomer. The residual monomer can cause voids in acrylic resin. When residual monomer leaches out, water molecules can penetrate the void and act as a plasticizer. Thus, water molecules push the polymer chains further apart. Consequently, the secondary chemical-bonding forces (van der Waals forces) between the polymer chains decrease. As a result, the mechanical properties of polymers are reduced. Moreover, several studies demonstrated that mechanical properties were improved when the amount of residual monomer reduced (13, 28).

Method for reduction of residual monomer

1. Polymerization method

The amount of residual monomer is left in the polymer dependent on polymerization temperature and time. Different polymerization techniques have been proposed to decrease the residual monomer of auto-polymerizing acrylic resins. Kedjarune et al (29) observed a reduced amount of residual monomer when polymerization time was extended. Similarly, Dogan et al (27) found that the level of residual monomer, in auto-polymerizing resins, decreased with an increase in temperature when the curing time is kept constant. Bayraktar et al (14) concluded that the lowest overall residual MMA content was obtained from auto-polymerizing specimens, followed by an additional polymerization in water at 60°C and storing in distilled water at 37°C for at least one day. Vallittu et al (30) also stated that increasing the polymerization temperature (from 30°C to 60°C) for the auto-polymerizing acrylic resins decreased the residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual MMA content of the polymerization temperature was varied that the amount of residual monomer in auto-polymerizing resins decreased as the temperature increased.

- 2. Post-polymerization method
 - Immersion in water at room temperature

Generally, water immersion is a simple method for reducing the residual monomer of acrylic resin. Stafford et al (19) studied the loss of residual monomer from 6 pieces of orthodontic acrylic resins. They found high levels of residual monomer in orthodontic resins and a rapid loss of residual monomer in the first 24 hours after immersing of the specimens in water. Similarly, Basker et al (31) showed that water immersion reduced the residual monomer content in an orthodontic resin. According to Baker et al (3) recommended that auto-polymerizing appliances should be immersed in water for 24 hours before an insertion to patient.

- Immersion in water at 60°C

The residual monomer in acrylic resin may be reduced by a further polymerization at the free-radical sites, which could be achieved following a period of immersion in hot water.

Bural et al (32) investigated the effect of post-polymerization heat-treatments on the residual monomer concentration, the degree of conversion and an *in vitro* cytotoxicity of auto-polymerizing acrylic repair resin. They concluded that the post-polymerization heat-treatment of auto-polymerizing acrylic repair resin by an immersion in water at 60°C for 30 minutes is clinically recommended to improve the degree of conversion, while reducing the leaching residual MMA.

- Microwave post-polymerization treatment

Microwave post-curing was described as a method of reducing the level of residual monomer in the acrylic resin. Urban et al (33) found that the amount of residual monomer of relining acrylic resins after a post-polymerization treatment by water-bath and by microwave irradiation was reduced. Moreover, the mechanical properties and biocompatibility of the relining and denture base materials could be improved.

Cimpan et al (34) also studied the effect of microwave heating on the residual monomer level in an auto-polymerizing resin used in the repair of prostheses. They found that the specimens subjected to microwave irradiation after 20-minutes of auto-polymerization showed a reduced level of residual monomer, when compared with those undergoing other polymerization methods. A similar finding was observed by Patil et al (28) It was found that the residual monomer content of denture liner relining resin decreased and the flexural strength increased significantly with the application of microwave irradiation, by the use of different time/power combinations. The specimens with the lowest residual monomer content were the similar specimens which presented with the highest flexural strength. Microwave post-polymerization irradiation was then concluded to effectively increase the flexural strength of denture liner (at 650 W for 5 min) by reducing the residual monomer content via a further polymerization at free-radical sites. However, no study reports that the post-curing method by microwave reduces the amount of residual monomer in orthodontic acrylic resins.

Ultrasonic cleaning

Ultrasonic cleaning uses high frequency sound waves to create cavitation bubbles in a liquid. These cavitation bubbles release energy which have a scrubbing effect on contaminants adhering to substrates like metals, glass, and ceramics. This action also penetrates blind holes, cracks, and recesses, and is able to thoroughly remove all traces of contamination tightly adhering or embedded onto solid surfaces.

Ultrasonic cleaners work by the two principle mechanisms as follows: (35)

1. Cavitation

Cavitation is a process where the constructive interference of sonic energy causes the formation of rarefiable bubbles in the cleaning liquid. When these microscopic bubbles implode, they produce microscopic jets of liquid that can impinge on the surface of parts to be cleaned. Cavitation is generated through at least three steps: nucleation, growth, and violent collapse or implosion. The impact energy caused by implosion of the gas bubble hits the surface of the object to be cleaned, interacting both physically and chemically.

2. Acoustic streaming

In acoustic streaming, bulk movement of the liquid occurs. Contaminants that get removed from the surface are carried away by acoustic streaming, and hence are prevented from re-attaching to the surface.

Cavitation and acoustic streaming work together in all forms of ultrasonic cleaning, but the relative contribution of each is a function of frequency. At low ultrasonic frequencies, cavitation is very strong and dominates the cleaning process. At high ultrasonic frequencies, cavitation bubbles are very small, but acoustic streaming velocities can be very high. At high frequencies, acoustic streaming thus dominates the cleaning process and less cleaning occurs due to cavitation.

At present, no study reports the ultrasonic use for reducing the amount of residual monomer in orthodontic acrylic resins.

CHAPTER III

RESEARCH METHODOLOGY

Materials and methods

Research equipment

Materials

- 1. Two brands of self-cured orthodontic resins:
 - Orthocryl[®] (Dentaurum, Germany; Figure 3)
 - Orthoplast[®] (Vertex, The Netherlands; Figure 4)
- 2. Hydroquinone (HQ)
- 3. Tetrahydrofurane (THF)
- 4. Methanol
- 5. Methyl methacrylate (MMA)
- 6. Sheet of polyester film
- 7. Standard metallographic grinding papers (P500,P1200)

Chulalongkorn University

Apparatus

- 1. Circular stainless steel mould according to ISO 20795-2:2013 (Figure 5)
- 2. Pressure cooker
- 3. Polishing machine (Figure 6)
- 4. Digital Calliper (Mitutoyo Corporation Japan)
- 5. Ultrasonic bath (FZ 40 KHz., VGT-1990 QTD, China; Figure 7)
- 6. Magnetic stirring bars and apparatus
- 7. Centrifuge (Beckman, USA)

- 8. High-performance liquid chromatography (Shimadzu, Japan; Figure 8)
- 9. Closable one-mark volumetric glass flasks
- 10. Volume Pipette
- 11. Closable glass tubes

Figure 3 Orthocryl[®] (Dentaurum, Germany)

Figure 4 Orthoplast[®] (Vertex, The Netherlands)

Figure 5 A stainless steel mould (a diameter of 50 ± 1 mm and a depth of 3.0 ± 0.1 mm)

Figure 6 Polishing machine

Figure 7 Ultrasonic bath (FZ 40 KHz., VGT-1990 QTD, China)

Figure 8 High-performance liquid chromatography

Figure 9 A disc specimen

(a diameter of 50±1 mm and a thickness of 2.0±0.1 mm)

Variables

Independent variables

- Brands: Orthocryl[®] (Dentaurum, Germany), Orthoplast[®] (Vertex, The Netherlands)

- Residual monomer reduction technique

Dependent variable

Chulalongkorn Univers

- The levels of residual monomer

Sample size

The sample size estimation formula for testing mean of two independent populations

$$n = \frac{(\sigma_1^2 + \sigma_2^2) (z_{\alpha} + z_{\beta})^2}{(\mu_1 - \mu_2)^2}$$

Using the data based on the previous study that determined the residual monomer content in acrylic orthodontic resins after storage in water (19) (σ_1 =0.24, σ_2 =0.31, μ_1 =3.5, μ_2 =2.73) at 0.05 significant level (α =0.05) and statistical of 0.80

(β =0.20), the calculated sample size is three. However, most of the studies on residual monomer reduction set the sample size at 6 specimens per group (33, 36). Therefore, the sample size per group in this study was also set at six to make the results comparable with other studies.

Research methodology

Study for powder: liquid ratio for each specimen

Twelve specimens were manufactured from orthodontic base-plate materials; six specimens from Orthocryl[®] (Dentaurum, Germany) and six specimens from Orthoplast[®] (Vertex, Netherlands). All specimens were prepared in the laboratory room temperature (23°±2°C), by using a spray-on technique, which was the technique used for preparing removable orthodontic appliances. According to the manufacturer's instruction, the time for manufacturing each specimen was less than nine minutes. According to the ISO 20795-2(2013), each specimen was manufactured as follows:

- Thin layer of orthodontic base-plate powder (PMMA) was applied into a stainless steel mould (a diameter of 50 mm and a depth of 3.0±0.1 mm; Figure 5). Orthodontic base-plate liquid (MMA) was then dropped into the powder. The powder and the liquid were applied, until the mould was filled up. Before the mould was covered with the upper flat cover, orthodontic base-plate material was covered with a polyester film
- 2. In order to fabricate each specimen, the orthodontic base-plate powder and liquid were weighed with an analytical balance and recorded. The powder and liquid of all specimens were then calculated for means and for setting the powder: liquid ratio of the experiment.

Preparation of experimental specimen discs

A total of 96 experimental specimen discs were manufactured from orthodontic base-plate materials; 48 specimens from Orthocryl[®] and 48 specimens from Orthoplast[®]. All specimens were prepared in the laboratory environment at room temperature (23±2°C) by using a spray-on technique. According to the manufacturer's instruction, the time for manufacturing each specimen was less than nine minutes. According to the ISO 20795-2(2013), each specimen was manufactured as follows (in Diagram 1):

1. The set ratio of powder: liquid was used. A thin layer of orthodontic base-plate powder (PMMA) was applied into a stainless steel mould (a diameter of 50 mm and a depth of 3.0± 0.1 mm). Orthodontic base-plate liquid (MMA) was then dropped into the powder. The powder and the liquid were applied, until the mould was filled up. Before the mould was covered with the upper flat cover, orthodontic base-plate material was covered with a polyester film.

2. The mould was put in a pressure cooker. The specimen was polymerized following the manufacturers' instructions (2.2 bar at 45°C 20 minutes for Orthocryl and 2.5 bar at 55°C 20 minutes for Orthoplast). Each specimen was then put in a zipped plastic bag and kept in a freezer at -20°C. If the specimen were stored in a freezer (below -18°C), the monomer content remains constant for several months, according to ISO 20795-2(2013).

3. Prior to grinding, the specimen was kept in the dark of a laboratory environment at $23^{\circ}\pm2^{\circ}$ C for 24 ± 5 hours. The metallographic grinding papers (P500) were used in turn to wet-grind material equally from both sides of the specimen disc. The periphery of the specimens was ground against the 15μ m (P1200) grain metallographic grinding paper, until the entire periphery was abraded and smooth.

4. The specimens were checked with a digital caliper to ensure that each specimen had a diameter of 50 ± 1 mm and a thickness of 2.0 ± 0.1 mm (Figure 9) and that the top and bottom surfaces were flat. Each specimen was then put in a zipped plastic bag and kept in a freezer at -20° C.

All experimental specimens (N = 96) were divided into eight groups as follows: (Diagram 2)

Group I (n = 12): the control group

Group II (n = 12): water immersion for 24 hours

Group III (n = 12): water immersion for 72 hours

Group IV (n = 12): water immersion in ultrasonic bath, 50° C for 3 minutes

Group V (n = 12): water immersion in ultrasonic bath, 50° C for 5 minutes

Group VI (n = 12): water immersion in ultrasonic bath, 50° C for 10 minutes

Group VII (n = 12): water immersion in ultrasonic bath, 50° C for 15 minutes

Group VIII (n = 12): water immersion in ultrasonic bath, 50°C for 20 minutes

Preparation of solutions for extraction monomer

Preparation of solutions for extraction monomer was as follows: (Diagram 3)

1. Tetrahydrofurane solution (Solution A)

0.02 g Hydroquinone (HQ) was weighed approximately into a 11 one-mark volumetric glass flask. Tetrahydrofurane (THF) was added until the total volume was 11.

2. Methanol solution (Solution B)

0.02 g Hydroquinone (HQ) was weighed approximately into a 11 one-mark volumetric glass flask. Methanol was added until the total volume was 11.

3. Methanol/tetrahydrofurane solution (Solution C)

One volume part of solution A and four volume parts of solution B were mixed.

Preparation of calibration solutions for high-performance liquid chromatography (HPLC)

Preparation of calibration solutions for HPLC was as follows: (Diagram 4)

- 1. MMA (approximately 6 mg, 60 mg, 150 mg, 300 mg and 400 mg) was weighed into five separated one-mark volumetric 5 ml glass flasks.
- 2. Solution C was added until the total volume was 5 ml.
- 3. 100 µl of each calibration solution was transferred into separate 10 ml one-mark volumetric glass flask, solution C was added until the total volume was 10 ml.
- The mass of MMA was recorded for each individual calibration solution and the final concentrations (µg per ml) were calculated.
- 5. The calibration solutions were injected into the HPLC system.
- A calibration graph was drawn by plotting the peak area of monomer in the calibration solution against the respective concentrations of MMA expressed in µg per ml.

Methods for extraction of monomer

Methods for extraction of monomer were as follows: (Diagram 5)

1. Each specimen disc was broken into pieces to make them be small enough to pass through the neck of a 10 ml volumetric glass flask. Samples of approximately 650 mg were accurately weighed with an analytical balance and recorded for three groups. Each group of specimen was applied into separate one-mark 10 ml volumetric glass flask.

2. Tetrahydrofurane solution (A) was added into the volumetric flask until the total volume is 10 ml. A magnetic stirring bar was added to each one-mark volumetric glass flask to agitate the sample solutions at room temperature for 72±2 hours.

3. A separate volumetric pipette was used to transfer 2 ml aliquot of each previously prepared sample solution to one-mark 10 ml volumetric flask. To precipitate

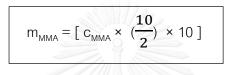
the dissolved polymer, methanol solution (B) was added to each sample solution to a total volume of 10 ml.

4. A separate volumetric pipette was used to transfer 5 ml of the polymer and monomer containing slurry from each of the 10 ml flask to centrifuge tubes. The slurry was centrifuged at 3000 g_n m/s² for 15 minutes.

5. A separate volumetric pipette was used to transfer a 3 ml aliquot of each centrifuged solution to separate glass tubes.

No remaining polymer in the solution was determined. The solution appeared clear when the beam of light is directed vertically through the glass tube containing the solution. If the solution did not appear clear, methanol solution (B) was added until solution appears clear. The volume of the methanol solution (B) was record. The slurry was centrifuged at 3000 g_n m/s² for 15 minutes again (process No. 4)

6. When the solution appears clear, the residual monomer content was determined by means of the HPLC method.


High-performance liquid chromatography (HPLC) test

HPLC equipment and operating conditions were as follows:

- Column 4-5 mm internal diameter, 100 mm length with octadecyl silanized
 10 mm particles
- Mobile phase 66% methanol, 34% deionized distilled water
- Flow rate 0.8 ml/min
- Detection UV 205 nm
- Temperature Constant room temperature

Determination of the percentage of methyl methacrylate

- The clear solution from the upper portion of the centrifuged solution was introduced into the injector of the HPLC system. The HPLC was operated until all components were completely eluted.
- 2. The concentration of MMA monomers in the sample solutions, c_{MMA} (µg/ml) was determined using a linear regression equation obtained from a calibration graph.
- The following equation was used to calculate total amount of MMA monomer in the sample solution, m_{MMA} (µg):

Note $- \times \frac{10}{2}$: Solution B was added to a 2 ml aliquot of the sample solution until a total volume of 10 ml is achieved.

- × 10: The volume of the original sample solution was 10 ml.
- This value was used to calculate the weight percentage of the residual MMA by the following equation:

CHILLALONGKORN UNIVERSITY

Residual monomer (% mass fraction) = $(m_{MMA}/m_{sample}) \times 100$

 m_{MMA} = Total quantity of MMA in the sample solution (µg)

 m_{sample} = The mass of sample solution (µg)

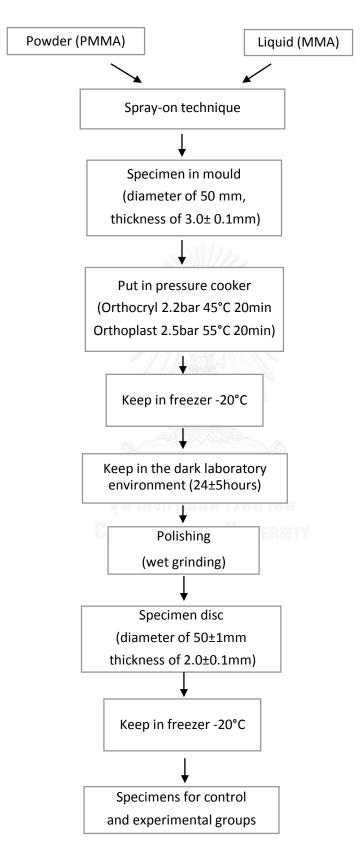


Diagram 1 Preparation of experimental specimen discs

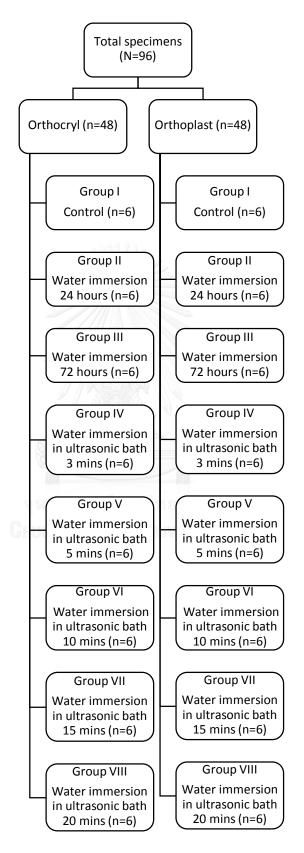


Diagram 2 Categorization of control and experimental groups

Diagram 3 Preparation of solutions for extraction monomer

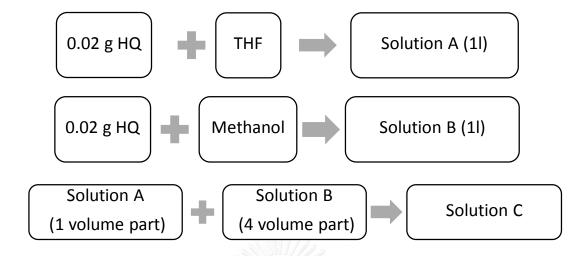
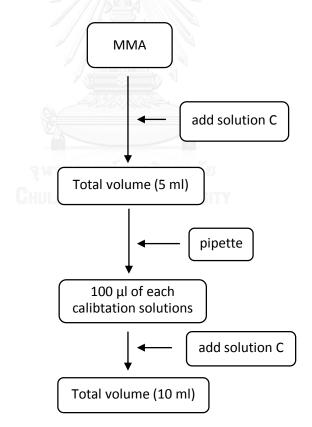



Diagram 4 Preparation of calibration solutions

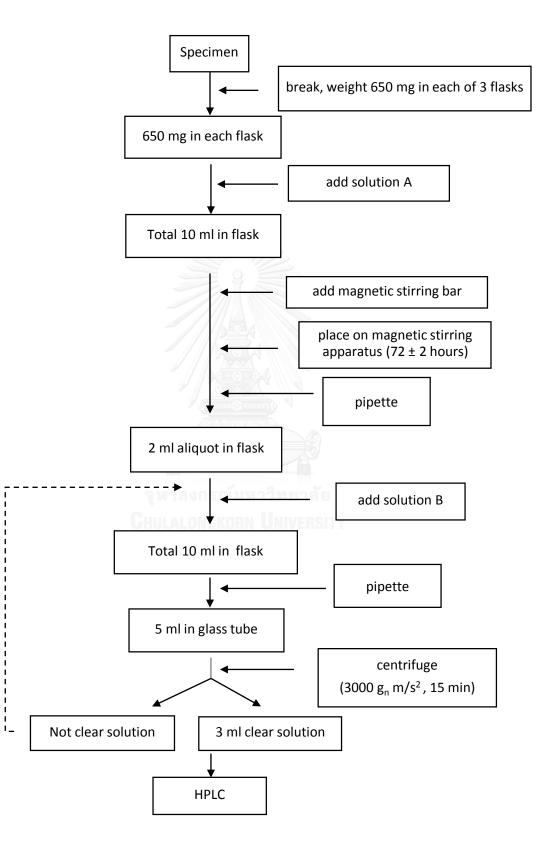
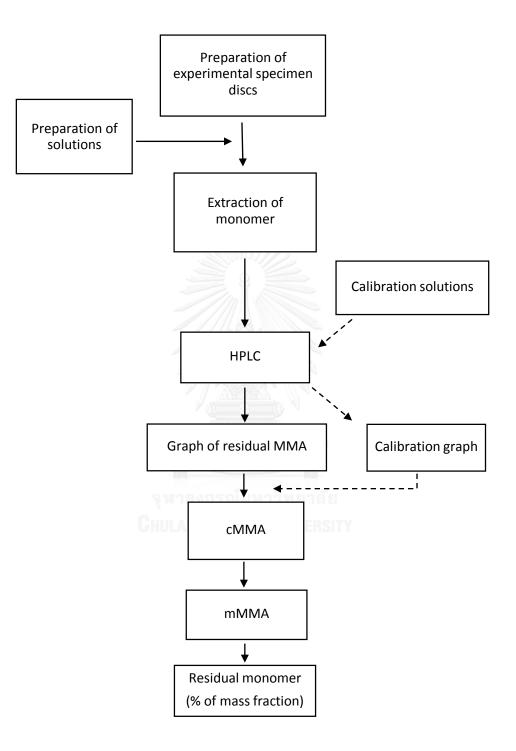



Diagram 6 Summary of experimental methods

Data analysis

Data was analyzed as follows:

1. According to ISO 20795-2:2013, nine sample solutions from three specimens were analyzed for pass/fail determinations of the level of residual MMA monomer. The level of residual monomer must not exceed 5% by mass fraction.

- If seven (or more) of the sample solutions did not exceed 5% by mass fraction, the test was read "Pass".

- If five or six of the sample solutions did not exceed 5% by mass fraction, the new specimen discs were made and the test was repeated. If eight (or more) of the subsequent sample solutions did not exceed 5% by mass fraction, the test was read "Pass".

- If four (or fewer) of the sample solutions did not exceed 5% by mass fraction, the test was read "Fail".

2. Statistical analyses at 0.05 significant levels were performed with an SPSS program for Windows version 17.0.

2.1 The percentage of residual monomer of all specimens in each group was separately tested for normal distribution with Kolmogorov-Smirnov test.

2.2 The percentage of residual monomer of all specimens in each group was analyzed with a two-way ANOVA, followed by a one-way ANOVA Tukey's HSD *post hoc* test.

CHAPTER IV RESULTS

Means and standard deviations of the residual monomer concentrations of the Orthocryl and Orthoplast were presented in Table 1. Figure 10 shows that the level of residual monomer after water immersion for 24 and 72 hours. Figure 11 shows that the level of residual monomer after water immersion at 50°C in an ultrasonic bath at different time.

The highest residual monomer content was found in the Orthocryl control group (group I), while the group of Orthocryl water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) showed the lowest amount of residual monomer.

By using a Komogolov-Smirnov test (Table 4 in appendix), the normal distributions of the data were illustrated. Therefore, the parametric statistics was applied by a two-way ANOVA, followed by a one-way ANOVA Tukey's HSD *post hoc* test.

According to a two-way ANOVA (Table 2 and Table 5 in appendix), both brands of self-cured orthodontic base-plate materials and the residual monomer reduction methods affected the level of residual monomer (p<0.05). A minimum of one reduction method significantly affected the level of residual monomer in self-cured orthodontic baseplate materials (p<0.05). There was an interaction between the variables. It meant that the effect of brand was dependent on the residual monomer reduction method (p<0.05).

The level of residual monomer in the group of water immersion for 24 hours to the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group II-VIII) were significantly lower than that in the control group (group I) (p<0.05). No significant differences existed between the groups of water immersion for 24 and 72 hours (group II and III) (p>0.05). The level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than those in the groups of water immersion for 24 and 72 hours (group S of water immersion for 24 and 72 hours (group S of water immersion for 24 and 72 hours (group S of water immersion for 24 and 72 hours (group S of water immersion for 24 and 72 hours (group S of water immersion for 24 and 72 hours (group S of water immersion for 74 hours (group S II and III) (p<0.05). However, no significant differences existed between the group of water immersion for 72 hours (group S II and III) (p<0.05).

III) and the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (group VII) (p>0.05), but the level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (group VII) was significantly lower than that in the group of water immersion for 24 hours (groups II) (p<0.05).

No significant differences was observed among the groups of water immersion at 50°C in an ultrasonic bath for 10 minutes, water immersion for 24 and 72 hours (group VI, II and III) (p>0.05), but the level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (group VII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (group VII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 10 minutes (groups VI) (p<0.05). The level of residual monomer in the groups of water immersion at 50°C in an ultrasonic bath for 3 and 5 minutes (group IV and V) were significantly higher than those in the groups of water immersion for 24 and 72 hours (groups II and III) (p<0.05), but these groups were shown to possess significantly lower residual monomer contents than in the control group (group I) (p<0.05).

According to a one-way ANOVA (Table 1 and Table 6 in appendix), the results were shown below.

CHULALONGKORN UNIVERSITY

In the Orthocryl groups

The levels of residual monomer in the group of water immersion for 24 hours to the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group II-VIII) were significantly lower than that in the control group (group I) (p<0.05). The level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than those in the groups of water immersion for 24 and 72 hours (group II and III) (p<0.05).

The levels of residual monomer in the groups of water immersion at 50°C in an ultrasonic bath for 10 and 15 minutes (group VI and VII) were not significantly differences with those in the groups of water immersion for 24 and 72 hours (group II and III) (p>0.05),

but the level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (group VII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 10 minutes (groups VI) (p<0.05). The level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 3 and 5 minutes (group IV and V) were significantly higher than those in the groups of water immersion for 24 and 72 hours (groups II and III) (p<0.05).

In Orthoplast groups

No significant differences existed between the control group (group I) and the group of water immersion for 24 hours (group II) (p>0.05), but the level of residual monomer in the group of water immersion for 72 hours (group III) was significantly lower than that in the control group (group I) (p<0.05). The levels of residual monomer in the groups of water immersion at 50°C in an ultrasonic bath for 10, 15 and 20 minutes (group VI, VII and VIII) were not significantly differences with those in the group of water immersion for 72 hours (groups III) (p>0.05), but the level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VI, VII and VIII) were not significantly differences with those in the group of water immersion for 72 hours (groups III) (p>0.05), but the level of residual monomer in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 20 minutes (group VIII) was significantly lower than that in the group of water immersion at 50°C in an ultrasonic bath for 15 minutes (groups VII) (p<0.05).

The level of residual monomer in the groups of water immersion at 50°C in an ultrasonic bath for 3 and 5 minutes (group IV and V) were significantly higher than those in the group of water immersion for 72 hours (groups III) (p<0.05), but these groups were shown to possess significantly lower residual monomer contents than the control group (group I) and the group of water immersion for 24 hours (group II) (p<0.05).

Comparison between Orthocryl and Orthoplast groups

In the control group (group I), there was no significant difference between the Orthocryl and the Orthoplast group (p>0.05).

In the same reduction monomer method, the Orthocryl groups showed a statistically significantly lower residual monomer contents than the Orthoplast groups (p<0.05).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Oracia	Deduction method	Orthocryl	Orthoplast
Group	Reduction method	(n=6)	(n=6)
Ι	Control	3.31±0.18 ^a	3.27±0.10 ^a
II	Water immersion 24 hours	2.31±0.13 ^{e,f}	3.06±0.09 ^{a,b}
	Water immersion 72 hours	2.34±0.11 ^{e,f}	2.75±0.04 ^{c,d}
IV	Water immersion at 50°C in an ultrasonic bath 3 minutes	2.70±0.22 ^d	3.08±0.06 ^{a,b}
V	Water immersion at 50°C in an ultrasonic bath 5 minutes	2.78±0.17 ^{c,d}	3.14±0.03 ^{a,b}
VI	Water immersion at 50°C in an ultrasonic bath 10 minutes	2.42±0.13 ^e	2.98±0.10 ^{b,c}
VII	Water immersion at 50°C in an ultrasonic bath 15 minutes	2.10±0.20 ^{f,g}	2.73±0.13 ^{c,d}
VIII	Water immersion at 50°C in an ultrasonic bath 20 minutes	2.04±0.08 ^g	2.56±0.08 ^{d,e}

Table 1 Means (wt%) and standard deviations of residual monomer concentration of theMMA-based orthodontic base-plate materials (n = 6)

 a,b,c,d,e,f,g Means with the same lowercase letter are not significantly different at p<0.05 by a one-way ANOVA with Tukey's HSD *post hoc* test.

Table 2 Means (wt%) and standard deviations of residual monomer concentration of theMMA-based orthodontic base-plate materials (n = 12)

Group	Reduction method	Orthocryl and Orthoplast
Sloup	Reduction method	(n=12)
I	Control	3.29±0.14 ^a
II	Water immersion 24 hours	2.69±0.41 [°]
III	Water immersion 72 hours	2.54±0.23 ^{c,d}
IV	Water immersion at 50°C in an ultrasonic bath 3 minutes	2.89±0.25 ^b
V	Water immersion at 50°C in an ultrasonic bath 5 minutes	2.96±0.22 ^b
VI	Water immersion at 50°C in an ultrasonic bath 10 minutes	2.70±0.31 ^c
VII	Water immersion at 50°C in an ultrasonic bath 15 minutes	2.41±0.37 ^{d,e}
VIII	Water immersion at 50°C in an ultrasonic bath 20 minutes	2.30±0.28 ^e

 b,c,d,e Means with the same lowercase letter are not significantly different at p<0.05 by a two-way ANOVA with Tukey's HSD *post hoc* test.

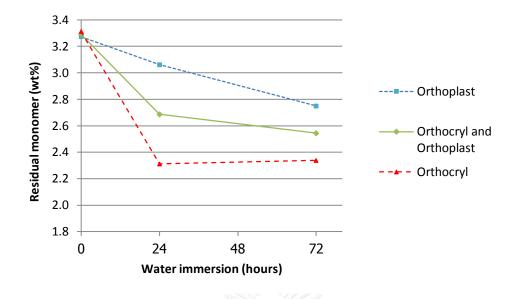


Figure 10 The level of residual monomer after water immersion

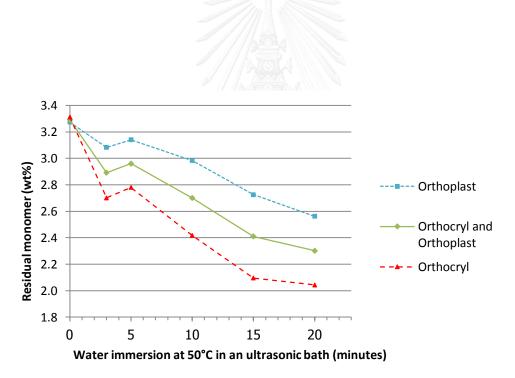


Figure 11 The level of residual monomer after water immersion at 50°C in an ultrasonic bath at different time

CHAPTER V DISCUSSION AND CONCLUSION

Discussion

Among several orthodontic literatures, few studies have examined the amount of residual monomer in orthodontic acrylic materials (11, 19). Consequently, this study investigated into the effects of water immersion in an ultrasonic bath on the amount of residual monomer from two different orthodontic acrylic resins.

The adverse effects of residual monomer are allergy and physical properties. Allergic reactions to acrylic are local manifestations, but clinical presentations can be differed. Goncalves et al (2006) reported an allergic reaction to MMA self-curing acrylic resin during an orthodontic treatment in a 60-year-old woman patient, after an orthodontic retainer had been inserted. A localized hypersensitive reaction on the palate, hypersalivation, a bitter taste in the mouth, and difficulty swallowing were revealed (1). The level of residual monomer in the acrylic resin was related to the physical properties. Dogan et al (1995) found a positive correlation between water sorption and residual monomer. The residual monomer can cause voids in acrylic resin. When residual monomer leaches out, water molecules can penetrate the void and act as a plasticizer (27). Thus, water molecules push the polymer chains further apart. Consequently, the secondary chemical-bonding forces (van der Waals forces) between the polymer chains decrease. As a result, the mechanical properties of polymers were reduced. Several studies demonstrated that mechanical properties were improved, when the amount of residual monomer reduced (13, 28).

According to ISO 20795-2 (2013), the residual monomer concentration of orthodontic base polymers should not exceed 5 wt%. In this study, each specimen complied with the stated requirement. Despite the fact that ISO 1567 was mentioned as a reference (37), the levels of residual monomer was limited to a 4.5 wt% for self-curing acrylic resins. Harrison and Hugget (1992) referred British Standard Specifications for self-curing orthodontic resins with a 3.5 wt% as a limit for the levels of residual monomer

(38). However, Goncalves et al (2006) found an allergic reaction to the self-curing acrylic resin of an orthodontic retainer base plate, although the levels of residual monomer were below the international standards (1). Therefore, it is desirable to reduce the residual MMA content in the acrylic resin to as low a level as possible, prior to an insertion in the patient's mouth.

HPLC, which is a well-established method for the determination of residual monomer in dental acrylic resins (20, 39, 40), is non-destructive, enables simultaneous analysis of various substances, and provides correct estimates of the level of residual monomer in acrylic resins (41). The HPLC was thus used in this study to determine the level of residual monomer.

In Orthocryl group, statistical analysis of the results revealed that the levels of residual monomer after water immersion for 24 and 72 hours were significantly less than that of the untreatment group (or control group). These results were concurrent with those reported by Stafford and Brook (1985) in that the residual monomer loss rapidly in the first 24 hours of water immersion. The amount of residual monomer in the orthodontic resins fall in time occurs by two mechanisms: the continued polymerization of the monomer and the leaching out of the monomer (42).

In Orthocryl groups, no significant differences of residual MMA monomer existed between groups of water immersion 24 and 72 hours. When the specimen was immersed in water, the residual monomer leached out. The voids in the specimen were filled with water molecules by an inward diffusion. Both the outward leakage of the residual monomer and the inward diffusion of water are time-dependent processes. In addition, the level of residual monomer within the specimen changes over time until equilibrium is reached (43).

The level of residual monomer in the groups of water immersion at 50°C in an ultrasonic bath for 3 to 20 minutes (group IV-VIII) were significantly lower than that in the control group (group I) (p<0.05). With the reduction residual monomer methods, the level of residual monomer after water immersion at 50°C in an ultrasonic bath was reduced,

probably because of the microscopic jets of liquid produced by the cavitations. The jets were able to enhance residual monomer to leach out from the surface of specimen and, thus, some polymerizations were additionally provided. Moreover, immersion in hot water (50°C) enhanced a more rapid diffusion of residual monomer into water and increased polymerization at the sites of active radicals (20, 44).

Regarding the specimens immersed at 50°C in an ultrasonic bath (Figure 11), the levels of residual monomer were decreased with time. This was due to the release (into water) of the residual monomer located near the surface of the specimen. On the contrary, those entrapped in the inner layers were not able to release into water within a short period of time. In addition, water immersion at 50°C in an ultrasonic bath for a period of longer than 20 minutes might cause a greater reduction in the level of residual monomer.

Water immersion in an ultrasonic bath does not normally change the dimensional stability of materials. However, its effects on the physical properties need some further investigations.

The residual monomer content of autopolymerized acrylic resins could be reduced by an immersion in water for 24 hours before usage (3, 19), but a long time for reducing the residual monomer is needed. On the other hand, water immersion in an ultrasonic bath spends less time to reduce the level of residual monomer in the orthodontic base-plate materials.

The levels of residual monomer in Orthocryl were significantly lower than those in Orthoplast in the same reduction residual monomer condition. This may be influenced by the particle size and the polymeric composition of the powder, as well as by each brand's concentrations of initiator and accelerator (19).

Since this study was processed *in vitro*, some more realistic results can then be obtained by some further studies in an oral environment. In addition, comparison of different commercial brands of orthodontic base-plate materials and different temperature of water are suggested.

Conclusion

In the same monomer reduction method, the levels of residual monomer in Orthocryl were lower than those in Orthoplast.

Water immersion at 50°C in an ultrasonic bath for 10-20 minutes reduced the amount of residual monomer in an orthodontic acrylic base-plate material, which was similar to or better than water immersion for 24 and 72 hours at room temperature. However, less time was required.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

REFERENCES

1. Goncalves TS, Morganti MA, Campos LC, Rizzatto SM, Menezes LM. Allergy to auto-polymerized acrylic resin in an orthodontic patient. Am J Orthod Dentofacial Orthop. 2006;129(3):431-5.

2. Chaves CA, Machado AL, Vergani CE, de Souza RF, Giampaolo ET. Cytotoxicity of denture base and hard chairside reline materials: a systematic review. J Prosthet Dent. 2012;107(2):114-27.

3. Baker S, Brooks SC, Walker DM. The release of residual monomeric methyl methacrylate from acrylic appliances in the human mouth: an assay for monomer in saliva. J Dent Res. 1988;67(10):1295-9.

4. Kulkarni VM, Rathod VK. Mapping of an ultrasonic bath for ultrasound assisted extraction of mangiferin from Mangifera indica leaves. Ultrason Sonochem. 2014;21(2):606-11.

5. Feng S, Luo Z, Tao B, Chen C. Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT - Food Science and Technology. 2015;60(2, Part 1):970-6.

6. Basic Dental Materials: Jaypee Brothers, Medical Publishers; 2003

7. Winkler S. Denture base resins. Dent Clin North Am. 1984;28(2):287-97.

 Anusavice KJ, Phillips RW. Phillips' science of dental materials. 11th ed. St. Louis: Mosby: Saunders; 2003

Hussain S. Textbook of Dental Materials: Jaypee Brothers, Medical Publishers;
 2008

10. O'Brien WJ. Dental materials and their selection. 4th ed. Hanover Park, IL: Quintessence Pub. Co.; 2008

11. Goncalves TS, de Menezes LM, Silva LE. Residual monomer of autopolymerized acrylic resin according to different manipulation and polishing methods. An in situ evaluation. Angle Orthod. 2008;78(4):722-7.

12. Ica RB, Ozturk F, Ates B, Malkoc MA, Kelestemur U. Level of residual monomer released from orthodontic acrylic materials. Angle Orthod. 2014;84(5):862-7.

13. Urban VM, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC, de Almeida FG, et al. Effect of water-bath post-polymerization on the mechanical properties, degree of conversion, and leaching of residual compounds of hard chairside reline resins. Dent Mater. 2009;25(5):662-71.

14. Bayraktar G, Guvener B, Bural C, Uresin Y. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins. J Biomed Mater Res B Appl Biomater. 2006;76(2):340-5.

15. Bartoloni JA, Murchison DF, Wofford DT, Sarkar NK. Degree of conversion in denture base materials for varied polymerization techniques. J Oral Rehabil. 2000;27(6):488-93.

16. Azzarri MJ, Cortizo MS, Alessandrini JL. Effect of the curing conditions on the properties of an acrylic denture base resin microwave-polymerised. J Dent. 2003;31(7):463-8.

17. Lee SY, Lai YL, Hsu TS. Influence of polymerization conditions on monomer elution and microhardness of autopolymerized polymethyl methacrylate resin. Eur J Oral Sci. 2002;110(2):179-83.

18. Ogle RE, Sorensen SE, Lewis EA. A new visible light-cured resin system applied to removable prosthodontics. J Prosthet Dent. 1986;56(4):497-506.

19. Stafford GD, Brooks SC. The loss of residual monomer from acrylic orthodontic resins. Dent Mater. 1985;1(4):135-8.

20. Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release into water from denture base materials. Dent Mater. 1995;11(6):338-42.

21. Sadamori S, Kotani H, Hamada T. The usage period of dentures and their residual monomer contents. J Prosthet Dent. 1992;68(2):374-6.

 McCabe JF, Basker RM. Tissue sensitivity to acrylic resin. A method of measuring the residual monomer content and its clinical application. Br Dent J. 1976;140(10):347-50. 23. Ruiz-Genao DP, Moreno de Vega MJ, Sanchez Perez J, Garcia-Diez A. Labial edema due to an acrylic dental prosthesis. Contact Dermatitis. 2003;48(5):273-4.

24. Morris-Jones R, Robertson SJ, Ross JS, White IR, McFadden JP, Rycroft RJ. Dermatitis caused by physical irritants. Br J Dermatol. 2002;147(2):270-5.

25. Giunta J, Zablotsky N. Allergic stomatitis caused by self-polymerizing resin. Oral Surg Oral Med Oral Pathol. 1976;41(5):631-7.

26. Ali A, Bates JF, Reynolds AJ, Walker DM. The burning mouth sensation related to the wearing of acrylic dentures: an investigation. Br Dent J. 1986;161(12):444-7.

27. Dogan A, Bek B, Cevik NN, Usanmaz A. The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. J Dent. 1995;23(5):313-8.

28. Patil PS, Chowdhary R, Mandokar RB. Effect of microwave postpolymerization treatment on residual monomer content and the flexural strength of autopolymerizing reline resin. Indian J Dent Res. 2009;20(3):293-7.

29. Kedjarune U, Charoenworaluk N, Koontongkaew S. Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J. 1999;44(1):25-30.

30. Vallittu PK, Ruyter IE, Buykuilmaz S. Effect of polymerization temperature and time on the residual monomer content of denture base polymers. Eur J Oral Sci. 1998;106(1):588-93.

31. Basker RM, Collier J, Smith I, Bartle KD, Frere B, Wong L. Variation of residual monomer content of poly(methyl methacrylate) dental resins with time, and the influence of water immersion. Clinical Materials. 1989;4(2):173-82.

32. Bural C, Aktas E, Deniz G, Unlucerci Y, Kizilcan N, Bayraktar G. Effect of postpolymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin. Dent Mater. 2011;27(11):1135-43. 33. Urban VM, Machado AL, Oliveira RV, Vergani CE, Pavarina AC, Cass QB. Residual monomer of reline acrylic resins. Effect of water-bath and microwave post-polymerization treatments. Dent Mater. 2007;23(3):363-8.

34. Cimpan MR, Cressey LI, Skaug N, Halstensen A, Lie SA, Gjertsen BT, et al. Patterns of cell death induced by eluates from denture base acrylic resins in U-937 human monoblastoid cells. Eur J Oral Sci. 2000;108(1):59-69.

35. Awad SB, Nagarajan R. Chapter 6 - Ultrasonic Cleaning. In: Kohli R, Mittal KL, editors. Developments in Surface Contamination and Cleaning. Oxford: William Andrew Publishing; 2010. p. 225-80.

36. Danesh G, Hellak T, Reinhardt KJ, Vegh A, Schafer E, Lippold C. Elution characteristics of residual monomers in different light- and auto-curing resins. Exp Toxicol Pathol. 2012;64(7-8):867-72.

37. Yilmaz H, Aydin C, Caglar A, Yasar A. The effect of glass fiber reinforcement on the residual monomer content of two denture base resins. Quintessence Int. 2003;34(2):148-53.

38. Harrison A, Huggett R. Effect of the curing cycle on residual monomer levels of acrylic resin denture base polymers. J Dent. 1992;20(6):370-4.

39. Shim JS, Watts DC. Residual monomer concentrations in denture-base acrylic resin after an additional, soft-liner, heat-cure cycle. Dent Mater. 1999;15(4):296-300.

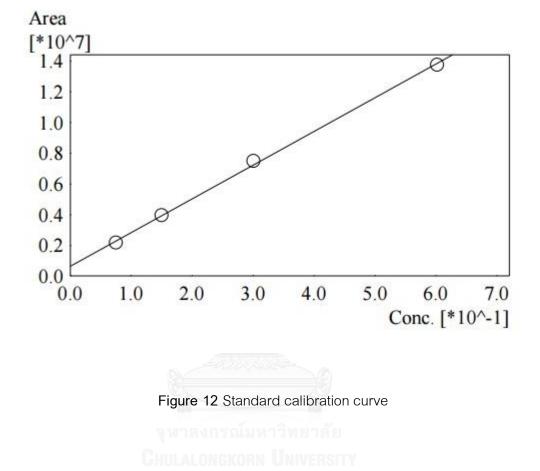
40. Vallittu PK. The effect of surface treatment of denture acrylic resin on the residual monomer content and its release into water. Acta Odontol Scand. 1996;54(3):188-92.

41. Urban VM, Cass QB, Oliveira RV, Giampaolo ET, Machado AL. Development and application of methods for determination of residual monomer in dental acrylic resins using high performance liquid chromatography. Biomed Chromatogr. 2006;20(4):369-76.

42. Lamb DJ, Ellis B, Priestley D. The effects of process variables on levels of residual monomer in autopolymerizing dental acrylic resin. J Dent. 1983;11(1):80-8.

43. Takahashi Y, Chai J, Kawaguchi M. Equilibrium strengths of denture polymers subjected to long-term water immersion. Int J Prosthodont. 1999;12(4):348-52.

44. Lamb DJ, Ellis B, Priestley D. Loss into water of residual monomer from autopolymerizing dental acrylic resin. Biomaterials. 1982;3(3):155-9.


จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

 $f(x) = (2.1923^*10^7)x + 649581$

Control	Specimens	Samples	C (mg/ml)	RM (wt%)
	1	1	0.424	3.260
		2	0.462	3.548
		3	0.476	3.655
	2	4	0.468	3.596
		5	0.437	3.356
		6	0.413	3.174
	3	7	0.397	3.051
		8	0.451	3.463
		9	0.435	3.346
	4	10	0.445	3.421
		11	0.495	3.803
		12	0.415	3.192
	5	13	0.385	2.959
		14	0.392	2.974
		15	0.404	3.102
	6	16	0.41	3.148
		17	0.429	3.298
		18	0.421	3.237

Table 3 Experimental data in the Orthocryl groups

Water immersion	Specimens	Samples	C (mg/ml)	RM (wt%)
24 hours				
	1	1	0.280	2.151
		2	0.281	2.160
		3	0.278	2.138
	2	4	0.287	2.205
		5	0.308	2.367
		6	0.295	2.266
	3	7	0.284	2.180
		8	0.281	2.161
		9	0.296	2.276
	4	10	0.314	2.414
	8	11	0.299	2.298
		12	0.284	2.184
	5	13	0.317	2.434
		14	0.315	2.422
		15	0.309	2.376
	6	16	0.332	2.553
		17	0.330	2.538
		18	0.321	2.465

Water immersion	Specimens	Samples	C (mg/ml)	RM (wt%)
72 hours				
	1	1	0.311	2.392
		2	0.304	2.338
		3	0.298	2.290
	2	4	0.286	2.197
		5	0.321	2.469
		6	0.278	2.135
	3	7	0.315	2.419
		8	0.308	2.367
		9	0.318	2.446
	4	10	0.279	2.144
	8	11	0.291	2.236
		12	0.276	2.121
	5	13	0.307	2.360
		14	0.313	2.404
		15	0.305	2.344
	6	16	0.324	2.492
		17	0.324	2.489
		18	0.315	2.420

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C, 3 minutes				
	1	1	0.385	2.958
		2	0.389	2.987
		3	0.389	2.987
	2	4	0.373	2.864
		5	0.383	2.944
	3. (f) x	6	0.320	2.462
	3	7	0.387	2.974
		8	0.384	2.950
		9	0.373	2.869
	4	10	0.329	2.529
		11	0.343	2.634
		12	0.336	2.584
	5	13	0.321	2.467
	UHULALU	14	0.321	2.467
		15	0.320	2.458
	6	16	0.307	2.357
		17	0.343	2.636
		18	0.328	2.519

Table 3 Experimental data in the Orthocryl groups (continued)

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C, 5 minutes				
	1	1	0.380	2.919
		2	0.375	2.883
		3	0.376	2.887
	2	4	0.395	3.037
		5	0.393	3.022
		6	0.402	3.090
	3	7	0.373	2.867
		8	0.372	2.859
		9	0.332	2.553
	4	10	0.360	2.765
	8	11	0.347	2.668
	- A	12	0.353	2.712
	5	13	0.360	2.767
	UHULALI	14	0.340	2.610
		15	0.341	2.622
	6	16	0.344	2.645
		17	0.340	2.615
		18	0.327	2.513

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,10 minutes				
	1	1	0.333	2.560
		2	0.342	2.630
		3	0.326	2.507
	2	4	0.326	2.505
	9	5	0.321	2.466
		6	0.309	2.373
	3	7	0.322	2.475
		8	0.328	2.519
		9	0.326	2.505
	4	10	0.330	2.538
		11	0.314	2.413
	238223	12	0.312	2.396
		13	0.295	2.269
		14	0.300	2.306
		15	0.299	2.299
	6	16	0.296	2.276
		17	0.289	2.219
		18	0.290	2.227

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,15 minutes				
	1	1	0.277	2.129
		2	0.244	1.876
		3	0.242	1.858
	2	4	0.298	2.290
		5	0.322	2.472
		6	0.315	2.422
	3	7	0.286	2.199
		8	0.279	2.146
		9	0.293	2.253
	4	10	0.282	2.167
	8	11	0.270	2.076
	2187224	12	0.288	2.214
	5	13	0.244	1.875
		14	0.238	1.827
		15	0.225	1.729
	6	16	0.279	2.145
		17	0.275	2.112
		18	0.254	1.950

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,20 minutes				
	1	1	0.256	1.969
		2	0.242	1.860
		3	0.248	1.906
	2	4	0.287	2.204
		5	0.273	2.097
		6	0.265	2.034
	3	7	0.264	2.029
		8	0.263	2.022
		9	0.284	2.183
	4	10	0.271	2.082
	8	11	0.265	2.038
	236224	12	0.261	2.005
		13	0.252	1.937
		14	0.262	2.012
		15	0.266	2.045
	6	16	0.271	2.083
		17	0.268	2.061
		18	0.288	2.211

Control	Specimens	Samples	C (mg/ml)	RM (wt%)
	1	1	0.428	3.291
		2	0.427	3.284
		3	0.432	3.320
	2	4	0.432	3.322
		5	0.452	3.474
		6	0.475	3.647
	3	7	0.413	3.174
		8	0.417	3.201
		9	0.380	2.922
	4	10	0.423	3.248
		11	0.412	3.166
	Q V Cum	12	0.402	3.091
	5	13	0.413	3.176
		14	0.428	3.291
		15	0.413	3.176
	6	16	0.446	3.428
		17	0.442	3.398
		18	0.427	3.278

Table 4 Experimental data in the Orthoplast groups

Water immersion	Specimens	Samples	C (mg/ml)	RM (wt%)
24 hours				
	1	1	0.400	3.073
		2	0.404	3.106
		3	0.405	3.113
	2	4	0.397	3.053
		5	0.394	3.031
		6	0.392	3.013
	3	7	0.407	3.131
		8	0.399	3.067
		9	0.410	3.153
	4	10	0.417	3.203
	8	11	0.408	3.133
	21822-1	12	0.418	3.210
	5	13	0.410	3.148
		14	0.387	2.976
		15	0.384	2.949
	6	16	0.385	2.958
		17	0.380	2.919
		18	0.377	2.897

Water immersion	Specimens	Samples	C (mg/ml)	RM (wt%)
72 hours				
	1	1	0.363	2.787
		2	0.366	2.813
		3	0.358	2.750
	2	4	0.365	2.805
		5	0.361	2.773
		6	0.355	2.727
	3	7	0.352	2.705
		8	0.354	2.718
		9	0.371	2.853
	4	10	0.366	2.811
	8	11	0.363	2.787
	218224	12	0.348	2.672
	5	13	0.369	2.836
		14	0.356	2.738
		15	0.351	2.699
	6	16	0.344	2.646
		17	0.350	2.691
		18	0.347	2.666

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C, 3 minutes				
	1	1	0.401	3.078
		2	0.397	3.053
		3	0.398	3.055
	2	4	0.412	3.163
		5	0.408	3.133
		6	0.410	3.148
	3	7	0.382	2.935
		8	0.401	3.086
		9	0.385	2.958
	4	10	0.389	2.986
	8	11	0.448	3.446
	21/22	12	0.391	3.002
	5	13	0.396	3.040
		14	0.400	3.072
		15	0.390	2.994
	6	16	0.400	3.067
		17	0.417	3.197
		18	0.401	3.075

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C, 5 minutes				
	1	1	0.411	3.164
		2	0.409	3.147
		3	0.403	3.102
	2	4	0.405	3.109
		5	0.399	3.062
		6	0.409	3.140
	3	7	0.405	3.114
		8	0.409	3.146
		9	0.405	3.114
	4	10	0.419	3.218
	8	11	0.410	3.152
	21822-3	12	0.414	3.180
	C ⁵ ULALO	13	0.408	3.137
		14	0.408	3.136
		15	0.411	3.160
	6	16	0.415	3.180
		17	0.401	3.084
		18	0.414	3.173

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,10 minutes				
	1	1	0.380	2.924
		2	0.388	2.986
		3	0.380	2.923
	2	4	0.383	2.948
		5	0.423	3.238
		6	0.388	2.986
	3	7	0.431	3.305
		8	0.386	2.963
		9	0.401	3.075
	4	10	0.379	2.917
	8	11	0.360	2.772
	อหาอง	12	0.377	2.901
	5	13	0.391	3.009
		14	0.400	3.076
		15	0.386	2.971
	6	16	0.380	2.921
		17	0.380	2.915
		18	0.376	2.890

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,15 minutes				
	1	1	0.375	2.884
		2	0.378	2.907
		3	0.378	2.907
	2	4	0.366	2.811
		5	0.361	2.773
		6	0.367	2.819
	3	7	0.342	2.631
		8	0.335	2.572
		9	0.336	2.579
	4	10	0.384	2.950
	8	11	0.361	2.775
	218724	12	0.345	2.652
	5	13	0.336	2.584
		14	0.365	2.806
		15	0.344	2.642
	6	16	0.336	2.585
		17	0.339	2.603
		18	0.337	2.592

Ultrasonic bath	Specimens	Samples	C (mg/ml)	RM (wt%)
50°C,20 minutes				
	1	1	0.345	2.651
		2	0.343	2.637
		3	0.347	2.668
	2	4	0.339	2.607
		5	0.347	2.669
	la la	6	0.335	2.577
	3	7	0.328	2.520
		8	0.358	2.748
		9	0.335	2.573
	4	10	0.333	2.560
	8	11	0.323	2.481
	อหาอง	12	0.335	2.575
	5	13	0.328	2.518
		14	0.315	2.420
		15	0.325	2.500
	6	16	0.323	2.484
		17	0.320	2.461
		18	0.320	2.461

 Table 3 Experimental data in the Orthoplast groups (continued)

Statistical analysis

Table 5 Normality test

		RM
N		96
Normal Parameters ^{a,,b}	Mean	2.7234
	Std. Deviation	.40881
Most Extreme Differences	Absolute	.092
	Positive	.048
	Negative	092
Kolmogorov-Smirnov Z		.898
Asymp. Sig. (2-tailed)		.395

One-Sample Kolmogorov-Smirnov Test

a. Test distribution is Normal.

b. Calculated from data.

Table 6 A two-way ANOVA

Dependent Variable:RM							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.		
Corrected Model	14.593 ^a	15	.973	60.624	.000		
Intercept	712.043	1	712.043	44370.369	.000		
brand	4.802	1	4.802	299.213	.000		
Method	8.611	7	1.230	76.653	.000		
brand * Method	1.181	7	.169	10.510	.000		
Error	1.284	80	.016				
Total	727.920	96					
Corrected Total	15.877	95					

Tests of Between-Subjects Effects

a. R Squared = .919 (Adjusted R Squared = .904)

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Multiple Comparisons

RM

Tukey HSD

-		Mean Difference			95% Confide	ence Interval
(I) Method2	(J) Method2	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
control	water 24 h	.6058 [*]	.05172	.000	.4449	.7668
	water 72 h	.7483 [*]	.05172	.000	.5874	.9093
	ultrasonic 3 mins	.4008*	.05172	.000	.2399	.5618
	ultrasonic 5 mins	.3325*	.05172	.000	.1715	.4935
	ultrasonic 10 mins	.5925 [*]	.05172	.000	.4315	.7535
	ultrasonic 15 mins	.8825 [*]	.05172	.000	.7215	1.0435
	ultrasonic 20 mins	.9900 [*]	.05172	.000	.8290	1.1510
water 24 h	control	6058 [*]	.05172	.000	7668	4449
	water 72 h	.1425	.05172	.122	0185	.3035
	ultrasonic 3 mins	2050 [*]	.05172	.004	3660	0440
	ultrasonic 5 mins	2733 [*]	.05172	.000	4343	1124
	ultrasonic 10 mins	0133	.05172	1.000	1743	.1476
	ultrasonic 15 mins	.2767*	.05172	.000	.1157	.4376
	ultrasonic 20 mins	.3842*	.05172	.000	.2232	.5451
water 72 h	control	7483 [*]	.05172	.000	9093	5874
	water 24 h	1425	.05172	.122	3035	.0185
	ultrasonic 3 mins	3475 [*]	.05172	.000	5085	1865
	ultrasonic 5 mins	4158 [*]	.05172	.000	5768	2549
	ultrasonic 10 mins	1558	.05172	.065	3168	.0051
	ultrasonic 15 mins	.1342	.05172	.173	0268	.2951
	ultrasonic 20 mins	.2417*	.05172	.000	.0807	.4026

ultrasonic 3 mins	control	4008*	.05172	.000	5618	2399
	water 24 h	.2050*	.05172	.004	.0440	.3660
	water 72 h	.3475*	.05172	.000	.1865	.5085
	ultrasonic 5 mins	0683	.05172	.888	2293	.0926
	ultrasonic 10 mins	.1917*	.05172	.009	.0307	.3526
	ultrasonic 15 mins	.4817*	.05172	.000	.3207	.6426
	ultrasonic 20 mins	.5892*	.05172	.000	.4282	.7501
ultrasonic 5 mins	control	3325*	.05172	.000	4935	1715
	water 24 h	.2733*	.05172	.000	.1124	.4343
	water 72 h	.4158 [*]	.05172	.000	.2549	.5768
	ultrasonic 3 mins	.0683	.05172	.888	0926	.2293
	ultrasonic 10 mins	.2600*	.05172	.000	.0990	.4210
	ultrasonic 15 mins	.5500*	.05172	.000	.3890	.7110
	ultrasonic 20 mins	.6575*	.05172	.000	.4965	.8185
ultrasonic 10	control	5925 [*]	.05172	.000	7535	4315
mins	water 24 h	.0133	.05172	1.000	1476	.1743
	water 72 h	.1558	.05172	.065	0051	.3168
	ultrasonic 3 mins	1917 [*]	.05172	.009	3526	0307
	ultrasonic 5 mins	2600 [*]	.05172	.000	4210	0990
	ultrasonic 15 mins	.2900*	.05172	.000	.1290	.4510
	ultrasonic 20 mins	.3975*	.05172	.000	.2365	.5585
ultrasonic 15	control	8825*	.05172	.000	-1.0435	7215
mins	water 24 h	2767 [*]	.05172	.000	4376	1157
	water 72 h	1342	.05172	.173	2951	.0268
	ultrasonic 3 mins	4817*	.05172	.000	6426	3207

	ultrasonic 5 mins	5500 [*]	.05172	.000	7110	3890
	ultrasonic 10 mins	2900 [*]	.05172	.000	4510	1290
	ultrasonic 20 mins	.1075	.05172	.437	0535	.2685
ultrasonic 20	control	9900*	.05172	.000	-1.1510	8290
mins	water 24 h	3842 [*]	.05172	.000	5451	2232
	water 72 h	2417 [*]	.05172	.000	4026	0807
	ultrasonic 3 mins	5892 [*]	.05172	.000	7501	4282
	ultrasonic 5 mins	6575 [*]	.05172	.000	8185	4965
	ultrasonic 10 mins	3975*	.05172	.000	5585	2365
	ultrasonic 15 mins	1075	.05172	.437	2685	.0535

Based on observed means.

The error term is Mean Square(Error) = .016.

*. The mean difference is significant at the 0.05 level.

RM

Tukey HSD^{a,,b}

		Subset				
Method2	Ν	1	2	3	4	5
ultrasonic 20 mins	12	2.3025				
ultrasonic 15 mins	12	2.4100	2.4100			
water 72 h	12		2.5442	2.5442		
water 24 h	12			2.6867		
ultrasonic 10 mins	12			2.7000		
ultrasonic 3 mins	12				2.8917	
ultrasonic 5 mins	12				2.9600	
control	12					3.2925
Sig.		.437	.173	.065	.888	1.000

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = .016.

a. Uses Harmonic Mean Sample Size = 12.000.

b. Alpha = 0.05.

Table 7 A one-way ANOVA

RM								
	Sum of Squares	df	Mean Square	F	Sig.			
Between Groups	14.593	15	.973	60.624	.000			
Within Groups	1.284	80	.016					
Total	15.877	95						

ANOVA

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Multiple Comparisons

RM

Tukey HSD

		Mean			95% Coi Inte	
(I) Method	(J) Method	Differenc e (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
orthocryl control	orthocryl water24h	1.00000*	.07314	.000	.7413	1.2587
	orthocrylwater72h	.97333*	.07314	.000	.7146	1.232′
	orthocryl ultra3min	.61000*	.07314	.000	.3513	.8687
	orthocryl ultra5min	.53167*	.07314	.000	.2729	.7904
	orthocryl ultra10min	.89500*	.07314	.000	.6363	1.1537
	orthocryl ultra15min	1.21667*	.07314	.000	.9579	1.4754
	orthocryl ultra20min	1.26833*	.07314	.000	1.0096	1.5271
	orthoplast control	.03833	.07314	1.000	2204	.297
	orthoplast water24h	.25000	.07314	.069	0087	.5087
	orthoplast water72h	.56167*	.07314	.000	.3029	.8204
	orthoplast ultra 3 min	.23000	.07314	.139	0287	.4887
	orthoplast ultra 5 min	.17167	.07314	.591	0871	.4304
	orthoplast ultra 10 min	.32833*	.07314	.002	.0696	.587
	orthoplast ultra 15 min	.58667*	.07314	.000	.3279	.8454
	orthoplast ultra 20 min	.75000*	.07314	.000	.4913	1.0087
orthocryl water24h	orthocryl control	-1.00000*	.07314	.000	-1.2587	7413
	orthocrylwater72h	02667	.07314	1.000	2854	.232
	orthocryl ultra3min	39000*	.07314	.000	6487	1313
	orthocryl ultra5min	46833 [*]	.07314	.000	7271	2096
	orthocryl ultra10min	10500	.07314	.986	3637	.1537
	orthocryl ultra15min	.21667	.07314	.209	0421	.4754
	orthocryl ultra20min	.26833 [*]	.07314	.034	.0096	.527
	orthoplast control	96167*	.07314	.000	-1.2204	7029
	orthoplast water24h	75000*	.07314	.000	-1.0087	4913

orthoplast ultra 3 min 77000 .07314 .000 -1.0287 51 orthoplast ultra 5 min .82833 .07314 .000 9304 413 orthoplast ultra 15 min .41333 .07314 .000 6721 15 orthoplast ultra 20 min .25000 .07314 .000 6721 17 orthocrylwater72h orthocryl control 97333 .07314 .000 2321 .288 orthocryl water24h .02667 .07314 .000 2321 .288 orthocryl ultra3min 36333 .07314 .000 2321 .288 orthocryl ultra10min .07633 .07314 .000 6221 .10 orthocryl ultra10min .07833 .07314 .000 6221 .10 orthoplast water24h .25303 .07314 .000 6221 .10 orthoplast water24h .72333 .07314 .000 6704 .55 orthoplast ultra 5 min .8807 .07314							
orthoplast ultra 5 min 82833 .0.7314 .0.00 -1.0871 566 orthoplast ultra 10 min 67167 .0.7314 .0.00 6721 .1.15 orthoplast ultra 15 min 41333 .0.7314 .0.00 6721 .1.15 orthoplast ultra 20 min 2500 .0.7314 .0.00 6721 .7.14 orthocryl water/2th .0.2667 .0.7314 .0.00 2321 .2.83 orthocryl ultra3min 36333 .0.7314 .0.00 6221 .0.10 orthocryl ultra5min 44167 .0.7314 .0.00 6221 .0.10 orthocryl ultra10min 07833 .0.7314 .0.00 6221 .0.10 orthoplast water24th 72333 .0.7314 .0.00 6674 .560 orthoplast water24h 72333 .0.7314 .0.00 6674 .677 orthoplast ultra 5 min 66167 .0.7314 .0.00 .6674 .563 orthoplast ultra 10min 66450 .0.731		orthoplast water72h	43833*	.07314	.000	6971	1796
orthoplast ultra 10 min 67167 0.07314 0.000 6721 413 orthoplast ultra 20 min 25000 0.7314 0.00 5087 0.00 orthoplast ultra 20 min 25000 0.7314 0.00 5087 0.00 orthocrylwater72h orthocryl water24h 0.2667 0.7314 0.00 2321 0.2831 orthocryl ultra3min 36333 0.7314 0.00 6221 0.00 orthocryl ultra10min 36333 0.07314 0.00 6221 0.00 orthocryl ultra10min 07833 0.07314 0.00 6221 0.00 orthocryl ultra10min 07833 0.07314 0.00 6363 0.001 orthoplast control 93500 0.07314 0.00 6764 0.6753 orthoplast water72h 41167 0.07314 0.00 6764 0.153 orthoplast ultra 10min 64500 0.07314 0.00 6674 0.163 orthoplast ultra 20min 2233		orthoplast ultra 3 min	77000*	.07314	.000	-1.0287	5113
orthoplast ultra 15 min 41333 .0.07314 .0.00 6721 .15 orthoplast ultra 20 min 25000 .0.7314 .0.06 5087 .0.00 orthocryl water72h orthocryl water24h .02667 .0.7314 1.000 2321 .288 orthocryl ultra3min 36333 .0.7314 .0.00 6221 .0.10 orthocryl ultra5min 44167 .0.7314 .0.00 6221 .0.10 orthocryl ultra15min .24333 .0.7314 .0.00 6221 .0.10 orthocryl ultra15min .24333 .0.7314 .0.00 6221 .0.10 orthocryl ultra15min .24333 .0.7314 .0.00 1937 .6674 orthoplast control .99500 .0.7314 .0.00 1937 .6674 orthoplast water24h .7233 .0.7314 .0.00 1937 674 orthoplast ultra 3 min .74335 .0.7314 .0.00 10021 446 orthoplast ultra 2 0 min 2233		orthoplast ultra 5 min	82833*	.07314	.000	-1.0871	5696
orthoplast ultra 20 min 25000 .0.7314 .0.69 5087 .0.00 orthocrylwater72h orthocryl control 97333 .0.7314 .0.00 1.2321 .7.71 orthocryl water24h .0.2667 .0.7314 1.000 2321 .2.88 orthocryl ultra3min 36333 .0.7314 .0.00 6221 .0.10 orthocryl ultra10min 07833 .0.7314 .0.00 6221 .0.10 orthocryl ultra10min 07833 .0.7314 .0.00 6221 .0.11 orthocryl ultra10min .0.7833 .0.7314 .0.00 6704 .563 orthocryl ultra20min .29500 .0.7314 .0.00 11937 .667 orthoplast water24h .7233 .0.7314 .0.00 6704 .563 orthoplast ultra 3 min .74333 .0.7314 .0.00 6704 .543 orthoplast ultra 20 min .22333 .0.7314 .0.00 .6454 .122 orthocryl water24h .39000		orthoplast ultra 10 min	67167*	.07314	.000	9304	4129
orthocrylwater72h orthocryl oontrol 97333 .07314 1.000 -1.2321 71 orthocryl water24h .02667 .07314 1.000 2321 .288 orthocryl ultra3min 36333 .07314 .000 6221 .100 orthocryl ultra10min 07833 .07314 .000 6221 .100 orthocryl ultra10min 07833 .07314 .000 7004 883 orthocryl ultra10min .07833 .07314 .000 11937 .667 orthocryl ultra20min .29500 .07314 .000 9821 .466 orthoplast control 93500 .07314 .000 1021 .488 orthoplast ultra 3 min 74333 .07314 .000 10021 -488 orthoplast ultra 10min 64500 .07314 .000 6454 .122 orthoplast ultra 20 min 23333 .07314 .000 .6454 .122 orthocryl ultra3min orthocryl ultra20min <t< td=""><td></td><td>orthoplast ultra 15 min</td><td>41333*</td><td>.07314</td><td>.000</td><td>6721</td><td>1546</td></t<>		orthoplast ultra 15 min	41333*	.07314	.000	6721	1546
orthocryl water24h .02667 .07314 1.000 2321 2.83 orthocryl ultra3min 36333 .07314 .000 6221 .1.10 orthocryl ultra15min 44167 .07314 .000 .7.004 .1.83 orthocryl ultra15min .24333 .07314 .099 3371 .0.63 orthocryl ultra20min .29500 .07314 .0.01 .0.3633 .6.62 orthocryl ultra20min .29500 .07314 .0.00 11937 .6.67 orthoplast control .93500 .07314 .000 6.704 .6.71 orthoplast water22h .41167 .0.7314 .000 6.674 .6.75 orthoplast ultra 3 min .7.4333 .0.7314 .000 6.646 .6.102 orthoplast ultra 10min .6.8067 .0.7314 .000 .6.653 .6.6450		orthoplast ultra 20 min	25000	.07314	.069	5087	.0087
orthocryl ultra3min 36333' 07314 000 6221 100 orthocryl ultra5min 44167' 07314 000 7004 183 orthocryl ultra10min 07833 07314 999 3371 183 orthocryl ultra15min 24333 07314 000 11937 563 orthocryl ultra20min 29500' 07314 000 11937 674 orthoplast control 93500' 07314 000 11937 674 orthoplast water24h 72333' 07314 000 6704 153 orthoplast water72h 41167' 07314 000 6674 153 orthoplast ultra 3 min 74333' 07314 000 6454 122 orthoplast ultra 10min 64500' 07314 000 6454 122 orthocryl ultra15min 38667' 07314 000 6454 122 orthocryl ultra15min 22333 0	orthocrylwater72h	orthocryl control	97333*	.07314	.000	-1.2321	7146
orthocryl ultra5min 44167 07314 000 7004 183 orthocryl ultra10min 07833 07314 999 3371 183 orthocryl ultra15min 24333 07314 088 0154 503 orthocryl ultra20min 29500 07314 000 11937 677 orthoplast control 93500 07314 000 11937 677 orthoplast water24h 72333 07314 000 6704 674 orthoplast water22h 41167 07314 000 6704 543 orthoplast ultra 3 min 74333 07314 000 6704 543 orthoplast ultra 15min 80167 07314 000 6464 122 orthoplast ultra 10min 80667 07314 000 6464 122 orthocryl ultra35min 22333 07314 000 6463 357 orthocryl ultra15min 61000 07314 <td></td> <td>orthocryl water24h</td> <td>.02667</td> <td>.07314</td> <td>1.000</td> <td>2321</td> <td>.2854</td>		orthocryl water24h	.02667	.07314	1.000	2321	.2854
orthocryl ultra10min 07833 .07314 .999 3371 1.80 orthocryl ultra15min .24333 .07314 .088 0154 .503 orthoplast control .29500 [°] .07314 .011 .0363 .553 orthoplast control 93500 [°] .07314 .000 -1.1937 674 orthoplast water24h 72333 [°] .07314 .000 9821 466 orthoplast water24h 72333 [°] .07314 .000 6704 153 orthoplast ultra 3 min 74333 [°] .07314 .000 0021 486 orthoplast ultra 10min 68167 .07314 .000 9037 386 orthoplast ultra 10min 64500 [°] .07314 .000 6454 127 orthoplast ultra 20 min 22333 .07314 .000 8687 357 orthocryl water24h .39000 [°] .07314 .000 .1046 .622 orthocryl ultra30min orthocryl water24h .36333 <td></td> <td>orthocryl ultra3min</td> <td>36333*</td> <td>.07314</td> <td>.000</td> <td>6221</td> <td>1046</td>		orthocryl ultra3min	36333*	.07314	.000	6221	1046
orthocryl ultra15min .24333 .07314 .088 0154 .503 orthocryl ultra20min .29500 .07314 .011 .0363 .553 orthoplast control 93500 .07314 .000 -1.1937 674 orthoplast water24h 72333 .07314 .000 9821 466 orthoplast water24h 72333 .07314 .000 6704 674 orthoplast ultra 3 min 74333 .07314 .000 10021 488 orthoplast ultra 5 min 80167 .07314 .000 10604 543 orthoplast ultra 10min 64500 .07314 .000 6454 122 orthoplast ultra 20 min 22333 .07314 .000 6453 .033 orthocryl ultra3min orthocryl control 61000 .07314 .000 6454 223 orthocryl ultra5min .07833 .07314 .000 3667 356 orthocryl ultra5min .07833 .07		orthocryl ultra5min	44167*	.07314	.000	7004	1829
orthocryl ultra20min .29500' .07314 .011 .0363 .553 orthoplast control 93500' .07314 .000 11937 674 orthoplast water24h 72333' .07314 .000 9821 466 orthoplast water22h 41167' .07314 .000 6704 153 orthoplast ultra 3 min 74333' .07314 .000 6704 543 orthoplast ultra 5 min 80167' .07314 .000 9037 384 orthoplast ultra 10min 64500' .07314 .000 9037 384 orthoplast ultra 20 min 22333 .07314 .000 6454 127 orthocryl ultra3min orthocryl control 61000' .07314 .000 8687 357 orthocryl ultra3min orthocryl water24h .39000' .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1313 .644 .017 .0263 <		orthocryl ultra10min	07833	.07314	.999	3371	.1804
orthoplast control 93500° .07314 .000 -1.1937 674 orthoplast water24h 72333° .07314 .000 6704 153 orthoplast water72h 41167° .07314 .000 6704 153 orthoplast ultra 3 min 74333° .07314 .000 -1.0021 484 orthoplast ultra 5 min 80167° .07314 .000 10604 543 orthoplast ultra 10min 64500° .07314 .000 9037 384 orthoplast ultra 15min 38667° .07314 .000 6454 12' orthoplast ultra 20 min 22333 .07314 .000 8687 35 orthocryl ultra3min orthocryl control 61000° .07314 .000 .1313 .644 orthocryl ultra3min orthocryl water24h .39000° .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra10mi		orthocryl ultra15min	.24333	.07314	.088	0154	.5021
orthoplast water24h 72333 [*] .07314 .000 9821 466 orthoplast water72h 41167 [*] .07314 .000 6704 153 orthoplast ultra 3 min 74333 [*] .07314 .000 -1.0021 486 orthoplast ultra 5 min 80167 [*] .07314 .000 -1.0604 543 orthoplast ultra 10min 64500 [*] .07314 .000 6454 122 orthoplast ultra 10min 64500 [*] .07314 .000 6454 122 orthoplast ultra 10min 64500 [*] .07314 .000 6454 122 orthoplast ultra 20 min 22333 .07314 .000 64587 355 orthocryl water24h .39000 [*] .07314 .000 .1313 .644 orthocryl water72h .36333 [*] .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1313 .644 orthocryl ultra10min .28500 [*] .0731		orthocryl ultra20min	.29500*	.07314	.011	.0363	.5537
orthoplast water72h 41167 .07314 .000 6704 155 orthoplast ultra 3 min 74333 .07314 .000 -1.0021 484 orthoplast ultra 5 min 80167 .07314 .000 -1.0604 543 orthoplast ultra 10min 64500 .07314 .000 9037 386 orthoplast ultra 15min 38667 .07314 .000 6454 127 orthoplast ultra 20 min 22333 .07314 .000 64887 357 orthocryl water24h .39000 .07314 .000 8687 357 orthocryl water72h .36333 .07314 .000 .1313 .644 orthocryl water72h .36333 .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1313 .644 orthocryl ultra15min .60667 .07314 .000 .3479 .864 orthocryl ultra20min .58833 .07314 .000		orthoplast control	93500*	.07314	.000	-1.1937	6763
orthoplast ultra 3 min 74333 .07314 .000 -1.0021 484 orthoplast ultra 5 min 80167 .07314 .000 -1.0604 542 orthoplast ultra 10min 64500 .07314 .000 9037 386 orthoplast ultra 15min 38667 .07314 .000 6454 122 orthoplast ultra 20 min 22333 .07314 .000 64587 386 orthocryl ultra3min orthocryl control 61000 .07314 .000 8687 357 orthocryl water24h .39000 .07314 .000 .1313 .644 orthocryl water24h .39000 .07314 .000 .1313 .644 orthocryl water24h .39000 .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1313 .644 orthocryl ultra10min .28500 .07314 .000 .3479 .864 orthocryl ultra15min .60667 .07314 <td></td> <td>orthoplast water24h</td> <td>72333*</td> <td>.07314</td> <td>.000</td> <td>9821</td> <td>4646</td>		orthoplast water24h	72333*	.07314	.000	9821	4646
orthoplast ultra 5 min 80167 .07314 .000 -1.0604 543 orthoplast ultra 10min 64500 .07314 .000 9037 386 orthoplast ultra 15min 38667 .07314 .000 6454 12 orthoplast ultra 20 min 22333 .07314 .000 6454 12 orthocryl ultra3min orthocryl control 61000° .07314 .000 8687 35 orthocryl ultra3min orthocryl control 61000° .07314 .000 .1313 .644 orthocryl water24h .39000° .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1313 .644 orthocryl ultra10min .28500° .07314 .000 .1046 .622 orthocryl ultra15min .60667° .07314 .0017 .0263 .543 orthocryl ultra15min .65833° .07314 .000 .3804 .313 orthoplast control <td< td=""><td></td><td>orthoplast water72h</td><td>41167*</td><td>.07314</td><td>.000</td><td>6704</td><td>1529</td></td<>		orthoplast water72h	41167*	.07314	.000	6704	1529
orthoplast ultra 10min 64500° .07314 .000 9037 386 orthoplast ultra 15min 38667° .07314 .000 6454 12° orthoplast ultra 20 min 22333 .07314 .000 6454 12° orthoplast ultra 20 min 22333 .07314 .000 6457 .033 orthocryl ultra3min orthocryl control 61000° .07314 .000 8687 357 orthocryl water24h .39000° .07314 .000 .1313 .644 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra10min .28500° .07314 .000 .1046 .622 orthocryl ultra15min .60667° .07314 .000 .3479 .868 orthoplast control .57167° .07314 .000 .3479 .868 orthoplast water24h .36000° .07314 .000 .3479 .868 orthoplast water24h .36000° .07314 </td <td></td> <td>orthoplast ultra 3 min</td> <td>74333*</td> <td>.07314</td> <td>.000</td> <td>-1.0021</td> <td>4846</td>		orthoplast ultra 3 min	74333*	.07314	.000	-1.0021	4846
orthoplast ultra 15min 38667' .07314 .000 6454 12 orthoplast ultra 20 min 22333 .07314 .171 4821 .033 orthocryl ultra3min orthocryl control 61000' .07314 .000 8687 353 orthocryl ultra3min orthocryl water24h .39000' .07314 .000 .1313 .644 orthocryl water72h .36333' .07314 .000 .1046 .622 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra10min .28500' .07314 .000 .1046 .622 orthocryl ultra10min .28500' .07314 .000 .1046 .623 orthocryl ultra20min .66667' .07314 .000 .3479 .868 orthoplast control 57167' .07314 .000 .8304 .313 orthoplast water72h .36000' .07314 .000 .6187 .100 orthoplast ultra 3 min .3800		orthoplast ultra 5 min	80167*	.07314	.000	-1.0604	5429
orthoplast ultra 20 min 22333 .07314 .171 4821 .033 orthocryl ultra3min orthocryl control 61000° .07314 .000 8687 353 orthocryl water24h .39000° .07314 .000 .1313 .644 orthocryl water72h .36333° .07314 .000 .1346 .622 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra10min .28500° .07314 .000 .1046 .622 orthocryl ultra10min .28500° .07314 .000 .1046 .622 orthocryl ultra10min .28500° .07314 .000 .1046 .622 orthocryl ultra15min .60667° .07314 .000 .3479 .868 orthoplast control .57167° .07314 .000 .3496 .312 orthoplast water24h .36000° .07314 .000 .6187 .100 orthoplast ultra 3 min .38000° .07314 <t< td=""><td></td><td>orthoplast ultra 10min</td><td>64500[*]</td><td>.07314</td><td>.000</td><td>9037</td><td>3863</td></t<>		orthoplast ultra 10min	64500 [*]	.07314	.000	9037	3863
orthocryl ultra3min orthocryl control 61000' .07314 .000 8687 353 orthocryl water24h .39000' .07314 .000 .1313 .644 orthocryl water72h .36333' .07314 .000 .1046 .622 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra5min 07833 .07314 .000 .1046 .622 orthocryl ultra10min .28500' .07314 .000 .1046 .622 orthocryl ultra10min .28500' .07314 .0017 .0263 .543 orthocryl ultra15min .60667' .07314 .000 .3479 .868 orthocryl ultra20min .65833' .07314 .000 .3996 .917 orthoplast control 57167' .07314 .000 .6187 .109 orthoplast water24h .36000' .07314 .000 .6187 .109 orthoplast ultra 3 min .38000' .07314 .		orthoplast ultra 15min	38667*	.07314	.000	6454	1279
orthocryl water24h .39000° .07314 .000 .1313 .644 orthocryl water72h .36333° .07314 .000 .1046 .622 orthocryl ultra5min 07833 .07314 .999 3371 .186 orthocryl ultra10min .28500° .07314 .017 .0263 .543 orthocryl ultra15min .60667° .07314 .000 .3479 .863 orthocryl ultra20min .65833° .07314 .000 .3479 .863 orthoplast control 57167° .07314 .000 .3996 .917 orthoplast water24h 36000° .07314 .000 .36187 .110 orthoplast water72h 04833 .07314 .000 .6187 .100 orthoplast ultra 3 min 38000° .07314 .000 .6387 .121		orthoplast ultra 20 min	22333	.07314	.171	4821	.0354
orthocrylwater72h .36333* .07314 .000 .1046 .622 orthocryl ultra5min 07833 .07314 .999 3371 .186 orthocryl ultra10min .28500* .07314 .017 .0263 .542 orthocryl ultra10min .28500* .07314 .017 .0263 .542 orthocryl ultra15min .60667* .07314 .000 .3479 .862 orthocryl ultra20min .65833* .07314 .000 .3996 .917 orthoplast control 57167* .07314 .000 .8304 .312 orthoplast water24h 36000* .07314 .000 .6187 .100 orthoplast water72h 04833 .07314 .000 6387 .124	orthocryl ultra3min	orthocryl control	61000*	.07314	.000	8687	3513
orthocryl ultra5min 07833 .07314 .999 3371 .180 orthocryl ultra10min .28500° .07314 .017 .0263 .543 orthocryl ultra15min .60667° .07314 .000 .3479 .863 orthocryl ultra20min .65833° .07314 .000 .3996 .917 orthoplast control 57167° .07314 .000 .3804 .312 orthoplast water24h 36000° .07314 .000 6187 .100 orthoplast water72h 04833 .07314 .000 6387 .212		orthocryl water24h	.39000*	.07314	.000	.1313	.6487
orthocryl ultra10min .28500° .07314 .017 .0263 .543 orthocryl ultra15min .60667° .07314 .000 .3479 .863 orthocryl ultra20min .65833° .07314 .000 .3996 .917 orthoplast control 57167° .07314 .000 .3996 .917 orthoplast water24h 36000° .07314 .000 8304 312 orthoplast water72h 04833 .07314 .000 6387 .210 orthoplast ultra 3 min 38000° .07314 .000 6387 .212		orthocrylwater72h	.36333*	.07314	.000	.1046	.6221
orthocryl ultra15min .60667* .07314 .000 .3479 .869 orthocryl ultra20min .65833* .07314 .000 .3996 .917 orthoplast control 57167* .07314 .000 8304 312 orthoplast water24h 36000* .07314 .000 6187 107 orthoplast water72h 04833 .07314 1.000 3071 .210 orthoplast ultra 3 min 38000* .07314 .000 6387 127		orthocryl ultra5min	07833	.07314	.999	3371	.1804
orthocryl ultra20min .65833* .07314 .000 .3996 .917 orthoplast control 57167* .07314 .000 8304 312 orthoplast water24h 36000* .07314 .000 6187 107 orthoplast water72h 04833 .07314 1.000 3071 .210 orthoplast ultra 3 min 38000* .07314 .000 6387 127		orthocryl ultra10min	.28500*	.07314	.017	.0263	.5437
orthoplast control 57167* .07314 .000 8304 312 orthoplast water24h 36000* .07314 .000 6187 100 orthoplast water72h 04833 .07314 1.000 3071 .210 orthoplast ultra 3 min 38000* .07314 .000 6387 120		orthocryl ultra15min	.60667*	.07314	.000	.3479	.8654
orthoplast water24h36000*.07314.000618710orthoplast water72h04833.073141.0003071.210orthoplast ultra 3 min38000*.07314.0006387125		orthocryl ultra20min	.65833*	.07314	.000	.3996	.9171
orthoplast water72h04833.073141.0003071.210orthoplast ultra 3 min38000*.07314.0006387125		orthoplast control	57167*	.07314	.000	8304	3129
orthoplast ultra 3 min38000* .07314 .000638712		orthoplast water24h	36000*	.07314	.000	6187	1013
		orthoplast water72h	04833	.07314	1.000	3071	.2104
		orthoplast ultra 3 min	38000*	.07314	.000	6387	1213
orthoplast ultra 5 min43833* .07314 .0006971175		orthoplast ultra 5 min	43833*	.07314	.000	6971	1796

	orthoplast ultra 10min	28167*	.07314	.020	5404	0229
	orthoplast ultra 15min	02333	.07314	1.000	2821	.2354
	orthoplast ultra 20min	.14000	.07314	.862	1187	.3987
orthocryl ultra5min	-	53167*	.07314	.000	7904	2729
	orthocryl water24h	.46833*	.07314	.000	.2096	.7271
	orthocrylwater72h	.44167*	.07314	.000	.1829	.7004
	orthocryl ultra3min	.07833	.07314	.999	1804	.3371
	orthocryl ultra10min	.36333*	.07314	.000	.1046	.6221
	orthocryl ultra15min	.68500*	.07314	.000	.4263	.9437
	orthocryl ultra20min	.73667*	.07314	.000	.4779	.9954
	orthoplast control	49333*	.07314	.000	7521	2346
	orthoplast water24h	28167*	.07314	.020	5404	0229
	orthoplast water72h	.03000	.07314	1.000	2287	.2887
	orthoplast ultra 3 min	30167*	.07314	.008	5604	0429
	orthoplast ultra 5 min	36000*	.07314	.000	6187	1013
	orthoplast ultra 10min	20333	.07314	.302	4621	.0554
	orthoplast ultra 15min	.05500	.07314	1.000	2037	.3137
	orthoplast ultra 20min	.21833	.07314	.199	0404	.4771
orthocryl	orthocryl control	89500*	.07314	.000	-1.1537	6363
ultra10min	orthocryl water24h	.10500	.07314	.986	1537	.3637
	orthocrylwater72h	.07833	.07314	.999	1804	.3371
	orthocryl ultra3min	28500*	.07314	.017	5437	0263
	orthocryl ultra5min	36333*	.07314	.000	6221	1046
	orthocryl ultra15min	.32167*	.07314	.003	.0629	.5804
	orthocryl ultra20min	.37333*	.07314	.000	.1146	.6321
	orthoplast control	85667*	.07314	.000	-1.1154	5979
	orthoplast water24h	64500*	.07314	.000	9037	3863
	orthoplast water72h	333333*	.07314	.002	5921	0746
	orthoplast ultra 3 min	66500*	.07314	.000	9237	4063
	orthoplast ultra 5 min	72333*	.07314	.000	9821	4646
	orthoplast ultra 10min	56667*	.07314	.000	8254	3079
	orthoplast ultra 15min	30833*	.07314	.006	5671	0496
	orthoplast ultra 20min	14500	.07314	.827	4037	.1137

orthocryl	orthocryl control	-1.21667*	.07314	.000	-1.4754	9579
ultra15min	orthocryl water24h	21667	.07314	.209	4754	.042
	orthocrylwater72h	24333	.07314	.088	5021	.0154
	orthocryl ultra3min	60667*	.07314	.000	8654	3479
	orthocryl ultra5min	68500*	.07314	.000	9437	4263
	orthocryl ultra10min	32167*	.07314	.003	5804	0629
	orthocryl ultra20min	.05167	.07314	1.000	2071	.310
	orthoplast control	-1.17833*	.07314	.000	-1.4371	919
	orthoplast water24h	96667*	.07314	.000	-1.2254	707
	orthoplast water72h	65500*	.07314	.000	9137	396
	orthoplast ultra 3 min	98667*	.07314	.000	-1.2454	727
	orthoplast ultra 5 min	-1.04500*	.07314	.000	-1.3037	786
	orthoplast ultra 10min	88833*	.07314	.000	-1.1471	629
	orthoplast ultra 15min	63000*	.07314	.000	8887	371
	orthoplast ultra 20min	46667*	.07314	.000	7254	207
orthocryl	orthocryl control	-1.26833*	.07314	.000	-1.5271	-1.009
ultra20min	orthocryl water24h	26833*	.07314	.034	5271	009
	orthocrylwater72h	29500*	.07314	.011	5537	036
	orthocryl ultra3min	65833 [*]	.07314	.000	9171	399
	orthocryl ultra5min	73667*	.07314	.000	9954	477
	orthocryl ultra10min	37333 [*]	.07314	.000	6321	114
	orthocryl ultra15min	05167	.07314	1.000	3104	.207
	orthoplast control	-1.23000*	.07314	.000	-1.4887	971
	orthoplast water24h	-1.01833*	.07314	.000	-1.2771	759
	orthoplast water72h	70667*	.07314	.000	9654	447
	orthoplast ultra 3 min	-1.03833*	.07314	.000	-1.2971	779
	orthoplast ultra 5 min	-1.09667*	.07314	.000	-1.3554	837
	orthoplast ultra 10min	94000*	.07314	.000	-1.1987	681
	orthoplast ultra 15min	68167*	.07314	.000	9404	422
	orthoplast ultra 20min	51833 [*]	.07314	.000	7771	259
orthoplast control	orthocryl control	03833	.07314	1.000	2971	.220
	orthocryl water24h	.96167*	.07314	.000	.7029	1.220
	orthocrylwater72h	.93500*	.07314	.000	.6763	1.193
	—	-	•	•		•

	orthocryl ultra3min	.57167*	.07314	.000	.3129	.8304
	orthocryl ultra5min	.49333*	.07314	.000	.2346	.7521
	orthocryl ultra10min	.85667*	.07314	.000	.5979	1.1154
	orthocryl ultra15min	1.17833*	.07314	.000	.9196	1.4371
	orthocryl ultra20min	1.23000*	.07314	.000	.9713	1.4887
	orthoplast water24h	.21167	.07314	.241	0471	.4704
	orthoplast water72h	.52333*	.07314	.000	.2646	.7821
	orthoplast ultra 3 min	.19167	.07314	.400	0671	.4504
	orthoplast ultra 5 min	.13333	.07314	.901	1254	.3921
	orthoplast ultra 10min	.29000*	.07314	.014	.0313	.5487
	orthoplast ultra 15min	.54833*	.07314	.000	.2896	.8071
	orthoplast ultra 20min	.71167*	.07314	.000	.4529	.9704
orthoplast	orthocryl control	25000	.07314	.069	5087	.0087
water24h	orthocryl water24h	.75000*	.07314	.000	.4913	1.0087
	orthocrylwater72h	.72333*	.07314	.000	.4646	.9821
	orthocryl ultra3min	.36000*	.07314	.000	.1013	.6187
	orthocryl ultra5min	.28167*	.07314	.020	.0229	.5404
	orthocryl ultra10min	.64500*	.07314	.000	.3863	.9037
	orthocryl ultra15min	.96667*	.07314	.000	.7079	1.2254
	orthocryl ultra20min	1.01833*	.07314	.000	.7596	1.2771
	orthoplast control	21167	.07314	.241	4704	.0471
	orthoplast water72h	.31167*	.07314	.005	.0529	.5704
	orthoplast ultra 3 min	02000	.07314	1.000	2787	.2387
	orthoplast ultra 5 min	07833	.07314	.999	3371	.1804
	orthoplast ultra 10 min	.07833	.07314	.999	1804	.3371
	orthoplast ultra 15 min	.33667*	.07314	.002	.0779	.5954
	orthoplast ultra 20 min	.50000*	.07314	.000	.2413	.7587
orthoplast	orthocryl control	56167*	.07314	.000	8204	3029
water72h	orthocryl water24h	.43833*	.07314	.000	.1796	.6971
	orthocrylwater72h	.41167*	.07314	.000	.1529	.6704
	orthocryl ultra3min	.04833	.07314	1.000	2104	.3071
	orthocryl ultra5min	03000	.07314	1.000	2887	.2287
	orthocryl ultra10min	.33333*	.07314	.002	.0746	.5921

	orthocryl ultra15min	.65500*	.07314	.000	.3963	.9137
	orthocryl ultra20min	.70667*	.07314	.000	.4479	.9654
	orthoplast control	52333*	.07314	.000	7821	2646
	orthoplast water24h	31167*	.07314	.005	5704	0529
	orthoplast ultra 3 min	33167*	.07314	.002	5904	0729
	orthoplast ultra 5 min	39000*	.07314	.000	6487	1313
	orthoplast ultra 10 min	23333	.07314	.124	4921	.0254
	orthoplast ultra 15 min	.02500	.07314	1.000	2337	.2837
	orthoplast ultra 20 min	.18833	.07314	.430	0704	.4471
orthoplast ultra 3	orthocryl control	23000	.07314	.139	4887	.0287
min	orthocryl water24h	.77000*	.07314	.000	.5113	1.0287
	orthocrylwater72h	.74333*	.07314	.000	.4846	1.0021
	orthocryl ultra3min	.38000*	.07314	.000	.1213	.6387
	orthocryl ultra5min	.30167*	.07314	.008	.0429	.5604
	orthocryl ultra10min	.66500*	.07314	.000	.4063	.9237
	orthocryl ultra15min	.98667*	.07314	.000	.7279	1.2454
	orthocryl ultra20min	1.03833*	.07314	.000	.7796	1.2971
	orthoplast control	19167	.07314	.400	4504	.0671
	orthoplast water24h	.02000	.07314	1.000	2387	.2787
	orthoplast water72h	.33167*	.07314	.002	.0729	.5904
	orthoplast ultra 5 min	05833	.07314	1.000	3171	.2004
	orthoplast ultra 10 min	.09833	.07314	.993	1604	.3571
	orthoplast ultra 15 min	.35667*	.07314	.001	.0979	.6154
	orthoplast ultra 20 min	.52000*	.07314	.000	.2613	.7787
orthoplast ultra 5	orthocryl control	17167	.07314	.591	4304	.0871
min	orthocryl water24h	.82833*	.07314	.000	.5696	1.0871
	orthocrylwater72h	.80167*	.07314	.000	.5429	1.0604
	orthocryl ultra3min	.43833*	.07314	.000	.1796	.6971
	orthocryl ultra5min	.36000*	.07314	.000	.1013	.6187
	orthocryl ultra10min	.72333*	.07314	.000	.4646	.9821
	orthocryl ultra15min	1.04500*	.07314	.000	.7863	1.3037
	orthocryl ultra20min	1.09667*	.07314	.000	.8379	1.3554
	orthoplast control	13333	.07314	.901	3921	.1254

	_					_
	orthoplast water24h	.07833	.07314	.999	1804	.3371
	orthoplast water72h	.39000*	.07314	.000	.1313	.6487
	orthoplast ultra 3 min	.05833	.07314	1.000	2004	.3171
	orthoplast ultra 10 min	.15667	.07314	.733	1021	.4154
	orthoplast ultra 15 min	.41500*	.07314	.000	.1563	.6737
	orthoplast ultra 20 min	.57833 [*]	.07314	.000	.3196	.8371
orthoplast ultra 10	orthocryl control	32833*	.07314	.002	5871	0696
min	orthocryl water24h	.67167*	.07314	.000	.4129	.9304
	orthocrylwater72h	.64500*	.07314	.000	.3863	.9037
	orthocryl ultra3min	.28167*	.07314	.020	.0229	.5404
	orthocryl ultra5min	.20333	.07314	.302	0554	.4621
	orthocryl ultra10min	.56667*	.07314	.000	.3079	.8254
	Orthocryl ultra15min	.88833*	.07314	.000	.6296	1.1471
	orthocryl ultra20min	.94000*	.07314	.000	.6813	1.1987
	orthoplast control	29000*	.07314	.014	5487	0313
	orthoplast water24h	07833	.07314	.999	3371	.1804
	orthoplast water72h	.23333	.07314	.124	0254	.4921
	orthoplast ultra 3 min	09833	.07314	.993	3571	.1604
	orthoplast ultra 5 min	15667	.07314	.733	4154	.1021
	orthoplast ultra 15 min	.25833	.07314	.051	0004	.5171
	orthoplast ultra 20 min	.42167*	.07314	.000	.1629	.6804
orthoplast ultra 15	orthocryl control	58667*	.07314	.000	8454	3279
min	orthocryl water24h	.41333*	.07314	.000	.1546	.6721
	orthocrylwater72h	.38667*	.07314	.000	.1279	.6454
	orthocryl ultra3min	.02333	.07314	1.000	2354	.2821
	orthocryl ultra5min	05500	.07314	1.000	3137	.2037
	orthocryl ultra10min	.30833*	.07314	.006	.0496	.5671
	orthocryl ultra15min	.63000*	.07314	.000	.3713	.8887
	orthocryl ultra20min	.68167*	.07314	.000	.4229	.9404
	orthoplast control	54833 [*]	.07314	.000	8071	2896
	orthoplast water24h	33667*	.07314	.002	5954	0779
	orthoplast water72h	02500	.07314	1.000	2837	.2337

	-	_				
	orthoplast ultra 3 min	35667*	.07314	.001	6154	0979
	orthoplast ultra 5 min	41500 [*]	.07314	.000	6737	1563
	orthoplast ultra 10 min	25833	.07314	.051	5171	.0004
	orthoplast ultra 20 min	.16333	.07314	.672	0954	.4221
orthoplast ultra 20	orthocryl control	75000*	.07314	.000	-1.0087	4913
min	orthocryl water24h	.25000	.07314	.069	0087	.5087
	orthocrylwater72h	.22333	.07314	.171	0354	.4821
	orthocryl ultra3min	14000	.07314	.862	3987	.1187
	orthocryl ultra5min	21833	.07314	.199	4771	.0404
	orthocryl ultra10min	.14500	.07314	.827	1137	.4037
	orthocryl ultra15min	.46667*	.07314	.000	.2079	.7254
	orthocryl ultra20min	.51833 [*]	.07314	.000	.2596	.7771
	orthoplast control	71167 [*]	.07314	.000	9704	4529
	orthoplast water24h	50000*	.07314	.000	7587	2413
	orthoplast water72h	18833	.07314	.430	4471	.0704
	orthoplast ultra 3 min	52000*	.07314	.000	7787	2613
	orthoplast ultra 5 min	57833 [*]	.07314	.000	8371	3196
	orthoplast ultra 10 min	42167*	.07314	.000	6804	1629
	orthoplast ultra 15 min	16333	.07314	.672	4221	.0954

*. The mean difference is significant at the 0.05 level.

Chulalongkorn University

Tukey	HSD ^a
-------	-------------------------

		Subset for alpha = 0.05						
Method	Ν	1	2	3	4	5	6	7
orthocryl ultra20min	6	2.0433						
orthocryl ultra15min	6	2.0950	2.0950					
orthocryl water24h	6		2.3117	2.3117				
orthocrylwater72h	6		2.3383	2.3383				
orthocryl ultra10min	6			2.4167				
orthoplast ultra 20 min	6			2.5617	2.5617			
orthocryl ultra3min	6				2.7017			
orthoplast ultra 15 min	6				2.7250	2.7250		
orthoplast water72h	6				2.7500	2.7500		
orthocryl ultra5min	6				2.7800	2.7800		
orthoplast ultra 10 min	6					2.9833	2.9833	
orthoplast water24h	6						3.0617	3.0617
orthoplast ultra 3 min	6						3.0817	3.0817
orthoplast ultra 5 min	6						3.1400	3.1400
orthoplast control	6							3.2733
orthocryl control	6							3.3117
Sig.		1.000	.088	.069	.199	.051	.733	.069

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

RM

VITA

Miss Pajima Thaitammayanon was born on 21th May 1986. She graduated her Doctor of Dental Surgery from Chulalongkorn University in 2009. After graduation, she worked at Nong Ya Plong hospital and Tha Yang hospital as a general practitioner for 1 year and 2 year, respectively. In 2013, she started her Master degree at Chulalongkorn University in Orthodontic department and continued ever since.

จุฬาลงกรณมหาวทยาลย Chulalongkorn University