
การสตรีมวีดิทัศน์เป็นกลุ่มก้อนบนเอสดีเอ็นคลาวด์เพลย์กราวด์ OF@TEIN
ซึ่งมีข่ายเชื่อมโยงแบบมีสายและแบบไร้สาย

นางสาวโฝว เม เต็ท

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมไฟฟ้า ภาควิชาวิศวกรรมไฟฟ้า
คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2558
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัยบทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

CHUNKED VIDEO STREAMING OVER OF@TEIN

SDN CLOUD PLAYGROUND WITH WIRED AND WIRELESS LINKS

Miss Phyo May Thet

A Thesis Submitted in Partial Ful�llment of the Requirements

for the Degree of Master of Engineering Program in Electrical Engineering

Department of Electrical Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2015

Copyright of Chulalongkorn University

Thesis Title CHUNKED VIDEO STREAMING OVER OF@TEIN SDN
CLOUD PLAYGROUND WITH WIRED AND WIRELESS
LINKS

By Miss Phyo May Thet
Field of Study Electrical Engineering
Thesis Advisor Associate Professor Chaodit Aswakul
Thesis Co-Advisor Professor JongWon Kim

Accepted by the Faculty of Engineering, Chulalongkorn University in
Partial Fulfillment of the Requirements for the Master’s Degree

. .Dean of the Faculty of Engineering
(Associate Professor Supot Teachavorasinskun, Ph.D)

THESIS COMMITTEE

. .Chairman
(Assistant Professor Supavadee Aramvith, Ph.D)

. Thesis Advisor
(Associate Professor Chaodit Aswakul, Ph.D)

. Thesis Co-Advisor
(Professor JongWon Kim, Ph.D)

. Examiner
(Assistant Professor Chaiyachet Saivichit, Ph.D)

. External Examiner
(Associate Professor Poompat Saengudomlert, Ph.D)

iv

โฝว เม เต็ท : การสตรีมวีดิทัศน์เป็นกลุ่มก้อนบนเอสดีเอ็นคลาวด์เพลย์กราวด์
OF@TEIN ซึ่งมีข่ายเชื่อมโยงแบบมีสายและแบบไร้สาย (CHUNKED VIDEO
STREAMING OVER OF@TEIN SDN CLOUD PLAYGROUND
WITH WIRED AND WIRELESS LINKS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก :
รศ. ดร. เชาวน์ดิศ อัศวกุล, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม : ศ. ดร. จองวอน คิม,
141 หน้า.

วิทยานิพนธ์ฉบับนี้ได้ออกแบบและพัฒนามิดเดิลบอกซ์ และฟังก์ชันการแยกสำหรับการสตรีมกลุ่มก้อน
วีดิทัศน์ประเภทอาร์ทีพี ตลอดจนกลไกการถ่ายโอนแฟ้มข้อมูลวีดิทัศน์ ผ่านพหุวิถีพร้อมกันบนเอสดีเอ็น
(โครงข่ายกำหนดโดยซอฟท์แวร์) คลาวด์เพลย์กราวด์ OF@TEIN ซึ่งมีข่ายเชื่อมโยงแบบมีสายและแบบไร้สาย
ระบบทดสอบต่าง ๆ ทั้งหมดได้ถูกสร้างขึ้นจริงบนโครงข่ายเฉพาะที่และโครงข่ายระดับนานาชาติใน 3 ประเทศ
ได้แก่ เกาหลีใต้, มาเลเซีย และไทย ผลการทดลองครอบคลุมถึงการประเมินคุณภาพเชิงจิตวิสัยของวีดิทัศน์,
อัตราส่วนการสูญเสียแพ็กเกต และค่าเวลาประวิงแพ็กเกต โดยสรุปวิทยานิพนธ์ฉบับนี้มีผลงานหลักสามส่วน
ดังต่อไปนี้

ส่วนที่หนึ่ง ระบบการสตรีมกลุ่มก้อนวีดิทัศน์ที่นำเสนอได้ถูกทดสอบในระบบทดสอบโครงข่ายเสมือนมินิ-
เน็ตที่ติดตั้งโอเพนวีสวิตช์ และในระบบโครงข่ายจริงเอสดีเอ็นคลาวด์เพลย์กราวด์ OF@TIEN ซึ่งจะประกอบด้วย
โอเพนสแต็ก, โอเพนวีสวิตช์และสมาร์ตเอ็กซ์บอกซ์ ผลลัพธ์การทดลองที่ได้แสดงให้เห็นว่าวิธีการสตรีมวีดิทัศน์
ผ่านพหุวิถีสามารถมีประสิทธิผลเมื่อความจุของวิถีหลักเพียงวิถีเดียวไม่เพียงพอในการส่งแพ็กเกตของวีดิทัศน์ที่
เข้ามาทั้งหมดได้ และอัตราส่วนการแบ่งกลุ่มก้อนของแพ็กเกตวีดิทัศน์สามารถกระจายอัตราแพ็กเกตที่เข้ามาให้
ตรงกับความจุของวิถีต่าง ๆ ที่สามารถใช้งานได้ แต่อย่างไรก็ตามวิธีการสตรีมวีดิทัศน์ผ่านพหุวิถีนี้ไม่สมควรนำ
มาใช้งานเมื่อความจุของวิถีหลักนั้นเพียงพอสำหรับการส่งแพ็กเกตที่เข้ามาของสตรีมวีดิทัศน์แล้ว เหตุผลนั้นคือ
มิดเดิลบอกซ์ซึ่งต้องรวมแพ็กเกตที่เข้ามาจากวิถีต่าง ๆ ในเวลาจริงจะทำให้เกิดการประวิงเวลาแพ็กเกตเพิ่มขึ้น
เนื่องจากข้อจำกัดของฮาร์ดแวร์ที่ใช้

ส่วนที่สอง เพื่อลดกระบวนการที่ต้องทำในเวลาจริงของมิดเดิลบอกซ์และเพื่อสามารถใช้ประโยชน์จากความ
จุของพหุวิถีได้ วิทยานิพนธ์นี้เสนอให้รวมฟังก์ชันการถ่ายโอนแฟ้มข้อมูลผ่านพหุวิถี และโพรโทคอลซูนามิ
หลักการคือการส่งแฟ้มข้อมูลวีดิทัศน์แบบ 4k ขนาดใหญ่ล่วงหน้าจากตัวให้บริการส่งผ่านแฟ้มข้อมูลแบบซูนามิ
ในประเทศเกาหลีใต้มายังสมาร์ทเอ็กซ์บอกซ์ของประเทศไทย โดยใช้การส่งไฟล์วีดิทัศน์เป็นกลุ่มก้อนผ่านวิถี
ต่าง ๆ และภายในสมาร์ทเอ็กซ์บอกซ์ของประเทศไทยมีตัวให้บริการวีดิทัศน์เฉพาะที่ทำหน้าที่สตรีมวีดิทัศน์
แบบ 4k ไปยังเครื่องผู้รับบริการซึ่งอยู่ในไทยต่อไป ผลลัพธ์จากการทดสอบแสดงว่ากลไกที่นำเสนอสามารถ
ใช้เวลาต่ำระดับ 23.51-72.20 วินาทีในการถ่ายโอนแฟ้มข้อมูลวีดิทัศน์แบบ 4k ความยาว 10 นาที และสามารถ
ใช้ความจุของพหุวิถีได้อย่างมีประสิทธิผลในการให้บริการกับเครื่องผู้รับบริการสตรีมวิดีโอ

ส่วนสุดท้าย วิทยานิพนธ์นี้ได้สร้างระบบทดสอบเพื่อทดลองการสตรีมวีดิทัศน์เป็นกลุ่มก้อนผ่านวิถีซึ่งปรับ
ตัวได้ในโครงข่ายมีสายระดับนานาชาติ OF@TEIN และโครงข่ายไร้สายระดับห้องปฏิบัติการ OF@Chula-EE
การปรับตัวได้ของวิถีเป็นสิ่งจำเป็นเนื่องจากกระบวนการแฮนด์โอเวอร์ของผู้ใช้ไวไฟในประเทศไทยจากแอคเซส-
พอยท์ไวไฟอันเก่าไปสู่อันใหม่ แอคเซสพอยท์เหล่านี้ได้รับการติดตั้งโอเพนวีสวิทช์บนพื้นฐานของโอเพนดับ
เบิลยูอาร์ที ซึ่งสื่อสารกับตัวควบคุมโอเพนโฟลว์ที่อยู่ห่างไกลออกไปในเกาหลีใต้ กระบวนการแฮนด์โอเวอร์
ดังกล่าวถูกสาธิตในงานวิจัยนี้โดยใช้การวัดคุณภาพช่องสัญญาณไวไฟอย่างต่อเนื่อง, กลไกการส่งวีดิทัศน์เป็น
กลุ่มก้อนล่วงหน้าซึ่งมีการซ้ำกันบางส่วนเพื่อลดการเสื่อมคุณภาพของวีดิทัศน์ที่รับได้ระหว่างการแฮนด์โอเวอร์
และกลไกการเปลี่ยนวิถีไร้สายซึ่งต้องทำงานได้ข้ามโดเมนบริหารจัดการระหว่างเกาหลีใต้และไทย การทดลอง
สาธิตนี้จะเป็นพื้นฐานสำหรับงานวิจัยคลาวด์สตรีมวีดิทัศน์ด้วยเอสดีเอ็นไร้สายต่อไปในอนาคต

ภาควิชาวิศวกรรมไฟฟ้า ลายมือชื่อนิสิต .
สาขาวิชาวิศวกรรมไฟฟ้า ลายมือชื่อ อ.ที่ปรึกษาหลัก .
บีการศึกษา2558 ลายมือชื่อ อ.ที่ปรึกษาร่วม .

v

5770524021 : MAJOR ELECTRICAL ENGINEERING
KEYWORDS: OPENFLOW/ SOFTWARE-DEFINED NETWORK/ CHUNKED VIDEO
STREAMING/ FILE TRANSFER/ MIDDLE-BOX/ WI-FI.

PHYO MAY THET : CHUNKED VIDEO STREAMING OVER OF@TEIN SDN
CLOUD PLAYGROUND WITH WIRED AND WIRELESS LINKS .
ADVISOR: ASSOC. PROF. CHAODIT ASWAKUL, Ph.D., CO-ADVISOR:
PROF. JONGWON KIM, Ph.D., 141 pp.

This thesis has designed and developed the middle-box and splitting functionalities for
chunked RTP video streaming as well as video file pre-transferring mechanism over multiple
concurrent paths over OF@TEIN SDN (software-defined network) cloud playground with
wired and wireless links. All testbed scenarios have been constructed in actual over local and
international networks in three countries: South Korea, Malaysia and Thailand. Experimental
results include the evaluation of subjective video quality, packet loss ratio and packet delay.
In summary, this thesis has three main contributions as follows.

Firstly, the proposed chunked video streaming system has been tested in both Open
vSwitch-enabled Mininet-emulated network testbed and actual OF@TEIN SDN cloud
playground testbed which includes OpenStack, Open vSwitch and SmartX box. The
obtained experimental results show that the multi-path video streaming method is effective
when the capacity of the main path alone is not enough to carry the whole incoming
packets of video stream and the employed video packet chunk splitting ratio decomposes
the incoming packet rate to match the capacity of available paths. However, this
multi-path video streaming method should not be used when the main path capacity
already suffices for transmitting the incoming packets of video stream. This is because the
middle-box combining in real-time the arriving packets over multiple paths would incur
additional packet delay due to its hardware limitation.

Secondly, to reduce real-time middle-box processing and to enable multi-path capacity
usage, this thesis has proposed to combine the multi-path file transferring function and
Tsunami protocol. The principle is in transferring beforehands the large 4k video file from
the Tsunami file transfer server in South Korea to Thailand’s SmartX box by using chunked
video file transferring via multiple paths. And within the Thailand’s SmartX box, a local
video server is responsible for streaming out in real-time the 4k video to the client in
Thailand. The test results show that the proposed mechanism can take as low as 23.51-
72.20 seconds in transferring the 10-minute 4k video file and can utilize the multi-path
capacity effectively in serving the video streaming client.

Finally, this thesis has constructed a testbed to experiment on the adaptive-path chunked
video streaming over OF@TEIN international-scaled wired network and OF@Chula-EE
laboratory-scaled wireless network. Adaptivity of utilized path is necessary due to the
handover process of Wi-Fi user in Thailand from the old to new Wi-Fi access points. These
access points have been installed the OpenWRT-based Open vSwitch, which communicates
with the remote OpenFlow controller in South Korea. Such handover process has been
demonstrated in this research with the continuous measurement of Wi-Fi channel quality, a
partially redundant chunked video pre-transferring mechanism to reduce the received video
quality degradation during the handover and a wireless-path changing mechanism that must
work across administrative domains between South Korea and Thailand. This demonstrating
experiment will serve as the basis for future wireless SDN video-streaming cloud research.

Department : .Electrical Engineering Student’s Signature
Field of Study :Electrical Engineering Advisor’s Signature
Academic Year :2015 Co-advisor’s Signature

vi

Acknowledgements

First of all, I owe my debt of gratitude to my advisor, Assoc. Prof. Dr. Chaodit Aswakul,
for giving me a chance to be one of his advisees and for his great and valuable guidance,
caring and patience on me thus far starting from Chula scholarship application process to the
finalization of this thesis. I cannot think of my study life at Chula without his supports and
guidance. All the questions and advises raised by him during our research discussion make me
to improve my logical thinking skills and problem solving skills. I would like to thank to my
co-advisor, Prof. JongWon Kim from Gwangju Institute of Science and Technology, Gwangju,
South Korea for his valuable suggestions on my research experiments and papers writing.

I would also like to express my gratitude to my thesis exam committee members, Asst. Prof.
Dr. Supavadee Aramvith, Asst. Prof. Dr. Chaiyachet Saivichit, Assoc. Prof. Dr. Poompat
Saengudomlert, Assoc. Prof. Dr. Chaodit Aswakul and Prof. Dr. JongWon Kim, who provide
valuable suggestions for my thesis. I would also like to thank to Asst. Prof. Dr. Chaiyachet
Saivichit who provides suggestions on my thesis during our LaLa meetings and NRG conference.

In addition, I would like to express my special gratitude to Graduate School of Chulalongkorn
University for granting International Graduate Students in ASEAN Countries Scholarship to
study this master degree program. This research has been financially supported by the Special
Task Force for Activating Research (STAR) Funding in Wireless Network and Future Internet
Research Group, Chulalongkorn University. Special thanks to Prof. JongWon Kim and Prof.
Chaodit Aswakul for giving me a chance to participate in Summer Global Internship Program
for one and half months at Gwangju Institute of Science and Technology, South Korea.

I appreciate the help of my group members from Wireless Network and Future Internet
Research Group (WiFUN) and OpenFlow Chula during my study life at Chula. I also would
like to thank to Aris and Usman (GIST OF@TEIN Administrators), Chula IT, Uninet IT, TEIN
NOC and KOREN NOC teams for their great support during my experiments.

Finally, I would like to express my deepest gratitude to my parents, brothers and sister, who
always support and encourage me with their best wishes.

Contents

Page
Thai Abstract . iv
English Abstract . v
Acknowledgements . vi
Contents . vii

List of Tables . viii

List of Figures . ix

1 Introduction . 1

1.1 Research Motivation . 1

1.2 Problem Statement . 3

1.3 Objective . 5

1.4 Scope of Thesis . 6

1.5 Expected Outcome and Contribution . 7

1.6 Organization of Thesis . 7

2 Background and Literature Review . 9

2.1 Background . 9

2.1.1 Software-Defined Networking . 9

2.1.2 OpenFlow . 9

2.2 Literature Review . 11

3 Research Methodology . 17

3.1 Implementation of Emulated Multi-path Video Streaming and SDN-Based

Middle-box Functionality [40, 41] . 18

3.1.1 Design of Emulated SDN-Based Middle-box Functionalities 18

3.1.2 Mininet-Emulated Testbed Implementation 19

3.1.3 Video Streaming Experiment 1 Scenario and Results 24

3.1.4 Video Streaming Experiment 2 Scenario and Results 29

3.1.5 Summary of Emulated Multi-path Video Streaming 30

3.2 Design of Middle-box and Multi-path Chunked Video Streaming over

OF@TEIN SDN Cloud Playground . 33

3.2.1 Implementation of Multi-path Chunked Video Streaming Sessions over

OF@TEIN SDN Cloud Playground . 33

3.2.2 Results and Discussion of Multi-path Chunked Video Streaming over

OF@TEIN SDN Cloud Playground . 40

3.2.3 Summary of Multi-path Streaming over OF@TEIN Playground 47

3.3 Design of Multi-path Chunked Video File Transferring and Streaming over

OF@TEIN SDN Cloud Playground . 49

3.3.1 Implementation of Multi-path Chunked Video File Transferring and

Streaming Sessions over OF@TEIN SDN Cloud Playground 49

viii

3.3.2 Results and Discussion of Multi-path Chunked Video File Transferring

and Streaming over OF@TEIN SDN Cloud Playground 55

3.3.3 Summary of Multi-path Chunked File Transferring and Streaming over

OF@TEIN SDN Cloud Playground . 61

3.4 Design of Adaptive-path Chunked Video Streaming over OF@TEIN Wired and

Wireless Links . 63

3.4.1 Implementation of Adaptive-path Chunked Video Streaming over

OF@TEIN Wired and Wireless Links . 63

3.4.2 Results and Discussion of adaptive-path Chunked Video Streaming over

OF@TEIN Wired and Wireless Links . 79

3.4.3 Summary of Adaptive-path Chunked Video Streaming over OF@TEIN

Wired and Wireless Links . 86

4 Conclusion . 88

References . 92

Appendices . 97

Appendix A Mininet Script File for Emulated

Experiment 1, 2 . 98

Appendix B POX Controller Python Script for Emulated Experiment 1, 2 100

Appendix C Middle-box Python Script for Emulated Experiment 1, 2 103

Appendix D Middle-box Set Up in CHULA SmartX Box 107

Appendix E POX Controller Python Script for Multi-path Video Streaming over

OF@TEIN . 113

Appendix F POX Controller Python Script for Multi-path File Transferring over

OF@TEIN . 116

Appendix G Openwrt Configuration for Wireless SDN 119

Appendix H THAI SmartX box Architecture, Routing and Required Ports for Open-

Stack . 123

Appendix I POX Controller Python Script for Wireless SDN with and without Chun-

ked Video Pre-transferring . 125

Appendix J POX Controller Python Script for Wireless SDN with 100% Duplication 131

Appendix K Wi-Fi STA Shell Script for Scenario 1 137

Appendix L Wi-Fi STA Shell Script for Scenario 2-4 138

Appendix MSetting Up X11 Desktop Environment for OpenStack VMs 140

Biography . 141

List of Tables

Page

3.1 Flow entry of OVS1 for transmission via path 1 [10] 21

3.2 Flow entry of OVS1 for transmission via path 2 [10] 21

3.3 Testing experimental scenario . 24

3.4 Experimental results for µ=40 . 24

3.5 Experimental results without using multi-path scenario 25

3.6 Port information for SmartX boxes (GIST-A,MYREN and CHULA) 38

3.7 Flow entry of GIST-A SmartX box (OVS: br1) 38

3.8 Flow entry of GIST-A SmartX box (OVS: br2) for transmission via path 1

(GIST-A � MYREN � CHULA) [10] . 39

3.9 Flow entry of GIST-A SmartX box (OVS: br2) for transmission via path 2

(GIST-A � CHULA) [10] . 39

3.10 Flow entry of MYREN SmartX box (OVS: br2) 39

3.11 Flow entry of CHULA SmartX box (OVS: br1) 39

3.12 Flow entry of CHULA SmartX box (OVS: br2) [10] 40

3.13 Chunked video streaming experimental results with initial buffer (0 s) 42

3.14 Port information for SmartX boxes (GIST-B, MY and CHULA) 52

3.15 Flow entry of GIST-B SmartX box (OVS: br-devops) for transmission via path

1 (GIST-B � MY � CHULA) [10] . 52

3.16 Flow entry of GIST-B SmartX box (OVS: br-devops) for transmission via path

2 (GIST-B � CHULA) [10] . 52

3.17 Flow entry of MY SmartX box (OVS: br-devops) 53

3.18 Flow entry of CHULA SmartX box (OVS: br-devops) 53

3.19 Port information for SmartX boxes (GIST-B,CHULA) and access points (SDN-

AP1 and SDN-AP2) . 74

3.20 DPIDs and DPID strings of Open vSwitches in wireless streaming. 76

3.21 Resource consumption of access points vs video performance at STA 80

List of figures

Page

2.1 Comparison of traditional network and SDN architectures [18]. 10

2.2 Architecture of software-defined networking [1]. 10

2.3 Components of OpenFlow 1.0 switch [17]. 11

2.4 OF@TEIN infrastructure [6, 7]. 16

3.1 Multi-path video streaming over OpenFlow-enabled network [10]. 20

3.2 Mininet configuration of two-path OpenFlow network [10]. 20

3.3 OpenFlow controller state machine at OVS1 [10]. 21

3.4 Packet queuing model example conceptualizing OpenFlow network testbed in

case of two lossless paths [10]. 23

3.5 Experiment result with µ=40: chunk size ratio 30:10. 26

3.6 Experiment result with µ=40: chunk size ratio 10:10. 27

3.7 Experiment result with µ=40: chunk size ratio 10:30. 27

3.8 Experiment results without using multi-path scenarios: (a) chunk size ratio 800:0

(using only path 1) (b) chunk size ratio 0:800 (using only path 2). 28

3.9 Mean packet delay vs initial buffering time for chunk size ratio 20:10 and 10:20. 30

3.10 Standard deviation of packet delay vs initial buffering time for chunk size ratio

20:10 and 10:20. 31

3.11 OF@TEIN multi-domain network infrastructure [6, 7]. 33

3.12 Physical SmartX boxes locations of GIST and CHULA. 34

3.13 Overview of multi-path chunked video streaming over OF@TEIN SDN cloud

playground. 35

3.14 Architecture of multi-path chunked video streaming over OF@TEIN SDN cloud

playground. 35

3.15 Demonstrating environment of multi-path chunked video streaming over

OF@TEIN SDN cloud playground. 41

3.16 Packet delay of RTP streaming via OF@TEIN with middle-box (Chunk size

ratio=20:10 (s). 44

3.17 Packet delay of RTP streaming via OF@TEIN with middle-box (Chunk size

ratio=10:20 (s). 44

3.18 Packet delay of RTP streaming via GIST-A�MYREN� CHULA with middle-

box (Chunk size ratio=200:0 (s)). 45

3.19 Packet delay of RTP streaming via GIST-A� CHULA with middle-box (Chunk

size ratio=0:200 (s)). 45

3.20 Packet delay of RTP streaming via GIST-A � MYREN � CHULA without

middle-box. 46

3.21 Packet delay of RTP streaming via GIST-A � CHULA without middle-box. . 46

xi

3.22 Mean and standard deviation of packet delay vs initial buffering time for multi-

path streaming over OF@TEIN playground. 47

3.23 Overview of multi-path chunked video file transferring and streaming over

OF@TEIN SDN cloud playground. 50

3.24 Architecture of multi-path chunked video file transferring and streaming over

OF@TEIN SDN cloud playground. 51

3.25 Light weight X11 desktop environments of GIST-B and CHULA OpenStack VMs. 54

3.26 Tsunami file transfer server in GIST-B OpenStack VM. 56

3.27 Tsunami file transfer client in middle-box VM. 56

3.28 Sample analytic output results by Tsunami client. 56

3.29 File transfer duration over OF@TEIN SDN cloud playground. 59

3.30 Actual file transfer rate over OF@TEIN SDN cloud playground. 60

3.31 File transfer throughput over OF@TEIN SDN cloud playground. 60

3.32 4k RTP video streaming within CHULA SmartX box network. 61

3.33 Physical location of APs and machines for adaptive-path chunked video stream-

ing over OF@TEIN wired and wireless links. 64

3.34 Overview of adaptive-path chunked video streaming over OF@TEIN cloud play-

ground with wired and wireless links. 64

3.35 Architecture of adaptive-path chunked video streaming over OF@TEIN cloud

playground with wired and wireless links. 66

3.36 Timing diagram of adaptive-path chunked video streaming using dual WLANs

with chunked video pre-transferring mechanism. 67

3.37 State machine diagram of STA for client initiated handover processes. 69

3.38 Event driven program of STA for client initiated handover processes with chun-

ked video pre-transferring mechanism. 70

3.39 Timing diagram of of adaptive-path chunked video streaming using dual WLANs

without chunked video pre-transferring mechanism. 71

3.40 Event driven program of STA for client initiated handover processes without

chunked video pre-transferring mechanism. 71

3.41 Timing diagram of of adaptive-path chunked video streaming using single WLAN

with 100% duplication. 72

3.42 Timing diagram of of adaptive-path chunked streaming using dual WLAN with

100% duplication. 72

3.43 Event driven program of STA for client initiated handover processes using single

WLAN with 100% duplication. 73

3.44 Event driven program of STA for client initiated handover processes using dual

WLAN with 100% duplication. 73

3.45 Flow entries of GIST-B (br-devops) for wireless streaming. 74

3.46 Flow entries of CHULA (br-devops) for wireless streaming. 74

3.47 1st Signalling message (fake DHCP request via SDN-AP2) for routing to both

SDN-AP1 and SDN-AP2. 75

xii

3.48 2nd Signalling message (fake DHCP request via SDN-AP1) for routing only to

SDN-AP1. 75

3.49 STA associated message to SDN-AP1. 75

3.50 STA associated message to SDN-AP2. 75

3.51 Flow entries for SDN-AP1. 76

3.52 Flow entries for SDN-AP2. 76

3.53 POX controller processes for adaptive-path chunked video streaming using single

WLAN and dual WLANs with 100% duplication. 77

3.54 POX controller processes for adaptive-path chunked video streaming with and

without using chunked video pre-transferring mechanism. 78

3.55 Chunked video streaming using single WLAN with 100% duplication. 81

3.56 Chunked video streaming using dual WLANs with 100% duplication. 82

3.57 Chunked video streaming using dual WLANs with chunked video pre-transferring. 82

3.58 Chunked video streaming using dual WLANs without chunked video pre-

transferring. 83

3.59 Video freeze events at STA and sFlow-RT real-time monitoring graph for single

WLAN with 100% duplication case. 84

3.60 Video burst errors events at STA and sFlow-RT real-time monitoring graph for

dual WLANs with 100% duplication. 84

3.61 Video burst errors events at STA and sFlow-RT real-time monitoring graph for

dual WLANs with chunked video pre-transferring. 85

3.62 Video burst errors events at STA and sFlow-RT real-time monitoring graph for

dual WLANs without chunked video pre-transferring. 85

H.1 THAI SmartX box architecture. 123

H.2 OpenWrt detail architecture for SDN-AP1 and SDN-AP2. 124

H.3 Required OpenStack port numbers to open firewall rules at CHULA. 124

Chapter 1

Introduction

1.1 Research Motivation

In today’s information and communication technology (ICT) environment, the

dynamic innovations and controllability of underlying network are required towards

Future internet infrastructure in order to meet the variety of requirements of users. From

the viewpoint of user needs for emerging ICT society, the wireless communication

environment is essential. Mobile operators, vendors and internet service providers need to

consider how to conquer the high volumes of traffic and to support increasingly

sophisticated services such as providing subscribers to be able to access online video

streaming, file transferring and any other internet applications. Moreover, the surge

demand of mobile users becomes a major challenge for network providers. Many mobile

and network operators are planning to overcome their mobile traffic congestion by using

Wi-Fi offloading technique. When Wi-Fi offloading takes place in a mobile network, the

advanced management controllability of Wi-Fi network will become essential. However,

the current Wi-Fi management technology has the limited control of seamless handover

and maintaining the multiple networks. As a result, the network administrators resort to

manual, time-consuming tasks due to lacking the full controllability of their large network

systems. These situations force the network administrator to be a human middleware.

In order to overcome these networking issues, software-defined networking (SDN)

paradigm has brought flexible controllability and sufficient programmability to the

network operators by separating the control and data planes with an open and

standardized interface [1]. In this regard, OpenFlow interface is the first and has become

one of the popular protocols widely accepted. The OpenFlow standard enables the direct

communication between SDN controllers and networking devices so that network

managements become easier than the traditional network managements with variety of

proprietary issues [2]. SDN can lead various promising benefits to network operators,

vendors and users such as centralized network management, lower capital expenses, ability

to control of multi-vendor networking devices, increasing rate of reliability and security of

2

networks via programmability with open interfaces [1]. When taking into account for

network congestion and security, SDN enables middle-boxes play an important role in the

networking environment for addressing network allocation and security management.

SDN comes up with network function virtualization and network orchestration which

are very popular technologies for implementing future internet infrastructures. Since SDN

becomes a new paradigm for leveraging the future internet technology, several SDN-based

testbeds have been implemented in both large-scaled and small-scaled networks. For

example, Open-Access Research Testbed for Next-Generation Wireless Networks

testbed (ORBIT) is a two-tier laboratory emulator network testbed for investigating

research in cognitive radio networks, ad hoc network routing and delay tolerant networks

and wireless security [3]. Network Implementation Testbed using Open Source (NTOS) is

another wireless SDN-based research testbed for implementing the wireless network and

studying the network performance in real environments [4]. Moreover, various SDN

testbeds have been deployed under the SmartFire project [5] in Europe and Korea.

Among several SDN-based testbeds, we select OpenFlow at Trans-Eurasia Information

Network (OF@TEIN) SDN-based virtual cloud playground [6, 7] which is currently

connected to 11 sites in 9 countries (Korea, Indonesia, Malaysia, Thailand, Vietnam,

Philippines, Pakistan, India and Taiwan) in order to investigate the functionalities of

network virtualization and network orchestration in a large-scaled network.

Moreover, the vast majority of end-user demand for application services e.g. video

streaming, file transferring, voice over internet protocol (VoIP) calls and online gaming are

originating on subscriber devices connected to the network via Wi-Fi and wired networks.

The growth demands of Wi-Fi users drive the software-defined wireless networking (SDWN)

to become a potential new technology for future wireless network. Although many SDN

researches have focused on wired and core networks, SDN over wireless network remains

largely unexplored and necessary solutions are required before SDN becomes ready for

the wireless platform. The management of wireless networks is more complex than that

of wired networks. By leveraging the SDN into wireless network, troubleshooting, traffic

optimization and capacity planning can be done easily thanks to the end-to-end control of

wired and wireless networks.

3

In order to overcome the recent requirements of video streaming users, we will

evaluate the functionalities of SDN on both real wired/wireless network and OpenFlow

emulated network with the investigation scope of SDN functions which include chunked

video streaming, chunked video file transferring with splitting and middle-box

functionalities and chunked video streaming over OF@TEIN wired and wireless links with

chunked video pre-transferring mechanism.

1.2 Problem Statement

The dynamically increasing rates of video streaming users become the major concern

for network service providers. Video streaming is nowadays responsible for the major

consumption and traffic congestion on the internet network. To overcome these bandwidth

limitations, delay time and packet loss problems in the network, many researchers are

trying to investigate the solutions by using several approaches. Video buffering for

achieving high performance video becomes an essential technique during network

congestion.

In addition, many subscribers are using wired and Wi-Fi networks for video streaming,

file transferring, video conferencing and VoIP calls. All these applications can create the

traffic congestion and need to have the simultaneous connectivity of internet network. The

more video streaming users require seamless network connectivity, the more advanced

techniques are needed for managing Wi-Fi networks. Many researchers have proposed

several approaches to solve the problem of network congestion due to video streaming over

wired and wireless network. To overcome the challenges of internet such as bandwidth

constraints, delays and packet losses, the mechanisms of static and dynamic multi-path

TCP streaming over homogeneous and heterogeneous paths have been proposed in

multi-path live TCP video streaming [8]. Single-path TCP and UDP video streaming over

emulated and real OpenFlow PC cluster networks have been demonstrated in [9] in order

to investigate the packet delays and performance of video streaming. In addition, the

authors of [9] extended their experiments with multi-path chunked video streaming over

locally OpenFlow enabled PC-cluster testbed to find the effect of chunked size and

buffering on video performance [10]. As for video streaming over wireless network, SDN

4

based Wi-Fi handover management with real-time video streaming over wireless local area

network (WLAN) has been proposed in [11]. However, there are no researches that

investigate chunked video streaming over SDN-cloud network in the international gateway

environment together with wired and wireless links. To meet various requirements of

users, the so-called middle-box becomes a new SDN enabler for addressing e.g. security

management and resource allocation function in the network [12]. Especially, requirements

need to be considered thoroughly when the video streaming experiments are conducted

over international SDN testbed such as OF@TEIN testbed [13]. In that kind of

international testbed spanning different time zones, the network congestion is geospatially

time varying and international link bandwidths are limited by each nation.

When considering the experiments over international collaborative research testbeds

such as OF@TEIN SDN cloud playground, fast file transferring is important since not all

data are located in one site. In order to support high speed data transfer, UDP-based

data transfer protocol (UDT) for high-speed wide area networks and Tsunami file transfer

protocol via UDP and TCP has been implemented in [14] and [15]. As for file transferring

over TCP with SDN technology, a multi-path controller for GridFTP transfer over SDN has

been introduced in [16] by testing in both virtual and real global-scale networks. However,

file transferring over TCP can lead to congested networks and delay due to retransmission

and multiple acknowledgement requests. This challenge has led us to conduct research on

UDP file transferring with SDN multi-path technologies over an international large-scaled

network.

The above mentioned research challenges become our motivation for studying on

buffering effect in the middle-box via multi-path video streaming to help aggregate for

larger path bandwidths than those achievable by relying only on a single

restrictive-bandwidth path. Moreover, the requirements of file transferring in the

international collaborative research testbeds lead us to investigate SDN multi-path

functions over a large-scaled international testbed. In addtion, the continuing growth in

video streaming demand from subscribers over stochastic Wi-Fi network and

restrictive-bandwidth links has encouraged us to look ahead at how our SDN-based

chunked streaming scenarios can be made ready to meet future extreme capacity and

5

performance demands. Our following proposed approaches of chunked video streaming

over restricted emulated OpenFlow network and chunked video file transferring and

streaming over international OF@TEIN SDN cloud playground with real wired and

wireless links at OpenFlow at Chulalongkorn Electrical Engineering (OF@Chula-EE)

would facilitate us to investigate more about the effects of real-time chunked video

streaming over stochastic bandwidth links.

1.3 Objective

The objective of this thesis is to design, implement and evaluate three chunked video

streaming scenarios over OpenFlow-enabled emulated testbed, real international OF@TEIN

cloud testbed and OF@Chula-EE lab-scaled wireless testbed with wired and wireless links

with details as follows:

1. Multi-path chunked video streaming over emulated OpenFlow network and

international OF@TEIN SDN cloud playground with middle-box and splitting

functionalities.

2. Multi-path chunked video file transferring and streaming over international

OF@TEIN SDN cloud playground.

3. Adaptive-path chunked video streaming over OF@TEIN international wired and

wireless links with chunked video pre-transferring mechanism.

We have evaluated the performance of chunked video streaming in terms of subjective video

quality, jitter, delay time, packet loss ratio and buffering effects for each scenario.

Five international nodes which have been used in this thesis’s video streaming

experiments over OF@TEIN testbed are as follows:

1. CHULA Node at Chulalongkorn University (CU), Thailand.

2. MYREN Node at Malaysian Research and Education Network (MYREN), Malaysia.

3. MY Node at University of Malaya, Malaysia.

4. GIST-A Node at Gwangju Institute of Science and Technologies (GIST), South Korea.

6

5. GIST-B Node at Gwangju Institute of Science and Technologies (GIST), South Korea.

1.4 Scope of Thesis

This research focuses on the measurements of jitter performance, packet delay and video

quality for three chunked video streaming scenarios over emulated OpenFlow network and

international OF@TEIN SDN cloud playground with wired and wireless links. The following

mechanisms have been included in this research:

1. Designing and implementing the middle-box and splitting functionalities for chunked

video streaming over multiple concurrent paths and constructing a prototype system

to evaluate these functionalities with various scenarios of splitting ratio and initial

buffering time over emulated OpenFlow network and international OF@TEIN SDN

cloud playground by using Mininet emulator, OpenStack, SmartX Boxes and POX

controller.

2. Designing and implementing multi-path chunked video file transferring and streaming

with splitting and middle-box functionalities over international OF@TEIN SDN cloud

playground (connected with three countries: Thailand, Malaysia and Korea) by using

OpenStack, SmartX Boxes, POX controller.

3. Designing and implementing adaptive-path chunked video streaming over OF@TEIN

international wired and wireless links to stream chunked video between two wireless

access points (APs) with chunked video pre-transferring mechanism.

For the above mentioned scenarios, we have evaluated the received video quality based

on transmission parameters (at network layer) such as packet loss ratio, packet delay

or jitter with various parameters (chunk size ratio, initial buffering time and video

file transfer rate). The evaluated results in this thesis focus on the subjective video

quality, i.e., no reports on video quality such as peak signal-to-noise ratio (PSNR)

are included.

7

1.5 Expected Outcome and Contribution

After completing this research, we expect to achieve following benefits:

1. We can design and implement the multi-path chunked video streaming over both

emulated OpenFlow network and actual experiments over the international

OF@TEIN SDN cloud playground and multi-path video file transferring and

streaming over international OF@TEIN SDN cloud playground with splitting and

middle-box functionalities.

2. We can implement the adaptive-path chunked video streaming over OF@TEIN

international wired and wireless links to stream chunked video between two wireless

access points (APs) with chunked video pre-transferring mechanism.

3. We can introduce the solution to address bandwidth limitation issues by using load

balancing, splitting functionalities of SDN and solution for reducing the cost of

resource consumption for wireless network.

4. We can evaluate the video transmission performance in terms of packet loss ratio,

jitter, buffering time effects for chunked video streaming over OF@TEIN SDN cloud

playground with wired and wireless links.

1.6 Organization of Thesis

The arrangements of chapters in this thesis are as follows. Chapter 2 describes the

background of software-defined networking, concepts of OpenFlow and literature review

about video streaming over wired and wireless SDN, as well as file transferring over SDN.

Chapter 3 expresses the implementations and evaluations of three experiment methods as

described in the objective. The first experiment method in Chapter 3 explains and

discusses about the implementations and evaluations of multi-path chunked video

streaming over emulated network and OF@TEIN SDN cloud playground. The second

method discusses about multi-path video file transferring and streaming experiments over

OF@TEIN SDN cloud playground. The last method presents the implementations and

evaluations of adaptive-path chunked video streaming over OF@TEIN SDN cloud

8

playground with wired and wireless links. The conclusions of the whole research and

future suggestive research direction are described in Chapter 4.

Chapter 2

Background and Literature Review

2.1 Background

2.1.1 Software-Defined Networking

As networking plays a key role in emerging ICT society for the purpose of doing

business, education, and others, the innovation and controllability of underlying networks

have become crucial for Future Internet infrastructure. To help people easily access

internet from their mobile devices, mobile operators, vendors and Internet service

providers consider how to conquer the high volumes of traffic and to support increasingly

sophisticated services. Moreover, the traditional network architecture has a limited

controllability for large scaled network. In order to overcome these issues, software-defined

networking (SDN) paradigm has brought flexible controllability and sufficient

programmability to the network operators by separating the control and data planes with

an open and standardized interface. In this regard, OpenFlow interface is the first and has

become one popular protocol widely accepted. The OpenFlow standard enables the direct

communication between SDN controllers and networking devices so that network

managements become easier than the traditional network managements with variety of

proprietary issues [2]. In originally proposed SDN architecture, the control plane is usually

implemented as a centralized control plane while in traditional network architecture is

implemented with distributed control planes. Figure 2.1 depicts the comparison between

traditional network architecture and software-defined network architecture.

SDN consists of three layers: application layer, control layer and infrastructure layer.

The architecture of SDN is shown in Figure 2.2.

2.1.2 OpenFlow

OpenFlow is a standard open protocol for direct communicating between SDN

controllers and networking devices. There are many functions in each OpenFlow version.

10

Figure 2.1: Comparison of traditional network and SDN architectures [18].

Figure 2.2: Architecture of software-defined networking [1].

11

In this thesis, we have been used OpenFlow 1.0 version for testing our experiments. The

function of OpenFlow 1.0 [17] is shown in Figure 2.3.

Figure 2.3: Components of OpenFlow 1.0 switch [17].

OpenFlow 1.0 switch consists of a single flow table for performing packet lookups,

forwarding and communicating to OpenFlow controller via secure channel [17]. OpenFlow

controller is responsible for matching openflow rules and adding/removing flow entries

from OpenFlow switches. Due to various functions of OpenFlow rules, we can design new

network architectures by taking benefits of OpenFlow rules such as load balancing and

dynamic routing.

2.2 Literature Review

There are potential benefits which SDN can bring to network operators, software

vendors and users such as virtualized network management, ability to control of

multivendor networking devices, increasing rate of reliability and security of networks via

programmability with open interfaces [1]. In the literature, several researchers have

investigated how to renovate the traditional networks with the functions of SDN

programmability and controllability. In order to conduct these researches, Mininet [19] is

a widely popular experimental platform. Mininet, as a network emulator, can create

virtual OpenFlow networks within a single computer, allowing rapid prototyping and

testing. For example, for a video conferencing experiment, OpenSession [20] has proposed

a new management protocol for multi-stream 3D tele-immersion by using OpenFlow-based

12

architecture. The Rent-a-Super Peer (RASP) architecture is designed for peer-to-peer

streaming over OpenFlow networks [21]. CastFlow [22] has proposed an IPTV multicast

prototype by emulating over a Mininet testbed. In addition to the emulated testbeds,

SDN is commercially deployed at Googles large-scale data centers [23].

Amongst various SDN-enabled applications, this thesis focuses on chunked video

streaming and chunked video file transferring over multiple concurrent paths. The

motivation is inherited from the majority of Internet traffics becoming video streams and

file transfers nowadays. Existing legacy traffic engineering mechanisms need refurbished

by the SDN paradigm to mitigate potential congestions of such bandwidth-hungry

workloads that can diminish the performance of video reception at clients and can increase

the transmission delay. In this scope, an earlier attempt is to verify the usages of a

Mininet-emulated video streaming testbed with the simplest scenario comprising a pair of

video server and client [9]. However, the tests conducted so far in [9] are limited to the

video streaming over a single path, which therefore can run out of bandwidth easily. And

the usage of SDN for video streaming over a single path and multi-path local OpenFlow

testbed has been demonstrated in an earlier research trial [10]. However, in [10], no

investigations have been carried out video streaming via stochastic international links

where available bandwidth capacity is time varying and limited by each nation. Such

concern will be amplified when the tests are extended towards the video streaming

scenarios over OF@TEIN international testbed [13], where available paths must traverse

internal and expensive links with limited and shared capacity. In order to deal with issues

on bandwidth hunger, stringent delay time and packet loss requirements, multi-path live

video streaming via TCP has been investigated in [8].

For solving the requirements of video streaming users upon network congestion, the

so-called middle-box becomes a new SDN enabler for addressing e.g. security management

and resource allocation function in the network [12]. Especially, these requirements need

to be considered thoroughly when the tests are going to be extended to international SDN

testbed such as OF@TEIN testbed [13]. In that kind of international testbed spanning

different time zones, the network congestion is geospatially time varying and international

link bandwidths are limited by each nation. Setting a proper initial buffering time of the

13

middle-box is essential for streaming out packets towards the client steadily to facilitate the

quality of video service during the playback time at the receiving client. To improve the

smoothness of video playback, the varying of delay and jitter need to be considered [24].

These limitations become our motivation for studying on buffering effects in the middle-

box via multi-path video streaming to help aggregate higher path bandwidths than those

achievable by relying only on a single restrictive-bandwidth path.

File transferring over international networking environments is also becoming

important issue since recent networking approaches are interested to run over

international collaborative network testbeds. In that kind of situation, experiments data

are not located only in one country node instead located on different country nodes.

Network administrators and users are facing long duration of data transferring. In order

to overcome file transferring issues, UDP-based data transfer protocol (UDT) for

high-speed wide area networks and Tsunami file transfer protocol via UDP and TCP have

been implemented in [14] and [15]. As for file transferring over TCP with SDN technology,

a multi-path controller for GridFTP transfer over SDN has been introduced in [16] by

testing in both virtual and real global-scale networks. However, file transferring over TCP

can lead congested network conditions and can occur transmission delay due to

retransmission and multiple acknowledgement requests. Moreover, although multi-path

TCP file transferring method over large-scaled network has been introduced in [16], no

investigations have been made for how much transmission delay can decrease due to their

proposed multi-path TCP file transfer over international large-scaled network. This

challenge has motivated us to conduct research on UDP file transferring with SDN

multi-path technologies over an international large-scaled network.

In addition to the requirements of network management and network congestion over

wired networks, this thesis also focuses on the requirements of network management and

network congestion over wireless networks. In our today’s society, the number of mobile

subscribers who connect to internet network is tremendously increasing. Especially, the

surge traffics in wireless networks come from popular applications such as video streaming,

file transferring, video conferencing and VoIP calls. The growth of mobile traffic leads the

mobile and network operators to renovate their current architecture with flexible

14

controllability and programmability. Moreover, the increasing deployment rate of

unplanned Wi-Fi network with 2.4 GHz (IEEE 802.11b/g/n) unlicensed spectrum is also a

major challenge for internet service providers since the non-overlapping channel of 2.4

GHz band is limited with three channels (Channels: 1, 6 and 11). The radio interference

rate is also increasing in 2.4 GHz band Wi-Fi network due to its commonly shared

frequency usage with daily equipments such as microwave ovens and Bluetooth sensors. In

addition, channel allocation, large scale network monitoring, control and policy

management and seamless handover management of Wi-Fi network are also needed. The

limited controllability of access points and routers in today’s wireless local area network

(WLAN) environment has motivated researchers to investigate how to improve over the

traditional wireless infrastructure.

OpenFlow-based wireless software-defined network [25] has introduced the flexible and

cost-effective communication platform for addressing the above mentioned limitation in

today’s WLAN networks. There are many benefits that wireless software-defined

networking can bring to the mobile and wireless network such as resource allocation and

optimization, multi-network planning, security, open control management, interference

and traffic management [26]. Since mobile offloading has become an important mechanism

for mitigating network congestion, SDWN becomes a major part for innovating future

wireless network infrastructure. Slicing and channel isolation, monitoring and status

report, handoffs are major challenges when leveraging software-defined networking into

wireless networks. However, load balancing, handover, security and access control

management are still in the stage of most challenging technology for implementing the

future SDWN infrastructures. Telecommunication and networking companies such as

Ericsson, Nokia, Cisco, Meru, Anyfi networks and others are trying to introduce the

benefits of using SDN technology [27, 28, 29, 30, 31].

Researchers have proposed approaches for video streaming and handover management

over wireless software-defined networking. For example, OpenRoads testbed [32] has been

successfully deployed for wireless network with demonstration of n-casting using

OpenFlow [33]. However, in contrast to our study, the tests conducted in n-casting [33]

streams out the video locally and explored the handoffs mechanism between Wi-Fi and

15

WiMAX. Our study focuses on cloud video streaming over international link to stream out

the adaptive-path chunked video streaming with chunked video pre-transferring

mechanism during the handover process between wireless access points. Moreover, the

usages of OpenFlow for wireless mesh network have been demonstrated in [34]. Meru

network’s SDN for Wi-Fi [30] is also the example of commercial SDN deployment in

wireless networks. The SDN in Wi-Fi handover management has been investigated in

CloudMAC [35] with network initiated handovers. Real-time video streaming over WLAN

for handover management with SDN has been introduced in [11] by evaluating the

performance of handover mechanism with video freeze events and play out buffer rate.

Light Virtual Access points (LVAPs) for addressing load-balancing, mobility management,

automatic channel detection and guest policy enforcement has been investigated in

Odin [36]. OpenSDWN [37] has also introduced the per-client virtual access points and

per-client virtual middle-boxes for mobility and seamless migration. Flow-based mobility

management has been investigated in [38] by modifying the mobile nodes to be controlled

with SDN flow-based mechanisms.

Although many researchers have proposed video streaming over wired and wireless

networks, no investigations have been conducted on chunked video streaming over a

virtual cloud network with a combination of international wired and wireless links. The

projects described in [39] also become our motivation to investigate the performance of

adaptive-path chunked video streaming over International OF@TEIN testbed [13] and

OF@Chula-EE lab-scaled software-defined wireless network. OF@TEIN is the SDN-based

virtual cloud playground which has been launched in July 2012. Currently, OF@TEIN

playground is connected to 11 sites in 9 countries (Korea, Indonesia , Malaysia, Thailand,

Vietnam, Philippines, Pakistan, India and Taiwan) over TEIN4 [6, 7]. The architecture of

OF@TEIN is depicted in Figure 2.4.

16

Figure 2.4: OF@TEIN infrastructure [6, 7].

Chapter 3

Research Methodology

As we described in our objectives and scope of work, the goal of this thesis is to

investigate the performance of chunked video streaming over emulated OpenFlow and

OF@TEIN SDN cloud playground. Moreover, we will investigate chunked video file

transferring and streaming over OF@TEIN SDN cloud playground and chunked video

streaming over OF@TEIN SDN cloud playground with wired and wireless links where

path capacities are possibly uncontrollably time-varying. Since the video streaming over

stochastic international wired and wireless links is one of the challenging approaches, the

plan is to implement chunked video streaming mechanisms on emulated OpenFlow testbed

and then on the actual international OF@TEIN testbed and OF@Chula-EE lab-scaled

testbed with wired and wireless links. The procedures of our research methodology are as

follows:

1. Implement middle-box and splitting functionalities for chunked video streaming over

multi-path emulated OpenFlow network and real OF@TEIN SDN cloud playground

(GIST-A, MYREN, CHULA) and evaluate these functionalities with various scenarios

of splitting ratio [40] and video buffering effects [41].

2. Implement multi-path chunked video file transferring and streaming with splitting and

middle-box functionalities over OF@TEIN SDN cloud playground (connected with

three SmartX sites located in Chulalongkorn University (CU), Thailand, University

of Malaya, Malaysia and Gwangju Institute of Science and Technology (GIST), South

Korea).

3. Implement adaptive-path chunked video streaming over OF@TEIN international

wired and wireless links with chunked video pre-transferring mechanism.

18

3.1 Implementation of Emulated Multi-path Video

Streaming and SDN-Based Middle-box Functionality

[40, 41]

Before we implement our multi-path chunked video streaming over international

OF@TEIN testbed, we have designed and tested necessary SDN-based middle-box

functionalities to enable multi-path chunked video streaming over emulated OpenFlow

network. Two experiments namely experiment 1 and experiment 2 have carried out with

two different purposes. The purpose of experiment 1 is investigating the effects of chunk

size ratio, i.e., the proportion of time the originating video packet stream is switched

alternately on two parallel paths. For the experiment 2, the purpose is to investigate the

effects of initial buffering in the middle-box, i.e., the time period of storing first initial

packets of the video stream in the middle-box before they are streamed out towards the

client. These two experiments use automated video chunk splitting, multi-path

forwarding, and load-combining for the same video streaming session in a transparent

manner to both video server and client applications. In the following, subsection 3.1.1

presents the design of SDN-based middle-box functionalities: splitter at an ingress Open

vSwitch (OVS) and load-combining at an egress Open vSwitch. Subsection 3.1.2 specifies

the OpenFlow configuration for packet forwarding on multiple paths in the

Mininet-emulated framework. Experimental scenarios are detailed in Subsection 3.1.3 and

a summary is in Subsection 3.1.5.

3.1.1 Design of Emulated SDN-Based Middle-box Functionalities

As a consequence of allowing multiple paths to serve concurrently the same video

streaming session, there are additional modification necessities.

Firstly, load balancing mechanism must be implemented into the SDN testbed. In that

regard, this thesis has assigned a traffic ingress Open vSwitch on the video streaming server

side to function like a video chunk splitter. Our design choice is based on a periodic time-

based splitting whose chunk size ratios can be controlled by a remote OpenFlow controller

program developed under the POX [43] framework. Decision on the proper location and

19

chunk size ratio for the splitter affects the network congestion profiles and is a contemporary

traffic engineering problem.

Secondly, one must make sure that the conventional server and client applications

should be normally operable without additionally required changes in their codes. That is,

the multi-path streaming at the intermediary OpenFlow-enabled network should be

programmatically transparent to the client-server pair. At the egress of Open vSwitch

receiving video streaming packets from all the ongoing multiple paths, a middle-box has

been introduced. Due to the requirements of security, policies, and load balancing of

today’s enterprise networks, such middle-boxes (e.g., firewalls and gateways) which can

support for these functions have become an extra feature of SDN [12]. In this research,

the middle-box performs as a packet scheduler and classifier with two parallel buffers

(buffer 1 and buffer 2). The middle-box is designed to collect all incoming packets from

whatever path, reorder them according to the correct video packet sequence integrity, then

pushes the sorted video packet stream out towards the client as smoothly as possible.

Thirdly, unlike [9] with the employed transports of TCP vs UDP, in this research, RTP

has instead been used. RTP time stamp field, identifying the timing of packet generation

at the server, can then be used for packet order identification in the middle-box. Figure 3.1

depicts a topology of OpenFlow network exemplifying both the splitter functionality at

Open vSwitch 1 and the middle-box functionality at Open vSwitch 3 which is used for both

experiments. Two paths are available to connect the server with the client, namely, the

upper path via Open vSwitch 2 and the lower path via Open vSwitch 4.

3.1.2 Mininet-Emulated Testbed Implementation

For testing video streaming experiment 1 and 2 in the emulated OpenFlow multi-path

network, the following implementation details have been carried out. Mininet version 2.1.0+

has been installed in the personal computer with Intel Core i5-375S CPU @ 2.9GHz x 4

running the Ubuntu OS 12.04 LTS for experiment 1 and in Ubuntu 12.04 LTS with Intel

Core 2 Duo 2.8 GHz x 2 personal for experiment 2. This Mininet version can support the

middle-box module integration. This research has chosen to continue using the network

topology settings as earlier used in [9] and [42]. The network interface architecture in the

20

Figure 3.1: Multi-path video streaming over OpenFlow-enabled network [10].

Mininet emulation tool for both experiments is shown in Figure 3.2. Two emulated hosts

h1 and h2 serve as the video server and video client. Four Open vSwitches (OVS1, OVS2,

OVS3, OVS4) have been instantiated with one controller c0 and one middle-box m1.

Figure 3.2: Mininet configuration of two-path OpenFlow network [10].

Necessary Python scripts developed in [10] have been used to assign link capacity

values. Particularly, for experiment 1, the links between h1-s1, h2-s3, m1-s3, s1-s2, s2-s3

are configured in Mininet with 0.3 Mbits/s and links between s1-s4 and s4-s3 are set to

0.15 Mbits/s for link capacity while for experiment 2 is set to 0.25 Mbits/s (upper path)

and 0.15 Mbits/s (lower path). After the network topology inside the Mininet has been

21

instantiated, the Python script has been executed to add flow entries to all the switches

via the POX controller. For adding flow entries to all switches, there are two special

actions for OVS1 and OVS3.

OVS1 is responsible for splitting the incoming video stream from the server into two

smaller streams. The packets are chunked at this switch periodically by specifying m s

to parameter hard timeout of the flow entry for packet transmission via path 1 and n s

to parameter hard timeout for that via path 2. The ratio m:n then determines the chunk

size ratio in this splitting. The controller periodically feeds the new flow entries in turn to

OVS1 such that, upon an expired flow entry, a renewal of the other flow entry will be issued

immediately. Figure 3.3 depicts the state machine diagram of our implemented OpenFlow

controller. Tables 3.1 and 3.2 give the header matching criteria as well as corresponding

actions for transmission of packets via data path 1 and data path 2, respectively.

Table 3.1: Flow entry of OVS1 for transmission via path 1 [10]

Header field Action Timeout
in port = 1 output:2 hard timeout = m
in port = 2 output:1 hard timeout = m

Table 3.2: Flow entry of OVS1 for transmission via path 2 [10]

Header field Action Timeout
in port = 1 output:3 hard timeout = n
in port = 3 output:1 hard timeout = n

Figure 3.3: OpenFlow controller state machine at OVS1 [10].

OVS3 is responsible for combining the packets via path 1 and path 2. Before OVS3

22

forwards arriving packets for further processing in the middle-box, OVS3 marks an arriving

packet according to the path being traversed by the packet. For convenience, the layer-

2 address is used for such marking. The middle-box can then use the layer-2 address to

implement packet classification once it can capture packets at interface m1-eth0. After the

classification, packets arriving at OVS3 via path 1 (h1-s1-s2-s3-m1) and via path 2 (h1-

s1-s4-s3-m1) are enqueued at two parallel dedicated packet buffers. A packet scheduling

algorithm is then invoked to choose to send the waiting packet in the two buffers with the

lowest time stamp value in RTP header. This ensures that the packets forwarded out of

middle-box can maintain the correct sequence of packet delivery as close as possible to the

original timing sequence generated from the video streaming server. The outgoing packets

from the middle-box is forwarded by interfaces m1-eth1 to s3-eth5 then s3-eth3 of OVS3,

and finally towards the video client. As for the middle-box implementation, this research

has used a Python script developed in [10] based on packages, pcapy, dpkt and scapy for

capturing, parsing and sending out RTP packets, respectively.

Figure 3.4 summarizes the overall mechanism being implemented in our testbed by a

conceptual queuing model diagram, where we define the following notations

λ: incoming packet rate from video server (packets/s),

λ1: packet rate on path 1 (packets/s),

λ2: packet rate on path 2 (packets/s),

µ1: bandwidth of path 1 (packets/s),

µ2: bandwidth of path 2 (packets/s),

µ: packet scheduling rate of middle-box (packets/s).

In Figure 3.4, the timeout parameters of flow entries in OVS1 is directly proportional

to the resultant packet rate on each path i.e. λ1 = mλ/(m+n) and λ2 = nλ/(m+n). If

both paths can maintain lossless packet transmission, then the same values of λ1 and λ2

will continue towards the classifier. However, if the paths are lossy, then only a reduced

fraction of packet rates will be present. If the packet backlogs in both buffers 1 and 2 are not

depleted throughout the video playback period, then the scheduling packet rates for the two

buffers will be proportional to the incoming demand rates with the proportional constant

being the total packet scheduling rate. For such a scenario, the rates at different parts of

23

Figure 3.4: Packet queuing model example conceptualizing OpenFlow network testbed in
case of two lossless paths [10].

the overall packet queuing model will be exactly as depicted in Figure 3.4. In practice, the

chunk splitting ratio and instantaneous path delays will affect the queue length variation

in buffers of the middle-box. However, in our current settings of first-trial experiments, the

focus is to verify if the load splitting and combining functionalities can work properly in the

testbed with no background traffics on both paths 1 and 2 and to try to check the effects

of varying the chunk size ratio upon the performance of streaming video.

24

3.1.3 Video Streaming Experiment 1 Scenario and Results

The Big Buck Bunny [44], an animation video with the resolution 432 x 242 and the

duration of 10 minutes, is used for streaming video experiment 1. The H.264 video codec

with video and audio mean bit rate of total 296 kbits/s is streamed from the video server

to the video clients, both of which are running VLC player software [45]. The VLC player

from the video server is configured to stream out video by using RTP mode.

Three scenarios in Table 3.3 have been tested by varying chunk size ratio upon the

same outgoing packet rate and no initial buffering in the middle-box before first starting

the scheduler operation. To evaluate these results, the Wireshark software [46] has been

used to capture all the incoming and outgoing packets on both Ethernet interfaces of video

server and clients. And a Matlab script is written based on the main program developed

in [10] for off-line packet header processing to produce all result outcomes by adding the

function to generate mean/standard deviation of packet loss and packet delay. Table 3.4

shows the trends of resultant packet loss ratio, mean/standard deviation of packet delay

for each chunk size ratio. For each of the testing scenarios, we have repeated the test three

times to check the variation of outcomes. Furthermore, in order to compare the results of

packet loss and delay between cases using multi-path scenarios and without using multi-

path scenarios, we have also evaluated the extremal values at the chunk size ratio of 800:0

(using path 1 only) and 0:800 (using path 2 only). The results are depicted in Table 3.5.

Table 3.3: Testing experimental scenario

µ (packets/s) Chunk size ratio

40
30:10(Multi-path,30s via path1:10s via path2)
10:10 (Multi-path,10s via path1:10s via path2)
10:30 (Multi-path,10s via path1:30s via path2)

Table 3.4: Experimental results for µ=40

Chunk size ratio Packet loss ratio (%)
Packet delay (s)

mean standard deviation
30:10 0 4.3 2.2
10:10 0 4.3 3.1
10:30 19.2 43 30.5

25

Table 3.5: Experimental results without using multi-path scenario

Chunk size ratio Packet loss ratio (%)
Packet delay (s)

mean standard deviation
800:0 (Using path 1 only) 0 0.2 0.1
0:800 (Using path 2 only) 35.7 60.6 17.6

From Table 3.4, the average packet loss is 19.2% for chunk size ratio 10:30 since path 2

has only 0.15 Mbits/s capacity while the incoming video/audio packet rate is 0.296 Mbits/s.

In this case, the extra 0.146 Mbits/s will be prone to losses if the storing buffers get overflown

due to the limited bandwidth of path 2. The packet loss ratio of video streaming with

chunk size ratio 30:10 and 10:10 is zero since most of the duration video streaming forwards

packets on path 1 and sufficiently small duration of the time on path 2. Moreover, the case

of 30:10 outperforms the case of 10:10 in terms of standard deviation of packet delay or jitter

because the case of 30:10 better matches with the available path capacity. The resultant

video packet rates can thus be properly fitted into the available capacity of both individual

paths. Therefore, this reported packet loss and delay result confirms that the multi-path

video streaming method can be beneficially applied in the network when the capacity of the

main path alone is not enough to carry the whole incoming packets of video stream and the

employed chunk splitting ratio decomposes the incoming packet rate to match the capacity

of available paths.

However, when comparing the cases of 30:10 and 800:0 (using path 1 only), the latter

gives a better packet jitter performance. This is due to that, without need to pass packets

through both paths, one can save the increased processing complexities at both the splitting

and combining functionalities by avoiding the possible large deviation of path delays. Thus,

the multi-path video streaming method is not recommended when the main path capacity

already suffices for carrying out the incoming packets of video stream due to the increased

implementation complexities. And in case that chunk size ratio is equally using path 1 and

path 2 (10:10), the packet jitter is higher than that of 30:10 but lower than that of 10:30.

This case of 10:10 signifies the equal load balancing case that treats both paths with the

same balancing weight. As seen in Table 3.4, such equality does not necessarily work for

its performance depends a great deal on the available path capacity at the time.

26

For detailed dynamics of packet generation arriving at the video server and the received

packet stream departing at the video client, we include here the arrival and departure curves

in Figures 3.5, 3.6, 3.7 and 3.8. The packet number shown in graphs is the RTP sequence

number with offsetting to start the packet number at zero. These curves confirm the packet

loss and delay results as consistently summarized earlier in Tables 3.4 and 3.5.

Figure 3.5: Experiment result with µ=40: chunk size ratio 30:10.

27

Figure 3.6: Experiment result with µ=40: chunk size ratio 10:10.

Figure 3.7: Experiment result with µ=40: chunk size ratio 10:30.

28

(a)

(b)

Figure 3.8: Experiment results without using multi-path scenarios: (a) chunk size ratio
800:0 (using only path 1) (b) chunk size ratio 0:800 (using only path 2).

29

3.1.4 Video Streaming Experiment 2 Scenario and Results

Unlike experiment 1 in Subsection 3.1.3, a Frozen video [47] clip with H.264 video

codec, 320x144 resolution, total video/audio bit rate 246 kbits/s and 2-minute playback

duration has been used in this experiment 2. These settings have been chosen to allow

the dynamic range of testable input parameters with available performance of computer

hardware specification. VLC server program has been used to stream out the video by RTP

mode. The initial buffering time varies from 0, 5, 10, 15 to 20 s. The chunk size ratios

of 20:10 and 10:20 have been used. The packet scheduling rate of middle-box is set to 25

packets/s to match with the server video transmission rate.

As in the experiment 1, wireshark software is used to capture all the transmitting and

receiving packets on both Ethernet interfaces of server and client. To investigate the effects

of initial buffering time and chunk size ratio on packet delay, we have tested three times

with the same parameter settings and computed the mean/standard deviation of packet

delay. Figures 3.9 and 3.10 depict the mean/standard deviation of packet delay in our

experiments. These are the average results from three experiments with chunk size ratio

(20:10 and 10:20) and initial buffering times (0, 5, 10, 15, 20 s).

From Figure 3.9, when initial buffering time increases for both chunk size ratio settings,

the mean packet delay increases with its upper bound at the initial buffering time. The

mean packet delay of chunk size ratio 20:10 case is lower than that of 10:20 case. In case of

20:10, most of the packets are streamed out through path 1 and use only a short period of

time on path 2. The former path has enough capacity to carry the whole incoming traffic

than the latter path. When compared to the packet delay results between 20:10 and 10:20

cases, it is clear that proper chunk size setting is important to reduce packet delay due to

the higher delay of 10:20 in which using the lower bandwidth path is more than the higher

bandwidth path.

Moreover, we have studied the jitter performance in terms of the standard deviation of

packet delay. The standard deviation of packet delay results from Figure 3.10 demonstrates

that jitter performance of 20:10 case is better than that of 10:20 case. In order to obtain the

best jitter performance, the proper initial buffering time and chunk size ratio settings need

to be considered carefully. The reason that 20:10 case is better than 10:20 is because path 1

30

has enough 0.25 Mbits/s capacity to carry the whole video traffic 0.246 Mbits/s while path

2 has only 0.15 Mbits/s. Finally, it is noted that, since the middle-box can handle all the

video packets in this two-minute video streaming experiment, the packet loss ratio is zero

in most experiments. Although the packet loss ratio results show zero in this experiment,

there may have performance degradation when we calculate the PSNR values upon the

received video quality at the client side due to the capability of computer specification for

middle-box processing. And the high performance machine is recommended for operating

the middle-box function in real network since the middle-box has to process a number of

functions on fast-coming packets.

Figure 3.9: Mean packet delay vs initial buffering time for chunk size ratio 20:10 and
10:20.

3.1.5 Summary of Emulated Multi-path Video Streaming

In these experiments, we have reported the design and functionality test of middle-

box and load splitting for chunked video streaming over the OpenFlow-enabled multi-path

Mininet network. The reported packet delay, jitter and packet loss results in experiment

1 demonstrate that multi-path video streaming method can be beneficially applied in the

31

Figure 3.10: Standard deviation of packet delay vs initial buffering time for chunk size
ratio 20:10 and 10:20.

network when the capacity of the main path alone (using path 2 alone) is not enough to

carry the whole incoming packets of video stream and the employed chunk splitting ratio

decomposes the incoming packet rate to match the capacity of available paths (both paths

1 and 2). However, this multi-path video streaming method is not recommended when

the main path capacity already suffices for carrying out the incoming packets of video

stream due to the results of experiment 1. Since by introducing splitting and combining

functionalities, relevant complexities, e.g. mismatching of proper chunk splitting ratio,

could worsen the received video quality. Particularly, we can see this from the case in

experiment 1 “using path1 only” vs “using paths 1 and 2”, where mean and standard

deviation of packet delay of the former is always lower than those of the latter. Due to the

results described in experiment 1, we realize that matching of chunk splitting ratio to the

capacity of available paths can affect greatly the resultant received subjective video quality

in terms of packet loss ratio and mean/standard deviation of packet delay. This poses a new

practical challenge when path capacity is time varying and stochastic in nature. According

to the results of experiment 2, we observe that the proper chunk size ratio and initial

32

buffering time need to be considered carefully to improve the mean/standard deviation

of packet delay. Moreover, it is recommended to use the high performance machine for

middle-box processing since the maximum possible packet scheduling rate of the middle-

box depends directly on computer hardware specifications. All these investigate results

have provided a firm foundation when we plan to implement the multi-path chunked video

streaming experiment over the OF@TEIN multi-national Openflow testbed [13] and include

the wireless link for conducting research on wireless SDN experiments.

33

3.2 Design of Middle-box and Multi-path Chunked Video

Streaming over OF@TEIN SDN Cloud Playground

As in our objective, the goal of this thesis is to investigate the middle-box and

splitting functionalities of chunked video streaming over OF@TEIN SDN cloud

playground between Thailand, Malaysia and Korea. OF@TEIN SDN cloud playground is

connected with SmartX Boxes from 9 countries including Thailand, Malaysia and Korea.

OF@TEIN [6, 7] is one of the large-scaled SDN-Cloud testbeds with 9 research and

educational networks as shown in Figure 3.11.

Figure 3.11: OF@TEIN multi-domain network infrastructure [6, 7].

3.2.1 Implementation of Multi-path Chunked Video Streaming Sessions

over OF@TEIN SDN Cloud Playground

Currently, SmartX Boxes in OF@TEIN SDN cloud playground are upgraded to Type

B* with OpenStack and Open vSwitches except the domestic Korea sites are installed with

Type C [6]. OpenStack [48] is the most current popular open source software to create public

and private cloud computing networks. Open vSwitch [49] is a multilayer virtual switch

to create the OpenFlow rules in virtualized network environment. The SmartX Type B*

34

in Thailand and Malaysia has single CPU and SATA storage with tunneling-based overlay

network connection whereas Type C used in Korea sites has dual CPU and SSD storage

with VLAN-based network configuration.

In order to run the experiments over OF@TEIN SDN cloud playground, we first need

to request the network slices from OF@TEIN network administrator. After that we design

our multi-path chunked video streaming infrastructure on top of the OF@TEIN SDN cloud

playground. Moreover, iPerf [50] testing between CHULA, MYREN and GIST-A needs

to perform in order to check the available bandwidth capacity of each international link.

The network architecture of this experiment is extended from the main architecture of

OF@TEIN SDN cloud playground [6].

The architecture of this multi-path video streaming experiment consists of three

international nodes located in CHULA (Thailand), MYREN (Malaysia), and GIST-A

(Korea). Thailand’s SmartX Box is located at Chulalongkorn University Gateway room,

Chamchuri 9 Building. The physical SmartX boxes locations of GIST-A (Korea) and

CHULA (Thailand) are shown in Figure 3.12.

Figure 3.12: Physical SmartX boxes locations of GIST and CHULA.

35

Figure 3.13: Overview of multi-path chunked video streaming over OF@TEIN SDN cloud
playground.

Figure 3.14: Architecture of multi-path chunked video streaming over OF@TEIN SDN
cloud playground.

36

The overall and detail architectures of multi-path chunked video streaming over

OF@TEIN SDN cloud playground are depicted in Figures 3.13 and 3.14. As described in

Figures 3.13 and 3.14, we have created OpenStack virtual machines (VMs) with 2 VCPUs

and 4 GBytes of RAM in both GIST-A and CHULA OpenStack compute nodes for

serving as a video streaming server and a video client respectively. Both OpenStack VMs

are running Ubuntu 14.04 OS. According to OF@TEIN architecture, there are two

networks (control plane: eth0 and data plane: eth1) for each OpenStack VM. The control

plane: eth0 is used for accessing VM via ssh and data plane: eth1 is used for transmitting

the experimental data such as iPerf traffic and video traffic. The Maximum Transmission

Unit (MTU) of eth1 has been set to be 1410 bytes in order to be able to transmit iPerf

traffic since OF@TEIN playground VMs cannot send iPerf traffic with default MTU size

1500 bytes. FlowVisor [51] has been used to create the slices of network resources and

delegate control of each slice to different controllers. In addition, we are not responsible

for FlowVisor management since it is controlled by OF@TEIN admin team. Each

developer in OF@TEIN has its own VLAN ID in order to identify and assign the

developers to run experiments without inferencing each other. Nova [52] and Neutron [53]

are OpenStack compute and networking projects in which Nova is responsible for

initializing the OpenStack instances while Neutron is for providing network services

between interface devices (e.g. vNICs) managed by other OpenStack services (e.g. Nova).

Virtual extensible LAN (VxLAN) [54], a network virtualization technology for large cloud

computing network, is used to connect the nodes between Korea, Malaysia and Thailand.

The Neturon in this architecture consists of three interfaces (br-int, br-ex and br-vlan).

The interface br-int is to communicate between logical interfaces of OpenStack instances

and physical interfaces of local host while br-ex is to connect with external networks from

OpenStack instances. The interface br-vlan is to communicate between VMs across the

networks through VxLAN tunneling and Open vSwitches.

There are 4 Open vSwitch bridges in each site of SmartX Boxes: br1, b2, brcap and

brtap. The OVS bridges (br1 and br2) are controlled by OF@TEIN user’s controller (i.e.

POX controller) while brcap and brtap are controlled by OF@TEIN operator’s controller

(i.e. OpenDayLight controller [55]). The purpose of each bridge is as follows:

37

br1: to connect between OVSs and OpenStack Neutron interface (br-vlan)

br2: to connect between OVS (br1) and OVS (brcap)

brcap: to connect between OvSs in different countries via VxLAN tunneling

brtap: to monitor the traffic of tap interfaces of VMs

In this multi-path chunked video streaming experiment, OpenStack VM (VLAN ID:

111) at GIST-A serves as a video streaming server and OpenStack VM (VLAN ID: 111) at

CHULA serves as a video client. In this experiment, the total 5 OVS bridges are used in

SmartX Boxes of GIST-A, MYREN and CHULA. To introduce load balancing mechanism

with chunked video splitting functionality, we have chosen two paths namely Path 1 and

Path 2 as in our previous emulated experiments network. The route of Path1 is via GIST-A

� MYREN � CHULA while Path 2 is directly connected between GIST-A and CHULA.

SmartX Boxes of GIST-A, MYREN and CHULA are connected to each other by using

Open vSwitch VxLAN tunneling. POX controller is used for adding the flow entries into

OVS bridges (br1 and br2) at GIST-A, MYREN and CHULA.

Firstly, the video server at GIST-A, Korea streams out the chunked video streaming

packets into multiple concurrent paths via Path 1 (via GIST-A � MYREN � CHULA)

and Path 2 (via GIST-A � CHULA). GIST-A OVS (br2) is responsible for splitting the

chunked video streaming into two paths. CHULA OVS (br2) serves as a packet combiner

from two paths towards the middle-box (vnet1). Virtual middle-box has been implemented

in CHULA SmartX Box by using Kernel Virtual Machine (KVM) with 1 VCPU and 2

Gbytes of RAM running Ubuntu 12.04 LTS OS for performing a packet scheduler and

classifier with two parallel buffers (buffer1 and buffer2). Virt-manager has been used to

create the middle-box KVM. Once initiate the KVM, three virtual interfaces namely vnet0,

vnet1 and vnet2 are attached to SmartX box’s linux bridge (virbr0). After that only vnet0

is attached to virbr0 and vnet1 and vnet2 are removed from that linux bridge. vnet0 is

attached to linux bridge (virbr0) and then used for internet access and VM access via ssh.

vnet1 and vnet2 are attached to OVS (br2) for capturing and processing the incoming

packets and generating the packets accordingly. Those network interfaces are appeared

inside the middle-box namely as eth0, eth1 and eth2. When implementing the middle-

box in CHULA SmartX box, we have faced the looping issue due to wrong configuration.

38

However, we have found the solution to avoid looping issue. The middle-box has been used

to combine and reorder all the incoming video packets from two paths by using RTP video

time stamps and then forward the video packet stream via (vnet2) towards OVS (br1) and

destination to be the video client as smooth as possible. When implementing the middle-box

KVM in CHULA SmartX box with virtual-machine manager (virt-manager), one important

thing is for configuring to avoid looping issue. The implementation set up for middle-box

configuration will be described in the Appendix D.

The same middle-box functionalities Python script used in the previous emulated multi-

path video streaming experiments has also used in this experiments by modifying the codes

to generate packets with VLAN header and changing the MAC addresses of two concurrent

paths accordingly. The splitting and middle-box functionalities are the same as in the

emulated multi-path video streaming experiments. The port information and flow entries

of each SmartX boxes have been used in this experiments are shown in Tables 3.6-3.12.

Table 3.6: Port information for SmartX boxes (GIST-A,MYREN and CHULA)

SmartX boxes br1 ports br2 ports

GIST-A(103.22.221.170)
1(br1 br2) 1(MYREN)
2(br1 vlan) 2(TH)

4(br2 br1)

MYREN(103.26.47.228)
3(TH)
4(GIST)

CHULA(161.200.25.99)

1(br1 vlan) 1(br2 br1)
2(br1 br2) 2(GIST)

3(MYREN)
10(vnet1)
11(vnet2)

Table 3.7: Flow entry of GIST-A SmartX box (OVS: br1)

Header field Action
in port=1(br1 br2) output:2(br1 vlan)
in port=2(br1 vlan) output:1(br1 br2)

The flow entries of OVSs (br1) at GIST-A and CHULA and OVS (br2) at MYREN as

shown in Tables 3.7, 3.11 and 3.10 are responsible for forwarding the incoming packets from

the ingress port towards egress port and vice versa.

39

Table 3.8: Flow entry of GIST-A SmartX box (OVS: br2) for transmission via path 1
(GIST-A � MYREN � CHULA) [10]

Header field Action Timeout
in port = 1(MYREN) output:4(br2 br1) hard timeout = m
in port = 4(br2 br1) output:1(MYREN) hard timeout = m

Table 3.9: Flow entry of GIST-A SmartX box (OVS: br2) for transmission via path 2
(GIST-A � CHULA) [10]

Header field Action Timeout
in port = 2(TH) output:4(br2 br1) hard timeout = n
in port = 4(br2 br1) output:2(TH) hard timeout = n

As shown in Tables 3.8 and 3.9, the video packets are periodically chunked into

smaller chunked video packets in this br2 at GIST-A by specifying the m s to parameter

hard timeout of the flow entry for packet transmission via Path 1 and n s to parameter

hard timeout for that via Path 2. The ratio m:n then determines the chunk size ratio in

this splitting function as in the emulated multi-path video streaming experiments. The

detail of splitting function is the same as in the emulated multi-path video streaming

experiments.

Table 3.10: Flow entry of MYREN SmartX box (OVS: br2)

Header field Action
in port=3(TH) output:4(MYREN)
in port=4(MYREN) output:3(TH)

Table 3.11: Flow entry of CHULA SmartX box (OVS: br1)

Header field Action
in port=1(br1 vlan) output:2(br1 br2)
in port=2(br1 br2) output:1(br1 vlan)

The flow entry of OVS (br2) in CHULA SmartX box is depicted in Table 3.12. This

br2 in CHULA SmartX box is responsible for combining the packets from two paths and

forwarding the reordered video packets from the middle-box to the video client in CHULA

OpenStack VM. When the packets arrive from the ingress MYREN and GIST-A ports,

the packet headers are set to be e2:9c:e6:30:bf:06 for packets coming from MYREN and

40

Table 3.12: Flow entry of CHULA SmartX box (OVS: br2) [10]

Header field Action
in port = 3(MYREN) mod dl src:e2:9c:e6:30:bf:06, output:10(vnet1)
in port = 2(GIST) mod dl src:66:c2:a5:35:d2:d6, output:10(vnet1)
in port = 1(br2 br1) ALL
in port = 11(vnet2) output:1(br2 br1)
in port = 10(vnet1) output:drop

66:c2:a5:35:d2:d6 for packets coming from GIST-A and then forwarded to the vnet1 for

further processing in the middle-box. The packets arrive from br2 br1 ingress port from

CHULA OpenStack VM will be forwarded to all available ports at br2 except the ingress

port br2 br1. The reordered packets generated from the middle-box will be forwarded via

vnet2 to br2 br1 and then finally towards br1 and the video client. All the packets coming

from vnet1 is dropped in order to process the packets reordering in the middle-box.

3.2.2 Results and Discussion of Multi-path Chunked Video Streaming

over OF@TEIN SDN Cloud Playground

As in the emulated multi-path video streaming experiment 2, a Frozen video [47] clip

with H.264 video codec, 640x286 resolution, total video/audio bit rate 628 kbits/s and 2-

minute playback duration has been used in this multi-path video streaming experiments.

These setting have been chosen to allow the dynamic range of testable input parameters with

available performance of SmartX box hardware specification since CPU and RAM of SmartX

boxes have limitation due to running multiple users and multiple software applications. As

in the previous experiments, VLC server program has been used to stream out the video

by RTP mode. At the time of running experiments, OpenStack VMs over OF@TEIN

playground have no function for using GUI applications with remote desktop. In order to

open GUI applications, only X 11 display is available and it has limitation to open GUI

applications from a distant node with fast access. Therefore, in this experiment, VLC

command line has been used for GIST-A video server and VLC with GUI interface has

been used for CHULA video client. GUI applications to gain an access of OpenStack VMs

still need to be improved. The demonstrating environment of multi-path chunked video

streaming over OF@TEIN SDN cloud playground is shown in Figure: 3.15.

41

Figure 3.15: Demonstrating environment of multi-path chunked video streaming over
OF@TEIN SDN cloud playground.

iPerf application has been used in order to know the available bandwidth capacity

between GIST-A, MYREN and CHULA nodes. According to the iPerf UDP test results, the

bandwidth capacities of around 82 Mbps (between OpenStack VMs via GIST-A, MYREN

and CHULA link) via Path 1 and around 450 Mbps (between OpenStack VMs via GIST-A

� CHULA) via Path 2 have been obtained from the test. The iPerf test results indicate that

there are plenty of bandwidth capacities between three selected nodes (GIST-A, MYREN,

CHULA) in order to run our multi-path video streaming experiments. The initial buffering

time in the middle-box varies from 0, 10 and 20 s. The chunk size ratios of 20:10 and 10:20

have been used as in the emulated video streaming experiments 2. The packet scheduling

rate (µ) of the middle-box is set to 150 packets/s to match with server video transmission

rate.

Unlike in the emulated video streaming experiments, tcpdump [57], a command line

packet analyzer, has been used to capture all the transmitting and receiving packets on

both Ethernet interfaces (eth1) of server and client due to the limited access convenience of

GUI applications over OF@TEIN SDN cloud playground. As in the emulated multi-path

42

video streaming experiments, we have tested three times for both multi-path and single-

path video streaming experiments over OF@TEIN SDN cloud playground with the same

parameter settings and computed the mean/standard deviation of packet delay in order to

investigate the effects of chunk size ratio on packet delay. The average results of packet

delay from three experiments with chunk size ratios (20:10 and 10:20), single-path with and

without the middle-box (mbox) and initial buffering time (0 s) are shown in Table 3.13.

Table 3.13: Chunked video streaming experimental results with initial buffer (0 s)

Scenario
Packet delay (s)

mean standard deviation
20:10 (Multi-path) 3.32 1.89
10:20 (Multi-path) 1.76 1.44
200:0 GIST-A � MYREN � TH (Single-path with mbox) 1.75 1.12
0:200 GIST-A � TH (Single-path with mbox) 1.76 1.07
GIST-A � MYREN � TH (Single-path without mbox) 0.01 0.01
GIST-A � TH (Single-path without mbox) 0.01 0.01

From Table 3.13, the mean and standard deviation of packet delay using single-path

without the middle-box outperforms the mean and standard deviation of packet delay

using single-path with the middle-box because of packet processing delay in the

middle-box. Unlike the results that have been achieved from emulated multi-path and

single-path video streaming experiments, both transmission via Path 1 and Path 2 over

OF@TEIN SDN cloud playground have plenty of bandwidth capacity except bandwidth

capacity are stochastically time varying and also video streaming traffic are smaller

amount than available bandwidth capacity. However, the emulated multi-path network in

Section 3.1 has implemented with limited path capacity that is one path cannot carry the

whole incoming video streams. The standard deviation of packet delay or jitter in using

chunk size ratio 20:10 case is higher than that in using 10:20 case. This is because in the

case of 20:10, the packets are transmitted for 20 seconds via the Malaysia route which has

round trip time (RTT):' 125 ms. However, in 10:20 case, the packets are transmitted for

20 seconds from Korea to Thailand via the direct route which has approximately 0.2%

shorter path delay (RTT:' 105 ms) than that via the Malaysia route. When compared to

using the single-path scenario with and without the middle-box cases, the packet jitter of

using the single-path transmission without the middle-box is approximately zero in most

of the experiments while the packet jitter is around 1.12 seconds in the case with the

43

middle-box. The reason is that, with the middle-box, the time required for packet

processing and reordering causes additional delay in delivering packets towards the client

playback session. From the results of 20:10 and 10:20 cases, we have noticed that the RTT

delay of each path needs to be considered carefully even when there is enough bandwidth

capacity for both links. The longer time for packets transmission on the high RTT delay

path, the larger the packet jitter at the client side. The packet loss ratio in all experiment

scenarios are approximately zero since the link capacity is abundant to carry the selected

video streaming traffic. Although the packet loss ratio results show zero in this

experiment, there may have performance degradation when we calculate the PSNR values

upon the received video quality at the client side due to the performance of SmartX box,

middle-box and real-time network condition. In addition, for the comparison of video

streaming cases via single-path vs. multi-path transmissions, the results of packet delay

over OF@TEIN SDN cloud playground confirm the results of packet delay over the

emulated network in Section 3.1. That is, using multi-path video streaming method is not

recommended when the main path capacity already suffices for carrying out the incoming

packets of video stream due to the increased implementation complexities at both the

splitting and combining functionalities. Figures 3.16-3.21 depict the number of delayed

packets and the packet delay of single-path and multi-path video streaming without any

initial buffering time in the middle-box. These graphs confirm that the delay results are

consistently summarized in Table 3.13.

Moreover, we have investigated the effect of initial buffering time in the middle-box by

varying initial buffering times to be 0, 10 and 20 seconds for multi-path video streaming

of chunk size ratios (20:10 and 10:20). Figure 3.22 depicts the mean/standard deviation of

packet delay vs initial buffering times (0, 10 and 20 s) for multi-path video streaming over

OF@TEIN SDN cloud playground with chunk size ratios (20:10 and 10:20). According to

the Figure 3.22, mean packet delay is increasing with the rate of initial buffering time in both

chunk size ratios (20:10 and 10:20) cases because of storing and packet processing delay in

the middle-box. In addition, the packet delay, jitter is increasing with directly proportional

to the initial buffering time. Unlike the emulated experiments in Section 3.1, the increasing

initial buffering time does not help to decrease the packet delay since the bandwidth capacity

44

Figure 3.16: Packet delay of RTP streaming via OF@TEIN with middle-box (Chunk size
ratio=20:10 (s).

Figure 3.17: Packet delay of RTP streaming via OF@TEIN with middle-box (Chunk size
ratio=10:20 (s).

45

Figure 3.18: Packet delay of RTP streaming via GIST-A � MYREN � CHULA with
middle-box (Chunk size ratio=200:0 (s)).

Figure 3.19: Packet delay of RTP streaming via GIST-A � CHULA with middle-box
(Chunk size ratio=0:200 (s)).

46

Figure 3.20: Packet delay of RTP streaming via GIST-A� MYREN� CHULA without
middle-box.

Figure 3.21: Packet delay of RTP streaming via GIST-A� CHULA without middle-box.

47

Figure 3.22: Mean and standard deviation of packet delay vs initial buffering time for
multi-path streaming over OF@TEIN playground.

is abundant to transmit the selected rate of video packet transmission. Therefore, the results

confirm that using initial buffering time and multi-path streaming method in the high-speed

bandwidth capacity links make higher packet delay than single-path streaming because the

middle-box requires the fast processing speed in order to generate the packets as fast as

possible. When considering the implementation of the middle-box in CHULA SmartX

box, CPU utilization and RAM are the most important facts to consider in order for not

overloading the SmartX box since it is running multiple processing such as OpenStack.

3.2.3 Summary of Multi-path Streaming over OF@TEIN Playground

In this multi-path video streaming experiments, we have implemented the splitting

and middle-box functionalities over international OF@TEIN large-scaled network (GIST-A,

MYREN and CHULA nodes). The reported packet delay and jitter results in this multi-

path streaming experiments over OF@TEIN have confirmed the recommendation from our

emulated multi-path video streaming that is ‘using multi-path video streaming method

is not recommended when the main path capacity already suffices for carrying out the

48

incoming packets of video stream’. In OF@TEIN SDN cloud playground, both of the

selected paths via Malaysia and direct link between GIST-A and CHULA have much more

enough bandwidth to carry the video streaming traffics. The one important notice from the

reported delay results is that the RTT delay of transmission paths is necessary to consider in

order for transmitting packets with low delay. These reported results and information will

be used for selecting low delay paths and chunk size ratio when we investigate multi-path

file transferring and streaming. The time responsiveness or interactivity of GUI applications

in accessing remote OpenStack VMs still needs to be improved. We will try to solve this

problem in the later experiments. During experiments over OF@TEIN playground, the

longer time has been taken for transferring the experiments data from one country node to

another. This becomes our motivation for testing multi-path file transferring experiments

over OF@TEIN SDN cloud playground that we will describe in the next section. The

implemented middle-box can be used as a processing machine for further experimental

setups. However, careful allocation of memory and configurations are required in order to

avoid looping and full memory issues of SmartX box. Apart from this consideration, our

implemented middle-box can be used with full functionalities in the further experimentation.

49

3.3 Design of Multi-path Chunked Video File Transferring

and Streaming over OF@TEIN SDN Cloud Playground

In this section, the solutions for addressing file transferring delay over international

gateway environments will be described. According to the multi-path video streaming

experimental results over OF@TEIN SDN cloud playground, we have learnt the best case

scenarios of chunk size ratio and requirements for investigating experiments in this video

file transferring and streaming. The objective is to find the applicability ranges of

splitting functionalities over OF@TEIN SDN cloud playground which has plenty of

available bandwidth. TCP file transferring over international links is limited in terms of

transfer duration and bandwidth capacity due to the firewall in each node and the

distance between nodes. Moreover, in transferring via TCP, all packet losses are counted

as congestion and multiple retransmission requests decrease the bandwidth capacity. In

order to solve out that kind of issues with TCP, we have selected Tsunami [15] file transfer

protocol in these multi-path file transferring and streaming experiments. Tsunami [15] is a

combination of UDP and TCP file transfer protocols in which bulk data are transferred

via UDP and control data are transferred via TCP. In this section, we will describe the

benefits of combining proposed multi-path file transferring method and normal Tsunami

file transfer protocol over OF@TEIN SDN cloud playground. In addition, after the

completion of file transferring experiments, we would investigate how downloaded video

file can be streamed out smoothly within the local area network.

3.3.1 Implementation of Multi-path Chunked Video File Transferring and

Streaming Sessions over OF@TEIN SDN Cloud Playground

As in the previous multi-path video streaming experiments over OF@TEIN SDN cloud

playground, we have selected three countries: Thailand, Malaysia and Korea. However,

different SmartX boxes have been used except Thailand node due to re-designed

architecture of OF@TEIN SDN cloud playground. The following SmartX boxes have been

used in this multi-path chunked video file transferring and video streaming experiments:

GIST-B, MY and CHULA. The overall and detail architectures of multi-path chunked

50

video file transferring and streaming over OF@TEIN SDN cloud playground are depicted

in Figures 3.23 and 3.24.

Figure 3.23: Overview of multi-path chunked video file transferring and streaming over
OF@TEIN SDN cloud playground.

As described in Figures 3.23 and 3.24, we have created OpenStack VM running

Ubuntu 14.04 OS with 1 VCPU and 1 GBytes of RAM in GIST-B OpenStack compute

node and OpenStack VM running Ubuntu 14.04 OS with 2 VCPUs and 4 GBytes of RAM

in Thailand OpenStack compute node for serving as a Tsunami video file transfer server

and a video client respectively. The middle-box with 1 VCPU and 2 GBytes of RAM

running Ubuntu 12.04 OS which has been implemented in the previous multi-path video

streaming experiments is used for a Tsunami video file transfer client and a VLC video

streaming server. OpenStack Nova and Neutron functions are the same as in the

Section 3.2 experiments . However, the different design of OVS bridges of each SmartX

box has been used in this multi-path file transferring and streaming experiments in order

to support OpenFlow 1.0 and OpenFlow 1.3 in OF@TEIN SDN cloud playground. Unlike

in the old OF@TEIN SDN cloud playground architecture, FlowVisor has not used in this

51

Figure 3.24: Architecture of multi-path chunked video file transferring and streaming over
OF@TEIN SDN cloud playground.

re-designed OF@TEIN SDN cloud playground architecture since FlowVisor does not

support for OpenFlow 1.3 functions. Therefore, only one user has been allowed to run

experiments over new OF@TEIN architecture during the requested time schedule.

Therefore, developers need to reserve the timing for running experiments over OF@TEIN.

The OVS bridge (br-devops) has been created instead of br1, br2 and brcap which have

used in the old OF@TEIN SDN cloud playground architecture. VxLAN tunneling has

been used to connect between three br-devops in three SmartX boxes (GIST-B, MY and

CHULA) from different countries. There has no separation of user and admin controllers

in this new OF@TEIN SDN cloud playground architecture. The POX controller has been

used for adding flow entries into OVS bridges (br-devops) at GIST-B, MY and CHULA.

Firstly, the Tsunami video file transfer server sends out the chunked video files into

multiple concurrent paths via Path 1 (via GIST-B � MY � CHULA) and Path 2 (via

GIST-B � CHULA). The OVS (br-devops) at GIST-B is responsible for splitting chunked

video files into Path 1 and Path 2. The OVS (br-devops) at CHULA is responsible for

combining the video file packets from two paths and then forwarding video streaming packets

from the middle-box to the video client in CHULA OpenStack VM. The middle-box serves

as a Tsunami video file transfer client and a VLC video streaming server. The IP address of

eth1 in the middle-box have been configured to be the same network and the same VLAN

52

ID (111) as in OpenStack VMs. VLAN (802.1q) configuration program (vconfig) [58] have

been used for adding VLAN ID into eth1 of the middle-box. The MTU size of all eth1

interfaces for GIST-B VM, CHULA VM and the middle-box have been configured as 1410

bytes in order to be able to transmit the iPerf traffic. The port information and flow entries

of each SmartX boxes have been used in these experiments are shown in Tables 3.14-3.18.

Table 3.14: Port information for SmartX boxes (GIST-B, MY and CHULA)

SmartX boxes br-devops ports

GIST-B(103.22.221.31)
1(devops vlan)
2(vxlan MY)
3(vxlan TH)

MY(203.80.21.4)
2(vxlan TEST)
3(vxlan TH)

CHULA(161.200.25.99)

1(devops vlan)
2(vxlan TEST)
3(vxlan MY)
5(vnet1)
7(vnet2)

Table 3.15: Flow entry of GIST-B SmartX box (OVS: br-devops) for transmission via
path 1 (GIST-B � MY � CHULA) [10]

Header field Action Timeout
in port = 1(devops vlan) output:2(vxlan MY) hard timeout = m
in port = 2(vxlan MY) output:1(devops vlan) hard timeout = m

Table 3.16: Flow entry of GIST-B SmartX box (OVS: br-devops) for transmission via
path 2 (GIST-B � CHULA) [10]

Header field Action Timeout
in port = 1(devops vlan) output:3(vxlan TH) hard timeout = n
in port = 3(vxlan TH) output:1(devops vlan) hard timeout = n

As shown in Tables 3.15 and 3.16, the video file packets are periodically chunked into

smaller files at GIST-B (br-devops) by specifying the m s to parameter hard timeout of the

flow entry for packet transmission via Path 1 and n s to parameter hard timeout for that

via Path 2. The ratio m:n then determines the chunk size ratio in this splitting function as

in the emulated and OF@TEIN multi-path video streaming experiments.

53

Table 3.17: Flow entry of MY SmartX box (OVS: br-devops)

Header field Action
in port=2(vxlan TEST) output:3(vxlan TH)
in port=3(vxlan TH) output:2(vxlan TEST)

The flow tables at MY OVS (br-devops) as shown in 3.17 are simply that when the

packets arrive from vxlan TEST (GIST-B), those packets will be forwarded to vxlan TH.

When the packets arrive from vxlan TH, those packets will be forwarded to vxlan TEST.

Table 3.18: Flow entry of CHULA SmartX box (OVS: br-devops)

Header field Action
in port = 3(vxlan MY) mod dl src:c2:ff:3e:21:81:d4, output:5(vnet1)
in port = 2(vxlan TEST) mod dl src:f2:a8:b7:ea:85:63, output:5(vnet1)
in port = 5(vnet1) ALL
in port = 1(devops vlan) output:5(vnet1)

The flow entries of br-devops in CHULA SmartX box which is shown in Table 3.18 are

similar to the flow entries of br2 as described in the previous multi-path video streaming

over OF@TEIN SDN cloud playground experiments. The br-devops in CHULA SmartX box

is responsible for combining the video file packets from two paths and forwarding the video

streaming packets from the middle-box to the video client in CHULA OpenStack VM. When

the packets arrive from the ingress vxlan MY and vxlan TEST ports, the packet headers

are set to be c2:ff:3e:21:81:d4 for packets coming from vxlan MY and f2:a8:b7:ea:85:63 for

packets coming from vxlan TEST and then forwarded to the vnet1 for receiving Tsunami

video file client in the middle-box. After completely receiving the video file packets in the

middle-box, the middle-box serves as a VLC streaming server. For the packets arrive from

the vnet1 ingress port, all packets will be forwarded to all available ports at br-devops

except the ingress port vnet1. Therefore, the network of the middle-box is reachable to

both GIST-B and CHULA OpenStack VMs. The packets arrive from devops vlan will be

forwarded only to vnet1 so that CHULA OpenStack VM data path network is reachable to

the middle-box. The reason is that we do not need to transmit any traffic between GIST-B

OpenStack VM and CHULA OpenStack VM in this experiment. Therefore, we cut off the

routing between GIST-B OpenStack VM and CHULA OpenStack VM in order to save the

unnecessary bandwidth usages.

54

Another implementation to solve the fast time responsiveness of GUI applications in

accessing remote OpenStack VMs over OF@TEIN SDN cloud playground have been

introduced in this section. As mentioned in the previous section about limited access of

GUI applications with X11 display over OF@TEIN OpenStack VMs is limited for

streaming video with large video resolution size. In order to solve out that issues, we have

implemented the X11 Desktop Environment in OpenStack VMs by using light weight X11

desktop environment (LXDE) [59] which supports fast desktop performance for easy

access GUI applications in the cloud. Moreover, in order to remote access to the

implemented Desktop Environments, we have installed an open source remote desktop

protocol(rdp) server called xrdp [60], a free remote control software called tightvnc [61]

and an open source implementation of the X Window system called xorg [62]. There are

three access methods for OpenStack VMs: (1) access via xrdp without requiring port

information, (2) access via tightvnc with requiring 5901 port access and (3) access via ssh

as in the old method with X11 display. For accessing method 1 and 2, we can use either

remote desktop connection with Window OSs or rdesktop with Linux/Ubuntu OSs. The

light weight X11 desktop environments (LXDE) of GIST-B and CHULA OpenStack VMs

by accessing rdesktop with Ubuntu OS are depicted in Figure 3.25.

Figure 3.25: Light weight X11 desktop environments of GIST-B and CHULA OpenStack
VMs.

55

3.3.2 Results and Discussion of Multi-path Chunked Video File

Transferring and Streaming over OF@TEIN SDN Cloud

Playground

The Big Buck Bunny [63], a 4k animation video with a total file size of 843 Mbytes,

resolution 3840 x 2610 and the duration of 10 minutes has been used in this multi-path

chunked video file transferring and streaming experiments. Tsunami file transfer

application [15] has been installed on both GIST-B OpenStack VM and middle-box VM in

CHULA SmartX box. Since the purpose of this experiment is to investigate the effects of

combining our proposed multi-path splitting function and traditional Tsunami file transfer

protocol, we have not modified the default codes of Tsunami application.

The Tsunami server in GIST-B OpenStack VM starts the Tsunami server by using the

command “tsunamid” as shown in Figure 3.26. The middle-box VM in CHULA SmartX

box receives the video file by using the command “tsunami” as shown in Figure 3.27. The

parameters for Tsunami file transfer protocol are the default block size: 1024 bytes (how

large UDP blocks to use) and buffer size: 20 Mbytes (size of ring buffer in RAM) in this

experiment. Tsunami protocol allows a client to choose many parameters such as block size,

buffer size, target file transfer rate, error threshold, and inter-packet delay. However, in this

experiment, we vary only target file transfer rates in order to investigate the effects of varying

target file transfer rates on transfer duration. After completely received the video file in

the middle-box, Tsunami protocol generates the analytic results of file transferring. The

sample analytic results at Tsunami client is depicted in Figure 3.28. Among various output

results from Tsunami analytic results, transfer duration, file data, throughput and final

fie rate have been used for analysing our multi-path chunked file transferring experiments.

After completely transferring a video file in the middle-box, the middle-box serves as a VLC

streaming server to stream out the downloaded video towards CHULA OpenStack VM in

order to investigate the performance of the downloaded video stream.

As in the previous experiments, iPerf UDP test has been performed to check the available

bandwidth between GIST-B, MY and CHULA nodes. Unlike in the previous OF@TEIN

playground environment (GIST-A, MYREN and CHULA), the bandwidth capacities of

around 422 Mbps between OpenStack VM at GIST-B and middle-box VM at CHULA

56

Figure 3.26: Tsunami file transfer server in GIST-B OpenStack VM.

Figure 3.27: Tsunami file transfer client in middle-box VM.

Figure 3.28: Sample analytic output results by Tsunami client.

57

via Path 1 (GIST-B � MY � CHULA) and around 456 Mbps via Path 2 (GIST-B �

CHULA) have been obtained from the test. As investigated in the previous multi-path

video streaming experiments over OF@TEIN playground, round trip time delay (RTT) via

Path 1 and Path 2 are the same. The RTT via the MY route is approximately 125 ms and

the RTT delay from GIST-B to CHULA via the direct route is about 105 ms. Therefore, the

best case scenario (transmitting long period via Korea and Thailand direct link) of chunk

size ratio obtains from the previous multi-path video streaming experiments has been used

for this multi-path file transferring and streaming experiments.

Three scenarios have been tested for this multi-path file transferring experiments.

They are (1) multi-path with chunk size ratio (1:2 sec) which is periodically splitting by

transmitting 1 second via Path 1 and transmitting 2 seconds via Path 2 (2) using Path 1

alone (GIST-B � MY � CHULA) (3) using Path 2 alone (GIST-B � CHULA). In order

to investigate the effects of target file transfer rate on the transfer duration, we have

varied the target file transfer rates of Tsunami protocol to be 100, 200, 300, 400 and 500

Mbps and have tested three times with the same parameter settings for all three selected

scenarios. The file transfer duration can be computed from the following formula.

Transfer Duration =
Total F ile size

Actual F ile Transfer Rate

where: Transfer Duration = File transfer duration between server and client in seconds (s),

Total F ile size = File size in bits (bits) and

Actual F ile Transfer Rate = Rate of file transmission in bits per second (bps).

Transfer duration results of transferring 843 Mbytes (6744Mbits) video file by using three

scenarios: multi-path (1:2sec), using Path 1 alone (GIST-B � MY � CHULA) and using

Path 2 alone (GIST-B� CHULA) are shown in Figure 3.29. According to the tested results,

file transfer duration decreases with upper bound to the available link bandwidth capacity

when the target file transfer rate of Tsunami protocol increases for all three scenarios. That

result trend can be seen when comparing the cases of target file transfer rates (100, 200, 300

and 400 Mbps). The required transfer duration of using Path 2 alone (GIST-B� CHULA)

58

and multi-path (1:2sec) are similar until the target file transfer rate is up to 300 Mbps when

the link bandwidth capacity is enough to carry the whole video file traffic. As for using

Path 1 alone (GIST-B� MY� CHULA), the required file transfer duration is higher than

the other two scenarios, although there has enough link capacity to carry the whole traffic.

The reason is because the longer round trip time (RTT):' 125 ms require for transmitting

via Path 1 (via MY route) while the RTT delay via Path 2 (via a direct link to CHULA)

require ' 105 ms. Moreover, the RTT delay of multi-path (1:2sec) is periodically switching

between 125 ms and 105 ms. Therefore, the RTT delay is important to consider in order

to obtain the lower transmission delay. In the case of target file rate 400 and 500 Mbps

where the link becomes congested, the file transfer duration results of our proposed multi-

path (1:2sec) case outperform the using Path 1 alone and Path 2 alone cases. However, the

target file transfer rate of 500 Mbps is not recommended to use with our multi-path function

because it requires a longer delay than those of 400 Mbps rate. In that case, UDP packet

losses increase due to the overloaded links. The reason that the file transfer duration of our

proposed multi-path (1:2sec) case cannot outperform in the cases of target file transfer rate

100, 200, 300 Mbps is because using Tsunami file transfer protocol limits the maximum

transfer rate. So that the transfer rate cannot be more than the specified target rate when

using our multi-path function. The tested results of file transfer duration confirm that using

multi-path splitting function achieves the lowest file transfer duration time when the links

are congested and not enough to carry the whole traffic by using single path.

Figures 3.30 and 3.31 depict the actual file transfer rate and file transfer throughput for

three scenarios with various target file transfer rates. Those throughput results confirm the

results of file transfer duration as discussed in the above. The file transfer throughput is

the available throughput during the file transferring period. According to the file transfer

throughput results in the case of 400 and 500 Mbps target file transfer rates, the throughput

of using multi-path function is higher than that in using single-path alone. However, those

file transfer throughput results have not been used for calculating file transfer duration

results. In order to calculate the file transfer duration results, the actual file transfer rate

results as shown in Figure 3.30 have been used. According to the actual file transfer results,

the highest actual file transfer rate achieves in the case of using 400 Mbps target file rate

59

Figure 3.29: File transfer duration over OF@TEIN SDN cloud playground.

with multi-path scenario which combines the bandwidth of two paths periodically. In the

cases of 100, 200, 300 Mbps, we recommend to use only Path 2 (GIST-B � CHULA) in

order to avoid configuration complexity. Moreover, using the multiple network links can

lead to higher operating expenses (OPEX). However, multi-path function is recommended

to use in order to obtain the highest file transfer rate when the single-path alone is not

enough to carry out the whole video file traffic. We can see that trend from the case of

target file transfer rate 400 Mbps.

After completely received the video file in the middle-box VM, the middle-box VM

serves as a VLC streaming server for CHULA OpenStack VM. This experiment is in order

to evaluate the performance of downloaded video file and to stream out smoothly within

CHULA SmartX box network. The Big Buck Bunny H. 264 video codec with video and

audio mean bit rate of total 11133kbits/sec with resolution 3840 x 2610 and duration of 10

minutes, has been used for streaming from the middle-box VLC server to the video client

in CHULA OpenStack VM. The VLC player from the video server has been configured to

stream out video by using RTP mode. The VLC GUI interface has been used in order to

60

Figure 3.30: Actual file transfer rate over OF@TEIN SDN cloud playground.

Figure 3.31: File transfer throughput over OF@TEIN SDN cloud playground.

61

Figure 3.32: 4k RTP video streaming within CHULA SmartX box network.

stream out with original video tracks. The video packets are captured at eth1.111 of the

middle-box VM and eth1 of CHULA OpenStack VM by using tcpdump packet analyzer.

To investigate the performance of video streaming, we have run three times for the same

video streaming session. For the detailed dynamics of packet generation arriving at the

video server and the received packet stream departing at the video client, we include here

the arrival and departure curve in Figure 3.32. The number of packets shown in the graph is

the number of packets transmitted during video streaming. The number of packet losses is

zero in all tests. This curve confirms that 4k RTP video streaming within CHULA SmartX

box network can stream out without the extra delay.

3.3.3 Summary of Multi-path Chunked File Transferring and Streaming

over OF@TEIN SDN Cloud Playground

In this multi-path video file transferring and streaming experiments, we have

implemented the X 11 desktop environment and access method for OpenStack VMs in

order to use the GUI applications with fast access. In addition, we have tested the

combination of traditional Tsunami protocol and proposed multi-path file transferring

function. According to the tested results with three scenarios: multi-path (1:2 sec), using

62

Path 1 alone (GIST-B � MY � CHULA) and using Path 2 alone (GIST-B � CHULA),

the proposed multi-path file transferring method can be transferred with the minimum

transmission delay when the links are congested and not enough to carry the whole video

file traffic. Moreover, using multi-path function can be achieved the maximum actual file

transfer rate and throughput when the selected target file transfer rate of Tsunami

protocol lead to be congested on the available network links. However, this multi-path file

transferring method is not recommended when the main path capacity already suffices for

carrying out the incoming packets of video file traffic and the main path already having a

lower RTT delay than other available paths due to the results of target file transfer rates

(100, 200, and 300 Mbps) by using Path 2 alone. As for the links with higher RTT delay,

our multi-path file transferring method can be beneficially applied in order to transfer

with lower transmission delay, higher file transfer rate and throughput. Therefore, the

RTT delay is important to consider in order to transmit with the low transmission delay.

Moreover, the tested local video streaming results confirm that our implemented testbed

can stream out the 4k resolution video within CHULA SmartX box network by using X11

desktop environment. However, we observe one fact that the VLC application itself has

some limitations to play back video with very high resolution, even in normal playing back

without a streaming session. Therefore, when streaming out 4k resolution video with cloud

playground, it is recommended to adjust the video resolution scale to be around 50% (eg.

resolution:1630x937) lower than the normal 4k resolution scale.

63

3.4 Design of Adaptive-path Chunked Video Streaming over

OF@TEIN Wired and Wireless Links

Video streaming over Wi-Fi network is one of the most popular applications in today’s

internet network and its need the seamless network connectivity. However, traditional

Wi-Fi network is still having the limitation on mobility management. Wi-Fi handover

delay time can be increased the video freezing period so that performance of video can be

decreased. Even video streaming over the local wired network and wireless networks are

having many challenging issues, video streaming between two different countries through

wired and wireless networks require more advanced techniques. To investigate these

challenges, we have introduced the adaptive-path chunked video streaming with chunked

video pre-transferring mechanism over OF@TEIN international wired and wireless links in

this section. The objective of this experiment is to introduce the combination of cloud

video streaming service over the international OF@TEIN wired links and software-defined

wireless links at OpenFlow@Chula-EE lab-scaled SDN wireless testbed. The main

functionality of chunked video pre-transferring mechanism during the handover process for

resulting less video freezes and reducing resource consumption of wireless network have

been explained in the following section.

3.4.1 Implementation of Adaptive-path Chunked Video Streaming over

OF@TEIN Wired and Wireless Links

In this experiment, the video server and video client are located in different countries

nodes: GIST-B (Korea) and Chula (Thailand), respectively. The SSIDs of two

OpenFlow-enabled access points (APs) are namely SDN-AP1 and SDN-AP2.

sFlow-RT [64] for monitoring real-time traffic visibility tool has been used in order to

monitor the real-time traffic of two OpenFlow-enabled APs. Two PCs with running

Ubuntu OS at Telecommunication System Research Laboratory (TSRL), 13th Floor,

Engineering Building 4, Chula have been used as sFlow monitoring servers. The physical

APs location, station (STA) machine, remote and monitoring machine are shown in

Figure 3.33

64

Figure 3.33: Physical location of APs and machines for adaptive-path chunked video
streaming over OF@TEIN wired and wireless links.

Figure 3.34: Overview of adaptive-path chunked video streaming over OF@TEIN cloud
playground with wired and wireless links.

65

The overview of adaptive-path chunked video streaming over OF@TEIN wired and

wireless links with chunked video pre-transferring mechanism is shown in Figure 3.34.

The architecture of this adaptive-path chunked video streaming over OF@TEIN wired

and wireless links includes 4 OVS bridges which are GIST-B (br-devops), CHULA

(br-devops) and 2 OpenFlow-enabled access points (ovs-ap1 and ovs-ap2). The

implementation of wireless testbed consists of two TPLINK-TL 1043ND V2.1 (2.4 GHz,

450 Mbps, IEEE 802.11 b/g/n) routers which are running OpenWrt Chaos Calmer 15.05

with Linux operation system. OpenWrt [56] is one of the most popular Open Source

Third party firmwares among wireless SDN researchers. Both access points (APs) operate

on Channel 11, IEEE 802.11 n and 20 dbm (100mW) transmit power. As a trial of the

combination of OF@TEIN international wired testbed and OpenFlow@Chula-EE

lab-scaled SDN wireless testbed, security and authentication systems have not been

considered in this implementation and only one user has been allowed to use

OpenFlow@Chula-EE lab-scaled SDN wireless network. All APs have been operated on

Open Access without the encryption key. We have installed Open vSwitch software

(version 2.3.90) to enable OpenFlow rules into our routers. These two APs are connected

with Open vSwitch in CHULA SmartX box via VxLAN tunneling. The automatic

configuration shell script files for configuring OVSs in APs have been developed. In order

to configure wireless network to be OpenFlow-enabled network, the modification of

network, wireless and firewall files inside OpenWrt system have been required. WAN ports

(eth0) of APs have been used for management, VxLAN tunneling and monitoring the

real-time traffic via sFlow-RT. In order to keep alive the packets forwarding function in

OVSs when controller fails, OVSs have been configured in ‘fail-safe-mode (standalone)’.

The installation and configuration steps for OpenFlow-enabled routers and VxLAN

configuration will be described in the Appendix G. Both APs have been placed at

Telecommunication System Research Laboratory (TSRL), 13th Floor, Engineering

Building 4 and the distances between two APs are about 27 m (90ft). Since two APs are

located very closed, we have removed two antennas from APs and have used only one

antenna in order to perform the handover process. A POX controller Python script for

controlling wired and wireless networks and on-request dynamic routing functions have

66

been developed. The details architecture of the combining OF@TEIN wired network and

OpenFlow@Chula-EE lab-scaled SDN wireless testbed adaptive-path chunked video

streaming is shown in Figure 3.35.

Figure 3.35: Architecture of adaptive-path chunked video streaming over OF@TEIN cloud
playground with wired and wireless links.

As shown in Figure 3.35, 4 OVSs including GIST-B (br-devops), CHULA (br-devops)

and 2 OpenFlow-enabled APs (ovs-ap1 and ovs-ap2) are controlled by POX controller in

which the controller server is located at GIST (Korea). The video streams out from the

OpenStack video server (Virtual Machine) at GIST-B later on will be referred as SVR

(server) to the video client (Laptop with Ubuntu OS) namely STA (station). The STA

Laptop has been used with two WLAN cards (Intel Ultimate N WiFi Link 5300 and

Ralink 802.11 n USB WLAN) at TSRL to connect OF@TEIN wired networks and

lab-scaled Openflow@Chula-EE wireless networks. Two APs have been configured to be

the same network and sub-netmask as in GIST-B OpenStack VM which is the IP address

192.168.11.1/24 for GIST-B OpenStack VM with VLAN ID (111), SDN-AP1

(192.168.11.2/24) and SDN-AP2 (192.168.11.3/24) in which OVSs (ovs-ap1 and ovs-ap2)

of APs have been configured as DHCP servers.

Four scenarios have been evaluated for this adaptive-path chunked video streaming

over OF@TEIN wired and wireless links experiments. They are (1)adaptive-path chunked

67

video streaming using single WLAN with 100% duplication (2) adaptive-path chunked

video streaming using dual WLANs with 100% duplication (3) adaptive-path chunked

video streaming using dual WLANs with chunked video pre-transferring mechanism and

(4) adaptive-path chunked video streaming using dual WLANs without chunked video

pre-transferring mechanism. The timing diagrams for adaptive-path chunked video

streaming over OF@TEIN wired and wireless links experiments are as shown in the

following Figures.

Figure 3.36: Timing diagram of adaptive-path chunked video streaming using dual
WLANs with chunked video pre-transferring mechanism.

The timing diagram for proposed adaptive-path chunked video streaming over

OF@TEIN wired and wireless links with chunked video pre-transferring mechanism is

shown in Figure 3.36. There are 7 components in this diagram which are SVR (GIST-B

OpenStack VM: Video Server), CTL (POX controller), GIST-B SmartX box, CHULA

SmartX box, two OpenFlow-enabled APs and STA (Station for video client). A total 20

signalling processes need to be done for this adaptive-path chunked video streaming with

chunked video pre-transferring mechanism. Firstly, the POX controller at GIST starts

adding the flow entries to GIST-B (br-devops) for forwarding packets to CHULA

(br-devops). As for CHULA (br-devops), the controller starts add the flow entries for

forwarding packets only to AP2 since client always starts associating with AP2 in every

test scenario in order to simplify testing. For AP1 and AP2, before STA does not start

68

associating with them, the controller adds flow entries only for LOCAL port to wlan0

port. (1) Since STA has two WLAN interfaces (wlan0 and wlan1), we have used wlan0

interface to connect to AP2 and wlan1 for connecting with AP1. Both wlan0 and wlan1

have been configured to have the same MAC addresses in order to obtain the same IP

address assignment from both AP1 and AP2. Once STA starts associating with AP2, it

will send the DHCP request to AP2 and then AP2 forwards this DHCP request to

controller for allowing requested IP address (2). After reception of the DHCP request

from AP2 at the controller via PacketIn message, the controller adds the flow entries for

allowing STA IP address and GIST-B OpenStack IP address to be reachable each other.

In this stage, VLAN ID 111 header has been added to the packets arrive from STA using

mod vlan id action and strip vlan action for the packets arrive from GIST-B OpenStack

VM via vxlan ap2. (3-6)

After STA has been completely associated with AP2, SVR starts streaming out the

video towards STA via AP2 (7) and also STA starts run the client initiated handover shell

script. In this experiment, the client initiated handover and on-request dynamic routing

functions have been used in order to perform handover testing with less video freezes. To

perform the client initiated handover and on-request dynamic routing functions, a shell

script file for STA to scan the wireless signal level in every second, sending request signal,

namely fake DHCP request (8) for changing the route and automatic handover to another

AP once current AP wireless signal strength is less than or equal to the threshold level

(Signal strength ≤ -68dbm) have been developed. According to the signalling messages

send by STA, the controller takes the action for on-request dynamic routing function. The

OVS (br-devops) in CHULA SmartX Box is responsible for chunked video pre-transferring

before the handover events occur between APs. Chunked video pre-transferring mechanism

which is transmitting the chunked video packets between each OpenFlow-enabled AP during

STA is staying in one AP coverage area or before STA is arriving to another AP coverage

area. When AP2’s signal strength is less than or equal to -68dbm, STA starts sending the

first fake DHCP request by using dhcping tool [65] to AP2 and then the controller notices

that event via PacketIn message (8-9). Once the controller receives the message from a

STA, it will instruct CHULA (br-devops) to forward the duplicate chunked video packets

69

to both current AP station and another AP station once before the STA reaches to the

next AP station (10). Therefore, the duplicate video packet transmission called chunked

video pre-transferring starts until the new signalling message comes from STA (11). So the

need for the perfect synchronization of chunk assignment to the two APs would be relaxed.

Therefore, the client can stream the video with less video freeze time during the handover

process. Before handover to AP1, STA waits for 1 second to make sure that the controller

has already added the duplicate flow entries to CHULA (br-devops). After that the STA

starts client initiated handover via wlan1 to AP1 and the controller assigns the flow entries

to AP1 as in the AP2 (12-16). Followed by this process, wlan0 in STA disconnects from

AP2 and the duplicated streaming still remain(17). To release the unnecessary traffic usage

in AP2, STA sends another fake DHCP request via AP1 and the controller takes this action

for changing the route only to AP1 and stop duplicating packets (18-20). Finally, the SVR

streams out the video to STA via only AP1 until the video end. The state machine diagram

for client initiated handover processes is depicted in Figure 3.37 and event driven program of

STA for client initiated handover processes with chunked video pre-transferring mechanism

is shown in Figure 3.38.

Figure 3.37: State machine diagram of STA for client initiated handover processes.

As for the timing diagram for adaptive-path chunked video streaming using Dual

WLANs without chunked video pre-transferring mechanism is shown in Figure 3.39. The

signalling processes (8-11) from the timing diagram of using chunked video

pre-transferring do not include in this without using chunked video pre-transferring

mechanism. Other processes are the same as in the timing diagram of using chunked video

pre-transferring mechanism. Event driven program of STA for client initiated handover

processes without chunked video pre-transferring mechanism is the same as in the

70

Figure 3.38: Event driven program of STA for client initiated handover processes with
chunked video pre-transferring mechanism.

program of using chunked video pre-transferring mechanism except the processes :‘send

fake DHCP to AP2’ ,‘start pre-transferring’ and ’stop pre-transferring’ are not included in

this event driven program as shown in Figure 3.40.

The timing diagram for adaptive-path chunked video streaming by using single WLAN

with 100% duplication and using dual WLANs with 100% duplication are shown in

Figures 3.41 and 3.42. Moreover, the event driven program of STA for client initiated

handover processes by using single WLAN and dual WLANs with 100% duplication cases

are shown in Figures 3.43 and 3.44.

The port information of GIST-B (br-devops), CHULA (br-devops), AP1 (ovs-ap1) and

AP2 (ovs-ap2) are shown in Table 3.19 and flow entries are shown in Figures 3.45, 3.46,

3.51, 3.52. As shown in Figure 3.45 for the flow entries of br-devops in GIST-B SmartX

box, when the packets arrive from the GIST-B OpenStack VM via devops vlan (1), it will

be forwarded to vxlan TH (3) towards CHULA SmartX box. When the packets arrive from

CHULA SmartX box via vxlan TH (3), it will be forwarded to GIST-B OpenStack VM via

devops vlan (1).

71

Figure 3.39: Timing diagram of of adaptive-path chunked video streaming using dual
WLANs without chunked video pre-transferring mechanism.

Figure 3.40: Event driven program of STA for client initiated handover processes without
chunked video pre-transferring mechanism.

The flow entries of CHULA (br-devops) are shown in Figure 3.46 in which br-devops is

responsible for on-request dynamic routing function. As described in above, STA always

72

Figure 3.41: Timing diagram of of adaptive-path chunked video streaming using single
WLAN with 100% duplication.

Figure 3.42: Timing diagram of of adaptive-path chunked streaming using dual WLAN
with 100% duplication.

connects to SDN-AP2 so that the route to SDN-AP2 is enabled once the controller starts

execute, it forwards packets via vxlan TEST (2) to vxlan ap2 (6) and then also add the flow

for the reverse direction. The actions: ALL has been used for chunked video pre-transferring

mechanism when the STA sends the signal for signal strength notification before handover to

SDN-AP1. Once STA completely handover to SDN-AP1, STA will send another signalling

73

Figure 3.43: Event driven program of STA for client initiated handover processes using
single WLAN with 100% duplication.

Figure 3.44: Event driven program of STA for client initiated handover processes using
dual WLAN with 100% duplication.

message to change the route only to SDN-AP1 which is for forwarding packets only via

vxlan ap1(8).

74

Table 3.19: Port information for SmartX boxes (GIST-B,CHULA) and access points
(SDN-AP1 and SDN-AP2)

SmartX boxes br-devops ports

GIST-B(103.22.221.31)
1(devops vlan)
3(vxlan TH)

CHULA(161.200.25.99)
2(vxlan TEST)
6(vxlan-ap2)
8(vxlan-ap1)

SDN-AP1(161.200.90.120)

1(eth1)
2(wlan0)
3(vxlan TH)
LOCAL(ovs-ap1)

SDN-AP1(161.200.90.103)

1(eth1)
2(wlan0)
3(vxlan TH)
LOCAL(ovs-ap2)

Figure 3.45: Flow entries of GIST-B (br-devops) for wireless streaming.

The signalling messages (fake DHCP request) sent by STA to SDN-AP1 and SDN-AP2

for dynamic routing are described in Figure 3.47 for changing routes to both APs and

Figure 3.48 for changing route only to SDN-AP1. Moreover, STA associated messages with

SDN-AP1 and SDN-AP2 are shown in Figures 3.49 and 3.50. However, those associated

messages appear only in the first time when STA associates with APs. After installing

flow entries for those associated requests, no message appears in the controller terminal

and STA can associate with APs within a short period of time. All messages are shown in

Figure 3.46: Flow entries of CHULA (br-devops) for wireless streaming.

75

Figures 3.47-3.50 are messages appeared in the POX controller terminal.

Figure 3.47: 1st Signalling message (fake DHCP request via SDN-AP2) for routing to
both SDN-AP1 and SDN-AP2.

Figure 3.48: 2nd Signalling message (fake DHCP request via SDN-AP1) for routing only
to SDN-AP1.

Figure 3.49: STA associated message to SDN-AP1.

Figure 3.50: STA associated message to SDN-AP2.

The flow entries of SDN-AP1 and SDN-AP2 are shown in Figures 3.51 and 3.52. The

flow entries for SDN-AP1 and SDN-AP2 are similar, except the LOCAL OVS IP

addresses (192.168.11.2 and 192.168.11.3) are different. Firstly, the controller installs flow

entries to forward packets arrive from an ingress port 2 (wlan0) to LOCAL port without

the limitation of destination IP address for both SDN-AP1 and SDN-AP2. In this

76

implementation, only one user IP address has been allowed in order to simplify

experiments. To allow the DHCP request, the flow entries with the specified network

destination IP address of the STA (192.168.11.142) install in SDN-AP1 and SDN-AP2

upon STA request. Moreover, to be able to transmit packets from GIST-B OpenStack VM

to STA which is connected to OpenFlow@Chula-EE wireless networks, the flow entries

which include strip vlan action and mod vlan vid:111 have been installed. The reason is

that, OpenStack VM network have been configured with VLAN ID 111 while Wi-Fi

network is not. In both AP1 and AP2, for the packets arrive from an ingress port wlan0

(2), the header VLAN ID 111 has been added with the specified destination IP address of

GIST-B OpenStack VM (192.168.11.1) and forwarded via an egress port vxlan TH (3)

towards CHULA SmartX box. The processes of POX controller for all four scenarios are

shown in Figures 3.53 and 3.54. The DPID of each Open vSwitch and strings are shown

in Table 3.20.

Figure 3.51: Flow entries for SDN-AP1.

Figure 3.52: Flow entries for SDN-AP2.

Table 3.20: DPIDs and DPID strings of Open vSwitches in wireless streaming.

DPIDs of Open vSwitches DPID string
SDN-AP1:ovs ap1 (2222222222222201) 2459565876494606849
SDN-AP2:ovs ap2 (2222222222222202) 2459565876494606850
GIST-B: br-devops (4444444444444401) 4919131752989213697
CHULA: br-devops (4444444444444403) 4919131752989213699

77

Figure 3.53: POX controller processes for adaptive-path chunked video streaming using
single WLAN and dual WLANs with 100% duplication.

78

Figure 3.54: POX controller processes for adaptive-path chunked video streaming with
and without using chunked video pre-transferring mechanism.

79

3.4.2 Results and Discussion of adaptive-path Chunked Video Streaming

over OF@TEIN Wired and Wireless Links

A Frozen video [47] clip with H. 264 video codec, 1280x572 resolution, total video/audio

bit rate 1128kbits/s and 2-minutes playback duration has been used in this chunked video

streaming over OF@TEIN wired and wireless links. A VLC server in GIST-B OpenStack

VM streams out the video with RTP mode by using command line. Ubuntu 12.04 LTS,

Intel Core 2 Duo 2.8 GHz x 2 personal with 2 WLAN cards is used for a Wi-Fi video

streaming client. UDP iPerf testing has been performed in order to check the available

bandwidth capacity between GIST-B OpenStack VM and WiFi client (STA). According

to the iPerf tests, around 8 Mbps has been obtained from GIST-B to SDN-AP1 link and

around 28 Mbps via SDN-AP2. The stochastic bandwidth capacity of wireless networks

and international links is the challenging issues in this experiment.

Four scenarios have been tested for performing handover testing with adaptive-path

chunked video streaming as follows: (1) single WLAN with 100% duplication (2) dual

WLANs with 100% duplication (3) dual WLANs with chunked video pre-transferring

mechanism and (4) dual WLANs without chunked video pre-transferring mechanism.

Among those four scenarios, only scenario 3 sends the signalling messages for on-request

dynamic routing function. In all scenarios, STA always starts connecting to SDN-AP2 and

then moves towards the SDN-AP1 coverage area. Once STA starts associating with

SDN-AP2, we start executing the client initiated handover shell script file in STA for

checking signal strength in every second and for automatic handover once specified

threshold is over.

As in the previous video streaming experiments, tcpdump [57], a command line packet

analyzer, has been used for capturing video packets at ‘eth1’ interface of GIST-B OpenStack

cloud video server and ‘any’ interface of Wi-Fi STA at TSRL lab. sFlow-RT monitoring

tool has been used for measuring the real-time resource consumption of access points. To

evaluate the resource consumption of each access point and performance of video during

the handover process with four scenarios, we have tested for each scenario with the same

parameter settings and computed the packet loss ratio. The packet rate results of real-time

traffic monitoring from sFlow-RT [64] use to calculate the resource consumption results for

80

each AP. The rate of UDP traffic (bps) obtain from the sFlow-RT monitoring results and

then convert to packets per second by using UDP traffic(bps)/(1370*8) in which 1370 is

the packet size of UDP packet. We sum all the packets per second values to get the total

resource consumption rate for each access point. Since the purpose of this experiment is

to investigate the effects of the handover process on video quality in terms of PSNR, the

packet delay or jitter has not been considered. The comparison of resource consumption

and packet loss ratio using four scenarios for adaptive-path chunked video streaming over

OF@TEIN wired and wireless links are shown in Table 3.21.

From Table 3.21, the packet loss ratio is 5.7% for single WLAN with 100% duplication

case. The reason is because only one WLAN card has been used and video packets cannot

playback during the handover process due to IP address has released from wlan0 of STA and

it takes time for waiting the IP address assignment from the new AP. Therefore, the packet

drop occurs during the handover process when using single WLAN with 100% duplication

scenario. The packets arrival and departure curve and associated events of APs by using

single WLAN with 100% duplication scenario can be seen in Figure 3.55. In order to

investigate the effects of the handover process between a server and a client, we have offset

the packets/s at server to start the same period with the client in the resultant graph so

that the occurrence of events in each time slot can be seen clearly. In order to filter out only

RTP packets, the position of associated events and handover events occurrence, we have

used wireshark [46] filters ‘rtp’ and ‘tcp.port == 67 ‖ udp.port == 67’ (DHCP events) in

IO graph statistic.

Table 3.21: Resource consumption of access points vs video performance at STA

Scenario
Resource Consumption (packets/s) Video Performance at STA

Total packets/s via AP1 Total packets/s via AP2 Total packets/s via AP1+AP2 Packet loss ratio (%)
Single WLAN with
100% duplication

14580.4 14686.0 29266.3 5.7

Dual WLANs with
100% duplication

15030.3 13054.8 28085.2 0.1

Dual WLANs with chunked
video pre-transferring

9355.4 7648.5 17003.9 0.9

Dual WLANs without
chunked video pre-transferring

4584.3 8333.1 12917.3 1.4

When compared to the cases of using dual WLANs with 100% duplication and with

chunked video pre-transferring scenarios, packet loss ratio of using 100% duplication

outperforms the case of using chunked video pre-transferring mechanism. This is because

81

Figure 3.55: Chunked video streaming using single WLAN with 100% duplication.

of using 100% duplication does not require to add the route flow again when STA moves

to the new AP coverage area while using chunked video pre-transferring requires for

updating flow entry to the new AP. However, both cases have some video burst errors

during the handover process due to updating the IP address of WLAN interface in STA.

Although using 100% duplication case is less packet loss ratio than using chunked video

pre-transferring case, the former case consumes the resource consumption of AP for the

whole period of video streaming even though there has no any client associate with it

while the latter is not. When considering about reducing the cost of resource

consumption, we recommend the proposed chunked video pre-transferring mechanism so

that non-associated AP can be relaxed when it does not require. Moreover, every case has

pros and cons because using chunked video pre-transferring raises the challenges of

sending signal strength status alert messages to AP and the controller. According to the

packet loss results without chunked video pre-transferring case, the result of packet loss

ratio confirms that the proposed chunked video pre-transferring scenario requires for

achieving the lowest video freezes. The small video burst errors during the handover

82

Figure 3.56: Chunked video streaming using dual WLANs with 100% duplication.

Figure 3.57: Chunked video streaming using dual WLANs with chunked video pre-
transferring.

83

Figure 3.58: Chunked video streaming using dual WLANs without chunked video pre-
transferring.

process needs to be improved in the future experiments. According to the results of

resource consumption using 100% duplication and proposed pre-transferring mechanisms,

using 100% duplication trade-off more resources for better video quality. When

considering the lots of path condition cases, the proposed pre-transferring mechanism may

consume less resources for similar received video quality. An adaptive controls on the

amount of resource consumption based on the path monitoring results (for real-time traffic

on each router) needs to be considered in the future. Finally, we have implemented and

tested the combination of international cloud video streaming via OpenFlow@Chula-EE

lab-scaled Wi-Fi links in this section. The results confirm that the implemented

adaptive-path chunked video streaming with cloud service can stream out with less video

freezes by using the proposed chunked video pre-transferring scenario. The packet loss

period, signal strength alert message period and handover period of scenarios (2-4) are

shown in Figures: 3.56-3.58. As in the scenario 1, the packets/s of server has been offset to

start the same time slot with the packets/s on client in each graph.

The screen captures of tested four scenarios with real-time monitoring sFlow-RT traffic

84

Figure 3.59: Video freeze events at STA and sFlow-RT real-time monitoring graph for
single WLAN with 100% duplication case.

Figure 3.60: Video burst errors events at STA and sFlow-RT real-time monitoring graph
for dual WLANs with 100% duplication.

85

Figure 3.61: Video burst errors events at STA and sFlow-RT real-time monitoring graph
for dual WLANs with chunked video pre-transferring.

Figure 3.62: Video burst errors events at STA and sFlow-RT real-time monitoring graph
for dual WLANs without chunked video pre-transferring.

86

graphs are shown in Figures 3.59- 3.62. The screen capture at STA side for each scenario

show the long video freezes events for single WLAN with 100% duplication case and video

burst errors events for other three scenarios during the handover process. The reported

video capture burst errors and video freezes events confirm the reported results of packet

loss ratio. Moreover, the real-time traffic monitoring at sFlow-RT server shows the resource

consumption rate for each access point.

3.4.3 Summary of Adaptive-path Chunked Video Streaming over

OF@TEIN Wired and Wireless Links

In this adaptive-path chunked video streaming over OF@TEIN wired and wireless

links experiments, we have implemented and tested the combination of OF@TEIN cloud

video streaming service and OpenFlow@Chula-EE lab-scaled wireless links for a single

user. Moreover, we have developed the automatic shell script for client initiated handover

for Ubuntu Wi-Fi STA and the POX controller Python script for on-request dynamic

routing function. We have tested adaptive-path chunked video streaming with four

scenarios: (1)single WLAN with 100% duplication (2) dual WLANs with 100%

duplication (3)dual WLANs with chunked video pre-transferring mechanism and (4) dual

WLANs without chunked video pre-transferring mechanism. Among them, using single

WLAN with 100% duplication is not recommended due to the highest video freezes during

handover process and using dual WLANs with 100% duplication is also not recommended

when considering the cost of resource consumption. Using dual WLANs with chunked

video pre-transferring is recommended for streaming with less video freezes and reducing

the cost of resource consumption for non-associated APs, but sending signalling alert

message challenge still remains to address in the future. Moreover, using dual WLANs

without chunked video pre-transferring case is recommended when not considering the

packet loss rate since it also can reduce the cost of resource consumption for APs.

According to the results of resource consumption using 100% duplication and proposed

pre-transferring mechanisms, using 100% duplication trade-off more resources for better

video quality. When considering the lots of path condition cases, the proposed

pre-transferring mechanism may consume less resources for similar received video quality.

87

Moreover, when implementing wireless SDN network with Open vSwitch over OpenWrt

firmware, it is recommended to configure as ‘fail-safe-mode (standalone)’ in order to keep

alive flow entries when the controller fails. Moreover, it notices that software switch on

OpenWrt can be shut down frequently. Therefore, ‘openflow.keepalive’ command requires

to use when the controller starts. As for the further experiments, multi-users supporting,

signalling alert system and security rules need to be considered for future implementation.

An adaptive controls on the amount of resource consumption based on the path

monitoring results (for real-time traffic on each router) needs to be considered in the

future.

Chapter 4

Conclusion

In this thesis, we have studied the performance of chunked video streaming and file

transferring over emulated OpenFlow network and real experiments over the international

OF@TEIN SDN cloud playground testbed with wired and wireless links. As a first

method, we have designed and evaluated the functionalities of middle-box and load

splitting for chunked video streaming over the OpenFlow-enabled multi-path Mininet

network and real international OF@TEIN SDN cloud playground testbed which includes

three countries: Korea, Malaysia and Thailand. Secondly, we have also evaluated the

combination of proposed multi-path file transferring function and traditional Tsunami

UDP file transferring protocol on actual. Finally, we have implemented

OpenFlow@Chula-EE lab-scaled SDN wireless networks for combining with OF@TEIN

cloud video streaming service and introducing the proposed chunked video

pre-transferring mechanism during Wi-Fi handover process. Various scenarios and

parameters have been used for evaluating the performance of subjective video quality, file

transferring in the listed experiment scenarios.

Firstly, RTP video streaming experiments with the total encoding bit rate 296

kbits/sec (experiment1) and 246 kbits/sec (experiment 2) have been tested for

investigating the middle-box and splitting functionalities and buffering effects over

emulated multi-path OpenFlow network. The emulated network has been implemented

with congested and non-congested links for carrying the whole video streaming. According

to the reported packet delay, jitter and packet loss results in emulated experiment1, the

multi-path video streaming method can be beneficially applied in the network when the

capacity of the main path alone is not enough to carry the whole incoming packets of the

video stream. However, this multi-path video streaming method is not recommended

when the main path capacity already suffices for carrying out the incoming packets of

video stream due to the results of emulated experiment1. Since by introducing splitting

and combining functionalities, relevant complexities, e.g. mismatching of proper chunk

splitting ratio, could worsen the received subjective video quality in terms of packet loss

89

ratio and mean/standard deviation of packet delay. According to the results of emulated

experiment2, we observe that the proper chunk size ratio and initial buffering time need to

be considered carefully to improve the mean/standard deviation of packet delay. In

addition, it is recommended to use the high performance machine for the middle-box

processing since the maximum possible packet scheduling rate of the middle-box depends

directly on computer hardware specifications.

Secondly, RTP video streaming experiments with encoding bit rate 628 kbits/sec over

multi-path international OF@TEIN SDN cloud playground have been tested and reported.

Unlike in the emulated network, the selected paths via Malaysia and direct link between

GIST-A and CHULA are abundant bandwidth to carry the video streaming traffics and

the link capacities are stochastically time varying. The reported packet delay, jitter results

confirm the recommendation from our emulated multi-path video streaming that is ‘using

multi-path video streaming method is not recommended when the main path capacity

already suffices for carrying out the incoming packets of video stream’. The RTT delay

of transmission paths are necessary to consider in order for transmitting packets with low

delay according to the tested results. When implementing the middle-box over OF@TEIN

SmartX boxes, careful allocation of memory and configuration are required in order to avoid

looping issue and full memory issue of SmartX box. During experiments over OF@TEIN

playground, the longest time has been taken for transferring the experimental data from

one country node to another.

Thirdly, the combination of proposed multi-path file transferring function and

traditional Tsunami UDP file transferring protocol has been evaluated with various

scenarios in order to solve the file transferring delay between far distance nodes.

According to the tested results, the proposed multi-path file transferring method can be

transferred with minimum transmission delay when the links are congested and not

enough to carry the whole video file traffic. Moreover, using multi-path function can be

achieved the maximum actual file transfer rate and throughput when the selected target

file transfer rate of Tsunami protocol lead to be congested on the available network links.

However, this multi-path file transferring method is not recommended when the main

path capacity already suffices for carrying out the incoming packets of video file traffic and

90

the main path already having a lower RTT delay than other available paths. The time

responsiveness or interactivity of GUI applications in accessing remote OpenStack VMs

have been solved out by implementing X11 Desktop Environment. Therefore, 4k video

streaming with encoding bit rate 11133kbits/sec within CHULA SmartX box network has

been performed by using X11 remote desktop environment. However, we observe one fact

that the VLC application itself has some limitations to play back video with very high

resolution, even in normal playing back without a streaming session. Therefore, when

streaming out 4k resolution video with cloud playground, it is recommended to adjust the

video resolution scale to be around 50% (eg. resolution:1630x937) lower than the normal

4k resolution scale.

Finally, we have also implemented OpenFlow@Chula-EE lab-scaled wireless SDN

testbed for combining OF@TEIN cloud video streaming service and introducing chunked

video pre-transferring mechanism during the handover process for a single user. Moreover,

we have developed the automatic shell script for client initiated handover for Ubuntu

Wi-Fi STA and the POX controller Python script for on-request dynamic routing

function. According to the reported packet loss results, the proposed chunked video

pre-transferring mechanism can stream out the video with less video freezes during the

handover process. Moreover, the proposed method can be reduced the cost resource

consumption for non-associated APs. According to the results of resource consumption

using 100% duplication and proposed pre-transferring mechanisms, using 100%

duplication trade-off more resources for better video quality. When considering the lots of

path condition cases, the proposed pre-transferring mechanism may consume less

resources for similar received video quality. Using dual WLAN cards of STA is

recommended to perform for seamless handovers. However, sending signal alert message

challenge still remains to address in the future. Moreover, when implementing wireless

SDN network with Open vSwitch over OpenWrt firmware, it is recommended to configure

as ‘fail-safe-mode (standalone)’ in order to keep alive flow entries when controller fails.

Moreover, it notices that software switch on OpenWrt can be shut down frequently.

Therefore, ‘openflow.keepalive’ command requires to use when the controller starts.

For the future work, the performance of video streaming with multi-path TCP (mTCP)

91

over OF@TEIN playground is worth to study. OpenFlow 1.3 group function for load-

balancing over international links should be used instead of periodic splitting function. So

that OpenFlow overhead messages would be reduced. Moreover, supporting multi-users

with multi-path cloud video streaming is also an additional study to be considered. As for

the wireless SDN streaming, network initiated handover, multi-users supporting, signalling

alert system, centralized authentication management and security rules should be considered

for future implementation. Moreover, deploying the SDN Wi-Fi network for mobile users

is also one of the interesting approaches for future wireless mobile network. An adaptive

controls on the amount of resource consumption based on the path monitoring results (for

real-time traffic on each router) needs to be considered in the future. In addition, it is

recommended to measure the video quality in terms of PSNR to investigate more about the

video quality since the evaluation results of this thesis focus only on the subjective video

quality in terms of transmission parameters at network layer such as packet loss ratio and

packet delay.

References

[1] ONF Market Education Committee, and others. Software-defined networking: The

new norm for networks. ONF White Paper. Palo Alto, US: Open Networking

Foundation (April, 2012).

[2] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,

Shenker, S., and Turner, J. Openflow: enabling innovation in campus networks.

ACM SIGCOMM Computer Communication Review 38 (April, 2008): 69-74.

[3] ORBIT [Online]. Available from : https://www.orbit-lab.org/ [2016, May]

[4] NITOS [Online]. Available from : http://nitlab.inf.uth.gr/NITlab/ [2016, May]

[5] SmartFire project [Online]. Available from : http://eukorea-fire.eu/ [2016, May]

[6] Risdianto, A. C., Kim, N. L., Shin, J., Bae, J., Usman, M., Ling, T. C., Panwaree,

P., Thet, P. M., Aswakul, C., Thanh, N. H., Iqbal A., Javed, U., Ilyas, M. U.,

and Kim, J. OF@TEIN: A community efforts towards open/shared SDN-Cloud

virtual playground. in Proc. of the Asia-Pacific Advanced Network 40 (August

10-14, 2015): 22-28.

[7] Risdianto, A. C., Kim, N. L., Shin, J., Bae, J., Usman, M., Ling, T. C., Panwaree,

P., Thet, P. M., Aswakul, C., Thanh, N. H., Iqbal A., Javed, U., Ilyas, M. U.,

and Kim, J.Presentation of OF@TEIN: A community efforts towards open/shared

SDN-Cloud virtual playground. [Online]. Available from : https://www-lk.apan.

net/meetings/KualaLumpur2015/Sessions/11/SDN-4.pdf [2016, May]

[8] Wang, B., Wei, W., Guo, Z., and Towsley, D. Multipath live streaming via TCP:

scheme, performance and benefits. in Prof. of ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM) (2009): 25.

[9] Panwaree, P., Kim, J., and Aswakul, C. Packet delay and loss performance

of streaming video over emulated and real openflow networks. in Proc. of

29th International Technical Conference on Circuit/Systems Computers and

Communications (ITC-CSCC), (July 1-4, 2014): 777-779.

[10] Panwaree, P., Kim, J., and Aswakul, C. SDN-Coordinated multi-path chunked video

streaming. Master’s Thesis, Department of Electrical Engineering, Chulalongkorn

University, Thailand (2014).

[11] Dely, P., Kassler, A., Chow, L., Bambos, N., Bayer, N., Einsiedler, H., Peylo, C.,

Mellado, D., and Sanchez, M. A software-defined networking approach for handover

management with real-time video in WLANs. Journal of Modern Transportation,

vol. 21, (June 10, 2013): 58-65.

93

[12] Qazi, Z. A., Tu, C. C., Chiang, L., Miao, R., Sekar, V., Yu, M. SIMPLE-fying

middlebox policy enforcement using SDN. in Proc. of ACM SIGCOMM Computer

Communication Review (August, 2013): 27-38.

[13] Kim, J., Cha, B., Kim, J., Kim, N. L., Noh, G., Jang, Y., and Kang, S. M. OF@TEIN:

An OpenFlow-enabled SDN testbed over international SmartX rack sites. in Proc.

of the Asia-Pacific Advanced Network 36 (August 19-23, 2013): 17-22.

[14] Gu, Y., and Grossman, RL. UDT: UDP-based data transfer for high-speed wide area

networks. in Proc. of Computer Networks 51 (May 16, 2007): 1777-1799.

[15] Meiss, M. R. Tsunami: A high-speed rate-controlled protocol for file transfer. Indiana

University 2004.

[16] Huang, C., Nakasan, C., Ichikawa, K., and Iida, H. A multipath controller for

accelerating GridFTP transfer over SDN. in Proc. of 2015 IEEE 11th International

Conference on IEEE (August 31, 2015): 439-447.

[17] OpenFlow 1.0 OpenFlow 1.0 Switch Specification, Version 1.0 (December 31, 2009).

[18] Cisco IT Blog [Online]. Available from : http://blogs.cisco.com/ciscoit/

sdn-101-what-it-is-why-it-matters-and-how-to-do-it [2016, May]

[19] Lantz, B., Heller, B., and McKeown, N. A network in a laptop: Rapid prototyping for

software-defined networks. in Proc. of ACM SIGCOMM Workshop on Hot Topics

in Networks (October, 2010): 19-24.

[20] Arefin, A., Rivas, R., Tabassum, R., and Nahrstedt, K. OpenSession: SDN-based cross-

layer multi-stream management protocol for 3D teleimmersion. in Proc. of 21st

IEEE International Conference on Network Protocols (October 7-10, 2013): 1-10.

[21] Ruckert, J., Blendi, J., and Hausheer, D. RASP: Using OpenFlow to push overlay

streams into the underlay. in Proc. of IEEE Thirteenth International Conference

on Peer-to-Peer Computing (P2P) (September, 2013): 1-2.

[22] Marcondes, C. A. C., Santos, T. P. C., Godoy, A. P., Viel, C. C., and Teixeira, C. A.

C. CastFlow: Clean-slate multicast approach using in-advance path processing

in programmable networks. in Proc. of IEEE Symposium on Computers and

Communications (ISCC) (July, 2012): 94-101.

[23] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,

Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hlzle, U., Stuart, S., and Vahdat,

A. B4: Experience with a globally-deployed software defined WAN. in Proc. of

ACM SIGCOMM Computer Communication Review vol. 21 , no. 4 (August 12-

16, 2013): 3-14.

94

[24] Pereira, R., and Pereira, E. G. Client buffering considerations for video streaming.

in Proc. of Advanced Information Networking and Applications Workshops

(WAINA), 27th International Conference on IEEE (2013): 595-600.

[25] Brief. OpenFlow-enabled mobile and wireless networks. ONF Solution,(2013).

[26] Claude, C., and Haddad, Y. Wireless software defined networks: Challenges and

opportunities. in Proc. of Microwaves, Communications, Antennas and Electronics

Systems (COMCAS), 2013 IEEE International Conference (October 21- 23,

2013): 1-5.

[27] Ericsson SDN projects [Online]. Available from : http://www.ericsson.com/spotlight/

cloud/network-modernization/sdn [2016, May]

[28] Nokia SDN projects [Online]. Available from : https://networks.nokia.com/ [2016, May]

[29] Cisco SDN projects [Online]. Available from : http://www.cisco.com/web/solutions/

trends/sdn/index.html [2016, May]

[30] Meru Networks Committee. SDN for Wi-Fi. Meru Networks White

Paper (2014) [Online]. Available from : www.completenetworks.co.uk/uploads/

meru-sdn-wifi.pdf [2016, May]

[31] Anyfi networks [Online]. Available from : http://www.anyfinetworks.com/ [2016, May]

[32] Yap, K. K., Kobayashi, M., Underhill, D., Seetharaman, S., Kazemian,

P., and McKeown, N. The Stanford Openroads deployment. in Proc.

of the 4th ACM international workshop on Experimental evaluation and

characterization (September 20-25, 2009): 59-66.

[33] Yap, K. K., Huang, T. Y., Kobayashi, M., Chan, M., Sherwood, R., Parulkar,

G., and Mckeown, N. Lossless handover with n-casting between WiFi-WiMAX

on OpenRoad. in Proc. of ACM Mobicom (Demo), vol. 12 (September 20-25,

2009): 40-52.

[34] Dely, P., Kassler, A., and Bayer, N. Openflow for wireless mesh networks. in Proc.

of 20th International Conference on Computer Communications and Networks

(ICCCN) (July 31- August 4, 2011): 1-6.

[35] Vestin, J., Dely, P., Kassler, A., Bayer, N., Einsiedler, H., and Peylo, C. CloudMAC:

towards software defined WLANs. in Proc. of ACM SIGMOBILE Mobile

Computing and Communications Review 16, no. 4 (2013): 42-45.

[36] Zander, J. S., Suresh, L., Sarrar, N., Feldmann, A., Hhn, T., and Merz,

R. Programmatic orchestration of wifi networks. in Proc. of 2014 USENIX Annual

Technical Conference (USENIX ATC 14) (2014): 347-358.

95

[37] Zander, J. S., Mayer, C., Ciobotaru, B., Schmid, S., and Feldmann, A. OpenSDWN:

Programmatic control over home and enterprise WiFi. in Proc. of the 1st ACM

SIGCOMM Symposium on Software Defined Networking Research (2015): 16.

[38] Meneses, F., Corujo, D., Guimaraes, C. and Aguiar, R. L. Multiple flow in extended

SDN wireless mobility. in Proc. of 2015 Fourth European Workshop on Software

Defined Networks (EWSDN), IEEE (September 30 - October 2, 2015): 1-6.

[39] You, T., Baron, L., Fdida, S., Kim, J. Enabling SDN Experimentation with wired

and wireless resources: The SmartFIRE facility. [Online]. Available from : http:

//eukorea-fire.eu/wp-content/uploads/2015/09/Enabling SDN Experimentation

with Wired and Wireless Resources-The SmartFIRE facility.pdf [2016, May]

[40] Thet, P. M., Panwaree, P., Kim, J., and Aswakul, C. Design and functionality

test of chunked video streaming over emulated multi-path OpenFlow network. in

Proc. of Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology (ECTI-CON), 12th International Conference, IEEE (June

24-26, 2015): 1-6.

[41] Thet, P. M., Tientrakul, N., Kim, J., and Aswakul, C. Emulated OpenFlow based

experimental study on middle-box buffering effect for multi-path chunked video

streaming. in Proc. of 30th International Technical Conference on Circuit/Systems

Computers and Communications (ITC-CSCC) (June 29 - July 2, 2015): 184-187.

[42] Trinh, T., Esaki, H., and Aswakul, C. Dynamic virtual network allocation for

OpenFlow based cloud resident data center,” in Proc. of IEICE Transactions on

Communications, IEICE (January, 2013): 56-64.

[43] POX Wiki [Online]. Available from : https://openflow.stanford.edu/display/ONL/POX

+Wiki [2016, May]

[44] Big Buck Bunny Movie [Online]. Available from : http://www.bigbuckbunny.org [2016,

May]

[45] The VideoLAN project [Online]. Available from : http://www.videolan.org/vlc [2016,

May]

[46] Wireshark [Online]. Available from : https://www.wireshark.org/ [2016, May]

[47] Frozen Movie [Online]. Available from : http://disney.wikia.com/wiki/Frozen [2016,

May]

[48] Openstack [Online]. Available from : https://www.openstack.org/ [2016, May]

[49] Open vSwitch [Online]. Available from : http://openvswitch.org/ [2016, May]

[50] iPerf [Online]. Available from : https://iperf.fr/ [2016, May]

96

[51] Sherwood, R., Gibb, G., Yap, K. K., Appenzeller, G., Casado, M., McKeown,

N., Parulkar, G. FlowVisor: A network virtualization layer [Online], 2009

October. Available from : http://openflowswitch.org/downloads/technicalreports/

openflow-tr-2009-1-flowvisor.pdf [2016, May]

[52] OpenStack Compute, Nova [Online]. Available from : https://wiki.openstack.org/wiki/

Nova [2016, May]

[53] OpenStack Networking, Neutron [Online]. Available from : https://wiki.openstack.org/

wiki/Neutron [2016, May]

[54] Virtual extensilbe LAN, VxLAN [Online]. Available from : https://en.wikipedia.org/

wiki/Virtual Extensible LAN [2016, May]

[55] OpenDayLight [Online]. Available from : https://www.opendaylight.org/ [2016, May]

[56] OpenWrt [Online]. Available from : https://openwrt.org/ [2016, May]

[57] Tcpdump [Online]. Available from : http://www.tcpdump.org/ [2016, May]

[58] VLAN (802.1q) configuration program (vconfig) [Online]. Available from : http://

linux.die.net/man/8/vconfig [2016, May]

[59] LXDE [Online]. Available from : http://lxde.org/ [2016, May]

[60] Xrdp [Online]. Available from : http://www.xrdp.org/ [2016, May]

[61] Tightvnc [Online]. Available from : http://www.tightvnc.com/ [2016, May]

[62] Xorg [Online]. Available from : https://www.x.org/wiki/ [2016, May]

[63] Big Buck Bunny 4k Video [Online]. Available from : https://www.youtube.com/watch?

v=aqz-KE-bpKQ [2016, May]

[64] sFlow-RT [Online]. Available from : http://www.inmon.com/products/sFlow-RT.

php [2016,May]

[65] dhcping [Online]. Available from : http://linux.die.net/man/8/dhcping [2016,May]

Appendices

98

Appendix A

Mininet Script File for Emulated

Experiment 1, 2

1 """ Custom topology exapmle

2 Four switches plus two hosts+one middlebox

3 host1 --- switch1 --- switch2 --- switch3 ---host3

4 | | ||

5 --- switch4 --- mb

6

7 This file is for creating topology with 2 path & setting link bandwidth and also

create middle -box.

8 This file is used for running experiments for emulated experiment 1 (ECTICON) and

experiment 2 (ITC_CSCC)

9 Reference: Mininet with middle -box: https :// github.com/yeasy/mininet/tree/devel/mb"""

10

11 from mininet.topo import Topo

12 from mininet.net import Mininet

13 from mininet.node import CPULimitedHost

14 from mininet.link import TCLink

15 from mininet.util import dumpNodeConnections

16 from mininet.log import setLogLevel

17

18 class MiddleBoxTopo(Topo):

19 """

20 Middlebox test topology.

21 """

22

23 def __init__(self):

24 "Create custom topo."

25

26 # Initialize topology

27 Topo.__init__(self)

28

29 # Add hosts and switches

30 host1 = self.addHost(’h1’)

31 host2 = self.addHost(’h2’)

32 #mb = self.addMiddleBox(’m1’) # To use Built -in middlebox function

33 mb = self.addHost(’m1’) # To run our created middlebox script

34 switch1= self.addSwitch(’s1’)

35 switch2= self.addSwitch(’s2’)

36 switch3= self.addSwitch(’s3’)

37 switch4= self.addSwitch(’s4’)

38

39 # Add links

40 linkopts1 = dict(bw =0.3) # Link Bandwidth setting used in ECTICON 2015

41 linkopts2 = dict(bw =0.15) # Link Bandwidth setting used in ECTICON 2015

42 #linkopts1 = dict(bw =0.25) # Remove comment to run ITC_CSCC 2015

43 #linkopts2 = dict(bw =0.15) # Remove comment to run ITC_CSCC 2015

44 self.addLink(host1 , switch1 , ** linkopts1)

45 self.addLink(switch1 , switch2 , ** linkopts1)

46 self.addLink(switch2 , switch3 , ** linkopts1)

47 self.addLink(switch1 , switch4 , ** linkopts2)

48 self.addLink(switch4 , switch3 , ** linkopts2)

49 self.addLink(switch3 , host2 , ** linkopts1)

99

50 self.addLink(switch3 , mb, ** linkopts1)

51 self.addLink(switch3 , mb, ** linkopts1)

52

53 topos = { ’mbtopo ’: (lambda: MiddleBoxTopo ()) }

Listing A.1: Run Mininet Script

1 sudo mn --custom ~/ mininet/custom/ecti_itccscc.py --topo mbtopo --controller remote

--link tc --mac

100

Appendix B

POX Controller Python Script for Emulated

Experiment 1, 2

1 """

2 pox -mbox1.py

3 This file is for adding flow entries to all switches.

4 And use to split chunk video periodically at ovs1.

5 Phyo V1 modified to run in mininet

6 hard_timeout is used for varying chunk size ratio

7 Reference:Panwaree , P., Kim , J., and Aswakul , C. SDN -Coordinated multi -path chunked

video streaming. Master ’s Thesis , Department of Electrical Engineering ,

Chulalongkorn University , Thailand (2014).

8 """

9 from pox.core import core

10 import pox.openflow.libopenflow_01 as of

11 from pox.lib.util import dpid_to_str

12 from pox.lib.util import str_to_bool

13 from pox.lib.addresses import IPAddr , EthAddr

14 import pox.lib.packet as pkt

15 from threading import Timer

16 import time

17 import math

18

19 log = core.getLogger ()

20

21 class MyComponent (object):

22

23 def __init__ (self):

24 core.openflow.addListeners(self)

25

26 def _handle_ConnectionUp (self , event):

27 log.debug("Switch %s has come up.", dpid_to_str(event.dpid))

28

29 if event.dpid == 2: ## 2 is the dpid of s2

30 event.connection.send(of.ofp_flow_mod(

31 action=of.ofp_action_output(port =2),

32 match=of.ofp_match(in_port =1)))

33 event.connection.send(of.ofp_flow_mod(

34 action=of.ofp_action_output(port =1),

35 match=of.ofp_match(in_port =2)))

36

37 elif event.dpid == 3: #s3

38 event.connection.send(of.ofp_flow_mod(

39 action =(of.ofp_action_dl_addr.set_src(

40 EthAddr("00:00:00:00:00:05")), #s3 -eth1

41 of.ofp_action_output(port =4)),

42 match=of.ofp_match(in_port =1)))

43 event.connection.send(of.ofp_flow_mod(

44 action =(of.ofp_action_dl_addr.set_src(

45 EthAddr("00:00:00:00:00:06")), #s3 -eth2

46 of.ofp_action_output(port =4)),

47 match=of.ofp_match(in_port =2)))

48 event.connection.send(of.ofp_flow_mod(

49 action=of.ofp_action_output(port=of.OFPP_ALL),

101

50 match=of.ofp_match(in_port =3)))

51 event.connection.send(of.ofp_flow_mod(

52 action=of.ofp_action_output(port =3),

53 match=of.ofp_match(in_port =5)))

54 event.connection.send(of.ofp_flow_mod(

55 match=of.ofp_match(in_port =4)))

56

57 elif event.dpid == 4: #s4

58 event.connection.send(of.ofp_flow_mod(

59 action=of.ofp_action_output(port =2),

60 match=of.ofp_match(in_port =1)))

61 event.connection.send(of.ofp_flow_mod(

62 action=of.ofp_action_output(port =1),

63 match=of.ofp_match(in_port =2)))

64

65 elif event.dpid == 1: #s1

66 def install_path1 ():

67 print "Install flow entry for Path 1"

68 event.connection.send(of.ofp_flow_mod(

69 action=of.ofp_action_output(port =2),

70 hard_timeout =10, match=of.ofp_match(in_port =1)))

71 event.connection.send(of.ofp_flow_mod(

72 action=of.ofp_action_output(port =1),

73 hard_timeout =10, match=of.ofp_match(in_port =2)))

74 def install_path2 ():

75 print "Install flow entry for Path 2"

76 event.connection.send(of.ofp_flow_mod(

77 action=of.ofp_action_output(port =3),

78 hard_timeout =20, match=of.ofp_match(in_port =1)))

79 event.connection.send(of.ofp_flow_mod(

80 action=of.ofp_action_output(port =1),

81 hard_timeout =20, match=of.ofp_match(in_port =3)))

82

83 def install_flow ():

84

85 install_path1 ()

86 time_int_path1 = 10

87 time_int_path2 = 20

88 prev_time = math.floor(time.time())

89 current_path_installed = 1

90

91 while True:

92

93 if current_path_installed == 1:

94 if math.floor(time.time())-prev_time == time_int_path1:

95 install_path2 ()

96 print math.floor(time.time())

97 current_path_installed = 2

98 prev_time = math.floor(time.time())

99

100 elif current_path_installed == 2:

101 if math.floor(time.time())-prev_time == time_int_path2:

102 install_path1 ()

103 print math.floor(time.time())

104 current_path_installed = 1

105 prev_time = math.floor(time.time())

106

107

108 t = Timer(10, install_flow)

102

109 t.start()

110

111 def launch ():

112 core.registerNew(MyComponent)

Listing B.1: Run controller Script

1 sudo ./pox.py pox -mbox1

103

Appendix C

Middle-box Python Script for Emulated

Experiment 1, 2

1 #!/usr/bin/env python

2 """

3 mininet_mbox.py

4 Phyo modified to run in mininet

5 This file is for middlebox to capture , parse , store and send packets in emulation

experiments.

6 Reference:Panwaree , P., Kim , J., and Aswakul , C. SDN -Coordinated multi -path chunked

video streaming. Master ’s Thesis , Department of Electrical Engineering ,

Chulalongkorn University , Thailand (2014).

7 """

8 import socket

9 from struct import *

10 import datetime

11 import time

12 import math

13 import pcapy

14 import dpkt

15 import sys

16 from scapy.all import *

17 import threading

18

19 global count , buffer1 , buffer2 , ts1 , ts2 , arp , pkt , fwd , rtp1 , flag

20 count = 0

21 arp = 0

22 flag = 0

23 buffer1 = []

24 buffer2 = []

25 ts1 = []

26 ts2 = []

27 pkt = []

28 fwd = []

29 sys.setrecursionlimit (5000)

30

31 def main(argv) :

32

33 #list all devices

34 devices = pcapy.findalldevs ()

35 #print devices

36

37 ’’’

38 open device

39 # Arguments here are:

40 # device

41 # snaplen (maximum number of bytes to capture _per_packet_)

42 # promiscious mode (1 for true)

43 # timeout (in milliseconds)

44 ’’’

45 cap = pcapy.open_live("m1-eth0" , 65536 , 1 , 0)

46

47 #start sniffing packets

48 while (1) :

104

49 (header , packet) = cap.next()

50 #print (’%s: captured %d bytes , truncated to %d bytes’

%(datetime.datetime.now(), header.getlen (), header.getcaplen ()))

51 parse_packet(packet)

52

53 #function to parse a packet

54 def parse_packet(packet) :

55

56 global count , buffer1 , buffer2 , ts1 , ts2 , arp , pkt , fwd , rtp1

57

58 print time.time(),’,’,(len(buffer1)),’,’,(len(buffer2))

59

60 eth = dpkt.ethernet.Ethernet(packet)

61

62 #Parse eth packets ,

63 if eth.type == dpkt.ethernet.ETH_TYPE_IP:

64

65 ip = eth.data

66 udp = ip.data

67 rtp1 = udp.data

68

69 #UDP protocol

70 if ip.p == 17:

71 #RTP packet

72 rtp = dpkt.rtp.RTP(str(rtp1))

73

74 if eth.src == ’\x00\x00\x00\x00\xd3\xe1’ : #eth1 s3 (Path1)

75 count += 1

76 buffer1.append(packet)

77 time_stamp = rtp.ts

78 ts1.append(time_stamp)

79

80 elif eth.src == ’\x00\x00\x00\x03\xd3\xe2’ : #eth2 s3 (Path2)

81 count += 1

82 buffer2.append(packet)

83 time_stamp = rtp.ts

84 ts2.append(time_stamp)

85

86 #some other UDP packet like IGMP

87 else :

88 fwd.append(packet)

89 s_fwd = fwd.pop(0)

90 h_fwd = ’\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x01\x08\x00’

91 f = Ether(h_fwd+s_fwd [14:])

92 sendp(f, iface = ’m1 -eth1’, verbose =0)

93

94 #ARP packet :

95 elif eth.type == dpkt.ethernet.ETH_TYPE_ARP:

96 arp += 1

97 if arp == 1:

98 pkt.append(packet)

99 s_pkt = pkt[0]

100 #Phyo to change header h2 -eth0 and h1 -eth0

101 head_pkt = ’\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x01\x08\x06’

102 y = Ether(head_pkt+s_pkt [14:]) #14 bytes for ARP

103 sendp(y, iface = ’m1 -eth1’, verbose =0)

104

105 print

106

105

107 def sendpkt ():

108

109 global rate , buffering_time , flag

110

111 prev_time = math.floor(time.time()*rate)

112 start_time = math.floor(time.time())

113

114 while True:

115

116 #Phyo h2-eth0 and h1-eth0

117 head = ’\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x01\x08\x00’

118 if count == 1:

119 start_time = math.floor(time.time())

120 else:

121 pass

122

123 if (math.floor(time.time()) - start_time >= buffering_time) and

(math.floor(time.time()*rate) != prev_time):

124

125 if (len(buffer1) != 0) and (len(buffer2) != 0):

126 a = ts1 [0]

127 b = ts2 [0]

128

129 if a > b: # send packet in buffer2

130 bb = buffer2.pop(0)

131 ts2.pop (0)

132 x = Ether(head+bb [14:])

133 try :

134 sendp(x, iface = ’m1 -eth1’, verbose =0)

135 prev_time = math.floor(time.time()*rate)

136 except socket.error :

137 continue

138

139 elif b > a : # send packet in buffer1

140 aa = buffer1.pop(0)

141 ts1.pop (0)

142 z = Ether(head+aa [14:])

143 try :

144 sendp(z, iface = ’m1 -eth1’, verbose =0)

145 prev_time = math.floor(time.time()*rate)

146 except socket.error :

147 continue

148

149 elif a == b : # send packet in buffer1

150 aa = buffer1.pop(0)

151 ts1.pop (0)

152 buffer2.pop(0) # delete pkt in buffer2

153 ts2.pop (0)

154 z = Ether(head+aa [14:])

155 try :

156 sendp(z, iface = ’m1 -eth1’, verbose =0)

157 prev_time = math.floor(time.time()*rate)

158 except socket.error :

159 continue

160

161 elif len(buffer1) == 0 and len(buffer2) != 0:

162 bb = buffer2.pop (0)

163 ts2.pop (0)

164 x = Ether(head+bb [14:])

106

165 try :

166 sendp(x, iface = ’m1 -eth1’, verbose =0)

167 prev_time = math.floor(time.time()*rate)

168 except socket.error :

169 continue

170

171 elif len(buffer2) == 0 and len(buffer1) != 0:

172 aa = buffer1.pop (0)

173 ts1.pop (0)

174 z = Ether(head+aa [14:])

175 try :

176 sendp(z, iface = ’m1 -eth1’, verbose =0)

177 prev_time = math.floor(time.time()*rate)

178 except socket.error :

179 continue

180

181 else :

182 pass

183

184 else :

185 pass

186

187

188 if __name__ == "__main__":

189

190 global rate , buffering_time

191 rate = 40 #Vary mbox packets generation rate

192 buffering_time = 0 #Vary initial buffering time

193

194 t1 = threading.Thread(target=main , args=(sys.argv))

195 t2 = threading.Thread(target=sendpkt)

196

197 t1.start ()

198 t2.start ()

199

200 t1.join()

201 t2.join()

Listing C.1: Middle-box set up

1 Middle -box set up on Ubuntu 12.04 LTS

2 sudo apt -get install python -dpkt #To install dpkt for parsing

3 sudo apt -get install python -pcapy #To install pcapy for capturing

4 sudo apt -get install scapy #To install scapy for generating

5 sudo apt -get install libpcap -dev #To install libpcap

6 sudo python mininet_mbox.py

107

Appendix D

Middle-box Set Up in CHULA SmartX Box

1 #!/usr/bin/env python

2 """

3 mbox_oftein.py

4 This file is for middlebox to capture , parse , store and send packets.

5 This file is modified to run over OF@TEIN testbed

6 Reference:Panwaree , P., Kim , J., and Aswakul , C. SDN -Coordinated multi -path chunked

video streaming. Master ’s Thesis , Department of Electrical Engineering ,

Chulalongkorn University , Thailand (2014).

7 """

8

9 import socket

10 from struct import *

11 import datetime

12 import time

13 import math

14 import pcapy

15 import dpkt

16 import sys

17 from scapy.all import *

18 import threading

19

20 global count , buffer1 , buffer2 , ts1 , ts2 , arp , pkt , fwd , rtp1 , flag

21 count = 0

22 arp = 0

23 arp1 = 0 # To solve ping

24 flag = 0

25 buffer1 = []

26 buffer2 = []

27 ts1 = []

28 ts2 = []

29 pkt = []

30 fwd = []

31 sys.setrecursionlimit (5000)

32

33 def main(argv) :

34

35 #list all devices

36 devices = pcapy.findalldevs ()

37 #print devices

38

39 ’’’

40 open device

41 # Arguments here are:

42 # device

43 # snaplen (maximum number of bytes to capture _per_packet_)

44 # promiscious mode (1 for true)

45 # timeout (in milliseconds)

46 ’’’

47 #cap = pcapy.open_live ("eth1" , 65536 , 1 , 0)

48 cap = pcapy.open_live("eth1" , 65536 , 1 , 0)

49

50 #start sniffing packets

51 while (1) :

108

52 (header , packet) = cap.next()

53 print (’%s: captured %d bytes , truncated to %d bytes’

%(datetime.datetime.now(), header.getlen (), header.getcaplen ()))

54 parse_packet(packet)

55

56 #function to parse a packet

57 def parse_packet(packet) :

58

59 global count , buffer1 , buffer2 , ts1 , ts2 , arp , pkt , fwd , rtp1

60

61 print time.time(),’,’,(len(buffer1)),’,’,(len(buffer2))

62

63 eth = dpkt.ethernet.Ethernet(packet)

64

65 #Parse eth packets ,

66 if eth.type == dpkt.ethernet.ETH_TYPE_IP:

67

68 ip = eth.data

69 udp = ip.data

70 rtp1 = udp.data

71

72 #UDP protocol

73 if ip.p == 17:

74 #RTP packet

75 rtp = dpkt.rtp.RTP(str(rtp1))

76

77 if eth.src == ’\xe2\x9c\xe6\x30\xbf\x06’ : #port3 MYREN at TH br2

(Path1) e2:9c:e6:30:bf:06

78 count += 1

79 buffer1.append(packet)

80 time_stamp = rtp.ts

81 ts1.append(time_stamp)

82

83 elif eth.src == ’\x66\xc2\xa5\x35\xd2\xd6’ : #port2 GIST at TH br2

(Path2) 66:c2:a5:35:d2:d6

84 count += 1

85 buffer2.append(packet)

86 time_stamp = rtp.ts

87 ts2.append(time_stamp)

88

89 #some other UDP packet like IGMP

90 else :

91 fwd.append(packet)

92 s_fwd = fwd.pop(0)

93 #fa:16:3e:72:3a:99 MAC address of GIST VM -eth1 fa :16:3e:7f:d6:75 MAC

addr of TH VM -eth1

94 h_fwd = ’\xfa\x16\x3e\x7f\xd6\x75\xfa\x16\x3e\x72\x3a\x99\x81\x00’

95 f = Ether(h_fwd+s_fwd [14:])

96 sendp(f, iface = ’eth2’, verbose =0)

97 print "Send from IGMP"

98 #sendp(f, iface = ’eth0 ’, verbose =0)

99

100 #ARP packet :

101 elif eth.type == dpkt.ethernet.ETH_TYPE_ARP:

102 arp += 1

103 if arp == 1:

104 pkt.append(packet)

105 s_pkt = pkt[0]

109

106 #Change to 0x8100 instead of 0x0806 , actual arp header is 0x0806 ,.To be

ping work

107 head_pkt = ’\xfa\x16\x3e\x7f\xd6\x75\xfa\x16\x3e\x72\x3a\x99\x81\x00’

108 y = Ether(head_pkt+s_pkt [14:]) #14 bytes for ARP

109 sendp(y, iface = ’eth2’, verbose =0)

110 print "Send from ARP"

111 # sendp(y, iface = ’eth0 ’, verbose =0)

112

113 print

114

115 def sendpkt ():

116

117 global rate , buffering_time , flag

118

119 prev_time = math.floor(time.time()*rate)

120 start_time = math.floor(time.time())

121

122 while True:

123 #Changed to x81\x00 bcos of VLAN ID header from OpenStack VMs

124 head = ’\xfa\x16\x3e\x7f\xd6\x75\xfa\x16\x3e\x72\x3a\x99\x81\x00’

125 if count == 1:

126 start_time = math.floor(time.time())

127 else:

128 pass

129

130 if (math.floor(time.time()) - start_time >= buffering_time) and

(math.floor(time.time()*rate) != prev_time):

131

132 if (len(buffer1) != 0) and (len(buffer2) != 0):

133 a = ts1 [0]

134 b = ts2 [0]

135

136 if a > b: # send packet in buffer2

137 bb = buffer2.pop(0)

138 ts2.pop (0)

139 x = Ether(head+bb [14:])

140 try :

141 sendp(x, iface = ’eth2’, verbose =0)

142 #print "Send from Buffer2"

143 prev_time = math.floor(time.time()*rate)

144 #print math.floor(time.time() - start_time), " seconds have

passed"

145 except socket.error :

146 continue

147

148 elif b > a : # send packet in buffer1

149 aa = buffer1.pop(0)

150 ts1.pop (0)

151 z = Ether(head+aa [14:])

152 try :

153 sendp(z, iface = ’eth2’, verbose =0)

154 #print "Send from Buffer1"

155 prev_time = math.floor(time.time()*rate)

156 #print math.floor(time.time() - start_time), " seconds have

passed"

157 except socket.error :

158 continue

159

160 elif a == b : # send packet in buffer1

110

161 aa = buffer1.pop(0)

162 ts1.pop (0)

163 buffer2.pop(0) # delete pkt in buffer2

164 ts2.pop (0)

165 z = Ether(head+aa [14:])

166 try :

167 sendp(z, iface = ’eth2’, verbose =0)

168 #print "Send from Buffer1 and discard pkts from Buffer2"

169 prev_time = math.floor(time.time()*rate)

170 #print math.floor(time.time() - start_time), " seconds have

passed"

171 except socket.error :

172 continue

173

174 elif len(buffer1) == 0 and len(buffer2) != 0:

175 bb = buffer2.pop (0)

176 ts2.pop (0)

177 x = Ether(head+bb [14:])

178 try :

179 sendp(x, iface = ’eth2’, verbose =0)

180 #print "Send out from Buffer1 when Buffer are empty"

181 prev_time = math.floor(time.time()*rate)

182 #print math.floor(time.time() - start_time), " seconds have

passed"

183 except socket.error :

184 continue

185

186 elif len(buffer2) == 0 and len(buffer1) != 0:

187 aa = buffer1.pop (0)

188 ts1.pop (0)

189 z = Ether(head+aa [14:])

190 try :

191 sendp(z, iface = ’eth2’, verbose =0)

192 #print "Send out from Buffer2 when Buffer are empty"

193 prev_time = math.floor(time.time()*rate)

194 #print math.floor(time.time() - start_time), " seconds have

passed"

195 except socket.error :

196 continue

197

198 else :

199 pass

200

201 else :

202 pass

203

204

205 if __name__ == "__main__":

206

207 global rate , buffering_time

208 rate = 150

209 buffering_time = 0

210

211 t1 = threading.Thread(target=main , args=(sys.argv))

212 t2 = threading.Thread(target=sendpkt)

213

214 t1.start ()

215 t2.start ()

216

111

217 t1.join()

218 t2.join()

Listing D.1: Middle-box configuration

1 Middle -box set up on CHULA SmartX box

2 Reference:

3 http ://www.howtogeek.com /117635/how -to-install -kvm -and -create -virtual -machines

4 -on-ubuntu/

5 sudo apt -get install qemu -kvm libvirt -bin bridge -utils virt -manager

6 ..

7 Create KVM by using virt -manager GUI

8 sudo virt -manager

9 Create three Virtual Network (NAT)interfaces (vnet0 ,vnet1 ,vnet2)

10 sudo brctl show #To check linux bridge

11 sudo brctl delif virbr0 vnet1 vent2

12 ..

13 This configuration is for multi -path video streaming over OF@TEIN

14 sudo ovs -vsctl add -port br2 vnet1

15 sudo ovs -vsctl add -port br2 vent2

16 ..

17 This configuration is for multi -path file transferring over OF@TEIN

18 sudo ovs -vsctl add -port br -devops vnet1

19 sudo ovs -vsctl add -port br -devops vnet2

20 ..

21 Inside created middle -box KVM

22 sudo apt -get install openssh -server #To open ssh connection for Mbox

23 sudo ufw status #To check firewall

24 ps -ef | grep sshd #To check ssh demo is running or not

25 sudo netstat -nlp | grep :22

26 sudo ufw allow 22

27 ..

28 Before running middle -box processing script

29 sudo apt -get install python -dpkt #To install dpkt for parsing

30 sudo apt -get install python -pcapy #To install pcapy for capturing

31 sudo apt -get install scapy #To install scapy for generating

32 sudo apt -get install libpcap -dev #To install libpcap

33

34 sudo vi /etc/config/network #Change network interface eth1 and eth2

35 auto eth1

36 iface eth1 inet static

37 address 0.0.0.0

38 netmask 0.0.0.0

39

40 #Write eth2 also same configuration as eth1

41 Then save the network file

42 sudo service network -manager restart

43 ..

44 Run Middle -box processing script for multi -path video streaming

45 sudo python mbox_oftein.py

46 ..

47 For testing file transferring experiments

48 Installing Tsunami udp

49 Reference:

50 http :// bluepiit.com/blog /2015/10/13/ tsunami -udp -protocol -installation -setup

51 -and -limitations/

52 sudo apt -get install cvs

53 cvs -z3 -d:pserver:anonymous@tsunami -udp.cvs.sourceforge.net:

54 /cvsroot/tsunami -udp co -P tsunami -udp #continue from upper line

112

55 sudo apt -get install git gcc

56 gcc installation error

57 ** solution **

58 sudo apt -get upgrade and sudo apt -get update and then sudo apt -get install gcc

59 sudo apt -get install automake autoconf

60 sudo apt -get install libtool make lib32z1

61 cd tsunami -udp

62 ./ recompile.sh

63 sudo make install

64 Server

65 tsunamid --port 46224 filename

66

67 Client

68 tsunami connect serverip get * or filename

69 tsunami set rate 100M connect [server] get *

70 ...

71 Before running file transferring experiments

72 Configuration in the middle -box

73 sudo apt -get install vlan

74 lsmod | grep 8021q #To check kernel module

75 sudo modprobe 8021q

76 #Add VLAN ID 111 to eth1 to be reachable network between GIST -B VM and middle -box

77 sudo vconfig add eth1 111

78 #(IP can be change according to the same network IP as GIST -B VM IP)

79 sudo ifconfig eth1 .111 192.168.11.16 netmask 255.255.255.0

80 #To delete VLAN interface

81 sudo ifconfig eth1 .111 down

82 sudo vconfig rem eth1 .111

113

Appendix E

POX Controller Python Script for Multi-path

Video Streaming over OF@TEIN

1 """

2 pox_multi_video.py

3 This file is used for multi -path video streaming over OF@TEIN

4 This file is for adding flow entries to all switches. Topology connected with

GIST >>MYREN >>TH

5 And use to split chunk video by time at GIST br2.

6 And use to stream multi -path and connect to GIST >>MYREN >>TH.

7 Phyo V1 revised to run in OF@TEIN

8 Reference:Panwaree , P., Kim , J., and Aswakul , C. SDN -Coordinated multi -path chunked

video streaming. Master ’s Thesis , Department of Electrical Engineering ,

Chulalongkorn University , Thailand (2014).

9 """

10

11 from pox.core import core

12 import pox.openflow.libopenflow_01 as of

13 from pox.lib.util import dpid_to_str

14 from pox.lib.util import str_to_bool

15 from pox.lib.addresses import IPAddr , EthAddr

16 import pox.lib.packet as pkt

17 from threading import Timer

18 import time

19 import math

20

21 log = core.getLogger ()

22 #fm = of.ofp_flow_mod ()

23

24 class MyComponent (object):

25

26 def __init__ (self):

27 core.openflow.addListeners(self)

28

29 def _handle_ConnectionUp (self , event):

30 log.debug("Switch %s has come up.", dpid_to_str(event.dpid))

31 print "Switch",event.dpid ,"has come up.", dpid_to_str(event.dpid)

32

33 if event.dpid == 1229782938247303473: #MYREN br1 DPID 1111111111111131

34 print "Install flow entry to MYREN br1",event.dpid

35 event.connection.send(of.ofp_flow_mod(

36 action=of.ofp_action_output(port =2),

37 match=of.ofp_match(in_port =1)))

38 event.connection.send(of.ofp_flow_mod(

39 action=of.ofp_action_output(port =1),

40 match=of.ofp_match(in_port =2)))

41

42 elif event.dpid == 1229782938247303474: #MYREN br2 DPID 1111111111111132

43 print "Install flow entry to MYREN br2",event.dpid

44 event.connection.send(of.ofp_flow_mod(

45 action=of.ofp_action_output(port =4),

46 match=of.ofp_match(in_port =3)))

47 event.connection.send(of.ofp_flow_mod(

48 action=of.ofp_action_output(port =3),

114

49 match=of.ofp_match(in_port =4)))

50

51 elif event.dpid == 1229782938247303537: #TH br1 DPID 1111111111111171

52 print "Install flow entry to TH br1",event.dpid

53 event.connection.send(of.ofp_flow_mod(

54 action=of.ofp_action_output(port =1),

55 match=of.ofp_match(in_port =2)))

56 event.connection.send(of.ofp_flow_mod(

57 action=of.ofp_action_output(port =2),

58 match=of.ofp_match(in_port =1)))

59

60 elif event.dpid == 1229782938247303538: #TH br2 DPID :1111111111111172

61 print "Install flow entry to TH br2",event.dpid

62

63 event.connection.send(of.ofp_flow_mod(

64 action =(of.ofp_action_dl_addr.set_src(

65 EthAddr("e2:9c:e6:30:bf:06")),

66 of.ofp_action_output(port =10)),

67 match=of.ofp_match(in_port =3)))

68 event.connection.send(of.ofp_flow_mod(

69 action =(of.ofp_action_dl_addr.set_src(

70 EthAddr("66:c2:a5:35:d2:d6")),

71 of.ofp_action_output(port =10)),

72 match=of.ofp_match(in_port =2)))

73 event.connection.send(of.ofp_flow_mod(

74 action=of.ofp_action_output(port=of.OFPP_ALL),

75 match=of.ofp_match(in_port =1)))

76 event.connection.send(of.ofp_flow_mod(

77 action=of.ofp_action_output(port =1),

78 match=of.ofp_match(in_port =11)))

79 event.connection.send(of.ofp_flow_mod(

80 match=of.ofp_match(in_port =10)))

81

82 elif event.dpid == 1229782938247303441: #GIST br1 DPID 1111111111111111

83 print "Install flow entry to GIST br1",event.dpid

84 event.connection.send(of.ofp_flow_mod(

85 action=of.ofp_action_output(port =1),

86 match=of.ofp_match(in_port =2)))

87 event.connection.send(of.ofp_flow_mod(

88 action=of.ofp_action_output(port =2),

89 match=of.ofp_match(in_port =1)))

90

91 elif event.dpid == 1229782938247303442: #GIST -A br2 DPID :1111111111111112

92 def install_path1 ():

93 print "Install flow entry for Path 1:20 sec"

94 event.connection.send(of.ofp_flow_mod(

95 action=of.ofp_action_output(port =4),

96 hard_timeout =20, match=of.ofp_match(in_port =1)))

97 event.connection.send(of.ofp_flow_mod(

98 action=of.ofp_action_output(port =1),

99 hard_timeout =20, match=of.ofp_match(in_port =4)))

100 def install_path2 ():

101 print "Install flow entry for Path 2:10 sec"

102 event.connection.send(of.ofp_flow_mod(

103 action=of.ofp_action_output(port =2),

104 hard_timeout =10, match=of.ofp_match(in_port =4)))

105 event.connection.send(of.ofp_flow_mod(

106 action=of.ofp_action_output(port =4),

107 hard_timeout =10, match=of.ofp_match(in_port =2)))

115

108

109 def install_flow ():

110

111 install_path1 ()

112 time_int_path1 = 20

113 time_int_path2 = 10

114 prev_time = math.floor(time.time())

115 current_path_installed = 1

116

117 while True:

118

119 if current_path_installed == 1:

120 if math.floor(time.time())-prev_time == time_int_path1:

121 install_path2 ()

122 print math.floor(time.time())

123 current_path_installed = 2

124 prev_time = math.floor(time.time())

125

126 elif current_path_installed == 2:

127 if math.floor(time.time())-prev_time == time_int_path2:

128 install_path1 ()

129 print math.floor(time.time())

130 current_path_installed = 1

131 prev_time = math.floor(time.time())

132

133

134 t = Timer(10, install_flow)

135 t.start()

136

137 def launch ():

138 core.registerNew(MyComponent)

Listing E.1: Run controller Script

1 sudo ./pox.py pox -multi -video

116

Appendix F

POX Controller Python Script for Multi-path File

Transferring over OF@TEIN

1 ’’’

2 pox -multi -file.py

3 This file is used for multi -path file transferring experiments

4 This file is for adding flow entries to all switches. Topology connected with

GIST >>MY>>TH

5 And use to split chunk video file periodically at GIST br-devops

6 And use to transfer multi -path and connect to GIST >>MY>>TH.

7 #Phyo New revised to run in OF@TEIN New Archi on 19.4.2016

8 Reference:Panwaree , P., Kim , J., and Aswakul , C. SDN -Coordinated multi -path chunked

video streaming. Master ’s Thesis , Department of Electrical Engineering ,

Chulalongkorn University , Thailand (2014).

9 ’’’

10

11 from pox.core import core

12 import pox.openflow.libopenflow_01 as of

13 from pox.lib.util import dpid_to_str

14 from pox.lib.util import str_to_bool

15 from pox.lib.addresses import IPAddr , EthAddr

16 import pox.lib.packet as pkt

17 from threading import Timer

18 import time

19 import math

20

21 log = core.getLogger ()

22 #fm = of.ofp_flow_mod ()

23

24 class MyComponent (object):

25

26 def __init__ (self):

27 core.openflow.addListeners(self)

28

29 def _handle_ConnectionUp (self , event):

30 log.debug("Switch %s has come up.", dpid_to_str(event.dpid))

31 print "Switch",event.dpid ,"has come up.", dpid_to_str(event.dpid)

32

33 if event.dpid == 4919131752989213698: #MY br -devops DPID 4444444444444402

34 print "Install flow entry to MY br -devops",event.dpid

35 event.connection.send(of.ofp_flow_mod(

36 action=of.ofp_action_output(port =2), #Port2: vxlan_TH and

Port3: vxlan -TEST

37 match=of.ofp_match(in_port =3)))

38 event.connection.send(of.ofp_flow_mod(

39 action=of.ofp_action_output(port =3),

40 match=of.ofp_match(in_port =2)))

41

42 elif event.dpid == 4919131752989213699: #TH br2 DPID :4444444444444403

43 print "Install flow entry to TH br -devops",event.dpid

44

45 event.connection.send(of.ofp_flow_mod(

46 action =(of.ofp_action_dl_addr.set_src(

117

47 EthAddr("c2:ff:3e:21:81: d4")), #TH br -devops interface of MY

port 3, GIST -B port 2

48 of.ofp_action_output(port =5)), #Port 5 is for mbox.vnet1

port 7 is for mbox.vnet2

49 match=of.ofp_match(in_port =3)))

50 event.connection.send(of.ofp_flow_mod(

51 action =(of.ofp_action_dl_addr.set_src(

52 EthAddr("f2:a8:b7:ea :85:63")),#TH br-devops interface of

GIST -B port 2

53 of.ofp_action_output(port =5)),

54 match=of.ofp_match(in_port =2)))

55 event.connection.send(of.ofp_flow_mod(

56 action=of.ofp_action_output(port=of.OFPP_ALL),

57 match=of.ofp_match(in_port =5)))

58 event.connection.send(of.ofp_flow_mod(

59 action=of.ofp_action_output(port =5),

60 match=of.ofp_match(in_port =1)))

61 #GIST -B br-devops DPID :4444444444444401 Port2: Path 1 via MY and Port 3 Path 2

direct to TH

62 elif event.dpid == 4919131752989213697:

63 def install_path1 ():

64 print "Install flow entry for Path 1:1sec"

65 event.connection.send(of.ofp_flow_mod(

66 action=of.ofp_action_output(port =2),

67 hard_timeout =1, match=of.ofp_match(in_port =1)))

68 event.connection.send(of.ofp_flow_mod(

69 action=of.ofp_action_output(port =1),

70 hard_timeout =1, match=of.ofp_match(in_port =2)))

71 def install_path2 ():

72 print "Install flow entry for Path 2:2sec"

73 event.connection.send(of.ofp_flow_mod(

74 action=of.ofp_action_output(port =1),

75 hard_timeout =2, match=of.ofp_match(in_port =3)))

76 event.connection.send(of.ofp_flow_mod(

77 action=of.ofp_action_output(port =3),

78 hard_timeout =2, match=of.ofp_match(in_port =1)))

79

80 def install_flow ():

81

82 install_path1 ()

83 time_int_path1 = 1

84 time_int_path2 = 2

85 prev_time = math.floor(time.time())

86 current_path_installed = 1

87

88 while True:

89

90 if current_path_installed == 1:

91 if math.floor(time.time())-prev_time == time_int_path1:

92 install_path2 ()

93 print math.floor(time.time())

94 current_path_installed = 2

95 prev_time = math.floor(time.time())

96

97 elif current_path_installed == 2:

98 if math.floor(time.time())-prev_time == time_int_path2:

99 install_path1 ()

100 print math.floor(time.time())

101 current_path_installed = 1

118

102 prev_time = math.floor(time.time())

103

104

105 t = Timer(10, install_flow)

106 t.start()

107

108 def launch ():

109 core.registerNew(MyComponent)

Listing F.1: Run controller Script

1 sudo ./pox.py pox -multi -file

119

Appendix G

Openwrt Configuration for Wireless SDN

1 #!/bin/sh

2 #ovs -auto.sh

3 #This file is to configure the Open vSwitch with wlan0 in TPLINK_TL 1043 ND V2.1

4 #Before running this script make sure network file , firewall files are already

changed.

5 #Written by Phyo 25.1.2016

6

7 OVS_LAN="ovs -ap1" #Change to ovs -ap2 for SDN -AP2

8 LAN_PORT="eth1"

9 OVS_PORT="wlan0"

10 LINUX_BRIDGE="br-lan"

11 DPID =2222222222222201 # Change DPID 2222222222222202 for SDN -AP2

12 CTLIP =103.22.221.142 #Controller IP address @GIST

13

14 # Create Open vSwitch

15 echo "Create Open vSwitch Bridge "

16 sleep 2

17

18 ovs -vsctl --may -exist add -br $OVS_LAN

19

20 #Remove LAN port from Linux bridge (Network breakdown)

21 echo "Remove the LAN port from Linux Bridge (Network will breakdown)"

22 sleep 2

23

24 brctl delif $LINUX_BRIDGE $LAN_PORT

25

26 # Add LAN port to Open vSwitch (Network breakdown)

27 echo "Add LAN port to Open vSwitch (Network breakdown)"

28 sleep 2

29 ovs -vsctl add -port $OVS_LAN $LAN_PORT

30

31 #Make sure the switch has the correct datapath ID.

32 echo "Setting switch Data Path ID"

33 sleep 2

34

35 ovs -vsctl set bridge $OVS_LAN other -config:datapath -id=$DPID

36

37 #Configure the switch to have an OpenFlow controller. This will connect to the

controller.

38 echo "Configure the switch to connect OpenFlow controller"

39 sleep 2

40

41 ovs -vsctl set -controller $OVS_LAN tcp:$CTLIP :6633

42

43 #If the router cannot connect to the controller , then it works as a normal switch

44 echo "Change OVS setting to be standalone"

45 sleep 2

46

47 ovs -vsctl set -fail -mode $OVS_LAN standalone

48

49 echo "Setiing OVS to be OpenFlow10 version"

50 ovs -vsctl set bridge $OVS_LAN protocols=OpenFlow10

51

120

52 # Restart network

53 echo "Network restart"

54 sleep 2

55

56 /etc/init.d/network restart

57 sleep 2

58 exit 0

1 #!/bin/sh

2 #ovs -wlan.sh

3 #This file is to add the wlan0 to OVS in TPLINK -TL 1043 ND V2.1.

4 #Written by Phyo 26.1.2016

5 OVS_LAN="ovs -ap1"

6 LAN_PORT="wlan0"

7 echo "Adding wlan0 to OVS"

8 sleep 2

9 for i in $LAN_PORT ; do

10 PORT=$i

11 ifconfig $PORT up

12 ovs -vsctl add -port $OVS_LAN $PORT

13 done

14

15 exit 0

1 #!/bin/sh

2 #ovs -vxlan.sh

3 #This file is for adding vxlan tunneling to connect with CHULA SmartX box

4 #161.200.25.89 is the datapath IP of CHULA SmartX box

5 ovs -vsctl add -port ovs -ap1 vxlan_TH -- set Interface vxlan_TH type=vxlan

options:remote_ip =161.200.25.89

1 #!/bin/sh

2 #sflow.sh

3 #This file is to configure sflow rule in Open vSwitch @OpenWrt routers

4 COLLECTOR_IP =161.200.90.79 #sflow -RT server IP address

5 COLLECTOR_PORT =6343

6 AGENT=eth0

7 HEADER =128

8 SAMPLING =64

9 POLLING =10

10

11 ovs -vsctl -- --id=@sflow create sFlow agent=${AGENT}

target =\"${COLLECTOR_IP }:${COLLECTOR_PORT }\" \header=${HEADER}

\sampling=${SAMPLING} polling=${POLLING} -- set bridge ovs -ap1 sflow=@sflow

Listing G.1: Open vSwitch configuration

1 Download OpenWrt firmware for TPLINK TL 1043 v2 from this link:

2 https :// downloads.openwrt.org/chaos_calmer /15.05 - rc3/ar71xx/generic/

3 Change the original TPLINK firmware to OpenWrt firmware

4 ...

5 After successfully install new firmware , connect to TPLINK Router via WiFi or LAN

cable

6 Type 192.168.1.1 in any browser for login to Openwrt luci page to change WAN IP

address from GUI interface

7 Change Password so that can use ssh for login to Openwrt router later on

8 (OR)

121

9 Type telnet 192.168.1.1 in the host terminal for first time login to Openwrt linux

terminal

10 passwd yourpassword

11 First change only WAN IP address inside network file

12 Once internet is reachable , install necessary packages

13 opkg update

14 opkg install ipset # To be able to configure firewall

15 opkg install openvswitch

16 opkg install tcpdump

17 Change firewall rule as in the following file:

18 save and /etc/init.d/firewall restart

19 Change uhttpd rule , save and /etc/init.d/uhttpd restart

20 After changed firewall rule , try to login to OpenWrt via ssh root@your_WAN_IP

21 After that change lan interface inside network file as follows and save.

22 ..

23 Sample network configuration of Openwrt for SDN -AP1

24 vi /etc/config/network

25 config interface ’loopback ’

26 option ifname ’lo’

27 option proto ’static ’

28 option ipaddr ’127.0.0.1 ’

29 option netmask ’255.0.0.0 ’

30

31 config globals ’globals ’

32 option ula_prefix ’fdd0 :1976: a4b4 ::/48’

33

34 #Add new configuration to enable Open vSwitch

35 config interface ’lan ’

36 option ifname ’ovs -ap1 ’ # Change to ovs -ap2 for SDN -AP2

37 option force_link ’1’

38 option proto ’static ’

39 option ipaddr ’192.168.11.2 ’ #Change to 192.168.11.3 for SDN -AP2

40 option netmask ’255.255.255.0 ’

41

42 #Remove out default configuartion

43 #config interface ’lan ’

44 # option ifname ’eth1 ’

45 # option force_link ’1’

46 # option type ’bridge ’

47 # option proto ’static ’

48 # option ipaddr ’192.168.1.1 ’

49 # option netmask ’255.255.255.0 ’

50 # option ip6assign ’60’

51

52 #WAN configuration

53 config interface ’wan ’

54 option ifname ’eth0 ’

55 option _orig_ifname ’eth0 ’

56 option _orig_bridge ’false ’

57 option proto ’static ’

58 option ipaddr ’161.200.90.120 ’ #Change to 161.200.90.103 for SDN -AP2

59 option netmask ’255.255.255.128 ’

60 option gateway ’161.200.90.126 ’

61 option dns ’161.200.80.1 ’

62

63 config interface ’wan6 ’

64 option ifname ’eth0 ’

65 option proto ’dhcpv6 ’

66

122

67 config switch

68 option name ’switch0 ’

69 option reset ’1’

70 option enable_vlan ’1’

71

72 config switch_vlan

73 option device ’switch0 ’

74 option vlan ’1’

75 option ports ’0 1 2 3 4’

76

77 config switch_vlan

78 option device ’switch0 ’

79 option vlan ’2’

80 option ports ’5 6’

81 ..

82 vi /etc/config/firewall

83 #Add this rule for ssh login from WAN IP address

84 config rule

85 option src wan

86 option dest_port 22

87 option target ACCEPT

88 option proto tcp

89 #Allow all ports: If not allowed , cannot connect via vxlan tunneling

90 config rule

91 option src wan

92 option proto tcpudp

93 option dest_port 1024:65535

94 option family ipv4

95 option target ACCEPT

96 ..

97 vi /etc/config/uhttpd

98 Comment out to be able to login OpenWrt luci GUI webpage with WAN IP address

99 #option rfc1918_filter ’1’

100 ..

101 Now it is time to configure Open vSwitch in Openwrt.

102 Run the above automatic shell scripts one by one.

103 sh ovs -auto.sh

104 sh ovs -wlan.sh

105 sh ovs -vxlan.sh

106 sh sflow.sh

123

Appendix H

THAI SmartX box Architecture, Routing and

Required Ports for OpenStack

Figure H.1: THAI SmartX box architecture.

1 Adding routes inside CHULA SmartX box to connect with OpenFlow@Chula -EE SDN networks

via tunneling

2 Add route for vxlan tunneling between APs and CHULA SmartX box

3 sudo route add -host 161.200.90.120/32 gw 161.200.25.94 dev eth2 #SDN -AP1

4 sudo route add -host 161.200.90.103/32 gw 161.200.25.94 dev eth2 #SDN -AP2

124

Figure H.2: OpenWrt detail architecture for SDN-AP1 and SDN-AP2.

Figure H.3: Required OpenStack port numbers to open firewall rules at CHULA.

125

Appendix I

POX Controller Python Script for Wireless SDN

with and without Chunked Video Pre-transferring

1 ’’’

2 #Filename:openwrt_sdn.py by Phyo May Thet

3 #This file is for testing Dual WLANs with and without chunked video pre -transferring

4 #This file is for parsing signalling msg and on -request dynamic routing function

5 #Add flows for GIST -B:br-devops and CHULA:br-devops , SDN -AP1:ovs_ap1 and

SDN -AP2:ovs_ap2

6 #Phyo V1 21.1.2016 modified on 9.4.2016

7 #Reference from http :// sdnhub.org/tutorials/pox/

8 #Used:modified version of POX from this reference

http :// atnog.github.io/of_mobilenode/started.html

9 #Reference from http :// sdnhub.org/tutorials/pox/

10 #Solution for DHCP parsed error http :// ikimi.net/?p=131

11 #INFO:packet :(dhcp parse) warning DHCP packet data too short to parse header: data

len 86

12 #Solution:Change the value of miss_send_len in OFPT_SET_CONFIG message from 128

bytes to be 345 inside libopenflow_01.py. In POX , it is assigned to #Macro

OFP_DEFAULT_MISS_SEND_LEN =128.

13 #Install colorama to see color print

14 #Usage: sudo ./pox.py log.level --DEBUG samples.pretty_log openflow.keepalive

openwrt_sdn

15 ’’’

16 from pox.core import core

17 import pox.openflow.libopenflow_01 as of

18 from pox.lib.util import dpid_to_str

19 from pox.lib.util import str_to_bool

20 from pox.lib.addresses import IPAddr , EthAddr

21 import pox.lib.packet as pkt

22 from threading import Timer

23 import time

24 import math

25 from pox.lib.revent import *

26 from datetime import datetime

27 from colorama import Fore , Back , Style

28

29 log = core.getLogger ()

30 gist_dpid =0

31 th_dpid =4919131752989213699

32 ap1_dpid =0

33 ap2_dpid =0

34 print th_dpid

35 class PacketIn(Event):

36 def __init__(self ,connection ,ofp):

37 Event.__init__(self)

38 self.connection = connection

39 self.dpid = connection.dpid

40

41 class ConnectionDown(Event):

42 def __init__(self ,connection ,ofp):

43 Event.__init__(self)

44 self.connection = connection

45 self.dpid = connection.dpid

126

46

47 class MyComponent (object):

48

49 def __init__ (self):

50

51 core.openflow.addListeners(self)

52

53 def _handle_ConnectionUp (self , event):

54 log.debug("Switch %s has come up.", dpid_to_str(event.dpid))

55 ## dpid of ovs -ap1 2222222222222201 SDN -AP1

56 if event.dpid == 2459565876494606849:

57 event.connection.send(of.ofp_flow_mod(

58 action=of.ofp_action_output(port=of.OFPP_LOCAL),

59 match=of.ofp_match(in_port =2)))

60 print (Fore.YELLOW +’Install Flow entry to wlan0 >>ovs -ap1’)

61

62 ## dpid of ovs -ap1 2222222222222202 SDN -AP2

63 elif event.dpid == 2459565876494606850:

64 event.connection.send(of.ofp_flow_mod(

65 action=of.ofp_action_output(port=of.OFPP_LOCAL),

66 match=of.ofp_match(in_port =2)))

67 print (Fore.GREEN +’Install Flow entry to wlan0 >>ovs -ap2’)

68

69 ## dpid 4444444444444401 of SmartX GIST -B to CHULA

70 elif event.dpid == 4919131752989213697:

71 event.connection.send(of.ofp_flow_mod(

72 action=of.ofp_action_output(port =1),

73 match=of.ofp_match(in_port =3)))

74 event.connection.send(of.ofp_flow_mod(

75 action=of.ofp_action_output(port =3),

76 match=of.ofp_match(in_port =1)))

77

78 ## dpid 4444444444444403 of SmartX GIST -B br-devops to SDN -AP2 is port 6 and

SDN -AP1 is port 8

79 elif event.dpid == 4919131752989213699:

80 event.connection.send(of.ofp_flow_mod(

81 action=of.ofp_action_output(port =2),

82 match=of.ofp_match(in_port =6)))

83 event.connection.send(of.ofp_flow_mod(

84 action=of.ofp_action_output(port =2),

85 match=of.ofp_match(in_port =8)))

86 event.connection.send(of.ofp_flow_mod(

87 action=of.ofp_action_output(port =6),

88 match=of.ofp_match(in_port =2)))

89

90 def _handle_ConnectionDown(self ,event):

91 ConnectionDown(event.connection ,event.dpid)

92 log.info("Switch %s DOWN.",dpid_to_str(event.dpid))

93

94 #This class is to scan the connected devices and instruct to install flow for that

device in each AP.

95 class CustomFlow(object):

96 def __init__(self):

97 core.openflow.addListeners(self)

98 def _handle_PacketIn(self ,event):

99 global src_ip ,dst_ip ,ipv4_packet ,th_dpid

100

101 src_ip = []

102 dst_ip = []

127

103

104 PacketIn(event.connection ,event.ofp)

105 packet_in = event.ofp

106 packet = event.parsed

107 src_mac = packet.src

108 dst_mac = packet.dst

109 if packet.type == of.ethernet.IP_TYPE:

110 ipv4_packet = event.parsed.find("ipv4")

111 #tcp_packet = event.parsed.find("tcp")

112 print "IPv4 parsed packet",ipv4_packet

113 #print "TCP parsed packet",tcp_packet

114 # IPv4 Packet processing

115 src_ip = ipv4_packet.srcip

116 dst_ip = ipv4_packet.dstip

117

118 match = of.ofp_match.from_packet(packet)

119 log.info(" Packet_in from: %s ",dpid_to_str(event.dpid))

120 log.info(" src_ip: %s ",src_ip)

121 log.info(" dst_ip: %s ",dst_ip)

122

123 print (Fore.BLUE + ’start finding new client !:’), str(datetime.now())

124 if src_ip == "192.168.11.2" and dst_ip == "192.168.11.142":

125 print (Fore.YELLOW +"------- My LAB DELL PC connected to AP1 is detected!

--------")

126 My_flow1 (event)

127 My_flow11 (event)

128 print (Fore.YELLOW +" ----- Install Flow Entry for my LAB DELL PC to

AP1 ---------")

129 start_time = str(datetime.now())

130 print start_time , (Fore.YELLOW +"Start Associated LAB PC on AP1")

131 elif src_ip == "192.168.11.3" and dst_ip == "192.168.11.142":

132 print (Fore.YELLOW +"------- My LAB DELL PC connected to AP2 is

detected! --------")

133 My_flow2 (event)

134 My_flow22 (event)

135 print (Fore.YELLOW +" ----- Install Flow Entry for my LAB DELL PC to

AP2 ---------")

136 start_time = str(datetime.now())

137 print start_time , (Fore.YELLOW +"Start Associated LAB PC on AP2")

138 # To change on-request dynamic routing to both APs

139 elif src_ip == "192.168.11.3" and dst_ip == "255.255.255.255":

140 print (Fore.GREEN +"------- Found Fake DHCP request !!! --------")

141 f = of.ofp_flow_mod ()

142 f.command=of.OFPFC_MODIFY_STRICT

143 f.match.in_port = 2

144 f.actions.append(of.ofp_action_output(port=of.OFPP_ALL))

145 core.openflow.sendToDPID(th_dpid ,f)

146 #To change route only to AP1

147 elif src_ip == "192.168.11.2" and dst_ip == "255.255.255.255":

148 print (Fore.RED +"------- Found Fake DHCP request and change route

only to AP1 !!! --------")

149 m = of.ofp_flow_mod ()

150 m.command=of.OFPFC_MODIFY_STRICT

151 m.match.in_port = 2

152 m.actions.append(of.ofp_action_output(port =8))

153 core.openflow.sendToDPID(th_dpid ,m)

154

155 #To add flow for allow DHCP request and to reachable b/w GIST -B IP and STA IP

156 #For allowing DHCP request (AP1)

128

157 def My_flow1 (event):

158 f = of.ofp_flow_mod ()

159 f.match.in_port = of.OFPP_LOCAL

160 f.priority = 33001

161 f.match.dl_type = 0x0800

162 f.match.nw_dst = IPAddr("192.168.11.142")

163 f.actions.append(of.ofp_action_output(port = 2))

164 event.connection.send(f)

165

166 f = of.ofp_flow_mod ()

167 f.match.in_port = 2

168 f.priority = 33001

169 f.match.dl_type = 0x0800

170 f.match.nw_dst = IPAddr("192.168.11.2")

171 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

172 event.connection.send(f)

173

174 f = of.ofp_flow_mod ()

175 f.match.in_port = of.OFPP_LOCAL

176 f.priority = 33001

177 f.match.dl_type = 0x0806

178 f.actions.append(of.ofp_action_output(port = 2))

179 event.connection.send(f)

180

181 f = of.ofp_flow_mod ()

182 f.match.in_port = 2

183 f.priority = 33001

184 f.match.dl_type = 0x0806

185 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

186 event.connection.send(f)

187

188 #VxLAN connection with wlan0 AP1 and SmartX Chula br -devops and specified src IP and

dst IP

189 def My_flow11 (event):

190 f = of.ofp_flow_mod ()

191 f.match.in_port = 3

192 f.priority = 33001

193 f.match.dl_type = 0x0800

194 f.match.nw_dst = IPAddr("192.168.11.142")

195 f.actions.append(of.ofp_action_strip_vlan ()) #Remove VLAN header

196 f.actions.append(of.ofp_action_output(port = 2))

197 event.connection.send(f)

198

199 f = of.ofp_flow_mod ()

200 f.match.in_port = 2

201 f.priority = 33001

202 f.match.dl_type = 0x0800

203 f.match.nw_dst = IPAddr("192.168.11.1")

204 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111)) #Add VLAN header

205 f.actions.append(of.ofp_action_output(port = 3))

206 event.connection.send(f)

207

208 f = of.ofp_flow_mod ()

209 f.match.in_port = 3

210 f.priority = 33001

211 f.match.dl_type = 0x0806

212 f.actions.append(of.ofp_action_strip_vlan ())

213 f.actions.append(of.ofp_action_output(port = 2))

214 event.connection.send(f)

129

215

216 f = of.ofp_flow_mod ()

217 f.match.in_port = 2

218 f.priority = 33001

219 f.match.dl_type = 0x0806

220 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

221 f.actions.append(of.ofp_action_output(port = 3))

222 event.connection.send(f)

223

224 #For allowing DHCP request (AP2)

225 def My_flow2 (event):

226 f = of.ofp_flow_mod ()

227 f.match.in_port = of.OFPP_LOCAL

228 f.priority = 33001

229 f.match.dl_type = 0x0800

230 f.match.nw_dst = IPAddr("192.168.11.142")

231 f.actions.append(of.ofp_action_output(port = 2))

232 event.connection.send(f)

233

234 f = of.ofp_flow_mod ()

235 f.match.in_port = 2

236 f.priority = 33001

237 f.match.dl_type = 0x0800

238 f.match.nw_dst = IPAddr("192.168.11.3")

239 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

240 event.connection.send(f)

241

242 f = of.ofp_flow_mod ()

243 f.match.in_port = of.OFPP_LOCAL

244 f.priority = 33001

245 f.match.dl_type = 0x0806

246 f.actions.append(of.ofp_action_output(port = 2))

247 event.connection.send(f)

248 f = of.ofp_flow_mod ()

249 f.match.in_port = 2

250 f.priority = 33001

251 f.match.dl_type = 0x0806

252 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

253 event.connection.send(f)

254

255 #VxLAN connection with wlan0 AP2 and SmartX Chula br -devops and specified src IP and

dst IP

256 def My_flow22 (event):

257 f = of.ofp_flow_mod ()

258 f.match.in_port = 3

259 f.priority = 33001

260 f.match.dl_type = 0x0800

261 f.match.nw_dst = IPAddr("192.168.11.142")

262 f.actions.append(of.ofp_action_strip_vlan ())

263 f.actions.append(of.ofp_action_output(port = 2))

264 event.connection.send(f)

265

266 f = of.ofp_flow_mod ()

267 f.match.in_port = 2

268 f.priority = 33001

269 f.match.dl_type = 0x0800

270 f.match.nw_dst = IPAddr("192.168.11.1")

271 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

272 f.actions.append(of.ofp_action_output(port = 3))

130

273 event.connection.send(f)

274

275 f = of.ofp_flow_mod ()

276 f.match.in_port = 3

277 f.priority = 33001

278 f.match.dl_type = 0x0806

279 f.actions.append(of.ofp_action_strip_vlan ())

280 f.actions.append(of.ofp_action_output(port = 2))

281 event.connection.send(f)

282

283 f = of.ofp_flow_mod ()

284 f.match.in_port = 2

285 f.priority = 33001

286 f.match.dl_type = 0x0806

287 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

288 f.actions.append(of.ofp_action_output(port = 3))

289 event.connection.send(f)

290

291 def launch ():

292 core.registerNew(CustomFlow)

293 core.registerNew(MyComponent)

Listing I.1: Run POX Controller for Wireless Streaming with and without Chunked Video

Pre-transferring

1 sudo ./pox.py log.level --DEBUG samples.pretty_log openflow.keepalive openwrt_sdn

131

Appendix J

POX Controller Python Script for Wireless SDN

with 100% Duplication

1 ’’’

2 #Filename:openwrt_sdn_100.py by Phyo May Thet

3 #This file is for testing Single WLAN with 100% duplication and Dual WLANs with 100%

duplication

4 #This file is for parsing signalling msg and on -request dynamic routing function

5 #Add flows for GIST -B:br-devops and CHULA:br-devops , SDN -AP1:ovs_ap1 and

SDN -AP2:ovs_ap2

6 #Phyo V1 21.1.2016 modified on 9.4.2016

7 #Reference from http :// sdnhub.org/tutorials/pox/

8 #Used:modified version of POX from this reference

http :// atnog.github.io/of_mobilenode/started.html

9 #Reference from http :// sdnhub.org/tutorials/pox/

10 #Solution for DHCP parsed error http :// ikimi.net/?p=131

11 #INFO:packet :(dhcp parse) warning DHCP packet data too short to parse header: data

len 86

12 #Solution:Change the value of miss_send_len in OFPT_SET_CONFIG message from 128

bytes to be 345 inside libopenflow_01.py. In POX , it is assigned to #Macro

OFP_DEFAULT_MISS_SEND_LEN =128.

13 #Install colorama to see color print

14 #Usage: sudo ./pox.py log.level --DEBUG samples.pretty_log openflow.keepalive

openwrt_sdn_100

15 ’’’

16 from pox.core import core

17 import pox.openflow.libopenflow_01 as of

18 from pox.lib.util import dpid_to_str

19 from pox.lib.util import str_to_bool

20 from pox.lib.addresses import IPAddr , EthAddr

21 import pox.lib.packet as pkt

22 from threading import Timer

23 import time

24 import math

25 from pox.lib.revent import *

26 from datetime import datetime

27 from colorama import Fore , Back , Style

28

29 log = core.getLogger ()

30 gist_dpid =0

31 th_dpid =4919131752989213699

32 ap1_dpid =0

33 ap2_dpid =0

34 print th_dpid

35 class PacketIn(Event):

36 def __init__(self ,connection ,ofp):

37 Event.__init__(self)

38 self.connection = connection

39 self.dpid = connection.dpid

40

41 class ConnectionDown(Event):

42 def __init__(self ,connection ,ofp):

43 Event.__init__(self)

44 self.connection = connection

132

45 self.dpid = connection.dpid

46

47 class MyComponent (object):

48

49 def __init__ (self):

50

51 core.openflow.addListeners(self)

52

53 def _handle_ConnectionUp (self , event):

54 log.debug("Switch %s has come up.", dpid_to_str(event.dpid))

55 # dpid of ovs -ap1 2222222222222201 SDN_AP1 router

56 if event.dpid == 2459565876494606849:

57 event.connection.send(of.ofp_flow_mod(

58 action=of.ofp_action_output(port=of.OFPP_LOCAL),

59 match=of.ofp_match(in_port =2)))

60 print (Fore.YELLOW +’Install Flow entry to wlan0 >>ovs -ap1’)

61

62 # dpid of ovs -lan 2222222222222202 SDN_AP2 router

63 elif event.dpid == 2459565876494606850:

64 event.connection.send(of.ofp_flow_mod(

65 action=of.ofp_action_output(port=of.OFPP_LOCAL),

66 match=of.ofp_match(in_port =2)))

67 print (Fore.GREEN +’Install Flow entry to wlan0 >>ovs -ap2’)

68

69 ## dpid 4444444444444401 of SmartX GIST -B to CHULA

70 elif event.dpid == 4919131752989213697:

71 event.connection.send(of.ofp_flow_mod(

72 action=of.ofp_action_output(port =1),

73 match=of.ofp_match(in_port =3)))

74 event.connection.send(of.ofp_flow_mod(

75 action=of.ofp_action_output(port =3),

76 match=of.ofp_match(in_port =1)))

77 ## dpid 4444444444444403 of SmartX CHULA: SDN AP2 is port 6 and SDN AP1 is

port 8

78 elif event.dpid == 4919131752989213699:

79 event.connection.send(of.ofp_flow_mod(

80 action=of.ofp_action_output(port =2),

81 match=of.ofp_match(in_port =6)))

82 event.connection.send(of.ofp_flow_mod(

83 action=of.ofp_action_output(port =2),

84 match=of.ofp_match(in_port =8)))

85 event.connection.send(of.ofp_flow_mod(

86 action=of.ofp_action_output(port=of.OFPP_ALL),

87 match=of.ofp_match(in_port =2)))

88

89 def _handle_ConnectionDown(self ,event):

90 ConnectionDown(event.connection ,event.dpid)

91 log.info("Switch %s DOWN.",dpid_to_str(event.dpid))

92

93 #This class is to scan the connected devices and instruct to install flow for that

device in each AP.

94 class CustomFlow(object):

95 def __init__(self):

96 core.openflow.addListeners(self)

97 def _handle_PacketIn(self ,event):

98 global src_ip ,dst_ip ,ipv4_packet ,th_dpid

99 src_ip = []

100 dst_ip = []

101

133

102 PacketIn(event.connection ,event.ofp)

103 packet_in = event.ofp

104 packet = event.parsed

105 src_mac = packet.src

106 dst_mac = packet.dst

107 if packet.type == of.ethernet.IP_TYPE:

108 ipv4_packet = event.parsed.find("ipv4")

109 tcp_packet = event.parsed.find("tcp")

110 print "IPv4 parsed packet",ipv4_packet

111 print "TCP parsed packet",tcp_packet

112 # IPv4 Packet processing

113 src_ip = ipv4_packet.srcip

114 dst_ip = ipv4_packet.dstip

115

116 match = of.ofp_match.from_packet(packet)

117 log.info(" Packet_in from: %s ",dpid_to_str(event.dpid))

118 log.info(" src_ip: %s ",src_ip)

119 log.info(" dst_ip: %s ",dst_ip)

120

121 print (Fore.BLUE + ’start finding new client !:’), str(datetime.now())

122 if src_ip == "192.168.11.2" and dst_ip == "192.168.11.142":

123 print (Fore.YELLOW +"------- My LAB DELL PC connected to AP1 is detected!

--------")

124 My_flow1 (event)

125 My_flow11 (event)

126 print (Fore.YELLOW +" ----- Install Flow Entry for my LAB DELL PC to

AP1 ---------")

127 start_time = str(datetime.now())

128 print start_time , (Fore.YELLOW +"Start Associated LAB PC on AP1")

129

130 elif src_ip == "192.168.11.3" and dst_ip == "192.168.11.142":

131 print (Fore.YELLOW +"------- My LAB DELL PC connected to AP2 is

detected! --------")

132 My_flow2 (event)

133 My_flow22 (event)

134 print (Fore.YELLOW +" ----- Install Flow Entry for my LAB DELL PC to

AP2 ---------")

135 start_time = str(datetime.now())

136 print start_time , (Fore.YELLOW +"Start Associated LAB PC on AP2")

137

138 #To add flow for allow DHCP request and to reachable b/w GIST -B IP and STA IP

139 #For allowing DHCP request (AP1)

140 def My_flow1 (event):

141 f = of.ofp_flow_mod ()

142 f.match.in_port = of.OFPP_LOCAL

143 f.priority = 33001

144 f.match.dl_type = 0x0800

145 f.match.nw_dst = IPAddr("192.168.11.142")

146 f.actions.append(of.ofp_action_output(port = 2))

147 event.connection.send(f)

148

149 f = of.ofp_flow_mod ()

150 f.match.in_port = 2

151 f.priority = 33001

152 f.match.dl_type = 0x0800

153 f.match.nw_dst = IPAddr("192.168.11.2")

154 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

155 event.connection.send(f)

156

134

157 f = of.ofp_flow_mod ()

158 f.match.in_port = of.OFPP_LOCAL

159 f.priority = 33001

160 f.match.dl_type = 0x0806

161 f.actions.append(of.ofp_action_output(port = 2))

162 event.connection.send(f)

163

164 f = of.ofp_flow_mod ()

165 f.match.in_port = 2

166 f.priority = 33001

167 f.match.dl_type = 0x0806

168 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

169 event.connection.send(f)

170

171 #VxLAN connection with wlan0 AP1 and SmartX Chula br -devops and specified src IP and

dst IP

172 def My_flow11 (event):

173 f = of.ofp_flow_mod ()

174 f.match.in_port = 3

175 f.priority = 33001

176 f.match.dl_type = 0x0800

177 f.match.nw_dst = IPAddr("192.168.11.142")

178 f.actions.append(of.ofp_action_strip_vlan ()) #Remove VLAN header

179 f.actions.append(of.ofp_action_output(port = 2))

180 event.connection.send(f)

181

182 f = of.ofp_flow_mod ()

183 f.match.in_port = 2

184 f.priority = 33001

185 f.match.dl_type = 0x0800

186 f.match.nw_dst = IPAddr("192.168.11.1")

187 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111)) #Add VLAN header

188 f.actions.append(of.ofp_action_output(port = 3))

189 event.connection.send(f)

190

191 f = of.ofp_flow_mod ()

192 f.match.in_port = 3

193 f.priority = 33001

194 f.match.dl_type = 0x0806

195 f.actions.append(of.ofp_action_strip_vlan ())

196 f.actions.append(of.ofp_action_output(port = 2))

197 event.connection.send(f)

198

199 f = of.ofp_flow_mod ()

200 f.match.in_port = 2

201 f.priority = 33001

202 f.match.dl_type = 0x0806

203 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

204 f.actions.append(of.ofp_action_output(port = 3))

205 event.connection.send(f)

206

207 #For allowing DHCP request (AP2)

208 def My_flow2 (event):

209 f = of.ofp_flow_mod ()

210 f.match.in_port = of.OFPP_LOCAL

211 f.priority = 33001

212 f.match.dl_type = 0x0800

213 f.match.nw_dst = IPAddr("192.168.11.142")

214 f.actions.append(of.ofp_action_output(port = 2))

135

215 event.connection.send(f)

216

217 f = of.ofp_flow_mod ()

218 f.match.in_port = 2

219 f.priority = 33001

220 f.match.dl_type = 0x0800

221 f.match.nw_dst = IPAddr("192.168.11.3")

222 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

223 event.connection.send(f)

224

225 f = of.ofp_flow_mod ()

226 f.match.in_port = of.OFPP_LOCAL

227 f.priority = 33001

228 f.match.dl_type = 0x0806

229 f.actions.append(of.ofp_action_output(port = 2))

230 event.connection.send(f)

231 f = of.ofp_flow_mod ()

232 f.match.in_port = 2

233 f.priority = 33001

234 f.match.dl_type = 0x0806

235 f.actions.append(of.ofp_action_output(port = of.OFPP_LOCAL))

236 event.connection.send(f)

237

238 #VxLAN connection with wlan0 AP2 and SmartX Chula br -devops and specified src IP and

dst IP

239 def My_flow22 (event):

240 f = of.ofp_flow_mod ()

241 f.match.in_port = 3

242 f.priority = 33001

243 f.match.dl_type = 0x0800

244 f.match.nw_dst = IPAddr("192.168.11.142")

245 f.actions.append(of.ofp_action_strip_vlan ())

246 f.actions.append(of.ofp_action_output(port = 2))

247 event.connection.send(f)

248

249 f = of.ofp_flow_mod ()

250 f.match.in_port = 2

251 f.priority = 33001

252 f.match.dl_type = 0x0800

253 f.match.nw_dst = IPAddr("192.168.11.1")

254 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

255 f.actions.append(of.ofp_action_output(port = 3))

256 event.connection.send(f)

257

258 f = of.ofp_flow_mod ()

259 f.match.in_port = 3

260 f.priority = 33001

261 f.match.dl_type = 0x0806

262 f.actions.append(of.ofp_action_strip_vlan ())

263 f.actions.append(of.ofp_action_output(port = 2))

264 event.connection.send(f)

265

266 f = of.ofp_flow_mod ()

267 f.match.in_port = 2

268 f.priority = 33001

269 f.match.dl_type = 0x0806

270 f.actions.append(of.ofp_action_vlan_vid(vlan_vid =111))

271 f.actions.append(of.ofp_action_output(port = 3))

272 event.connection.send(f)

136

273

274 def launch ():

275 core.registerNew(CustomFlow)

276 core.registerNew(MyComponent)

Listing J.1: Run POX Controller for Wireless Streaming with 100% Duplication

1 sudo ./pox.py log.level --DEBUG samples.pretty_log openflow.keepalive openwrt_sdn_100

137

Appendix K

Wi-Fi STA Shell Script for Scenario 1

1 #!/bin/bash

2 #Written by Phyo May Thet

3 #sudo chmod +x monitor_onelan.sh

4 #To check uuid of AP: useage: nmcli con

5 #sudo ./ monitor_onelan.sh filename

6 #This file is to scan the WiFi signal strenght of AP1 and AP2 and to perform client

initiated handover

7 #Once Signal level of AP2 reach to less than or equal -68dbm , it will handover to AP1

8 #This file is used for testing (1) WiFi streaming using single WLAN with 100%

duplication

9 red=‘tput setaf 1‘

10 green=‘tput setaf 2‘

11 yellow=‘tput setaf 3‘

12 blue=‘tput setaf 4‘

13 magenta=‘tput setaf 5‘

14 reset=‘tput sgr0 ‘

15

16 echo "${blue} #### Start Monitoring WiFi Signal Strength ####${reset}"

17 #forever loop

18 while :;do

19 a=wlan0

20

21 #Grep Signal level from iwconfig of wlan0

22 c=$(iwconfig $a | grep ’Signal level ’ | cut -b 30-51)

23 e=$(iwconfig $a | grep ’Signal level ’ | cut -b 45-47)

24 i+=$(iwconfig $a | grep ’Signal level ’ | cut -b 45 -47)

25

26 #Save Signal Level of AP1 and AP2 to .csv file

27 echo "AP2 $i+" > $1.csv

28

29 #Check AP2 signal level is less than or equal -68dbm?

30 if [["$e" -ge 68]]; then

31 echo "${green} Signal is less than or equal -68dbm now${reset}"

32 echo "${green} Now Start Handover to SDN -AP1 via wlan0${reset}"

33 sudo nmcli c up uuid 78ed6b02 -2216 -4750 -a01d -cd34a9728144 iface wlan0

34 echo "...................."

35

36 else

37 echo "${red} Signal level is greater than -68dbm now${reset}"

38 echo "...................."

39

40 fi

41 echo "${blue }***** WiFi $c ******${reset}"

42

43 echo "......................"

44 sleep 1

45 done

Listing K.1: Run Wi-Fi STA Script for Wireless Streaming Scenario 1

1 sudo ./ monitor_v1.sh filenameAP2 filenameAP1

138

Appendix L

Wi-Fi STA Shell Script for Scenario 2-4

1 #!/bin/bash

2 #Written by Phyo May Thet

3 #sudo chmod +x monitor_v1.sh

4 #To check uuid of AP: useage: nmcli con

5 #sudo ./ monitor_v1.sh filenameAP2 filenameAP1

6 #This file is to scan the WiFi signal strenght of AP1 and AP2 and to perform client

initiated handover

7 #Once Signal level of AP2 reach to less than or equal -68dbm , it will handover to

AP1 first and then disconnect AP2

8 #This file is used for testing

9 #(2) WiFi streaming using dual WLANs with 100% duplication

10 #(3) WiFi streaming using dual WLANs with chunked video pre -transferring mechanism

11 #(4) WiFi streaming using dual WLANs without chunked video pre -transferring mechanism

.

12 #In scenario 2 and 3, it sends the singal alert for on-request dynamic routing

13

14 red=‘tput setaf 1‘

15 green=‘tput setaf 2‘

16 yellow=‘tput setaf 3‘

17 blue=‘tput setaf 4‘

18 magenta=‘tput setaf 5‘

19 reset=‘tput sgr0 ‘

20

21 echo "${blue} #### Start Monitoring WiFi Signal Strength ####${reset}"

22 #forever loop

23 while :;do

24 a=wlan0

25 b=wlan1

26

27 #Grep Signal level from iwconfig of wlan0 wlan1

28 c=$(iwconfig $a | grep ’Signal level ’ | cut -b 30-51)

29 d=$(iwconfig $b | grep ’Signal level ’ | cut -b 30-51)

30 e=$(iwconfig $a | grep ’Signal level ’ | cut -b 45-47)

31 f=$(iwconfig $b | grep ’Signal level ’ | cut -b 45-47)

32 i+=$(iwconfig $a | grep ’Signal level ’ | cut -b 45 -47)

33 j+=$(iwconfig $b | grep ’Signal level ’ | cut -b 45 -47)

34

35 #Save Signal Level of AP1 and AP2 to .csv file

36 echo "AP2 $i+" > $1.csv

37 echo "AP1 $j+" > $2.csv

38

39 #Check AP2 signal level is less than or equal -68dbm?

40 if [["$e" -ge 68]]; then

41 sudo dhcping -s 255.255.255.255 -r -v -h 00:00:00:00:00:01 # Remove this line for

without chunked video pre -transferring and dual WLANs with 100% duplication

42 sleep 1 # Remove this line for without chunked video pre -transferring and dual

WLANs with 100% duplication

43 echo "${green} Signal is less than or equal -68dbm now${reset}"

44 echo "${green} Now Start Handover to SDN -AP1 via wlan1${reset}"

45 sudo nmcli c up uuid f9a9afaf -0517 -48ce -90b8 -05 a954b26f08 iface wlan1

46 echo "${magenta} Disconnect wlan0 from SDN -AP2${reset}"

47 nmcli dev disconnect iface wlan0 #Remove for dual WLANs with 100% duplication

48 sudo dhcping -s 255.255.255.255 -r -v #Remove for dual WLANs with 100% duplication

139

49 echo "...................."

50

51 else

52 echo "${red} Signal level is greater than -68dbm now${reset}"

53 echo "...................."

54

55 fi

56 echo "${blue }***** SDN AP2 $c ******${reset}"

57 echo "${yellow }***** SDN AP1 $d ******${reset}"

58

59 echo "......................"

60 sleep 1

61 done

Listing L.1: Run Wi-Fi STA Script for Wireless Streaming Scenario 2-4

1 sudo ./ monitor_onelan.sh filename

140

Appendix M

Setting Up X11 Desktop Environment for

OpenStack VMs

1 Reference:

2 http :// vandorp.biz /2012/01/ installing -a-lightweight -lxdevnc -desktop

3 -environment -on-your -ubuntudebian -vps /#. V1Rjg74bog4

4

5 # Make sure Debian is the latest and greatest

6 apt -get update

7 apt -get upgrade

8 apt -get dist -upgrade

9

10 # Install X, LXDE , VPN programs

11

12 apt -get install xorg lxde -core tightvncserver xrdp

13

14 # Start VNC to create config file

15

16 tightvncserver :1

17

18 # Then stop VNC

19

20 tightvncserver -kill :1

21

22 # Edit config file to start session with LXDE:

23

24 nano ~/. vnc/xstartup

25

26 # Add this at the bottom of the file:

27 lxterminal &

28 /usr/bin/lxsession -s LXDE &

29

30 # Restart VNC

31

32 tightvncserver :1

141

Biography

Phyo May Thet was born in 1990 in Yangon, Myanmar. She received B.Eng degree in

Electronic Engineering from Technological University (Thanlyin), Myanmar, in 2011.

From 2012 to 2014, she worked as a telecommunication engineer in Thailand and

Myanmar. She is a Master’s degree student in the field of Wireless Network and Future

Internet (STAR) Research Group at Department of Electrical Engineering, Chulalongkorn

University, Thailand. From 2014 to present, she is a recipient of scholarship for

International Graduate Students in ASEAN countries, Chulalongkorn University,

Thailand. During 29 June to 7 August 2015, she has joined Networked Computing

Systems (NetCS) Laboratory as a summer internship student at Gwangju Institute of

Science and Technology (GIST), Korea. Her research interests include Cloud Computing,

Future Internet Technology and Software Defined Networking.

List of Publications

[1] Thet, P. M., Panwaree, P., Kim, J., and Aswakul, C. Design and functionality test

of chunked video streaming over emulated multi-path OpenFlow network. in Proc. of

Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), 12th International Conference, IEEE (June 24-26, 2015): 1-6.

[2] Thet, P. M., Tientrakul, N., Kim, J., and Aswakul, C. Emulated OpenFlow based

experimental study on middle-box buffering effect for multi-path chunked video streaming.

in Proc. of 30th International Technical Conference on Circuit/Systems Computers and

Communications (ITC-CSCC) (June 29-July 2, 2015): 184-187.

[3] Risdianto, A. C., Kim, N. L., Shin, J., Bae, J., Usman, M., Ling, T. C., Panwaree,

P., Thet, P. M., Aswakul, C., Thanh, N. H., Iqbal A., Javed, U., Ilyas, M. U., and Kim,

J. OF@TEIN: A community efforts towards open/shared SDN-Cloud virtual playground.

in Proc. of the Asia-Pacific Advanced Network 40 (August 10-14, 2015): 22-28.

[4] Risdianto, A. C., Thet, P. M., Iqbal, A., Shaari, N. A. B. M., Atluri, H. K., Nurkahfi,

G. N., Wantamanee, A., Hakimi, R., Aswakul, C., Ilyas M. U., Ling, T. C., Paventhan, A.,

Mulyana, E., and Kim, J. Deploying and evaluating access center and its feasibility for

access federation. in Prof. of the Asia-Pacific Advanced Network 41 (July 31-August 5,

2016).

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Research Motivation
	1.2 Problem Statement
	1.3 Objective
	1.4 Scope of Thesis
	1.5 Expected Outcome and Contribution
	1.6 Organization of Thesis

	Chapter 2 Background and Literature Review
	2.1 Background
	2.2 Literature Review

	Chapter 3 Research Methodology
	Chapter 4 Conclusion
	References
	Appendices
	Biography

