การศึกษาทางพฤกษเคมีของใบหอมไกลดง

นางสาวรัชนี ภูวพัฒนชาติ

วิทยาพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตร์มหาบัณฑิต สาขาวิชาเภสัชพฤกษศาสตร์ ภาควิชาเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-4397-1 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Miss Ratchanee Poovapatthanachart

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy in Pharmaceutical Botany Department of Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2003 ISBN 974-17-4397-1

Thesis Title	Phytochemical study of Harpullia arborea leaves
Ву	Miss Ratchanee Poovapatthanachart
Field of study	Pharmaceutical Botany
Thesis Advisor	Witchuda Thanakijcharoenpath, Ph.D.

Accepted by the Faculty of Pharmaceutial Sciences, Chulalongkorn

University in Partial Fulfillment of the Requirements for the Master's Degree

...... Dean of the Faculty of

Pharmaceutical Sciences

(Associate Professor Boonyong Tantisira, Ph.D.)

THESIS COMMITTEE

Chairman

(Associate Professor Ekarin Saifah, Ph.D.)

(Witchuda Thanakijcharoenpath, Ph.D.)

...... Member

(Associate Professor Rapepol Bavovada, Ph.D.)

...... Member (Assistant Professor Rutt Suttisri, Ph.D.)

...... Member

(Associate Professor Chaiyo Chaichantipyuth, M.Sc. in Pharm.)

รัชนี ภูวพัฒนชาติ : การศึกษาทางพฤกษเคมีของใบหอมไกลดง (PHYTOCHEMICAL STUDY OF *HARPULLIA ARBOREA* LEAVES) อาจารย์ที่ปรึกษา : อ.ดร. วิชชุดา ธนกิจ-เจริญพัฒน์, 183 หน้า. ISBN 974-17-4397-1.

จากส่วนใบของหอมไกลดง (วงศ์ Sapindaceae) สามารถแยกได้สารในกลุ่มไตรเทอร์ปี นอยด์ชนิดใหม่ 1 ชนิด คือ 3β-eicosanoyl-6β-hydroxy-21αH-24-norhopa-4(23),22(29)-diene ร่วมกับสารในกลุ่มไตรเทอร์ปีนอยด์ประเภท lupane 1 ชนิด คือ lupeol, สารในกลุ่ม sterol 1 ชนิด คือ (α-spinasterol) และอนุพันธ์ของ inositol 1 ชนิด คือ quebrachitol การพิสูจน์เอกลักษณ์ของ สารเหล่านี้ทำโดยการวิเคราะห์ข้อมูล MS, IR, ¹H-NMR และ ¹³C-NMR โดยเฉพาะอย่างยิ่ง 1D-NMR และ 2D-NMR ร่วมกับการเปรียบเทียบข้อมูลที่ได้มีรายงานไว้แล้ว ในการศึกษาเพื่อตรวจสอบ ฤทธิ์ที่มีต่อการเพิ่มจำนวนของ lymphocyte ในหลอดทดลอง ของสารสกัดจากพืช และ quebrachitol พบว่า สารสกัดในชั้นเมทธานอลและ quebrachitol แสดงฤทธิ์กระตุ้นการเพิ่มจำนวน ของ lymphocyte

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

ภาควิชา เภสัชพฤกษศาสตร์ สาขาวิชา เภสัชพฤกษศาสตร์ ปีการศึกษา 2546

ลายมือชื่อนิสิต
ลายมือชื่ออาจารย์ที่ปรึกษา
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4476602933 : MAJOR PHARMACEUTICAL BOTANY

 KEY WORD
 : HARPULLIA ARBOREA / Sapindaceae / triterpenoid / inositol

 derivative / sterol / lymphocyte proliferation

RATCHANEE POOVAPATTHANACHART : PHYTOCHEMICAL STUDY OF HARPULLIA ARBOREA LEAVES. THESIS ADVISOR : WITCHUDA THANAKIJCHAROENPATH Ph.D., 183 pp. ISBN 974-17-4397-1

From the leaves of *Harpullia arborea* (Sapindaceae), a new triterpenoid, 3β eicosanoyl-6 β -hydroxy-21 α H-24-norhopa-4(23),22(29)-diene, together with a lupane-type triterpenoid, lupeol; a sterol , α -spinasterol and an inositol derivative , quebrachitol, has been isolated. The structure elucidation of these compounds were accomplished through the analysis of their MS, IR, ¹H-NMR and ¹³C-NMR, especially the 1D-NMR and 2D-NMR data as well as comparison with reported values. In the investigation of the effects on *in vitro* lymphocyte proliferation of extracts from the plant and the isolated compound quebrachitol, methanol extract and quebrachitol have been found to exhibited stimulatory effect on lymphocyte proliferation.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Department Pharmaceutical Botany Field of study Pharmaceutical Botany Academic year 2003

Student's signature
Advisor's signature
Co-advisor's signature

ACKNOWLEDGMENTS

The author wishes to express her deep indebtedness and sincere gratitude to her advisor, Dr. Witchuda Thanakijcharoenpath of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her helpful guidance, suggestion, continual encouragement and kindness throughout the course of this study.

The author would like to acknowledge her grateful thanks to Associate Professor Dr. Ekarin Saifah, Associate Professor Dr. Rapepol Bavovada and Assistant Professor Dr. Rutt Suttisri of the Department of Pharmaceutical Botany, and Associate Professor Chaiyo Chaichantipyuth of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their valuable critical comment.

The author would like to express her thanks to Miss Chompunuch Boonarkart of the Department of Pharmaceutical Biochemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for biological test on lymphocyte proliferation.

The author would like to express her thanks to all staff members of the Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their kindness and help.

The author is also indebted to all her friends in the Department for their useful contribution and friendship.

The author is also greatefully indebted to her family for their love, understanding, encouragement and financial support.

Finally, the author's thanks are due to Chulalongkorn University Graduate School, for granting partial financial support to conduct this investigation.

CONTENTS

Page

ABSTF	RACT (THAI)	iv
	RACT (ENGLISH)	
	OWLEDGMENTS	
	ENTS	
LIST C	DF FIGURES	ix
LIST C	DF TABLES	xiii
	DF SCHEMES	
LIST C	DF ABBREVIATIONS	xvi
CHAP	TER	
I		1
II	HISTORICAL	7
	The Family Sapindaceae and Its Species in Thailand	7
	Chemical Constituents of Plants in the Family Sapindaceae	10
	Chemical Constituents of Plants in the Genus Harpullia	55
	Traditional Uses of Harpullia Species	63
	Biological Activities of <i>Harpullia</i> Species	63
	EXPERIMENTAL	
	Source of Plant Material	64
	General Techniques	64
	Extraction and Isolation	67
	Fractionation of hexane extract	68
	Fractionation of methanol extract	74
	Characterization of Isolated Compounds	77
	Determination on In Vitro Stimulation of Lymphocyte Proliferation	81

CONTENTS (continued)

Page

IV	RESULTS AND DISCUSSION	84
	Identification and Structure elucidation of Isolated Compounds	84
	Structure elucidation of HA-1	84
	Structure elucidation of HA-2	121
	Structure elucidation of HA-3	134
	Structure elucidation of HA-4	155
	Determination on <i>In Vitro</i> Stimulation of Lymphocyte Proliferation	170
V	CONCLUSION	174
	REFERENCES	175
	VITA	

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure

1	Harpullia arborea6
2	EIMS of compound HA-193
3	IR spectrum of compound HA-194
4a	The 500 MHz 1 H-NMR spectrum of compound HA-1 (in CDCl ₃)95
4b	The 500 MHz ¹ H-NMR spectrum of compound HA-1 (expanded)96
4c	The 500 MHz ¹ H-NMR spectrum of compound HA-1 (expanded)97
5a	The 125 MHz ¹³ C-NMR spectrum of compound HA-1 (in CDCl ₃)98
5b	The 125 MHz ¹³ C-NMR spectrum of compound HA-1 (expanded)
6a	The 125 MHz 13 C-DEPT NMR spectrum of compound HA-1 (in CDCl ₃)100
6b	The 125 MHz ¹³ C-DEPT NMR spectrum of compound HA-1 (expanded)101
7a	The 125 MHz 1 H- 13 C HETCOR NMR spectrum of compound HA-1(in CDCl ₃)102
7b	The 125 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound HA-1(expanded)103
7c	The 125 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound HA-1(expanded)104
7d	The 500,125 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound HA-1(expanded).105
8a	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-1(in CDCl ₃)106
8b	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-1(expanded)107
8c	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-1(expanded)108
9a	The 500 MHz ¹ H- ¹ H NOESY NMR spectrum of compound HA-1(in CDCl ₃)109
9b	The 500 MHz ¹ H- ¹ H NOESY NMR spectrum of compound HA-1(expanded)110
9c	The 500 MHz ¹ H- ¹ H NOESY NMR spectrum of compound HA-1(expanded)111
10a	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(in CDCl ₃)112

LIST OF FIGURES (continued)

Figure

10b	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)113
10c	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)114
10d	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)115
10e	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)116
10f	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)117
10g	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)118
10h	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)119
10i	The 125 MHz ¹ H- ¹³ C HMBC NMR spectrum of compound HA-1(expanded)120
11	EIMS of compound HA-2126
12	IR spectrum of compound HA-2127
13a	The 300 MHz ¹ H-NMR spectrum of compound HA-2 (in CDCl ₃)129
14a	The 75 MHz ¹³ C-NMR spectrum of compound HA-2 (in CDCl ₃)130
14b	The 75 MHz ¹³ C-NMR spectrum of compound HA-2 (expanded)131
15a	The 75 MHz 13 C-DEPT NMR spectrum of compound HA-2 (in CDCl ₃)132
15b	The 75 MHz ¹³ C-DEPT NMR spectrum of compound HA-2 (expanded)133
16	EIMS of compound HA-3142
17	IR spectrum of compound HA-3143
18a	The 500 MHz ¹ H-NMR spectrum of compound HA-3 (in CDCl ₃)144
18b	The 500 MHz ¹ H-NMR spectrum of compound HA-3 (expanded)145
18c	The 500 MHz ¹ H-NMR spectrum of compound HA-3 (expanded)146

Page

LIST OF FIGURES (continued)

Page

Figure

19	The 75 MHz ¹³ C-NMR spectrum of compound HA-3 (in CDCl ₃)147
20a	The 125 MHz 13 C-DEPT NMR spectrum of compound HA-3 (in CDCl ₃ 148
20b	The 125 MHz ¹³ C-DEPT NMR spectrum of compound HA-3 (expanded)149
21a	The 75 MHz 1 H- 13 C HETCOR NMR spectrum of compound HA-3 (in CDCl ₃)150
21b	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound HA-3 (expanded)151
22a	The 300 MHz 1 H- 1 H COSY NMR spectrum of compound HA-3 (in CDCl ₃)152
22b	The 300 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-3 (expanded)153
22c	The 300 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-3 (expanded)154
23	¹ H-NMR spectral patterns of the C-26,C-27 and C-29 methyl signals of
	(A) HA-3 (B) \pmb{lpha} -spinasterol and (C) chondrillasterol140
24	EIMS of compound HA4159
25	IR spectrum of compound HA-4160
26a	The 500 MHz ¹ H-NMR spectrum of compound HA-4 (in DMSO-d ₆)161
26b	The 500 MHz ¹ H-NMR spectrum of compound HA-4 (expanded)162
27	The 75 MHz ¹³ C-NMR spectrum of compound HA-4 (in DMSO-d ₆)163
28	The 75 MHz ¹³ C-DEPT NMR spectrum of compound HA-4 (in DMSO-d ₆)164
29a	The 75 MHz 1 H- 13 C HETCOR NMR spectrum of compound HA-4 (in DMSO-d ₆)165
29b	The 75 MHz ¹ H- ¹³ C HETCOR NMR spectrum of compound HA-4 (expanded)166
30a	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-4 (in DMSO-d ₆)167
30b	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-4 (expanded)168
30c	The 500 MHz ¹ H- ¹ H COSY NMR spectrum of compound HA-4 (expanded)169

LIST OF FIGURES (continued)

Figure

- 31a % Stimulation of crude ethanolic extract on lymphocyte proliferation......171

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Page

LIST OF TABLES

Table	
1	Distribution of triterpenoids in the family Sapindaceae13
2	Distribution of compounds in the genus <i>Harpullia</i> 56
3	Combined fractions from the hexane extract
4	Combined fractions from D ₁ 69
5	Combined fractions from D ₁ C70
6	Combined fractions from E ₁ 71
7	Combined fractions from F ₁ 72
8	Combined fractions from methanol extract74
9	Combined fractions from F ₂ 75
10	¹ H-NMR assignments of compound HA-1 (triterpenoid part) and reported data
	of 3 β ,6 β -dihydroxy-21 α H-24-norhopa-4(23),22(29)-diene (90) and
	3 <i>β</i> -acetoxy-6 <i>β</i> -hydroxy-21 <i>αH</i> -24-norhopa-4(23),22(29)-diene (107)
	(in CDCl ₃)
11	¹³ C-NMR assignments of compound HA-1 (triterpenoid part) and reported
	data of 3β ,6 β -dihydroxy-21 α H-24-norhopa-4(23),22(29)-diene (90) and
	3β-acetoxy-6β-hydroxy-21αH-24-norhopa-4(23),22(29)-diene(107)
	(in CDCl ₃)
12	¹ H and ¹³ C-NMR assignments of compound HA-1 (fatty acid part) and
	reported ¹³ C-NMR data of methyl eicosanoate (in CDCl ₃)91
13	¹ H and ¹³ C-NMR assignments of compound HA-2 and reported data of
	lupeol in $(CDCl_3)$ 123
14	1 H-NMR assigments of compound HA-3 (500 MHz; in CDCl ₃) and reported
	data of α -spinasterol (270 MHz; in CDCl ₃) and chondrillasterol (270 MHz; in
	CDCl ₃)

LIST OF TABLES (continued)

Table

15	¹³ C-NMR assignments of compound HA-3 (500 MHz; in CDCl ₃) and reported		
	data of α -spinasterol (270 MHz; in CDCl ₃) and chondrillasterol (CDCl ₃)137		
16	¹ H-NMR data of compound HA-4 (in DMSO-d ₆) and L-quebrachitol (in D_2O)156		
17	13 C-NMR data of compound HA-4 (in DMSO-d ₆) and L-quebrachitol (in D ₂ O)157		
18	Effects of crude ethanolic extract on lymphocyte proliferation		
19	Effects of hexane and chloroform extracts on lymphocyte proliferation171		
20	Effects of methanol extract and the quebrachitol (compound HA-4) on		
	lymphocyte proliferation172		
21	Effects of concanavalin A (Con-A) and lipopolysaccharide (LPS) on		
	lymphocyte proliferation		
22	CCs ₅₀ of the extracts of Harpullia arborea and quebrachitol		
	(compound HA-4)		

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Page

Scheme

1	Extraction scheme of Harpullia arborea leaves	.67
2	Fractionation of hexane extract	.73
3	Fractionation of methanol extract	.76
4	Mass fragmentation of compound HA-2	122
5	Mass fragmentation of compound HA-3	136

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF ABBREVIATIONS

Арі	=	apiose
Ara	=	arabinose
br	=	broad
°C	=	Degree celsius
СС	=	Column Chromatography
CCs_{50}	=	50% cytotoxic concentration
CDCI ₃	=	Deuterated chloroform
CHCI ₃	=	Chloroform
cm	=	Centimeter
¹³ C-NMR	=	Carbon-13 Nuclear Magnetic Resonance
CO_2	=	Carbon dioxide
Con-A	= 6	Concanavalin A
COSY	=	Correlated spectroscopy
1D	=	one dimensional
2D	=	two dimensional
δ	€ \ 6	Chemical shift
d	5	doublet
dd	= 6	doublet of doublets
DEPT	=	Distortionless Enhancement by Polarization Transfer
DMSO	=	Dimethylsulfoxide
DMSO-d ₆	=	Deuterated dimethylsulfoxide
EIMS	=	Electron Impact Mass Spectrum
EtOH	=	Ethanol
EtOAc	=	Ethyl acetate

LIST OF ABBREVIATIONS (continued)

eV	=	electron Volt
Fuc	=	fucose
Gal	=	galactose
Glc	=	glucose
Glc A	=	glucuronic acid
gm	=	gram
¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HETCOR	=	Heteronuclear Correlation Spectroscopy
HMBC	=	¹ H –detected Heteronuclear Multiple Bond Coherence
Hz	=	Hertz
IR	=	Infrared
J	=	Coupling constant
KBr	=	Potassium bromide
L	=	Liter
LPS	= 6	Lipopolysaccharide
т	=	multiplet
M^+	=	Molecular ion
mcg	=	microgram
mcl	ลเ	microliter
MeOH	=	Methanol
mg	1=16	milligram
mp 9	=	melting point
MHz	=	Megahertz
ml	=	milliliter

LIST OF ABBREVIATIONS (continued)

MS	=	Mass Spectrum
m/z	=	mass-to-charge ratio
nm	=	nanometer
NMR	=	Nuclear Magnetic Resonance
ppm	=	part per million
rpm	=	round per minute
Rha	=	rhamnose
S	=	singlet
S.E.M.	=	Standard Error Mean
sp.	=	species
t	=	triplet
TLC	=	Thin-Layer Chromatography
Xyl	=	xylose

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

Harpullia is one of the genera of the Sapindaceae, a family which consists of about 140 genera and 1,350 species worldwide (Van Welzen, 1999). Plants in this genus are found from Sri Lanka and India through Southeast China and Southeast Asia to Northeast and East Australia, New Caledonia, Tonga (Van Welzen, 1999) and also in Madagascar (Chopra, Badhwar, and Ghosh, 1965). The characteristic features of the plants are as follows.

Shrubs to trees, dioecious. *Indumentum* of simple and stellately bundled hairs. *Leaves* paripinnate. *Leaflets* smooth underneath; base symmetrical to oblique; margin entire; domatia absent; nerves looped and joined near the margin, venation coarsely reticulate. *Inflorescences* axillary to terminal and solitary or tufted and rami/ cauliflorous, thyrsoid, at most laxly branching, pilose. *Flowers* unisexual, actinomorphic. *Sepals* 5, free, imbricate, outer 2 usually smaller. *Petals* 5, larger than sepals, without ornamentation (then fleshy) or with 2 auricles (thin). *Disc* annular, pilose (Thailand). *Stamens* 5 – 8, glabrous. *Ovary* sessile or short–stalked, 2-locular (Thailand), hairy; stigma not lobed, often bent and hooked; ovules 1 or 2 per locule. *Fruits* capsular, loculicidal, usually short–stipitate, smooth, lobed; lobes spreading, inflated, rounded; wall parchment–like to woody, glabrous to hairy on both sides. *Seeds* ellipsoid, with a basal sarcotestal ring or arilloid completely covering seed, but lower part sarcotestal and upper part free; hilum small (Van Welzen, 1999).

According to the Index Kewensis, 48 species of *Harpullia* have been recorded as follows.

- 1. Harpullia aeruginosa Radlk.
- 2. H. alata F. Muell.
- 3. H. angustialata C. T.
- 4. H. angustifolia Radlk.
- 5. H. arborea Radlk.
- 6. H. austrocaledonica Baill.
- 7. H. camptoneura Radlk.
- 8. H. cauliflora K. Schum. & Lauterb.
- 9. H. cochinchinensis Pierre.
- 10. H. condorensis Pierre.
- 11. H. crustacea Radlk.
- 12. H. cupanioides Roxb.
- 13. H. divaricata Radlk.
- 14. H. fraxinifolia Blume
- 15. H. frutescens F. M. Bailey
- 16. H. fruticosa Blume
- 17. H. fosteri Sprague
- 18. H. glanduligera Radlk.
- 19. H. hillii F. Muell.
- 20. H. hirsuta Radlk.
- 21. H. holoptera Radlk.
- 22. H. largifolia Radlk.
- 23. H. leichhardtii F. Muell ex Benth.
- 24. H. leptococca Radlk.
- 25. H. longithyrsifera Kanehira & Hatusima
- 26. H. macrocalyx Radlk.

- 27. H. madagascariensis Radlk.
- 28. H. marginata Radlk.
- 29. H. mellea Lauterb.
- 30. H. multijuga Radlk.
- 31. H. myrmecophila Merrill & Perry
- 32. H. obscura Radlk.
- 33. H. oococca Radlk.
- 34. H. parviflora Lecomte
- 35. H. pedicellaris Radlk.
- 36. H. peekeliana Melch.
- 37. H. pendula Planch.
- 38. H. petiolaris Radlk.
- 39. H. ramiflora Radlk.
- 40. H. reticulata Radlk.
- 41. H. rhachiptera Radlk.
- 42. H. rhyticarpa C. T.
- 43. H. sphaeroloba Radlk.
- 44. H. thanatophora Blume
- 45. H. tomentosa Ridley
- 46. H. vaga Merrill & Perry
- 47. H. weinlandii K. Schum.
- 48. H. zanguebarica Radlk.

จพาลงกรณมหาวทยาลย

In Thailand, only two species of *Harpullia* could be found as listed below (กรมป่าใม้, สำนักงานวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, 2544).

1. Harpullia arborea (Blanco) Radlk.

กระโปกลิง kra pok ling (Saraburi), หมังขะอุข Mang kha ui, หอมไกลดง Hom klai dong, ฮางแกน Hang kaen (Sukhothai) 2. *Harpullia cupanioides* Roxb.

> ขางขาว khang khao (Phrae), พริกป่า Phrik pa (Chon Buri), หงอนไก่ดง Ngon kai dong (Surat Thani)

Harpullia arborea (Blanco) Radlk. is an evergreen tree which can grow up to 33 m. The stem bark is cream or grey, smooth or slightly wrinkled. The leaves are pinnate with 2 -6 pairs of leaflets, which are $3.0 - 5.5 \times 2 - 10$ cm., narrowly ovate or elliptic with tapering or slightly pointed tips and asymmetric base. Young shoots are densely golden - brown hairy and the mature leaves are nearly smooth to densely hairy, usually with scattered brown hairs at least on midvein above. The leaflet stalks are 0.3 - 0.8 cm. and the main stalk 7 – 12 cm. The inflorescences are up to 35 cm. long, in leaf axils or behind leaves on old twigs. The flowers are white to yellow green, up to more than 1 cm. wide, with red brown hairy stalk. The sepals are ovate to obovate, $5 - 10.5 \times 3 - 5$ mm., light green. The petals are free, obovate, membranous; 5 mm. long or longer, white to light yellow, clawed; with auricles, usually hairy especially along margin. The number of stamens is 5(-7). The filaments are 10 – 17 mm. long, light green; the anthers are 2 – 2.5 mm. long, light orange. The pistil has 2 – 4 styles with minute stigmas and hairy disc. The fruits are bright orange – red, leathery, deeply lobed (lobes are broader than high), usually without calyx, splitting into 2 sections each containing 2(1) glossy black seeds with fleshy orange ring at base (Van Welzen, 1999; Gardner, Sidisunthorn, and Anusamsunthorn, 2000).

The plant can be found in Sri Lanka, India; from Thailand-Vietnam to Java, the Philippines, Australia and the Pacific (Tonga and Samoa) (Quisumbing, 1951; Backer and Van der brink Jr, 1965; Van Welzen, 1999). It is usually found growing in well-drained evergreen to deciduous forest; also found on ridges, slopes and plains, in rarities and sometimes along or in swamps, on river banks or coasts (Van Welzen, 1999).

Traditional uses of this plant have been recorded. The watery exudate of the bark, and sometimes the fruits, is used for washing, to keep away leeches, or is drunk to allay pain. The bark is also used as fish poison. The oil from the seeds has been used as anti-rheumatic (Van Welzen, 1999).

Of 48 *Harpullia* species, six species have been phytochemically investigated and a variety of compounds, including triterpenoids, flavonoids, steroids and miscellaneous substances have been found as their constituents. Some extracts of these plants have also been subjected to biological investigation and found to exert interesting bioactivities.

As two *Harpullia* species found in Thailand, *H. cupanioides* is one of those six species with previous reports on phytochemical study while such study of the other species, *H. arborea*, has never been documented. This study deals with the isolation and identification of chemical constituents from the leaves of *H. arborea*. The result obtained would contribute to the knowledge on chemical nature of the genus *Harpullia*, and provide useful information in the field of phytochemistry and chemotaxonomy.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

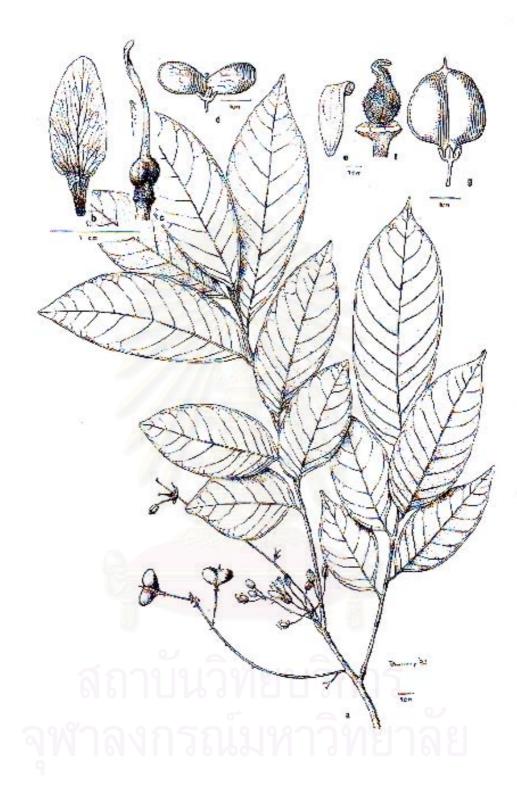


Figure 1. Harpullia arborea (Van Welzen, 1999).

CHAPTER II

HISTORICAL

1. The Family Sapindaceae and Its Species in Thailand.

The family Sapindaceae, the name of which refers to the traditional use as soap of several of its species, is a large family of about 140 genera and 1,350 species found widespread in all tropical and subtropical regions of the world. The family belongs to the order Sapindales and is subdivided into 2 subfamilies, which are Sapindoideae (with 8 tribes) and Dodonoideae (with 5 tribes) (Van Welzen, 1999).

Plants in this family are shrubs or trees, occasionally lianas. The leaves are alternate or spirally arranged, usually paripinnate, estipulate (except in *Cardiospermum*). The leaflets are usually with asymmetric base and entire margin; the lower surface is often with papillae, domatia or glands. The inflorescences are usually axillary, thyrsoid. The flowers are usually zygomorphic, inconspicious, typically with 5 sepals and 5 free petals (rarely name); the petals are often smaller than sepals and usually with 1 or 2 having scales at base. The disc is usually an entire ring, sometimes interrupted or divided into separate glands. The number of stamens is 5 – 8; the filaments are free. The ovary is superior, usually 2- or 3-locular, smooth or tuberculate, with 1 or sometimes 2 ovules per locule; the stigma may or may not be lobed. Many species have both bisexual and male only flowers, either in the same cluster or on different trees. The fruits are very variable, but usually leathery capsules or drupes, lobes or not, smooth, warty or with short to long spines. The seeds are often surrounded by an arilloid (Van Welzen, 1999).

In Thailand, 23 genera and 45 species of sapindaceous plants can be found as follows (Van Welzen,1999; กรมป่าไม้, สำนักวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, 2544).

1. Allophylus

A. cobbe (L.) Raeusch. : ต่อไส้

- 2. Amesiodendron
 - A. chinense (Merr.) : ไม้ขัน
- 3. Arfeuillea
 - A. arborescens Pierre : คงคาเดือด
- 4. Arytera
 - A. litoralis Blume : สีฟัน
- 5. Cardiospermum
 - C. halicacabum L. : โคกกระออม
- 6. Dimocarpus
 - D. fumatus (Blume) subsp. fumatus Leenh. : เงาะถำไข

subsp. indochinensis Leenh. : เงาะลำไย

D. longan Lour. subsp. longan var. longan Leenh. : ຄໍາໃຍ

<mark>subsp. *longan* va</mark>r. *obtusus* (Pierre) Leenh. : ถำไยเครือ

subsp. malesianus Leenh. var. malesianus Leenh. :

เงาะคิเรก

- 7. Dodonaea
 - *D. viscosa* Jacq. : ชุมเห็คเล
- 8. Filicium

F. decipiens (W.& A.) Thwaites & Hooker : ตานเสี้ยน

- 9. Ganophyllum
 - G. falcatum Blume : สะเดาแดง
- 10. Glenniea

G. philippinensis (Radlk.) Leenh. : ถำไยฟิลิปปินส์

11. Guioa

- G. bijuga (Hiern) Radlk. : ส้มถิ่งแกนปีก
- G. diplopetala (Hassk.) Radlk. : ส้มถิ่งแกนเกลี่ยง

12. Harpullia

H. arborea (Blanco) Radlk. : หอมไกลดง

- H. cupanioides Roxb. : หงอนไก่ดง
- 13. Lepisanthes
 - L. ferruginea (Radlk.) Leenh.
 - *L. fruticosa* (Roxb.) Leenh. : ชำมะเลี้ยง
 - L. rubiginosa (Roxb.) Leenh. : มะหวด
 - L. senegalensis (Poir.) Leenh. : หมากอ้อ
 - L. tetraphylla (Vahl) Radlk. : มะเพื่องช้าง
- 14. Lichi
 - L. chinensis Sonn. subsp. chinensis Leenh.: ลิ้นจี่
- 15. Mischocarpus

M. pentapetalus (Roxb.) Radlk. : มะป้าง

M. sundaicus Blume : เขากวาง

16. Nephelium

- *N. cuspidatum* Blume : เงาะป่า
- N. hypoleucum Kurz : คอแลน
- N. lappaceum L. : เงาะ
- N. laurinum Blume
- *N. maingayi* Hien in Hook. F. : เงาะป่า
- N. melliferum Gagnep. : คอแลน
- *N. ramboutan-ake* (Labill.) Leenh. : เงาะขนสัน

17. Paranephelium

- *P. macrophyllum* King : ขัน
- P. spirei Lec.
- *P.* xestophyllum Miq. : ถำไยป่า

18. Pometia

- P. pinnata J. R. & G. : แดงนำ
- P. ridleyi King ex Radlk. : สาย

19. Sapindus

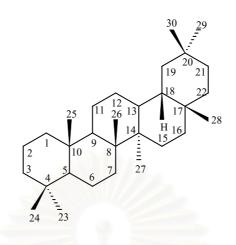
S. rarak DC. : มะคำดีควาย

20. Schleichera

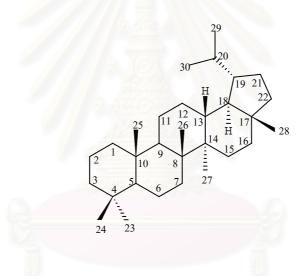
S. oleosa (Lour.) Oken : ตะคร้อ

21. Sisyrolepis

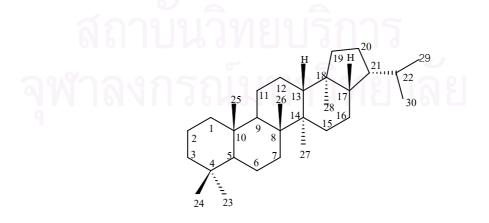
S. muricata (Pierre) Leenh. : ตะคร้อหนาม

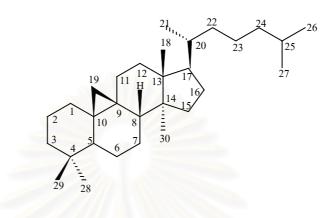

- 22. Xerospermum
 - X. laevigatum Radlk. subsp. laevigatum Leenh. : คอแถน
 - X. noronhianum (Blume) Blume : คอแลน
- 23. Zollingeria
 - Z. dongnaiensis Pierre : จีหนอน

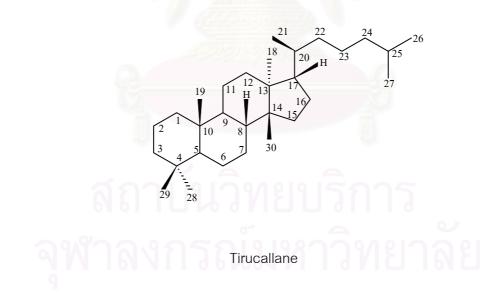
2. Chemical Constituents of Plants in the Family Sapindaceae


The family Sapindaceae is a well-known source of triterpenoid saponins which are linked to the traditional use as soap of plants in the family. Besides triterpenoids, other chemical constituents found in this family include flavonoids, sesquiterpenoids, diterpenoids, steroids and miscellaneous substances. The most prevalent group of compounds are the triterpenoids, of which occurrence in Sapindaceae is reviewed here.

Triterpenoids of the Sapindaceae


Triterpenoids can be found widespread in plants of the family Sapindaceae. These compounds isolated so far belong to the pentacyclic oleanane, lupane and hopane types, together with the tetracyclic cycloartane and tirucallane types. The most abundant type is the oleananes which include more than 90% of all triterpenoids isolated from the plants. The distribution of triterpenoids in the family Sapindaceae is summerized in Table 1.


Oleanane


Lupane

Hopane

Cycloartane

Table 1. Distribution of triterpenoids in the family Sapindaceae	

Compounds	Sources	References
1. Oleanane type		
Oleanolic acid (1)	Xanthoceras sorbifolia	Ma <i>et al.,</i> 2000
Emarginatoside B (2)	Sapindus emarginatus	Gupta and Ahmed, 1990
Emarginatoside C (3)	Sapindus emarginatus	Gupta and Ahmed, 1990
Hishoushisaponin A (4)	Sapindus delavayi Sapindus mukurossi	Nakayama <i>et al</i> ., 1986
3- <i>O</i> - <i>β</i> -D-Xylopyranosyl-(1 \rightarrow 3)- <i>α</i> -L-rhamnopyranosyl-(1 \rightarrow 2)- <i>α</i> -L-arabinopyranosyl oleanolic acid (5)	Sapindus delavayi Sapindus mukurossi	Nakayama <i>et al.</i> , 1986
3-O-[β-D-Glucopyranosyl-(1→4)-[α-L-rhamnopyranosyl-(1→2)]- α- L-arabinopyranosyl] olenolic acid (6)	Serjania salzmanniana	Ekabo and Farnsworth., 1996

Compounds	Sources	References
Hederagenin (7)	Pometia eximia	Nakayama <i>et al</i> ., 1986;
	Sapindus delavayi	Jayasinghe <i>et I</i> ., 1995;
	Sapindus emarginatus	Kanchanapoom, Kasai, and Yamasak
	Sapindus mukurossi	2001
3-O- α -L-Arabinopyranosyl hederagenin (8)	Lepisanthes rubiginosa	Schenkel, Werner, and Schulte 1991;
	Pometia eximia	Jayasinghe <i>et al.</i> , 1995;
	Sapindus emarginatus	Adesanya <i>et al.,</i> 1999;
	Thinouia coriacea	Kanchanapoom <i>et al.</i> , 2001
3- <i>O</i> - <i>β</i> -D-Xlopyranosyl-(1→3)- <i>α</i> -L-arabinopyranosyl hederagenin	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
(9)	ายเมริการ	
3-O- β -D-Gucopyranosyl-(1 \rightarrow 4)- α -L-arabinopyranosyl hederagenin	Thinouia coriacea	Schenkel <i>et al</i> ., 1991
(10)	แหาวทยาลเ	2

T I I A					
Table 1.	Distribution of tr	iterpenoias in t	ne family Sa	pindaceae ((continued)

Compounds	Sources	References
Sapindoside A (11)	Elattostachys apetala	Encarnacion <i>et al.</i> , 1981;
	Lecaniodiscus cupanioides	Nakayama <i>et al</i> ., 1986;
	Lepisanthes rubiginosa	Tamura, Mizutani, and Yamamota, 1990;
	Sapindus delavayi	Schenkel <i>et al.</i> , 1991;
	Sapindus mukurossi	Adesanya et al., 1999;
	Sapindus trifoliatus	Lavaud <i>et al</i> ., 2001
	Thinouia coriacea	
	ANALIA CONTRA	
Saponin A (12)	Elattostachys apetala	Encarnacion <i>et al.</i> ,1981;
	Lecaniodiscus cupanioides	Kasai <i>et al</i> ., 1986;
	Lepisanthes rubiginosa	Nakayama <i>et al.</i> , 1986;
	Sapindus delavayi	Kasai <i>et al.</i> , 1988; Tamura <i>et al.</i> , 1990;
	Sapindus mukurossi	Tamura <i>et al.</i> , 1990;
	Sapindus trifoliatus	Adesanya <i>et al.</i> , 1999;
		Lavaud <i>et al.</i> , 2001
	ากรถไปหาวิทยาล	2

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
Saponin C (13)	Lecaniodiscus cupanioides	Encanacion <i>et al.</i> , 1981;
	Sapindus delavayi	Kasai <i>et al.</i> , 1986;
	Sapindus mukurossi	Nakayama <i>et al</i> ., 1986;
	Sapindus trifoliatus	Kasai <i>et al.</i> , 1988;
		Tamura <i>et al.</i> , 1990
3- <i>O</i> - β -D-Glucopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -	Lepisanthes rubiginosa	Schenkel <i>et al.</i> , 1991;
L-arabinopyranosyl hederagenin (14)	Thinouia coriacea	Adesanya <i>et al.</i> , 1999
	11/132	
Sapinoside B (15)	Elattostachys apetala	Encarnacion <i>et al.</i> , 1981;
	Lecaniodiscus cupanioides	Nakayama <i>et al.</i> , 1986;
	Sapindus emarginatus	Kasai <i>et al.</i> , 1986;
	Sapindus delavayi	Kasai <i>et al</i> ., 1988;
	Sapindus mukurossi	Tamura <i>et al</i> ., 1990;
	Sapindus trifolia	Kanchanapoom <i>et al</i> ., 2001;
	มหาวทยาลเ	Lavaud <i>et al.</i> , 2001

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
Pulsatilla saponin D (16)	Serjania salzmanniana	Schenkel <i>et al.</i> , 1991;
	Thinouia coriacea	Ekabo and Farnsworth., 1996
Hishoushi-saponin Ee (17)	Sapindus delavayi	Nakayama <i>et al</i> ., 1986
	Sapindus mukurossi	
Mukurozi-saponin E ₁ (18)	Sapindus emarginatus	Nakayama <i>et al</i> ., 1986;
	Sapindus delavayi	Kanchanapoom et al., 2001
	Sapindus mukurossi	
Mukurozi-saponin G (19)	Sapindus delavayi	Nakayama <i>et al</i> ., 1986
	Sapindus mukurossi	
3-O-[α -L-Arabinofuranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -	Pometia eximia	Jayasinghe <i>et al</i> ., 1995
L-arabinopyranosyl] hederagenin (20)		7
	เหาวทยาล	2

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- α -L-	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
Arabinopyranosyl] hederagenin (21)		
3-O-[β -D-Galactopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
-D-gluconopyranosyl] hederagenin (22)		
3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
glucopyranosyl] hederagenin (23)		
3-O-[β -D-Apiosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
glucopyranosyl] hederagenin (24)		
3-O-[α -L-Arabinofuranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -	Pometia eximia	Jayasinghe <i>et al</i> ., 1995
D-xylopyranosyl] hederagenin (25)	ียบริการ	
3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-	Thinouia coriacea	Schenkel et al., 1991
glucopyranosyl- $(1\rightarrow 4)$]- α -L-arabinopyranosyl] hederagenin (26)		

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
3-O-[β -D-Glucopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -	Thinouia coriacea	Schenkel <i>et al.</i> , 1991
D-glucopyranosyl- $(1\rightarrow 4)$]- α -L-arabinopyranosyl] hederagenin (27)		
Salzmannianoside B (28)	Serjania salzmanniana	Ekabo and Farnsworth, 1996
28- <i>Ο-β</i> -D-Apiosyl-(1→2)- <i>β</i> -D-glucopyranosyl hederagenin (29)	Pometia eximia	Jayasinghe <i>et al.</i> , 1995
3- <i>O</i> - <i>α</i> -L-Rhamnopyranosyl-(1→2)- <i>α</i> -L-arabinopyranosyl-	Lepisanthes rubiginosa	Adesanya <i>et al.</i> , 1999
hederagenin-28-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl	11/5-3-	
ester (30)		
3-O-[α-L-Rhamnopyranosyl-(1→2)-α-L-arabinop <mark>yr</mark> anosyl]- 3β,23-	Elattostachys apetala	Lavaud <i>et al.</i> , 2001
dihydroxyolean-12-en-28-oic acid 28-O-[α -L-rhamnopyranosyl-(1 \rightarrow	9	
2)- β -D-glucopyranosyl ester (31)	ยบรการ	
	เหาวิทยาลั	

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Sapindus delavayi	
Capillous delavayi	Kasai <i>et al</i> ., 1986;
Sapindus mukurossi	Nakayama <i>et al</i> ., 1986
Lepisanthes rubiginosa	Nakayama <i>et al</i> ., 1986;
Sapindus delavayi	Adesanya et al., 1999
Sapindus mukurossi	
Sapindus delavayi	Nakayama <i>et al</i> ., 1986
Sapindus mukurossi	
Elattostachys apetala	Lavaud <i>et al.,</i> 2001
ยบริการ	
มหาวิทยาลั	í El
	Lepisanthes rubiginosa Sapindus delavayi Sapindus mukurossi Sapindus delavayi Sapindus mukurossi

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl]-(1 \rightarrow 2)- α -L-	Elattostachys apetala	Lavaud et al., 2001
arabinopyranosyl]-3β,23-dihydroxyolean-12-en-28-oic acid-28-O-		
$[\alpha$ -L-rhamnopyranosyl-(1 \rightarrow 6)- β -D-glucopyranosyl]- β -D-		
glucopyranosyl ester (36)		
Sapindoside E (37)	Sapindus mukurossi	Ahmad and Rahman, 1994
3-O-[<i>α</i> -L-Rhamnopyranosyl-(1→2)- <i>α</i> -L-arabinopyranosyl]- 3 <i>β</i> ,23-	Elattostachys apetala	Lavaud <i>et al</i> ., 2001
29-trihydroxyolean-12-en-28-oic acid 28-O-[<i>β</i> -D-glucopyranosyl-	A STARTA	
$(1\rightarrow 2)-\{\beta-D-g ucopyranosy -(1\rightarrow 6)]-\beta-D-g ucopyranosy]$ ester	C.	
(38)		
3- <i>O</i> -[β-D-Xylopyranosyl-(1→3)-α-L-rhamnopyranosyl]-(1→2)-α-L-	Elattostachys apetala	Lavaud <i>et al.</i> , 2001
arabinopyranosyl]-3 β ,23-dihydroxyolean-12-en-28-oic acid-28-O-	เยเรการ	
$[\alpha$ -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl] ester (39)		
	มหาวทยาล	14

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
21β , 22α - O-diangeloyl-camelliagenin D (40)	Harpullia austro-caledonica	Ito <i>et al.</i> , 1967;
		Voutquenne et al., 2002
Gypsogenin (41)	Harpullia cupanioides	Gedeon and Kincl, 1957
Salzmannianoside A (42)	Serjania salzmanniana	Ekabo and Farnsworth., 1996
22α -Hydroxyerythrodiol (43)	Harpullia pendula	Tori <i>et al.,</i> 1974; Khong and Lewis, 1976
Camelliagenin A (44)	Harpullia cupanioides Harpullia pendula Majidaa faatari	Khong and Lewis, 1976; Asmahan <i>et al.</i> , 1989
16-O-(3-Methyl-2-butenoyl)-camelliagenin A (45)	Majidea fosteri Harpullia cupanioides	Khong and Lewis, 1976

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)	

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)	

Compounds	Sources	References
16- β , β -D-dimethylacryloyl camelliagenin A (46)	Harpullia cupanioides	Dimbi <i>et al.</i> , 1983
16-O-Angeloyl camelliagenin A (47)	Harpullia pendula	Khong and Lewis, 1976
22-(3-Methyl-2-butenoyl) camelliagenin A (48)	Harpullia cupanioides	Khong and Lewis, 1976
22- <i>β,β</i> -Dimethylacryloyl camelliagenin A (49)	Harpullia cupanioides	Dimbi <i>et al</i> ., 1983
22-O-Angeloyl camelliagenin A (50)	Harpullia cupanioides Harpullia pendula	Sandoval <i>et al.</i> , 1957; Khong and Lewis, 1976
3-O- β -D-Galactopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -	Harpullia cupanioides	Voutquenne <i>et al.</i> , 1998
D-glucuronopyranosyl-16- <i>Ο-β,β</i> -dimethylacryloyl-camelliagenin A (51)	ยบริการ	
	เหาวิทยาลั	2

Compounds	Sources	References
21β , 22α -O-Diangeloyl barringenol C (52)	Dodonaea viscosa	Ahmad and Rahman, 1994;
	Harpullia austrocaledonica	Tuntiwachwuttikul <i>et al.</i> , 1997;
		Voutquenne et al., 2002
A1-Barringenol (53)	Harpullia cupanioides	Khong and Lewis, 1976;
	Harpullia pendula	Cherry, Khong, and Lewis, 1977;
	Majidea fosteri	Asmahan, Jacques, and Clement, 198
22-O-Angeloyl A1-barringenol (54)	Harpullia pendula	Shamma, Glick, and Mumma, 1962;
		Ito <i>et al.</i> , 1967
21,22-Di-O-angeloyl-barringenol (55)	Dodonaea viscose	Chen, Takeda, and Ogihara, 1985;
	Xanthoceras sorbifolia	Ahmad and Rahman, 1994
22 <i>β,β</i> -Dimethyl acryloyl barringenol (56)	Harpullia cupanioides	Dimbi <i>et al.</i> , 1983
	รณมหาวทยาล	1

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
3-O- β -D-Glucopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -D-	H <mark>arpullia cup</mark> anioides	Voutquenne <i>et al</i> ., 1998
glucuronopyranosyl-22-O-angeloyl-A1-barringenol (57)		
3-O- β -D-Glucopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -	Harpullia cupanioides	Voutquenne <i>et al</i> ., 1998
D-glucopyranosyl]-28-O-angeloyl-camelliagenin A (58)		
3- <i>O-β</i> -D-Glucopyranosyl-(1→2)-[α-L-rhamnopyran <mark>osyl-(1→</mark> 3)]-β-	Harpullia cupanioides	Voutquenne <i>et al</i> ., 1998
D-glucopyranosyl]-28-O-angeloyl-A1-barringenol (59)	1500	
3- <i>O</i> -β-D-Galactopyranosyl-(1→2)-[α -L-rhamnopyranosyl-(1→3)]-β	Harpullia cupanioides	Voutquenne <i>et al</i> ., 1998
-D-glucopyranosyl]-28-O-angeloyl-A1-barringenol (60)		
Jegosapogenol (61)	Harpullia cupanioides	Asmahan <i>et al.</i> , 1989
	Majidea fosteri	
Harpullone (62)	Harpullia pendula	Cherry et al., 1977

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
Protoescigenin (63)	Xanthoceras sorbifolia	Chen <i>et al.</i> , 1984;
		Chen <i>et al.</i> , 1985
21β , 22α -O-Diangeloyl-protoaescigenin (64)	Harpullia austro-caledonica	Dizes <i>et al.</i> , 1998;
	Harpullia ramiflora	Voutquenne et al., 2002
Harpulloside (65)	Harpullia ramiflora	Dizes <i>et al.</i> , 1998
	10000	
Napoleogenin B (66)	Xanthoceras sorbifolia	Chen <i>et al.</i> , 1984;
	6	Chen <i>et al.</i> , 1985
21-O-(4-O-Acetyl-3-O-angeloyl)-β-D-fucopyranosyl-22-O-acetyl	Xanthoceras sorbifolia	Chen <i>et al.</i> , 1984;
protoaescigenin (67)	<u>A</u>	Chen <i>et al.</i> , 1985
	ยบรการ	
21-O-(3,4-Di-O-angeloyl)- β -D-fucopyranosyl theasapogenol B (68)	Xanthoceras sorbifolia	Chen <i>et al</i> ., 1984;
	เห่าวทยาล	Chen <i>et al.</i> , 1985
9		

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Table 1.	Distribution of triterpenoids in the family Sapindaceae (continued)	

compounds	Sources	References
21-O-(4-O-Acetyl-3-O-angeloyl)-β-D-fucopyranosyl thesapogenol B	Xanthoceras sorbifolia	Chen <i>et al.</i> , 1984;
(69)		Chen <i>et al.</i> , 1985
24-O-[α -L-Rhamnopyranosyl-(1→2)- β -D-glucopyranosyl]-28-O-[β -	Harpullia austrocaledonica	Voutquenne <i>et al.</i> , 2002
D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-protoaescigenin		
(70)		
24-O-[<i>α</i> -L-Rhamnopyranosyl-(1→2)- β -D-glucopyranosyl]-28-O-[β -	Harpullia austrocaledonica	Voutquenne <i>et al.</i> , 2002
D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-16 –	Not and and a second second	
desoxyprotoaescigenin (71)	2	
24-O-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-28-O-[β -	Harpullia austrocaledonica	Voutquenne <i>et al.</i> , 2002
D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-24-oxo-	9	
camelliagenin D (72)	ยบรการ	
Zanhic acid (73)	Zanha golungensis	Cuellar <i>et al</i> ., 1997a;
	Ganophyllum giganteum	Cuellar <i>et al.</i> , 1997b

Compounds	Sources	References
Zanhasaponin A (74)	Zanha africana	Cuellar <i>et al.</i> , 1997a;
		Cuellar <i>et al.</i> , 1997b
Zanhasaponin B (75)	Zanha africana	Cuellar <i>et al</i> ., 1997a;
		Cuellar <i>et al.</i> , 1997b
Zanhasaponin C (76)	Zanha africana	Cuellar <i>et al</i> ., 1997a;
		Cuellar <i>et al.</i> , 1997b
3-O- β -D-Glucopyranosyl-28-O-{[α -L-arabinopyranosyl-(1 \rightarrow 2)]-[β -	Filicium decipiens	Lavaud <i>et al.,</i> 1998
D-xylopyranosyl- $(1\rightarrow 4)$]- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -4-O-[(3'-		
hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β-		
D-fucopyranosyl} zanhic acid (77)	10105005	
3-O-{β-D-Glucopyranosyl-(1→2)-β-D-glucopyranosyl}-28-O-{(α-L-	Filicium decipiens	Lavaud <i>et al</i> ., 1998
arabinopyranosyl-(1 \rightarrow 2)]- [β -D-xylopyranosyl-(1 \rightarrow 6)]-[4-O-	ู่มหาวทยาล	
angeloxy- α -L-arabinopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow		

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Compounds	Sources	References
2)]- β -D- glucopyranosyl medicagenic acid (78)		
3-O-{β-D-Glucopyranosyl-(1→2)-β-D-glucopyranosyl}-28-O-{[α-L-	Filicium decipiens	Lavaud <i>et al.,</i> 1998
arabinopyranosyl-(1 \rightarrow 2)]- [β -D-xylopyranosyl-(1 \rightarrow 4)]- α -L-		
rhamnopyranosyl-(1→2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-		
hydroxy-2-methyl-butyroyloxy]-β-D-fucopyranosyl} medicagenic		
acid (79)		
3-O-{β-D-Glucopyranosyl-(1→2)-β-D-glucopyranosyl}-28-O-{[α-L-	Filicium decipiens	Lavaud <i>et al.,</i> 1998
arabinopyranosyl- $(1\rightarrow 6)$]- [4-O-angeloyloxy- α -L-arabinopyranosyl-		
$(1\rightarrow 2)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosyl-		
gypsogenic acid (80)	0	
Majideagenin (81)	Majidea fosteri	Asmahan <i>et al.</i> , 1989
Zanhagenic acid (82)	Zanha africana	Cuellar <i>et al</i> ., 1997a

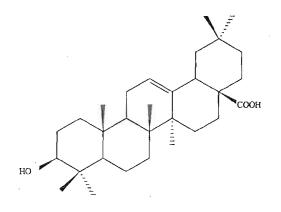
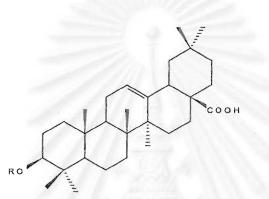

Table 1. Distribution of triterpenoids in the family Sapindaceae (continued)

Table 1. Distribution of triterpenoids in the family Sapindaceae (continu


Compounds	Sources	References
Sapindic acid (83)	Sapindus laurifolius	Ahmad and Rahman, 1994
3 <i>β</i> ,17 <i>β</i> -Dihydroxy-28-norolean-12-ene (84)	Sapindus mukurossi	Ahmad and Rahman, 1994
3β , 15α , 21β , 22α , 28 -Pentahydroxy- 16α -angeloyloxy- 12 -oleanene (85)	Dodonaea viscosa	Linnazam, 1993
Lupane type Lupeol (86)	Schleichera oleosa	Dan and Dan, 1987
Betulin (87)	Schleichera oleosa	Dan and Dan, 1987
Betulinic acid (88)	Schleichera oleosa	Dan and Dan, 1987
3,11-Dihydroxy-20(29)-lupene (89)	Schleichera oleosa	Dan and Dan, 1987

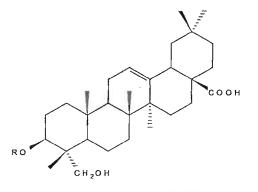
Compounds	Sources	References
3. Hopane type		
3β,6β-Dihydroxy-21-αH-24-norhopa-4(23),22(29)-diene (90)	Diatenopteryx sorbifolia	Chavez <i>et al.,</i> 1997
3β , 5β -Dihydroxy- 6β -[(4-hydroxybenzoyl)oxy]-21- α H-24-norhopa-4	Diatenopteryx sorbifolia	Chavez <i>et al.,</i> 1997
(23),22(29)-diene (91)		
4. Tirucallane type	1000 Ale	
3-Oxotirucalla-7,24-dien-21-oic acid (92)	Xanthoceras sorbifolia	Ma <i>et al.</i> , 2000
Xanthocerasic acid (93)	Xanthoceras sorbifolia	Ma <i>et al.</i> , 2000
5. Cycloartane type		
24-Methylene cycloartan-3-ol (94)	Xanthoceras sorbifolia	Ma <i>et al.</i> , 2000
จฬาลงกรณ์เ	เหาวิทยาลั	

Table 1.	Distribution of triterpenoids in the family Sapindaceae	(continued)

Oleanolic acid (1)

Emarginatoside B (2) R =

Gat²Glc


Gat Gai

Hishoushisaponin A (4) R =

3-O- β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl olenolic

3-O-[β -D-Glucopyranosyl-(1 \rightarrow 4)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- α -L-arabinopyranosyl]

olenolic acid (6) R =

Hederagenin (7) R = H

3-O- α -L-Arabinopyranosyl hederagenin (8) R = Ar

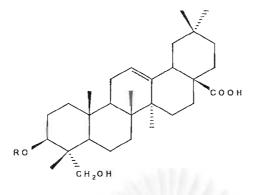
3-O- β -D-Xlopyranosyl-(1 \rightarrow 3)- α -L-arabinopyranosyl hederagenin (9) R =

3-*O*-β-D-Gucopyranosyl-(1→4)-α-L-arabinopyranosyl hederagenin (10) R = $G = \frac{G \log \frac{4}{2} A \log \frac{1}{2}}{2}$

Sapindoside A (11) R = $R ha^{2} Ara$

Saponin A (12) R =
$$A \operatorname{ra} \frac{3}{R} \operatorname{ha} \frac{2}{A} \operatorname{ra}$$

f) Ara <u>3</u>


Saponin C (13) R =

3-O- β -D-Glucopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl hederagenin (14) R =

Rha 2 Ara

Sapinoside B (15) R =

Xy⊢<mark>3</mark>Ara

Pulsatilla saponin D (16) R =

Hishoushi-saponin Ee (17) R =

Mukurozi-saponin E_1 (18) R =

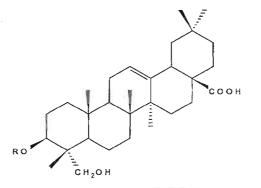
$$Ac \frac{3}{4} Xy t \frac{3}{R}ha \frac{2}{A}ra \frac{1}{4}$$

Mukurozi-saponin G (19) R =

3-O-[α -L-Arabinofuranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -L-arabinopyranosyl]

Rha

Gai Rha 2 3 Gic


hederagenin (20) R =

3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- α -L-Arabinopyranosyl]

hederagenin (21) R =

3-O-[β -D-Galactopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-gluconopyranosyl]

hederagenin (22) R =

3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosyl]

X y I | 3 R h a ²G lc —

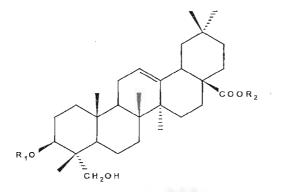
hederagenin (23) R =

3-O-[β -D-Apiosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosyl] hederagenin

3-O-[α -L-Arabinofuranosyl-(1 \rightarrow 3)-[α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D-xylopyranosyl]

 $3-O-[\beta-D-Xy|opyranosy|-(1\rightarrow 3)-\alpha-L-rhamnopyranosy|-(1\rightarrow 2)-[\beta-D-g|ucopyranosy|-(1\rightarrow 4)]-$

 α -L-arabinopyranosyl] hederagenin (26) R =


3-O-[β -D-Glucopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow

4)]- α -L-arabinopyranosyl] hederagenin (27) R =

$$\frac{G}{4}$$

Salzmannianoside B (28) R =

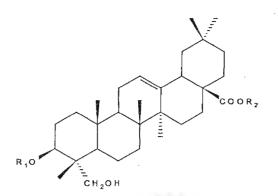
Gic ↓4 Xy H³R ha ²A ra — 35

28-O- β -D-Apiosyl-(1 \rightarrow 2)- β -D-glucopyranosyl hederagenin (29)

 $R_1 = H \quad R_2 = -G lc^2 A p l$

3-O- α -L-Rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl-hederagenin-28-O- β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl ester (30)

$$R_1 = \frac{R h a^2 A r a}{R_2} = \frac{-G l c^2 G l c}{R_2}$$


3-*O*-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl]- 3 β ,23-dihydroxyolean-12-en-28-oic acid 28-*O*-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl ester (31)

$$R_1 = \frac{R h a^2 A r a}{R_2} = \frac{-G l c^2 R h a}{R_2}$$

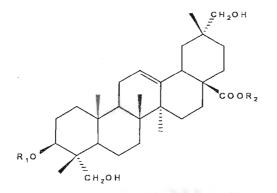
Mukurozi-saponin X (32) $R_1 = R_1 = R_2 = -G_1 = R_2 = R_2$

 $R_2 = \frac{--G \ln \frac{2}{G} \ln c}{--G \ln c}$

Mukurozi-saponin Y_2 (34) $R_1 =$

3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl]-(1 \rightarrow 2)- α -L-arabinopyranosyl]-3 β ,23-dihydroxyolean-12-en-28-oic acid-28-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-

5)
$$R_1 = R_2 = -G lc \frac{2}{R} ha$$


glucopyranosyl]ester (35) R1 =

3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl]-(1 \rightarrow 2)- α -L-arabinopyranosyl]-3 β ,23-dihydroxyolean-12-en-28-oic acid-28-O-[α -L-rhamnopyranosyl-(1 \rightarrow 6)- β -Dglucopyranosyl]- β -D-glucopyranosyl ester (36)

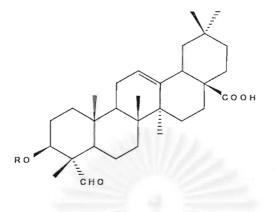
$$R_{1} = \frac{X y \frac{3}{R} ha^{2} A ra}{R_{2}} = \frac{-G lc^{\frac{6}{G}} lc^{\frac{2}{R}} ha}{R_{2}}$$

Sapindoside E (37)

$$R_{1} = R_{2} = R_{2} = R_{1} = R_{2}$$

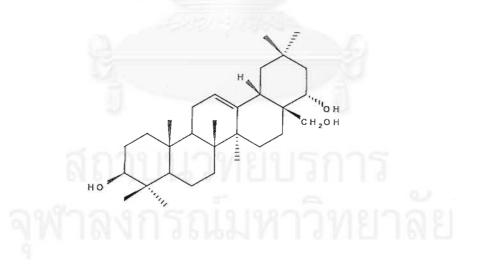
3-O-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- α -L-arabinopyranosyl]- 3 β ,23-29-trihydroxyolean-12en-28-oic acid 28-O-[β -D-glucopyranosyl-(1 \rightarrow 2)-{ β -D-glucopyranosyl-(1 \rightarrow 6)]- β -Dglucopyranosyl] ester (38)

$$R_{1} = \begin{array}{c} --G_{1c} \stackrel{2}{\swarrow} G_{1c} \\ R_{2} = \begin{array}{c} --G_{1c} \stackrel{2}{\frown} G_{1c} \\ G_{1c} \\ G_{1c} \end{array}$$

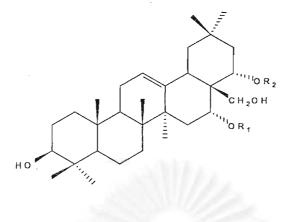

3-O-[β -D-Xylopyranosyl-(1 \rightarrow 3)- α -L-rhamnopyranosyl]-(1 \rightarrow 2)- α -L-arabinopyranosyl]-3 β ,23-dihydroxyolean-12-en-28-oic acid-28-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -Dglucopyranosyl] ester (39)

G Ic

A ra
$$\frac{3}{R}$$
 ha $\frac{2}{A}$ ra $\frac{-G ic}{l_6}$
R₁ = R₂ = G ic


 21β , 22α -O-diangeloyl-camelliagenin D (40)

$$Xy \stackrel{3}{\longrightarrow} Rha \stackrel{2}{\longrightarrow}$$



Gypsogenin (41) R = H

Salzmannianoside A (42) R =

 22α -Hydroxyerythrodiol (43)

Camelliagenin A (44) $R_1 = R_2 = H$

16-O-(3-Methyl-2-butenoyl)-camelliagenin A (45) $R_1 = \frac{1}{-c} H_2 c H = c - c H_3 R_2 = H$

о сн_з || -с -с =сн

CH3

СНз

 $R_2 = H$

 $R_2 = H$

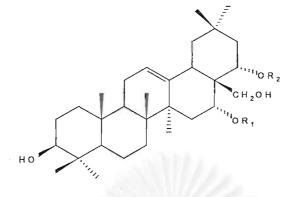
СНз

16- β , β -D-dimethylacryloyl camelliagenin A (46) R₁ =

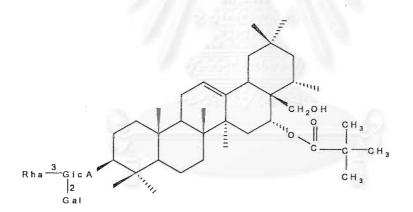
16-O-Angeloyl camelliagenin A (47) $R_1 =$

22-(3-Methyl-2-butenoyi) camelliagenin A (48)

$$R_1 = H$$
 $R_2 = -cH_2CH = c-cH_3$

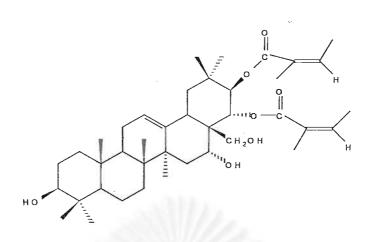

22-*β*,*β*-Dimethylacryloyl camelliagenin A (49)

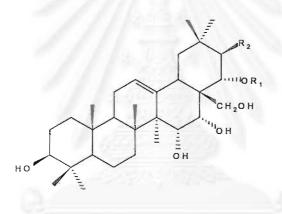
 $R_1 = H$


$$R_{2} = \frac{\begin{array}{c} 0 & CH_{3} \\ \parallel & \parallel \\ --c & -c \\ l \\ CH_{3} \end{array}}{}$$

-C H 3

40


0 22-O-Angeloyl camelliagenin A (50) $R_1 = H$ R_2


 $3-O-\beta-D-Galactopyranosyl-(1\rightarrow 2)-[\alpha-L-rhamnopyranosyl-(1\rightarrow 3)]-\beta-D-glucuronopyranosyl-(1\rightarrow 3)]$ 16-*O*-β,β-dimethylacryloyl-camelliagenin A (51)

СHз

CH3

 21β , 22α -O-Diangeloyl barringenol C (52)

O CH3 □ I =

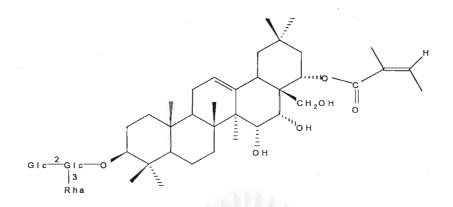
CH₃

c —c =

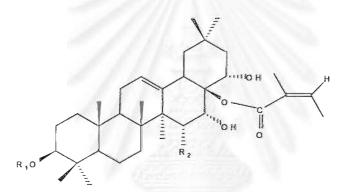
С H 3 С H 3 =сн | сн₃

-сн_з

A1-Barringenol (53) $R_1 = R_2 = H$


22-O-Angeloyl A1-barringenol (54) $R_1 =$

 $R_2 = H$


21,22-Di-O-angeloyl-barringenol (55) $R_1 = R_2 =$

 22β , β -Dimethyl acryloyl barringenol (56) R₁ =

$$R_2 = H$$

3-O- β -D-Glucopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -D-glucuronopyranosyl-22-O-angeloyl-A1-barringenol (57)

3-O- β -D-Glucopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl]-28-Oangeloyl-camelliagenin A (58)

$$R_{ha} \frac{3}{|2}_{Glc} = R_{2} = H$$

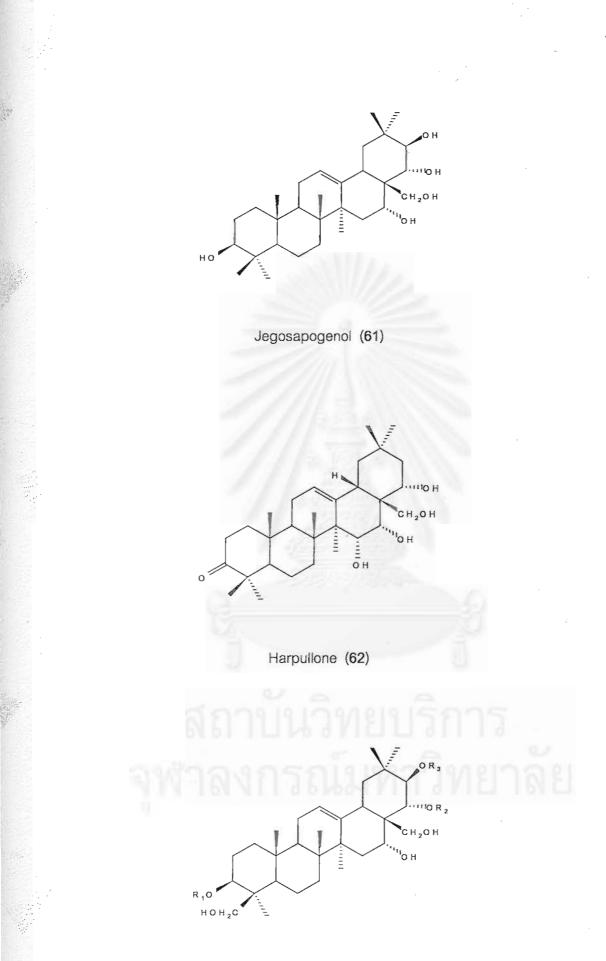
$$R_{1} = R_{2} = H$$

3-O- β -D-Glucopyranosyl-(1->2)-[α -L-rhamnopyranosyl-(1->3)]- β -D-glucopyranosyl]-28-Oangeloyl-A1-barringenoi (59)

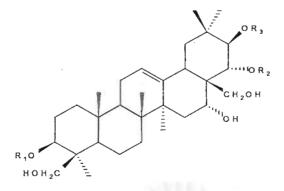
R h a
$$\frac{3}{G}$$
 lo $\frac{2}{G}$ lo

 $R_1 =$

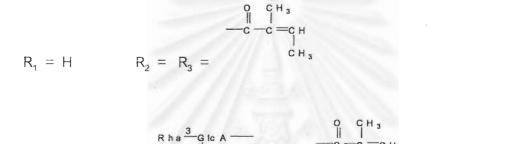
 $R_2 = OH$


3-O- β -D-Galactopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranosyl]-28-O-angeloyl-A1-barringenol (60)

$$R_{ha} \frac{3}{G_{lc}} \frac{G_{lc}}{l_2}$$


$$G_{al}$$

$$R_1 = R_2 = OH$$

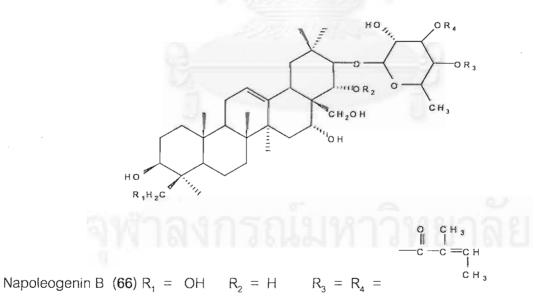

43

Protoescigenin (63) $R_1 = R_2 = R_3 = H$

 21β , 22α -O-Diangeloyl-protoaescigenin (64)

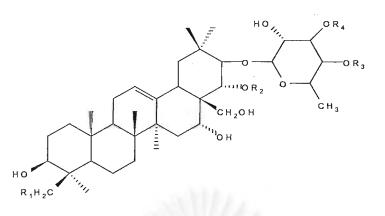
 R_2

2 X Y C =


CH3

о сн_з -с -с =с

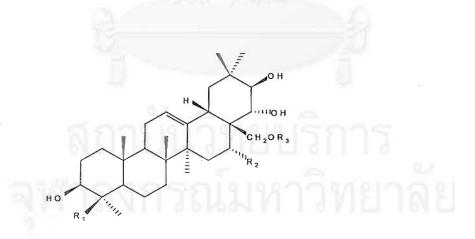
 $R_4 =$


-сн | сн₃ $R_3 = H$

Harpulloside (65) $R_1 =$

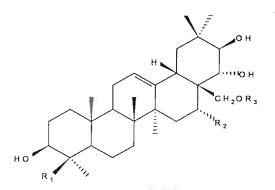
21-O-(4-O-Acetyl-3-O-angeloyl)-β-D-fucopyranosyl-22-O-acetyl protoaescigenin (67)

 $R_1 = OH$ $R_2 = R_3 = Ac$



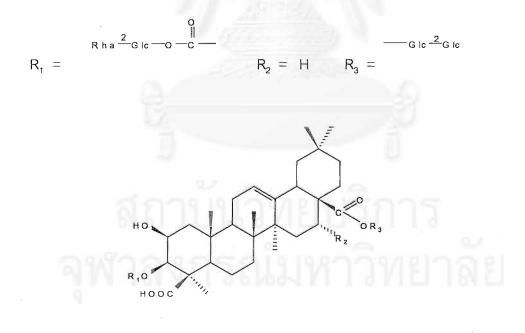
0

21-O-(3,4-Di-O-angeloyI)-&-D-fucopyranosyl theasapogenol B (68)

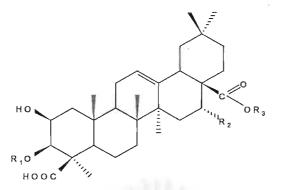

$$R_{1} = R_{2} = H \qquad R_{3} = R_{4} = \begin{array}{c} 0 & CH_{3} \\ --C & -C = CH \\ CH_{3} \\ CH_{3} \end{array}$$

21-O-(4-O-Acetyl-3-O-angeloyl)-&D-fucopyranosyl thesapogenol B (69)

24-O-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-28-O-[β -D-glucopyranosyl-(1 \rightarrow . 2)-β-D-glucopyranosyl]-protoaescigenin (70)

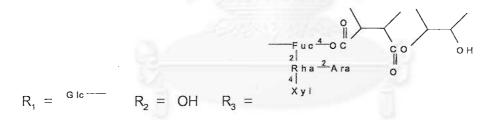

$$R h a \frac{2}{G} lc - O - C H_2 - G lc - G lc$$

24-O-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-28-O-[β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-16 –desoxyprotoaescigenin (71)


$$R h a \frac{2}{G} lc - 0 - C H_2 - G lc \frac{2}{G} lc$$

 $R_1 = R_2 = H R_3 =$

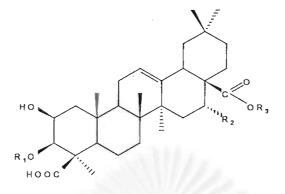
24-O-[α -L-Rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-28-O-[β -D-glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-24-oxo-camelliagenin D (72)


Zanhic acid (73) $R_1 = H$ $R_2 = OH$ $R_3 = H$

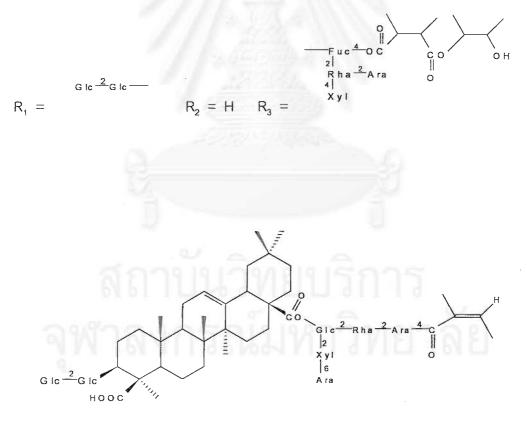
Zanhasaponin A (74) $R_1 = {}^{G \ lc} R_2 = OH R_3 = {}^{-R \ h \ a} {}^{2} R \ h \ a}$

Zanhasaponin B (75) $R_1 = {}^{G lc} R_2 = OH R_3 = {}^{R ha^2 R ha^2 X y l}$

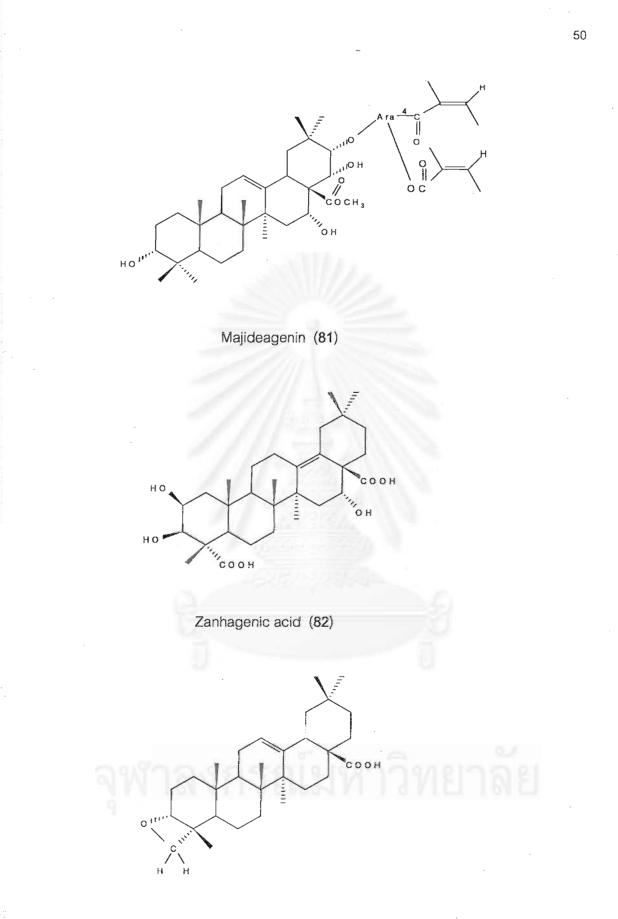
3-O- β -D-Glucopyranosyl-28-O-{[α -L-arabinopyranosyl-(1 \rightarrow 2)]- [β -D-xylopyranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methylbutyroyloxy]- β -D-fucopyranosyl} zanhic acid (77)

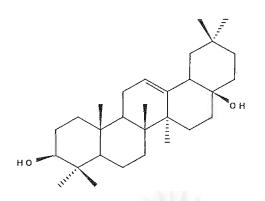


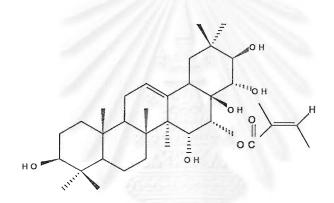
3-O-{ β -D-Glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl}-28-O-{(α -L-arabinopyranosyl-(1 \rightarrow 2)]- [β -D-xylopyranosyl-(1 \rightarrow 6)]-[4-O-angeloxy- α -L-arabinopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 2)]- β -D- glucopyranosyl medicagenic acid (78)

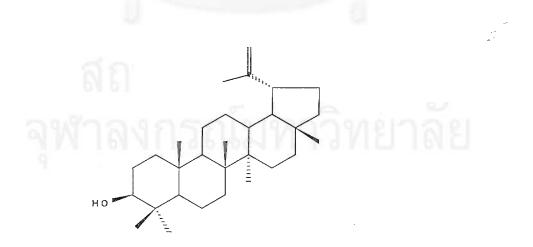

0 || _____R h a ____A ra 4___0 C

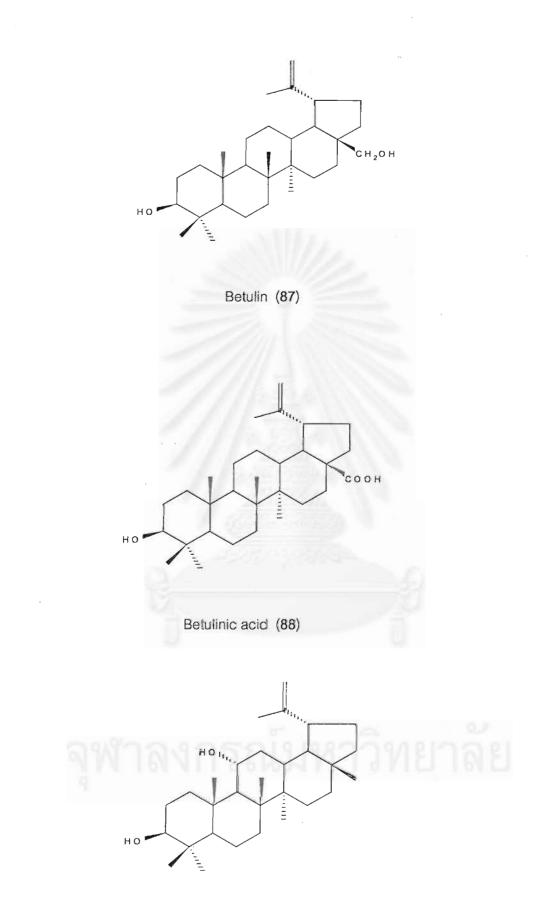
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ G \ lc & & & \\ & & & \\ R_1 \ = & & R_2 \ = \ H & R_3 \ = & \\ \end{array}$$

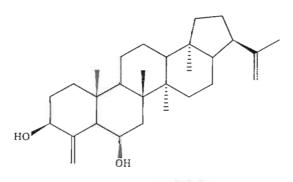

48

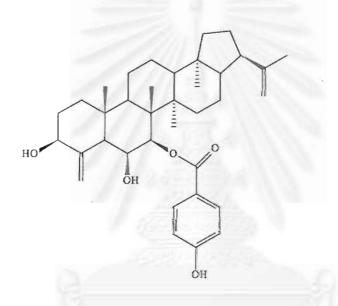

3-*O*-{ β -D-Glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl}-28-*O*-{[α -L-arabinopyranosyl-(1 \rightarrow 2)]- [β -D-xylopyranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)-4-*O*-[(3'-hydroxy-2'-methyl-butyroyloxy]- β -D-fucopyranosyl} medicagenic acid (79)

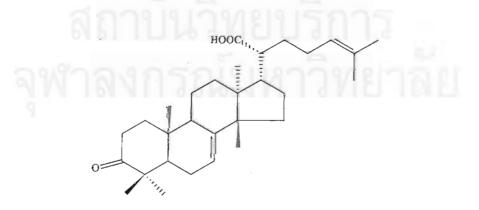

3-O-{ β -D-Glucopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl}-28-O-{[α -L-arabinopyranosyl(1 \rightarrow 6)]-[4-O-angeloyloxy- α -L-arabinopyranosyl-(1 \rightarrow 2)- α -L-rhamnopyranosyl-(1 \rightarrow 2)]}- β -D-glucopyranosyl-gypsogenic acid (80)

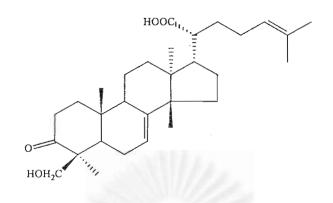

Sapindic acid (83)

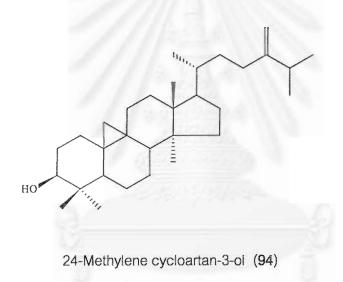

3β,17β-Dihydroxy-28-norolean-12-ene (84)


 3β , 15α , 21β , 22α , 28-Pentahydroxy- 16α -angeloyloxy-12-oleanene(85)


Lupeol (86)


3,11-Dihydroxy-20(29)-lupene (89)


3β,6β-Dihydroxy-21-αH-24-norhopa-4(23),22(29)-diene (90)

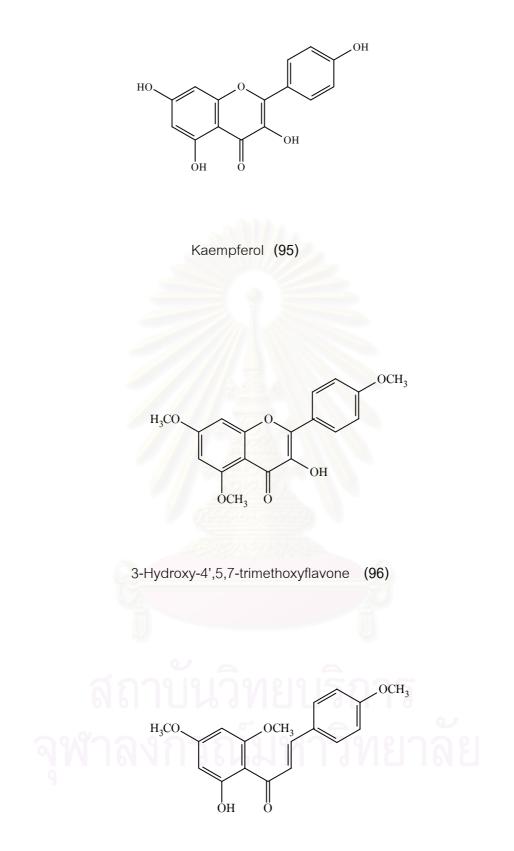

3β,5β-Dihydroxy-6β-[(4-hydroxybenzoyl)oxy]-21-αH-24-norhopa-4 (23),22(29)-diene (91)

3-Oxotirucalla-7,24-dien-21-oic acid (92)

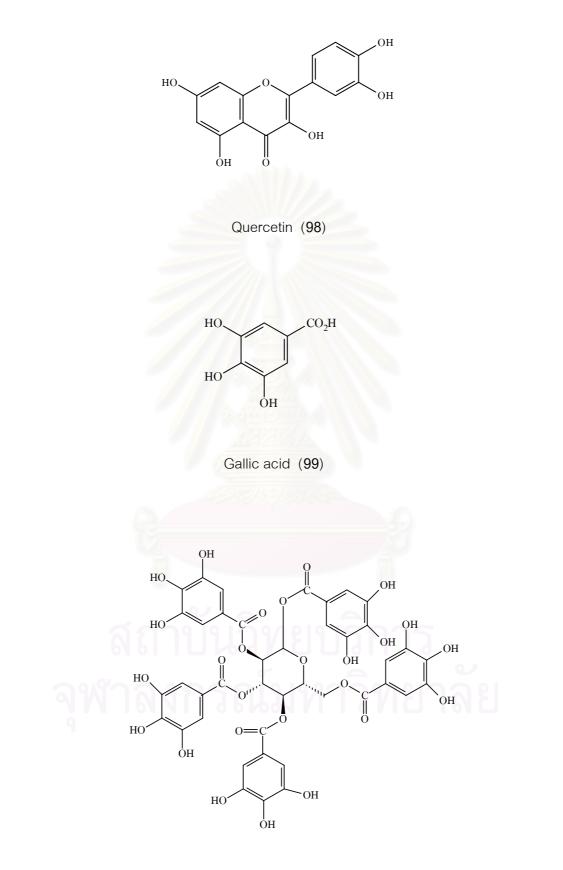
Xanthocerasic acid (93)

3. Chemical Constituents of Plants in the Genus Harpullia.

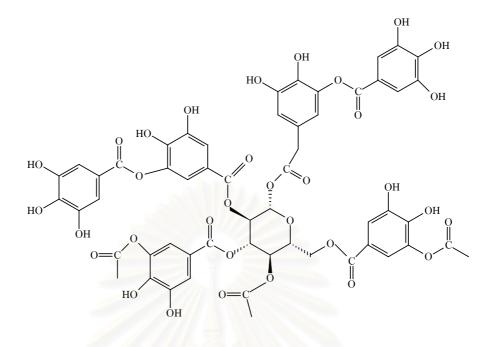
Previous chemical studies on the genus *Harpullia*, dealing with 6 species including *H. austrocaledonica*, *H. cupanioides*, *H. pendula*, *H. petiolaris*, *H. ramiflora* and *H. thanatophora*, resulted in the isolation of triterpenoids, flavonoids, steroids and miscellaneous substances. The majority of the compounds isolated are triterpenoids, all of which belong to the oleanane type. The distribution of these compounds in *Harpullia* species is already given in Table 1. Other isolated compounds and their distribution in the genus *Harpullia* are summarized in Table 2.

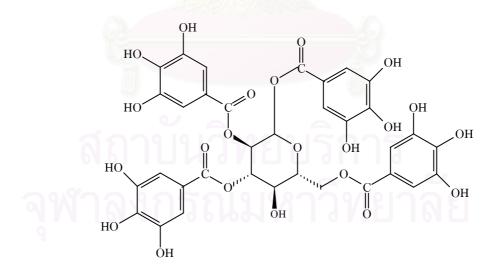

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

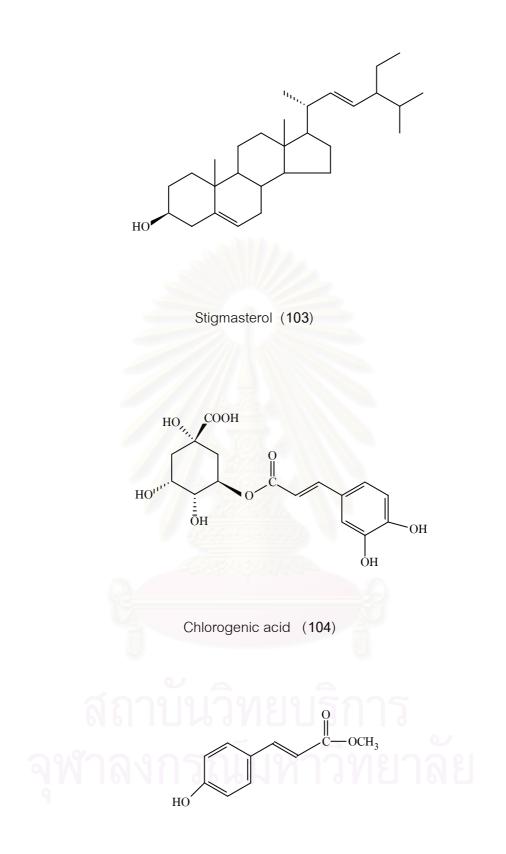
Compounds	Sources	References
1. Flavonoids		
Kaempferol (95)	Harpullia pendula	El Sayed <i>et al.</i> , 1989
3-Hydroxy-4',5,7-trimethoxyflavone (96)	Harpullia cupanioides	Suttisri <i>et al</i> ., 1999
Flavokavain A (97)	Harpullia cupanioides	Sandoval <i>et al</i> ., 1957;
		Suttisri <i>et al.</i> , 1999
Quercetin (98)	Harpullia pendula	El Sayed <i>et al</i> ., 1989
2. Tannins		
Gallic acid (99)	Harpullia austrocaledonica	Sati and Rana, 1987;
	Harpullia pendula	El Sayed <i>et al</i> ., 1989;
		Tuntiwachwuttikul <i>et al</i> ., 1997
สถาบบวทย	เรการ	
Penta-O-galloyl-D-glucose (100)	Harpullia austrocaledonica	Ito <i>et al.</i> , 1967;
ลฬาลงกรกเบเห	Harpullia pendula	El Sayed <i>et al</i> ., 1989;
9		Voutquenne et al., 2002


Table 2. Distribution of compounds in the genus Harpullia

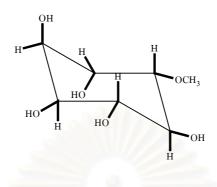
Compounds	Sources	References
Chinese gallotannin (101)	Harpullia austro-caledonica	El Sayed <i>et al.</i> , 1989;
	Harpullia pendula	Dizes <i>et al</i> ., 1998;
	Harpullia ramiflora	Voutquenne et al., 2002
Tetra-O-galloylglucose (102)	Harpullia pendula	El Sayed <i>et al.</i> , 1989
3. Steroids		
Stigmasterol (103)	Harpullia cupanioides	Sandoval <i>et al</i> ., 1988;
ANGLANGIAN AND ANGLANGIAN		Suttisri <i>et al.</i> , 1999
11-21-41/1×3/1×1/1×1/1×1/1×1/1×1/1×1/1×1/1×1/1×		
4. Miscellaneous		
Chlorogenic acid (104)	Harpullia pendula	Khong and Lewis, 1976;
		El Sayed <i>et al</i> ., 1989
<i>p</i> -Coumaric acid methyl ester (105)	Harpullia pendula	Khong and Lewis, 1976
Quebrachitol (106)	Harpullia pendula	Khong and Lewis, 1976;
9		Cherry, 1977


Table 2. Distribution of compounds in the genus *Harpullia* (continued)


Flavokavain A (97)


Penta-O-galloyl-D-glucose (100)

Chinese gallotannin (101)



Tetra-O-galloylglucose (102)

p-Coumaric acid methyl ester (105)

4. Traditional Uses of Harpullia Species.

Traditional uses of several species of *Harpullia* have been recorded. In Philipines, the bark and fruit of *H. arborea* are used to prevent leech bites and they are also a fish poison. Oil from the seeds is sometimes used as antirheumatic (Perry and Metzger, 1895). In Sri Lanka, the fruits of *H. cupanioides* have been used for washing (Burkill, 1935).; the plant is also recorded as a fish poison (Burkill, 1935). The bark of *H. pendula* is used as a fish poison by the Aborigines in Australia (Khong and Lewis, 1976). The stem bark of *H. ramiflora* is used, by the traditional healers in Papua New-Guinea, as a topical medicine against skin disease (Dizes *et al.*, 1998). *H. thanatophora* is reported to be poisonous by the natives in New Guinea (Perry and Metzger, 1895).

5. Biological Activities of Harpullia species.

Some plants of the genus *Harpullia* have been reported as exhibiting bioactivity. The ethanolic extract of the stem bark of *H. austro-caledonica* exhibited *in vitro* cytotoxic activity against KB cell (90% at 10 µg/ml) (Voutquenne *et al.*, 2002). The methanol extract of the leaves of *H. cupanioides* displayed activity against both Herpes simplex virus types 1 and 2. Its hexane-soluble fraction of this extract also exhibited cytotoxicity against KB and BC cell lines with ED_{50} of 5.9 and 5.0 µg/ml, respectively (Suttisri *et al.*, 1999). Saponins extracted from *H. cupanioides* were reported to be active in releasing hormone from cultured rat hypophyseal cells (Asmahan *et al.*, 1989). The seed extract of this plant was found to strongly inhibit the growth of some fungal plant pathogens (Bharathimatha, Doraiswamy, and Velazhahan, 2002). Methanol extracts of the leaves, the stem and the root bark of *H. ramiflora* demonstrated broad spectrum and high levels of antibacterial activity (Khan, Kihara, and Omoloso, 2001). Methanol extracts of the leaves, the stem, the root bark and the heartwood of *H. petiolaris* displayed antibacterial activity (Khan and Omoloso, 2002).

CHAPTER III

EXPERIMENTAL

1. Source of Plant Material

The leaves of *Harpullia arborea* (Blanco) Radlk. (Sapindaceae) were collected from Mae Wong National Park, Kampangpet Province, Thailand in May, 2001. The plant material was identified by comparison with the herbarium specimens (BKF no. 075890) at the Royal Forest Department, Bangkok, Thailand.

2. General Techniques

2.1 Chromatographic Techniques

2.1.1	Thin – Layer	Chromatography	(TLC)
-------	--------------	----------------	-------

Technique	: One dimension, ascending
Adsorbent	: Silica gel 60 F ₂₅₄ (E. Merck) precoated plate
Layer thickness	: 0.2 mm
Solvent system	: Various solvent systems depending on materials
Distance	: 6 cm
Temperature	: Laboratory temperature (28 – 35 °C)
Detection	: 1. Ultraviolet light (254 and 365 nm)
	2. Anisaldehyde - sulfuric acid reagent, heating at 100 -105 [°] C
	for 5 – 10 minutes
	3. 10% Sulfuric acid in ethanol, heating at 100 – 105 $^{\circ}$ C for 5 –
	10 minutes
	4. Libermann-Burchard reagent
	5. lodine vapor

2.1.2 Column Chromatography (CC)

Column	: Flat bottom glass column (various diameters)
Adsorbent	: Silica gel 60 (No. 9385, E. Merck) particle size 0.040 – 0.063 mm
	(230 – 400 mesh ASTM)

Packing method : Wet and dry packing

Sample loading : The sample was dissolved in a small amount of organic solvent, mixed with a small quantity of adsorbent, triturated, dried and then placed gently on the top of the column. Or the sample was dissolved in a smal volume of the eluent, then loaded directly on the top of the column.

Solvent system : Various solvent systems depending on materials.

Detection : Fractions were examined by TLC observed under UV light at the wavelengths of 254 and 365 nm. The TLC plate was then sprayed with anisaldehyde – sulfuric acid reagent and heated at 100° C for 5 – 10 minutes. Fractions of similar chromatographic pattern were combined.

2.2 Spectroscopy

2.2.1 Infrared (IR) Absorption Spectra

IR spectra (KBr disc) were recorded on a Perkin Elmer FT - IR 1760X spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

2.2.2 Mass Spectra (MS)

Electron Impact Mass Spectra (EIMS) were obtained on a Polaris Q Finnigan Gas Chromatography - Mass Spectrometer (Department of Chemistry, Facultry of Science, Mahidol University), operating at 12 and 70 eV.

2.2.3 Proton and Carbon-13 Nuclear Magnetic Resonance (¹H and ¹³ C-NMR)Spectra

¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were obtained with a Bruker Avance DPX – 300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were obtained with a JEOL JNM – A 500 (Alpha series) NMR spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University).

NMR solvents used in this study were deuterated chloroform $(CDCI_3)$ and deuterated dimethylsulfoxide $(DMSO-d_6)$. Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

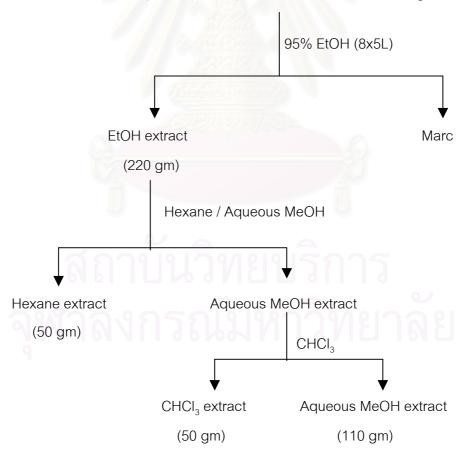
2.3 Physical constants

2.3.1 Melting Point

Melting points were obtained on a Fisher/Johns melting point apparatus (Department of Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.2 Optical Rotation

Optical rotations were measured on a Perkin Elmer 341 Polarimeter (Faculty of Pharmaceutical Sciences, Chulalongkorn University).


2.4 Solvents

All organic solvents used in the extraction and isolation procedure were of commercial grade and were redistilled prior to use.

3. Extraction and Isolation

3.1 Extraction

The dried, coarsely powdered leaves of *Harpullia arborea* Radlk. (1,100 gm) were macerated with 95% ethanol (8x5 L) and filtered. The filtrates were pooled and evaporated under reduced pressure to yield 220 gm of dried crude extract (20% of dry weight). The ethanol extract was diluted with aqueous methanol, and partitioned with hexane (6x4L). The combined hexane extract was evaporated to dryness under reduced pressure to give hexane extract (50 gm, 4.55% of dry weight). The aqueous methanol layer was then partitioned with chloroform (6x4L). The combined chloroform extract was similarity dried to give chloroform extract (50 gm, 4.55% of dry weight) and 110 gm of aqueous methanol extract (10% of dry weight).

Dried, powdered Harpullia arborea leaves (1,100 gm)

Scheme 1. Extraction scheme of Harpullia arborea leaves

3.2 Isolation

3.2.1 Fractionation of hexane extract

A portion of the hexane extract (25 gm) was subjected to a silica gel column (300 gm, 5 \times 60 cm) eluted with chloroform. One hundred and twenty-seven 30-ml fractions were collected and combined according to their TLC patterns into six major fractions (A₁-F₁) as shown in Table 3. The column was then washed down with methanol.

Table 3. Combined fractions from the hexane extract.

Fraction	Number of eluates	Weight of fraction (gm)
A ₁	1-7	3.49
B ₁	8 – 17	6.78
C ₁	18 – 20	3.98
D ₁	21 – 63	4.09
E ₁	64 – 110	1.23
F ₁	111 – 127	3.17
Methnol eluate		1.95

3.2.1.1 Isolation of compound HA-1

Fraction D_1 (4.09 gm) was subjected to a silica gel column (200 gm, 5×60 cm) using hexane – ethyl acetate mixture of increasing polarity (from 95:5 to 70:30) as the eluent. One hundred and fifty fractions (20 ml each) were collected and combined according to their TLC patterns into nine major fractions ($D_1A - D_1I$) as shown in Table 4.

Fraction	Solvent Ratio	Number of eluates	Weight of fraction
	(hexane:EtOAc)		(mg)
D ₁ A	95 : 5	1 – 18	73.5
D ₁ B	95 : 5	19 – 30	126.2
D ₁ C	95 : 5	31 – 50	710.6
D ₁ D	90 : 10	51 – 54	41.0
D₁E	90 : 10	55 – 85	1512.4
D₁F	90 : 10	86 – 92	15.2
D ₁ G	90 : 10	93 – 102	156.8
D₁H	80 : 20	103 – 112	195.1
D ₁ I	70 : 30	113 – 150	345.7
Methanol eluate			718.2

Table 4. Combined fractions from D_1

Fraction D_1C (710.6 mg) was further separated on a silica gel column (300 gm, 2×50 cm) eluted with hexane - acetone (97:3). Fifty - three fractions (10 ml each) were collected and pooled according to their TLC patherns into eight major fractions ($D_1C_1 - D_1C_8$) as shown in Table 5.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Fraction	Number of eluates	Weight of fraction (mg)
D ₁ C ₁	1 – 6	21.0
D_1C_2	7 – 9	4.9
D ₁ C ₃	10 – 18	104.8
D_1C_4	19 – 22	5.2
D_1C_5	23 – 27	19.8
D_1C_6	28 – 29	3.2
D ₁ C ₇	30 – 31	2.7
D ₁ C ₈	32 – 53	112.5
Methanol eluate	4.0	294.0

Table 5. Combined fractions from D_1C

Fraction D_1C_3 , which gave single blue spot on TLC under detection with 10% sulfuric acid in ethanol, was purified by recrystallization from methanol to give compound HA-1 as colorless crystals (56 mg). The compound gave red-violet color with Libermann-Burchard reagent.

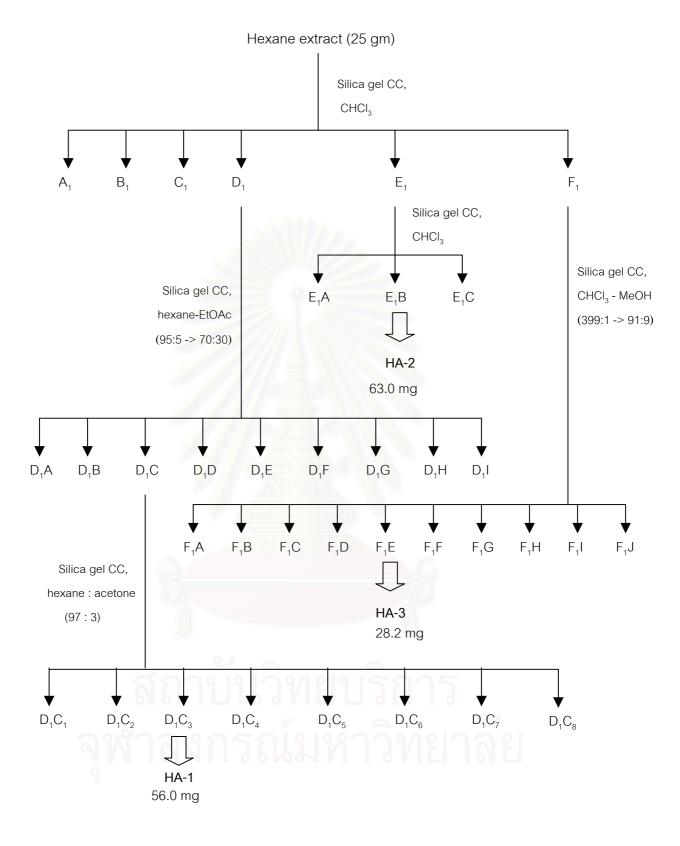
3.2.1.2 Isolation of compound HA-2

Fraction E_1 (1.23 gm) was separated on a silica gel column (90 gm, 2.5×50 cm) eluted with chloroform. Forty, 20-ml fractions were collected and combined according to their TLC patterns into three fractions ($E_1A - E_1C$) as shown in Table 6.

Fraction	Number of eluates	Weight of fraction (mg)
E₁A	1 – 15	191.0
E ₁ B	16 – 31	387.0
E ₁ C	32 – 40	159.0
Methanol eluate		309.1

Table 6. Combined fractions from E_1

Fraction E_1B , which gave a red-violet spot on TLC under detection with 10% sulfuric acid in ethanol, was purified by recrystallization in methanol to give compound HA-2 as white amorphous powder (63 mg). The compound gave deep green color with Libermann-Burchard reagent.


3.2.1.3 Isolation of compound HA-3

Fraction F_1 (3.17 gm) was submitted for further purification on silica gel column (90 gm, 2.5×50 cm) using chloroform – methanol of increasing polarity (from 399:1 to 91:9) as the eluent. One hundred and seventy-one, 20-ml fractions were collected and combined according to their TLC patterns into ten major fractions, ($F_1A - F_1J$), as shown in Table 7.

Fraction	Solvent ratio (CHCl ₃ : MeOH)	Number of eluates	Weight of fraction (mg)
F ₁ A	399 : 1	1-7	32.8
F₁B	399 : 1	8 – 11	14.9
F ₁ C	399 : 1	12 – 17	27.1
F₁D	399: 1	18 – 28	54.9
F ₁ E	399 : 1	29 – 52	130.7
F₁F	399 : 1	53 – 55	13.5
F ₁ G	98 : 2	56 – 79	137.2
F₁H	98:2	80 - 82	10.9
F ₁ I	98 : 2	83 – 99	120.8
F₁J	91:9	100 – 171	580.7
Methanol eluate	A SHOW	1846 P	1198.0

Table 7. Combined fractions from F_1

Fraction F₁E, which gave a red-violet spot on TLC under detection with 10% sulfuric acid in ethanol, was purified by recrystallization in methanol to give compound HA-3 as white amorphous powder (28.2 mg). The compound gave red-violet color with Libermann-Burchard reagent.

Scheme 2. Fractionation of hexane extract

3.2.2 Fractionation of methanol extract

The methanol extract (28 gm) was separated on a silica gel column (400 gm, 5×60 cm) using mixture of hexane – ethyl acetate – methanol as the eluent. Four hundred and twenty-six (30 ml) fractions were collected and combined according to their TLC patterns into eight major fractions (A_2 - H_2) as shown in Table 8.

Fraction	Solvent ratio (hexane-EtOAc-MeOH)	Number of eluates	Weight of fraction (gm)
A ₂	1:6:1	1-6	1.47
B ₂	1:6:1	7	0.53
C ₂	1:6:1	8 – 12	1.22
D_2	1:6:1	13 – 19	1.36
E ₂	1:7:3	20 – 84	5.45
F ₂	1:8:8	85 – 185	8.76
G ₂	1:6:13	186 – 259	3.47
H ₂	1:7:41	260 – 426	3.11
Methanol eluate			1.42

Table 8. Combined fractions from methanol extract	Table 8.	Combined	fractions	from	methanol	extract.
---	----------	----------	-----------	------	----------	----------

3.2.2.1 Isolation of compound HA-4

Fraction E_2 (5.45 gm), which gave single brown spot with iodine vapor, was further purified by recrystallization in methanol to give compound HA-4 as colorless crystals (123.9 mg)

Fraction F_2 (8.76 gm), was separated on a silica gel column (250 gm, 5X60 cm), eluted with hexane-acetone- methanol. One hundred and ten (30 ml) fractions were collected and combined according to their TLC pattern into three major fractions ($F_2A - F_2C$) as shown in Table 9.

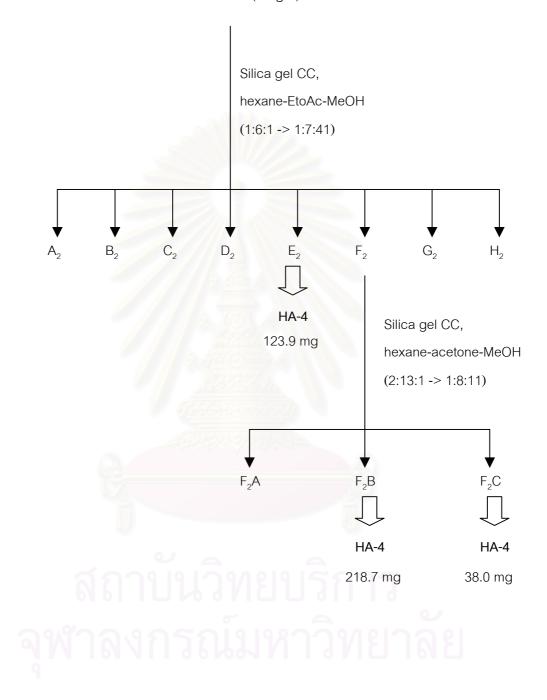

Fraction	Solvent ratio (hexane-acetone-MeOH)	Number of eluates	Weight of fraction (gm)
F ₂ A	2:13:1	1 – 5	0.72
F ₂ B F ₂ C	1:6:1 1:8:11	6 – 65 66 – 110	2.25 3.13
Methanol eluate			1.64

Table 9. Combined fractions from F_2

Fractions F_2B and F_2C , both of which were appeared to contain compound HA-4 by TLC when investigated, were separately purified by recrystallization in methanol to give compound HA-4 (218.7 mg and 38.0 mg, respectively).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Methanol extract (28 gm)

Scheme 3. Fractionation of methanol extract

4. Characterization of Isolated Compounds

4.1 Compound HA-1

Appearance	:	colorless crystals (methanol)	
Solubility :		Soluble in chloroform	
Melting Point	:	76 °C	
EIMS <i>m/z</i> (% relative intensity)	:	720(28), 718(49), 408(35), 191(25), 190(53),	
		189(100), 175(27), 171(45), 95 (36) and 91	
		(35) (Figure 2, page 93)	
IR V_{max} (KBr disc) cm ⁻¹	:_	3576, 3077, 1734, 1649 and 885	
		(Figure 3, page 94)	
¹ H-NMR (δ ppm, 500 MHz, CDCl ₃)	:0	0.67 (3H,s), 0.86 (3H,t, J=7.0 Hz), 0.90	
		(3H, s), 1.02 (3H, s), 1.37 (3H, s), 1.66	
		(3H,s), 1.74 (1H,brs), 1.83 (2H,m), 2.23	
		(1H, <i>m</i>), 2.36 (2H, <i>t</i> , <i>J</i> =7.6 Hz), 4.42 (1H, <i>m</i>),	
		4.66 (1H,br s), 4.68 (1H,br s), 5.00 (1H,	
		<i>br</i> s), 5.12 (1H, <i>dd</i> , <i>J</i> =11.9,5.2 Hz), and 5.22	
		(1H, <i>br</i> s) (Figure 4, page 95)	
$^{^{13}}\text{C-NMR}~(\delta$ ppm, 125 MHz, CDCl ₃)	:	14.1, 15.0, 16.2, 16.8, 17.8, 19.6, 20.9,	
		21.5, 22.7, 23.9, 25.1, 27.3, 28.5,	
		29.2 - 29.7, 31.9, 32.5, 34.6, 38.2, 39.1,	
		40.0, 40.2, 41.3, 42.7, 44.2, 47.5, 47.9, 48.7,	
		52.3, 53.9, 70.0, 74.1, 105.2,109.5, 146.0,	
		148.1, and 173.0 (Figure 5, page 98)	

4.2 Compound HA-2

Appearance	:	Colorless needles (methanol)	
Solubility	:	Soluble in chloroform	
Melting Point	:	165 °C	
EIMS <i>m/z</i> (% relative intensity)		426(28), 411(23), 393(13), 218(74), 207(46),	
		204(53), 203(51), 190(46), 189 (100) and	
		175 (45) (Figure 11, page 126)	
IR V_{max} (KBr disc) cm ⁻¹	: 7	3300, 2900, 1470, 1390, 1020 and 820	
		(Figure 12, page 127)	
¹ H-NMR (δ ppm, 300 MHz, CDCl ₃)	:=	0.73 (3H,s), 0.76 (3H,s), 0.80 (3H,s), 0.91	
		(3H, <i>s</i>), 0.94 (3H, <i>s</i>), 1.00 (3H, <i>s</i>), 1.66 (3H, <i>s</i>),	
		2.35 (<i>td</i> , <i>J</i> =11.4,11.4,5.7 Hz), 3.17	
		(1H, <i>dd</i> , <i>J</i> =10.8,5.1 Hz), 4.54(1H, <i>br s</i>), and	
		4.66(1H, <i>br s</i>) (Figure 13, page 128)	
$^{ m ^{13}C} m -NMR$ (δ ppm, 75 MHz, CDCl ₃)	4 <u>4</u> 99	14.5, 15.4, 16.0, 16.1, 18.0, 18.3, 19.3,	
		20.9, 25.2, 27.4, 27.5, 28.0, 29.7, 34.3,	
		35.6, 37.2, 38.1, 38.7, 38.9, 40.0, 40.8,	
		42.8, 43.0, 48.0, 48.3, 50.4, 55.30, 79.0	
		109.3 and 151.0 (Figures 14, page 130)	

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

4.3 Compound HA-3

Appearance :		White powder (methanol)	
Solubility	:	Soluble in chloroform	
Melting Point	:	162 °C	
EIMS <i>m</i> /z (% relative intensity)	:	412(17), 397(10), 300(13), 299(10), 273(18),	
		272(27), 271(100), 255(22), 253 (21) and	
		213 (12) (Figure 16, page 142)	
IR V_{max} (KBr disc) cm ⁻¹	: 1	2950, 1450, 1380, 1050 and 980	
		(Figure 17, page 143)	
¹ H-NMR (δ ppm, 500 MHz, CDCl ₃)	:=	0.53 (3H,s), 0.78 (3H,s), 0.78 (3H, <i>d</i> , <i>J=</i> 6.1	
		Hz), (3H, <i>d</i> , <i>J</i> =6.1 Hz), 0.79 (3H, <i>t</i> , <i>J</i> =7.5 Hz),	
		0.83 (3H, <i>d</i> , <i>J</i> =6.4 Hz) and 1.01 (3H, <i>d</i> , <i>J</i> =6.7	
		Hz), 3.58 (1H, <i>tt</i> , <i>J</i> =8.8,4.6 Hz), and 5.01	
		(1H, <i>dd</i> , <i>J</i> =15.3,8.5 Hz),5.1(1H, <i>dd</i> , <i>J</i> =15.1,8.7	
		Hz) (Figure 18, page 144)	
$^{\rm 13}$ C-NMR (δ ppm, 125 MHz, CDCl_3) :		12.1, 12.3, 13.0, 19.0, 21.1, 21.4, 21.5,	
		23.0, 25.4, 28.5, 29.6, 31.5, 31.9, 34.2,	
		37.1, 38.0, 39.5, 40.3, 40.8, 43.3, 49.4,	
		51.2, 55.1, 55.9, 71.1, 117.5, 129.4, 138.2,	
		and 139.6 (Figure 19, page 147)	

จุฬาลงกรณ่มหาวิทยาลัย

4.4 Compound HA-4

Appearance	:
Solubility	:
Melting Point	:
Optical Rotation	:
EIMS <i>m</i> / <i>z</i> (% relative intensity)	:

IR V_{max} (KBr disc) cm ⁻¹	:
¹ H-NMR (δ ppm, 500 MHz, DMSO-d ₆)	:

¹³C-NMR (δ ppm, 75 MHz, DMSO-d₆) :

```
Colorless crystals (methanol)
Soluble in methanol
 185 °C
\left[ \alpha \right]_{\phantom{0}^{\scriptscriptstyle D}}^{^{\scriptscriptstyle 20}} -94.04 ^{\rm o} (c, 0.06 in methanol)
116(21), 102(20), 87(100), 85(48), 74(20),
73(81), 71(20), 60(20), 59(18), and 57(44)
(Figure 24, page 159)
3350, 1050 and 1010 (Figure 25, page 160)
3.09 (1H, dd, J=,9.5,3.1 Hz), 3.28 (1H, ddd,
J = 9.5, 9.2, 4.3 Hz), 3.30 (3H, s), 3.36
(1H, ddd, J = 9.5, 9.2, 4.6 \text{ Hz}), 3.42 (1H, ddd, J)
J=9.5,5.8,3.4 Hz), 3.67 (1H,ddd, J = 3.7,3.4,
3.4 Hz), 3.85 (1H,ddd,J=3.7,3.4,3.1 HZ),
4.26 (1H,d,J=5.8 Hz), 4.39 (1H,d,J=4.3Hz),
4.42 (1H,d,J=4.6 Hz), 4.6 (1H,d, J=3.7 Hz),
4.62 (1H,d,J = 3.7 Hz) (Figure 26,page 161)
57.2, 68.2, 70.6, 72.2, 72.4, 73.5, and 81.2
(Figure 27, page 163)
```

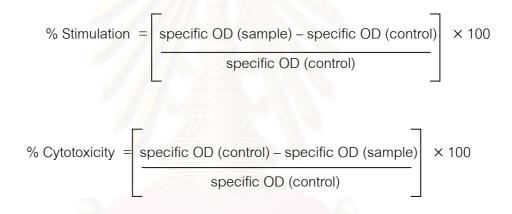
สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

5. Determination on *In Vitro* Stimulation of Lymphocyte Proliferation

Extracts of the leaves of *Harpullia arborea* including hexane, chloroform and methanol extracts, together with the isolated compound HA-4, were subjected to preliminary screening for immunostimulatory activity by determining the ability to stimulate the proliferation of lymphocytes *in vitro*. The extent of lymphocyte proliferation was measured by colorimetric method (Alamar Blue Assay) and the result was reported as % stimulation (in case the degree of proliferation was increased) or % cytotoxicity (in case the degree of proliferation was decreased). The tested substances were also tested for cytotoxicity against a human monocytic cell line, U-937. All tests were performed in triplicate and repeated three times.

Experimental methods

- 1. In vitro lymphocyte proliferation assay
 - 1.1 Isolation of Wistar rat lymphocytes


Spleens were obtained from Wistar rat under sterile condition and submerged in RPMI 1640 with 1% antibiotic-antimycotic and stored at 4°C until use. Spleens were grinded with syringe and gently teased on nylon mesh to obtain single cell suspension in a sterile disposable 60 mm petri dish containing 5 ml of RPMI 1640. The cell suspensions were then layered onto histopaque-1077 and were centrifuged at 5500 rpm for 20 min at 25°C to isolate mononuclear cells. The buffy coat containing lymphocytes was removed and suspended in RPMI 1640 and centrifuged at 5500 rpm for 10 min. The supernatant was discarded, and the pellet was resuspended in complete RPMI 1640 medium supplement with 10% heat inactivated-fetal bovine serum. The viability of splenic lymphocytes, determined by trypan blue exclusion test, was >95%.

1.2 Determination of lymphocyte proliferation by Alamar Blue method

The splenic cell suspension was adjusted to 2.5×10^{6} cells/ml in complete RPMI 1640 medium. One hundred microlitres of the suspension were placed in 96-well sterile culture plate containing 10 mcl of two-fold dilution of 1.6-200 mcg/ml of plant extract or compound or 0.5% DMSO as vehicle control or 10 mcg/ml of concanavalin A (Con-A) or 50 mcg/ml of lipopolysaccharide (LPS) as positive control. Then, 90 mcl of

complete RPMI 1640 medium were added. The plate was incubated in 5% CO_2 under humidified conditions at 37 °C for 48 hrs.

After an incubation period of 48 hrs, 20 mcl/well Alamar Blue were added and the plate was re-incubated for 24 hrs. Since Alamar Blue contained an oxidation-reduction (redox) indicator, and cellular proliferation induced chemical reduction of the media which resulted of a change in color from blue to red. The intensity of red color reflected the extent of cellular proliferation. The absorbance was then measured at the wavelengths of 570 nm (reduced form) and 600 nm (oxidized form) using microplate reader. Specific absorbance (specific OD), obtained by subtraction of the absorbance at 600 nm from that at 570 nm, was used in the calculation for % stimulation and % cytotoxicity

2. In vitro cytotoxicity assay

2.1 U-937 monocytic cell line culture

The U-937 cells were maintained in 25 cm² plastic culture flasks in complete RPMI 1640 medium containing 10% heat inactivated-fetal bovine serum. Cells were incubated at 37°C in a humidified atmosphere containing 5% CO₂. Cells harvested by centrifugation at 5500 rpm for 5 min at 25°C were passaged every 3 – 4 days and viability was assessed by trypan blue exclusion test.

2.2 Determination of cytotoxicity by Alamar Blue Method

Monocytes were adjusted to 5×10^5 cells/ml in complete RPMI 1640 medium. One hundred microlitres of the suspension were placed in 96-well sterile culture plate containing 10 mcl of two-fold dilution of 1.6-200 mcg/ml of plant extract or compound or 0.5% DMSO as vehicle control or 50 mcg/ml of ellipticine as positive control, and then 90 mcg of complete RPMI 1640 medium were added. The plate was incubated in 5% CO₂ under humidified conditions at 37°C for 48 hrs.

After an incubation period of 48 hrs, 20 mcl/well of Alamar Blue were added and the plate was re-incubated for 24 hrs. The absorbance was then measured at wavelengths of 570 nm and 600 nm using microplate reader. Specific absorbance (specific OD), obtained by subtracting the absorbance at 600 nm from that of 570 nm, was used in the calculation for % cytotoxicity. The % cytotoxicity – log concentration curve was then established for evaluating CC_{50} of the samples.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

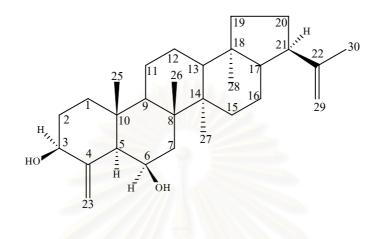
CHAPTER IV

RESULTS AND DISCUSSION

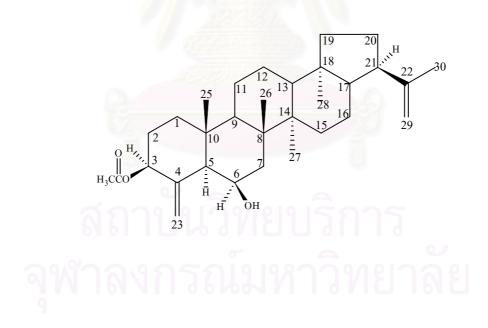
The leaves of *Harpullia arborea* Radlk. were extracted with 95% ethanol. The ethanol extract was then extracted respectively with hexane, chloroform and methanol to yield hexane (4.55% yield), chloroform (4.55% yield) and methanol extracts (10.00% yield). Chromatographic separation of the hexane extract afforded three pure compounds, while one compound was obtained from the methanol extract. The identification and structure elucidation of the isolated compounds were based on the interpretation of their spectral data and further confirmed by comparison with those values reported in the literature. Preliminary screening for the immunostimulatory effect of all extracts and one pure compound were also performed. The details can be discussed as follows.

Identification and Structure elucidation of Isolated Compounds

1. Structure elucidation of HA-1


Compound HA-1 was recrystallized from methanol as colorless crystals (56.0 mg, 0.005% yield), The compound was suggested to be a triterpenoid through a positive Libermann-Burchard's test. The EIMS of HA-1 (Figure 2) showed the molecular ion peak at m/z 720 corresponding to the molecular formula of $C_{49}H_{84}O_3$. The base peak at m/z 189 was indicative of a triterpenoid with lupane/hopane skeleton containing an isopropenyl group in ring E (Ogunkoya, 1981). The IR spectrum of HA-1 (Figure 3) displayed the OH and carbonyl absorption bands at 3576 and 1734 cm⁻¹, respectively. The IR absorption at 3077, 1649 and 885 cm⁻¹ suggested the presence of terminal double bond in the molecule.

The ¹H-NMR spectrum (Figures 4a-4c) exhibited five singlets of tertiary methyls at δ 0.67, 0.90, 1.02, 1.37 and 1.66, one triplet of primary methyl at δ 0.86 and signals due to two hydroxymethine protons at δ 4.42 and 5.12. The number of methyl singlets indicated the absence of two methyls in the basic lupane/hopane skeleton. The methyl singlet at δ 1.66 showed correlation with a pair of signals at δ 4.66 and 4.68 in the ¹H-¹H COSY spectrum (Figures 8a-8c), demonstrating the presence of an isopropenyl group. Another pair of correlated signals at δ 5.00 and 5.22 was suggestive of one additional terminal vinyl group.


The ¹³C-NMR spectrum of HA-1 (Figures 5a-5b) showed more than 40 carbon signals, indicating the presence of a conjugated moiety in the molecule of triterpenoid. Analysis of the DEPT and HETCOR experiments (Figures 6a-6b and 7a-7d) suggested that the compound contained six methyl carbons (δ 14.1, 15.0, 16.2, 16.8, 17.8 and 19.6), seven methine carbons (δ 47.5, 47.9, 48.7, 52.3, 53.9, 70.0 and 74.1), seven quaternary carbons (δ 38.2, 41.3, 42.7, 44.2, 145.9, 148.1 and 173.0), and more than 20 methylene carbons (δ 20.9, 21.5, 22.7, 23.9, 25.1, 27.3, 28.5, 29.2-29.7, 31.9, 32.5, 34.6, 39.1, 40.0, 40.2, 105.2 and 109.5).

From the above information, HA-1 was proposed to be a long-chain fatty acid ester of a triterpenoid having the lupane or hopane skeleton with two absence methyl groups. The triterpenoid part of HA-1 was deduced to be 3β , 6β -dihydroxy- 21α H-24-norhopa-4(23), 22(29)-diene (90) by comparison of its ¹H and ¹³C-NMR data with those of 90 and 3β -acetoxy- 6β -hydroxy- 21α H-24-norhopa-4(23), 22(29)-diene (107) (Chavez *et al.*, 1997) as shown in Tables 10 and 11, respectively.

จุฬาลงกรณมหาวทยาลย

β,6*β*-dihydroxy-21*αH*-24-norhopa-4(23), 22(29)-diene (**90**)

3β-Acetoxy-6β-hydroxy-21αH-24-norhopa-4(23), 22(29)-diene (107)

Table 10. ¹H-NMR assignments of compound HA-1 (triterpenoid part) and reported data of 3β ,6 β -dihydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (**90**) and 3β -acetoxy-6 β -hydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (**107**) (in CDCl₃).

Position	δΗ			
	Compound HA-1	90	107	
2	1.60, 1.85 (<i>m</i>)	1.60, 1.90	-	
3	5.12 (<i>dd</i> , <i>J</i> =11.9, 5.2 Hz)	3.99 (<i>dd</i> ; <i>J</i> =11.0, 5.6 Hz)	5.09 (<i>dd</i> ; <i>J</i> =12.2. 5.2 Hz)	
5	1.74 (br s)	1.70 (<i>m</i>)	-	
6	4.4 <mark>2 (m</mark>)	4.46 (<i>d</i> ; <i>J</i> =1.0 Hz)	4.42 (<i>d</i> ; <i>J</i> =1.0 Hz)	
7	- / / 3	1.50, 1.60	-	
9		1.40	-	
13	- / 2	1.50	-	
15	- 0366	1.19	-	
17	-	1.00 (<i>m</i>)	-	
20	e-	1.10, 2.00	-	
21	2.23 (<i>m</i>)	2.30 (<i>m</i>)	-	
23	5.00, <mark>5.22</mark> (br s)	5.29, 5.30 (br s)	4.99, 5.24 (br s)	
25	1.02 (s)	1.03 (s)	1.01 (<i>s</i>)	
26	1.37 (s)	1.42 (s)	1.37 (s)	
27	0.90 (s)	0.95 (<i>s</i>)	0.90 (s)	
28	0.67 (s)	0.71 (s)	0.70 (s)	
29	4.66, 4.68 (br s)	4.70, 4.72 (br s)	4.66, 4.68 (br s)	
30	1.66 (<i>s</i>)	1.70 (br s)	1.65 (br s)	

3β , 6β -dihydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (90) and 3β -acetoxy				
hydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (107) (in CDCl ₃).				
Position δ C				
Compound HA-1	90	107		
40.0	40.1	39.9		
28.5	32.1	28.5		
74.1	73.1	74.5		
146.0	150.9	145.8		
	24-norhopa-4(23), 22(2 Compound HA-1 40.0 28.5 74.1	24-norhopa-4(23), 22(29)-diene (107) (in δ C Compound HA-1 90 40.0 40.1 28.5 32.1 74.1 73.1		

Table 11. ¹³C-NMR assignments of compound HA-1 (triterpenoid part) and reported data of

1	40.0	40.1	39.9
2	28.5	32.1	28.5
3 🥏	74.1	73.1	74.5
4	146.0	150.9	145.8
5	52.3	52.2	52.3
6	70.0	70.2	70.0
7	39.1	39.0	39.1
8	41.3	41.3	41.3
9	48.7	48.7	48.7
10	38.2	38.3	38.2
11	20.9	20.9	20.9
12	23.9	23.9	23.9
13	47.5	47.5	47.5
14	42.7	42.7	42.7
15	32.5	32.5	32.5
16	21.5	21.5	21.5
17	53.9	53.9	53.9
18	44.2	44.2	44.2
19	40.2	40.2	40.2
20	27.3	27.3	27.3

Table 11. ¹³C-NMR assignments of compound HA-1 (triterpenoid part) and reported data of 3β , 6β -dihydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (**90**) and 3β -acetoxy- 6β -hydroxy-21 α H-24-norhopa-4(23), 22(29)-diene (**107**) (in CDCl₃) (continued).

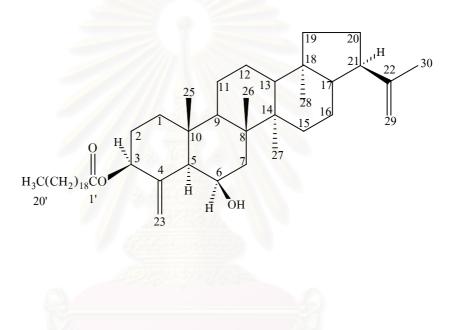
Position	δC		
	Compound HA-1	90	107
21	47.9	47.9	47.9
22	148.1	148.1	148.1
23 🧹	105.2	104.5	105.4
25	16.2	16.3	16.2
26	17.8	17.8	17.8
27	16.8	16.9	16.8
28	15.0	15.0	15.0
29	109.5	109.6	109.6
30	19.6	19.7	19.7
	aces weeks weeks	1/ 53-1	

The site of ester formation could be determined on the basis of chemical shift analysis. Significant differences between the chemical shifts of HA-1 and **90** were due to C-2, C-3, C-4, and H-3. On the other hand, these carbon and proton chemical shifts of HA-1 were found to be proximate to those of **107**. Therefore, this indicated the fatty acyl moiety as attaching to C-3 of the triterpenoid skeleton. As the molecular formula of $C_{49}H_{84}O_3$ was established for HA-1 on the basis of its EIMS (M⁺ at *m/z* 720) and there were no other evidences of the presence of any additional double bond other than those in the triterpenoid part, of the compound, the fatty acid part of HA-1 was thus deduced to be a saturated C-20, eicosanoic acid ($C_{20}H_{40}O_2$). Comparison of ¹³C-NMR data of the fatty acyl moiety of HA-1 with those of methyl eicosanoate

(Gunstone, Pollard, and Scrimgeour, 1976), as presented in Table 12, gave supportive evidence for this deduction.

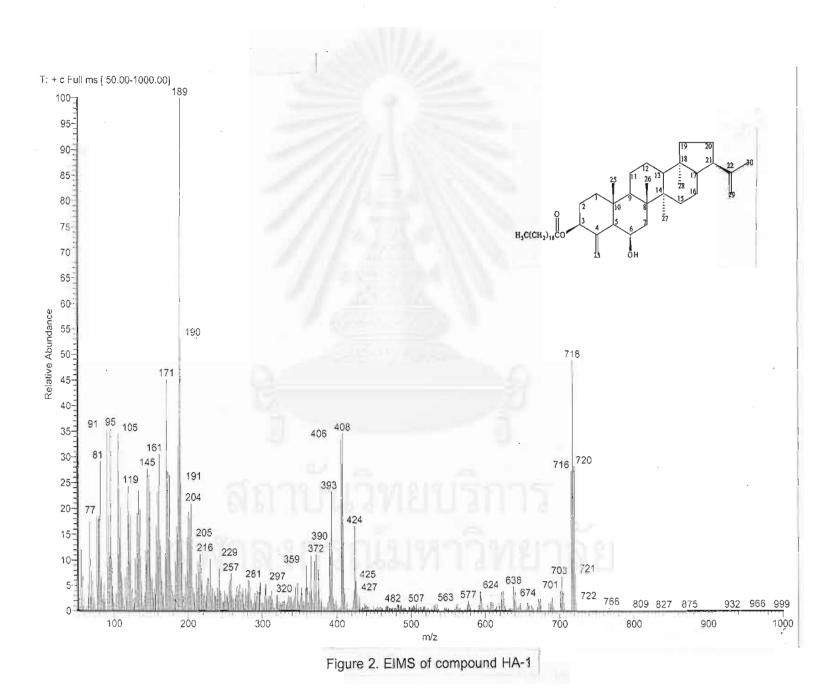
О || H₃C(CH₂)₁₈—СОН 20 1 Eicosanoic acid H₃C(CH₂)₁₈--COCH3 20 1 Methyl eicosanoate

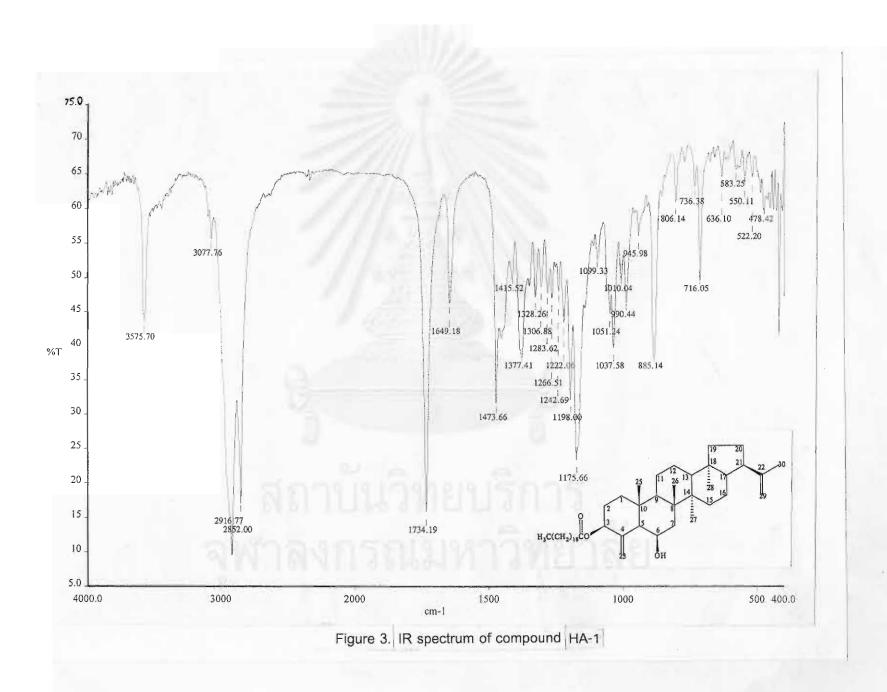
	Compound HA-1	Methyl eicosanoate		
Position	δН	δC	Position	δC
1		173.0	1	174.3
2	2.36 (<i>t</i> ; <i>J</i> =7.6 Hz)	34.6	2	34.2
3	-	25.1	3	25.1
4 – 17	-	29.2 – 29.7	4 - 17	29.4 – 29.8
18	-	31.9	18	32.1
19	-	22.7	19	22.8
20	0.86 (<i>t</i> ; <i>J</i> =7.0 Hz)	14.1	20	14.1


Table 12. ¹H and ¹³C-NMR assignments of compound HA-1 (fatty acid part) and reported ¹³C-NMR data of methyl eicosanoate (in CDCl₃).

The proposed structure of HA-1 was confirmed by HMBC experiment (Figures 10a-10i). Correlations observed for Me-28 (δ 15.0) with C-13 (δ 47.5), C-17 (δ 53.9), C-18 (δ 44.2) and C-19 (δ 40.2) were important in showing the hopane nature of the compound. The vinylic protons (δ 5.00, 5.22) displayed correlations with C-3 (δ 74.1) and C-5 (δ 52.3), demonstrating the location of an exo-methylene group at C-4. Correlations observed for the hydroxymethine proton (δ 4.42) with C-8 (δ 41.3) and C-10 (δ 38.2) indicated the attachment of a hydroxyl substituent at C-6. The location of fatty acyl moiety was supported by correlations between H-3 (δ 5.12) and C-1 (δ 173.0).

The NOESY experiment (Figures 9a-9c) was also employed to confirm the structure of HA-1. Correlations displayed between Me-25 (δ 16.2) and Me-26 (δ 17.8); Me-27 (δ 16.8) and Me-28 (δ 15.0); Me-28 and H-21 (δ 2.23) were in agreement with configurations of the methyl and isopropenyl groups in the typical hopane skeleton. The β -orientation of the hydroxyl group attached at C-6 was supported by correlations observed for H-5 (δ 1.74) with H-6 (δ 4.42)


and H-3 (δ 5.12). The correlation between one of the vinylic H-23 protons (δ 5.22) and H-6 was also observed, indicating the close proximity of the vinyl and hydroxyl groups in the molecule.


Therefore, HA-1 was elucidated as 3β -eicosanoyl- 6β -hydroxy- 21α H-24-norhopa-4(23), 22(29)-diene, the structure of which is shown below.

 3β -Eicosanoyl- 6β -hydroxy- 21α H-24-norhopa-4(23),22(29)-diene

This is the first report of a fatty acid ester of the 24-norhopene triterpenoid in nature. Two other compounds with this rare triterpenoid skeletal type, 3β , 6β -dihydroxy- 21α H-24norhopa-4(23), 22(29)-diene (90) and 3β , 5β -dihydroxy- 6β -[(4-hydroxybenzoyl)oxy]- 21α H-24norhopa-4(23),22(29)-diene (91), have been previously isolated from *Diatenopteryx sorbifolia* (Sapindaceae) (Chavez *et al.*, 1997).

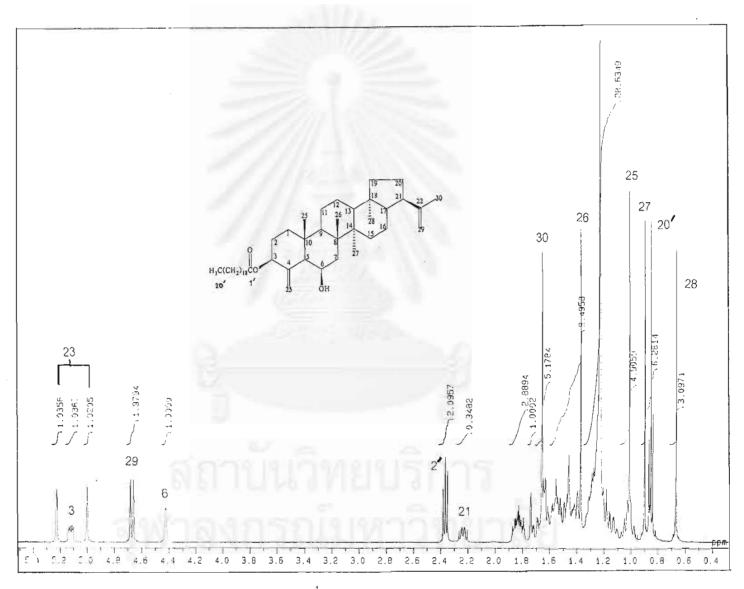
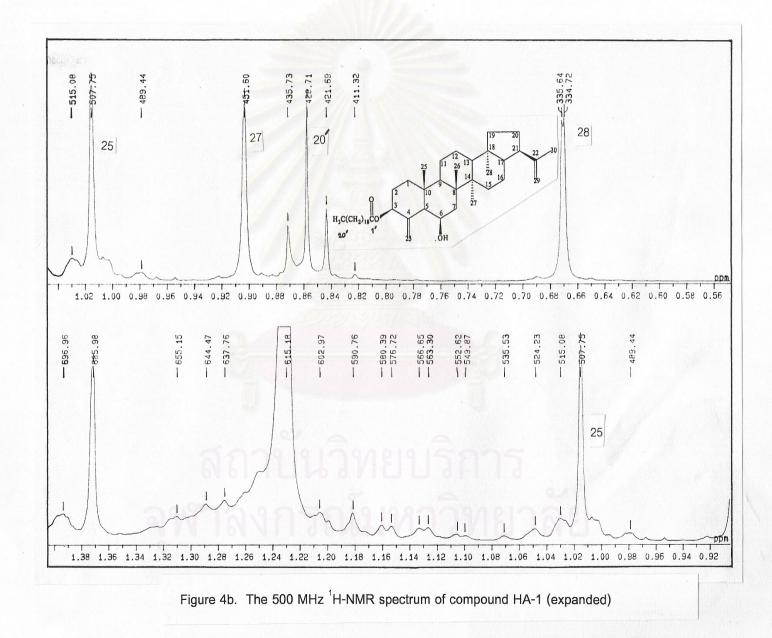



Figure 4a. The 500 MHz ¹H-NMR spectrum of compound HA-1 (in CDCl₃)

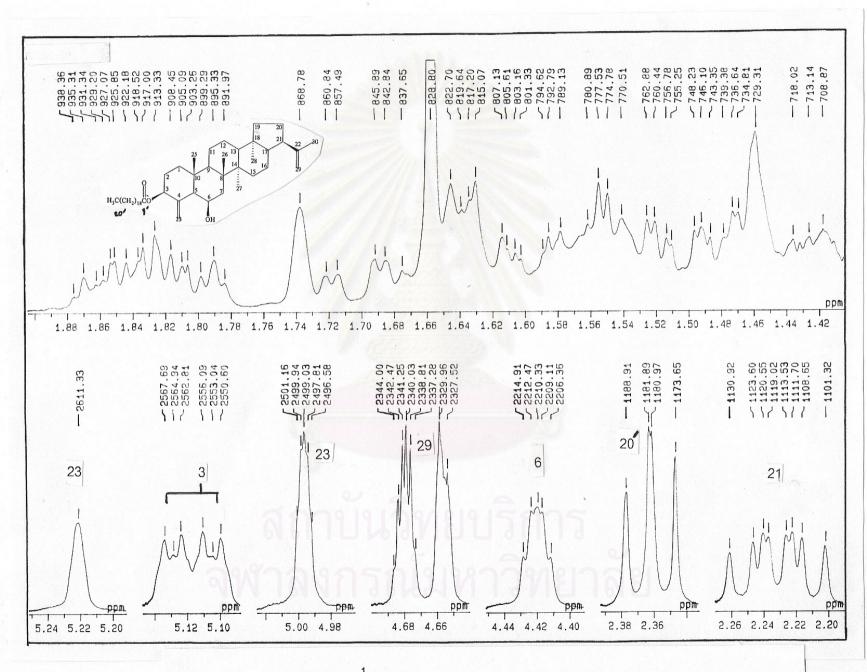


Figure 4c. The 500 MHz ¹H-NMR spectrum of compound HA-1 (expanded)

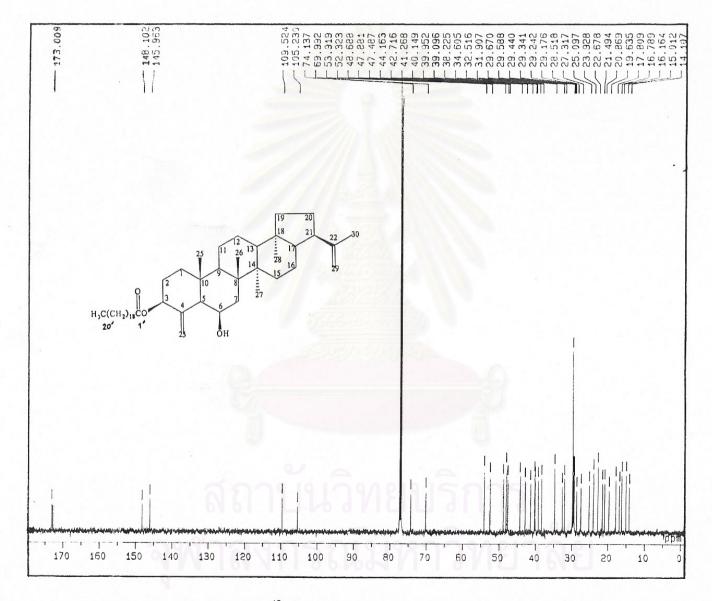


Figure 5a. The 125 MHz ¹³C-NMR spectrum of compound HA-1 (in CDCI₃)

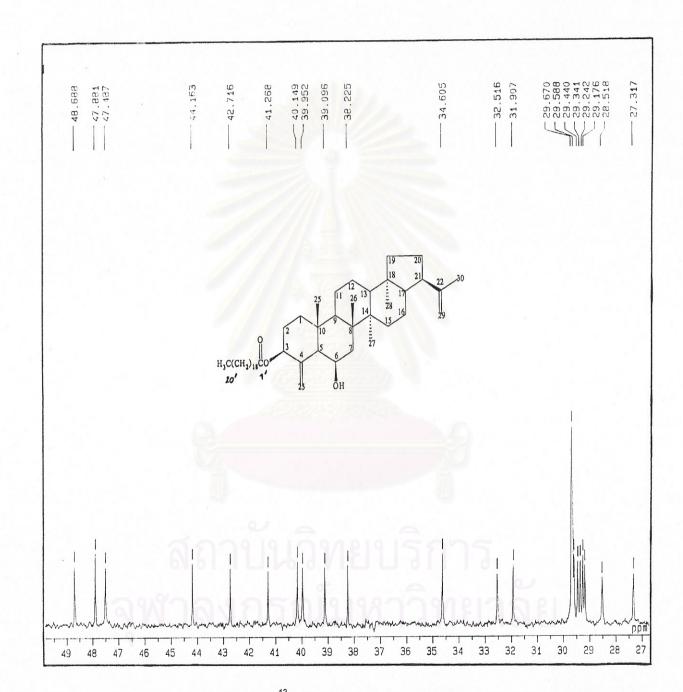


Figure 5b. The 125 MHz ¹³C-NMR spectrum of compound HA-1 (expanded)

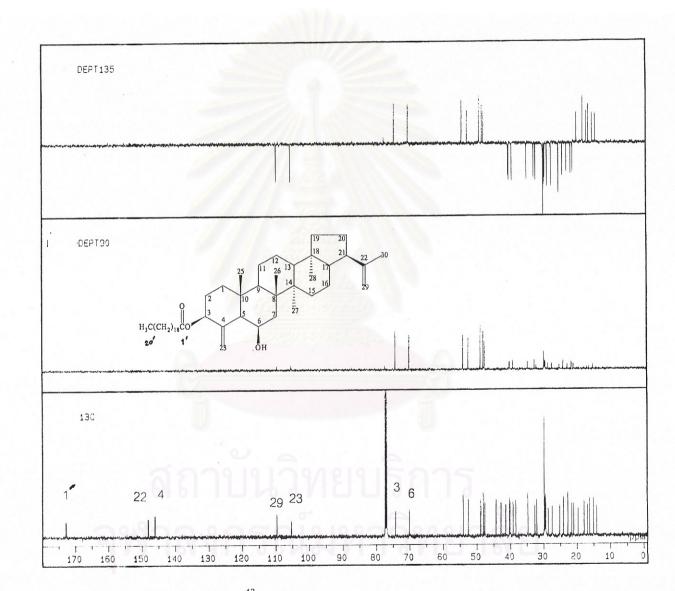


Figure 6a. The 125 MHz ¹³C-DEPT NMR spectrum of compound HA-1 (in CDCl₃)

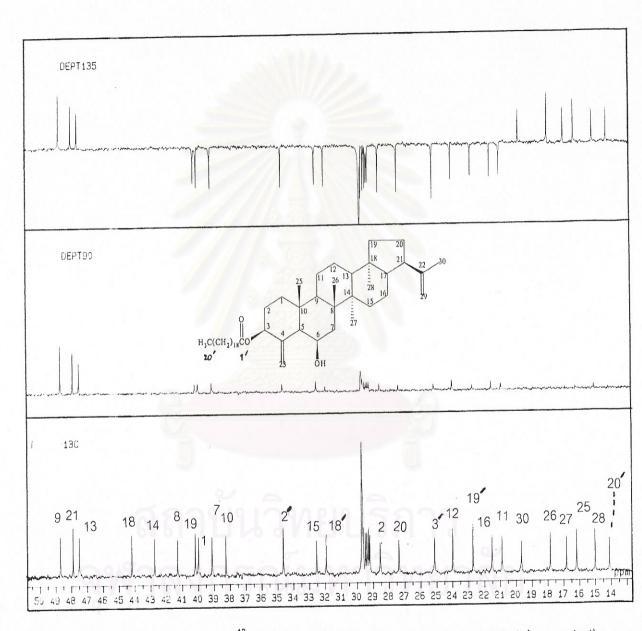
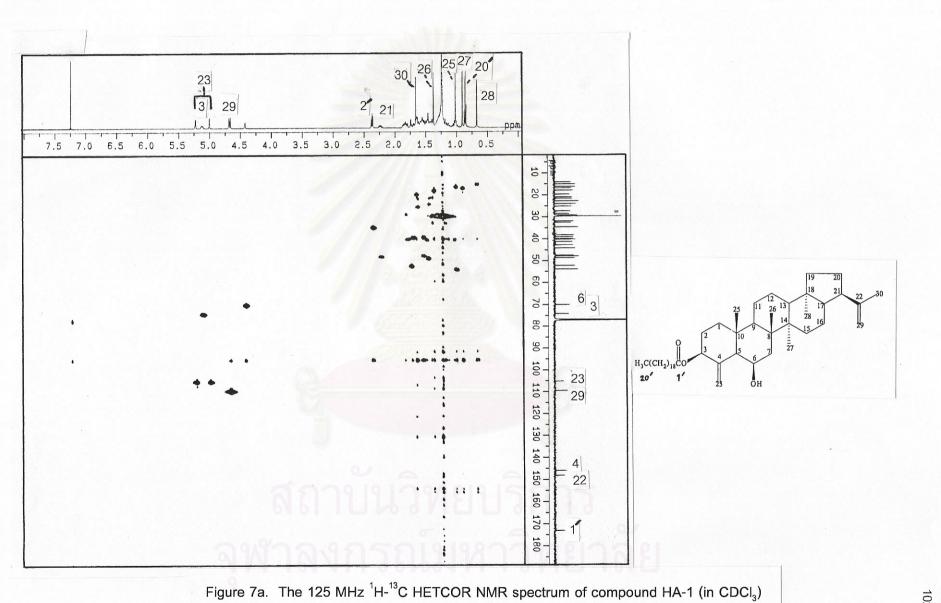
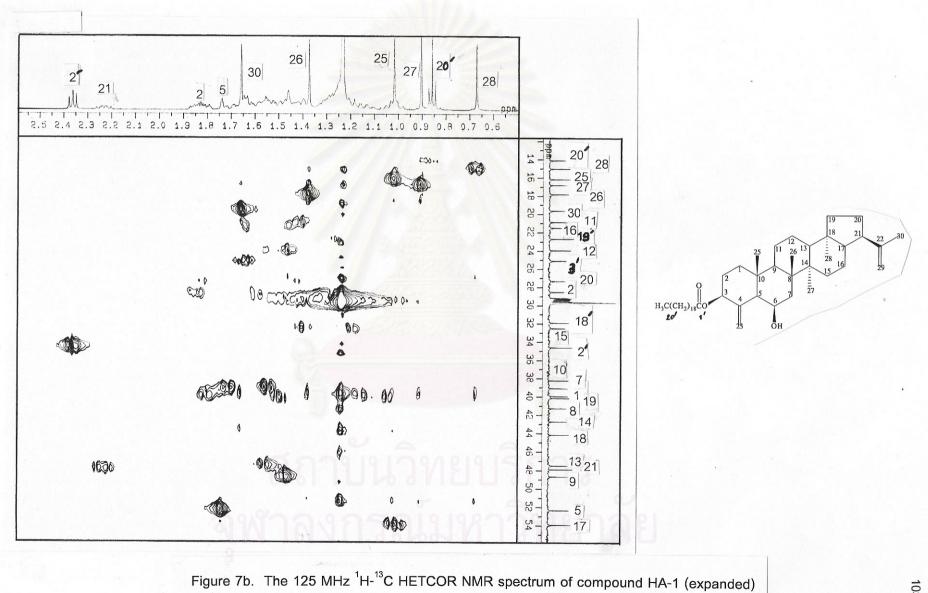




Figure 6b. The 125 MHz ¹³C-DEPT NMR spectrum of compound HA-1 (expanded)

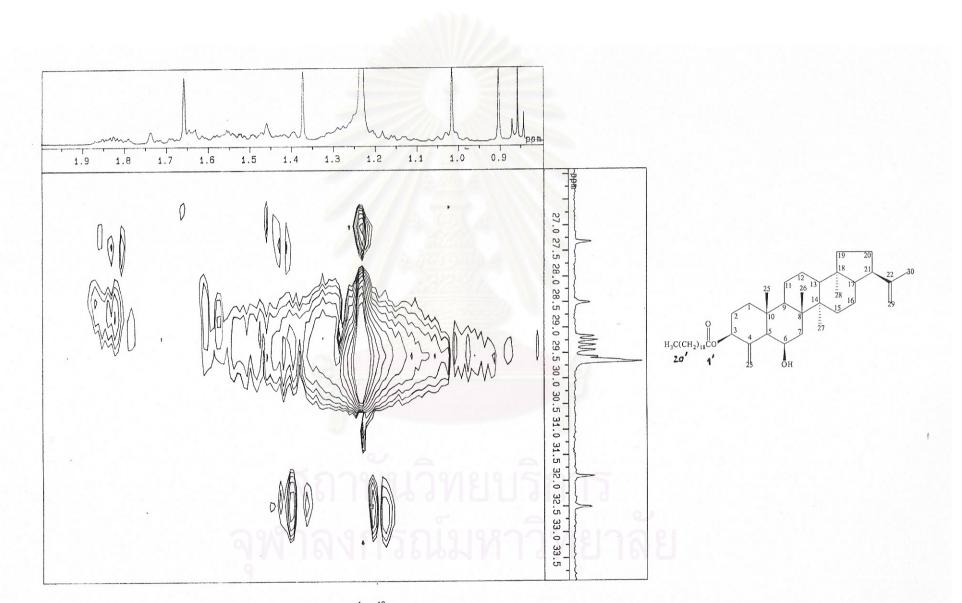


Figure 7c. The 125 MHz ¹H-¹³C HETCOR NMR spectrum of compound HA-1 (expanded)

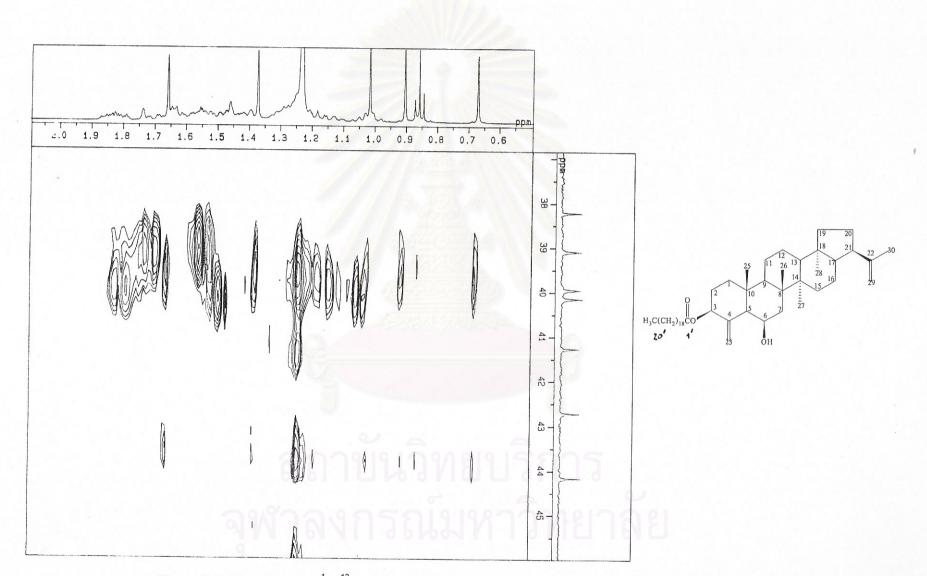
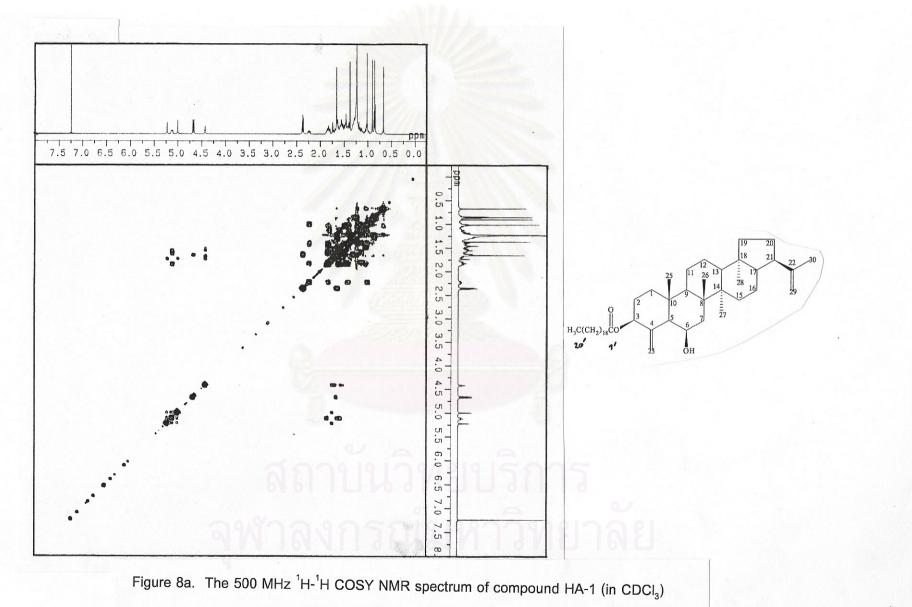



Figure 7d. The 125 MHz ¹H-¹³C HETCOR NMR spectrum of compound HA-1 (expanded)

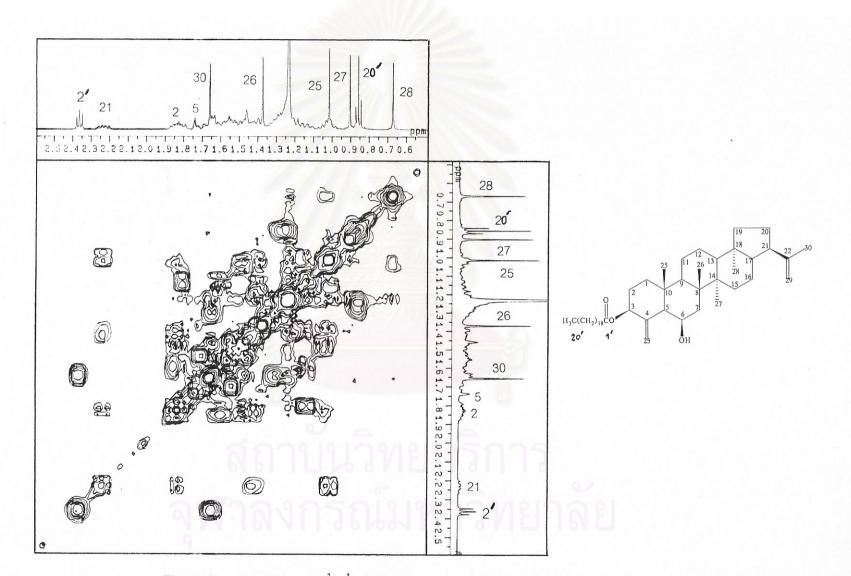


Figure 8b. The 500 MHz ¹H-¹H COSY NMR spectrum of compound HA-1 (expanded)

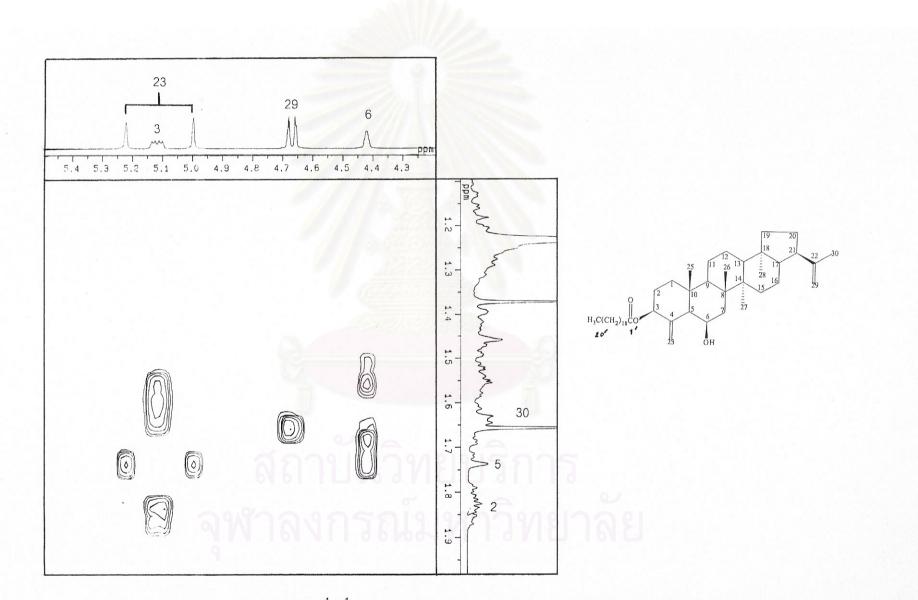


Figure 8c. The 500 MHz ¹H-¹H COSY NMR spectrum of compound HA-1 (expanded)

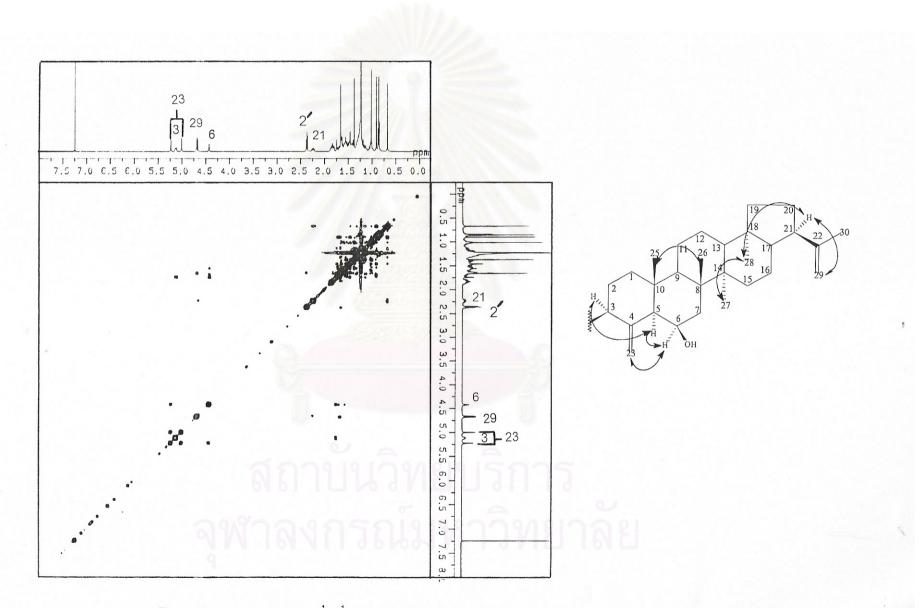


Figure 9a. The 500 MHz ¹H-¹H NOESY NMR spectrum of compound HA-1 (in CDCl₃)

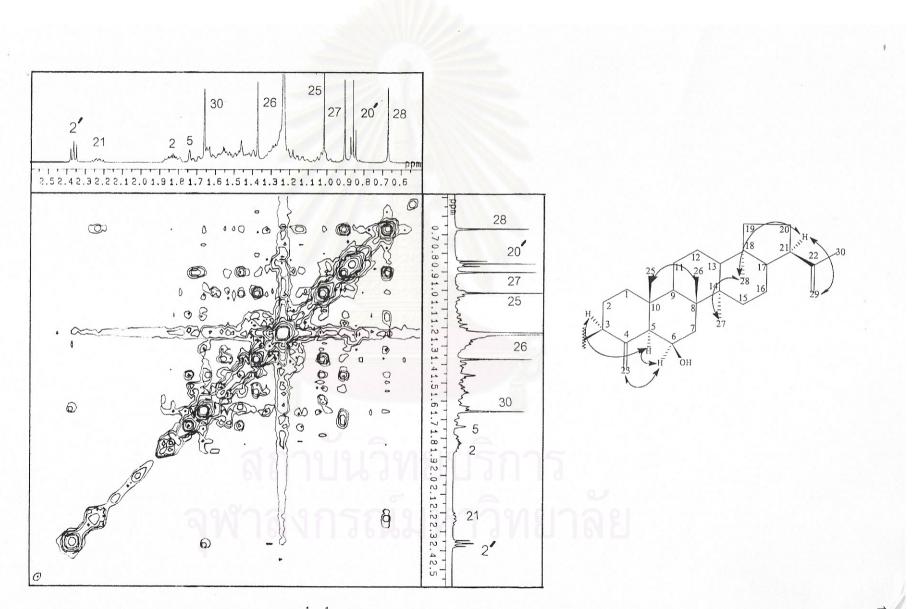


Figure 9b. The 500 MHz ¹H-¹H NOESY NMR spectrum of compound HA-1 (expanded)

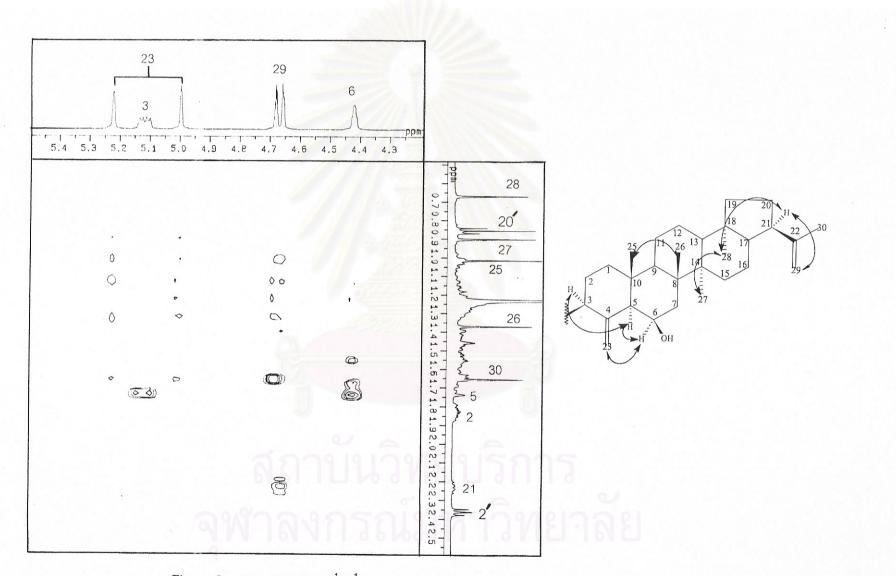


Figure 9c. The 500 MHz ¹H-¹H NOESY NMR spectrum of compound HA-1 (expanded)

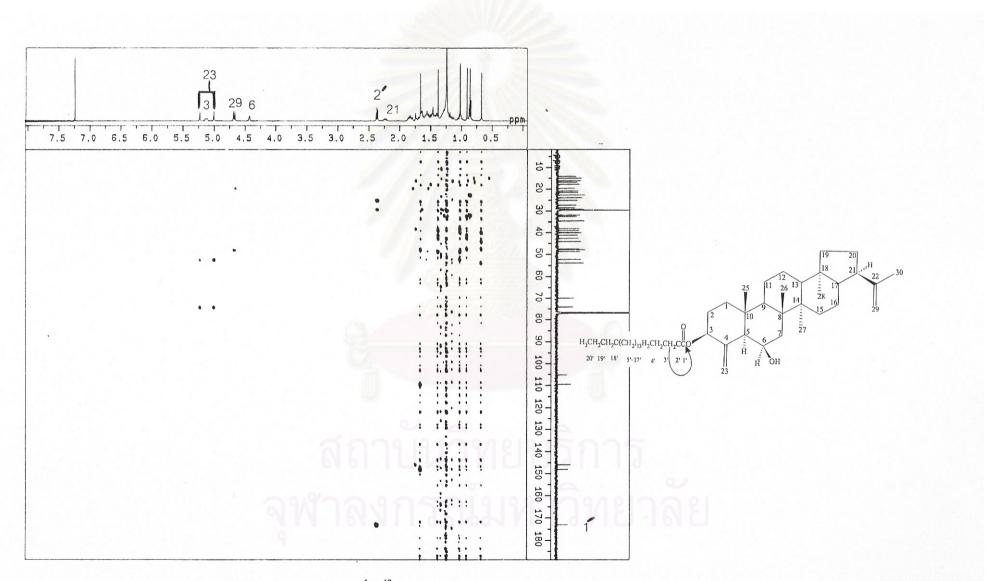


Figure 10a. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (in CDCl₃)

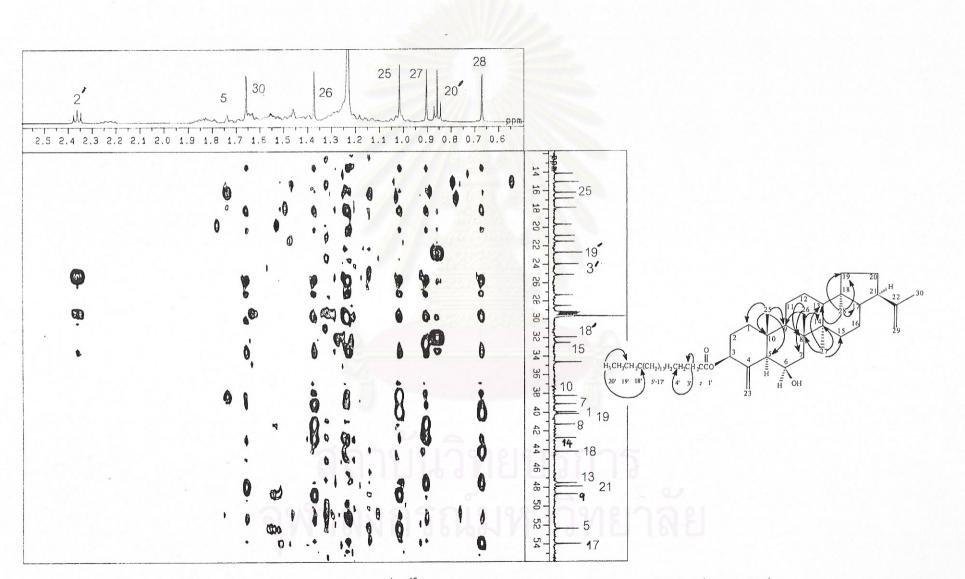


Figure 10b. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

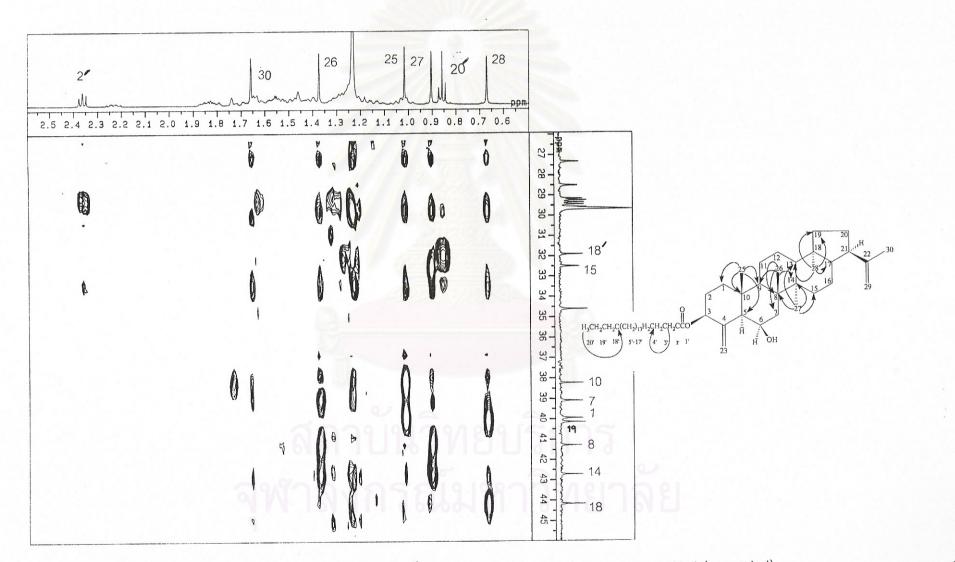


Figure 10c. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

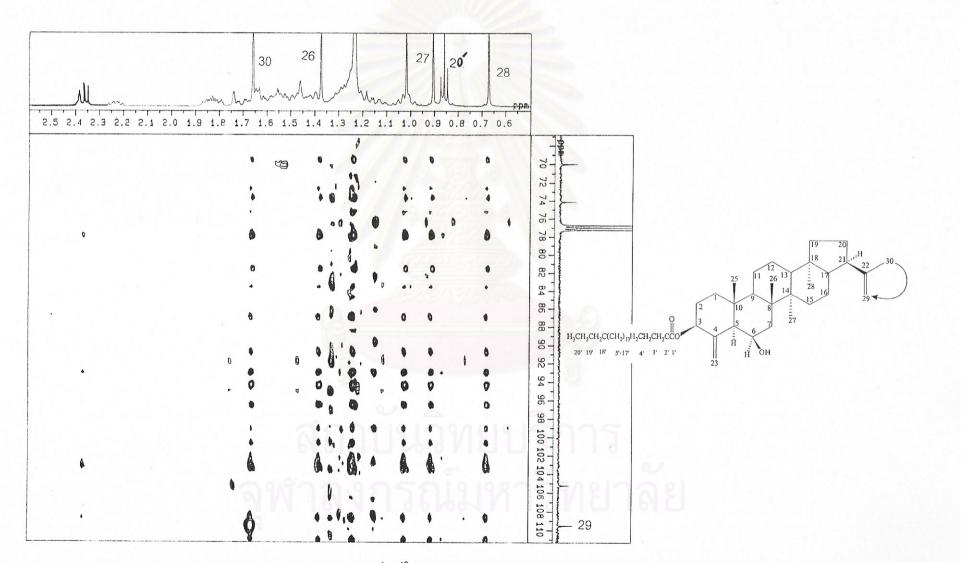


Figure 10d. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

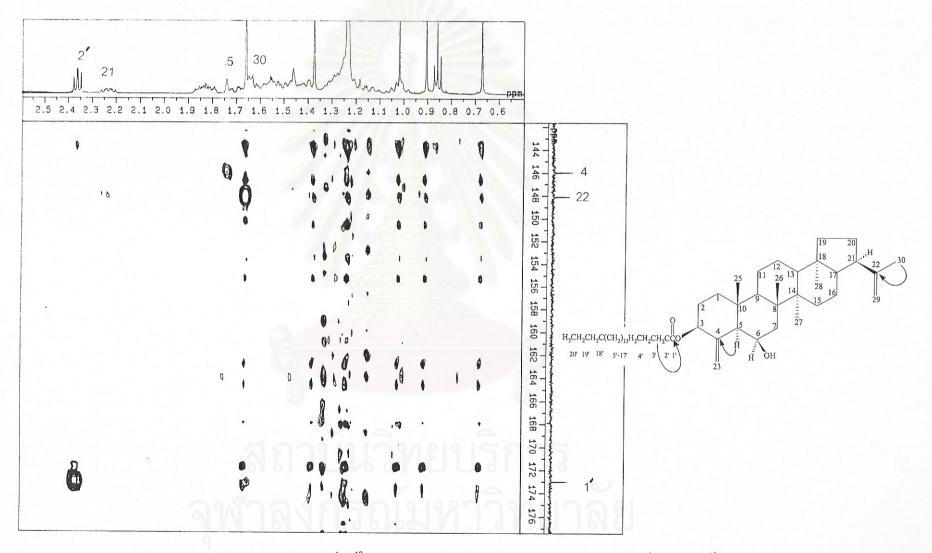


Figure 10e. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

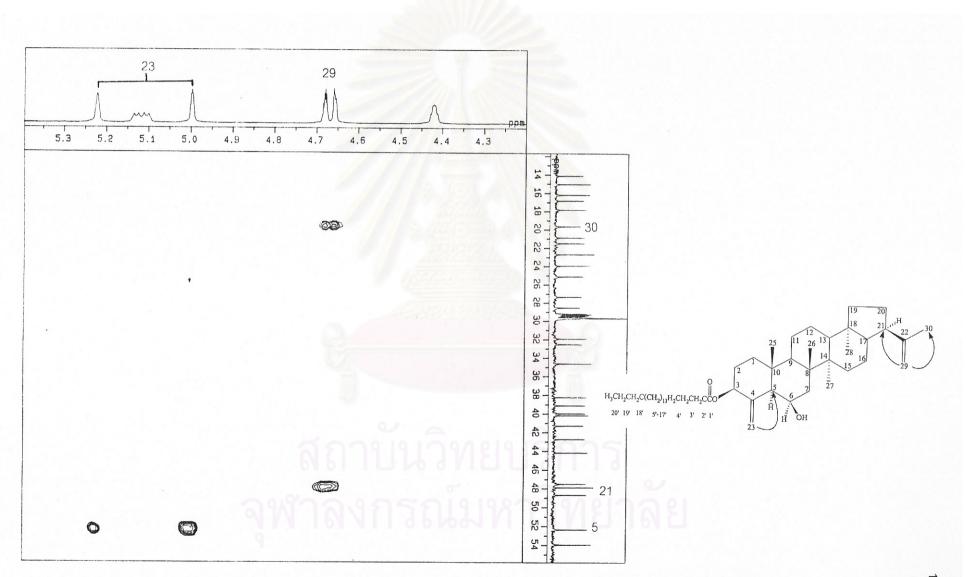


Figure 10f. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

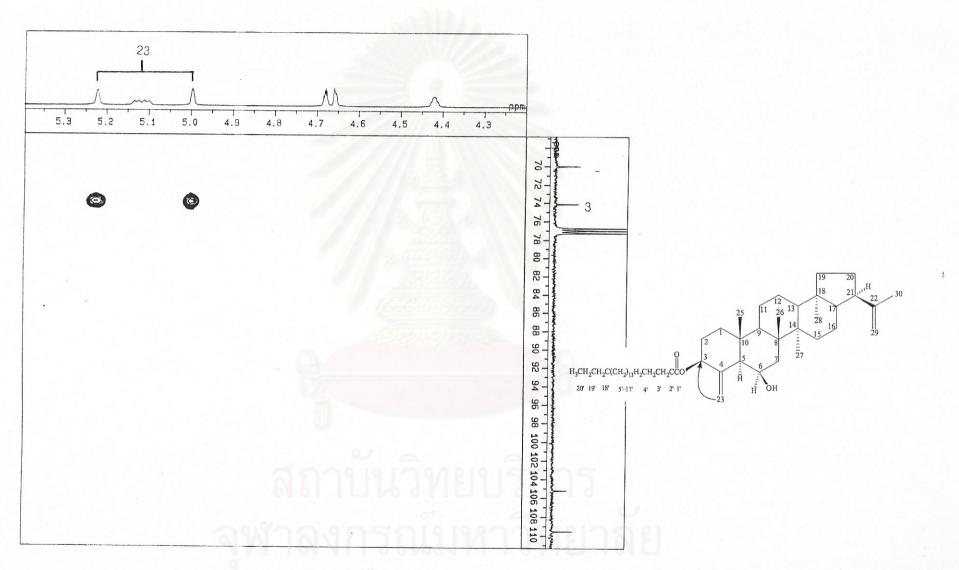


Figure 10g. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

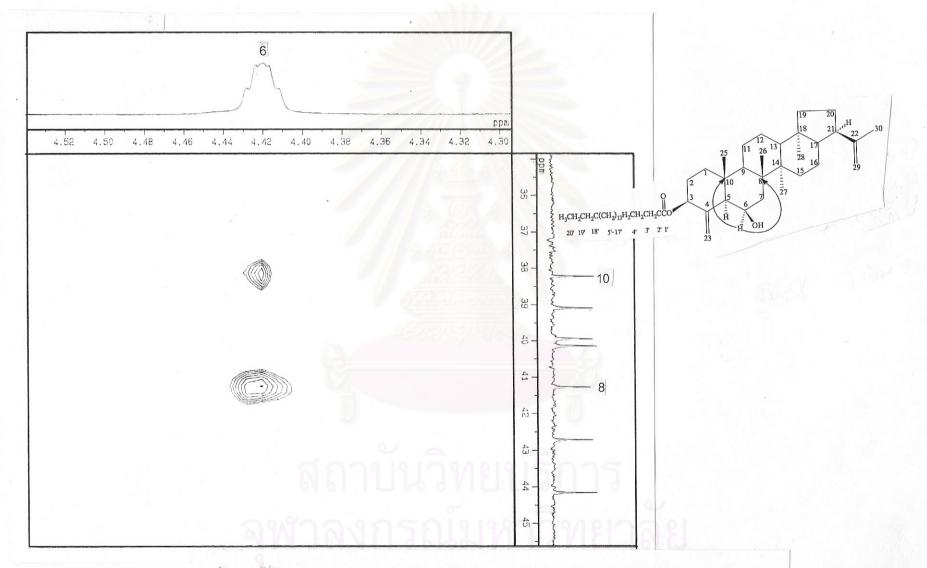
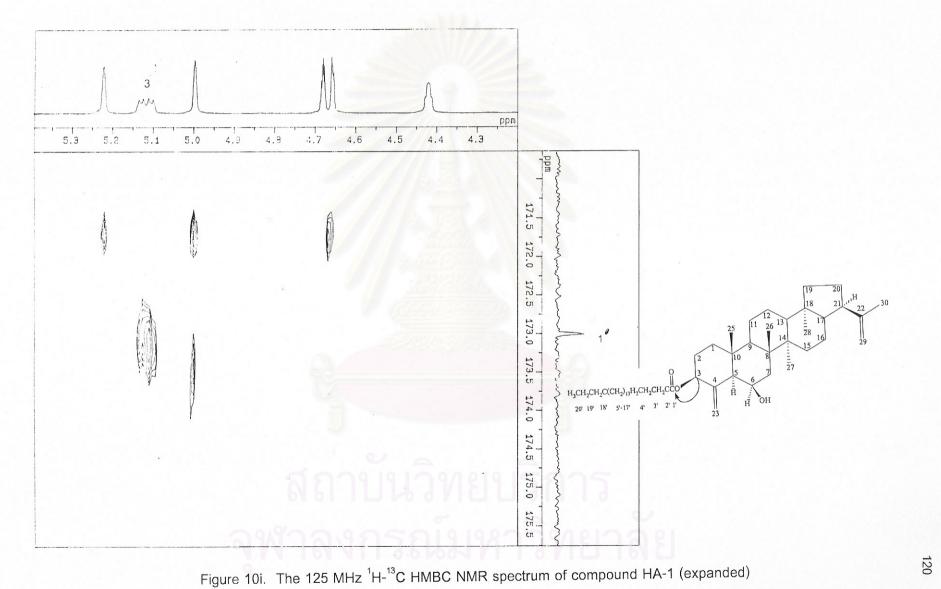
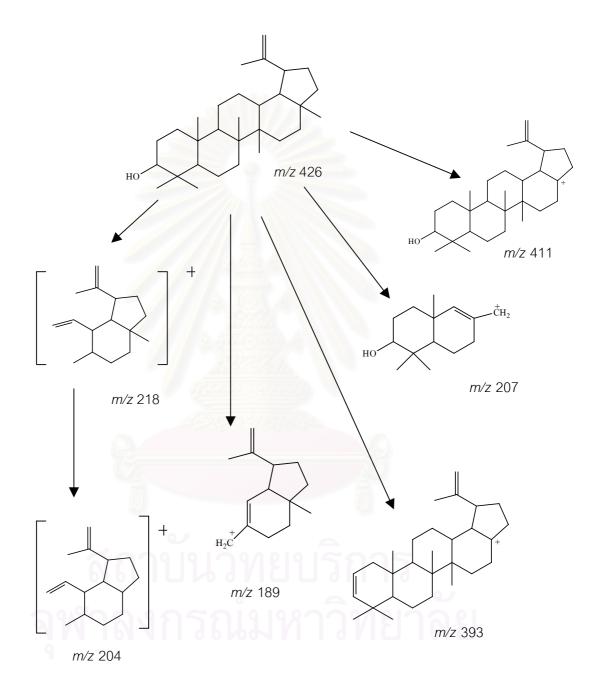



Figure 10h. The 125 MHz ¹H-¹³C HMBC NMR spectrum of compound HA-1 (expanded)

2. Structure elucidation of HA-2


Compound HA-2 was recrystallized as colorless needles from methanol (63 mg, 0.006% yield). The compound gave purple color to Libermann-Burchard's reagent, suggesting that it is a triterpenoid. The EIMS of HA-2 (Figure 11) displayed a molecular ion peak at m/z 426, corresponding to the molecular formula of $C_{30}H_{50}O$. The base peak at m/z 189 were important in showing that HA-2 has the skeletal structure of a lupane-type triterpenoid (Ogunkoya, 1981). The prominent peak at m/z 218 was the result of cleavage across the C ring of the lupane skeleton, and successive loss of a methyl group produced the fragment peak at m/z 204. The peak at m/z 411 (M-CH₃) and m/z 393 (M–CH₃–H₂O) were also observed (Scheme 4). The IR spectrum of HA-2 (Figure 12) showed a broad band at 3300 cm⁻¹ (OH streching), indicating the presence of a hydroxyl group in the molecule.

The ¹H-NMR spectrum (Figures 13a–13b) displayed the signals of seven methyl groups as singlets at δ 0.74, 0.76, 0.81, 0.92, 0.94, 1.01, and 1.62. The presence of exomethylene protons (H-29) in the isopropenyl group of a lupane-type triterpenoid could be observed as a pair of broad singlets at δ 4.66 and 4.54. A doublet of doublets (1H, *J*= 10.8 Hz) at δ 3.17 was assignable to the hydroxymethine proton at position 3.

The ¹³C-NMR spectrum (Figures 14a–14b) showed the signals of 30 carbon atoms, supporting the assignment of HA-2 as a triterpenoid. The DEPT-90 and DEPT-135 experiments (Figures 15a–15b) helped in identifying the signals of seven methyl carbons at δ 14.5, 15.3, 15.9, 16.1, 18.0, 19.3 and 28.0, eleven methylene carbons at δ 18.3, 20.9, 25.1, 27.4, 27.4, 29.8, 34.2, 35.5, 38.7, 39.9 and 109.3, six methine carbons at δ 38.0, 47.9, 48.3, 50.4, 55.3 and 78.9, and six quaternary carbons at δ 37.1, 38.8, 40.8, 42.8, 42.9 and 150.9.

¹H and ¹³C-NMR data of HA-2 was found to be in agreement with those of previously reported for lupeol (Ahmad, Bano, and Mohammad,1985). Comparison of ¹³C-NMR

assignment of HA-2 and lupeol together with ¹H-NMR assignment of HA-2 are shown in Table 13.

Scheme 4. Mass fragmentation of compound HA-2

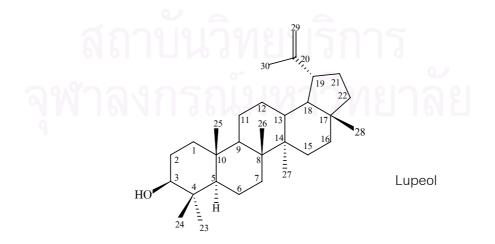
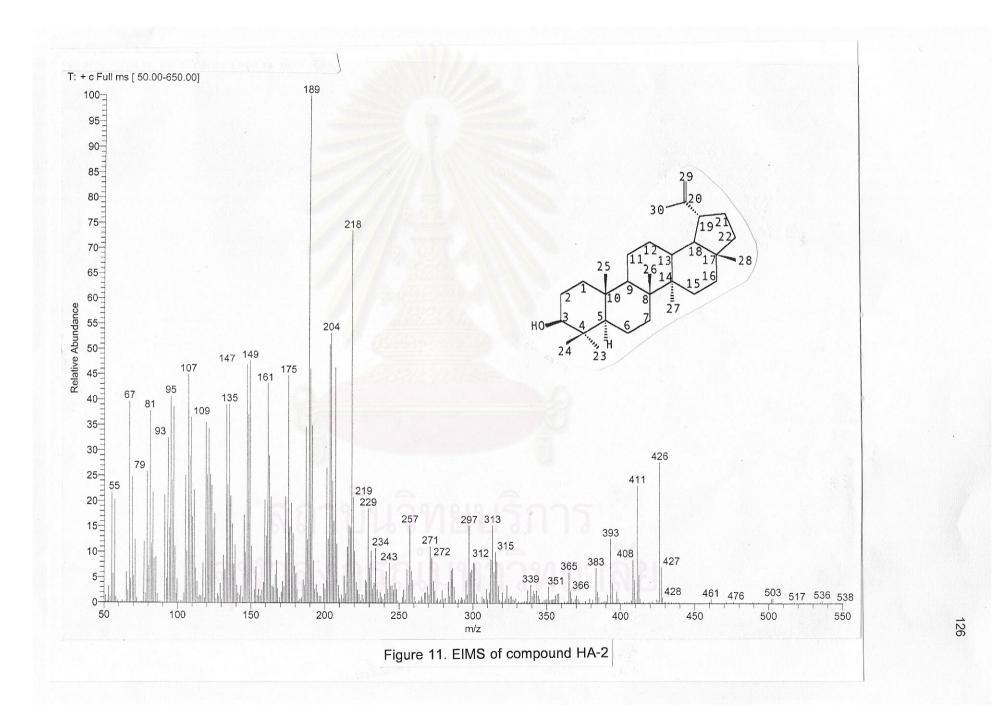

Position	Compound HA-2		Lupeol	
	δΗ	δC	δΗ	δC
1		38.7		38.7
2		27.5		27.4
3	3.17 (<i>dd</i> , <i>J</i> =10.8,5.1 Hz)	79.0	3.20 (<i>dd</i> , <i>J</i> =10.6 Hz)	78.8
4		38.9		38.8
5		55.3		55.2
6		18.3		18.3
7		34.3		34.2
8		40.8		40.8
9	and a second	50.4		50.4
10	1127 Mar 11	37.2		37.1
11		20.9		20.9
12	CA.	25.2		25.1
13		38.1		38.0
14		42.8		42.8
15	สถาบับเว็บ	27.4	ริการ	27.4
16	ывіпияз	35.6	91119	35.5
17	้าลงกรกใ	43.0	กิทยาลัย	42.9
18	161 / 11 9 6 14	48.3		48.2
19	2.35(<i>td</i> ; <i>J</i> =11.4,11.4,5.7 Hz)	48.0	2.38(<i>ddd</i> ; <i>J</i> =10.6,10.6,5.3 Hz)	47.9
20		151.0		150.6

Table 13. 1 H and 13 C-NMR assignments of compound HA-2 and reported data of lupeol (in CDCl₃).

Position	Compound HA-2		Lupeol	
	δΗ	δС	δΗ	δС
21		29.7		29.8
22		40.0		39.9
23	0.94 (s)	28.0	0.94 (<i>s</i>)	28.0
24	0.73 (s)	15.4	0.76 (<i>s</i>)	15.4
25	0.80 (s)	16.1	0.83 (<i>s</i>)	16.1
26	1.00 (s)	16.0	1.03 (<i>s</i>)	15.9
27	0.91 (<i>s</i>)	14.5	0.96 (<i>s</i>)	14.5
28	0.76 (<i>s</i>)	18.0	0.79 (<i>s</i>)	18.0
29	4.54, 4.66 (br s)	109.3	4.57,4.68(<i>dd; J</i> =1 Hz)	109.2
30	1.6 <mark>6</mark> (<i>s</i>)	19.3	1.67 (br s)	19.3

Table 13. 1 H and 13 C-NMR assignments of compound HA-2 and reported data of lupeol (in CDCl₃) (continued).


Therefore, it was concluded that compound HA-2 is the triterpenoid lupeol, having the structure as shown below :

The lupane triterpenoid lupeol can be found in a variety of plant sources (Hasmeda *et al.*, 1999). In Sapindaceae, the compound has been isolated from the bark of *Schleichera oleosa* (Dan and Dan, 1987). The toxicity of lupeol is very low (Patocka, 2003), and it has been found to exhibit some interesting bioactivities including anti-inflammatory (Akihisa *et al.*, 1996; Rajic *et al.*, 2000; Fernandez *et al.*, 2001; Mitaine-Offer *et al.*, 2002), antiarthritic (Kweifiookai and Carroll, 1993; Kweifiookai *et al.*, 1995; Geetha and Varalakshmi, 1998), antibacterial (Woldemichael *et al.*, 2003), and cytotoxic activities (Moriarity *et al.*, 1998; Wada, lida, and Tanaka, 2001), as well as *in vitro* inhibitory activity against *Plasmodium falciparum* (Alves *et al.*, 1997; Ziegler *et al.*, 2002).

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

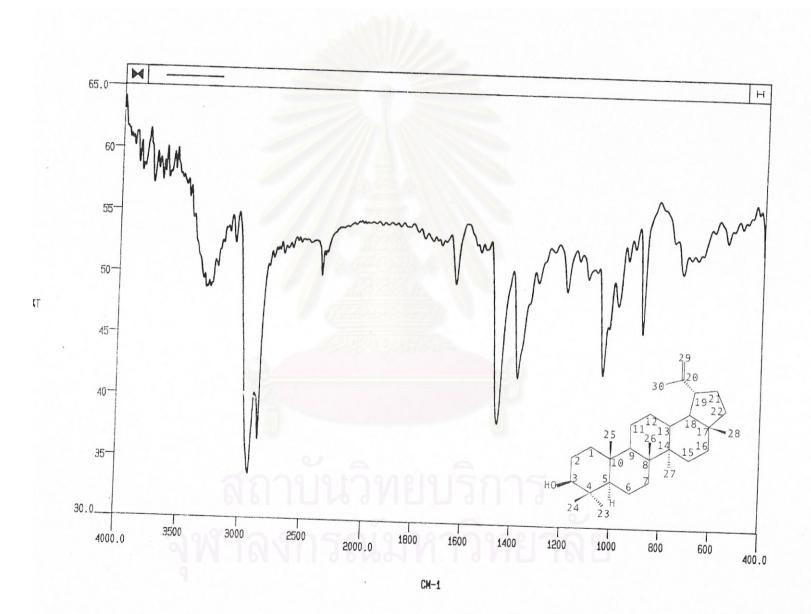


Figure 12. IR spectrum of compound HA-2

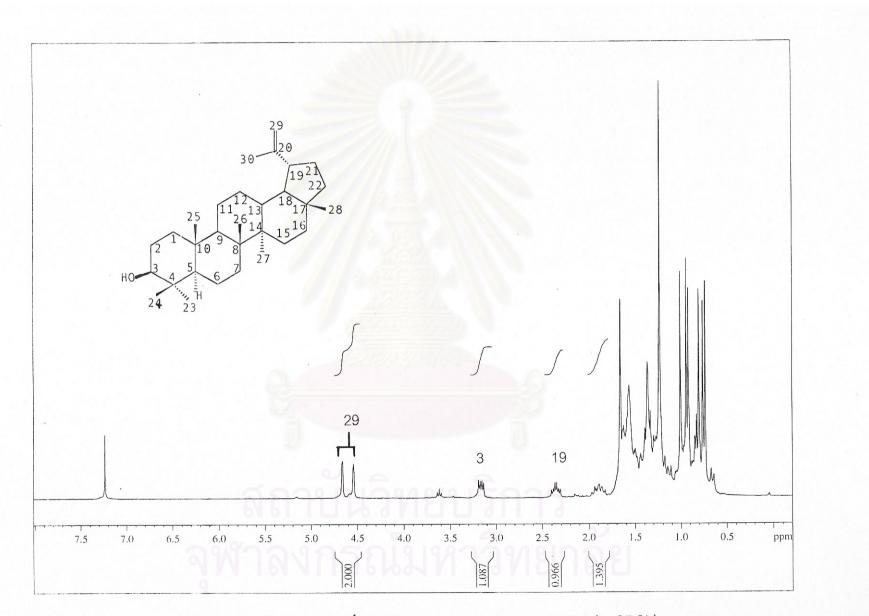


Figure 13a. The 300 MHz 1 H-NMR spectrum of compound HA-2 (in CDCl₃)

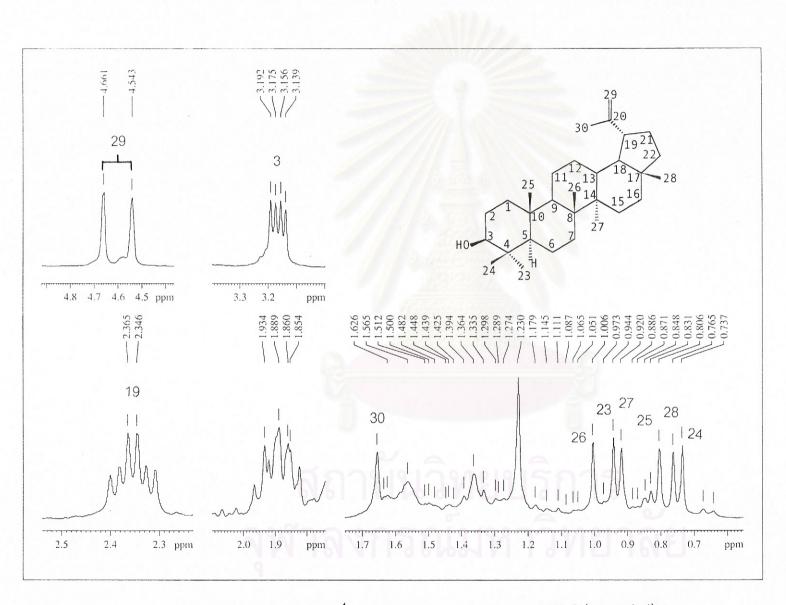


Figure 13b. The 300 MHz ¹H-NMR spectrum of compound HA-2 (expanded)

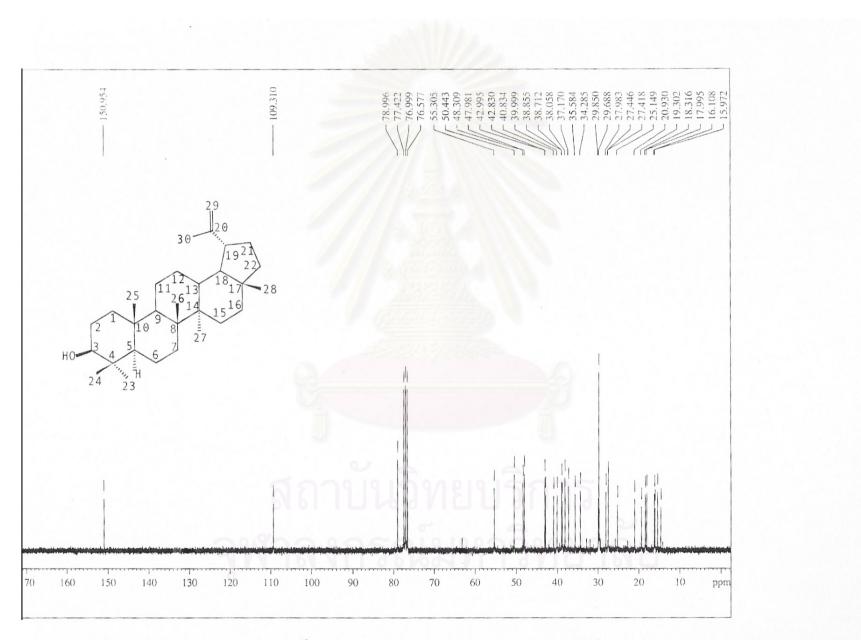


Figure 14a. The 75 MHz 13 C-NMR spectrum of compound HA-2 (in CDCl₃)

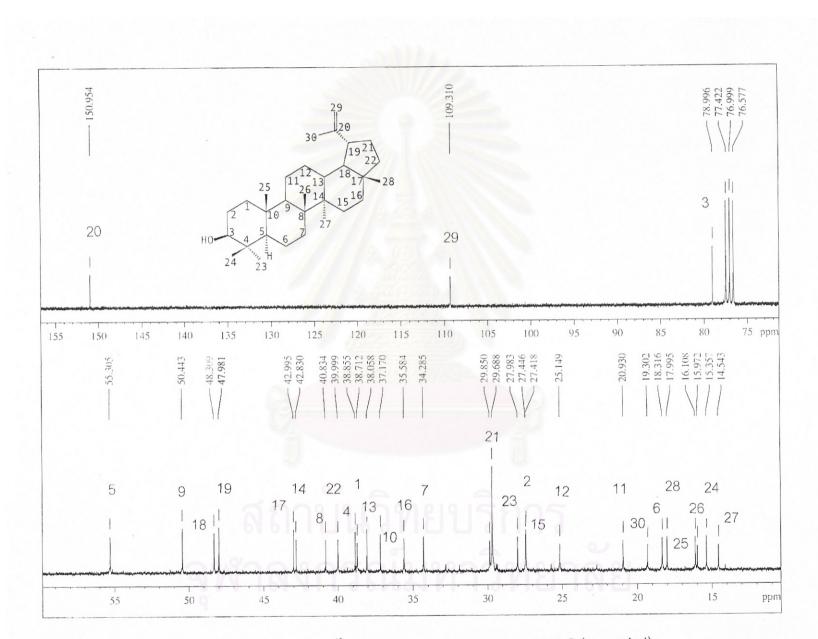


Figure 14b. The 75 MHz ¹³C-NMR spectrum of compound HA-2 (expanded)

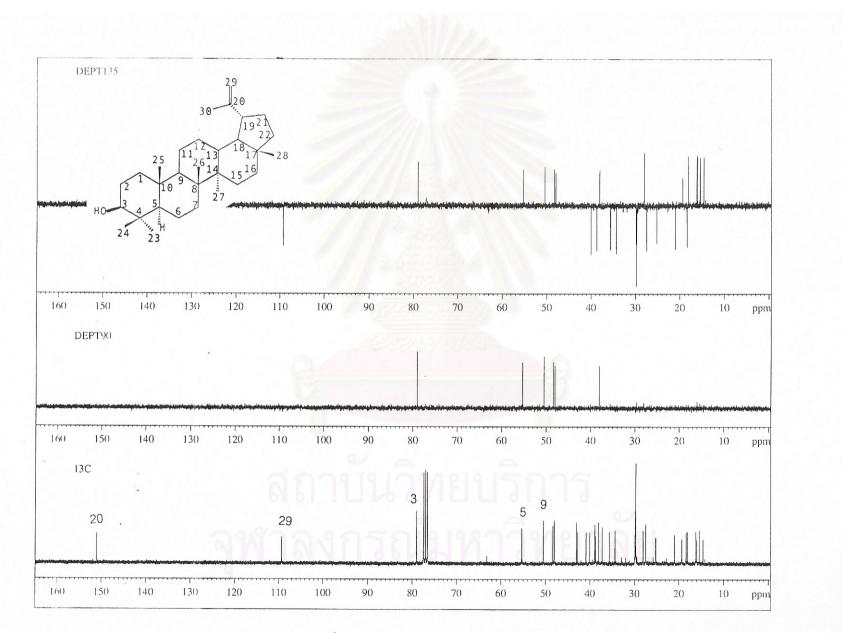
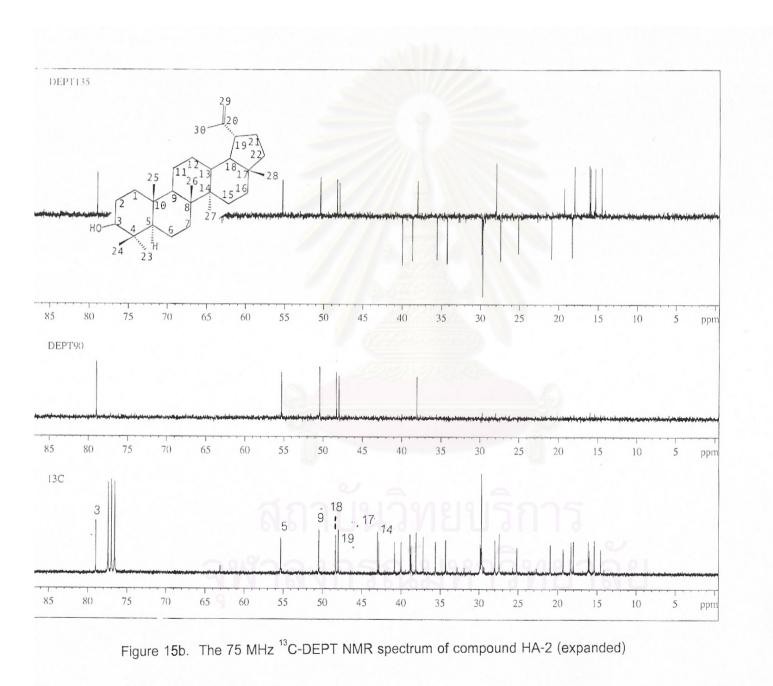
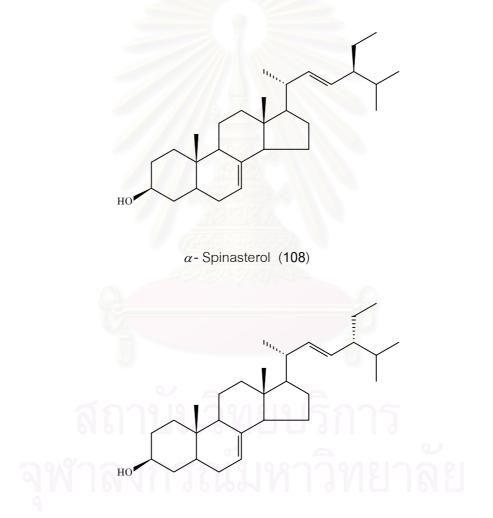
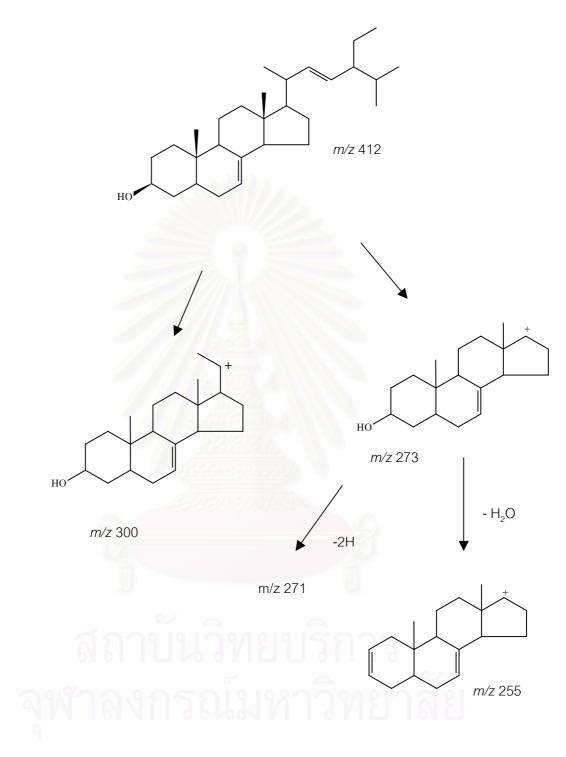



Figure 15a. The 75 MHz 13 C-DEPT NMR spectrum of compound HA-2 (in CDCl₃)


3. Structure elucidatin of HA-3

Compound HA-3 was purified by recrystallization from methanol (28.2 mg, 0.003 % yield). The compound gave a deep green color with the Libermann-Burchard test, suggesting that it is a steroid. The EIMS of HA-3 (Figure 16) showed the molecular ion (M^+) peak at m/z 412, corresponding to the molecular formula of $C_{29}H_{42}O$. Two fragment ions at m/z 273 and 300 implied the structure of a Δ^{22} sterol with a nuclear double bond (Nes *et al*, 1976; Ikram *et al.*,1987). These fragments could be explained as resulting from cleavage of the side chain at C-17 and C-20, respectively. The base peak at m/z 271 was produced by the loss of 2H from the fragment ion at m/z 273 while the peak at m/z 255 from the loss of water (Scheme 5).


The ¹H-NMR spectrum of HA-3 (Figures 18a-18c) displayed a singlet of one tertiary methyl at δ 0.53, doublets of two secondary methyls at δ 0.83 and 1.01 and overlapping signals in the range of δ 0.76 – 0.81 due to three methyls (9H), including one primary (δ 0.79; *t*; *J*=7.5 Hz), one secondary (δ 0.78; *d*; *J*=6.1 Hz) and one tertiary (δ 0.78; *s*) methyl. The signal of one hydroxymethine proton could be observed at δ 3.58 (*tt*; *J*=8.8,4.6 Hz). The signals due to three vinylic protons appearing of δ 5.01 (1H; *dd*; *J*=15.3,8.5 Hz) and 5.14 (2H; *m*), which showed intercorrelation in the COSY spectrum (Figures 22a-22c), supported the presence of the disubstituted Δ^{22} double bond and indicated that the other double bond in the molecule is tribsubstituted.

The ¹³C-NMR spectrum (Figure 19) showed signals of 29 carbon atoms, supporting the assignment of HA-3 as a steroid derivative. The DEPT and HETCOR experiments (Figures 20a-20b and 21a-21b) displayed signals for six methyl carbons at δ 12.1, 12.3, 13.0, 19.0, 21.1 and 21.4, nine methylene carbons at δ 21.5, 23.0, 25.4, 28.5, 29.6, 31.5, 37.1, 38.0 and 39.5, eleven methine carbons at δ 31.9, 40.3, 40.8, 49.4, 51.2, 55.1, 55.9, 71.1, 117.5, 129.4 and 138.2, and three quaternary carbons at δ 34.2, 43.3 and 139.6.

From the above information, HA-3 was proposed to be a C_{29} - Δ^{22} sterol with a trisubstituted double bond in the steroid nucleus. By comparing the NMR data of the compound with those of literature values, HA-3 was suggested to be either α -spinasterol (24S-ethylcholesta-7,22-dien-3 β -ol) or its 24R epimer, chondrillasterol. Comparison of ¹H-NMR and ¹³C-NMR data of HA-3 with those of α -spinasterol and chondrillasterol (lida *et al.*, 1979; Akihisa *et al.*, 1986) is shown in Tables 14 and 15, respectively.

Chondrillasterol (109)

Scheme 5. Mass fragmentation of compound HA-3

	δΗ		
Position	Compound HA-3	a-Spinasterol	Chondrillasterol
3	3.58 (<i>tt</i> , <i>J</i> =8.8,4.6 Hz)		
7	5.14 (<i>t</i> , <i>J</i> =11.9 Hz)		
18	0.53 (<i>s</i>)	0.55 (<i>s</i>)	0.54 (s)
19	0.78 (<i>s</i>)	0.81 (<i>s</i>)	0.81 (s)
21	1.01 (<i>d,J</i> =6.7 Hz)	1.03 (<i>d,J</i> =6.6 Hz)	1.03 (<i>d,J</i> =6.5 Hz)
22	5.14 (<i>dd</i> , <i>J</i> =15.2,8.7 Hz)		
23	5.01 (<i>dd</i> , <i>J</i> =15.2,8.5 Hz)		
26	0.83 (<i>d,J=</i> 6.4 Hz)	0.85 (<i>d</i> , <i>J</i> =6.5 Hz)	0.84 (<i>d,J</i> =6.5 Hz)
27	0.78 (<i>d</i> , <i>J</i> =6.1 Hz)	0.80 (<i>d</i> , <i>J</i> =7.0 Hz)	0.79 (<i>d,J</i> =7.0 Hz)
29	0.79 (<i>t,J</i> =7. <mark>5</mark> Hz)	0.81 (<i>t,J=</i> 6.5 Hz)	0.81 (<i>t,J</i> =7.2 Hz)

Table 14.	¹ H-NMR assignments of compound HA-3 (500 MHz; in CDCl ₃) and reported data of
	α -spinasterol (270 MHz; in CDCl ₃) and chondrillasterol (270 MHz; in CDCl ₃).

Table 15. ¹³C-NMR assingments of compound HA-3 (500 MHz; in $CDCI_3$) and reported data of α -spinasterol (270 MHz; in $CDCI_3$) and chondrillasterol (270 MHz; in $CDCI_3$).

Position	δC		
ลพั	Compound HA-3	a-Spinasterol	Chondrillasterol
Ч			
1	37.1	37.2	37.2
2	31.5	31.6	31.7
3	71.1	71.1	71.1

Position	δC		
-	Compound HA-3	α-Spinasterol	Chondrillasterol
4	38.0	38.1	38.1
5	40.3	40.4	40.4
6	29.6	29.7	29.7
7	117.5	117.5	117.5
8	139.6	139.6	139.6
9	49.4	49.6	49.6
10	34.2	34.3	34.3
11	21.5	21.6	21.6
12	39.5	39.6	39.6
13	43.3	43.3	43.3
14	55.1	55.2	55.2
15	23.0	23.1	23.1
16	28.5	28.5	28.4
17	55.9	56.0	56.0
18	12.1	12.1	12.1
19	13.0	13.1	13.1
20	40.8	40.8	40.8
21	21.1	21.3	19.0
22	138.2	138.2	138.1
23	129.4	129.5	129.6
24	51.2	51.3	51.3
25	31.9	32.0	32.0

Table 15.	13 C-NMR assingments of compound HA-3 (500 MHz; in CDCl ₃) and reported data
	of α -spinasterol (270 MHz; in CDCl ₃) and chondrillasterol (270 MHz; in CDCl ₃).

Position	δC		
	Compound HA-3	α-Spinasterol	Chondrillasterol
26	21.4	21.1	20.9
27	19.0	19.0	21.3
28	25.4	25.5	25.5
29	12.3	12.3	12.5

Table 15. ¹³C-NMR assingments of compound HA-3 (500 MHz; in CDCl₃) and reported data of α -spinasterol (270 MHz; in CDCl₃) and chondrillasterol (270 MHz; in CDCl₃).

The NMR data of α -spinasterol and chondrillasterol were very similar; however, significant differences in the ¹H-NMR spectra could be observed in the C-26, C-27 and C-29 methyl proton region (ca δ 0.75 – 0.90) when the spectra were measured at 270 MHz (lida *et al.*, 1979). The doublets due to the C-26 and C-27 methyl protons of α -spinasterol appeared at higher field while the triplet due to the C-29 methyl proton at lower field than the corresponding methyl signals of chondrillasterol, causing different spectral patterns which can be used as diagnostic feature in identifying the two isomers. Comparison of such spectral pattern of HA-3, measured at 300 MHz, with those of α -spinasterol and chondrillasterol (lida *et al.*, 1999), as shown in Figure 23, indicated the agreement between HA-3 and α -spinasterol.

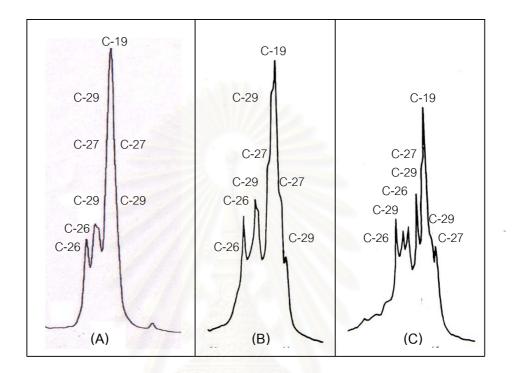
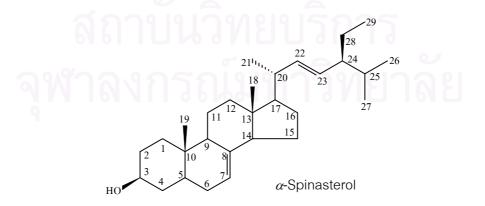
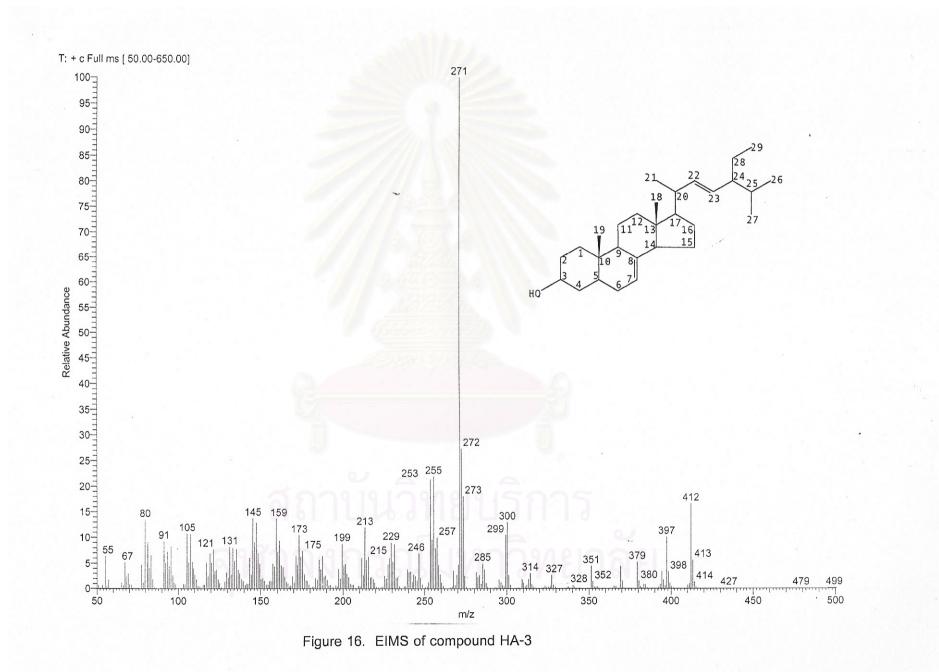
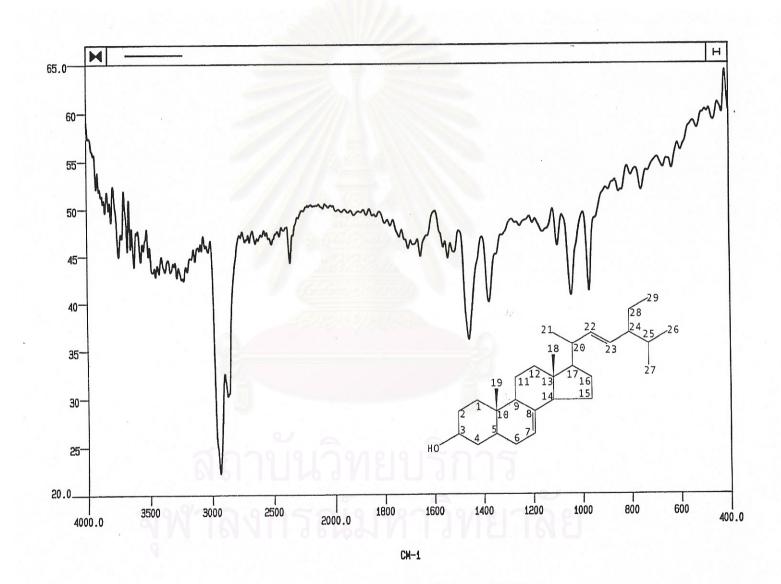



Figure 23. ¹H-NMR spectral patterns of the C-26, C-27 and C-29 methyl signals of (A) HA-3 (B) α -spinasterol and (C) chondrillasterol.


Therefore, it was concluded that HA-3 is the known Δ^{22} –24 ethyl steroid with 24 S configuration, α -spinasterol.



α-Spinasterol is widely found in higher plants (lida *et al*, 1979), including *Saponaria* officinalis (Henry and Chantalat-Dublanche, 1985), *Lagenaria leucantha* var. *gourda*, *Citrullus battich* (ltoh *et al.*, 1981), *Phytolacca americana* (Woo, 1974). This compound has never been previously reported as a constituent of plants in the family Sapindaceae.

α-Spinasterol has been reported as possessing anti-inflammatory (Frotan *et al*, 1983; Zhou *et al.*, 1985; El-Sawu, Hashem, and Biuomy, 2003), antipyretic (Ikram *et al.*, 1987) and antigenotoxic (Irene *et al.*, 1996) activities. It induced necrosis of primary roots and resulted the death of the plant and also inhibited growth of *Mucor racemosus*, and it showed weak cytotoxicity to two animal cancer cell lines (L 1210, K 562) (Mi, Hwan, and Sam, 1996).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

, Figure 17. IR spectrum of compound HA-3

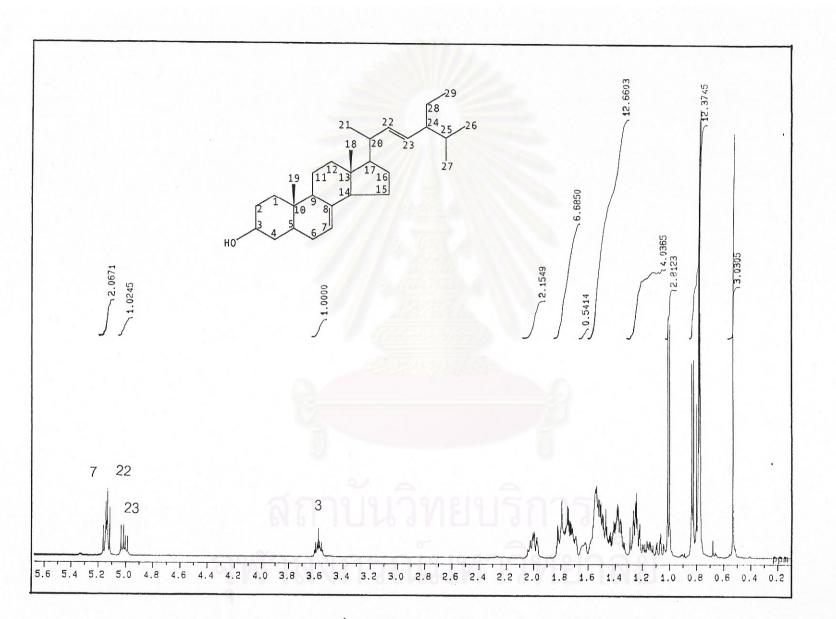


Figure 18a. The 500 MHz ¹H-NMR spectrum of compound HA-3 (in CDCl₃)

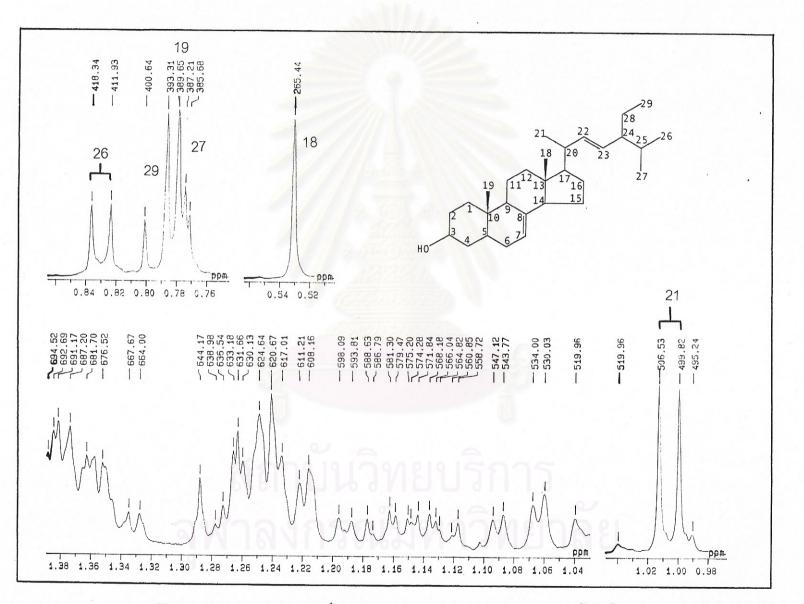
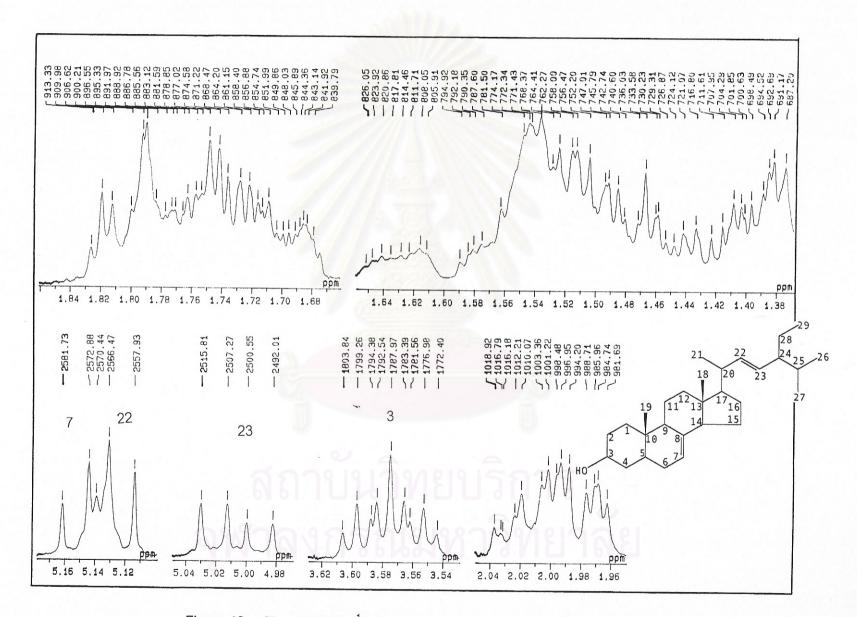



Figure 18b. The 500 MHz ¹H-NMR spectrum of compound HA-3 (expanded)

Figure 18c. The 500 MHz ¹H-NMR spectrum of compound HA-3 (expanded)

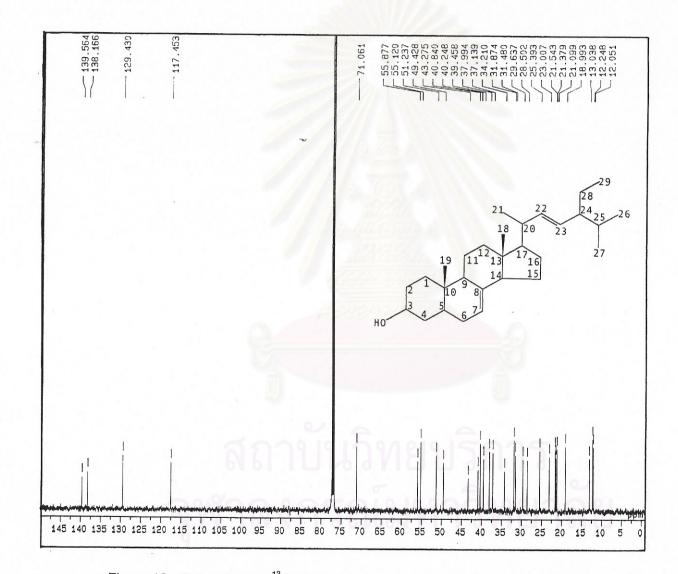


Figure 19. The 125 MHz 13 C-NMR spectrum of compound HA-3 (in CDCl₃)

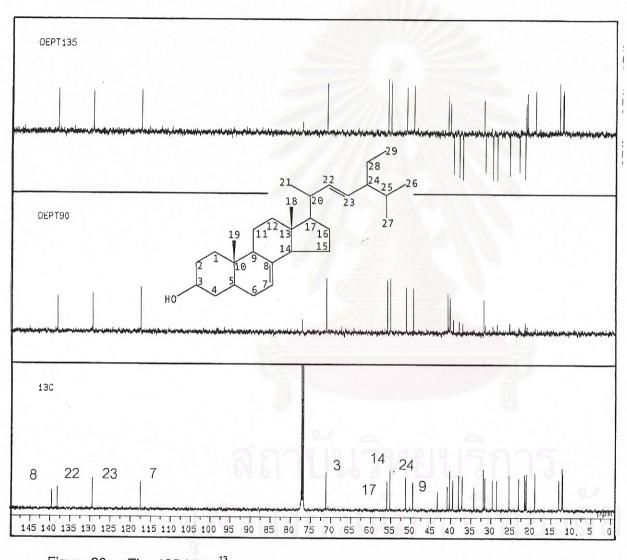
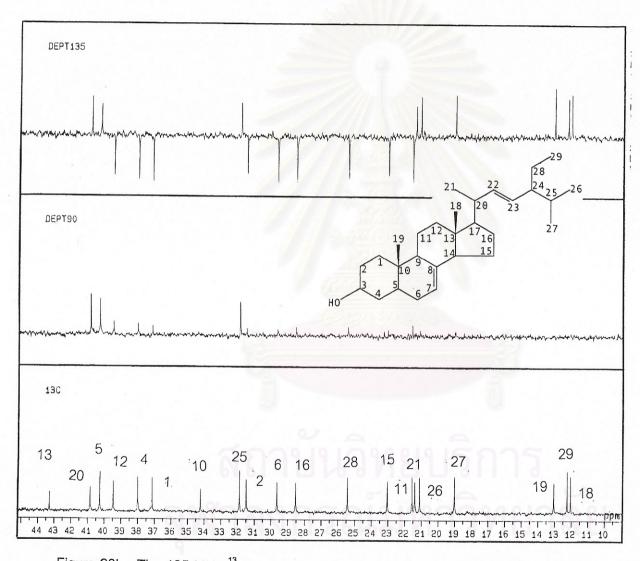
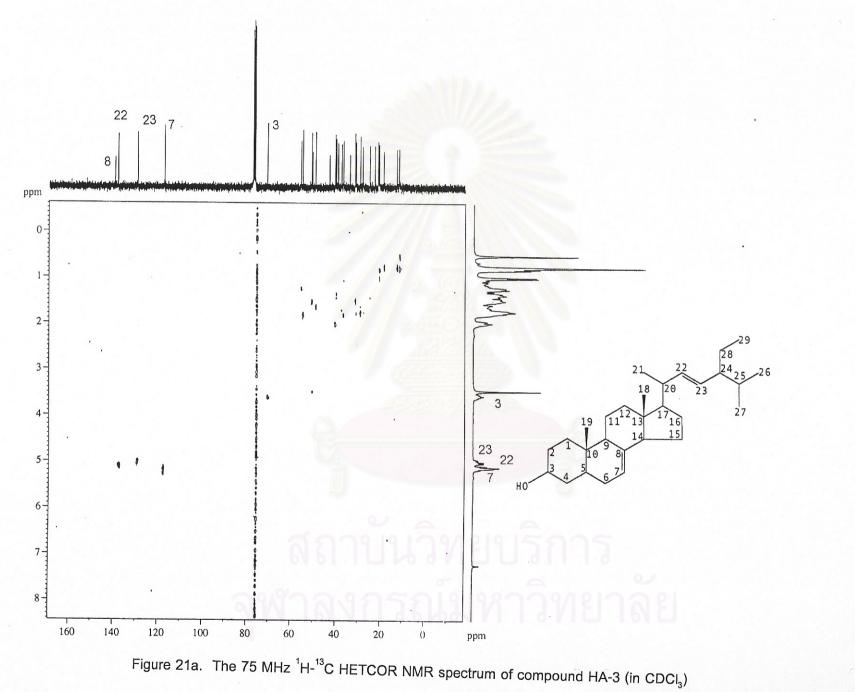
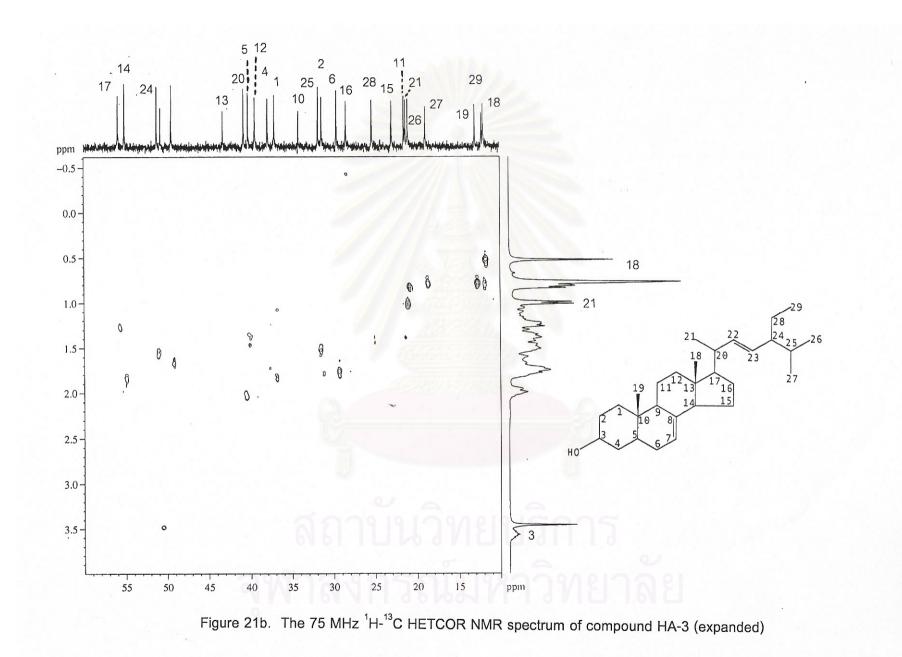
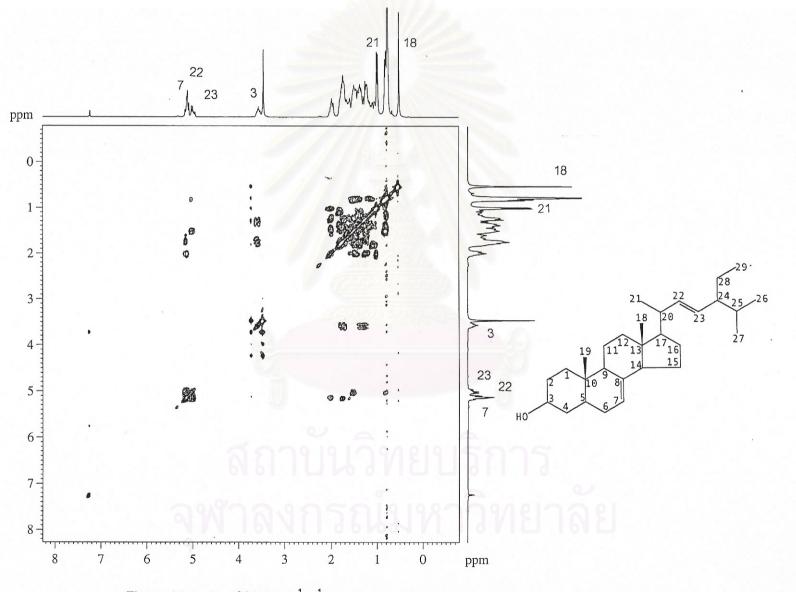
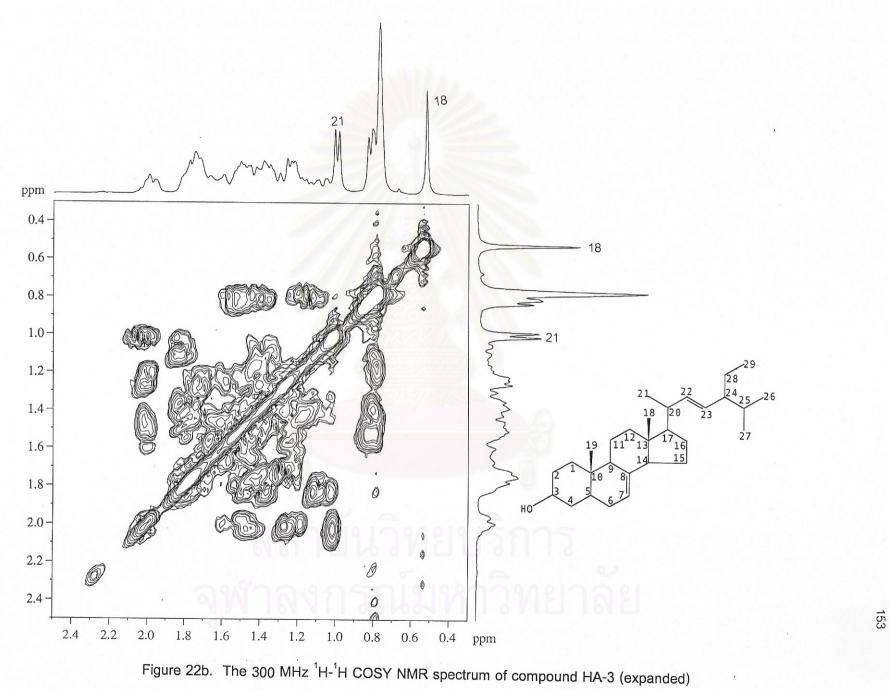
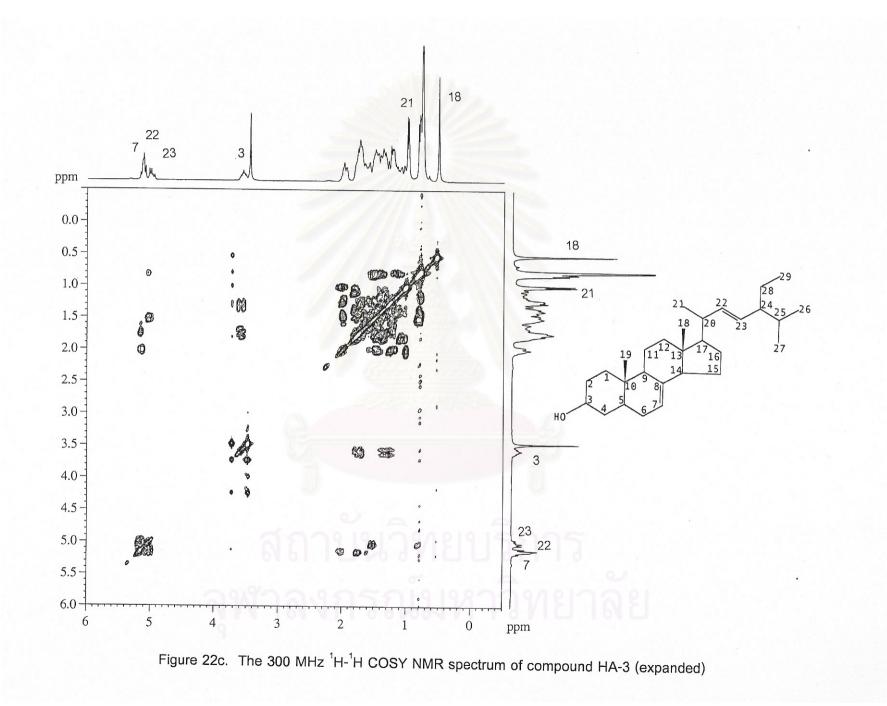


Figure 20a. The 125 MHz ¹³C-DEPT NMR spectrum of compound HA-3 (in CDCl₃)


Figure 20b. The 125 MHz ¹³C-DEPT NMR spectrum of compound HA-3 (expanded)

4. Structure elucidation of HA-4

Compound HA-4 was recrystallized from methanol as colorless crystals (380.6 mg, 0.035% yield). The IR spectrum of HA-4 (Figure 25) exhibited OH band at 3350 cm⁻¹. Its ¹H-NMR spectrum (Figures 26a–26b) displayed a three-proton singlet for a methoxy group at δ 3.30, a double doublet at δ 3.09 (*J*=9.5,3.1 Hz), a pair of quartet-like signals at δ 3.67 (*J*=3.7, 3.4, 3.4 Hz) and 3.85 (*J*=3.7, 3.4, 3.1 Hz), and a group of three one-proton signals at δ 3.25 – 3.45. Five doublets for hydroxyl groups were also observed at δ 4.26 (*J*=5.8 Hz), 4.39 (*J*= 4.3 Hz), 4.42 (*J*=4.6 Hz), 4.60 (*J*=3.7 Hz) and 4.62 (*J*=3.7 Hz). The ¹³C-NMR spectrum (Figure 27) showed seven carbon signals, indicated by the DEPT (Figure 28) and HETCOR (Figures 29a-29b) experiments as those of six methine carbons at δ 68.2, 70.6, 72.2, 72.4, 73.5, 81.2 and one methyl carbon at δ 57.2. All this information suggested the structure of a pentahydroxylated monomethoxylated cyclohexane for HA-4. The molecular formula C₇H₁₄O₆ of the suggested structure was also supported by its EIMS (Figure 24) which showed [M+1]⁺ at *m*/z 195.

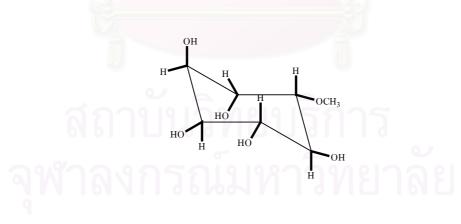
Assignments of all the proton signals were achieved by the analysis of the 1 H- 1 H COSY spectrum (Figures 30a-30c). The double doublet at δ 3.09, which was due to the methoxyl substituted methine proton as indicated by its correlation with the carbon resonance at δ 81.2 in the HETCOR spectrum, was used as the starting point. This proton signal displayed cross peaks with two signals at δ 3.85 and 3.36. The former at δ 3.85 was correlated to a signal at δ 3.67 which was moreover correlated to a signal at δ 3.42. The latter at δ 3.36 exhibited cross peak with a signal a δ 3.28 which was in turn correlated to the signal at δ 3.42. All these cross peak correlations led to the assignments of all the ring protons. The signals for hydroxyl groups could be readily assigned through their correlations with the ring proton signals.

The orientation of hydroxyl groups and a methoxyl group on the cyclohexane ring was determined on the basis of coupling constant analysis, and the result led to the

establishment of 2-*O*-methyl-chiro-inositol (quebrachitol) as the structure for HA-4. ¹H and ¹³C NMR data (in DMSO-d₆) of HA-4 together with the reported data (in D₂O) of L-quebrachitol (Agrawal and Singh, 1994) are shown in Tables 16 and 17, respectively.

Position	δΗ		
	Compound HA-4	L-quebrachitol	
1	3.85 (<i>ddd, J</i> =3.7, 3.4, 3.1 Hz)	4.25 (<i>t</i> , <i>J</i> =3.2 Hz)	
2	3.09 (<i>dd, J</i> =9.5,3.1 Hz)	3.39 (<i>dd</i> , <i>J</i> =9.5, 3.2 Hz)	
3	3.36 (<i>ddd, J</i> =9.5, 9.2, 4.6 Hz)	3.62 (<i>t</i> , <i>J</i> =9.5 Hz)	
4	3.28 (<i>ddd, J</i> =9.5, 9.2, 4.3 Hz)	3.60 (<i>t</i> , <i>J</i> =9.5 Hz)	
5	3.42 (<i>ddd</i> , <i>J</i> =9.5, 5.8, 3.4 Hz)	3.74 (<i>dd</i> , <i>J</i> =9.5, 3.2 Hz)	
6	3.67 (<i>ddd</i> , <i>J</i> =3.7, 3.4, 3.4 Hz)	4.05 (<i>t</i> , <i>J</i> =3.2, 3.0 Hz)	
OCH ₃	3.30 (s)	3.45 (s)	
1-OH	4.60 (<i>d</i> , <i>J</i> =3.7 Hz)		
3-OH	4.42 (<i>d</i> , <i>J</i> =4.6 Hz)	-	
4-OH	4.39 (<i>d, J</i> =4.3 Hz)		
5-OH	4.26 (<i>d</i> , <i>J</i> =5.8 Hz)	-	
6-OH	4.62 (<i>d, J</i> =3.7 Hz)	เปริการ	

Table 16. ¹H-NMR data of compound HA-4 (in DMSO- d_6) and L-quebrachitol (in D_2O).


จุฬาลงกรณ์มหาวิทยาลัย

Position	δC		
	Compound HA-4	L-quebrachitol	
1	68.2	67.8	
2	81.2	80.7	
3	72.4	71.9	
4	73.5	73.0	
5	70.6	70.1	
6	72.2	71.8	
OCH ₃	57.2	56.9	

Table 17. ¹³C-NMR data of compound HA-4 (in DMSO-d₆) and L-quebrachitol (in D_2O).

Therefore, HA-4 was identified as quebrachitol, the structure of which is shown

below.

Quebrachitol

Quebrachitol is a natural inositol methyl ether which can be found in a number of plants eg. *Aspidosperma quebracho* of the Apocynaceae (Schilling, Dittrich, and Kandler, 1972), *Hevea braziliensis* of the Euphorbiaceae (Schmatz *et al.*, 1988), *Artemisia nilagirica* of the Compositae (Agrawal and Singh, 1994) and *Sapindus rarak* (Chung *et al.*, 1997) as well as *Harpullia pendula* (Cherry *et al.*, 1977) of the Sapindaceae. It was also detected in the protozoa *Eimeria tenella* (Schmatz *et al.*, 1988). This compound was found to exhibit hypoglycemic effect in hyperglycemic situations and therefore may be useful in the treatment of diabetes mellitus type 2 (Musalmah *et al.*, 2001).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

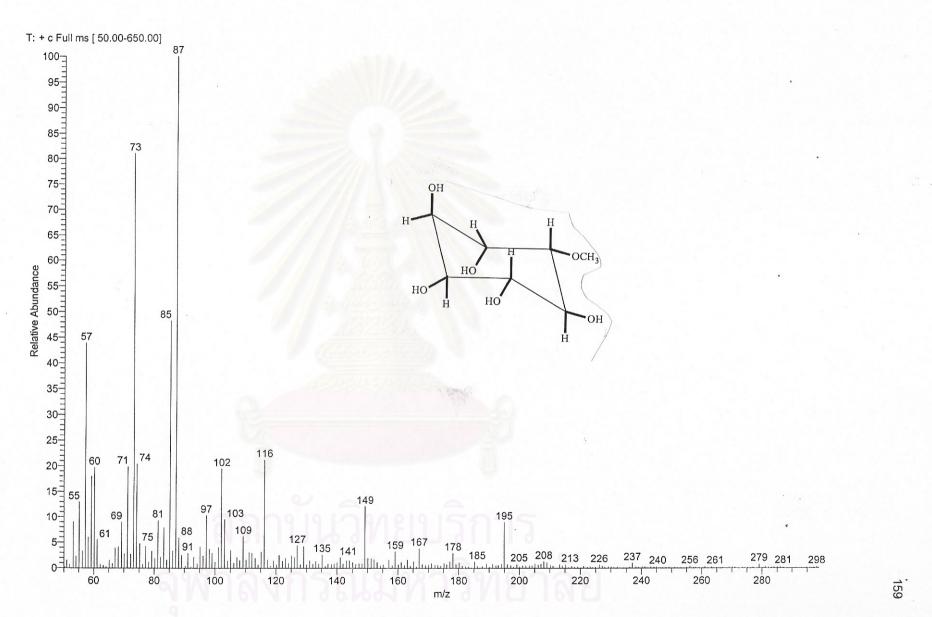


Figure 24. EIMS of compound HA-4

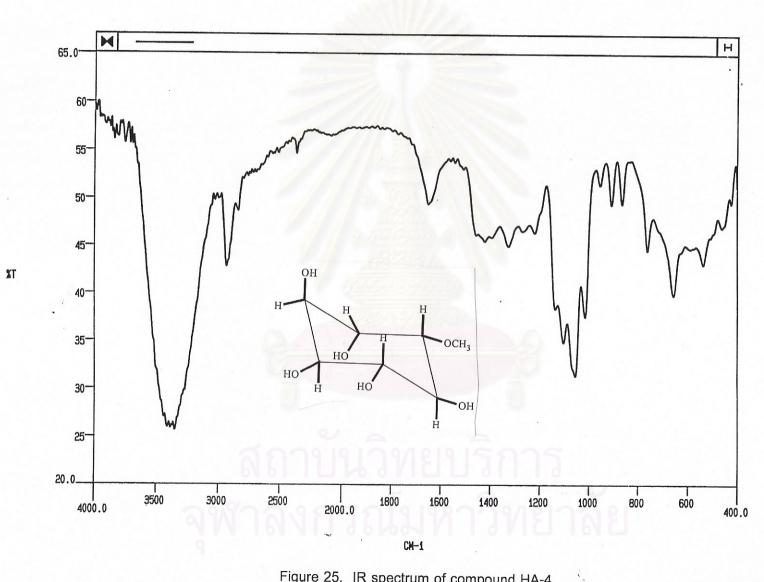
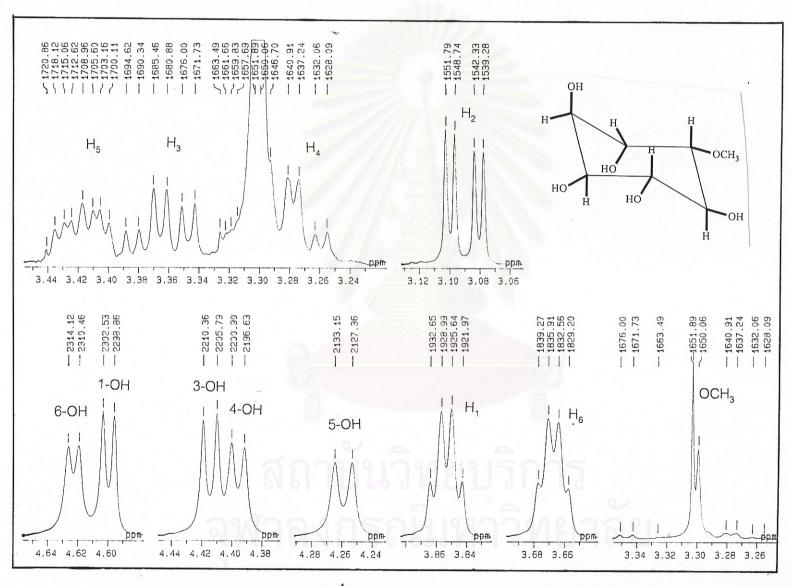
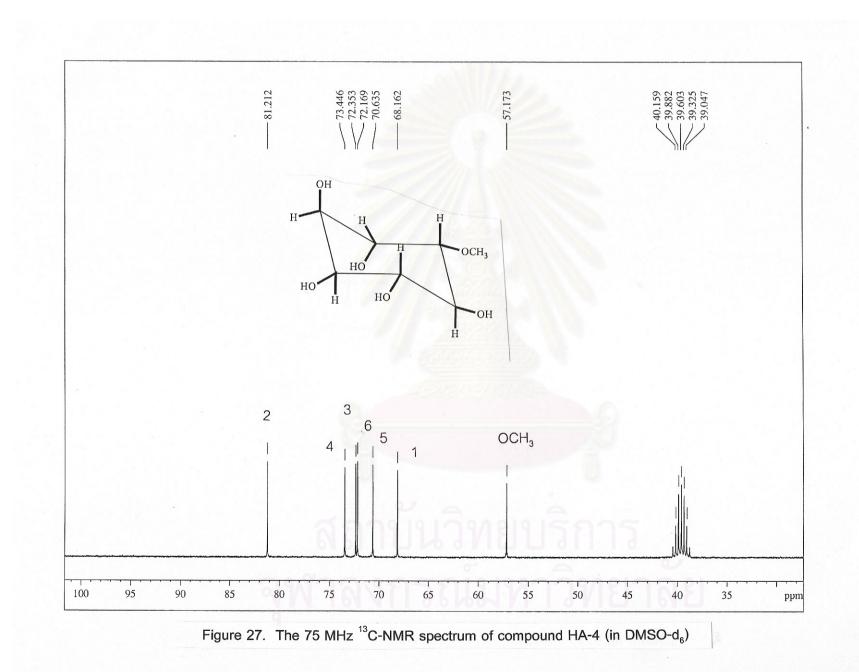
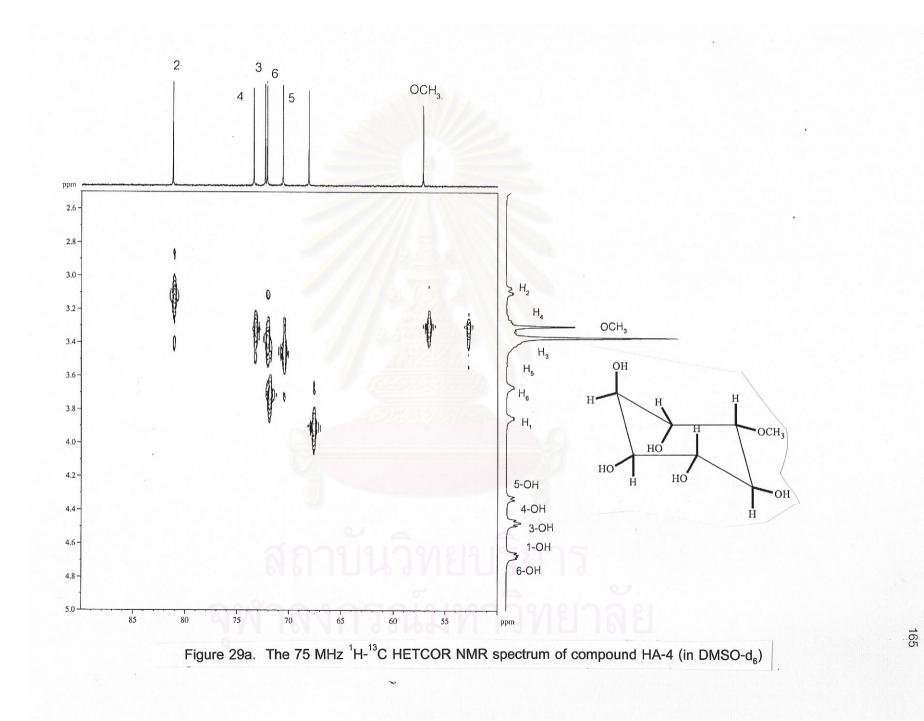
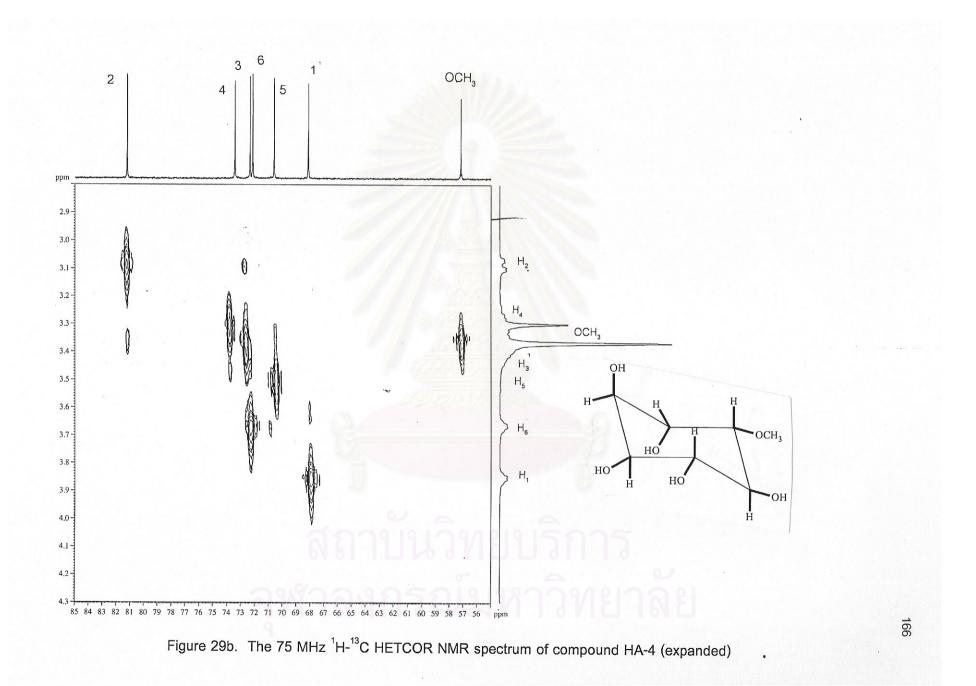
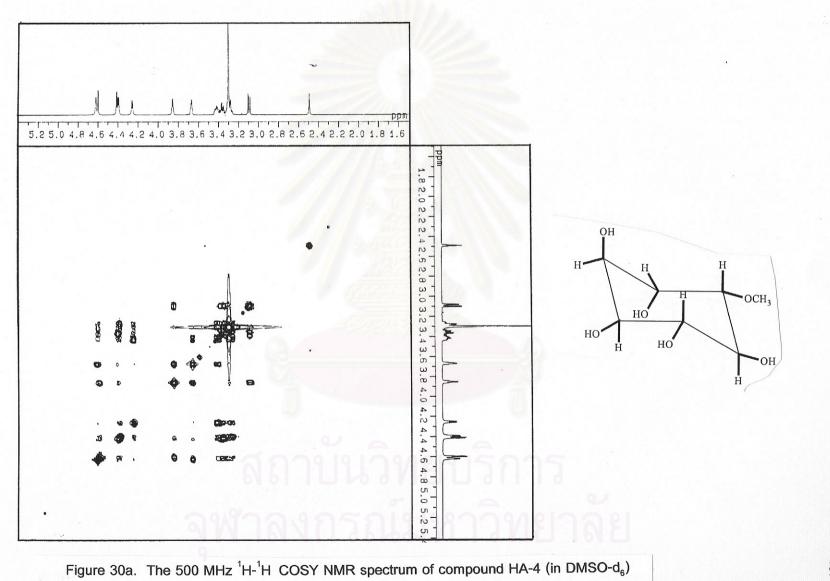



Figure 25. IR spectrum of compound HA-4


Figure 26b. The 500 MHz ¹H-NMR spectrum of compound HA-4 (expanded)

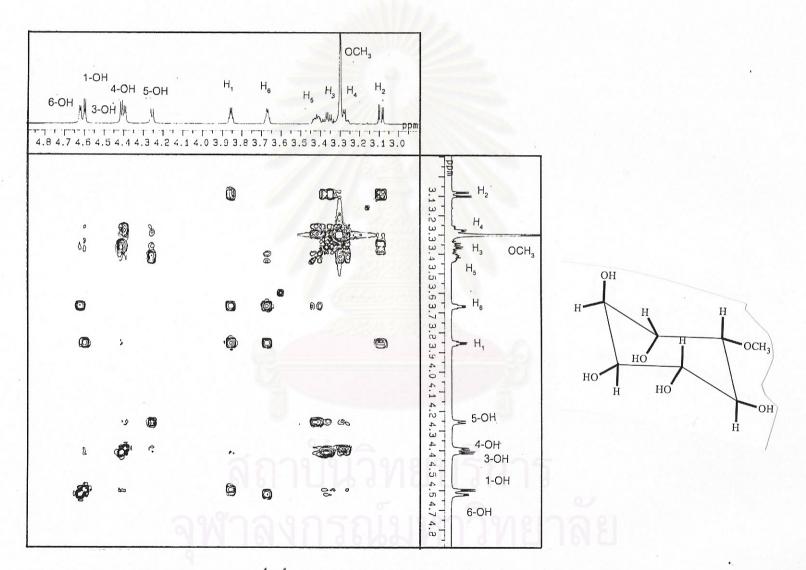


Figure 30b. The 500 MHz ¹H-¹H COSY NMR spectrum of compound HA-4 (expanded)

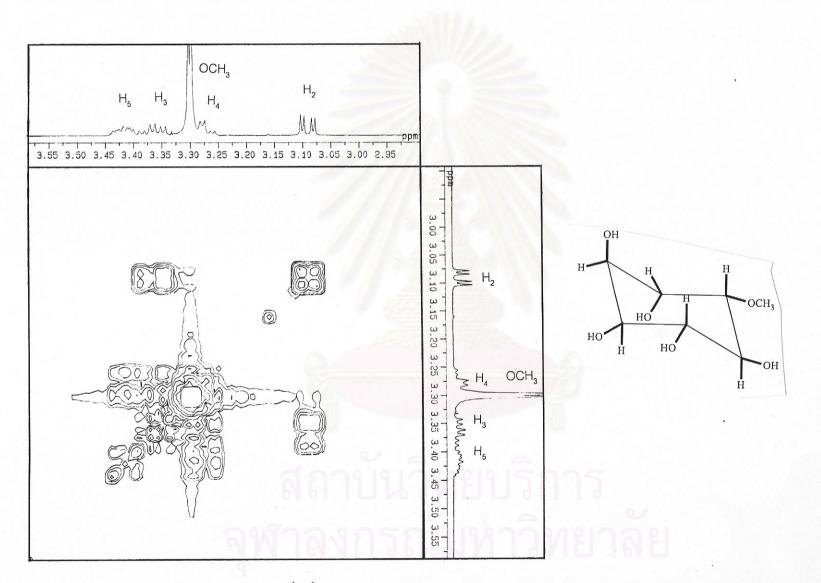
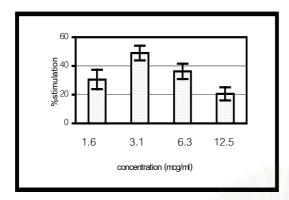
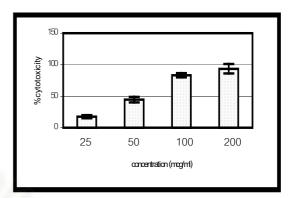


Figure 30c. The 500 MHz ¹H-¹H COSY NMR spectrum of compound HA-4 (expanded)


Determination on In Vitro Stimulation of Lymphocyte Proliferation


The results obtained from lymphocyte proliferation assay are shown in Tables 22-26 and Figures 34-36. % Stimulation and % Cytotoxicity reported in the tables are expressed as the mean \pm S.E.M. . Statistical differences were assessed by the student's ttest with *P* < 0.05 considered significant. The values with *P* > 0.05 are marked with the symbol †.

The crude ethanolic extract of the leaves of *Harpullia arborea* exhibited both stimulatory and cytotoxic (inhibitory) effects on lymphocyte proliferation (Table 18, Figures 31a-31b). The extract enhanced the proliferation at concentrations up to 12.5 mcg/ml; at higher concentrations, the proliferation was inhibited. Both the hexane and chloroform extracts showed cytotoxic effect (Table 19, Figure 32) while the methanol extract and quebrachitol (compound HA-4) showed stimulatory effect (Table 20, Figure 33) at all tested concentrations. The minimal concentration used in testing the hexane and chloroform extracts was 12.5 mcg/ml, since in this experiment if a sample did not show the stimulatory effect at this concentration, it was considered as not interesting for further tests at lower concentrations.

Concentration	% Stimulation	% Cytotoxicity	
(mcg/ml)			
1.6	30.57 ± 6.72	แบรการ	
3.1	49.01 ± 5.12		
6.3	36.15±5.33	หาวุหยา	
12.5	20.58 ± 4.49	-	
25	-	17.60±2.47 †	
50	-	44.44 ± 4.41	
100	-	83.31 ± 3.54	
200	-	93.53 ± 7.50	

Table 18. Effects of crude ethanolic extract on lymphocyte proliferation

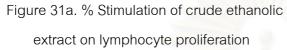
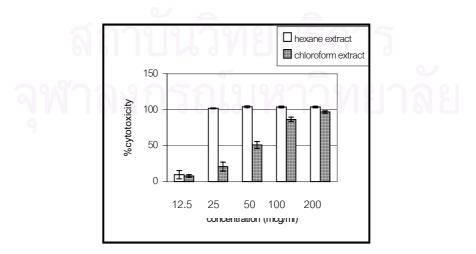
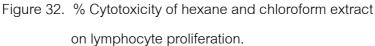




Figure 31b. % Cytotoxicity of crude ethanolic extract on lymphocyte proliferation

Table19. Effects of hexane and chloroform extracts on lymphocyte proliferation.

Concentration	% Cytoto	oxicity
(mcg/ml)	hexane extract	chloroform extract
12.5	9.53 ± 5.67	7.83 ± 1.68
25	101.88 ± 0.69	20.79 ± 6.25
50	104.10 ± 1.26	50.99 ± 4.75
100	103.78 ± 1.18	86.48 ± 3.03
200	103.74 ± 1.18	96.83 ± 1.66

Concentration	% Stim	nulation
(mcg/ml)	Methanol extract	Quebrachitol
1.6	17.10 ± 0.33	17.19 ± 5.50
3.1	18.80 ± 1.83	13.29 ± 1.06
6.3	25.97 ± 3.45	15.63 ± 2.77
12.5	25.34 ± 1.63	18.11 ± 1.77
25	40.16 ± 3.85	36.44 ± 5.35
50	43.41 ± 3.15	45.68 ± 1.48
100	44.66 ± 4.25	43.10 ± 6.85
200	9.83 ± 5.77 +	37.49 ± 4.64

Table 20. Effects of methanol extract and quebrachitol (compound HA-4) on lymphocyte proliferation.

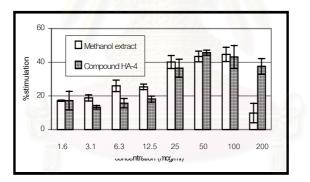


Figure 33. % Stimulation of methanol extract and the quebrachitol on lymphocyte proliferation.

The stimulatory effects of the methanol extract and quebrachitol were shown to be dose dependent. The methanol extract exhibited remarkable effects at the concentrations of 25-100 mcg/ml and, in case of HA-4, 25-200 mcg/ml. The effects of these two samples were considered as interesting, compared with those of concanavalin A (Con-A) and lipopolysaccharide (LPS) which gave 52.93 ± 3.71 % stimulation at the concentration of 10

mcg/ml and 58.61 \pm 12.87 % stimulation at the concentration of 50 mcg/ml, respectively (Table 21).

Table 21. Effects of concanavalin A (Con-A) and lipopolysaccharide (LPS)on lymphocyte proliferation.

Compounds	Concentration	% Stimulation
	(mcg/ml)	
con-A	10	52.93 ± 3.71
		-
LPS	50	58.61 ± 12.87

In determining the cytotoxic effect on U-937 monocytic cell line, the CCs_{50} of the tested substances were evaluated as shown in Table 22. The CC_{50} due to the effect on splenic lymphocytes were also given in the same Table. For the methanol extract and HA-4, the results demonstrated that both the extract and pure compound enhanced the lymphocyte proliferation at non-cytotoxic concentrations.

Table 22. CCs_{50} of the extracts of *Harpullia arborea* and quebrachitol (compound HA-4)

Tested substance	CCs ₅₀ (mcg/ml)	
สอว	U-937	Splenic lymphocytes
Crude ethanolic extract	51.48	92.06
Hexane extract	62.58	< 12.5
Chloroform extract	> 200	50.93
Methanol extract	> 200	> 200
L-quebrachitol	> 100	> 200

CHAPTER V

CONCLUSION

Investigation of the leaves of *Harpullia arborea* led to the isolation of four compounds: two triterpenoids, one of which is a new 24-norhopene type triterpenoid identified as 3β -eicosanoyl- 6β -hydroxy- 21α H-24-norhopa-4(23),22(29)-diene and the other is lupeol; a sterol, α - spinasterol (24S-ethylcholesta-7,22-dien- 3β -ol); and an inositol derivative, quebrachitol. The chemical structures were identified and elucidated by spectroscopic techniques. The methanol extract and quebrachitol were demonstrated *in vitro* to have Stimulatory effect on lymphocyte proliferation. Further study on the chemical constituents from different parts of this plant should be performed.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

REFERENCES

- กรมป่าไม้, สำนักวิชาการป่าไม้, ส่วนพฤกษศาสตร์ป่าไม้, <u>รายชื่อพรรณไม้ในประเทศไทย (ชื่อพฤกษ</u> <u>ศาสตร์ - ชื่อพื้นเมือง)</u>. กรุงเทพมหานคร, 2544.
- Adesanya, S. A.; Martin, M. T.; Hill, B.; Dumontet, V.; Tri, M. V.; Sevenet, T.; and Pais, M. Rubiginoside, a farnesyl glycoside from *Lepisanthes rubiginosa*. <u>Phytochemistry</u> 51 (1999): 1039-1041.
- Agrawal, P. K.; and Singh, A. K. Structure determination of an inositol from *Artemisia nilagirica* by high-field NMR spectroscopic methods. <u>Indian. J. Chem.</u> 33B (1994): 803-805.
- Ahmad, V. U.; Bano, S.; and Mohammad, F. V. Nepehinol a new triterpene from *Nepeta hindostana*. <u>Planta Med.</u> (1985): 521 523.
- Ahmad, V. U.; and Rahman, A. U. <u>Handbook of natural products data, Volume 2.</u> <u>Pentacyclic Triterpenoids</u>. Netherlands: Elsevier Science, 1994.
- Akihisa, T.; Thakur, S.; Rosenstein, F. U.; and Matsumoto, T. Sterols of Cucurbitaceae : The configurations at C-24 of 24-alkyl- Δ^{-5} , Δ^{-7} and Δ^{-8} sterols. Lipids 21 (1986): 39 47.
- Akihisa, T.; Yasukawa, K.; Oinuma, H.; Kasahara, Y.; Yamanouchi, S.; Takido, M.; Kumaki,
 K.; and Tamura, T. Triterpene alcohols from the flowers of Compositae and their anti-inflammatory effects. <u>Phytochemistry</u> 43 (1996): 1255-1260.
- Alves, T. M. D.; Nagem, T. J.; de Carvalho, L. H.; Krettli, A. U.; and Zani, C. L. Antiplsmodial triterpene from *Vernonia brasiliana*. <u>Planta Med.</u> 63 (1997): 554-555.
- Asmahan, El. I.; Jacques, D.; and Clement, D. Effect of a series of saponins extracted from tropical African plants on the release of luteinizing hormone by hypophyseal cells in culture. <u>Bull. Soc. R. Sci. Liege.</u> 58 (1989): 53-56. Through <u>Chemi. Abstr.</u> 111 (1989): 187270p.
- Backer, C. C.; and Van der brink Jr, R. C. B. <u>Flora of Java</u>. (Vol.1). Netherlands: N. V. F. Noord Hoff, 1965.

- Bharathimatha, C.; Doraiswamy, S.; and Velazhahan, R. Inhibition of fungal plant pathogens by seed proteins of *Harpullia cupanioides* (Roxb.). <u>Acta. Phytopathol. Hun.</u> 37 (2002): 75-82.
- Burkill, I. H. <u>A dictionary of the economic products of the Malay Peninsula</u>, Vol I, p. 1127. London:Crown Agents, 1935.
- Chavez, J. P.; David, J. M.; Yang, S. W.; and Cordell, G. A. 24-Norhopene derivatives from *Diatenopteryx sorbifolia*. J. Nat. Prod. 60 (1997): 909 – 911.
- Chen, Y.; Takeda, T.; and Ogihara, Y. Studies on the constituents of *Xanthoceras sorbifolia* Bunge. III. Minor prosapodenins from the fruits of *Xanthoceras sorbifolia* Bunge.
 <u>Chem. Pharm. Bull</u>. 33 (1985): 127-134.
- Chen, Y.; Takeda, T.; Ogihara, Y.; and litaka, Y. Studies on the constituents of *Xanthoceras* sorbifolia Bunge. II. Major sapogenol and prosapogenin from the fruits of *Xanthoceras sorbifolia* Bunge. <u>Chem. Pharm. Bull</u>. 32 (1984): 3378-3383.
- Cherry, R. F.; Khong, P. W.; and Lewis, K. G. Chemical constituents of *Harpullia pendula*.
 II. Further constituents of the bark and leaves. <u>Aust. J. Chem</u>. 30 (1977): 1397-1400.
- Chopra, R. N.; Badhwar, R. L.; and Ghosh, S. *Harpullia*. In, <u>Poisonous plant of India</u>, p. 263. New delhi: National Printing, 1965.
- Chung, M. S.; Kim, N. C.; Long, L.; Shmon, L.; Ahmad, W. Y.; Sagrero, N. L.; Kardono, L. B.
 S.; Kennelly, E. J.; Pezzuto, J. M.; Soejarto, D. D.; and Kinghorn, A. D.
 Dereplication of saccharide and polyol constituents of candidate sweet-tasting plants : Isolation of the sesquiterpene glycoside mukurozioside IIb as a sweet principle of *Sapindus rarak*. Phytochem. Anal. 8 (1997): 49-54.
- Cuellar, M. J.; Giner, R. M.; Recio, M. C.; Just, M. J.; Manez, S.; Cerda, M.; Hostettman, K.; and Rios, J. L. Zanhasaponins A and B, antiphospholipase A₂ saponins from an antiinflammatory extract of *Zanha africana* root bark. <u>J. Nat. Prod</u>. 60 (1997a): 1158-1160.

- Cuellar, M. J.; Giner, R. M.; Recio, M. C.; Just, M. J.; Manez, S.; and Rios, J. L. Three new oleanane saponins from *Zanha africana* root bark. <u>J. Nat. Prod</u>. 60 (1997b): 191-194.
- Dan, S.; and Dan, S. S. Phytochemical study of Adansonia digitata, Coccoloba excoriata,
 Psychotria adenophylla and Schleichera oleosa. <u>Fitoterapia</u> 57 (1986): 445-446.
 Through <u>Chemi. Abst.</u> 107 (1987): 172422h.
- Dimbi, M. Z.; Warin, R.; Delaude, C.; Huls, R.; and Mpuza, K. Triterpenoids of Harpullia cupanioides. <u>Bull. Soc. Chim. Belg</u>. 92 (1983): 473 484. Through <u>Chemi.</u> <u>Abstr.</u> 99 (1983): 155180b.
- Dizes, C.; Gerald, F.; Levaud, C.; Elias, R.; Faure, R.; Massiot, F.; and Balansard, G. Harpuloside A triterpenoid saponin from *Harpullia ramiflora*. <u>Phytochemistry</u> 48 (1998): 1229 – 1232.
- El-Sawu, S. A.; Hashem, F. A.; and Biuomy, A. R. Investigation of lipid and volatile oil contents from the aerial parts of *Acacia saligna* Wendl and its anti-inflammatory activity. <u>Bulletin of the Nation Research Centre (Egypt)</u> 28 (2003): 21-33.
- El Sayed, N. H.; El Ansari, M. A.; Sahlaby, A. M.; and Mabry, Tom J. Phenolics and flavonoids of the pericarp of *Harpullia pendula*. <u>Rev. Latinoam. Quim</u>. 19 (1988): 66. Through <u>Chemi. Abstr.</u> 110 (1989): 111748j.
- Ekabo, O. A.; and Farnsworth, N. R. Antifungal and molluscicidal saponins from *Serjania* salzmanniana. J. Nat. Prod. 59 (1996): 431-435.
- Encarnacion, R.; Kenne, L.; Samuelsson, G.; and Sandberg, F. Structural studies on some saponins from *Lecaniodiscus dupanioides*. <u>Phytochemistry</u> 20 (1981): 1939-1942.
- Fernandez, M. A.; De Ias, H. B.; Garcia, M. D.; Saenz, M. T.; and Villar, A. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. <u>J. Pharm. Pharmacol.</u> 53 (2001): 1533-1539.
- Frotan, M. H.; Acharya, S. B.; Frotan, R.; Pathak, N. K. R.; and Biswas, M. Pharmacological investigations on α-spinasterol isolated from *Symplocos spicata*. Indian J. <u>Pharmacol.</u> 15 (1983): 197-201.

- Gardner, S.; Sidisunthorn, P.; and Anusamsunthorn, V. <u>A field guide to forest trees of</u> <u>northern Thailand</u>. Bangkok: Kobfai Publishing, 2000.
- Gedeon, J.; and Kincl, F. A. Saponins and sapogenins II. <u>Arch. Pharm</u>. 289 (1956): 162 165. Through <u>Chemi. Abstr.</u> 51 (1957): 382e.
- Geetha,T.; and Varalakshmi, P. Anti-inflammatory activity of lupeol and lupeol linoleate in adjuvant-induced arthritis. <u>Fitoterapia</u> 69 (1998): 13-19.
- Gunstone, F. D.; Pollard, M. R.; and Scrimgeour, C. M. Fatty acid. Part 48. ¹³C Nuclear magnetic resonance studies of acetylenic fatty acids. <u>Chem. Phys. Lipids.</u> 17 (1976): 1 13.
- Gupta, D. R.; and Ahmed, B. Emarginatosides B and C: Two new saponins from *Sapindus emarginatus* fruits. Indian J. Chem., Sect. B 29 (1990): 268-270.
- Han, S. M.; Bae, K. H.; and Choi, K. S. Biological activities of α-spinasterol isolated from root of *Phytolacca americana* L. <u>Nongop Kwahak Yongu (Chunganam Taehakkyo)</u> 23 (1996): 177-181.
- Hasmeda, M.; Kweifir-Okai, G.; Macrides, T.; and Polya, G. M. Selective Inhibition of eukaryote protein kinases by anti-inflammatory triterpenoids. <u>Planta Med.</u> 65 (1999): 14-18.
- Henry, M.; and Chantalat-Dublanche, I. Isolation of spinasterol and its glucoside from cell suspension cultures of *Saponaria officinalis*: ¹³C-NMR spectral data and batch culture production. <u>Planta Med.</u> 51 (1985): 322-325.
- liDA, T.; Jeong, T. M.; Tamura, T.; and Matsumoto, T. Identification of Chondrillasterol in two Cucurbitaceae seed oils by proton nuclear magnetic resonance spectroscopy. <u>Lipids</u> 15 (1979): 66 – 73.
- Ikram, M.; Shaifi, N.; Mir, I.; Do, M. N.; Nguyen, P.; and Le quesne, P. W. 24ξ-Ethylcholesta-7,22-dien-3β-ol : A possibly antipyrotic constituent of *Artemisia absinthium*. <u>Planta</u> <u>Med.</u> 53 (1987): 389.
- Ito, S.; Ogino, T.; Sugiyama, H.; and Kodama, M. Structures of A₁-barrigenol and R₁barrigenol. <u>Tetrahedron Lett.</u> 24 (1967): 2289 – 2294.

- Itoh, T.; Kikuchi, T.; Tamura, T.; and Matsumoto, T. Co-occurrence of chondrillasterol and spinasterol in two Cucurbitaceae seeds as shown by ¹³C-NMR. <u>Phytochemistry</u> 20 (1981): 761-764.
- Jayasinghe, L.; Shimada, H.; Hara, N.; and Fujimoto, Y. Hederagenin glycosides from *Pometia exima*. <u>Phytochemistry</u> 40 (1995): 891-897.
- Kanchanapoom, T.; Kasai, R.; and Yamasaki, K. Acetylated triterpene saponins from the Thai medicinal plants, *Sapindus emarginatus*. <u>Chem. Pharm. Bull</u>. 49 (2001): 1195-1197.
- Kasai, R.; Fujino, H.; Kuzuki, T.; Wong, W. H.; Goto, C.; Yata, N.; Tanaka, O.; Yasuhara, F.;
 and Yamaguchi, S. Acyclic sesquiterpene oligoglycosides from pericarps of
 Sapindus mukurossi. Phytochemistry 25 (1986): 871-876.
- Kasai, R.; Nishi, M; Mizutani, K.; Miyahara, I.; Moriya, T.; Miyahara, K.; and Tanaka, O. Trifolioside II, an acyclic sesquiterpene oligoglycoside from pericarps of *Sapindus trifoliatus*. <u>Phytochemistry</u> 27 (1988): 2209-2211.
- Khan, M. R.; Kihara, M.; and Omoloso, A. D. Antimicrobial activity of *Harpullia ramiflora*. <u>Fitoterapia</u> 72 (2001): 298-300.
- Khan, M. R.; and Omoloso, A. D. Antibacterial, antifungal activity of *Harpullia petiolaris*. <u>Fitoterapia</u> 73 (2002): 331-335.
- Khong, P. W.; and Lewis, K. G. Chemical constituents of *Harpullia pendula*. <u>Aust. J. Chem</u>. 29 (1976): 1351 1364.
- Tamura, K.; Mizutani, K.; and Yamamoto, S. Isolation of monodesmoside saponins from rind of *sapindus trifoliatus* or mukorossii fruits as skin fungicides. <u>Jpn. Kokai</u> <u>Tokkyo koho JP</u> 88 (1990). Through <u>Chemi. Abstr.</u> 113 (1990): 218226b.
- Kweifiookai, G.; and Carroll, A. R. Antiarthritic effect of lupeol acetate. <u>Phytother. Res.</u> 7 (1993): 213-215.
- Kweifiookai, G.; Field, B.; Rumble, B. A.; Macrides, T. A.; and Demunk, F. Esterification improves antiarthritic effectiveness of lupeol. <u>Drug Develop. Res.</u> 35 (1995): 137-141

- Lavaud, C.; Crublet, M. L.; Pouny, I.; Litaudon, M.; and Sevenet, T. Triterpenoid saponins from the stem bark of *Elattostachys apetala*. <u>Phytochemistry</u> 57 (2001): 469-478.
- Lavaud, C.; Voutquenne, L.; Massiot, G.; Oliver, L. M.; Das, B. C.; Laprevote, O.; Serani, L.; Delaude, C.; and Becchi, M. Saponins from the stem bark of *Filicium decipiens*. <u>Phytochemistry</u> 47 (1998): 441-449.
- Linnazam, A. A triterpenoidal sapogenin from the seeds of *Dodonaea viscosa*. Indian J. Chem. B. 32 (1993): 513-514.
- Ma, C. M.; Nakamura, N.; Hattori, M.; Kakuda, H.; Qiao, J. C.; and Yu, H. L. Inhibitory effects on HIV-1 protease of constituents from the wood of *Xanthoceras sorbifolia*.
 <u>J. Nat. Prod.</u> 63 (2000): 238-242.
- Mitaine-Offer, A. C.; Hornebeck, W.; Sauvain, M.; and Zeches-Hanrot, M. Triterpenes and phytosterols as human leucocyte elastase inhibitors. <u>Planta Med.</u> 68 (2002): 930-932.
- Moriarity, D. M.; Huang, J.; Yancey, C. A.; Zhang, P.; Setzer, W. N.; Lawton, R. O.; Bates,
 R. B.; and Caldera, S. Lupeol is the cytotoxic principle in the leaf extract of *Dendropanax cf. querceti*. <u>Planta Med.</u> 64 (1998): 370-372.
- Musalmah, M.; Elkhairee, M. R.; Lau, C. M.; Wan, N. W. Z. Effect on blood glucose levels in normal and alloxan-induced diabetic rats. <u>Malaysian Journal of Biochemistry and</u> <u>Molecular Biology</u> 6 (2001): 7-11.
- Nakayama, K.; Fujino, H.; Kasai, R.; Tanaka, O.; and Zhou, J. Saponins of pericarps of Chinese Sapindus delavayi (pyi-shiau-tzu), a source of natural surfactants. <u>Chem.</u> <u>Pharm. Bull</u>. 34 (1986): 2209-2213.
- Nes, W. R.; Krevitz, K.; Joseph, J.; Nes, W. D.; Harris, B.; and Gibbons, F. G. The phylogenetic distribution of sterols in tracheophytes. <u>Lipids</u> 12 (1976): 51–527.
- Ogunkoya, L. Application of mass spectrometry in structural problems in triterpenoids. <u>Phytochemistry</u> 20 (1981): 121 – 126.
- Patocka, J. Biologically active pentacyclic triterpenes and their current medicine signification. Journal of Applied Biomedicine 1 (2003): 7-12.

- Perry, L. M.; and Metzger, J. <u>Medicinal plants of East and Southeast Asia</u>, Vol. 1. Netherlands: N. V. F. Noordhoff, 1895.
- Rajic, A.; Kweifio-Okai, G.; Macrides, T.; Sandeman, R. M.; Chandler, D. S.; and Polya, G.
 M. Inhibition of serine proteases by anti-inflammatory triterpenoids. <u>Planta Med.</u>
 66 (2000): 206-210.
- Quisumbing, E. <u>Medicinal plants of the Phillippines</u>. Phillippines: Manila bureau, 1951.
- Sandoval, A.; Manjarrez, A.; Leeming, P. R.; Thomas, G. H.; and Djerassi, C. Terpenoids. XXX. The structure of the cactus triterpene chichipegenin. <u>J. Am. Chem. Soc</u>. 79 (1957): 4468 – 4472.
- Sati, O. P.; and Rana, U. Triterpenoids of Aesculeu indica. Pharmazie 42 (1987): 141.
- Schenkel, E. P.; Werner, W.; and Schulte, K. E. Die saoponine aus *Thinouia coriacea*. <u>Planta Med</u>. 57 (1991): 463-467.
- Schilling, N.; Dittrich, P.; and Kandler, O. Formation of L-quebrachitol from D-bornesitol in leaves of *Acer pseudoplatanus*. <u>Phytochemistry</u> 11 (1972): 1401-1404.
- Schmatz, D. M.; Arison, B. H.; Dashkevicz, M. P.; Liesch, J. M.; and Turner, M. J. Identification and possible role of D-mannitol and 2-O-methyl-chiro-inositol (quebrachitol) in *Eimeria tenella*. <u>Mol. Biochem. Parasit.</u> 29 (1988): 29 – 36.
- Shamma, M.; Glick, R. E.; and Mumm, R. O. The nuclear magnetic resonance spectra of pentacyclic triterpenoid. J. Org. Chem. 27 (1962): 4512 4517.
- Suttisri, R.; Homhaun, A.; Srangpol, A.; Yamchamuang, P.; Pengsuparp, T.; and Saifah, E.
 Chemical constituents of the leaves of *Harpullia cupanioides*. <u>Thai. J. Pharm. Sci</u>.
 23 (1999): 29 33.
- Tori, K.; Seo, S.; Shimaoka, A.; and Tomita, Y. Carbon-13 NMR spectra of olean-12-enes. Full signal assignments including quaternary carbon signals assigned by use of indirect ¹³C,¹H spin couplings. <u>Tetrahedron Lett.</u> 48 (1974): 4227 4230.
- Tuntiwachwuttikul, P.; Pancharoen, O.; Mahabusarakam, W.; Wiriya, C. P.; Taylor, W. C.;
 Bubb, W. A.; and Towers, G. H. N. A triterpenoid saponin from *Maesa* ramentacea. <u>Phytochemistry</u> 44 (1997): 491 495.

- Van Welzen, P. C. Sapindaceae. In Santisuk, T.; and Larsen, K. (eds.), <u>Flora of Thailand</u> <u>Vol. 7 Part 1</u>, pp. 169-250. Bangkok: Diamond Printing, 1999.
- Irene, M. V.; Pauline, L.; Allan, P.; and John, B. B. Antigenotoxic spinasterol from *Cucurbita maxima* flowers. <u>Mutat. Res.</u> 360 (1996): 89-93.
- Voutquenne, L.; Kokougan, C.; Lavaud, C.; Pouny, I.; and Litaudon, M. Triterpenoid saponins and acylated prosapogenins from *Harpullia austro-caledonica*. <u>Phytochemistry</u> 59 (2002): 825 – 832.
- Voutquenne, L.; Lavaud, C.; Massiot, G.; and Delaude, C. Saponins from *Harpullia cupanioides*. <u>Phytochemistry</u> 49 (1998): 2081 2085.
- Wada, S. I.; Iida, A.; and Tanaka, R. Screening of triterpenoids isolated from *Phyllanthus flexuosus* for DNA topoisomerase inhibitory activity. <u>J. Nat. Prod.</u> 64 (2000): 1545-1547.
- Woldemichael, G. M.; Singh, M. P.; Maiese, W. M.; and Timmernann, B. N. Constituents of antibacterial extract of *Caesalpinia paraguariensis* Burk. <u>Z.Naturforsch. C.</u> 58 (2003): 70-75.
- Woo, W. S. Steroids and pentacyclic triterpenoids from *Phytolacca americana*. <u>Phytochemistry</u> 13 (1974): 2887-2889.
- Zhou, C.; Sun, X.; Liu, J.; Luo, S.; and Lu, C. Antiinflammatory effect of α-spinasterol. <u>Yaoxue Xuebao</u> 20 (1985): 257-261.
- Ziegler, H. L.; Staerk, D.; Christensen, J.; Hviid, L.; Hagerstrand, H.; and Jaroszewski, J.
 W. In vitro *Plasmodium falciparum* drug sensitivity assay: Inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane. <u>Antimicrob. Agents Ch.</u> 46 (2002): 1441-1446.

VITA

Miss Ratchanee Poovapatthanachart was born on December 1st, 1976 in Ayuttaya, Thailand. She received her Bachelor's degree of Science in Pharmacy in 1999 from the Faculty of Pharmacy, Rangsit University, Phathum Thani, Thailand.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย