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CHAPTER I 
INTRODUCTION 

1.1 Introduction to OLED 

An organic light emitting diode (OLED) is a light-emitting diode (LED) in which 
the emissive electroluminescent layer is a film of organic compounds which emits 
light under application of an external voltage. This layer of organic semiconductor 
material is situated between a transparent conducting anode and metallic cathode 
[1, 2]. When voltage is applied to the device, holes are injected from the anode and 
electrons from the cathode; transport and radiative recombination of electron hole 
pairs at the emissive layer result in electroluminescence (EL). OLEDs are used in 
television screens, computer monitors, small, portable system screens such as 
mobile phones and PDAs, watches, advertising, information and indication; they can 
also be used in light sources for general space illumination and in large-area light-
emitting elements. Due to their comparatively early stage of development, they 
typically emit less light per unit area than inorganic solid-state based LED point-light 
sources.  

 
Figure 1.1 OLED Overview 
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1.2 Advantage and disadvantage of OLEDs 

OLEDs are already commercialized for display markets. Currently OLEDs are 
used to create digital displays with limited size such as mobile phones, MP3 players, 
PDAs and some digital cameras since they have various advantageous features. 
Advantage : 

 Self-emission and fast response: Without the use of backlight, light generated 

 High resolution: <5um pixel size 

 High brightness: ~100,000 cd/m2 (30,000 ft-L) 

 Low voltage: ~3-10 V 

 Color-tunable selectivity: Many organic materials to make blue to red light 

 Lightweight, thin and flexible devices 

 Wide-viewing angle: More than 160 deg. 

 Low cost materials and substrates 

 Easy fabrication 

However, OLEDs have some disadvantages due to organic materials are very 
sensitive to oxygen and water molecules which can degrade the device very fast [3].  
Moreover, for small molecular devices have low glass transition temperature (Tg) 
which affect to the operating temperature cannot exceed the glass transition 
temperature. Some organic molecules also have low mobility due to amorphous 
nature [4, 5]. 

 
1.3 OLED structure and operation 

OLEDs structure and operation are shown in Figure 1.2. For the basic 
structure of OLED is a single-layer, which is consisted of a conductive layer and an 
emissive layer sandwiched between a transparent conducting anode and metallic 
cathode. 
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The typical OLEDs mostly use indium tin oxide (ITO) as the anode due to its 
relatively high work function and high transparency (90%) to visible light, a wide band 
gap (Eg = 3.5-4.3 eV) semiconductor. The conductance and transparency of ITO are 
mostly dependent on the film thickness and composition ratio of two components. 
When the thickness of ITO increased, the conductance increases but the 
transparency decreases. So very important parameter is its work function relative to 
the organic materials [6, 7]. 

For the cathode, The widely OLEDs use material which low work function 
metal alloy such as Ca, Mg, Al are used to minimize the energy barrier for electrons 
injection from low work function of the cathode to the lowest unoccupied molecular 
orbital (LUMO) level of organic materials. The problem of many low work function 
metals is extreme reactivity to oxygen and water, hence Ca and Mg should be 
protected by an additional layer. 

During operation, a voltage is applied across the OLED such that electrons are 
injected from the cathode and the holes are injected from the anode. These injected 
carriers recombine, form excitons and some of them decay radiatively to give the 
electroluminescence  (EL). Thus, for injection EL the fundamental physical processes 
include carrier injection, transport, recombination and radiative exciton decay [8].  
The color of the light depends on the type of organic molecule and the energy 
difference of HOMO and LUMO of the emitting organic material.   

The way to increase performance of OLED device is to control the 
recombination of electrons and holes by inserting hole-transporting or/and electron 
transporting layer between the electrodes to reduce the energy barrier between the 
electrodes and organic layer for injection of charge to balance the amount of holes 
and electrons that inject into the emitting layer, called the Multi-layer OLED [1]. 
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Figure 1.2 Structure (top) and mechanism diagram (bottom) of (a) Single layer OLED 

and (b) Multi-layer OLED. 
 

1.4 Organic electroluminescent materials 

1.4.1 Light-emitting molecular material 
First, efficient OLEDs using small molecules were developed by Dr. Ching W. 

Tang et al. at Eastman Kodak.[1] The low molecular weight materials commonly 
used in OLEDs include organometallic chelates (for example Alq3, used in the organic 
light-emitting device reported by Tang et al.), fluorescent and phosphorescent dyes 
and conjugated dendrimers. A number of materials are used for their charge 
transport properties, for example triphenylamine and derivatives are normally used 
as hole transport materials [9]. Fluorescent materials can be chosen to get light 
emission depend on different wavelengths of compounds such as pyrene [10], 
perylene [11], rubrene [12, 13] and Alq3 [14, 15] are often used.  
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Figure 1.3 Small molecule OLEDs by Tang, van Slyke (Kodak) [16]. 

1.4.2 Light-emitting polymer 
Polymer light-emitting diodes (PLED) or light-emitting polymers (LEP) are an 

electroluminescent conductive polymer that emits light when connected to an 
external voltage [17]. One example was the first light-emitting device synthesised by 
J. H. Burroughes et al., which involved a single layer of poly(p-phenylene vinylene) 
[18]. They are used as a thin film for full-spectrum color displays. Vacuum deposition 
is not a suitable technique for forming thin films of polymers. However, polymers can 
be used solution processing techniques, and spin coating is a common technique of 
depositing thin polymer films [15, 19]. This technique is more suited to forming large-
area films than thermal evaporation. No vacuum is required, and the emissive 
materials can also be applied on the substrate by a commercial inkjet printing 
techniques [20]. 

 
Figure 1.4 Polymer OLEDs by Burroughes, Friend and Bradley (Cambridge) [16]. 

 
1.5 Hole-transporting materials (HTMs) 

The key functions of HTM are transports holes into EML and trap electron its 
coming from the cathode inside EML for increasing performance emit light of OLED. 
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The HTMs should be have an excellent hole-transporting properties or high hole 
mobility. The typical used p-type materials for HTM are N,N’-diphenyl-N,N’-bis(3-
methyl)-1,1’-biphenyl-4,4’-diamine (TPD) and 4,4’-bis-[N-(1-naphthayl)-N-phenyl-
amino]-biphenyl (NPB) [21, 22] as  shown in Figure 1.5 

 
                        
 
 

 
Figure 1.5 Chemical structures of NPB and TPD. 

 
1.6 Emitting materials (EMMs) 

The emissive layer materials are made up of organic molecules. Generally, 
holes are more travel than electrons in organic semiconductors. The decay of the 
excited state results in a relaxation of the energy levels of the electron, 
accompanied by emission of radiation whose frequency is in the visible region. The 
frequency of this radiation depends on the band gap of the material, in this case the 
difference in energy between the HOMO and the LUMO. The color of the light 
produced can be varied according to the type of organic molecule used for its 
process. To obtain color displays, a number of organic layers are used. Another factor 
of the light produced is its intensity. If more current is applied to the OLED, the 
brighter the light appears.  

Recent development in emissive materials have focused on the blue 
electroluminescence (EL) as a number of new fluorescent blue light-emitting 
materials, such as anthracene [23], triphenylfluoranthene [24], fluorene [10], 
triarylamine [25, 26] and pyrene derivatives [27, 28]. However, pyrene derivatives are 
more attractive to several their excellent properties, such as high quantum efficiency, 
charge-transfer ability, and hole-transporting ability [28, 29]. On the other hand, it is 
well-known that carbazole is a good hole-transporting and electroluminescent group, 
and many LED materials contain carbazole moieties as the key constructing block 

NPB TPD 
N N N N

CH3

CH3
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[30]. The exceptional hole-transporting ability of the carbazole-containing derivatives 
is attributed to the electron donating capabilities of carbazole moieties. Furthermore, 
the chemical and thermal stabilities of carbazole derivatives are extremely high and 
the carbazole ring can be easily functionalized at the 3-, 6-, and 9-positions [31-33]. 
On the other hand, truxene  or 10,15-dihydro-5H-diindenol[1, 2-a:10, 20-c]-fluorene is 
a planar heptacyclic polyarene. It can be formally regarded to as a C3-symmetrically 
fused fluorene trimer. Because its unique three-dimensional topology which could be 
comfortably functionalized by different substituents at C-2, -7, -12 positions and at C-
5, -10, -15 positions, truxene has been thoroughly developed as an attractive building 
block and starting material for numerous functional organic materials such as OLEDs 
[34, 35], fluorescence proves [36, 37], organic solar cells [38] as well as large p-
conjugation dendrimer macromolecular [23, 39, 40]. 
For these reasons, the objectives of this work are following: 

(1) To synthesize three novel compounds by a combination of 3,6-

Dipyrenylcarbazole units with truxene core as both blue-emitting and 

hole-transporting materials for OLED. 

(2) To characterize and study the electronic, photophysical, electrochemical 

and thermal properties of target molecules. 

(3) To investigate their potential application as both blue-emitting and hole-

transporting materials for OLED. 

 

1.7 Literature reviews 

This part will survey about applications of carbazole, pyrene and truxene derivatives 
as the HTMs and EMMs for OLED. 
 In 2007, Yang et. al. [41], synthesized pyrene derivatives (DP, DPB) as the EMLs 
for highly efficient OLEDs. The multi-layer devices were fabricated with pyrene 
derivatives with the structure of ITO/NPB (50 nm)/DP or DPB (30 nm)/BCP (10 
nm)/Alq3 (30 nm)/LiF (1 nm)/Al). The devices created the blue EL emissions with 
1931 CIE chromaticity (x = 0.21, y = 0.35) and (x = 0.19, y = 0.25), respectively. The 
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device base on DPB displays a maximum luminance of 42,445 cd/m2 at 400 mA/cm2 
and the luminance efficiency of 8.57 cd/A and 5.18 lm/W at 20 mA/cm2. 
 

 
Figure 1.6 Chemical structures of DBD 

 
In the same year, Moorthy and coworkers [42], synthesized the 

tetraarylpyrenes derivatives 1-3 (Figure 1.7) as emitting materials in OLEDs. The 
results indicatied that the attached arene units provide thermal stability and 
noncrystalline property. After that, they have studied electroluminescence properties 
of compounds. The devices were fabricated with the structure of ITO/NPB (400 Å)/1 
or 2 or 3 (100 Å)/TPBI (400 Å)/LiF (10 Å)/Al (1500 Å). All devices lead to pure blue 
electroluminescence according to the CIE coordinates. The device base on 3 showed 
the best performance, resulting a maximum brightness of 4730 cd/m2. The maximum 
brightness efficiency was achieved 2.7 cd/A at a current density of 5.25 mA/cm2 (6.5 
V). 
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Figure 1.7 Chemical structures of the tetraarylpyrenes derivatives 1-3 (Top), EL 
spectra of OLEDs and their emission colors under applied voltage (Bottom). 

 
In 2009, Yang and his research group [43], synthesized two solution-

processable triphenylamine-based dendrimers with truxene core as hole-transporting 
materials for organic light-emitting diodes; Tr-TPA3 and Tr-TPA9 (Figure 1.8). The 
dendrimers showed excellent solubility in organic solvents, high thermal stability 
with high Tg above 110 oC and good film forming. Then, they fabricated devices 
which used these dendrimers as hole-transporting layer and Alq3 as emitting layer. 
The device base on Tr-TPA9 exhibited the turn-on voltage of 2.5 V, the maximum 
luminance of about 11,058 cd/m2 and the maximum current efficiency of 4.01 cd/A. 
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Figure 1.8 Chemical structures of dendrimers. 

 
In 2010, Kumchoo and coworkers [28]. successfully synthesized three 

derivatives of 3,6-dipyrenylcarbazole (1-3) as blue light emitting and hole-transporting 
materials. All compounds displayed the maximum wavelengths absorption at around 
345-347 nm. They have excellent thermal stability, showing Tg above 160oC. These 
compounds were used as emissive material in a single-layer OLEDs. Devices base on 
compound 3 exhibited the best performance, it showed the bright blue emission 
with maximum brightness (Lmax) 1,600 cd/m2 at 8.8 V and a turn-on voltage (Von) of 
3.8 V. Then, The devices with the structure of ITO/HTM/Alq3/LiF/Al were fabricated 
using compound 1-3 as HTL and Alq3 as EML. This device showed the maximum 
brightness (Lmax) of 9,300 cd/m2 at 8.8 V with a turn-on voltage (Von) of 4.2 V for green 
OLED. 
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Figure 1.9 Chemical structures of dipyrenylcarbazole derivatives (1-3), EL spectra of 

OLEDs and their emission colors under applied voltage (1-3 as EMLs). 
 

In 2014, Promarak and coworkers [44], synthesized carbazole dendrimers 
containing oligoarylfluorene cores as non-doped solution processed “RGB” light-
emitters for OLEDs. These dendrimers showed excellent morphologically stable thin 
films with Tg above 273 oC. The double-layer OLEDs using these dendrimers as hole-
transporting non-doped emitters and BCP as hole-blocking layer (ITO/PEDOT:PSS/1a-
ac/BCP/LiF:Al) emit pure RGB colour (ELmax = 415, 521 and 622 nm) with high 
luminance efficiencies (up to 9.21 cd/A).  
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Figure 1.10 Chemical structures of carbazole dendrimers (Top), EL spectra of OLEDs 
and their emission colors under applied voltage (Bottom). 

 
 In 2014, Nguyen and colleagues [45], reported a series of novel HTMs (3a–c) 
based on 4-(9H-carbazol-9-yl)triphenylamine conjugated with different carbazole or 
triphenylamine derivatives. The resulting compounds exhibited good morphological 
and thermal stabilities with high Tg and Td values. For devices performance, HTM 3c 
was found to be the best, showing good performance with a low Von of 3.1 V, current 
and power efficiencies of 39.2 cd/A and 29.3 lm/W, respectively. 
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Figure 1.11 Chemical structures of HTMs (Top), EL spectra of OLEDs (Bottom). 

 
In the same year, Chercka et. al. [46], developed a new pyrene based emitter 

material (Figure 1.12) for highly efficient OLEDs. They prepare OLEDs with a doped 
matrix emissive layer (EL) by using mCPPO1 (9-(3-(9H-carbazole-9-yl) phenyl)-3-
(dibromophenylphosphoryl)-9H-carbazole) as host material. The device displays an 
exceptional deep blue photoluminescence (CIE: x = 0.16, y = 0.024) and good 
external quantum efficiency (EQE) of 3.1%. 

 

 
 

Figure 1.12 Chemical structures of 2,7-functionalized pyrene-based (left), 
EL spectra of OLEDs (right). 
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In 2015, Raksasorn and coworkers [40], successfully synthesized two star-
shaped carbazolyl truxene derivatives (1 and 2) via Cu catalyzed C–N coupling 
reaction. Both compounds display good thermal stabilities with high Tg at 249 and 
293 oC and the decomposition temperature at 5% weight loss around 392 and 371 
oC, respectively. The devices base on both compounds exhibit good hole-
transporting properties as the structure of ITO/PEDOT:PSS/1 or 2/Alq3/LiF:Al could 
provide maximum brightness of 12,000 cd/m2 with turn-on voltages of 3.1–4.1 V, and 
maximum external quantum efficiency of 0.89–1.13% 

            
Figure 1.13 Chemical structures of two star-shaped carbazolyl truxene derivatives  

(1 and 2), photographic images of working Device I and II



 

 

CHAPTER II 
EXPERIMENTAL 

2.1 Synthesis 

2.1.1 Instruments and Equipment 
Thin layer chromatography (TLC) was performed on aluminium sheets 

precoated with silica gel (Merck Kiesegel 60 F254) (Merck KgaA, Darmstadt, Germany). 
Column chromatography was performed on silica gel (Merck Kieselgel 60G) (Merck 
KGaA, Darmstadt, Germany). All 1H-NMR spectra were determined on Varian Mercury 
NMR spectrophotometer (Varian, USA) at 400 MHz with chemical shifts reported as 
ppm in CDCl3. The 13C-NMR spectra were measured on Bruker Mercury NMR 
spectrophotometer (Bruker, Germany) which equipped at 100 MHz with chemical 
shifts reported as ppm in CDCl3. Mass spectra were recorded on a Microflex MALDI-

TOF mass spectrometer (BrukerDaltonics) using doubly recrystallized - cyano-4-
hydroxy cinnamic acid (CCA) as a matrix. Absorption spectra were measured by a 
ShimadzuUV-2550 UV-Vis spectrophotometer. Fluorescence spectra were obtained 
from an Agilent technologies Cary Eclipse spectrofluorometer.   

The fluorescence quantum yields (ᛰ) were determined by comparison with a 
standard of known fluorescence quantum yield according to the following equation 
[47].  

      (
      
       

) (
  
 

   
 ) 

Where the subscripts X refer to the unknown samples and ST refers to the 
standard quinine sulfate solution in 0.01 M H2SO4, which fluorescence quantum yield 
is known to be 0.54 [47], Ø is the fluorescence quantum yield, Slope is the slope 

from the plot of integrated fluorescence intensity versus absorbance, and  is the 
refractive index of the solvent. The refractive indexes of CHCl3 and 0.01 M H2SO4 
were 1.445 and 1.333, respectively. The maximum absorbance of all samples should 
never exceed 0.1. The fluorescence emission spectra of the same solutions using 
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appropriate excitation wavelengths selected were recorded based on the maximum 

absorption wavelength (max) of each compound.  
The electrochemical analysis by cyclic voltammetry was performed using an 

AUTOLAB spectrometer. All measurements were made at room temperature on 
sample solutions in freshly distilled dichloromethane with 0.1 M 
tetrabutylammomium hexafluorophosphate (TBAPF6) as electrolyte. A platinum 
working electrode, a platinum wire counter electrode and a Ag/AgNO3 (Sat.) reference 
electrode were used in all cyclic voltammetry experiments. 

Thermal properties, Differential Scanning Calorimeter (DSC) results were 
performed on NETZSCH DSC 204F1 and Thermogravimetric Analysis (TGA) results 
were studied using NETZSCH TG 209F3. 

2.1.2 Synthetic procedures 
3,6-Diiodo-9H-carbazole (4) 

A stirred solution of carbazole (5.0 g, 29.90  mmol) in acetic acid was added 
potassium iodide (6.7 g, 40.36 mmol). Then, potassium iodate (9.7 g, 45.32 mmol) 
was added in small portions over a period of 5 min and the resulting mixture was 
refluxed for 20 min. The reaction was allowed to cool to room temperature and 
diluted with EtOAc. The combined organic layer was dried over MgSO4 filtered, and 
concentrated under reduced pressure to give a brown solid residue. The crude 
product was purified by recrystallization from acetone and hexane to yield 4 as light 

brown crystals (12.38 g, 98.8%).1H NMR (400 MHz, DMSO)  11.57 (s, 1H), 8.57 (s, 2H), 
7.66 (d, J = 7.6 Hz, 2H), 7.36 (d, J = 7.3 Hz, 2H) ppm. [28, 40] 
 
3,6-Di(pyren-1-yl)-9H-carbazole (5) 

A mixture of 4 (1.4 g, 3.3 mmol), pyrene-1-boronic acid (2.0 g, 8.1 mmol), 
Pd(PPh3)4 , 2 M K2CO3 aqueous solution  was heated refluxing in THF conditions for 24 
h. After the reaction was cooled to room temperature, the resulting brown solution 
was extracted with CH2Cl2 (3 x 50 ml). The combined organic layer was dried over 
MgSO4, filtered, and concentrated under reduced pressure. The crude product was 
purified by flash chromatography using hexane: CH2Cl2 (75:25) as the eluent to yield 
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5 as pale green solid (1.23 g, 66%). 1H NMR (400 MHz, DMSO)  11.72 (s, 1H), 8.50 (s, 
2H), 8.36 (d, J = 8.3 Hz, 2H), 8.30 – 8.12 (m, 14H), 8.06 (t, J = 8.0 Hz, 2H), 7.80 (d, J = 
7.8 Hz, 2H), 7.70 (d, J = 7.7 Hz, 2H) ppm. MALDI-TOF MS: C44H25N found 567.004 ([M]+ 
calcd: 567.198). [28] 
 
10,15dihyhro-5H-diindeno[1,2-a:1’,2’-c] fluorene (Truxene) (6)  

3-Phenylpropionic acid (10.02 g, 66.72 mmol) was mixed with polyphosphoric 
acid (50 g) and heated at 60 °C for 30-40 min in nitrogen atmosphere. Then, water (5 
mL) was added to the reaction and temperature was raised to 160 °C for 3 h. After 
the reaction was cooled to room temperature, the mixture was poured into ice water 
and grey powder was filtered off under suction and washed with water. The residue 
was recrystallized from toluene to yield 6 as light-yellow power (11.12 g, 49%). 1H 

NMR (400 MHz, CDCl3)  7.93 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.49 (d, J = 
7.5 Hz, 1H), 7.40 (d, J = 7.4 Hz, 1H), 4.22 (s, 2H) ppm. [39, 40, 48] 

 
5,5,10,10,15,15-Hexabutyl-truxene (7) 

A solution of truxene (6) (1.00 g, 2.92 mmol) in DMF (50 mL) at 0 °C under 
nitrogen, NaH (1.19 g, 29.8 mmol) was added and the solution was allowed to warm 
to room temperature and stirred for 30 min, then n-butyl bromide (3.2 mL) was 
added for 24 h. The mixture was poured into water and extracted with EtOAc. The 
combined organic layer was dried over MgSO4, filtered, and concentrated under 
reduce pressure. The crude product was purified by silica gel column 
chromatography using hexane as the eluent to yield 7 as white solid (1.48 g, 75%). 1H 

NMR (400 MHz, CDCl3)  8.38 (d, J = 7.3 Hz, 1H), 7.46 (m, 2H), 7.38 (m, 2H), 3.04 – 
2.91 (m, 2H), 2.15 – 2.04 (m, 2H), 0.96 – 0.79 (m, 4H), 0.62 – 0.36 (m, 10H) ppm. [37] 
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General synthesis and characterization of compound 8, 9 and 10 
A mixture of truxene (7) and solvent (CH3COOH:H2SO4:H2O:CCl4) = 100:5:20:8) 

was heated to 40 °C. After adding KIO3 and I2 to the mixture,  the mixture was heated 
to 80 °C and stirred for 4 h at this temperature. After the reaction was completed, 
the mixture was cooled to room temperature and filtered off under suction, washed 
with water. Then the residue refluxed in methanol for 2h and followed by cooling to 
room temperature, filtered off under suction [48, 49].  

 
5,5,10,10,15,15-Hexabutyl-2-iodo-truxene (8) 

According to above general procedure, 8 was synthesized from 7 (0.50 g, 0.73 
mmol), KIO3 (0.05 g, 0.24 mmol) and I2 (0.06 g, 0.24 mmol) to provide 8 (0.41 g, 68% 

yield) as white solid. 1H NMR (400 MHz, CDCl3)  8.4-8.3 (m, 2H), 8.14 - 8.04 (d, J = 8.5 
Hz, 1H), 7.77 (s, 1H), 7.75 - 7.68 (d, J = 8.2 Hz, 1H), 7.49 - 7.42 (m, 2H), 7.43 - 7.32 (m, 
4H), 3.05 - 2.78 (m, 6H), 2.1 - 1.95 (m, 6H), 0.98 - 0.8 (m, 12H), 0.62 - 0.34 (m, 30H) 
ppm. 
 
5,5,10,10,15,15-Hexabutyl-2,7-diiodo-truxene (9) 

According to above general procedure, 9 was synthesized from 7 (0.20 g, 
0.294 mmol ), KIO3 (0.04 g, 0.19 mmol) and I2 (0.05 g, 0.19 mmol) to provide 9 (0.17 g, 

64% yield) as white solid. 1H NMR (400 MHz, CDCl3)  8.4-8.3 (m, 1H), 8.14-7.97 (d, J = 
8.5 Hz, 2H), 7.77 (s, 2H), 7.73 - 7.61 (d, J = 8.2 Hz, 2H), 7.50 - 7.42 (m, 1H), 7.43 - 7.29 
(m, 2H), 3.03 - 2.28 (m, 6H), 2.13 - 1.90 (m, 6H), 1.03 - 0.68 (m, 12H), 0.61 - 0.20 (m, 
30H) ppm. 
 
5,5,10,10,15,15-hexabutyl-2,7,12-triiodo-truxene(10) 

According to above general procedure, 10 was synthesized from 7 (0.5 g, 0.73 
mmol), KIO3 (0.16 g, 0.75 mmol) and I2 (0.55 g, 2.16 mmol) to provide 10 (93% yield) 

as white solid. 1H NMR (CDCl3):  8.07 (d, J = 8.4 Hz, 1H), 7.76 (s, 1H), 7.71 (d, J = 8.4 
Hz, 1H), 2.91 – 2.77 (m, 2H), 2.08 – 1.95 (m, 2H), 0.99 – 0.78 (m, 4H), 0.59 – 0.30 (m, 
10H) ppm. 
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General synthesis and characterization of compound 1, 2 and 3 
The iodinated truxene, dipyrenylcarbazole, 1 mol% CuI, 10 mol% diamine 

ligand and K3PO4 in dioxane (1 M) at 110°C for 24 h. The resulting light yellowish 
green mixture was allowed to cool to room temperature and extracted with CH2Cl2 
(3 × 50 mL). The combined organic layer was dried over MgSO4, filtered, and 
concentrated under reduce pressure. The crude product was purified by column 
chromatography on silica gel, eluting with hexane/CH2Cl2 to provide the products 
[50]. 
 
Compound 1 
According to above general procedure, 1 was synthesized from 8 (0.15 g, 0.18 mmol) 
and 5 (0.13 g, 0.22 mmol) purified by column chromatography using hexane:CH2Cl2 
(90:10) as the eluent to obatain 1 as white solid (0.96 g 43% yield). 1H NMR (400 MHz, 

CDCl3)  8.72 - 8.67 (d, J = 8.7 Hz, 1H), 8.53 - 8.50 (s, 2H), 8.45 – 8.39 (m, 2H), 8.39 – 
8.35 (d, J = 8.4 Hz, 2H), 8.30 – 8.25 (d, J = 8.3 Hz, 2H), 8.22 – 8.19 (s, 2H), 8.19 – 7.97 
(m, 14H), 7.93 – 7.87 (s, 1H), 7.85-7.79 (m, 5H), 7.55 – 7.40 (m, 6H), 3.20 – 2.90 (m, 
6H), 2.29 - 2.00 (m, 6H), 1.15 - 0.82 (m, 18H), 0.70 - 0.50 (m, 24H) ppm. 13C NMR (100 

MHz, CDCl3)  158.8, 155.8, 153.6, 153.4, 145.4, 145.0, 144.9, 140.7, 140.13, 140.09, 
140.04, 139.96, 139.7, 138.7, 138.5, 138.3, 137.54, 137.51, 135.7, 133.2, 131.4, 130.9, 
130.3, 129.0, 128.8, 128.0, 127.34, 127.26, 127.1, 126.5, 126.0, 125.8, 125.5, 125.0, 
124.8, 124.7, 124.6, 124.5, 124.4, 123.6, 122.3, 122.2, 120.6, 109.8, 55.9, 55.5, 36.7, 
36.5, 29.5, 26.6, 26.5, 26.4, 22.8, 22.7, 13.72, 13.66 ppm. MALDI-TOF MS: C95H89N 
found 1244.909 ([M]+ calcd: 1244.702) 
 
Compound 2 
According to above general procedure, 2 was synthesized from 9 (0.15 g, 0.16 mmol) 
and 5 (0.27 g, 0.48 mmol) purified by column chromatography using hexane:CH2Cl2 
(85:15) as the eluent to obatain 2 as white solid (0.109 g, 38% yield). 1H NMR (400 

MHz, CDCl3)  8.75 - 8.69 (m, 2H), 8.55 - 8.50 (s, 4H), 8.50 – 8.45 (d, J = 8.4 Hz, 1H), 
8.40 -8.35 (m, 4H), 8.30 – 8.25 (d, J = 8.3 Hz, 4H), 8.23 - 8.19 (s, 2H), 8.19 – 7.98 (m, 
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28H), 7.97 – 7.93 (d, J = 7.9 Hz, 2H), 7.90 - 7.81 (m, 10H), 7.59 – 7.43 (m, 3H), 3.25 – 
3.06 (m, 6H), 2.43 – 2.28 (m, 6H), 1.12 – 0.80 (m, 18H), 0.70 – 0.55 (m, 24H) ppm. 13C 

NMR (100 MHz, CDCl3)  156.2, 156.0, 153.7, 145.9, 145.8, 145.5, 141.0, 140.2, 139.8, 
139.7, 139.3, 138.6, 138.2, 138.1, 136.3, 133.7, 133.6, 131.8, 131.3, 130.6, 129.3, 129.1, 
128.3, 127.7, 127.6, 127.4, 127.0, 126.5, 126.3, 126.1, 125.8, 125.3, 125.2, 124.9, 124.8, 
124.0, 122.7, 121.0, 110.1, 56.31, 56.27, 56.0, 37.0, 36.8, 32.1, 29.9, 29.5, 27.0, 26.9, 
26.8, 23.2, 23.1, 22.8, 14.3, 14.2, 14.1 ppm. MALDI-TOF MS: C139H112N2 found 1809.868 
([M]+ calcd: 1809.885) 

 
Compound 3 
According to above general procedure, 3 was synthesized from 10 (0.15 g, 0.14 
mmol) and 5 (0.6 g, 0.99 mmol) purified by column chromatography using 
hexane:CH2Cl2 (75:25) as the eluent to obatain 3 as white solid (0.079 g, 24% yield). 
1H NMR (400 MHz, CDCl3)  8.80 - 8.75 (d, J = 8.7 Hz, 3H), 8.55 - 8.50 (s, 6H), 8.40 – 
8.35 (d, J = 8.3 Hz, 6H), 8.32 - 8.25 (d, J = 8.2 Hz, 6H), 8.22 – 8.19 (s, 3H), 8.19 – 7.98 
(m, 42H), 7.90 – 7.87 (d, J = 7.9 Hz, 3H), 7.83 -7.79 (m, 12H), 3.30 – 3.15 (m, 6H), 2.45 
– 2.35 (m, 6H), 1.20 – 1.15 (m, 18H), 0.95 – 0.55 (m, 24H) ppm. 13C NMR (100 MHz, 

CDCl3)  156.1, 146.0, 141.0, 139.6, 138.6, 136.5, 133.7, 131.7, 131.3, 130.6, 129.3, 
129.1, 128.3, 127.7, 127.6, 127.5, 126.2, 125.8, 125.3, 125.2, 124.9, 124.8, 124.1, 122.7, 
110.1, 56.4, 37.0, 27.1, 23.2, 14.2 ppm. MALDI-TOF MS: C183H135N3 found 2377.723 
([M]+ calcd: 2375.069 ) 
 

2.2 OLED device fabrication section 

2.2.1 Commercially available materials  
The commercial sources and purities of materials used in these experiments 

are shown in Table 2.1. All materials were analytical grade and used without further 
purification, unless indicated.  
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Table 2.1 Commercially available materials for OLED device fabrication 

Materials Purity (%) Company 
1˝ × 1˝ Indium oxide doped tin oxide (99.3 wt % 
In2O3:0.7 wt % SnO2)-coated glasses (5-15 Ω/sq) 

99.5 Kintec 

Poly(3,4-ethylenedioxythiophene)–poly(styrene) (0.5 
wt % PEDOT: 0.5 wt % PSS) 

1.3 Baytron 

2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)  
Tris(8-hydroxyl-quinoline) aluminum (Alq3) 
N,N-diphenyl-N,N’-bis(1-naphthyl)-(1,1’-biphenyl)-4,4’- 
diamine (NPB) 

99.99 
98 
99 

Sigma-Aldrich 
Sigma-Aldrich 
Sigma-Aldrich 

Lithium fluoride (LiF) 99.98 ACROS 
Aluminium (Al) wire 99.97 BDH 

2.2.2 Reagents 
The reagents were obtained from various suppliers as shown in Table 2.2. All 

reagents were analytical grade and used without further purification, unless indicated. 
Table 2.2. List of reagents. 

Reagents Purity (%) Company 

Hydrochloric acid (HCl) 37% 36.5 Carlo Erba 
Nitric acid (HNO3) 69% 68.5-69.5 BDH 
Sodium hydroxide (NaOH) 99.99 Carlo Erba 
Acetone 99.5 BDH 

2.2.3 Instruments  
The following instruments were used in this study:  

(1) Photoluminescence (PL) spectrophotometer (Perkin–Elmer, Model LS 50B)  
(2) Spin-coater (Chemat Technology, Model KW-4A)  
(3) Thermal evaporator (ANS Technology, Model ES280)  
(4) Digital source meter (Keithley, Model 2400)  
(5) Multifunction optical meter (Newport, Model 1835-C)  
(6) Calibrated photodiode (Newport, Model 818 UVCM)  
(7) USB Spectrofluorometer (Ocean Optics, Model USB4000FL) 
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2.2.4 Organic thin film preparation and characterization 
The preparation process of organic thin films is described in Figure 2.1. 

 
Figure 2.1 Preparation and characterization of organic thin film 

 

2.2.5 Thermal evaporation of the organic thin film 
In order to study the photophysical properties of solid state materials, organic 

thin films coating on quartz glass substrates (1” x 1”) were prepared by spin coater. 
Prior to film deposition, the substrates were cleaned with acetone in ultrasonic bath 
followed by drying on a hotplate. The organic material was dissolved in the solution 
of CHCl3:toluene (2:1 %v/v) and then filtered through a 0.45 µm pore size nylon filter 
(Orange scientific) and spin-coated onto a cleaned quartz glass surface at 2500 rpm 
for 30 sec. Finally, the quartz glass coated with the organic film was baked at 100 ºC 
for 10 min. 

1˝× 1˝ quartz glass 

Cleaned by acetone and dried 

Cleaned quartz glass 

Quartz glass coated 
with organic thin 

film 

Characterized by PL 
spectrophotometer 

 

Organic 
material 

Spin Coater 
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2.2.6 OLED device fabrication 
The OLEDs fabrication process is described in Figure 2.2. 
 

 
 

Figure 2.2 Fabrication and measurement of OLED 

2.2.7 Patterning process for ITO-coated glasses  
The ITO-coated glasses (Figure 2.3a) were firstly etched to give a pattern of 

ITO sheet on glass. Prior to the patterning process, the ITO sheet on glass was 
covered with a 2 x 10 mm of negative dry film photo resist. The covered ITO glass 
(Figure 2.3b) was immersed in the solution of HCl:HNO3 (1:3 v/v) (aqua regia) for 10 
min, with stirring during the etching process. The etched ITO glass was cleaned by 
thoroughly rinsing with water and subsequently soaking in 0.5 M NaOH for 10 min to 
remove the negative dry film from an ITO-coated glass surface. Finally, these 
substrates were thoroughly rinsed with water to give the patterned ITO glasses as 
shown in Figure 2.3c. 

 

1˝× 1˝ ITO-coated 
glasses 

Etched with HCl : HNO3 
= 1 : 3 (v/v) (aqua regia) 

to give patterned ITO 
glasses 

Cleaned and dried 

Fresh patterned ITO 
glass (G) 

G coated with 
PEDOT:PSS film 

(GP) 

GP coated with 
organic films 

OLED device 
Performance 
measurement 

Organic 
materials 

 

Thermal evaporator BCP/LiF/Al 

 PEDOT: 
PSS 

Spin coating 
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Figure 2.3 (a) ITO-coated glass, (b) ITO-coated glass covered with 2 x 10 mm of 

negative dry film photo resist and (c) patterned ITO glass 

2.2.8 Cleaning process for the patterned ITO glasses  
The cleanliness of the ITO surface was an important factor in the 

performance of the OLEDs devices. The patterned ITO glasses were cleaned for 10 
min with detergent in ultrasonic bath followed by a thorough rinse with DI water and 
then ultra-sonicated in acetone for 10 min. Finally, the substrates were dried in 
vacuum oven at 100 ºC to give fresh patterned ITO glasses.  

2.2.9 Spin-coating method of PEDOT:PSS  
A PEDOT:PSS solution was diluted with DI water and stirred for 1 day. The 

spin-coating method was performed on a spin coater as shown in Figure 2.4. The 

diluted PEDOT:PSS solution was filtered through a 0.45 m pore size nylon filter 
(Orange scientific) and spin-coated onto a fresh patterned ITO glass surface at 3000 
rpm for 30 second. Finally, the patterned ITO glass coated with the PEDOT:PSS film 
was baked at 120oC for 15 min for curing. 
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Figure 2.4 Spin-coating method by using a spin coater. (a) PEDOT:PSS solution in the 
syringe, (b) nylon filter, and (c) fresh patterned ITO glass. 

2.2.10 Organic thin film deposition  
The deposition of other organic layers was the next step in the fabrication of 

OLEDs. The organic layers were deposited using spin coating method (Figure 2.4) 
with the same procedure described in section 2.2.5. Prior to the deposition, the 
patterned ITO glass coated with PEDOT:PSS film was placed on a substrate holder. 
The organic material was dissolved in the solution of CHCl3:toluene (2:1) and then 

filtered through a 0.45 m pore size nylon filter (Orange scientific) and spin-coated 
onto a patterned ITO glass coated with PEDOT:PSS film surface at 3000 rpm for 30 
sec. Finally, the ITO glass coated with the organic film was baked at 100oC for 10 
min. 

2.2.11 Hole-blocking and cathode deposition. 
After organic thin film deposition by the technique of spin coating, the next 

step is increasing hole-blocking layer before closing with cathode deposition. 2,9-
dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was evaporated from a tungsten 
boat to deposit at the device. Finally, an ultra thin LiF layer and Al cathode contact 
were sequentially co-evaporated from two tungsten boats through a shadow mask 
(Figure 2.5) with 2 mm wide slits arranged perpendicularly to the ITO fingers, to 
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obtain the OLED with an active area of 2 × 2 mm2 (Figure 2.6). The operating vacuum 
for evaporation of this cathode was under 1 × 10-5 mbar at high evaporation rates of 
5 – 10 Å/sec. The thickness of LiF and Al of all devices were 0.5 and 150 nm, 
respectively. 

 
Figure 2.5 Instrument for cathode deposition. (a) tungsten boats and (b) 2 mm wide 

fingers of a shadow mask. 
 

 
Figure 2.6 OLED device with 4 pixels. A pixel active area of a device is 2 x 2 mm2. 

2.2.12 Device measurement  
The instruments for OLED device measurements are shown in Figure 2.7. The 

computer was used for controlling of the digital source meter, the multifunction 
optical meter and the USB spectrofluorometer as well as recording the data. The 
digital source meter applied the voltages to the device and measured the resulting 
currents. The multifunction optical meter connected with the calibrated photodiode 
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served in the measurement of the luminance (brightness). The USB 
spectrofluorometer was used for the EL spectra acquisition. 

 
 

Figure 2.7 Instruments for determination of OLED device performance: (a) OLED test 
box, (b) lid of OLED test box, (c) calibrated photodiode, (d) multifunction optical 
meter, (e) digital source meter, (f) USB spectrofluorometer, (g) probe of USB 
spectrofluorometer, (h) OLED device holder, (i) computer controller and recorder for 
digital source meter, multifunction optical meter and USB spectrofluorometer. 
 

All device measurements were performed in an OLED test box by blocking 
the incident light at room temperature under ambient atmosphere. When voltages 
were applied, the currents, brightness, and EL spectra were recorded at the same 
time to give the current density–voltage–luminance (J-V-L) characteristics and EL 
spectra. The turn-on voltage was defined at the brightness of 1 cd/m2. The current 
density was calculated as the following formula (1): 
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     (1) 

Here, I (mA) is the current and A (cm2) is the pixel active area of the device. 
The luminous efficiency of the device was calculated as the following formula (2):
     

         
 

 
     (2) 

Here, L (cd/m2) is the luminance and J (mA/cm2) is the current density.. 
Power Efficiency 

The luminous efficacy or power efficiency is the lumen output per input 
electrical power of the device. It is measured in lumen per watt (lm/W) or candela 

per ampere (cd/A). It is represented by p. 

The coordinate value calculation of Commission Internationale de l’Eclairage 
1931 (CIE 1931) 

 The coordinate value of CIE 1931 was calculated from the EL spectrum. In 
the study of the perception of color, one of the first mathematically defind color 
space was the CIE 1931 XYZ color space, crated by the International Commission on 
Illumination (CIE) in 1931 [51, 52]. The CIE XYZ color space was derived from a series 
of experiments done in the late 1920s by Wright [53] and Guild [54]. Their 
experimental results were combined into the specification of the CIE RGB color 
space, from which the CIE XYZ color space was derived. Firstly, the tristimulus value 
was calculated as the following formula (3): 

𝑋 =  683    
830

360

𝑥  ∆  ,𝑌 = 683    
830

360

𝑦  ∆  ,𝑍 =  683    
830

360

𝑧  ∆         3  

 

Here, S() is the spectral data; Z, Y, and Z are the tristimulus values; and       

  are the tyistimulus functions. 

The coordinate value of CIE 1931 was calculated from formula (4): 

CIE 1931 𝑥 =  
𝑋

𝑋 + 𝑌 + 𝑍
 , CIE 1931 𝑦 =  

𝑌

𝑋 + 𝑌 + 𝑍
                                              (4) 

 

The CIE 1931 chromaticity is shown in Figure 2.8 
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Figure 2.8 CIE 1931 xy Chromaticity Diagram 

 

Note; the parameters used to evaporate all materials are the parameters of 
Al only, such as density of Al= 2.7. Thus, to evaluate the real thickness of the organic 
layers deposited by thermal evaporator and the thickness of PEDOT:PSS layer 
deposited by spin coating method, in the future, the glass substrate will be 
measured by scanning electron microscope (SEM) or/and the atomic force 
microscope (AFM). The real calculation of the CIE coordinate was obtained by the 
Microsoft office excel 2007 with the calculated formula of CIE 1931.



 

 

CHAPTER III 
RESULTS AND DISCUSSION 

3.1 Synthesis 

A new series of truxene derivatives with different numbers of 
dipyrenylcarbazole substituents (1-3) are proved in Figure 3.1. They were 
synthesized from hexabutyl truxene as core and then coupling with 
dipyrenylcarbazole branch via C-N coupling reaction (Ullmann coupling). The 
synthetic route employed for preparing them is shown in Scheme 1. 
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Figure 3.1 Structures of compounds (1-3) 
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Key: (a) PPA, 160°C, 3 h; (b) n-BuBr, NaH, DMF, RT, 24 h; (c)(d)(e) KIO3 and I2, 
CH3COOH:H2SO4:H2O:CCl4, 80°C, 4 h; (f)(g)(h) Dipyrenylcarbazole, 1 mol% CuI, 10 
mol% Diamine ligand, K3PO4, Dioxane ( 1 M), 110°C for 24 h.  

Scheme 2.1 Synthetic Pathway Used for the Preparation of the Compounds 1-3 
 

The required 3,6-dipyrenyl carbazole (5) for this study has been synthesized 
by two-step protocol (Figure 3.2) involving Suzuki cross coupling of pyrene with 
iodinated carbazole. In the first step, carbazole was iodinated at 3- and 6- position 
using KI/KIO3 in refluxing acetic acid for 20 minutes to give brown solid residue after 
that recrystallization to afford 3,6-Diiodo-9H-carbazole (4) as light brown crystals in 
98% yield confirmed by 1H-NMR and 13C-NMR, which were in good agreement with 
the literature reports [28].  
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66%
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5  
Figure 3.2 Key: (a) KI, KIO3, AcOH, refluxing, 20 min; 

(b) Pyrene-1-boronic acid, [Pd(PPh3)4], 2M K2CO3, THF refluxing, 24 h. 
 

The second step involved the coupling of 4 with the commercially available 
pyrene-1-boronic acid via Suzuki cross coupling reaction using Pd(PPh3)4 as a catalyst 
and the K2CO3 as a base in THF to obtain dipyrenylcarbazole (5) as pale green in 66% 
yield [28].  

For the synthesis core of target molecules, the first step, 3-phenylpropionic 
acid  was converted to truxene (6) dehydro-cyclotrimerization by step-heating to 160 
°C in polyphosphoric acid in nitrogen atmosphere. Compound 6 as light-yellow 
power, in 49% yield confirmed by 1H and 13C-NMR, which was in good agreement 
with the literature reports [37].  

Then, to enhance the solubility in organic solvents and also prevent the 
aggregation by pi-stacking, full alkylation was carried out at 5-, 10-, and 15-position, 
obtaining 7 as white crystalline in 75% yield confirmed by 1H and 13C-NMR, which 
were in good agreement with the literature reports [37, 40].  

 The controlled iodination of 7 using KIO3 and I2 could be accomplished by 
using various molar equivalent of KIO3-I2 in mixed solvent (CH3COOH:H2SO4:H2O:CCl4) 
= 100:5:20:8). Then the residue was refluxed in methanol followed by vacuum 
filtration to afford mono- (8), di- (9) or tri-iodinated product (10) in 68, 64 or 93% 
yield, respectively, as white powders. The 1H NMR of 8, 9 and 10 in CDCl3 are 
compared as shown in Figure 3.3. 
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Figure 3.3 1H- NMR of 5,5,10,10,15,15-hexabutyl-2-iodo-truxene (8), 5,5,10,10,15,15-

Hexabutyl-2,7-diiodo-truxene (9) and 5,5,10,10,15,15-Hexabutyl-2,7,12-triiodo-truxene 
(10) in CDCl3 

 
The final steps were the Ullmann coupling reactions between the iodinated 

truxene core and dipyrenylcarbazole branch catalyzed by CuI/K3PO4/±trans-1,2-
diaminocyclohexane in 1,4-dioxane. The crude product was purified by column 
chromatography on silica gel using hexane:CH2Cl2 to give compounds 1,  2 and 3 in 
43, 38 and 24% yield, respectively, as white solids. 
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Figure 3.4 1H NMR of 1, 2 and 3 in CDCl3 

 

Stacked 1H NMR spectra of 1-3 shown in Figure 3.4 consist of three parts, 
which correspond to the truxene core, dipyrenylcarbazole branches and butyl chains. 
All molecules comprise of major characterictic peak, two multiple signals of 
methylene protons of butyl chain Ha and Ha', singlet signal of aromatic protons in 
carbazole branch Hb, doublet signal of aromatic protons in truxene core Hc. The 
increasing ratio of Ha: Hb: Hc are 6: 2 : 1 for 1, 6: 4: 2 for 2, 6: 6: 3 for 3 respectively, 
corresponding to increasing of dipyrenylcarbazole unit. In Addition, Ha and Hc 
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positions of 2 and 3 exhibited gradually deshield shift compared to 1, relative to the 
increment of the dipyrenylcarbazole branches. 

 
3.2 Optical properties 

The photophysical properties of 1-3 were all measured in CHCl3 solution and 
thin films coated on quartz substrate. The results are summarized in Table 3.1. The 
solution UV–visible absorption spectra of all compounds exhibited absorption 

maxima (max) around 348 - 350 nm. The compound 1 displays four absorption 
bands at 242 nm, 281 nm, 309 nm and 348 nm, which are attributed to the 

absorption of pyrene, carbazole, truxene moieties and -* transitions of the overall 
conjugated aromatic systems, respectively. As the number of dipyrenylcarbazole 
units increased, the intensity of carbazole and truxene bands at 281 nm and 310 nm 
of 2 and 3 decrease in comparison with that of 1 (Figure3.5).  

For the emission properties, all compounds exhibited similar spectra featuring 
emission maxima around 421 to 423 nm which are in the blue region (Figure 3.6). 
The fluorescence quantum yield (Øf) of 1-3 measured in CHCl3 are 0.72, 0.59 and 
0.55, respectively. The decrease in quantum yield may be due to the two-photon 
absorption (TPA) process as reported in a relatively similar aromatic systems [21, 55, 
56]. The thin film PL spectra of 1-3 exhibit also featureless emission bands with a 
red-shift compared to their spectra in solution as shown in Figure 3.6 
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Figure 3.5 Normalized absorption spectra of 1-3 in CHCl3 solution (left) and thin film 

(right). 
 

 
      

Figure 3.6 Normalized emission spectra of 1-3 in CHCl3 solution (left) and thin film 
(right). 
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Table 3.1 Optical Data for Compounds1-3  

Cmpd 
Absorption-max (nm)/ log  (M1cm1) Emission-max (nm) 

Øe 
Solutiona Thin filmb Solutionc Thin filmd 

1 242 (4.67), 281 (4.56), 
309 (4.45), 348 (4.45) 

352 421 435 0.72 

2 244 (4.79), 281 (4.65), 
349 (4.61) 

 353  423  449  0.59 

3 244 (5.05), 281 (4.89), 
350 (4.92) 

 356  421  457   0.55 

a Measured for CHCl3 solutions. 
b Measured for spin-cast thin film.  
c The PL emission excited at the absorption maxima in dilute CHCl3 solution.  
d The PL emission excited at the absorption maxima in thin film.  
e Relative quantum yield was obtained by comparing with standards quinine sulfate 

solution in 0.01 M H2SO4 (ØF = 0.54)  PL quantum yield determined in CHCl3 solution 
(A<0.1) at room temperature. 
 
3.3 Electrochemical properties 

The hole-transporting ability and electrochemical properties of all 
compounds were investigated by cyclic voltammetry (CV). In addition, the HOMO-
LUMO energy levels were calculated from CV resulting data. 

The cyclic voltammetry (CV) experiments were operated using an AUTOLAB 
spectrometer with a three-electrode assembly comprising in dichloromethane in the 
presence of tetrabutylammonium hexafluorophosphate (TBAPF6 0.10 M) as 
supporting electrolyte with a scanning rate of 0.05 V/s at room temperature and the 
resulting data are summarized in Table 3.2. A platinum working electrode, a 
platinum wire counter electrode, and a Ag/AgNO3 (Sat.) reference electrode were 
used in all cyclic voltammetry experiments. 
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As shown in Figure 3.7, the onset oxidation potentials (Eonset) of all compounds are 
presented around 0.75- 0.80V. The HOMO-LUMO energy levels can be calculated 
following equations: 
HOMO (eV) = - (4.44 eV + Eonset).          (5) 

Eg (eV) = 1240/onset         (6) 
|LUMO| = |HOMO| - Eg         (7) 

Where Eonset are the onset oxidation potentials coherent to Ag/Ag+. The 
energy band gab (Eg) was estimated from the absorption beginning from UV-Vis 
absorption spectra of the dyes. 

The onset absorption of dyes (1, 2 and 3) are observed around 397- 400 nm 
relating to the energy gaps around 3.10-3.12 eV. 

 
Figure 3.7 CV curves of componds (1-3) measured in 0.1 M tetrabutylammomium 

hexafluorophosphate (TBAPF6) versus Ag/AgNO3 in dichloromethane. 
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Table 3.2 The experimental and calculated electrochemical properties of 1-3. 

Cmpd 
Experimental data Calculated datae 

Eg  
(eV)a 

Eonset 

(V)b 
HOMO 
(eV)c 

LUMO 
(eV)d 

Eg  
(eV) 

HOMO 
(eV) 

LUMO 
(eV) 

1 3.12 0.75 -5.19 -2.07 3.49 -5.13 -1.64 

2 3.10 0.80 -5.24 -2.14 3.48 -5.13 -1.65 

3 3.11 0.80 -5.24 -2.13 3.50 -5.15 -1.65 
a The optical band gap estimated from the onset of the absorption spectra (Eg = 

1240/onset). 
b Onset oxidation potential estimated from the cyclic voltammogram.  
c Estimated by the empirical equation: HOMO = -(4.44+ Eonset).  
d Estimated from LUMO = HOMO + Eg. 

 

e All calculations were performed by Gaussian 09 code and geometry optimizations 
were done by B3LYP/6-31G(d,p) in CHCl3 solution modelled by the Polarizable 
Continuum Model (PCM) method.  
 

Quantum chemical calculation: To study an information about the 
geometry and electronic structure of all compounds as shown in Figure 3.8. The 
three compounds were optimized using B3LYP/6-31G(d,p) in CHCl3 solution modeled 
by the Polarizable Continuum Model (PCM) method (Figure 3.9). All computations 
were performed by GAUSSIAN 09 [57]. The results revealed that the substituted 
branches were twisted to the core of the compounds with the dihedral angles 
around 55-56 degrees. These large twisting of the dihedrals may reduce the 
conjugation of electrons along the molecules which directly influences the electronic 
and photophysical properties of these compounds. For the one-branched analog (1), 
HOMO and LUMO show that the electron densities are delocalized over the branch 
in which bonding and anti-bonding are occupied. This implies that the lowest 

excitation of electron in this molecule is attributed to -* transition. For the 
compounds 2 and 3, the HOMOs show that the contributions of electron density are 
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very similar in which only two branches (first and second) are occupied. The third 
branch of analog (3) is not involved in the delocalization of electron. However, 
electron density in the second branch of the both compounds are significantly less 
than the first branch. This suggest that increase degree of the branch does not 
significantly alter the photophysical properties of the compounds. The LUMO of all 
compounds are also very similar. The electron density in the LUMO of all 
compounds are delocalized on the anti-bonding region of the first branch. The 
HOMO and LUMO suggest that electron transition at the lowest excitation is mainly 

from the -* transition for all the compounds. 

The calculated energy difference between HOMO and LUMO (H-L) of the 
three compounds are similar at around 3.48-3.49 eV. This confirmed the large 
dihedral angles between the truxene core and the associating dipyrenylcarbazole 

branches. Due to the transition of electron mainly come from -* transition in the 
first branch while the second and third branches are almost not contributing. 

Therefore, the H-L values and the photophysical properties of all compounds are 
very similar. The values from the calculation are in good agreement with the 
experimental data. 

Due to these HOMO energy levels are similar (-5.19 to – 5.24 eV) and suitable 
with the work functions of typically used ITO anode (-4.80 eV) and the commercially 
available PEDOT:PSS (-5.0 eV) as hole injection layer whereas the LUMO energy levels 
of all compounds (-2.07 to -2.14 eV) are nearly with the work function of LiF:Al 
cathode (-4.20 eV) and the commercially available BCP (-3.0 eV) as hole-blocking 
layer. So these materials are appropriate for OLED application by using as the hole-
transporting layer.  
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Figure 3.8 The HOMO and LUMO orbitals of the compounds (1-3) calculated by 

B3LYP/6-31G(d,p) method. 

 

 
Figure 3.9 Optimized structure of the compounds (1-3). 

 
3.4 Thermal properties 

For OLED applications, the critical for device stability and lifetime are depend 
on the thermal stability of organic materials. Due to, heat is generated during device 
operation which can change the organic layer morphology leading to the degradation 
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of OLEDs. The thermal properties of 1-3 were investigated by the thermo gravimetric 
analysis (TGA) and differential scanning calorimetry (DSC). 

The thermal properties of all compounds are illustrated as Figure 3.10 and 
concluded in Table 3.3. The TGA curves show that all three compounds are 
thermally stable with the decomposition temperature at 10% weight loss (Td

10%) 
excellent above 440°C. From DSC measurement, there was one sharp endothermic 
peak for 1 at 313oC due to melting temperature (Tm) and there was no endothermic 
baseline shift due to glass transition temperature (Tg); it revealed that 1 has high 
crystalline. For 2 and 3 reveal an endothermic baseline shift owing to glass transition 
(Tg) above 165oC with no crystallization and melting were detected at higher 
temperature, indicating highly stable amorphous material.  

 
 
 
 
 
 

 
 

Figure 3.10 TGA thermograms of 1-3 measured at a heating rate of 10 °C/min-1 (left) 
and DSC (1st heating scan) (right). 

 
Table 3.3 Thermal properties of 1-3 

Compounds Tg
a (oC) Tm

a (oC) Td
b (oC) 

1 - 313 441 
2 165 - 461 
3 180 - 461 

a Obtained from DSC measured at heating rate of 10oC/min under N2.
 

b The decomposition temperature at 10% weight loss obtained from TGA measured 
at heating rate of 10oC/min under N2. 
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3.5 Electroluminescent (EL) 

3.5.1 Investigation of the  light-emitting properties 
Overall to study their electroluminescent properties, muti-layer OLEDs device was 
fabricated using (1-3) as emitting layers (EMLs) by spin-coating and comparing with 
the commercial standard NPB which emitted blue light region.  

In the first step, to optimal condition spin-coated thin film from compound 1 in 
device (I - III) of structure ITO / PEDOT:PSS / 1(spin-coating)(40 nm)/ BCP (30 nm) / LiF 
(1.0 nm):Al (100 nm) as shown in Figure 3.11 

Device Ι      0.5 %w/v of compound 1  

Device ΙΙ     1.0 %w/v of compound 1  

Device ΙΙΙ    1.5 %w/v of compound 1  

 

 
 

Figure 3.11 Energy level diagrams of device (I - III) 
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Figure 3.12 Configuration of Device 

 
Figure 3.13 Chemical structure of PEDOT:PSS (a),  and BCP (b) and NPB (c) 

 

 
Figure 3.14 Current density-voltage-luminance (J-V-L) characteristics of the OLEDs 

 (device I - III). 

ITO (anode layer, 150 nm) 

EML 40 nm 

BCP 30 nm 

LiF 1.0 nm 

Al (cathode layer) 100 nm 

PEDOT:PSS  30 nm 

(a) (c) (b) 
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Under applied voltage, the devices (I - III) emit a pure deep blue emission 

with peak centred at 424 nm, CIE coordinates of (0.15, 0.10) and summarized in 
Table 3.4, the results reveal that device (I) showed the highest performances of the 
device with a maximum luminance (Lmax) of 4,811 cd/m2 at 9.2 V, a low turn-on 

voltage (Von) at 3.6 V, maximum luminance efficiency (lum) at 1.97 cd/A at the 
voltage 7.2 V (Figure 3.14), Indicating that at the low concentration molecule might 
be rearrangement in thin film well than high concentration. So we choose this 
condition for preparing to fabricate devices (IV- VI) with compound 2, 3 and standard 
NPB respectively as shown in Figure 3.15. 

 

 
Figure 3.15 Energy level diagrams of device (IV - VI) 

 

The results are summarized in Table 3.4. Under applied voltage, all devices 
exhibited blue emission. The EL spectra of all devices match with their solid film 
(spin-coated) PL spectra. The voltage-luminance and voltage-current density 
characteristics (J-V-L) of the devices appear promising in term of brightness and 
efficiency. The device fabricated with compound 3 as EML (Device V) exhibits highest 
brightness with Lmax of 8,115 cd/m2 at 10.8 V, a turn-on voltage (Von) at 3.8 V. 
However, device IV which has compound 2 as EML displayed the best performance 
in terms of high maximum brightness at 8,001 cd/m2 at 9.6 V, a low turn-on voltage 

(Von) at 3.4 V and maximum luminance efficiency (lum) at 2.33 cd/A at the voltage 
6.6 V (Figure 3.16). 
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Table 3.4 Device characteristics of OLEDs fabricated with 1 – 3 as the EMLs (device I 
– VI) 
Device EML em Von

e Lmax
f Jmax

g 
(mA cm-2) 

lum
h
  (cd A-1) 

(at the voltage (V)) 

CIEi (x,y) 
 

Ia 1  424 3.6 4,811/9.2V 338 1.97/7.2V 0.15, 0.10 

IIb 1  424 4.4 3,099/11V 293 1.48/8.8V 0.15, 0.10 

IIIc 1  424 6.6 1,248/17.6V 267 1.29/10.8V 0.16, 0.11 

IVd 2 463 3.4 8,001/9.6V 660 2.33/6.6V 0.15, 0.14 

Vd 3 468 3.8 8,115/10.8V 670 1.99/8.0V 0.16, 0.19 

VId NPB 427 2.8 2,685/8.8V 719 0.71/4.2V 0.15, 0.07 

a ITO/PEDOT:PSS/1 (0.5 %w/v)/BCP/LiF:Al    
b ITO/PEDOT:PSS/1 (1.0 %w/v)/BCP/LiF:Al 
c ITO/PEDOT:PSS/1 (1.5 %w/v)/BCP/LiF:Al 
d ITO/PEDOT:PSS/EML/BCP/LiF:Al 
e Turn-on voltage (V). 
f Maximum luminance (cd/m2) (at applied potential V). 
g Current density (mA/m2). 
h Luminance efficiency (cd/A). 
i Commission International d’Eclairage coordinates (x, y). 

EL 
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Figure 3.16 Current density-voltage-luminance (J-V-L) characteristics of the OLEDs 

 (device I, IV - VI). 

 
Figure 3.17 EL spectra plot of OLEDs (devices I, IV – VI). 
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Figure 3.18 A CIE chromaticity diagram showing the positions of devices. 
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Figure 3.19 Emission color of OLEDs (devices I, IV – VI). 

3.5.2 Investigation of the hole-transporting properties 
As mentioned above, the HOMO energy level of all compounds are around at 

-5.19 to -5.24 (eV) which are suitable for the work function of ITO anode (4.80 eV). 
Since the HOMO energy level of the emissive layer Alq3 is at 5.80 eV, it is also 
possible that our compounds can be appropriate for application as hole-transporting 
materials (HTM) in OLEDs. To test this hypothesis, a number of multi-layer OLED 
devices were fabricated with structure of ITO/PEDOT:PSS/HTL[spin-coated 1-3 
30nm]/Alq3[50nm]/LiF[1.0nm]/Al[100nm] (Device VII - IX). For device X – XI, the 
commercially available NPB is used as HTL in order to compare with our compounds. 
Moreover, the reference device XII also fabricated without an HTL was compared 
with all devices as shown in Figure 3.20  

Device I Device IV 

Device V Device VI 
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Figure 3.20 Energy level diagrams of device (VII - XII) 

 

Figure 3.21 Chemical structure of Alq3 
 

All devices VII to XII emit bright green color of Alq3 (512 - 517 nm and CIE 
0.26, 0.50) as shown in Figure 3.23, indicating that 1-3 acted only as the hole-
transporting layer like NPB. The summarized data in Table 3.5 indicated that all 
devices with HTL exhibited better performance compared to the reference device 
without HTL. The device (VIII) utilizing compound 2 displayed the best performance 
with highest maximum brightness of 44,773 cd/m2 at 10.8 V, a low turn-on voltage 

(Von) at 2.8 V and maximum luminance efficiency (lum) at 7.39 cd/A at the voltage 
6.6 V.  

 



 

 

51 

Table 3.5 Device characteristics of OLEDs fabricated with 1 – 3 as the HTL (device VII 
– XII) 

Device HTL em Von
b Lmax

c Jmax
d
  

(mA cm-2) 
lum

e
  (cd A-1) 

(at the voltage (V)) 

CIEf (x,y) 
 

VIIa 1 512 3.0 35,593/11.6V 1,058 6.03/7.4V 0.26, 0.50 

VIIIa 2 512 2.8 44,773/10.8V 1,057 7.39/7.4V 0.26, 0.49 

IXa 3 512 3.2 37,953/10.8V 1,020 6.06/7.4V 0.27, 0.52 

Xa NPB 517 2.4 31,857/9.4V 1,598 4.45/4.6V 0.29, 0.54 

XIa NPB 
(evap.) 

515 3.0 36,958/11.0V 1,423 5.15/5.6V 0.27, 0.53 

XIIa - 517 4.0 4,633/9.6V 794 1.01/7.0V 0.29, 0.53 

a ITO/PEDOT:PSS/HTL/Alq3/LiF:Al 
b Turn-on voltage (V).                         
c Maximum luminance (cd/m2) (at applied potential V). 
d Current density (mA/m2).                   
e Luminance efficiency (cd/A).  
f Commission International d’Eclairage coordinates (x, y).  
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Figure 3.22 Current density-voltage-luminance (J-V-L) characteristics of the OLEDs 

(device VII – XII). 
 

 

 
Figure 3.23 Plots of EL spectra and emission color of Alq3-based OLEDs 

(devices VII – XII) (left) and  A CIE chromaticity diagram showing the positions of 
devices (VII – XII) (right). 
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The morphology of the spin-casting films (1-3), which may contribute to the 
OLED device performances, was examined by atomic force microscopy (AFM). The 
AFM images of all thin films spin-coated from the CHCl3-toluene (2:1) solution show 
excellent film-forming properties (Figure 3.24). The films are highly uniform with 
smooth surface. This homogeneous morphology was necessary for OLEDs with 
reduce leak currents and improved thermal stability during device operation. 

 
Figure 3.24 AFM images of the spin-coated films of 1-3 



 

 

CHAPTER IV 
CONCLUSION 

A series of novel compounds based on truxene derivatives with different 
numbers of dipyrenylcarbazole pendants have been synthesized via C-N coupling. 
The solution UV–visible absorption spectra of all compounds exhibited absorption 

maxima (max) around 348 - 350 nm and emission maxima around 421 - 423 nm 
which are in the blue region. The resulting these compounds showed good 
morphological thin film with high Tg above 165oC and thermal stabilities at 10% 
weight loss (Td

10%) excellent above 440°C, indicating that these compounds are 
suitable for application as OLED materials. 

The multi-layer OLEDs using these compounds as hole-transporting non-
doped emitters and BCP as a hole-blocking layer (ITO/PEDOT:PSS/1–3/BCP/LiF:Al) 
emit deep blue color according to the CIE coordinates with high luminance 
efficiencies as compared to the reference device using NPB. Among three materials, 
the 2-base blue OLED was found to be the best device performance with high 
maximum brightness of 8,001 cd/m2 at 9.6 V, a low turn-on voltage (Von) at 3.4 V and 

maximum luminance efficiency ) at 2.33 cd/A at 6.6 V.  
As a hole-transporting properties, spin-coated OLEDs with a structure of  

ITO/PEDOT:PSS/1–3/Alq3/LiF:Al. All device display a bright green emission of Alq3  
(ELmax 512 - 517 nm, CIE 0.26, 0.50). Their ability as HTL for green OLEDs was 
comparable to a common hole-transporter NPB. The device VIII (2-base) exhibited 
the best performance with highest maximum brightness of 44,773 cd/m2 at 10.8 V, a 

low turn-on voltage (Von) at 2.8 V and maximum luminance efficiency (lum) 7.39 
cd/A at 7.4 V. 
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Figure A1. 1H-NMR spectrum of 3,6-diiodo-9H-carbazole(4) in DMSO-d6 

 

 

 
Figure A2. 1H-NMR spectrum of 3,6-Di(pyren-1-yl)-9H-carbazole (5) in DMSO-d6 
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Figure A3. 1H- NMR spectrum of truxene (6) in CDCl3 

 

 

 

 
Figure A4. 1H- NMR spectrum of 5,5,10,10,15,15-Hexabutyl-truxene (7) in CDCl3 
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Figure A5. 1H- NMR spectrum of 5,5,10,10,15,15-Hexabutyl-2-iodo-truxene (8) in CDCl3 

 
Figure A6. 1H- NMR spectrum of 5,5,10,10,15,15-Hexabutyl-2,7-diiodo-truxene (9) in 
CDCl3 
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Figure A7. 1H- NMR of 5,5,10,10,15,15-Hexabutyl-2,7,12-triiodo-truxene (10) in CDCl3 
 

Figure A8. 1H- NMR spectrum of compound 1 in CDCl3 
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Figure A9.  13C-NMR spectrum of compound 1 in CDCl3 
 
 

 
 
Figure A10.  MALDI-TOF spectrum of compound 1 
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Figure A11. 1H- NMR spectrum of compound 2 in CDCl3 

 

 

 
 
Figure A12.  13C-NMR spectrum of compound 2 in CDCl3 
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Figure A13.  MALDI-TOF spectrum of compound 2 

 

 
Figure A14. 1H- NMR spectrum of compound 3 in CDCl3 
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Figure A15.  13C-NMR spectrum of compound 3 in CDCl3 

 
 
 
 

 

Figure A16.  MALDI-TOF spectrum of compound 3  
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Figure A17.  TGA spectrum of compound 1 
 

Figure A18.  TGA spectrum of compound 2 
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Figure A19.  TGA spectrum of compound 3 

 
 

 
Figure A20.  DSC spectrum of compound 1 
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Figure A21.  DSC spectrum of compound 2 

 
 
 

 
Figure A22.  DSC spectrum of compound 3 
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