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The measurement of Near infrared (NIR) spectroscopy, combined with
chemometric techniques, has been widely employed for quality control in food
products. This study presents a methodology to optimize the calibration models,
called “universal model” of NIR spectra of primary condition (glucose solutions)
and maintain the accurate prediction of secondary conditions. For instance, the
models were designed for determination of glucose concentration in non-alcoholic
drinks. Three stages of methodology including pre-processing, feature selection and
main component extraction were applied to spectral data in order to obtain the
universal calibration model. The simulated NIR spectra with different noise levels
were used to ensure that the model from our methods is able to estimate amount
of sugar in any conditions with high accuracy. From the analysis, the universal
model improves the prediction for the test set (unseen data) for at least 30
percent compared to the other predictions. Then, it was used to quantify amount
of glucose in non-alcoholic beverages (tea, cocoa and coffee in the case). The
promising value for root mean square error of prediction (RMSEP) were obtained to
be 0.72 (* = 0.9972), 0.99 (* = 0.9965) and 0.54 (r* = 0.9940) corresponding to tea,
cocoa and coffee system, respectively. Therefore, it might be implied that our
universal model approach can be used to estimate glucose concentrations in other

non-alcoholic drinks without anv reauirement of a new calibration model.
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CHAPTER |
INTRODUCTION

1.1 Introduction

In recent years, near infrared spectroscopy (NIR) has broad prospects for the
quality measurement system in various fields such as agriculture, pharmaceuticals and
food industry. It displays to be reliable one of the promising nondestructive
techniques. The attraction of NIR lie in its advantages over other analytical techniques
such as no requirement for sample pretreatment, very fast and easy to implement®.
NIR spectroscopy is among the vibrational techniques that measure wavelengths from
800 nm to 2500 nm?. The band regions of NIR are based on molecular overtones and
combination vibrations of C-H, O-H and N-H which are the primary functional
groups of organic molecules®. It enables qualitative and quantitative assessment via
spectral information and multivariate calibration models especially for complex
chemicals in food and drinks such as protein®, carbohydrate® , sugar® and lipids’.
There are evident that NIR has simplified and helped to quantify a variety of element
in food such as moisture, protein, wet gluten and fat®. With the advance of
technology, the prices of commercial NIR instruments in the current market is
relatively cheap as there are the development of micro-electromechanical system
(MEM) technology. Therefore, it offers the NIR detection using such a small sensor
chip. It is foreseeable that the current NIR spectrometer can produce a large amount
of data. However, due to overtone and combination bands of NIR spectrum contain
very complex and many overlapping signals. Consequently, the distinguished and
characteristic peaks of an analyze are difficult to identify by conventional band
assignment methods and spectral analysis method®. More sophisticated approaches
with mathematical and statistical tools are required to extract analytical information
from the corresponding NIR spectra.

Chemometrics is an application of mathematical and statistical methods to
data that is underlying chemical in nature to obtain relevant information®. Multivariate
data analysis on visualization, calibration and classification are among the most

important and widely used in chemometrics methods. In this study, only multivariate



calibration is discussed. The multivariate calibration investigates the relationship
between two set of variables which usually defines as “predictor” variables
(dependent ‘X’ block) and “response” variables (independent ‘y’ block) which can be
in form of vector or matrix. The predictor variable is an independent variable that is
being manipulated in an experiment while the response variable is the effects from
whose variation is being studied. Examples of the predictor variable including
physical-chemical measurements are wavelengths in the case of NIR spectra. The
responses are properties of interest such as concentrations in the case. Multivariate
calibration always involves two major stages: (1) Modelling where a calibration
model is constructed using samples with known properties as “training set” and (2)
Prediction which involves the prediction of unknown samples as “test set” based on
the built relationship information obtained from the first stage. Overall model was
shown in Figure 1.1. From figure 1.1, the training set consists NIR spectra of N
variable and M sample and a response variable vector (y). A coefficient vector (b) is
calculated based on the maximum correlation coefficient between data matrix X and
response vector y. Then, these coefficients were used to predict response of the
external test set (Ypredict).

To build a good calibration curve from a single defined peak from NIR spectra
might not sufficient. Chemometrics has most often been used to extract specific
features to specific chemical components in the NIR spectra for effective
interpretation. A main part of chemometics is multivariate data analysis, which is
pivotal for quantitative and qualitative assay based on NIR spectra. Multivariate data
analysis techniques such as principal component analysis (PCA)° and partial least
squares (PLS)! are used to mathematically predict the pure component spectra and
pure component concentration profiles from the set of NIR spectra. Mostly, PLS have
been frequently used to build the calibration model from NIR spectra®?. A calibration
model is a mathematical relationship between the acquired spectra and factor of
interest and generated calibration model can be used to predict the response of the
unknown samples. By conventional way, each calibration model is required for each
system. To obtain an appropriate quantification, a new calibration model must be
constructed for any new system. It is inevitable, in case of many systems need to build

a new calibration model



Original multivariate data a single new variable
(NIR spectrum in the case) (Concentration in the case)
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Figure 1. 1 Summarize model generation by partial least square regression (PLS), with
N obtains total number of variable (wavelength), Mirian Obtains total number of sample

from training set, Mes: obtains total number of sample from test set

all times rendering a multivariate calibration model invalid. Hence, the limitation of
prediction capabilities in multivariate spectral calibration model was occurred because
time consuming, costly, involving selection and preparation of a large numbers of
calibration sample sets. In reality, it is not possible to obtain all calibrations due to the
limitation of laboratory and the measurement conditions. Therefore, the process of
searching for the chemometric approaches to interpret and improve the predictive
ability on future samples in different system is called “Calibration maintenance”®>.
Model maintenance can be roughly defined as the ongoing upkeep of calibration
model of primary condition to maintain their predictive abilities of secondary
conditions. The goal of model maintenance is to preserve or to improve models over
time and changing conditions with the least amount of effort, cost and it should be
done automatically. In practical application, it is preferable to produce the universal
calibration model that can be used to predict another system without any requirement

of set up new calibration curve for quantitative as shown in Figure 1.2.
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Figure 1.2 an overview of the step for universal calibration model to predict unknown

sample in another system

From Figure 1.2, it is a brief summary of our model maintenance idea.
Initially, primary condition consists of 3 components including analyte (glucose),
solvent (water) and noise (other chemical content). Subsequently, principal
component analysis was performed on the data of primary condition to extract main
components (analyte + solvent) that will later represent in form of new data matrix.
After that, the calculation model was constructed from the matrix as a universal model
by using PLS. The generated model involves only the relation of the extracted main
components, in the case, the noise might not affect the model. Therefore, this model
can be used to quantify amount of analyze in secondary conditions with high accuracy
and precision.

In the reality, there are many maintenance methods such as simple univariate
slope and bias correction method'* that is one of the most widely methods for
correcting predictive value to standardize the calibration models. Therefore, the
calibration developed on primary condition has an ability to predict the response in
secondary condition. Direct standardization (DS) is a common calibration
maintenance that uses the correlation coefficients between matrices from primary and
secondary condition to standardize the calibration model*®'®. In the extended
standardization called “Piecewise direct standardization (PDS)” were developed®’.
From the method, the data is segmented into small sub-windows and the correlation

coefficients are determined using PLS rather than the simple multiple linear



regression (MLR) in DS*®. However, the disadvantages of these methods are that
utilizes all the variations in the data must be utilizes therefore the variation of primary
condition must be standardized together with all other conditions. The prediction
cannot be accurate when the model is used to predict a sample from an unknown
condition. The approach does not produce ‘“universal” model as demonstrated

previously.

Glucose in non-alcoholic drink

Glucose is an aldolic monosaccharide that is essential in the processes of
photosynthesis and respiration, serving as an energy storage and metabolic fuel in
most organisms®®. Moreover, glucose plays an important role in our daily life in form
of food and beverage. Non-alcoholic beverages are the soft drinks heavily consumed
mainly because of their nutritional values and companies promote and market them
everywhere. Naturally, glucose is the major content in mostly soft drink. They
provide energy for the body and also in the physiological processes within the human
body. To receive of glucose may lead to excessive energy intake, increasing the risk
of overweight and obesity?°. For this reason, determination of glucose content in non-
alcoholic beverages are important. In last decade, various techniques for the
determination of glucose have been published. Three standard techniques were used
to determine amount of pure sugar and in mixing sugar solution including density
measurement, refractive index measurement and enzymatic assay?!. In 1999, Harms et
al. reported a new method for determination of glucose in soft drinks base on the
glucose oxidase-catalyzed oxidation, resulting the limit of detection (LOD) is 10
umol/l (1.8 ppm)?2. Although this method is specific, rapid and reproducible, but they
require single determination for each compound, which is time consuming and
expensive. Meanwhile, several methods to quantify amount of glucose have been
developed as well. High-performance liquid chromatography (HPLC) is a standard
method used for analyzing glucose in non-alcoholic beverages. In 1992, Akiyama et
al. developed column packing material and applied to the separation of many kinds of
sugar to determine amount of sugar (glucose, sucrose) in soft drinks. This method can
be used to predict amount of sugar of approximately 4.2 g per 100 mL in drink?.

However, they require tedious sample preparation and a relatively long analysis time



for each analysis. In contrast, vibrational methods are non-destructive, easy to use,
rapid, and do not require sample preparation. Near infrared spectrometry (NIR) are
novel and useful alternative to the classical methods mentioned above. Rambra and
Guardia reported the method for the direct determination of sugar in fruit juice
samples!?. This method base on the partial least square (PLS) calculation on the first
derivative near infrared (NIR) spectra. The limit of detection values are in the range
of 0.2 g/100 ml total sugar and 0.2 g/100 ml for glucose. In 2009, Xie et al. used near-
infrared (NIR) spectroscopy to detect and quantify glucose, fructose and sucrose in
bayberry juice?*. For the result, root square error of cross validation in range of 0.1-
0.5, it can be noticed that this method provided an accurate and precise way for
determination of glucose, fructose and sucrose in real samples. However, from
literature reviews, it can be seen that the determination of glucose using NIR
spectroscopy reveals the accuracy of the evaluating models which were not very
perfect compared to HPLC method. Nevertheless, NIR spectroscopy is preferable by
reasons of their ability to dramatically reduce consuming time and cost of monitoring
without any chemical treatment.

In this work, a new alternative method for calibration maintenance was
proposed. The idea involves 2 major steps. Firstly, the major components were
extracted from the calibration of primary condition (glucose solutions). The
calibration model for prediction was built using only major components for prediction
of glucose in secondary conditions. Secondly, the optimization of the calibration
model including number of principal components, number of PLS components and
effective wavelength regions were performed. This proposed method was totally
automatic, therefore, it can be applied in other systems. In this study, the simulated
datasets with different added noise levels were generated in order to prove our
proposed concept. For practical system, quantification amount of glucose in non-
alcoholic beverages (tea, cocoa and coffee) were chosen to demonstrate this particular
application of the idea because it is a simple system and it benefits in many aspects
such as nutritional labeling, detection of adulteration, food quality and economics.
This protocol can be used in any secondary condition contain water and glucose as

major components without any requirement of set up new calibration curve.



Table 1.1 Literature reviews of determination of sugar in non-alcoholic drink using

Near-Infrared spectroscopy combined with chemometrics

Year Journal System Chemometrics | Detection Accuracy Ref
limit
1981 Journal of glucose, fructose MLR 20.03 Predicted error 25
food of and sucrose Yow/w =46
science dried apple SD =0.90
tissue
1984 Journal of glucose, fructose PLSR 2.22- 26
food of and sucrose 14.90
science fruit juice g/100ml
sample
1997 Analytica total sugar, PLSR 0.2 RSD =0.4-2.3% | 12
Chimica sugars, glucose, g/mol
Acta sucrose, fructose
fruit juice
sample
2006 Journal glucose, PLSR 0.059 RMSEP =0.201 | 27
agriculture fructose and 9/100g RMSEC =0.275
and food sucrose
chemistry apple juice
2009 Food of glucose,fructose PLSR 2.10 RMSEP =0.093 | 24
chemistry and sucrose 9/100g RMSEC = 0.0826
bayberry juice
2015 | Journal of glucose, fructose PLSR 8.00 RMSEP =0.408 | 28
near and sucrose 9/100g RMSEC =0.313
infrared roasted green
spectro tea
scopy
Note: MLR : Multiple Linear Regression
PLSR : Partial Least Squares Regression
RMSEP : Root Mean Square Error of Prediction
RMSEC : Root Mean Square Error of Calibration
SD : Standard Deviation

RSD

: Relative Standard Deviation




However, glucose in alcoholic beverages was neglected in this study. Since
molecular structures of alcohol (C2HsOH) contains only ethyl group (C2Hs-) and
hydroxyl group (-OH) which are similar to the main functional groups of sugar,
therefore, the overtone patterns of alcohol will be strongly affected to the overtones of
sugar. Moreover, the ethyl alcohol is easily volatile that the contents cannot be
controlled during the detection. Furthermore, most of alcoholic drinks contain less or

without sugar which is not suitable for use in sugar detection.

1.2 Objective of this work
To develop a calculation procedure based on chemometrics for determination

of glucose concentration in non-alcoholic beverages using Near Infrared Spectroscopy

1.3 Scope of this work

This study involves the development of procedure based on chemometrics to
perform the universal calibration model. The model was built from primary conditions
(glucose in water solution). The developed procedure was performed in order to use
the model (from primary condition) to determine glucose concentration in secondary
conditions (tea, cocoa and coffee in the case). The limitation and performance of
developed procedure was evaluated by using the simulated dataset (NIR spectra) with

different added noise level.



CHAPTER I
THEORETICAL BACKGROUND

2.1 Near infrared spectroscopy

Over the past 30 years, on/in-line near infrared NIR spectroscopy has been
developed to be one of the most efficient and advanced technique for controlling and
estimation of quality assessment not only in the food processing but also gain wide
acceptance in pharmaceutical industry, biotechnology, plastics and textiles?®. NIR
spectroscopy is a vibrational spectroscopic technique among the infrared light
spectrum with close to visible region that can be expressed in range of 750 nm and
2500 nm as shown in Figure 2.1

Wavelength A um 0.001 ~ 0.01 0.1 1 10 100 1000
Wavenumber cm- 108 108 104 1000 100 10 1
| | | | g | | | |
|
Spectra region X-ray Ultraviolet Visible Infrared Microwave
) Middle-IR . Far-IR
I T 1
Wavelength (nm) 700 2500 25000 100000
‘ LI ; I ; ! .
700 1100 1800 2500
Overtones Overtones Combination
2rd N-H 15t C-H, N-H C-H, N-H, O-
3rd C-H 2nd C-H H, C=0

Figure 2. 1 the range of electromagnetic radiation in UV (10 nm to 400 nm), visible (400
to 700 nm), infrared (700 nm to 1 mm) and NIR (700 -2500 nm)

NIR spectroscopic method is based on molecular overtone and combination
vibrations of C-H, O-H and N-H. Combination bands originate by concurrently
interaction between two or more vibrations®*3!, Generally, even a normal mode of
vibrational following to internal atomic motions in which all atoms move in phase
with same frequently but different amplitude. Moreover, these normal vibration

transition was called overtone. According to the selection rules of quantum mechanics
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mention normal transition are prohibited cause molar absorptivity in the NIR region is
very small*®. One of the rules that govern the basics idea of vibrational spectroscopy

is Hooke’s law. Hooke’s law states that, for two body harmonic oscillators, the

frequency of vibration is

4 1 (e(ug +up)
VvV (incm™®) = - ity

Where, S = speed of light, &€ = force constant (5 x 10° dynes/cm)

uz and uz is mass of molecule 1 and molecule 2, respectively.

Normally, fundamental vibration for diatomic molecules can be calculated by
Hooke’s law. To make it easy to understand, the simple example was shown in Figure
2.2.

3rd overtone

—

Energy

Bond length

Figure 2. 2 vibration transition of diatomic molecule

Transition from ground (v = 0) to the first excited state, namely fundamental
bands which absorbs strongly light in IR render to high intense band. Transition from
the ground state to the second exited state with absorption of NIR that perform weak
bands was called 1% overtone in NIR. Transition from ground state to the third exited
state with the absorbance of NIR cause to weak band, namely 2" overtone. In a

similar way, transition from the ground state to fourth and fifth exited state with
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absorbance of NIR will be provided 3™ and 4™ overtone, respectively. Additionally,
the near infrared absorption region that correspond to vibrational transition

(mentioned above) was shown in Figure 2.3

Combinatjon

1-st Overtone

Absorbance

3-rd Overtone

e,

| T 1
900 1200 1400 1600 1800 2000
Wavelength (nm)

Figure 2. 3 Near infrared overtone absorptions

Obviously, weakly absorbed bands occur in the NIR regions due to the
overtone and combination bands. As a result, it difficult for use of NIR spectral
information for analytical purpose. Therefore, mathematical and statistical method is
usually combined with NIR spectra for extracting as much relevant information as
possible from analytical data'. Chemometric is one of the methods in order to extract

the necessary information for further analysis.

2.2 Chemometrics
Chemometrics is an application of mathematical and statistical methods to

extract only the essential component from NIR spectra comprising complicated
overlapping absorption bands. Multivariate data analysis on visualization, calibration
and classification are among the most important and widely used in chemometrics
methods.

2.2.1 Principal component analysis (PCA)

Principal component analysis (PCA) is one of tool from multivariate statistics

that help to drastically reduce dimensionality in a large dataset, while that most of the
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essential information is preserved®?. Basically, PCA was used to extract the main
component from data matrix base on two principal idea, including the number of
significant PCs which ideally equal to the number of significant component (such
there are three components in the mixture, then only three PCs was expected), the
other one is characterization of each PC by loadings and scores.

NIPALS (Nonlinear Iterative Partial Least Squares) is a common, iterative
algorithm often used for PCA%. Briefly, it extracts components one at a time, and can
be stopped after the desired number of PCs has been obtained. The steps are as

follows:

Initialization

1. Originate a data matrix X which is used for PCA.

New Principal Component
2. Take a column of this matrix (often the column with greatest sum of squares) as

the first guess of the scores first principal component; called M@/,

Iteration for each principal component

A

i ... X
3. CaICUIate ﬁunnorm = mét—,lt\‘;l
4. Normalize the guess of the loading, so

) |
~ _  Punnorm

vV Zﬁunnorm

5. Now calculate a new guess of the score:
thow = X. DT
Check for Convergence
6. Check if this new guess differs from the first guess; a simple approach is to look at
the size of the sum of square difference in the old and new scores, i.e.
S Einitiat — Enew)?. If this is small, the PC has been extracted, set the PC scores
(t) and loading (p) for the current PC to £ and p. Otherwise, return to step 3,

substituting the initial scores by the new scores.
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Compute the Component and Calculate Residuals
7. Subtract the effect of the new PC from the data matrix to obtain a residual data
matrix:
Xresia = X-1.p

Further PCs
8. If it desires to compute further PCs, substitute the residual data matrix for X and
go to step 2.

2.2.2 Partial least square (PLS)

In order to construct a calibration model, partial least square (PLS) is one of the
most popularly used multivariate calibration methods. Its purpose is to predict a
dependent variable, y (of size M x 1 where M is the number of samples), from a
matrix of independent variables or predictors, X (of size M x N where N is number of
wavelengths), by projecting X and y to the latent subspaces that maximise the
covariance between them®*. This criterion combines high variance of X and high
correlation with the interesting property of y. According simple structure of this latent
variable (LV) model, T is a score matrix obtaining K LVs, K < N (of size M x K); P is
a loading matrix (of size K x N) and q (of size K x 1) are matrices of coefficients that
relate T to predictor (wavelength) and predicted variable (sample), respectively; e and

f represent the residual information in X and y after K LVs, respectively®*.

X=T.P+e (1)
y=T.q+f (2

In order to estimate T value, the general form was shown in equation (3), where H is

a matrix of weights (of size N x K), usually estimated using the NIPALS algorithm.

T=X.H (3)
Subsequently, T in equation (2) was substituted by equation (3) leads to the simple
equation for prediction of y (eq. 4), (where y corresponds to the matrix of predicted
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variables (each column of which follows to a different number of LVs) and b (of size

N x 1) obtain the matrix of estimated regression coefficients.

y=X.b 4)

All parameters can be calculated following this step:

Initialization

1. To obtain matrix X which is used for PLS.

2. Take the concentration vector y and preprocess it to give the vector ¢ which is
used for PLS. Note that if data matrix X is centred down the columns, the
concentration vector must also be centred. Generally, centring is the only from of
preprocessing useful for PLS. Start with an estimate of ¢ that is vector of Os (equal

to the mean concentration if the vector is already centred).

New PLS component
3. Calculate the vector
H=XT.c
4. Calculate the score, which are simply given by
X.H

T

5. Calculate the X loadings by

TT. X
yr?

P=

6. Calculate the c loading (a scalar) by
_ cT. T
=3

q

Compute the component and calculate residuals
7. Subtract the effect of the new PLS component from the data matrix to get a
residual data matrix:
Xresia= X-T.P
8. Determine the new concentration estimate by

Crew = Cinitial+ T . P
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and sum the contribution of all component calculated to give an estimated ¢. Note that
the initial concentration estimate is 0 (or the mean) before the first component has
been computed. Calculate

Cresid = Ctrue = Cnew
where cwe IS, like all values of c, after the data have been preprocessed (such as
centring).

Further PLS Components

9. If further components are required, replace both X and ¢ by the residuals and
return to step 3.
Note that in the implementation used in this text the PLS loading are neither

normalize nor orthogonal.
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CHAPTER 111
EXPERIMENTS

3. Materials and Methods
3.1 Chemicals and Materials

Analytical grade of D (+) — glucose was purchased from Ajex Finechem.
Ingredients for the preparation of non-alcoholic drinks including tea, cocoa and coffee
were bought from local supermarkets (Tesco lotus at Chamchuri Square, Bangkok,
Thailnd). The dried tea leaves were purchased from Three Horses Tea Co.,Ltd., while
Dutch cocoa powder were bought from Pongjit Company Limited. Instant Coffee
Mixed with Finely Ground Roasted and Coffee were purchased from Quality Coffee
Products Ltd. All of them was used without any further pretreatments. In this work,
glucose solutions and non-alcoholic drink were prepared by using distilled deionized
water (DI). All glassware was cleaned up with detergent followed by DI water for

several times.

3.2 Sample preparation

For preparation solution of non-alcoholic drinks, the dried tea leaves were
measured for 5 g (low) and 10 g (high) which was incubated in the 200 mL of hot DI
water for 5 minutes. Then the solution was filtered to separate tea leaves in order to
obtain the stock of tea solution. In case of soluble ingredients (e.g. cocoa and coffee),
the stock solutions were prepared using 5 g (low) and 10 g (high) of the cocoa powder
were dissolved in a 200 mL of hot DI water and were stirred until all powders were
dissolved. This preparation protocol was repeatedly performed using the instant
coffee. From this step, the stock solutions with high and low level of tea, cocoa and
coffee were successfully prepared and were undisturbedly left until the temperature of
the solution were cooled to the room temperature (25°C)

Subsequently, the glucose solutions were prepared using DI water as primary
condition and the stock of non-alcoholic drink solution including tea, cocoa and

coffee as secondary conditions. A calibration set of samples was prepared with
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glucose concentrations at 3, 5, 7, 10, 12, 14, 16, and 18 %w/w using DI water as

solvent. To prepare percent weight of solution, all steps were performed on the

A
Hot DI water
200 mL
Dried tea leaves Dried tea leaves Tea solution with stock of tea
5¢g 5 g mixed with hot DI water tea leave solution
B
Hot DI water
=W m
Dutch cocoa powder Dutch cocoa powder stock of cocoa
59 5 g mixed with hot DI water solution
C
Hot DI water
= ﬂ
Coffee powder Coffee powder stock of coffee
5g 5 g mixed with hot DI water solution

Figure 3. 1 Preparation procedure of stock solution of non-alcoholic drink including (A)
tea, (B) cocoa and (C) coffee solution at low level (5g /DI 200 mL) which were further
use as solvent for secondary condition. In order to obtain high level, 10g /DI 200 mL of

tea, cocoa and coffee was used

balances with 4 digits. These ranges of the glucose concentrations (3-18 %w/w) were
chosen from the average of total sugar in commercial non-alcoholic beverages (100
different types of drink from 20 bands). To perform the other calibration sets, the

stock solution of tea, cocoa and coffee (secondary conditions) were used as solvents
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instead of DI water. The validation set was prepared with the glucose concentration at
4, 8, 13 and 17 %w/w which are different from the concentration in the calibration set.
This set was used to validate and evaluate the calibration model build from the
calibration set of samples. The scheme of the preparation process was shown in
Figure 3.1 and 3.2.

A
Stock of tea
solution
(on [3.0000 g tém) (on’ [3.0000 g {on[100.000 g
1) Weigh 3 g of glucose 2) Added tea stock solution into glucose 3) 3% w/w of glucose in tea
until the total weigh of solution is 100 g solution was completely prepared
B
Stock of cocoa
solution
(on) [3.0000 g (on) [3.0000 g (on’ [100.000 ¢
1) Weigh 3 g of glucose 2) Added cocoa stock solution into glucose 3) 3% wiw of glucose in cocoa
until the total weigh of solution obtain 100 g solution was completely prepared
C
Stock of coffee
solution
(on: [3:0000 g (on) [3.0000 g {on) [100.000 g
1) Weigh 3 g of glucose 2) Added coffee stock solution into glucose 3) 3% w/w of glucose in coffee
until the total weigh of solution obtain 100 g solution was completely prepared

Figure 3. 2 Procedure for preparation of glucose solution of non-alcoholic drink (3%
w/w in the case) using the stock solution of (A) tea, (B) cocoa and (C) coffee as solvent.
The procedure will be repeated for glucose concentrations at 5, 7, 10, 12, 14, 16, and 18

%w/w
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3.3 Spectral acquisition

NIR spectrometer with NIR256-2.5 detector, LS-1 tungsten halogen light
source and fiber optic connector (SMA 905 to 0.22 numerical aperture single-strand
optical fiber) purchased from Ocean Optics was used to acquire NIR spectra of the
samples. To obtain homogeneous glucose solution, the samples were vigorously
stirred for one hour before the NIR acquisition. In order to control the temperature of
solution, all of samples were incubated in the water batch controlled at 25°C and the
humidity was kept at a steady level in the laboratory prior the detection. In case of
secondary conditions, the glucose solutions of tea, cocoa and coffee were centrifuged
at 5000 rpm for 5 minutes using a temperature-controlled centrifuge (Andreas Hettich
GmbH & Co. KG, Germany), then filtered through a 0.45 um nylon filter in order to
remove all small particles that might scatter the incident light during the NIR
detection. According to the high absorptivity, the sample holder was developed and
the path length was controlled by spacer of 0.4 mm put between the two individual
quartz slide. The setup scheme of NIR instrument used in this work is shown in
Figure 3.3. The NIR spectra of the samples were collected using transmittance mode
in the range of 1350 nm - 2350 nm using path length 0.4 mm, integration time of 1
millisecond and 32 averaged scans with smoothing windows of 1. Each sample was
measured three replicated times. NIR spectra were preprocessed using standard
normal variate (SNV) to remove multiplicative interferences of scatter and particle

size. The preprocessed NIR spectra was used for the further multivariate data analysis.

3.4 Reference measurement

The accuracy of glucose contents in the solutions were verified by high
performance liquid chromatography (HPLC) from food research and testing
laboratory (FRTL) Chulalongkorn university to avoid mislabeled samples. The
separation column in HPLC was Zorbax NH: (4.6 x 250 mm, 5 um) column with
mobile phase of Acetonitrile : H.O (70:30), flow rate of 1.5 mL/min, run time of 15
min and refractive index detection (RID). The determined amount of glucose from the

standard HPLC was used as the benchmark of our prepared glucose solutions.
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Figure 3.3 A set up of NIR spectrometer for spectrum acquisition
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. Prepared concentration
.Concentration of glucose in water from HPLC

Concentration of glucose in tea from HPLC

17
] p 14.38
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i ] I l
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Glucose concentration(%w/w)

Date of detection

Figure 3.4 Comparison of glucose contents in water and tea between present glucose
concentration and glucose concentration determined from HPLC at food research and
testing laboratory (FRTL) Chulalongkorn university
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Figure 3.4 shows the comparison between presetting glucose concentration
(%w/w) shown in pink bar chart and concentration of glucose in water and tea
determined by HPLC representing in blue and gray chart, respectively. For sample
prepared in 2017, it can be seen that presetting glucose concentration were slightly
different from the concentration determined by HPLC. This might due to the
preparation protocol and error from instruments. For next testing (2018), the balance
was calibrated with the standards of the American Society of Testing Materials
(ASTM E617). After calibrating balance, the accurate results with < 0.5% difference

were obtained.

3.5 Data simulation

According to Beer-Lamberts law, the absorbance of a mixture is a linear
combination of the pure spectrum of chemical species and their concentrations. The
synthetic NIR spectra were generated by summation of spectra generated from water,
glucose and noise. In this case, the noise level can be controlled in order to investigate
the performance and limitation of our developed calibration model. Pure spectra of
water and glucose were obtained by the acquired spectrum of pure water and pure
melt glucose. Noise spectra were generated using the latter PC loading from the
spectra of glucose solutions. The simulated NIR spectra was built by summation of

spectra from water, glucose and noise as shown in Figure 3.5.

144
144 — 1]

— 1
1 1 N 1 [ X
X + glucose
[ water } 119

gluco

119 Xsimulate = M9 (Cuate Y

L =
+
=
w
K
o,
2
1
>
=
o,
w
@
L =

M M

Figure 3.5 Concept idea of NIR simulated calculation

Constraint : Ctotal = Cwater + Cglucose + 2 Cnoise Yo 100 =w/w all of parameter

Cwater = 100 — (Cglucose + 2 Cnoise)
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where M is total number of sample
N is total number of wavelength
Cwater I1SWater content (Y%ow/w)
Xwater 1S pure spectrum of water
Cglucose 1S glucose content (Yow/w)
Xglucose 1S pure spectrum of glucose
Cnoise  1SNOISe content (%ow/w) that was simulated base on distribution
Xnoise 1S Noise spectrum that come from latter loading PC
Ciotai  IStotal content (100 %w/w)
Xsimutate 1S Simulated dataset

The absorbance spectrum of M mixtures containing different concentrations of a
diluent (water) and a species of interest (glucose) generated with N wavelengths can
be grouped in a data matrix (X) where each row represents the spectrum of mixture
and each column is wavelength. In this case, the pure spectrum of each species was
constrained in all mixtures, while the concentration fraction was controlled by
concentration vector of each species. The mass balance was used to limit the total
mass of all species summed up to 100 %wi/w. In the data simulation, glucose content
was varied from 3% w/w — 18%w/w as this can be controlled in real experiment. The
fractions of noise were controlled from 1% to 40 %w/w which randomly generated
from normal distribution with standard deviation of 10%. Then, the water contents

were inversely proportional to the summation of glucose and noise contents which can

be provided as Cwater = 100 — Cglucose - 2 Cnoise- The simulated spectra with 0% w/w of

noise corresponds to the pure spectra of glucose solutions as a primary condition,
while the simulated data with 1% - 40 %w/w noise represent the glucose solution in

secondary condition.

3.6 Wavelength selection
To quantify amount of glucose more precisely, a selection of signal regions
from the target analyze might be necessary. Therefore, the wavelengths correlated to

the variations of glucose were determined and selected. There are several methods of
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wavelength selection. One of method is changeable size moving window partial least
square (CSMWPLS)®. Briefly, basic idea of CSMWPLS is spectral region
prospection the window size is determined, then, it moves all over the spectral region.
PLS model was performed on each sub window size in order to search the most
important regions for improvement of state glucose prediction (low RMSE)%.

Extended detailed following in this step:

Step 1: The NIR spectrum were divided into small sub windows. This window is
made by certain number of spectral elements (i) and called window size (w). In this
study, windows size (w) was divided into 3 sizes, including 3, 5 and 7. For each
window size, there are N-w+1 windows over the whole spectra, where N is the

number of wavelength.

Step 2: According to each sub window, PLS models are performed to generate a
predictive model. The prediction performance was evaluated by Leave-one -out-cross
validation to obtain RMSECV of the sub window. Step 2 will be repeat until
RMSECYV all sub windows is determined.

Step 3: The predictive ability was evaluated by RMSECV presented by each sub
window. Region with RMSECV that lower than average of RMSECV - standard
deviation of RMSECV was selected as shown in several highlight bands in Figure
3.6A (step 3). It might be implied that significant dependence of the interest variable

(glucose in the case) was occurred in that region.

Step 4: The selected regions of each window sizes (3, 5 and 7) were unionly selected

together as show in highlight bands in Figure 3.6B (step4)
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Figure 3. 6 (A) Scheme for explanation of CSMWPLS with n is number of wavelength
and w is sub window size including 3, 5 and 7. (B) Optimized region of NIR spectra for

prediction of glucose in function of RMSECV on PLS model, applying CSMWPLS

3.7 Chemometrics
A proposed chemometrics approach is to extract only the variation from the

interested component which might involve only water, glucose and their interactions
for establishing the appropriate calibration model to quantify the glucose
concentrations in secondary conditions. In this study, the calculation methodology
was separated into two parts. Firstly, spectral decomposition was involved to separate
the variation in the NIR spectra into smaller parts. Then, only the effective variations
were chosen for the future analysis. This involves spectral decomposition method
based on use of simple PCA decomposition. Secondly, the calibration model using
PLSR was built from the selected variations in order to form a universal model. The

calculation methodology was performed in the following steps:

Step of this global model followings as:
Step 1 The raw NIR spectra of both primary (Xprimary) and secondary (Xsecondary)
condition were smoothed using Savitsky-Golay with 5 window sizes and follows by

SNV in order to eliminate the influence of background shift. The N row and M
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columns of the data matrix represents the sample different concentration of glucose

and wavelengths, respectively.

Step 2 To obtain the major variations, sample set from secondary condition were
added to the calibration set from primary condition. In this step, number of inserted
samples from Xsecondary Secondary condition was varied at 1, 5, 10, 20 and 40 to

investigate the influences of the variations from secondary conditions.

X...:
Xobs " [ primry ]

X secondary

where Xobs is Observation matrix which is a combination of Xprimaryand Xsecondary
Xprimary IS NIR spectra from primary condition

Xsecondary 1S NIR spectra from secondary condition

Step 3 Perform PCA as a mathematical transformation to extract loading and scores
matrix which correlate to the major variation of Xoss. In this step, the maximum

number of principal component were set to 10 PCs (the total variance up to >99.99%)

General form: Xobs = Tobs . Pops + E
Matrix form: [ Xprimary ] - [ Tprimary : Pprimary
Xsecondary Tsecondary . Psecondary

where T (M x A) is the scores with M rows correspond to number for sample and A
column correspond to number of PC
P is the loadings (A x N) with A row (number of PC) and N column

(wavelength)

Step 4 Excluding the extracted data including score and loading from secondary
condition (TsecondaryPsecondary). The data of score and loading of primary condition were

remained for further calculation, however, the variations from secondary condition
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were already included in TprimaryPprimary. FOr further analysis, the new observation

spectra (Xnew_primary) Was generated with only significant of PCs (PC1 to PC10).

Step 5 The calibration model of Xnew primary IS generated using Partial Least Squares
Regression (PLSR). In its simplest form, a linear model specifies the linear
relationship between response y (glucose concentrations), and a set of variables of the

Xprimary (Wavelength) which can be expressed by

Y = Xnew_primary - D+ E=T.q+ E

where T and q are PLS score matrix and PLS loading vector, respectively. b is the

regression coefficient vector estimated as follows:

where H is the PLS weight matrix (described in Section 2.2).

In our study, maximum number of PLS component was limited to 25.

Step 6 This step involves the optimization of number of PCs and number of PLS
component which give the smallest Root-Mean-Square Error using Leave one out
cross validation (RMSECYV). The number of PCs and PLS component were optimized
using grid search approach with row and column of grid represents number of PCs

and PLS component, respectively.
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1 K PLS component
1
RMSECV(1,1) , RMSECV(1,K)
RMSECV(A,1) =+~  RMSECV(AK)

A
PC component

Where A (in row) represent as PC component (The maximum number of PCs is 10)
K (in column) represent as PLS component (The maximum number of PLS is
25)
The optimal PC and PLS was selected by the coordination (PC comp, PLS comp)
which gives the lowest RMSECV.

Step 7 Using an optimal number of PC from step 6 to create the new Xnewand then

Separated into Xnew_primary and Xnew_secondary again.

General form: Xnew = Tobs pc « Pobs Pc
. Xnew_primary Tnew_primary N new_primary
Matrix form: N
Xnew_secondary Tnew_secondary : Pnew_secondary

Step 8 The PLS calibration model including PLS regression coefficients (b) was
calculated from Xnew primary. Then, the generated model was used to predict the

response Of Xnew secondary @S @ validation sample set

Ysecondary = Xnew_secondary . Dnew
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Step 9 Estimate the model performance using RMSE as a validation index.

The performance of calibration model was evaluated in terms of root mean

square error of calibration (RMSEC) index, root mean square error of cross validation
(RMSECYV) and root mean square error of prediction (RMSEP).
They can be denoted as,

Where vy
Yev

Ye

Yp

3

RMSEC = J (Y = yey2 /M

RMSECV = J (Y~ Yeny2 1M

RMSEP = |(SH-.(y — Y2, /M

contains the actual value (glucose concentration in the case)

contains the estimated glucose concentration by leave one out cross
validation

contains the estimated glucose concentration of the sample in
calibration set

contains the estimated glucose concentration of the sample in
validation set

is the selected number of sample in the data set.

is total number of sample in the data set.

A conceptual view was showed in Figure 3.7

RMSEC

Primary

RMSECV
[> SNV

Primary TP imary E> PLSR
E> |:> PCA E:>

Secondary T.P

** secondary

Secondary

[ SNV l— RMSEP

Figure 3.7 Conceptual view of the calculation methodology model using multivariate

data analysis (PLS) with conventional way (full spectrum) and global model (using

PCA)
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CHAPTER IV
RESULTS AND DISSCUSSION

4.1 NIR spectrum acquisition

The NIR spectra in transmitting mode would be affected by different position
of spectral measurement and different detection parameters of spectral scan such as
path-length, scanning rate, integration time, smoothing windows. Therefore, the
spectral measurement must be carried through under the uniform experimental
conditions. Firstly, the measurement parameters were optimized in order to obtain the
appropriate NIR spectra which demonstrate all overtones and not over absorbed. In
this case, integration time of 1 millisecond and 32 averaged scans with smoothing
window of 1 was set according the presetting of NIR instrument. The path-length of
the detection was varied at 0.4 — 10 mm in order to obtain the maximum informative

spectra from the detection as shown in Figure 4.1.

1.2
Increasiﬂ ng pathlength
/T —10 mm
o 08Ff 5 mm
2 —2mm
s —1mm
o —0.9mm
§ 8.6 mr
—0.5mn
04 —04mn
0.0

1400 1600 1800 2000 2200 2400
Wavelength (nm)

Figure 4.1 NIR spectra of water acquired with different path-length in range of
0.4 mm — 10 mm using integration time of 1 and 32 averaged scans with smoothing

window of 1.
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According to Beer-Lambert law, the higher path-length, the higher absorbance
obtains. However, the problem of over adsorb band will occur when an excessive path
length is used. Figure 1 show set of NIR spectra of DI water acquired using different
path-lengths. The part of NIR spectra especially at the range of 1,900 — 2,000 nm
exhibit over absorbance which represent by cut off at the top of peak, when large
path-length > 0.6 mm was used. The NIR spectra acquired using path-length of 0.4
mm show the minimum background shift. Therefore, the path-length of 0.4 mm was

chosen for further NIR acquisition.

4.1.1. Preprocessing techniques

The NIR spectra data preprocessing is an essential part of chemometric
modeling. The NIR spectra of samples are mostly influenced by the physical
properties of the samples and other effects from environments e.g. human errors,
outside incident lights, holder positions etc. The purpose of preprocessing is to
increase the important information and to minimize the contribution of irrelevant
information. The proper options of the preprocessing technique depend on the nature
of data and difficult to assess before the model validation. Therefore, the
preprocessing technique of the acquired NIR spectra is carried out through trial and
error approach. This study applies three basic techniques involving the Savitzky-
Golay smoothing, the second spectral derivative and Standard Normal Variate (SNV).
Figure 4.2 shows the smoothed NIR spectra of raw spectra, derivative spectra and
normalized spectra. It can be seen that preprocessing method affects the behavior of
signal patterns. Original data without any signal pretreatment is highly susceptible to
noise, inconsistency and baseline shift causing to the low quality of the data. In order
to improve the quality of the NIR spectra, smoothed with second derivative which
used to eliminate baseline errors and resolve overlapped peak was applied (Figure
4.2). A second derivative spectrum was calculated for each measurement by using the
Savizky-Golay algorithm (5 smoothing points). However, the improvement of the
peak resolution is still unclear. Even domination bands of water between 1400 — 1600
nm still show fluctuation and noises. One of a major reason is wavelength gap
spectral resolution due to the slit aperture of the instrument. For our NIR

spectrometer, the slit aperture of 7 nm was constantly operated. Therefore, the change
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of slope in some part of spectrum might be strongly fluctuated due to a high
wavelength shift of the detection. Second derivatives can also be employed to
decrease baseline shifts and curvilinearity, but noise and complexity of the spectra
increases. Another preprocessing method including standard normal variate (SNV) is
used to removes the multiplicative interference of scatter and particle size*” which
causes the baseline shift. SNV is designed to operate on individual sample spectra,
therefore, it is unaffected with the spectrum of other samples. From figure 2c, it is
obvious seen that the baseline shifts were corrected and intensity were more
correlated to the responses. Therefore, it might be indicated that smooth with standard
normal variate was selected as an appropriate preprocessing method which was used

to pretreat the raw NIR spectra for the further multivariate data analysis.

4.1.2. Variations of the NIR spectra of glucose solution with different
concentrations
In the previous section, we already mention on the importance of signal
preprocessing method on the acquired NIR spectra. In this study, smooth with
standard normal variate (SNV) was selected because it can reduce noise and remove
multiplicative interferences of scatter and particle size. To visualize the characteristic
overtones of samples, NIR spectrum of pure water (blue line), pure glucose (black
line) and 18%w/w of glucose solutions (red line) were shown in figure 4.3A. It can be
seen that these three samples have the same dominated peak at 1450 nm and 1900 nm
corresponding to 1% vibration overtone O-H stretching and combination of O-H
deformation?, respectively. However, the overtone patterns of pure glucose (black
line) shows a tiny overtone peak at 1800 nm due to 1% overtone C-H stretching of
glucose which do not appear in glucose solution (red line)?*. From figure 4.3B, it is
difficult to observe the characteristic overtone band of glucose from glucose solution
directly. Therefore, mathematic and statistic approach in form of variance was
calculated to reveal the major variations in the NIR spectra of glucose solution
prepared with different concentrations. The variance of the NIR spectra was

calculated and plotted as shown in Figure 4.3C
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Figure 4.2 Savitzky-Golay smoothing NIR spectra of glucose solutions after performing

different preprocessing methods including (A) raw data (B) the second spectral

derivative and (C) Standard Normal Variate (SNV). The red and blue line represent

the NIR spectrum of the highest (18 %ow/w) and the lowest (3%w/w) glucose

concentration, respectively
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According to the variance plot in Figure 4.3C, the three major bands with high
variance were observed. They include 1% overtone O-H stretching of water at 1450
nm, O-H and CH combination band at 1900 nm and 2100 nm, respectively. It could
be implied that these bands are strongly correlated to the concentration of the glucose
solutions. The intensities of these bands are influenced by the amount of glucose in
the solution. The variance plot indicates the most variation regions in the spectra,
however, they cannot provide the information about the direction of variation.
Therefore, in order to visualize the variability direction of NIR spectra along with
overtone patterns of glucose solutions (in Figure 4.3B) is required.

The band assignment of the major components (in glucose solution) are briefly
summarized in Figure 4.3B. Figure 4.3B shows the average NIR spectra of glucose
solution at 3, 5, 7, 10, 12, 14, 16 and 18 %w/w. It can be seen that the NIR spectra are
dominated by water absorption bands at 1450 corresponding to 1% overtone O-H
stretching of water?* and 1950 nm relating to the combination bands of stretching and
deformation of the O-H group in water® (as mentioned above). The characteristic
band of glucose associated to 1% overtone C-H stretching (-CHs and —CHa-) in the
range of 1600 to 1700 nm is unfortunately low intensity, while the band at 2100 nm
corresponding to the 1% set of C-H combination band is very strong®*. From variance
plots, this suggests that the intensity of NIR spectra was changed depending on
glucose concentrations.

To demonstrate the direction of variability, the intensity of the assigned band
was magnified and shown as the insets of Figure 4.3. The intensity of 1% overtone of
CH (1600-1700 nm and combination bands at 2100-2200 nm) increases when the
glucose concentration increases. This represents the direct variation due to
characteristic band of glucose. On the other hand, the 1% overtone of OH stretching
(1450 nm) and combination bands (1900 — 2000 nm) show an inverse variation
because these overtone regions are correlated with water content. These trends are in

good agreement with the variance plot.
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Figure 4.3 NIR spectrum (A) combination spectrum of pure water, pure glucose and

glucose solution (18%wi/w) in water following blue, black and red line, respectively. (B)

glucose solution in water system (18%ow/w) after performed baseline correction using

standard normal variate (SNV), (C) variance sample of average NIR spectrum of

glucose in water (primary condition)
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4.2 Primary calibration set of samples

Selection of representative calibration samples is important for the success of
the further statistical modeling. Moreover, it would be important to note that the
samples selected for the calibration should cover the variation of future samples. The
main concept of this work is to establish a universal calibration model from a primary
condition (glucose solution in the case) which can be used to predict glucose
concentrations in a secondary condition (non-alcoholic drinks). To search for an
appropriate normal operating samples (NOS) is our primary target. The calibration set
was constructed from glucose solution with 8 different actual concentrations (3, 5, 7,
10, 12, 14, 16 and 18 %w/w) with 3 repetitions involving total 120 samples (Yactual).
To remove anomalous observations, the outlier detection has been performed. PLS
regression with leave-one-out cross validation approach was performed on the all
samples in the calibration sets in order to obtain the prediction of concentration
(Ypredict). The error of Ypredict — Yactuat Was calculated for all samples. Any sample with
the error more than three standard deviations from the average errors was determined
as an outlier®®. Figure 4.4A shows the error of each sample (blue dot), the average
error (red dashed line) and three stand derivations (black dashed line). It can be seen
that only one sample (sample number 1, batch 1) was determined as an outlier.
Therefore, this sample was removed from the calibration set. From the prediction
error, it suggests that our experiment set up is consistent in each repetition as only one
outlier exists. Next, the combination of the calibration set was optimized by
RMSECYV and RMSEC values which are an index to evaluate the appropriate NOS.
Lower value of RMSE, higher accuracy of the prediction was occurred. Besides, the
gap between RMSECV and RMSEC was also under consideration to estimate model.
The small gap represents non-overfitting model. Figure 4.4B show acceptable value
of RMSEC and RMSECYV of approximately 0.05 and 0.11, respectively, occurred in
individual batch and its combination. Meanwhile, gap between RMSEC and
RMSECYV in each batch was obtained of 0.06 which exhibit insignificantly different.
Thus, the combination of batch 1, 2 and 3 was selected as a benchmark of NOS to

construct a universal model.
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Prior to the further data analysis, principal component analysis (PCA) was
used to extract the major components of the data matrix which is the NIR spectra of
all batches. The characteristic pattern of major components is revealed by loading of
each PC as shown in Figure 4.5. It can be seen that the loading of PC1 shows the
characteristic patterns for water because it reveals a strong absorbance at 1450 nm (1%
overtone of O-H bond stretching) and 1950 nm (O-H combination band). In case of
loading of PC2, it shows a similar pattern of PC1 loading but the direction of band at
1950 nm is inversed. This suggests that there is some interaction between glucose and
water though the combination band of O-H stretching. Whereas, the noticeably band
of the PC3 loading was appeared at 1890 nm and 2050 nm which are corresponding to
the CH, stretching of glucose and the 1% set of C-H combination band of glucose,
respectively. These PC loadings are in good agreement with the pure spectra (Figure
4.3A). However, the latter PC loading do not show any distinctly signals compared to
the loading from PC1-PC3. This suggest that the main components are occurred only

in the first few PCs, therefore, the higher PC might not be necessary in the model.
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Figure 4.5 Loading profiles (PC1 to PC6) of the NIR spectra from batch 1-3 after
performing PCA.
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4.3 Simulated datasets

A motivation of the simulations was to produce the data with controllable
underlying distribution of correlations that is similar to those found in the real
datasets. The simulated NIR spectra were calculated using summation between
concentration and pure spectra of the main components (water and glucose in the
case) with the additional noises at several different levels. However, the total
concentration of noise spectra was controlled by mass balance of 1% - 40 % w/w. The
concentration of glucose was constrained, therefore, the added noise would only
affect to the proportion of water spectrum. The simulated spectra with the different
additional noise levels and the corresponding sample variances were shown in Figure
4.6. It can be seen that low noise level does not affect the spectrum pattern, since they
preserve as much as possible the characteristic of the original pure simulated NIR
spectra until 12.5%w/w noise. The baseline shift was initially occurred in the spectra
simulated with noise level over 15%w/w, while the pattern of the simulated NIR
spectra was totally changed at noise level of 40%w/w. The variance plots of each
simulated spectra were shown in Figure 4.6B. It can be seen that the variance plot
demonstrates the strong variations correlated with presetting glucose concentrations
which are including 1% overtone O-H stretching (1450 nm) and combination O-H
deformation (1900 nm and 1980 nm) of water. The simulated NIR spectra without
noise come from summation between concentration and pure spectra of the main
components (water and glucose in the case), so added noise level would be effect to
only the overtone regions of water. Obviously, the higher added noise level, the more
variations on the pattern of spectra occurs. From the simulations, it can be noticed that
an added noise is limited to 1-12.5 %w/w as it can be able to maintain the identity of

NIR spectrum which is in good agreement with the real spectra from the experiments.
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To evaluate the prediction performance, the PLS calibration model was built
from the simulated NIR spectra without any additional noises. Then, the generated
PLS model was used to predict the glucose concentration of the other independent
simulated datasets with the noise at different levels. The root mean square error of
prediction (RMSEP) and coefficient of determination (r?) were calculated in order to
express the model performance. The lower RMSEP and the higher r? represent a
prediction performance of the model. A plot of RMSEP (black line) and r? (blue line)
against noise level is shown in figure 4.7A. It can be seen that the RMSEP values are
slightly increased from 0.12 — 1.66 for the data with noise 1- 12.5%w/w, respectively.
After using noise level over 15%w/w, the RMSEP value dramatically raises from 2.05
to 7.19. This suggests that the capability of a predictive model is directly related to
noise in the data. The higher noise level, the lower predictive ability of the model
occurs. These observations are in good agreement with r? plot. The r? value is over
0.99 for the prediction of the data with noise only in the range of 1-12.5%w/w. The r?
value is lower than 0.99 when the noise level is up to 15%w/w. However, the r? value
is still good (>0.98) even for the prediction of the data with noise 40%w/w. To
demonstrate the ability to measure each sample independently, the concentration
correlation plots between actual preset glucose concentration and the predictive value
are presented in Figure 4.7B. In all the plots, the prediction points all fall on the ideal
diagonal line with no apparent systematic variation for the data with 0% noise level.
However, the appearance of variation on prediction especially for high glucose
concentration will occur when the noise level was increased. This suggests that our
PLS calibration model can predict more accurately at the low glucose concentration

rather than the high one.
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In the previous prediction, the PLS calibration models were generated using
the dataset containing all samples and wavelengths without any additional noise. This
calibration model was used to predict the glucose concentration of the other datasets
with different noise levels. In this study, assessment of model selectivity is critical for
achieving a prediction of glucose concentration. In order to extract the pure
components of the dataset, principal component analysis (PCA) were performed on
the data to extract the major components (glucose and water). To generate the
universal model, the PCs of all major components contributed to the data matrix
including calibration set (primary condition) and also system (secondary condition)
must be determined and selected. Then, the new data matrix built from only the
selected PCs was calculated for further data analysis. It should be noted that the
inserted number of sample from secondary condition might affect the total variance of
the data matrix (from primary condition) and the prediction. In this section, the

influences from different number of inserted samples on the PC selection and model
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prediction are investigated. The error of prediction (RMSEPy) of the model built
from major components with different number of inserted sample from 1- 40 are
plotted against the added noise level as shown in Figure 4.8. The RMSEP, generally
increases when noise level of the data increases. It raises from 0.11 to 2.93 for noise
level 1% and 40%, respectively. Moreover, the RMSEP,: seem increase when the
number of inserted samples increases. This shows the number of inserted samples
which come from secondary condition have strongly influenced on the variance of the
data from primary condition and the prediction. Although, the lowest RMSEP . would
be obtained by using only single inserted sample, the calculation will not be practical
when the external sets of samples are large. In this case, we would like to determine
the optimal number of inserted samples that would insignificantly alter the prediction.
Relative percent error of RMSEPp using different number of inserted sample

compared with single inserted sample was calculated:

. RMSEP ingle added le — RMSEP dded 1
Relative percent error = ( LS e e P2y x 100
RMSEPpc_single added sample

Where RMSEPpc _single added sample IS RMSEPp¢ that calculate from single added sample
RMSEPpc m added sample IS RMSEPyc that calculate from various numbers of

added sample with m obtain added number of sample

The calculation result was show in an inset of Figure 4.8. The RMSEP,. will
be increased more than 5% when the number of inserted sample were up to 20. On the
other hand, the RMSEP,. was changed for less than 2% when the number of inserted
sample equal to 10. For this observation, it might be suggested that limitation of
inserted number of sample is around 20 samples and the optimal number sample of 10
was selected to further multivariate data analysis. However, it should be note that the
limitation of inserted sample strongly depends on the total sample number of the
dataset from primary condition. The larger size of the dataset, the limitation might be

raised.
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RMSEP obtained from using single inserted sample

In order to be able to quantify amount of glucose more precisely, a selection of
signal from the target analyze is indispensable. Therefore, the wavelengths correlated
to the variation of glucoses was determined and selected. There are several methods
of wavelength selection available in the literatures. One of an efficient method is to
use moving window partial least square®. The protocol detail was already discussed
in section3.6, chapter 3. In this case, NIR spectrum of 9%w/w additional noise was
selected to represent in this wavelength selection. Sub regions of 1% overtone O-H
bond stretching of water (1350-1420 nm), 1% overtone CH; stretching of glucose
(1820-1946), OH, CH, CH> combination bands are selected as shown in Figure 4.9B.
It should be noted that the selected sub-regions might be changed due to the noise

level of the dataset.
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RMSE is an index to evaluate the prediction performance of a model. In this

section, there are 6 different RMSE indices which are summarized in Table 4.1.
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Table 4.1 Details of 6 different RMSE indices

Calibration | Validation Number Selected
Model RMSE (4, g, 4, o of PCs wavelength

a p y) w

| RMSEC(N, 1st, full, 0) :I.St :I.St full 0

T RMSECV ast, 1stcv, full, 0) 18t 1t eV full 0
i RMSEP(lSL 2nd, full, 0) 1t an full 0
IV RMSEP(lst' 2nd, pc, 0) 1St 2nd pC O
Vv RMSEP 1t 2nd. pe, o) 1t 2nd pc o
VI RMSEP(an, 2nd, full, 0) an an full 0

Note : 1= Dataset from primary condition
1t CV = Primary set that are estimate by cross validation
2" = Dataset from secondary condition
full = full spectrum with all wavelengths (without extract any main component)
pc = extract main components using PCA

Description of the model (I-V1)

Model I: RMSEC s, 1st, full, 0y IS RMSE of prediction when the calibration model was
built from a dataset from primary condition. Then, it was used to estimate the responses of a
dataset from primary condition.

Model Il: RMSECV s, 15t cv, full, o) IS RMSE of prediction when the calibration model
was built from a dataset from primary condition. Then, it was used to estimate the responses
of a dataset from primary condition using Leave-One-Out cross validation.

Model I11: RMSEP 1st, 2na, full, 0y IS RMSE of prediction when the calibration model was
built from a dataset from primary condition. Then, it was used to estimate the responses of a
dataset from secondary conditions (without extract any main components).

Model IV: RMSEP s, 2nd, pc, 0y IS RMSE of prediction when the calibration model was
built from the main components extracted from a dataset from primary condition and then it
was used to estimate the responses of a dataset from secondary condition.

Model V: RMSEP s, 214, pe, «) 1S RMSE of prediction when the calibration model was
built from the main components extracted from a dataset from primary condition with only
selected wavelengths and then it was used to estimate the responses from secondary
condition. This represents our universal model.

Model VI: RMSEP @2nd, 2nd, 1unl, o) is RMSE of prediction when the calibration model was
built from a dataset from secondary condition and directly used to estimate the responses of

the secondary condition. This basic idea was represented as a conventional model.
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In this study, model VI represents a conventional prediction that a calibration
model was built and predicted the samples from the identical system. This will
obviously provide the lowest RMSEP compared to model Il and model V because
these two models were built from primary condition and they were used to predict
samples from the other secondary conditions. However, an improvement of the
prediction of model V (our universal model) was expected. Figure 4.10 shows a
summary of the comparison of RMSE based on 6 different strategies. Generally,
RMSEP of all models linearly increases when noise level increases.

From the results, the RMSEP of model VI provides very low value in between
0.006 to 0.49 for noise level 1% w/w to 40 %wi/w, respectively. On the other hand,
the RMSEP of model 111 shows the highest value in the range of 0.11 to 6.53 for noise
level 1%wi/w to 40 %wi/w, respectively. This shows that it was not possible to obtain
an accurate prediction (low RMSE) when a model was generated using one condition
and was used to estimate the responses form the other conditions without any
pretreatment. In this case, our proposed strategy was applied as model V to maintain
the model from primary condition to accurately estimate the responds from secondary
conditions. The RMSEP s, 214, pe, ») OFf model V was reduced to 0.07 - 4.76 for noise
level 1% wi/w to 40 %wi/w, respectively. It can be seen that our proposed universal
model (Model V) can be used to predict an unknown sample from other condition
more accurate compared with the model I1l. In order to visualize more clearly, percent
improvement of model VV compared to model Il was shown as an inset of Figure
4.10.

RMSEP (15t 2nd,full,0) — RMSEP (15t,2nd pc,w) ) x 100

Percent improvement = ( IV

It might be seen that the accuracy of prediction from our universal model
(model V) has improved up to 30 percent based on noise level of 1-40%w/w.
Therefore, it could be indicated that our universal model shows high ability prediction
compared to model I1l. One of this reason, it might be noted that this universal model
composed of only variations of glucose without any influences from noise while
model 111 was constructed from full spectrum including noise as interferences, so
ability prediction of model VV was more corrected. By the way, RMSEP s, 2nd, pc, )
(orange triangle) of the universal model (model V) still higher than RMSEP 2nd, 2nd, full,
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o) of model VI (pink triangle). This observation might originate from influences of
interference in the systems because noise level is inversely proportional to amount of
glucose. That means the higher noise level, the lower glucose concentration was
occurred. Therefore, it causes to prediction accuracy of glucose in our universal

model becomes more error.

8 1.30 L RMSECust, 1st, fuil, 0)
: ® RMSECVY, 1oy, 15t cv, futl, )
A RMSEP,
z A (1st, 2nd, full, 0)
5 % RMSEPUSL 2nd, pe, 0)
B 0.65
E RMSEP 43¢ 204, pc, w)
P RMSEP 304, 2nd, fu, 0)
L s e« s 88 & 33
E 4 0.00 40
2 4 6 8 10 12 38 |
Noise (%w{w) = 3™
ii [
§ 34p = "
L]
2r k g a2t -
* E .
axb = 07
e N 28 t N
. . < 267
N TR R TR SR N S
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Noise (Y%ow/w)
Noise (w/w)

Figure 4.10 plots of six different strategies including Model I: RMSEC s, 1st, funl, 0y, Model
II: RMSECV (st 15t cv, fuii, 0, Model 1H1: RMSEP (151, 2nd, funl, o), Model 1V: RMSEP s, 2nd, pc, 0),
Model V: RMSEP (15, 2n4, pe, » @and Model VI: RMSEP 2ng, 2ng, funl, 0)- In this case, our
proposed universal model was represented as model V.

4.4 Prediction of glucose concentration in non-alcoholic drinks

The performance and limitation of our universal model were discussed in the
previous section. In this section, our proposed strategies to build a universal model
were applied to the real non-alcoholic drinks in order to estimate amount of glucose in
the drinks which are tea, cocoa and coffee. The glucose solution using DI water as
solvent was defined as primary condition, while the glucose in the drinks was defined
as secondary condition. In this study, influent levels from chemical contents of the
drinks were set to 2 different levels (high and low). The details of experimental were
set up already discussed in section 3.2, chapter 3. Table 4.2 shows the results obtained
from multivariate data analysis on experimental details that was calculated using 3
models (A, B and C).
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The model A represents the conventional way that the calibration model of
each system (tea, cocoa and coffee in the case) was built to predict glucose
concentrations of the system. For example, to predict glucose concentration in tea and
cocoa, two calibration models were built from set of samples using tea and cocoa
solutions, respectively. In case of model B, it was built from full spectrum without
extracted any important component for building the calibration model. In order to
improve performance of calibration model, the strategy to generate model C was
proposed. For model C, it is represented as a universal model. This involves the
determination and extraction of only significant components and wavelengths which
are strongly related to the variations of glucose in the system (as mentioned in section
3.6 chapter 3) prior to build the calibration model. For the universal model (model C),
it was found that there are 5-9 significant components contributed in NIR spectra of
all systems. These components might be related to the patterns of pure NIR spectrum
of (i) water, (ii) glucose, interaction between (iii) glucose-water and (iv) glucose-
glucose, the other components might be effect by noise which might originate from
chemical contents of each system.

RMSE values represent the average prediction error of the model. It can be
seen that RMSEC, which represent root mean square error of calibration samples, are
quite low in all models (A, B, and C) with 0.05 - 0.29. This suggests that our
calculation procedure including optimization of significant components and prediction
using PLS is correct and appropriate to quantify glucose concentrations. In case of
RMSECYV, the average prediction error is slightly higher (0.11-0.28) but it still in the
acceptable range. This represents the capability of the model in order to be used to
predict the glucose concentration of an unknown solution. Next step, the generated
model was used to predict the glucose concentration of the validation set. In case of
low system, RMSEP of our universal model (model C) is in range of 0.54 — 0.99
which are lower than model A (conventional model) and model B (using full
spectrum). These show approximately 30 and 60 % improvement of the prediction. To
make it easier to understand, an example in case of low level of tea system was
demonstrated. The RMSEP of 0.92, 1.12 and 0.72 corresponds to model A
(conventional way), model B (full spectrum) and model C (our universal model),
respectively, they can be seen that RMSEP of model C lower than RMSEP of model
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A and B. These observations were also found in low level of cocoa and coffee system.
Therefore, it might be concluded that this universal model has a capability to predict
concentration of glucose in non-alcoholic drinks without the requirement of building a
new calibration model.

To evaluate the limitation of prediction using universal model, the model was
used to estimate amount of glucose in more complex system. In this case, more
complex system was represented as extremely amount of tea, cocoa and coffee that
was dissolved in water in order to prepare as a solvent (20 g in water 100 mL), also
called high level system. It seems to be that RMSEP of model C (0.84 — 2.80) lower
than RMSEP of model B (1.39 — 5.64) while slightly higher than RMSEP of model A
(0.33 — 0.73). One of the main reason could be come from interference which
originate from high amount of chemical components in solutions. From this result, it
might be suggested that our universal model has limitation in predicting the amount of
glucose due to the interferences from level of chemical content in the solution. These
results are in good agreement with the calculations on the simulated datasets in the
previous section.

Further investigation, correlation plot between actual values and the predicted
value of glucose concentrations in different models were shown in Figure 4.11. It can
be seen that the higher glucose concentration, the higher variation on prediction is
occurred. This suggests that our universal model (model C) can be able to accurately
predict glucose concentration in non-alcoholic drink (tea, cocoa, and coffee) in the
same level as using model A (conventional model) especially for low concentration of

glucose.



51

20 g 20 7 25
Tea low | Cocoa low 1 L Coffee low
= model A (= 0.9938) 1 = model A (12 = 0.9942) A = model A (2= 0.9839)
15 * model B (r* = 0.9969) . ‘ 15| ® model B (= 0.9861) . 1 20} « modelB (= 0.9283) [ ] .
g + model C (= 0.9977) F P & model C (2= 0.9965) 9 4 model C (12 = 0.9976) 1
: @ 3
s ~ E A 3 ¢
® ' E P g 15f .
2 e H - g t
g0 210} - 2 P
3 If 2 e B .
£ e k] . 5 10t -
a e ° = 8 =
5 * g = ' - Coffee
5F L
| ¢ [ 4 sl LI low
e
0 . . . 0 . L n . )
8 > 1 0 5 10 15 20 0 5 10 15 20 25
Actual value Actual value
Actual value
20 20 T 25 -
Tea high [ Cocoa high a. Coffee high (]
 model A (= 0.9902) A = model AG? = 0.9944) /i’ 20l = modeln (@ = noses) .
15| © modelg (= 09729 L 15 o modelB ¢ = 08951) L - * model 8 (2= 0.9983) . .
° 2 model G (= 0.9941) o 2 model © (= 0.9941) % p & model G (¢ = 0.9976) Wt
2 - >
S z L1 g 15+ .
. S .
. . v [}
é 10} . 2 1op } ~ 2 “
2 e B e ] a
g A ] . 3 o1 .
T s & A & A
5 [P 5 !," t
’ P 5F -
& A
o . . . i . . . ol . . , .
5 10 15 20 5 10 15 20 5 10 15 20 25

Actual value Actual value Actual value

Figure 4. 11A-F show correlation plots between actual value (X-axis) and predicted
value (Y-axis) of glucose concentration in high/low level of tea, high/low level of cocoa,

high/low level of coffee, respectively, using calibration model A, B and C

To examine the selectivity of the prediction, the universal model was used to
estimate glucose concentration in the solution mixed with several types of sugar
including monosaccharide (fructose, galactose) and disaccharide (sucrose). The
calibration model that was constructed from primary condition (only glucose in the
solution), and it was used to predict glucose concentration in the mixed sugar
solutions. In the solution, the total concentration of sugar is 16%w/w which consist of
8%wi/w glucose + 8%w/w of another sugar. For the result (Table 4.3), RMSEP from
the prediction of glucose concentrations in all solutions show high error, while
RMSEP from the prediction of total sugar shows high accuracy. This result suggests
that our universal model is capable to predict total sugar, not for glucose. One
possible reason because of all sugar (glucose, fructose, galactose and sucrose in this

case) provide similar characteristic of NIR spectra as shown in Figure 4.12
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— 8 %w/w glucose
— 8 %w/w fructose
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Figure 4.12 NIR spectra of glucose, fructose, galactose and sucrose solution (8%w/w) in

water system following black, pink, blue and green line, respectively.

From Figure 4.12, it can be seen that overtone patterns of sugars (glucose,
fructose, galactose and sucrose) show high similarity. Moreover, variation of intensity
of all sugars are not significant different. From these spectra, our analyte (glucose)

cannot differentiated from interferences (fructose, galactose and sucrose)
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CHAPTER V
CONCLUSIONS

This study has demonstrated the potential of NIR spectroscopy combined with
chemometric to quantify amount of glucose in non-alcoholic beverages. A
methodology of “universal model” was proposed in order to construct the universal
calibration model from primary condition and use the model to predict glucose
concentrations in secondary condition (tea, cocoa, and coffee in the case). Three
stages of methodology including pre-processing, feature selection and main
component extraction were applied to spectral data in order to obtain the universal
calibration model. The NIR spectra of the samples were collected using transmittance
(T) mode in the range of 1350 nm - 2350 nm using path length 0.4 mm, integration
time of 1 and 32 averaged scans with smoothing windows of 1. SNV is useful
pretreatment for raw data spectra in order to remove background signals. According
to characteristic overtones of glucose (3-18%w/w) in water system, it shows
dominated peaks of water at 1450 nm and 1950 nm corresponding to 1% vibration
overtone O-H stretching and combination of O-H deformation of O-H group,
respectively. The characteristic bands of glucose associated to 1% overtone C-H
stretching (-CHz and —CHj>-) in the range of 1600 to 1700 nm is unfortunately low
intensity, while the band at 2100 nm corresponding to the 1% set of C-H combination
band is very strong. These results are consistent with the variance plot. In this study,
variation of our universal model was separated into two parts including simulation
and experimentation.

In case of simulated part, the noise spectra were controlled by mass balance of
1% - 40 % wi/w. Different additional noise levels, difference simulated NIR patterns
were occurred. It was found that the spectra with noise level in range of 1 — 12.5
%w/w can be able to maintain the identity pattern of NIR spectra which are in good
agreement with the real spectra from the experiments, while the simulated spectra
with >15%w/w noise level render to baseline shift. Additionally, influences from
different number of inserted samples on the PC selection and model prediction are

investigated base on relative percent error of RMSEP, using different number of
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inserted sample compared with single inserted sample. For the result, the RMSEP.
will be increased more than 5% when the number of inserted sample were up to 20
while the RMSEP,: was changed for less than 2% when the number of inserted
sample equal to 10. So, it could be suggested that the limitation of inserted number of
sample is around 20 samples and the optimal number sample of 10 was selected to
further multivariate data analysis. From the analysis, the universal model improves
the prediction accuracy for the test set (unseen data) for at least 30 percent.

In case of experimental part, it was used to quantify amount of glucose in
non-alcoholic beverages (tea, cocoa and coffee in the case). The promising values for
root mean square error of prediction (RMSEP) were obtained to be 0.72, 0.99 and
0.54 corresponding to tea, cocoa and coffee system, respectively. These observations
are in good agreement with r? plot. The r? value is over 0.99 for the prediction of the
data with noise only in the range of 1-12.5%w/w. Therefore, it might be implied that
our universal model approach can be used to estimate glucose concentrations in other
non-alcoholic drinks without any requirement of a new calibration model. However,
the universal model cannot be used to determine glucose selectivity in the solution

mixed with other sugar (fructose, galactose and sucrose)
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