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CHAPTER I

THESIS OVERVIEW

1.1 Background and outline

In 1988, AbrahamA. Ungar made the discovery of the first gyrogroup structure, the so-called

Einstein gyrogroup, by studying the parametrization of Lorentz transformations [32]. Later,

he also found another gyrogroup, the so-called Möbius gyrogroup, by studying the group of

conformal mappings of the complex plane that preserve the complex unit disk [33].

In [38], Einstein velocity addition on the set of relativistically admissible velocities,

R3
c = {v ∈ R3 : ∥v∥< c},

is given by the equation

u⊕E v =
1

1+ ⟨u,v⟩
c2

{
u+

1
γu

v+
1
c2

γu

1+ γu
⟨u,v⟩u

}
, (1.1)

where c is a positive constant representing the speed of light in vacuum and γu is the Lorentz

factor given by γu =
1√

1− ∥u∥2

c2

.

The system (R3
c ,⊕E) does not have the group structure since Einstein addition is neither as-

sociative nor commutative. Nevertheless, Ungar shows that (R3
c ,⊕E) is rich in structure, namely

it forms a gyrogroup—a nonassociative group-like structure. He also introduces space rotations,

gyr [u,v], called gyroautomorphisms, to repair the breakdown of associativity in (R3
c ,⊕E):

u⊕E (v⊕E w) = (u⊕E v)⊕E gyr [u,v]w

(u⊕E v)⊕E w = u⊕E (v⊕E gyr [v,u]w)

for all u,v,w ∈R3
c . Taking the key features of (R3

c ,⊕E), Ungar formulates an abstract definition

of a gyrogroup. He declares that (R3
c ,⊕E) is a gyrocommutative gyrogroup, which is an extension

of an abelian group, where the gyrogroup axioms can be checked using computer algebra.

The Einstein gyrogroup (R3
c ,⊕E) has strong connections with the Lorentz transformations,

as described in Chapters 10 and 11 of [39]. Recall that the Lorentz boost parametrized by a
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relativistically admissible velocity u in R3
c , denoted by L(u), is given by

L(u)

t

x

=

 γu
(
t + 1

c2 ⟨u,x⟩
)

γutu+x+ 1
c2

γ2
u

1+γu
⟨u,x⟩u

 , t > 0, x = tv, v ∈ R3
c .

The Lorentz boosts are linear transformations of Minkowski space. Further, the composite of

two Lorentz boosts is not a pure Lorentz boost, but a Lorentz boost followed by a rotation of

Minkowski space:

L(u)◦L(v) = L(u⊕E v)◦Gyr [u,v], (1.2)

where Gyr [u,v] is described by

Gyr [u,v]

 t

w

=

 t

gyr [u,v]w

 , t > 0, w ∈ R3
c .

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the complex

unit disk, D= {z ∈ C : |z|< 1}, withMöbius addition, ⊕M , defined by

a⊕M b =
a+b

1+ āb
(1.3)

for all a,b ∈ D. The complex version of Möbius addition is extended to the Euclidean version

by Ungar [40]:

u⊕M v =
(1+2⟨u,v⟩+∥v∥2)u+(1−∥u∥2)v

1+2⟨u,v⟩+∥u∥2∥v∥2 (1.4)

for all u,v ∈ B. Here, B denotes the open unit ball of Rn, B= {v ∈ Rn : ∥v∥< 1}.

The Einstein andMöbius gyrogroups play the central role in gyrogroup theory as they provide

concrete models for the abstract theory. Because the formula (1.4) for the Euclidean version of

Möbius addition is very complicated, J. Lawson [23] and M. Ferreira and G. Ren [9] use the

Clifford algebra formalism to study the Möbius gyrogroup and to simplify Möbius addition:

u⊕M v = (u+v)(1−uv)−1, (1.5)

where the product and inverse on the right hand side of Equation (1.5) are taken in the Clifford

algebra of negative Euclidean space. Using the Clifford algebra formalism together with the

compact formula (1.5) for Möbius addition, we provide a solid proof that (B,⊕E) forms a gyro-

commutative gyrogroup satisfying the uniquely 2-divisible property (Einstein gyrogroup as a

B-loop, Reports on Mathematical Physics, vol. 76 (2015), pp. 63–74).

As noted above, a gyrogroup is a group-like structure, but not a group since its binary

operation is neither associative nor commutative, in general. However, gyrogroups share re-

markable analogies with groups. In fact, every group may be viewed as a gyrogroup with trivial
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gyroautomorphisms. From this point of view, we extend some well-known theorems in group

theory to gyrogroups, including Cayley’s theorem, the isomorphism theorems, and a portion of

Lagrange’s theorem. We also present an abstract version of the composition law (1.2) of Lorentz

boosts for an arbitrary gyrogroup (Isomorphism theorems for gyrogroups and L-subgyrogroups,

Journal of Geometry and Symmetry in Physics, vol. 37 (2015), pp. 67–83).

Gyrogroup theory is closely related to loop theory in the sense that a gyrogroup and a left Bol

loop with the property that left inner mappings are automorphisms are algebraically identical,

and that certain loops give rise to gyrogroups. Furthermore, a gyrocommutative gyrogroup and

a Bruck loop (also called a K-loop) are algebraically identical. Using Lagrange’s theorem for

finite Bruck loops [1], we extend our result in [31] by proving the full Lagrange theorem for finite

gyrogroups. As a consequence of Lagrange’s theorem, we prove that gyrogroups of particular

order satisfy the Cauchy property (Lagrange’s theorem for gyrogroups and the Cauchy property,

Quasigroups and Related Systems, vol. 22, no. 2 (2014), pp. 283–294).

The three articles mentioned above were published as partial fulfillments of the requirements

for the Degree of Doctor of Philosophy Program in Mathematics, at Chulalongkorn University.

1.2 Significance of the study

The importance of studying of gyrogroups lies in the fact that gyrogroup theory is related

to several fields, including mathematical physics, non-Euclidean geometry, group theory, loop

theory, and abstract algebra. For instance, the gyrogroup structure appears as an algebraic

structure that regulates Einstein velocity addition [38, 41]. It is also an algebraic structure that

underlies the qubit densitymatrices, which play an important role in quantummechanics [21, 35].

A certain gyrogroup gives rise to a vector space-like structure, called a gyrovector space,

which forms the algebraic setting for hyperbolic geometry, just as a vector space forms the

algebraic setting for Euclidean geometry [39, 42]. In fact, the Möbius gyrovector space is as-

sociated with the Poincaré model of conformal geometry on the open unit ball in n-dimensional

Euclidean space Rn, and the Einstein gyrovector space is associated with the Beltrami-Klein

model of hyperbolic geometry on the open unit ball in Rn [30].

1.3 Purpose of the study

The main goal of the dissertation is to find out connections between the Möbius and Einstein

gyrogroups, to investigate algebraic properties of gyrogroups, and to generalize group-theoretic



4

theorems to the case of gyrogroups.

1.4 Scope of the study

We will examine an algebraic aspect of gyrogroups. Specifically, we will generalize the

following well-known theorems in abstract algebra to gyrogroups:

• Cayley’s theorem;

• the isomorphism theorems;

• Lagrange’s theorem.

1.5 Expected advantage

We will obtain more insight into the gyrogroup structure from the algebraic viewpoint.
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CHAPTER II

EINSTEIN GYROGROUP AS A B-LOOP*

Teerapong Suksumran and Keng Wiboonton

Department of Mathematics and Computer Science, Faculty of Science

Chulalongkorn University, Bangkok 10330, Thailand

Abstract. Using the Clifford algebra formalism, we give an algebraic proof that the open unit

ball B= {v ∈ Rn : ∥v∥< 1} of Rn equipped with Einstein addition ⊕E forms a B-loop or, equi-

valently, a uniquely 2-divisible gyrocommutative gyrogroup. We obtain a compact formula for

Einstein addition in terms of Möbius addition. We then give a characterization of associativity

and commutativity of vectors in B with respect to Einstein addition.

Keywords: Einstein velocity addition, gyrogroup, B-loop.

2010 MSC: 83A05, 20N05, 15A66.

Journal: Reports on Mathematical Physics, vol. 76 (2015), pp. 63–74.

2.1 Introduction

Gyrogroup theory, introduced by Abraham A. Ungar, is related to various fields, including

mathematical physics. For instance, the gyrogroup structure appears as an algebraic structure

that encodes Einstein’s velocity addition law [11, 14]. It is also an algebraic structure that un-

derlies the qubit density matrices, which play an important role in quantum mechanics [6, 10].

For a connection to Thomas precession, see [15]. Of particular importance is the following

composition law of Lorentz boosts,

L(u)◦L(v) = L(u⊕E v)◦Gyr [u,v],

where L(u) and L(v) stand for Lorentz boosts parameterized by u and v in R3
c and Gyr [u,v] is

a rotation of spacetime coordinates induced by the Einstein gyroautomorphism generated by u
*This workwas financially supported byNational Science TechnologyDevelopment Agency (NSTDA), Thailand,

via Junior Science Talent Project (JSTP), under grant no. JSTP-06-55-32E. Part of this work has been presented at

the 19th Annual Meeting in Mathematics, March 20th – 22nd 2014, Pattaya, Thailand.
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and v [12, p. 448]. Connections between Einstein addition, Möbius addition, and hyperbolic

geometry are described in [7, 9]. For a connection to loops, see [5].

In [11], Einstein velocity addition, ⊕E , on the set of relativistically admissible velocities,

R3
c = {v ∈ R3 : ∥v∥< c}, is given by the equation

u⊕E v =
1

1+ ⟨u,v⟩
c2

{
u+

1
γu

v+
1
c2

γu

1+ γu
⟨u,v⟩u

}
,

where c is a positive constant representing the speed of light in vacuum and γu is the Lorentz

factor given by

γu =
1√

1− ∥u∥2

c2

.

The system (R3
c ,⊕E) does not form a group since⊕E is neither associative nor commutative.

Nevertheless, (R3
c ,⊕E) is rich in structure and encodes a group-like structure, namely the gyro-

group structure. Ungar declared that (R3
c ,⊕E) forms a gyrocommutative gyrogroup, the so-

called Einstein gyrogroup, where the gyrogroup axioms can be checked using computer algebra.

It seems to us that no solid proof of this result is given in the literature. For this reason, we use the

Clifford algebra formalism to prove this result. It turns out thatEinstein gyroautomorphisms, also

known as Thomas gyrations, can be expressed in a simple form using Clifford algebra operations.

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the complex

unit disk D= {z ∈ C : |z|< 1} and Möbius addition

a⊕M b =
a+b
1+ āb

, a,b ∈ D.

In [13], the complex Möbius addition is extended to the Euclidean one,

u⊕M v =
(1+2⟨u,v⟩+∥v∥2)u+(1−∥u∥2)v

1+2⟨u,v⟩+∥u∥2∥v∥2 , u,v ∈ B.

Here, B denotes the open unit ball of Rn,

B= {v ∈ Rn : ∥v∥< 1}.

Because the formula for the Euclidean version of Möbius addition is very complicated,

Lawson [8], Ferreira and Ren [2] used the Clifford algebra formalism to study the Möbius gyro-

group and to simplify Möbius addition,

u⊕M v = (u+v)(1−uv)−1, (2.1)

where the product and inverse on the right hand side of Equation (2.1) are performed in the

Clifford algebra of negative Euclidean space.
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With the compact formula (2.1) for Möbius addition in hand, we give an algebraic proof

that the unit ball of Rn with Einstein addition does form a B-loop or a gyrocommutative gyro-

group with the uniquely 2-divisible property. As a consequence, we give a characterization of

associativity and commutativity of the elements of Einstein gyrogroup (B,⊕E).

2.2 Preliminaries

Let (G,⊕) be a magma. Denote the group of automorphisms of G with respect to ⊕ by

Aut(G,⊕).

Definition 2.2.1 ([12]). A magma (G,⊕) is a gyrogroup if its binary operation satisfies the

following axioms.

(G1) There is an element 0 ∈ G such that 0⊕a = a for all a ∈ G. (left identity)

(G2) For each a ∈ G, there is an element b ∈ G such that b⊕a = 0. (left inverse)

(G3) For all a,b ∈ G, there is an automorphism gyr [a,b] ∈ Aut(G,⊕) such that for all c ∈ G,

a⊕ (b⊕ c) = (a⊕b)⊕gyr [a,b]c. (left gyroassociative law)

(G4) For all a,b ∈ G, gyr [a,b] = gyr [a⊕b,b]. (left loop property)

Definition 2.2.2 ([12]). A gyrogroup (G,⊕) having the additional property that

a⊕b = gyr [a,b](b⊕a) (gyrocommutative law)

for all a,b ∈ G is called a gyrocommutative gyrogroup.

We remark that the axioms in Definition 2.2.1 imply the right counterparts. Themap gyr [a,b]

is called the gyroautomorphism generated by a and b. We refer the reader to [12] for a deep

discussion of gyrogroups.

Definition 2.2.3. A magma L has the uniquely 2-divisible property if the squaring map x 7→ x2

is a bijection from L to itself.

Definition 2.2.4. A loop L has the Aℓ-property if the left inner mapping

ℓ(a,b) := L−1
ab ◦La ◦Lb

defines an automorphism of L for all a,b ∈ L. Here, La denotes the left multiplication map by a

defined by La : x 7→ ax for x ∈ L.
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A loop L is called a K-loop or Bruck loop if every element of L has a unique inverse and L

satisfies the left Bol identity (I) and the automorphic inverse property (II):

(I) a(b(ac)) = (a(ba))c

(II) (ab)−1 = a−1b−1

for all a,b,c ∈ L. A loop L is called a B-loop if it is a uniquely 2-divisible K-loop. In the

literature, it is known that gyrogroups and left Bol loops with the Aℓ-property are equivalent,

and that uniquely 2-divisible gyrocommutative gyrogroups and B-loops are equivalent.

In order to prove that the unit ball of Rn with Einstein addition forms a uniquely 2-divisible

gyrocommutative gyrogroup, we make use of the following theorem.

Theorem2.2.5 (Theorem1, [1]). Let (G,⊕) be a gyrogroup,X an arbitrary space, and ϕ : X → G

a bijection between G and X . Then X endowed with the induced operation

a⊕X b := ϕ−1(ϕ(a)⊕ϕ(b))

for a,b ∈ X becomes a gyrogroup.

Proposition 2.2.6. Let (G,⊕) be a gyrogroup. If (G,⊕) is gyrocommutative, then so is the

induced gyrogroup (X ,⊕X). If (G,⊕) is uniquely 2-divisible, then so is (X ,⊕X).

Proof. The proof of the first statement is straightforward. Let DG and DX denote the doubling

maps of G and X , respectively. Assume that G is uniquely 2-divisible, that is, DG is bijective.

For all x ∈ X ,

DX(x) = x⊕X x = ϕ−1(ϕ(x)⊕ϕ(x)) = ϕ−1(DG(ϕ(x))) = (ϕ−1 ◦DG ◦ϕ)(x).

It follows that DX = ϕ−1 ◦DG ◦ ϕ and hence DX is bijective, which proves that X is uniquely

2-divisible. �

2.3 Quadratic spaces and Clifford algebras

LetV be a vector space over a field F of characteristic different from 2. A quadratic form Q

on V is a map Q : V → F such that

(1) Q(λv) = λ 2Q(v) for all λ ∈ F, v ∈V and

(2) the map B : V ×V → F defined by B(u,v) = 1/2(Q(u+ v)−Q(u)−Q(v)) is a symmetric

bilinear form on V .
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Note that any symmetric bilinear form B on V gives rise to a quadratic form Q by defining

Q(v) = B(v,v) for v ∈ V . A quadratic space is a vector space equipped with a quadratic form

on which the associated bilinear form is nondegenerate. Let (V,Q) be a quadratic space with the

corresponding bilinear form B. A basis {e1,e2, . . . ,en} of V is orthogonal if B(ei,e j) = 0 for all

i ̸= j.

Let {e1,e2, . . . ,en} be an orthogonal basis for (V,Q). The Clifford algebra of (V,Q), written

CℓQ, is a unital associative algebra over F with a basis

{eI : I = /0 or I = {1 ≤ i1 < i2 < · · ·< ik ≤ n}},

where e /0 := 1 and eI := ei1ei2 · · ·eik for I = {1 ≤ i1 < i2 < · · · < ik ≤ n}. From this a typical

element of CℓQ is of the form ∑
I

λIeI , λI ∈ F. Vector addition and scalar multiplication of CℓQ

are defined pointwise, and multiplication is performed by using the distributive law without

assuming commutativity subject to the defining relations

e2
i = Q(ei)1 and eie j =−e jei

for i ̸= j.

In CℓQ, one has relations v2 = Q(v)1 and uv+vu = 2B(u,v)1 for all u,v ∈V . The base field

F is embedded into CℓQ by the map λ 7→ λ1, andV is naturally embedded into CℓQ by inclusion.

For a deep discussion of Clifford algebras, we refer the reader to [4].

There are three standard maps of a Clifford algebra. One is an involutive algebra auto-

morphism, and the others are involutive algebra anti-automorphisms. Table 2.1 summarizes

basic properties of such maps.

MAP TYPE ON V

reversion ρ(a) = ã anti-automorphism idV

grade involution τ(a) = â automorphism −idV

Clifford conjugation κ(a) = ā anti-automorphism −idV

TABLE 2.1: Three standard maps of CℓQ

The Clifford or Lipschitz group of CℓQ, written Γ(Q), is defined via the grade involution as

Γ(Q) = {g ∈ Cℓ×Q : ∀v ∈V, ĝvg−1 ∈V}.
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In the finite-dimensional case, Γ(Q) does form a subgroup of the group of units of CℓQ. Further,

the grade involution descends to a group automorphism of Γ(Q), and the reversion and Clifford

conjugation descend to group anti-automorphisms of Γ(Q).

Let η : CℓQ → CℓQ be the map defined by

η(a) = aā

for a ∈ CℓQ. It can be proved that η(g) belongs to F×1 := {λ1: λ ∈ F×} for all g ∈ Γ(Q) and

hence the restriction of η to Γ(Q) is a group homomorphism.

Proposition 2.3.1. The restriction of η to Γ(Q) is a group homomorphism from Γ(Q) to F×1.

Furthermore, η is multiplicative over the set of products of vectors in V in the sense that

η(v1v2 · · ·vk) = η(v1)η(v2) · · ·η(vk)

for all v1,v2, . . . ,vk ∈V .

Proof. This is becauseη(g) andη(v) are scalar multiples of unity for all g∈Γ(Q) and v∈V . �

Invertibility of elements of the form 1+uv

In this subsection, we provide a necessary and sufficient condition for invertibility of elements

of the form 1+ uv, where u and v are vectors in a quadratic space. Let (V,Q) be a quadratic

space with the corresponding bilinear form B. From now on, the term vector is reserved for the

elements of V .

Lemma 2.3.2. If u,v and w are vectors, then so are uvu and uvw+wvu.

Proof. This follows from the fact that uv+ vu = 2B(u,v)1 for all u,v ∈V . �

Proposition 2.3.3. If u and v are vectors, then either

(1) 1+uv is a product of vectors or

(2) 1+uv belongs to Γ(Q) and η(1+uv) = 1.

Proof. Recall that if w is a nonisotropic vector, then w is invertible and w−1 = w/Q(w) is again

a vector. If u or v is nonisotropic, then 1+uv is a product of vectors. We may therefore assume

that u and v are isotropic. If B(u,v) ̸= 0, then u+ v is invertible and

1+uv = (u+ v+2B(u,v)u)(u+ v)−1
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is a product of vectors. If B(u,v) = 0, then η(1+ uv) = 1+ 2B(u,v)1+Q(u)Q(v)1 = 1. By

the lemma, τ(1+uv)w(1+uv)−1 = w+wvu+uvw+uvwvu belongs to V for all w ∈V . Hence,

1+uv ∈ Γ(Q). �

Proposition 2.3.4. For all u,v ∈V , 1+uv ∈ Γ(Q) if and only if η(1+uv) ̸= 0.

Proof. (⇒) If 1+uv ∈ Γ(Q), then η(1+uv) ∈ F×1. Hence, η(1+uv) ̸= 0.

(⇐) Suppose that η(1+uv) ̸= 0. By Proposition 2.3.3, either 1+uv already belongs to Γ(Q)

or 1+uv is a product of vectors. In the latter case, 1+uv=w1w2 · · ·wk for somew1,w2, . . . ,wk in

V . Because 0 ̸= η(1+uv) = η(w1w2 · · ·wk) = η(w1)η(w2) · · ·η(wk), none of η(wi) are zeros.

Thus, w1,w2, . . ., and wk are all nonisotropic vectors and hence 1+uv belongs to Γ(Q). �

2.4 Negative Euclidean space

The negative Euclidean space consists of the underlying vector spaceRn with a nondegenerate

symmetric bilinear form

B(u,v) =−⟨u,v⟩, u,v ∈ Rn,

where ⟨·, ·⟩ denotes the usual Euclidean inner product of Rn. Its associated quadratic form is

given by Q(v) =−∥v∥2 for v ∈ Rn.

For convenience, let Cℓn denote the Clifford algebra of negative Euclidean space, let Γn

denote the Clifford group of Cℓn, and let {e1,e2, . . . ,en} be the standard basis of Rn. From now

on, we identify elements of R1 with real numbers, that is, r1 ↔ r for r ∈ R.

Proposition 2.4.1. In the Clifford algebra Cℓn, the following properties hold.

(1) uv+vu =−2⟨u,v⟩ for all u,v ∈ Rn.

(2) v2 =−∥v∥2 for all v ∈ Rn.

(3) e2
i =−1, eie j =−e jei for 1 ≤ i, j ≤ n and i ̸= j.

(4) 1−uv ∈ Γn and (1−uv)−1 =
1−vu

η(1−uv)
for all u,v ∈ Rn with ∥u∥∥v∥ ̸= 1.

(5) η(w(1−uv)−1) =
η(w)

η(1−uv)
for all u,v,w ∈ Rn with ∥u∥∥v∥ ̸= 1.

Proof. Items (1)–(3) follow from the defining relations in Cℓn.
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(4) The Cauchy-Schwarz inequality gives

η(1−uv) = 1+2⟨u,v⟩+∥u∥2∥v∥2

≥ 1−2∥u∥∥v∥+∥u∥2∥v∥2

= (1−∥u∥∥v∥)2.

It follows that if u,v ∈ Rn with ∥u∥∥v∥ ̸= 1, then η(1− uv) > 0 and hence 1− uv ∈ Γn by

Proposition 2.3.4. Since 1−uv ∈ Γn, we have

(1−uv)−1 =
1−uv

η(1−uv)
=

1−vu
η(1−uv)

.

(5) Let u,v,w ∈ Rn with ∥u∥∥v∥ ̸= 1. If w = 0, equality holds trivially. We may therefore

assume that w ̸= 0. Hence, w ∈ Γn. By Item (4), 1−uv ∈ Γn and so

η(w(1−uv)−1) = η(w)η((1−uv)−1) =
η(w)

η(1−uv)

since η is a group homomorphism of Γn. �

2.5 Möbius and Einstein gyrogroups on Rn

Using relations v2 = −∥v∥2 and uv + vu = −2⟨u,v⟩ in the Clifford algebra of negative

Euclidean space, Lawson [8] verified that

(u+v)(1−uv)−1 =
(1+2⟨u,v⟩+∥v∥2)u+(1−∥u∥2)v

1+2⟨u,v⟩+∥u∥2∥v∥2 = u⊕M v

for all u,v∈B. Hence, the Euclidean version ofMöbius addition has a compact formula analogous

to the complex case. He also dealt with the group of Möbius transformations ofRn that preserve

the open unit ball to prove that (B,⊕M) is indeed a B-loop.

In light of the proof of Proposition 2.4.1, η(1−uv)≥ 0 for all u,v ∈Rn. Hence, the notation

|1−uv| :=
√

η(1−uv)

is meaningful whenever u and v are vectors in Rn. Further, |v|= ∥v∥ for all v ∈ Rn.

Theorem2.5.1 ([8]). TheMöbius loop on the open unit ball inRn forms a B-loopwhose operation

is given in terms of the Clifford algebra Cℓn by

u⊕M v = (u+v)(1−uv)−1. (2.2)

The left inner mappings are given by ℓ(u,v)w = qwq−1, where q =
1−uv
|1−uv|

.
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Combining Equation (2.2) with Proposition 2.4.1 (5) gives

η(u⊕M v) =
η(u+v)

η(1−uv)
(2.3)

for all u,v ∈ B.

From now on, we work in the Clifford algebra of negative Euclidean space, Cℓn. In light

of Theorem 2.2.5 and Proposition 2.2.6, we express Einstein addition via Möbius addition to

deduce that (B,⊕E) forms a uniquely 2-divisible gyrocommutative gyrogroup.

For each v ∈ B, set

rv =
1

1+
√

1−∥v∥2
. (2.4)

Then

rv =
1−

√
1−∥v∥2

∥v∥2

and

rv =
1

1+
√

1+v2

in Cℓn. According to the Lorentz factor normalized to c = 1, we have

rv =
1

1+ γ−1
v

=
γv

1+ γv
.

It follows that 0 < rv < 1. In fact, rv is a solution to the quadratic equation

∥v∥2x2 −2x+1 = 0

in the variable x. Hence,
2rv

1− r2
vv2 = 1. (2.5)

Let Ψ be the map defined on B by

Ψ(v) = rvv, v ∈ B. (2.6)

Since 0 < rv < 1, we have ∥Ψ(v)∥= ∥rvv∥= rv∥v∥< 1. Hence, Ψ(B)⊆ B.

Let Φ be the map defined on B by

Φ(v) = v⊕M v. (2.7)

From Equation (2.2), we have

Φ(v) =
2v

1−v2 =
2v

1+∥v∥2 .
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The map Φ is called the doubling map and is of importance for the study of Möbius and Einstein

gyrogroups, see for instance [7].

In the case ∥v∥= 0, v = 0 and hence ∥Φ(v)∥= ∥Φ(0)∥= ∥0∥= 0. In the case 0 < ∥v∥< 1,

∥Φ(v)∥= 2
1

∥v∥ +∥v∥
< 1

since
1
∥v∥

+∥v∥> 2. It follows that Φ(B)⊆ B.

Proposition 2.5.2. The maps Ψ and Φ are bijections from B to itself and are inverses of each

other.

Proof. Let v ∈ B. Since 1−∥Φ(v)∥2 = 1− 4∥v∥2

(1+∥v∥2)2 =

(
1−∥v∥2

1+∥v∥2

)2

, we have

1+
√

1−∥Φ(v)∥2 = 1+
1−∥v∥2

1+∥v∥2 =
2

1+∥v∥2 =
2

1−v2 .

It follows that (Ψ◦Φ)(v) = Ψ(Φ(v)) = rΦ(v)Φ(v) =
1

1+
√

1+Φ(v)2

2v
1−v2 = v.

From Equation (2.5), we have

(Φ◦Ψ)(v) = Φ(Ψ(v)) =
2Ψ(v)

1−Ψ(v)2 =
2rv

1− r2
vv2 v = v.

This proves Ψ ◦ Φ = idB and Φ ◦ Ψ = idB. Hence, Φ and Ψ are bijections, Φ−1 = Ψ, and

Ψ−1 = Φ. �

Proposition 2.5.3. The unit ball B with the induced operation

u⊕B v = Ψ−1(Ψ(u)⊕M Ψ(v)), u,v ∈ B,

forms a uniquely 2-divisible gyrocommutative gyrogroup.

Proof. The proposition follows from Theorem 2.2.5 and Proposition 2.2.6 applied to (B,⊕M)

and Ψ. �

In fact, the induced addition ⊕B is nothing but Einstein addition, as shown in the following

theorem.

Theorem 2.5.4. For all u,v ∈ B,

u⊕B v = u⊕E v.

In particular, (B,⊕E) forms a uniquely 2-divisible gyrocommutative gyrogroup. In terms of the

Clifford algebra Cℓn, Einstein addition can be rewritten as

u⊕E v = 2(ruu⊕M rvv)
(

1− (ruu⊕M rvv)2
)−1

(2.8)
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and the Einstein gyroautomorphisms are given by

gyr[u,v]w = qwq−1, q =
1− rurvuv
|1− rurvuv|

,

for all u,v,w ∈ B.

Proof. Since Ψ−1 = Φ, we have

u⊕B v = Φ(Ψ(u)⊕M Ψ(v)) =
2

1− [Ψ(u)⊕M Ψ(v)]2
[Ψ(u)⊕M Ψ(v)].

Note that η(Ψ(u)⊕M Ψ(v)) = [Ψ(u)⊕M Ψ(v)]Ψ(u)⊕M Ψ(v) =−[Ψ(u)⊕M Ψ(v)]2 since

Ψ(u)⊕M Ψ(v) ∈ Rn. Equations (2.2) and (2.3) and Proposition 2.4.1 together imply

u⊕B v =
2

1+η(Ψ(u)⊕M Ψ(v))
[Ψ(u)⊕M Ψ(v)]

=
2

1+
η(Ψ(u)+Ψ(v))

η(1−Ψ(u)Ψ(v))

[Ψ(u)+Ψ(v)][1−Ψ(u)Ψ(v)]−1

=
2[Ψ(u)+Ψ(v)][1−Ψ(v)Ψ(u)]

η(Ψ(u)+Ψ(v))+η(1−Ψ(u)Ψ(v))
.

(2.9)

Since 1− r2
uu2 − r2

vv2 + r2
uu2r2

vv2 = (1− r2
uu2)(1− r2

vv2) = (2ru)(2rv) = 4rurv, we have

η(Ψ(u)+Ψ(v))+η(1−Ψ(u)Ψ(v)) = 1− r2
uu2 − r2

vv2 + r2
uu2r2

vv2 +4rurv⟨u,v⟩

= 4rurv(1+ ⟨u,v⟩).
(2.10)

We also have

1
2rurv

[Ψ(u)+Ψ(v)][1−Ψ(v)Ψ(u)]

=
u

2rv
− ru

2
uvu+

v
2ru

− rv

2
v2u

=
1
2

(
1
rv

− rvv2
)

u− ru

2
(uv+vu)u+

1
2

(
ruu2 +

1
ru

)
v

= u+
γu

1+ γu
⟨u,v⟩u+

1
γu

v.

(2.11)

We obtain the third equation of (2.11) because
1
rw

= 1+
√

1−∥w∥2 = 1+
1
γw

and

rww2 =
1−

√
1−∥w∥2

∥w∥2 (−∥w∥2) =
√

1−∥w∥2 −1 =
1
γw

−1
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for all w ∈ B. Combining Equations (2.9) – (2.11) gives

u⊕B v =

4rurv

{
u+

γu

1+ γu
⟨u,v⟩u+

1
γu

v
}

4rurv(1+ ⟨u,v⟩)

=
1

1+ ⟨u,v⟩

{
u+

1
γu

v+
γu

1+ γu
⟨u,v⟩u

}
= u⊕E v.

The second part of the theorem follows from the result that

gyrE [u,v] = ℓ(Φ(u),Φ(v))

and Theorem 2.5.1. �

Equation (2.8) shows a close relationship between elements of Einstein and Möbius gyro-

groups. See also [12, Equation (6.297)] and [1, Proposition 6]. In terms of Einstein scalar

multiplication [12, p. 218], given by

r⊗E v =
(1+∥v∥)r − (1−∥v∥)r

(1+∥v∥)r +(1−∥v∥)r
v

∥v∥
, r ∈ R,0 ̸= v ∈ B, (2.12)

Equations (2.6) and (2.7) can be rewritten as

Ψ(v) =
1
2
⊗E v and Φ(v) = 2⊗E v,

which reflects the fact that Ψ and Φ are inverses of each other.

Although the result that Einstein addition can be expressed via Möbius addition is known,

see Friedman and Scarr [3, Equation (2.13)], we obtain these results using a different technique.

In fact, Friedman and Scarr obtained the result using the principle of special relativity, whereas

we use an algebraic approach.

We end this section with the following characterization of associativity and commutativity

of the elements of Einstein gyrogroup (B,⊕E).

Theorem 2.5.5. For all u,v,w ∈ B,

u⊕E (v⊕E w) = (u⊕E v)⊕E w

if and only if ⟨u,w⟩= ⟨v,w⟩= 0 or u∥v.

Proof. (⇒) Suppose that u⊕E (v⊕E w) = (u⊕E v)⊕E w. Since Ψ : (B,⊕E) → (B,⊕M) is a

gyrogroup isomorphism, we have

Ψ(u)⊕M (Ψ(v)⊕M Ψ(w)) = (Ψ(u)⊕M Ψ(v))⊕M Ψ(w).
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By Lemma 10 of [2], ⟨Ψ(u),Ψ(w)⟩ = ⟨Ψ(v),Ψ(w)⟩ = 0 or Ψ(u)∥Ψ(v). By Equation (2.6),

⟨ruu,rww⟩= 0 = ⟨rvv,rww⟩ or ruu∥rvv, which implies the desired statement.

(⇐) If ⟨u,w⟩= ⟨v,w⟩= 0, then ⟨Ψ(u),Ψ(w)⟩= ⟨ruu,rww⟩= 0. Similarly, ⟨Ψ(v),Ψ(w)⟩=

0. Hence, Ψ(u)⊕M (Ψ(v)⊕M Ψ(w)) = (Ψ(u)⊕M Ψ(v))⊕M Ψ(w). Applying Φ to both sides of

the equation gives u⊕E (v⊕E w)= (u⊕E v)⊕E w sinceΦ=Ψ−1 andΦ preserves the operations.

If u∥v, then Ψ(u)∥Ψ(v) and so the same reasoning applies. �

Theorem 2.5.6. For all u,v ∈ B,

u⊕E v = v⊕E u

if and only if u∥v.

Proof. Ifu⊕E v= v⊕E u, thenΨ(u)⊕M Ψ(v)=Ψ(v)⊕M Ψ(u). By Lemma 11 of [2],Ψ(u)∥Ψ(v).

Hence, u∥v. Conversely, if u∥v, then Ψ(u)∥Ψ(v), which implies

Ψ(u)⊕M Ψ(v) = Ψ(v)⊕M Ψ(u).

Applying Φ to both sides of the equation gives u⊕E v = v⊕E u. �
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on the symmetric group of G so that Cayley’s Theorem is obtained. Introducing the notion of

L-subgyrogroups, we show that an L-subgyrogroup partitions G into left cosets. Consequently,

if H is an L-subgyrogroup of a finite gyrogroup G, then the order of H divides the order of G.
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3.1 Introduction

Let c be a positive constant representing the speed of light in vacuum and letR3
c denote the c-

ball of relativistically admissible velocities, R3
c = {v ∈ R3 : ∥v∥< c}. In [13], Einstein velocity

addition ⊕E in the c-ball is given by the equation

u⊕E v =
1

1+ ⟨u,v⟩
c2

{
u+

1
γu

v+
1
c2

γu

1+ γu
⟨u,v⟩u

}

where γu is the Lorentz factor given by γu =
1√

1− ∥u∥2

c2

.
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The system (R3
c ,⊕E) does not form a group since ⊕E is neither associative nor commuta-

tive. Nevertheless, Ungar showed that (R3
c ,⊕E) is rich in structure and encodes a group-like

structure, namely the gyrogroup structure. He introduced space rotations gyr [u,v], called gyro-

automorphisms, to repair the breakdown of associativity in (R3
c ,⊕E)

u⊕E (v⊕E w) = (u⊕E v)⊕E gyr [u,v]w

(u⊕E v)⊕E w = u⊕E (v⊕E gyr [v,u]w)

for all u,v,w∈R3
c . The resulting system forms a gyrocommutative gyrogroup, called theEinstein

gyrogroup, which has been intensively studied in [3, 5, 9, 11, 13, 14, 16, 17].

There are close connections between the Einstein gyrogroup and the Lorentz transforma-

tions, as described in [14, Chapter 11] and [12]. A Lorentz transformation without rotation is

called a Lorentz boost. Let L(u) and L(v) denote Lorentz boosts parametrized by u and v in R3
c .

The composite of two Lorentz boosts is not a pure Lorentz boost, but a Lorentz boost followed

by a space rotation

L(u)◦L(v) = L(u⊕E v)◦Gyr [u,v] (3.1)

whereGyr [u,v] is a rotation of spacetime coordinates induced by the Einstein gyroautomorphism

gyr [u,v]. In this paper, we present an abstract version of the composition law (3.1) of Lorentz

boosts.

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the complex

unit disk D= {z ∈ C : |z|< 1} with Möbius addition

a⊕M b =
a+b

1+ āb
(3.2)

for a,b ∈ D. The Möbius gyroautomorphisms are given by

gyr [a,b]z =
1+ab̄
1+ āb

z, z ∈ D. (3.3)

Let B denote the open unit ball of n-dimensional Euclidean space Rn (or more generally of a

real inner product space). In [15], Ungar extended Möbius addition from the complex unit disk

to the unit ball

u⊕M v =
(1+2⟨u,v⟩+∥v∥2)u+(1−∥u∥2)v

1+2⟨u,v⟩+∥u∥2∥v∥2 (3.4)

for u,v ∈ B. The unit ball together with Möbius addition forms a gyrocommutative gyrogroup,

which has been intensively studied in [1, 4, 6, 7, 14–16].

The factorization ofMöbius gyrogroups was comprehensively studied by Ferreira and Ren in

[1, 4], in which they showed that anyMöbius subgyrogroup partitions theMöbius gyrogroup into
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left cosets. The fact that any subgyrogroup of an arbitrary gyrogroup partitions the gyrogroup

is not stated in the literature, and this is indeed the case, as shown in Theorem 3.4.2. This result

leads to the introduction of L-subgyrogroups. We prove that an L-subgyrogroup partitions the

gyrogroup into left cosets and consequently obtain a portion of Lagrange’s Theorem: if H is an

L-subgyrogroup of a finite gyrogroup G, then the order of H divides the order of G. We also

prove the isomorphism theorems for gyrogroups, in full analogy with their group counterparts.

3.2 Basic properties of gyrogroups

A pair (G,⊕) consisting of a nonempty set G and a binary operation ⊕ on G is called a

magma. Let (G,⊕) be a magma. A bijection from G to itself is called an automorphism of G

if φ(a⊕ b) = φ(a)⊕φ(b) for all a,b ∈ G. The set of all automorphisms of G is denoted by

Aut(G,⊕). Ungar formulated the formal definition of a gyrogroup as follows.

Definition 3.2.1 ([14]). A magma (G,⊕) is a gyrogroup if its binary operation satisfies the

following axioms

(G1) ∃0 ∈ G∀a ∈ G, 0⊕a = a

(G2) ∀a ∈ G∃b ∈ G, b⊕a = 0

(G3) ∀a,b ∈ G∃gyr [a,b] ∈ Aut(G,⊕)∀c ∈ G, a⊕ (b⊕ c) = (a⊕b)⊕gyr [a,b]c

(G4) ∀a,b ∈ G, gyr [a,b] = gyr [a⊕b,b].

The axioms in Definition 3.2.1 imply the right counterparts.

Theorem 3.2.2 ([14]). Amagma (G,⊕) forms a gyrogroup if and only if it satisfies the following

properties:

(g1) ∃0 ∈ G∀a ∈ G,0⊕a = a and a⊕0 = a (two-sided identity)

(g2) ∀a ∈ G∃b ∈ G,b⊕a = 0 and a⊕b = 0. (two-sided inverse)

For a,b,c ∈ G, define

gyr [a,b]c =⊖(a⊕b)⊕ (a⊕ (b⊕ c)), (gyrator identity)

then

(g3) gyr [a,b] ∈ Aut(G,⊕) (gyroautomorphism)
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(g3a) a⊕ (b⊕ c) = (a⊕b)⊕gyr [a,b]c (left gyroassociative law)

(g3b) (a⊕b)⊕ c = a⊕ (b⊕gyr [b,a]c) (right gyroassociative law)

(g4a) gyr [a,b] = gyr [a⊕b,b] (left loop property)

(g4b) gyr [a,b] = gyr [a,b⊕a]. (right loop property)

The map gyr [a,b] is called the gyroautomorphism generated by elements a and b. By

Theorem 3.2.2, any gyroautomorphism is completely determined by its generators via the gyrator

identity. A gyrogroup G having the additional property that

a⊕b = gyr [a,b](b⊕a) (gyrocommutative law)

for all a,b ∈ G is called a gyrocommutative gyrogroup.

Many of group theoretic theorems are generalized to the gyrogroup case with the aid of gyro-

automorphisms, see [11, 14] for more details. Some theorems are listed here for easy reference.

To shorten notation, we write a⊖b instead of a⊕ (⊖b).

Theorem 3.2.3 (Theorem 2.11, [11]). Let G be a gyrogroup. Then

(⊖a⊕b)⊕gyr [⊖a,b](⊖b⊕ c) =⊖a⊕ c (3.5)

for all a,b,c ∈ G.

Theorem 3.2.4 (Theorem 2.25, [11]). For any two elements a and b of a gyrogroup,

⊖ (a⊕b) = gyr [a,b](⊖b⊖a). (3.6)

Theorem 3.2.5 (Theorem 2.27, [11]). The gyroautomorphisms of any gyrogroup G are even

gyr [⊖a,⊖b] = gyr [a,b] (3.7)

and inversive symmetric

gyr−1[a,b] = gyr [b,a] (3.8)

for all a,b ∈ G.

Using Theorem 3.2.5, one can prove the following proposition.

Proposition 3.2.6. Let G be a gyrogroup and let X ⊆ G. Then the following are equivalent:
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(1) gyr [a,b](X)⊆ X for all a,b ∈ G

(2) gyr [a,b](X) = X for all a,b ∈ G.

The gyrogroup cooperation � is defined by the equation

a�b = a⊕gyr [a,⊖b]b, a,b ∈ G. (3.9)

Like groups, every linear equation in a gyrogroup G has a unique solution in G.

Theorem3.2.7 (Theorem2.15, [11]). LetG be a gyrogroup and let a,b∈G. The unique solution

of the equation a⊕ x = b in G for the unknown x is x = ⊖a⊕b, and the unique solution of the

equation x⊕a = b in G for the unknown x is x = b� (⊖a).

The following cancellation laws in gyrogroups are derived as a consequence of Theorem

3.2.7.

Theorem 3.2.8 ([11]). Let G be a gyrogroup. For all a,b,c ∈ G,

(1) a⊕b = a⊕ c implies b = c (general left cancellation law)

(2) ⊖a⊕ (a⊕b) = b (left cancellation law)

(3) (b⊖a)�a = b (right cancellation law I)

(4) (b� (⊖a))⊕a = b. (right cancellation law II)

It is known in the literature that every gyrogroup forms a left Bol loop with the Aℓ-property,

where the gyroautomorphisms correspond to left inner mappings or precession maps. In fact,

gyrogroups and left Bol loops with the Aℓ-property are equivalent, see for instance [8].

To prove an analog of Cayley’s theorem for gyrogroups, we will make use of the following

theorem

Theorem 3.2.9 (Theorem 1, [2]). Let G be a gyrogroup, let X be an arbitrary set, and let

ϕ : X → G be a bijection. Then X endowed with the induced operation

a⊕X b := ϕ−1(ϕ(a)⊕ϕ(b))

for a,b ∈ X becomes a gyrogroup.
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3.3 Cayley’s theorem

Recall that for a ∈D, the map τa that sends a complex number z to a⊕M z defines a Möbius

transformation or conformal mapping on D, known as a Möbius translation. In the literature,

the following composition law of Möbius translations is known

τa ◦ τb = τa⊕Mb ◦gyr [a,b] (3.10)

for all a,b ∈ D. In this section, we extend the composition law (3.10) to an arbitrary gyrogroup

G. We also show that the symmetric group of G admits the gyrogroup structure induced by G,

thus obtaining an analog of Cayley’s theorem for gyrogroups.

Throughout this section, G and H are arbitrary gyrogroups.

For each a ∈ G, the left gyrotranslation by a and the right gyrotranslation by a are defined

on G by

La : x 7→ a⊕ x and Ra : x 7→ x⊕a. (3.11)

Theorem 3.3.1. Let G be a gyrogroup.

(1) The left gyrotranslations are permutations of G.

(2) Denote the set of all left gyrotranslations of G by G. The map ψ : G → G defined by

ψ(a) = La is bijective. The inverse map ϕ := ψ−1 fulfills the condition in Theorem 3.2.9.

In this case, the induced operation ⊕G is given by

La ⊕G Lb = La⊕b

for all a,b ∈ G.

(3) For all a,b,c ∈ G,

La ◦Lb = La⊕b ◦gyr [a,b] (3.12)

and

gyrG[La,Lb]Lc = Lgyr [a,b]c. (3.13)

Proof. Let a,b ∈ G.

(1) That La is injective follows from the general left cancellation law. That La is surjective

follows from Theorem 3.2.7.

(2) That ψ is bijective is clear. By Theorem 3.2.9, the induced operation is given by

La ⊕G Lb = ψ(ψ−1(La)⊕ψ−1(Lb)) = ψ(a⊕b) = La⊕b.
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(3) By the left cancellation law, L−1
a = L⊖a. By the gyrator identity,

gyr [a,b] = L⊖(a⊕b) ◦La ◦Lb

and hence gyr [a,b] = L−1
a⊕b ◦La ◦Lb. It follows that La ◦Lb = La⊕b ◦ gyr [a,b]. Equation (3.13)

follows from the gyrator identity. �

Let Stab(0) denote the set of permutations of G leaving the gyrogroup identity fixed

Stab(0) = {ρ ∈ Sym(G) : ρ(0) = 0}.

It is clear that Stab(0) is a subgroup of the symmetric group, Sym(G), and we have the following

inclusions

{gyr [a,b] : a,b ∈ G} ⊆ Aut(G)6 Stab(0)6 Sym(G).

The next theorem enables us to introduce a binary operation⊕ on the symmetric group of G

so that Sym(G) equipped with ⊕ becomes a gyrogroup containing an isomorphic copy of G.

Theorem 3.3.2. For each σ ∈ Sym(G), σ can be written uniquely as σ = La ◦ρ , where a ∈ G

and ρ ∈ Stab(0).

Proof. Suppose that La ◦ρ = Lb ◦η , where a,b ∈ G and ρ ,η ∈ Stab(0). Then a = (La ◦ρ)(0) =

(Lb ◦η)(0) = b, which implies La = Lb and so ρ = η . This proves the uniqueness of factoriza-

tion. Let σ be an arbitrary permutation of G. Choose a = σ(0) and set ρ = L⊖a ◦σ . Note that

ρ(0) = L⊖a(a) =⊖a⊕a = 0. Hence, ρ ∈ Stab(0). Since L⊖a = L−1
a , σ = La ◦ρ . This proves

the existence of factorization. �

The following commutation relation determines how to commute a left gyrotranslation and

an automorphism of G

ρ ◦La = Lρ(a) ◦ρ (3.14)

whenever ρ is an automorphism of G.

Let σ and τ be permutations of G. By Theorem 3.3.2, σ and τ have factorizations σ = La ◦γ

and τ = Lb ◦δ , where a,b ∈ G and γ,δ ∈ Stab(0). Define an operation ⊕ on Sym(G) by

σ ⊕ τ = La⊕b ◦ (γ ◦δ ). (3.15)

Because of the uniqueness of factorization,⊕ is a binary operation on Sym(G). In fact, (Sym(G),⊕)

forms a gyrogroup.
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Theorem 3.3.3. Sym(G) is a gyrogroup under the operation defined by (3.15), and

La ⊕Lb = La ⊕G Lb = La⊕b

for all a,b ∈ G. In particular, the map a 7→ La defines an injective gyrogroup homomorphism

from G into Sym(G).

Proof. Suppose thatσ = La◦γ , τ = Lb◦δ and ρ = Lc◦λ , where a,b,c∈G and γ,δ ,λ ∈ Stab(0).

The identity map idG acts as a left identity of Sym(G) and L⊖a ◦ γ−1 is a left inverse of σ with

respect to ⊕. The gyroautomorphisms of Sym(G) are given by

gyr [σ ,τ ]ρ = (gyr [La,Lb]Lc)◦λ = Lgyr [a,b]c ◦λ .

Since G satisfies the left gyroassociative law and the left loop property, so does Sym(G). �

By Theorem 3.3.3, the following version of Cayley’s theorem for gyrogroups is immediate.

Corollary 3.3.4 (Cayley’s theorem). Every gyrogroup is isomorphic to a subgyrogroup of the

gyrogroup of permutations.

Proof. The map a 7→ La defines a gyrogroup isomorphism from G onto G and G is a sub-

gyrogroup of Sym(G). �

3.4 L-subgyrogroups

Throughout this section, G is an arbitrary gyrogroup.

A nonempty subset H of G is a subgyrogroup if H forms a gyrogroup under the operation

inherited from G and the restriction of gyr [a,b] to H is an automorphism of H for all a,b ∈ H.

If H is a subgyrogroup of G, then we write H 6 G as in the group case.

Proposition 3.4.1 (The subgyrogroup criterion). A nonempty subset H of G is a subgyrogroup

if and only if ⊖a ∈ H and a⊕b ∈ H for all a,b ∈ H.

Proof. Axioms (G1), (G2), (G4) hold trivially. Let a,b ∈ H. By the gyrator identity,

gyr [a,b](H)⊆ H.

Since the gyroautomorphisms are inversive symmetric (Theorem 3.2.5), we also have the reverse

inclusion. Thus, the restriction of gyr [a,b] to H is an automorphism of H and so axiom (G3)

holds. �
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Let H be a subgyrogroup of G. In contrast to groups, the relation

a ∼ b if and only if ⊖a⊕b ∈ H (3.16)

does not, in general, define an equivalence relation on G. Nevertheless, we can modify (3.16) to

obtain an equivalence relation on G. From this point of view, any subgyrogroup of G partitions

G. This leads to the introduction of L-subgyrogroups.

Let H be a subgyrogroup of G. Define a relation ∼H on G by letting

a ∼H b if and only if ⊖a⊕b ∈ H and gyr [⊖a,b](H) = H. (3.17)

Theorem 3.4.2. The relation ∼H defined by (3.17) is an equivalence relation on G.

Proof. Let a,b,c ∈ G. Since ⊖a⊕ a = 0 ∈ H and gyr [⊖a,a] = idG, a ∼H a. Hence, ∼H is

reflexive. Suppose that a ∼H b. By Theorem 3.2.4, gyr [⊖a,b](⊖b⊕a) = ⊖(⊖a⊕ b). Hence,

⊖b⊕a = gyr−1[⊖a,b](⊖(⊖a⊕b)), which implies ⊖b⊕a ∈ H since

gyr−1[⊖a,b](H) = H. By Theorem 3.2.5,

gyr [⊖a,b] = gyr [⊖a,⊖(⊖b)] = gyr [a,⊖b] = gyr−1[⊖b,a].

Hence, gyr [⊖b,a] = gyr−1[⊖a,b]. Since gyr [⊖a,b](H) = H, gyr [⊖b,a](H) = H as well. This

proves b ∼H a and so ∼H is symmetric. Suppose that a ∼H b and b ∼H c. By Theorem 3.2.3,

⊖a⊕ c = (⊖a⊕b)⊕gyr [⊖a,b](⊖b⊕ c) and so ⊖a⊕ c ∈ H. Using the composition law (3.12)

and the commutation relation (3.14), we have

gyr [⊖a,c] = gyr [⊖a⊕b,gyr [⊖a,b](⊖b⊕ c)]◦gyr [⊖a,b]◦gyr [⊖b,c].

This implies gyr [⊖a,c](H) = H and so a ∼H c. This proves ∼H is transitive. �

Let a ∈ G. Let [a] denote the equivalence class of a determined by ∼H . Theorem 3.4.2 says

that {[a] : a ∈ G} is a partition of G. Set a⊕H := {a⊕h : h ∈ H}, called the left coset of H

induced by a.

Proposition 3.4.3. For each a ∈ G, [a]⊆ a⊕H.

Proof. If x ∈ [a], by (3.17), ⊖a⊕ x ∈ H. Hence, x = a⊕ (⊖a⊕ x) ∈ a⊕H. �

Proposition 3.4.3 leads to the notion of L-subgyrogroups.

Definition 3.4.4. A subgyrogroup H of G is said to be an L-subgyrogroup, denoted by H 6L G,

if gyr [a,h](H) = H for all a ∈ G and h ∈ H.
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⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 1 0 6 7 5 4 11 10 8 9 15 14 12 13

3 3 2 0 1 7 6 4 5 10 11 9 8 14 15 13 12

4 4 5 6 7 3 2 0 1 15 14 12 13 9 8 11 10

5 5 4 7 6 2 3 1 0 14 15 13 12 8 9 10 11

6 6 7 5 4 0 1 2 3 13 12 15 14 10 11 9 8

7 7 6 4 5 1 0 3 2 12 13 14 15 11 10 8 9

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 9 8 14 15 13 12 3 2 0 1 7 6 4 5

11 11 10 8 9 15 14 12 13 2 3 1 0 6 7 5 4

12 12 13 14 15 11 10 8 9 6 7 5 4 0 1 2 3

13 13 12 15 14 10 11 9 8 7 6 4 5 1 0 3 2

14 14 15 13 12 8 9 10 11 4 5 6 7 3 2 0 1

15 15 14 12 13 9 8 11 10 5 4 7 6 2 3 1 0

TABLE 3.1: Addition table for the gyrogroup K16, (cf [10]).

Example 3.4.5. In [10, p. 41], Ungar exhibited the gyrogroup K16 whose addition table is

presented in Table 3.1. In K16, there is only one nonidentity gyroautomorphism, denoted by

A, whose transformation is given in cyclic notation by

A = (8 9)(10 11)(12 13)(14 15). (3.18)

The gyration table for K16 is presented in Table 3.2. According to (3.18), H1 = {0,1}, H2 =

{0,1,2,3}, and H3 = {0,1, . . . ,7} are easily seen to be L-subgyrogroups of K16. In contrast,

H4 = {0,8} forms a non-L-subgyrogroup of K16 since gyr [4,8](H4) ̸= H4.

The importance of L-subgyrogroups lies in the following results.

Proposition 3.4.6. If H 6L G, then [a] = a⊕H for all a ∈ G.

Proof. Assume thatH 6L G. By Proposition 3.4.3, [a]⊆ a⊕H. If x= a⊕h for some h∈H, then

⊖a⊕ x = h is in H. The left and right loop properties together imply gyr [⊖a,x] = gyr [h,a] =
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gyr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 I I I I I I I I I I I I I I I I

1 I I I I I I I I I I I I I I I I

2 I I I I I I I I I I I I I I I I

3 I I I I I I I I I I I I I I I I

4 I I I I I I I I A A A A A A A A

5 I I I I I I I I A A A A A A A A

6 I I I I I I I I A A A A A A A A

7 I I I I I I I I A A A A A A A A

8 I I I I A A A A I I I I A A A A

9 I I I I A A A A I I I I A A A A

10 I I I I A A A A I I I I A A A A

11 I I I I A A A A I I I I A A A A

12 I I I I A A A A A A A A I I I I

13 I I I I A A A A A A A A I I I I

14 I I I I A A A A A A A A I I I I

15 I I I I A A A A A A A A I I I I

TABLE 3.2: Gyration table for K16. Here, A is given by (3.18) and I stands for the identity

transformation, (cf [10]).

gyr−1[a,h]. By assumption, gyr [a,h](H) = H, which implies gyr [⊖a,x](H) = gyr−1[a,h](H) =

H. Hence, a ∼H x and so x ∈ [a]. This establishes the reverse inclusion. �

Theorem 3.4.7. If H is an L-subgyrogroup of a gyrogroup G, then the set

{a⊕H : a ∈ G}

forms a disjoint partition of G.

Proof. This follows directly from Theorem 3.4.2 and Proposition 3.4.6. �

In light of Theorem 3.4.7, we derive the following version of Lagrange’s theorem for L-

subgyrogroups.

Theorem3.4.8 (Lagrange’s theorem forL-subgyrogroups). In a finite gyrogroupG, ifH 6L G,

then |H| divides |G|.
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Proof. Being a finite gyrogroup, G has a finite number of left cosets, namely a1 ⊕H, a2 ⊕H,

. . . , an ⊕H. Since |ai ⊕H|= |H| for i = 1,2, . . . ,n, it follows that

|G|=
∣∣∣ n∪

i=1

ai ⊕H
∣∣∣= n

∑
i=1

|ai ⊕H|= n|H|,

which completes the proof. �

Let us denote by [G : H] the number of left cosets of H in G.

Corollary 3.4.9. In a finite gyrogroup G, if H 6L G, then |G|= [G : H]|H|.

For a non-L-subgyrogroup K of G, it is no longer true that the left cosets of K partition G.

Moreover, the formula |G|= [G : K]|K| is not true, in general.

3.5 Isomorphism theorems

A map φ : G → H between gyrogroups is called a gyrogroup homomorphism if φ(a⊕b) =

φ(a)⊕φ(b) for all a,b ∈ G. A bijective gyrogroup homomorphism is called a gyrogroup iso-

morphism. We say that G and H are isomorphic gyrogroups, written G ∼= H, if there exists a

gyrogroup isomorphism from G to H. The next proposition lists basic properties of gyrogroup

homomorphisms.

Proposition 3.5.1. Let φ : G → H be a homomorphism of gyrogroups.

(1) φ(0) = 0.

(2) φ(⊖a) =⊖φ(a) for all a ∈ G.

(3) φ(gyr [a,b]c) = gyr [φ(a),φ(b)]φ(c) for all a,b,c ∈ G.

(4) φ(a�b) = φ(a)�φ(b) for all a,b ∈ G.

The proof of the following two propositions is routine, using the subgyrogroup criterion and

the definition of an L-subgyrogroup.

Proposition 3.5.2. Let φ : G → H be a gyrogroup homomorphism. If K 6 G, then φ(K) 6 H.

If K 6L G and if φ is surjective, then φ(K)6L H.

Proposition 3.5.3. Let φ : G → H be a gyrogroup homomorphism. If K 6 H, then φ−1(K)6 G.

If K 6L H, then φ−1(K)6L G.
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Let φ : G → H be a gyrogroup homomorphism. The kernel of φ is defined to be the inverse

image of the trivial subgyrogroup {0} under φ , hence is a subgyrogroup. The kernel of φ is

invariant under the gyroautomorphisms of G, that is,

gyr [a,b](kerφ)⊆ kerφ

for all a,b ∈ G. By Proposition 3.2.6, gyr [a,b](kerφ) = kerφ for all a,b ∈ G and so kerφ is an

L-subgyrogroup of G. From this the relation (3.17) becomes

a ∼kerφ b if and only if ⊖a⊕b ∈ kerφ (3.19)

for all a,b ∈ G. More precisely, we have the following proposition.

Proposition 3.5.4. Letφ : G→H be a gyrogroup homomorphism. For all a,b∈G, the following

are equivalent

(1) a ∼kerφ b

(2) ⊖a⊕b ∈ kerφ

(3) φ(a) = φ(b)

(4) a⊕kerφ = b⊕kerφ .

In view of Proposition 3.5.4, we define a binary operation on the set G/kerφ of left cosets

of kerφ in the following natural way

(a⊕kerφ)⊕ (b⊕kerφ) = (a⊕b)⊕kerφ, a,b ∈ G. (3.20)

The resulting system forms a gyrogroup, called a quotient gyrogroup.

Theorem 3.5.5. If φ : G → H is a gyrogroup homomorphism, then G/kerφ with operation

defined by (3.20) is a gyrogroup.

Proof. Set K = kerφ . The coset 0⊕K is a left identity of G/K. The coset (⊖a)⊕K is a left

inverse of a⊕K. For X = a⊕K,Y = b⊕K ∈ G/K, the gyroautomorphism generated by X and

Y is given by

gyr [X ,Y ](c⊕K) = (gyr [a,b]c)⊕K

for c⊕K ∈ G/K. �

The map Π : G → G/kerφ given by Π(a) = a⊕kerφ defines a surjective gyrogroup homo-

morphism, which will be referred to as the canonical projection. In light of Theorem 3.5.5, the

first isomorphism theorem for gyrogroups follows.
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Theorem3.5.6 (The first isomorphism theorem). Ifφ : G→H is a gyrogroup homomorphism,

then G/kerφ ∼= φ(G) as gyrogroups.

Proof. Set K = kerφ . Define ϕ : G/K → φ(G) by ϕ(a⊕K) = φ(a). By Proposition 3.5.4, ϕ is

well defined and injective. A direct computation shows that ϕ is a gyrogroup isomorphism from

G/K onto φ(G). �

It is known that a subgroup of a group is normal if and only if it is the kernel of some

group homomorphism. This characterization of a normal subgroup allows us to define a normal

subgyrogroup in a similar fashion, as follows. A subgyrogroup N of a gyrogroup G is normal in

G, denoted by N �G, if it is the kernel of a gyrogroup homomorphism of G.

Lemma 3.5.7. Let G be a gyrogroup. If A 6 G and B�G, then

A⊕B := {a⊕b : a ∈ A,b ∈ B}

forms a subgyrogroup of G.

Proof. By assumption, B = kerϕ , where ϕ is a gyrogroup homomorphism of G. Using Theorem

3.2.7, one can prove that B⊕a = a⊕B for all a ∈ G.

Let x = a ⊕ b, with a ∈ A, b ∈ B. Since ϕ(gyr [a,b]⊖a) = gyr [ϕ(a),0]ϕ(⊖a) = ϕ(⊖a),

we have gyr [a,b]⊖a = ⊖a ⊕ b1 for some b1 ∈ B. Set b2 = gyr [a,b]⊖b. Since b2 ∈ B and

B⊕ (⊖a) = (⊖a)⊕B, there is an element b3 ∈ B for which b2 ⊖a =⊖a⊕b3. The left and right

loop properties together imply

⊖x =⊖a⊕ (b3 ⊕gyr [b3,⊖a](gyr [b2,⊖a]b1)) ,

whence ⊖x belongs to A⊕B.

For x,y ∈ A⊕B, we have x = a⊕b and y = c⊕d for some a,c ∈ A, b,d ∈ B. Since

ϕ(b⊕gyr [b,a](c⊕d)) = ϕ(b)⊕gyr [ϕ(b),ϕ(a)](ϕ(c)⊕ϕ(d)) = ϕ(c),

we have b⊕gyr [b,a](c⊕d) = c⊕b1 for some b1 ∈ B. The left and right loop properties together

imply x⊕y = (a⊕c)⊕gyr [a,c]b1, whence x⊕y belongs to A⊕B. This proves A⊕B 6 G. �

Theorem 3.5.8 (The second isomorphism theorem). Let G be a gyrogroup and let A,B 6 G.

If B�G, then A∩B�A and (A⊕B)/B ∼= A/(A∩B) as gyrogroups.

Proof. As in Lemma 3.5.7, B = kerϕ . Note that A ∩ B � A since kerϕ
∣∣
A = A ∩ B. Hence,

A/(A∩B) admits the quotient gyrogroup structure.
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Define φ : A ⊕ B → A/(A ∩ B) by φ(a ⊕ b) = a ⊕ (A ∩ B) for a ∈ A and b ∈ B. To see

that φ is well defined, suppose that a⊕ b = a1 ⊕ b1, where a,a1 ∈ A and b,b1 ∈ B. Note that

b1 = ⊖a1 ⊕ (a⊕ b) = (⊖a1 ⊕ a)⊕ gyr [⊖a1,a]b. Set b2 = ⊖gyr [⊖a1,a]b. Then b2 ∈ B and

b1 = (⊖a1⊕a)⊖b2. The right cancellation law I gives⊖a1⊕a= b1�b2 = b1⊕gyr [b1,⊖b2]b2,

which implies ⊖a1 ⊕a ∈ A∩B. By Proposition 3.5.4, a1 ⊕ (A∩B) = a⊕ (A∩B).

As we computed in the lemma, if a,c ∈ A and b,d ∈ B, then

(a⊕b)⊕ (c⊕d) = (a⊕ c)⊕gyr [a,c]b̃

for some b̃ ∈ B. Hence, φ((a⊕ b)⊕ (c⊕ d)) = (a⊕ c)⊕A∩B = φ(a⊕ b)⊕φ(c⊕ d). This

proves φ : A⊕B → A/(A∩B) is a surjective gyrogroup homomorphism whose kernel is

{a⊕b : a ∈ A,b ∈ B,a ∈ A∩B}= B.

Thus, B�A⊕B and by the first isomorphism theorem, (A⊕B)/B ∼= A/(A∩B). �

Theorem 3.5.9 (The third isomorphism theorem). Let G be a gyrogroup and let H,K be

normal subgyrogroups of G such that H ⊆ K. Then K/H �G/H and

(G/H)/(K/H)∼= G/K

as gyrogroups.

Proof. Let ϕ and ψ be gyrogroup homomorphisms of G such that kerϕ = H and kerψ = K.

Define φ : G/H → G/K by φ(a⊕H) = a⊕K for a ∈ G. Note that φ is well defined since

H ⊆K. Furthermore, φ is a surjective gyrogroup homomorphism such that kerφ =K/H. Hence,

K/H �G/H. By the first isomorphism theorem, (G/H)/(K/H)∼= G/K. �

Theorem 3.5.10 (The lattice isomorphism theorem). Let G be a gyrogroup and let N �G.

There is a bijection Φ from the set of subgyrogroups of G containing N onto the set of sub-

gyrogroups of G/N. The bijection Φ has the following properties

(1) A ⊆ B if and only if Φ(A)⊆ Φ(B)

(2) A 6L G if and only if Φ(A)6L G/N

(3) A�G if and only if Φ(A)�G/N

for all subgyrogroups A and B of G containing N.
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Proof. Set S = {K ⊆ G : K 6 G and N ⊆ K}. Let T denote the set of subgyrogroups of G/N.

Define a map Φ by Φ(K) = K/N for K ∈ S . By Proposition 3.5.2, Φ(K) = K/N = Π(K) is a

subgyrogroup of G/N, where Π : G → G/N is the canonical projection. Hence, Φ maps S to T .

Assume thatK1/N =K2/N, withK1,K2 inS. For a∈K1, a⊕N ∈K2/N implies a⊕N = b⊕N

for some b∈K2. Hence,⊖b⊕a∈N. SinceN ⊆K2,⊖b⊕a∈K2, which implies a = b⊕ (⊖b⊕a)

is in K2. This proves K1 ⊆ K2. By interchanging the roles of K1 and K2, one obtains similarly

that K2 ⊆ K1. Hence, K1 = K2 and Φ is injective.

Let Y be an arbitrary subgyrogroup of G/N. By Proposition 3.5.3,

Π−1(Y ) = {a ∈ G : a⊕N ∈ Y}

is a subgyrogroup ofG containingN for a∈N implies a⊕N = 0⊕N ∈Y . BecauseΦ(Π−1(Y ))=

Y , Φ is surjective. This proves Φ defines a bijection from S onto T .

The proof of Item 1 is straightforward. From Propositions 3.5.2 and 3.5.3, we have Item

2. To prove Item 3, suppose that A�G. Then A = kerψ , where ψ : G → H is a gyrogroup

homomorphism. Define φ : G/N → H by φ(a⊕N) = ψ(a). Since N ⊆ A, φ is well defined.

Also, φ is a gyrogroup homomorphism. Since kerφ = A/N, we have A/N �G/N. Suppose

conversely that Φ(A)�G/N. Then A/N = kerϕ , where ϕ is a gyrogroup homomorphism of

G/N. Set φ = ϕ ◦Π. Thus, φ is a gyrogroup homomorphism of G with kernel A and hence

A�G. �
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4.1 Introduction

Lagrange’s theorem (that the order of any subgroup of a finite group Γ divides the order of

Γ) is well known in group theory and has impact on several branches of mathematics, especially

finite group theory, combinatorics, and number theory. Lagrange’s theorem proves useful for

unraveling mathematical structures. For instance, it is used to prove that any finite field must

have prime power order. Certain classification theorems of finite groups arise as an application

of Lagrange’s theorem [9, 10, 17]. Further, Fermat little’s theorem and Euler’s theorem may be

viewed as a consequence of this theorem. Also relevant are the orbit-stabilizer theorem and the

Cauchy-Frobenius lemma (or Burnside’s lemma). A history of Lagrange’s theorem on groups

can be found in [15].

In loop theory, the Lagrange property becomes a nontrivial issue. For example, whether

Lagrange’s theorem holds for Moufang loops was an open problem in the theory of Moufang
*This work was completed with the support of Development and Promotion of Science and Technology Talents

Project (DPST), Institute for Promotion of Teaching Science and Technology (IPST), Thailand. Part of this work has

been presented at the International Mathematical Conference on Quasigroups and Loops (LOOPS’15), June 28th –

July 4th 2015, Ohrid, Macedonia.
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loops for more than four decades [5, p. 43]. This problem was answered in the affirmative by

Grishkov and Zavarnitsine [11]. In fact, not every loop satisfies the Lagrange property as one

can construct a loop of order five containing a subloop of order two. Nevertheless, some loops

satisfy the Lagrange property.

Baumeister and Stein [1] proved a version of Lagrange’s theorem for Bruck loops by studying

in detail the structure of a finite Bruck loop. Foguel et al. [7] proved that left Bol loops of odd

order satisfy the strong Lagrange property. It is, however, still an open problem whether or not

Bol loops satisfy the Lagrange property [6, p. 592]. In the same spirit, we focus on the Lagrange

property for gyrogroups or left Bol loops with the Aℓ-property in the loop literature. In [18], we

proved that the order of an L-subgyrogroup of a finite gyrogroup G divides the order of G. In

this paper, we extend this result by proving that the order of any subgyrogroup of G divides the

order of G, see Theorem 4.5.7.

A gyrogroup is a group-like structure, introduced by Ungar, arising as an algebraic structure

that regulates the set of relativistically admissible vectors in R3 with Einstein addition [19].

The origin of a gyrogroup is described in [22, Chapter 1]. There are two prime examples of

gyrogroups, namely the Einstein gyrogroup, which consists of the relativistic ball in R3 with

Einstein addition [19], and theMöbius gyrogroup, which consists of the complex unit disk with

Möbius addition [21].

In this paper, we prove that Lagrange’s theorem holds for gyrogroups and apply this result to

show that finite gyrogroups of particular order have the Cauchy property. Our results are strongly

based on results by Foguel and Ungar [8] and Baumeister and Stein [1]. For basic terminology

and definitions in loop theory, we refer the reader to [2, 12, 14].

4.2 Gyrogroups

In this section, we summarize definitions and basic properties of gyrogroups. Much of this

section can be found in [20].

Let (G,⊕) be a magma. Denote the group of automorphisms of G with respect to ⊕ by

Aut(G,⊕).

Definition 4.2.1 ([20]). A magma (G,⊕) is a gyrogroup if its binary operation satisfies the

following axioms:
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(G1) ∃0 ∈ G∀a ∈ G, 0⊕a = a; (left identity)

(G2) ∀a ∈ G∃b ∈ G, b⊕a = 0; (left inverse)

(G3) ∀a,b ∈ G∃gyr [a,b] ∈ Aut(G,⊕)∀c ∈ G,

a⊕ (b⊕ c) = (a⊕b)⊕gyr [a,b]c; (left gyroassociative law)

(G4) ∀a,b ∈ G, gyr [a,b] = gyr [a⊕b,b]. (left loop property)

The following theorem gives a characterization of a gyrogroup.

Theorem 4.2.2 ([8]). Suppose that (G,⊕) is a magma. Then (G,⊕) is a gyrogroup if and only

if (G,⊕) satisfies the following properties:

(g1) ∃0 ∈ G∀a ∈ G,0⊕a = a and a⊕0 = a; (two-sided identity)

(g2) ∀a ∈ G∃b ∈ G,b⊕a = 0 and a⊕b = 0. (two-sided inverse)

For a,b,c ∈ G, define

gyr [a,b]c =⊖(a⊕b)⊕ (a⊕ (b⊕ c)), (gyrator identity)

then

(g3) gyr [a,b] ∈ Aut(G,⊕); (gyroautomorphism)

(g3a) a⊕ (b⊕ c) = (a⊕b)⊕gyr [a,b]c; (left gyroassociative law)

(g3b) (a⊕b)⊕ c = a⊕ (b⊕gyr [b,a]c); (right gyroassociative law)

(g4a) gyr [a,b] = gyr [a⊕b,b]; (left loop property)

(g4b) gyr [a,b] = gyr [a,b⊕a]. (right loop property)

Definition 4.2.3 ([20]). A gyrogroup G having the additional property that

a⊕b = gyr [a,b](b⊕a) (gyrocommutative law)

for all a,b ∈ G is called a gyrocommutative gyrogroup.

The gyrogroup cooperation, �, is defined by the equation

a�b = a⊕gyr [a,⊖b]b, a,b ∈ G. (4.1)
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Theorem 4.2.4 ([20]). LetG be a gyrogroup and let a,b∈G. The unique solution of the equation

a⊕x = b in G for the unknown x is x =⊖a⊕b, and the unique solution of the equation x⊕a = b

in G for the unknown x is x = b� (⊖a).

By Theorem 4.2.4, the following cancellation laws hold in gyrogroups.

Theorem 4.2.5 ([20]). Let G be a gyrogroup. For all a,b,c ∈ G,

(1) a⊕b = a⊕ c implies b = c; (general left cancellation law)

(2) ⊖a⊕ (a⊕b) = b; (left cancellation law)

(3) (b⊖a)�a = b; (right cancellation law I)

(4) (b� (⊖a))⊕a = b. (right cancellation law II)

Let G be a gyrogroup. For a ∈ G, the left gyrotranslation by a, La : x 7→ a⊕ x, and the right

gyrotranslation by a, Ra : x 7→ x ⊕ a, are permutations of G. Further, one has the following

composition law

La ◦Lb = La⊕b ◦gyr [a,b]. (4.2)

From this it can be proved that every gyrogroup forms a left Bol loop with the Aℓ-property,

where the gyroautomorphisms correspond to left inner mappings or precession maps. In fact,

gyrogroups and left Bol loops with the Aℓ-property are equivalent, see for instance [16].

4.3 Subgyrogroups

Let G be a gyrogroup. A nonempty subset H of G is called a subgyrogroup if it is a gyro-

group under the operation inherited from G and the restriction of gyr [a,b] to H becomes an

automorphism of H for all a,b ∈ H. If H is a subgyrogroup of G, we write H 6 G. We have the

following subgyrogroup criterion, as in the group case.

Proposition 4.3.1 ([18]). A nonempty subset H of G is a subgyrogroup if and only if

(1) a ∈ H implies ⊖a ∈ H and

(2) a,b ∈ H implies a⊕b ∈ H.

Subgyrogroups that arise as groups under gyrogroup operation are of great importance in the

study of gyrogroups.
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Definition 4.3.2 ([8]). A nonempty subset X of a gyrogroup (G,⊕) is a subgroup if it is a group

under the restriction of ⊕ to X .

The following proposition shows that any subgroup of a gyrogroup is simply a subgyrogroup

with trivial gyroautomorphisms.

Proposition 4.3.3. A nonempty subset X of a gyrogroup G is a subgroup if and only if it is a

subgyrogroup of G and gyr [a,b]
∣∣
X = idX for all a,b ∈ X .

Just as in group theory, we obtain the following results.

Proposition 4.3.4. Let G be a gyrogroup and let H be a nonempty collection of subgyrogroups

of G. Then the intersection
∩

H∈H
H forms a subgyrogroup of G.

Proof. This follows directly from the subgyrogroup criterion. �

Proposition 4.3.5. Let A be a nonempty subset of a gyrogroup G. There exists a unique sub-

gyrogroup of G, denoted by ⟨A⟩, such that

(1) A ⊆ ⟨A⟩ and

(2) if H 6 G and A ⊆ H, then ⟨A⟩ ⊆ H.

Proof. SetH= {H : H 6 G and A ⊆ H}. Then ⟨A⟩ :=
∩

H∈H
H is a subgyrogroup of G satisfying

the two conditions. The uniqueness follows from condition (2). �

The subgyrogroup generated by one-element set {a} is called the cyclic subgyrogroup gene-

rated by a, which will be denoted by ⟨a⟩. Next, we will give an explicit description of ⟨a⟩.

Let G be a gyrogroup and let a ∈ G. Define recursively the following notation:

0 ·a = 0, m ·a = a⊕ ((m−1) ·a), m > 1, m ·a = (−m) · (⊖a), m < 0. (4.3)

We also define the right counterparts:

a ·0 = 0, a ·m = (a · (m−1))⊕a, m > 1, a ·m = (⊖a) · (−m), m < 0. (4.4)

Lemma 4.3.6. Let G be a gyrogroup. For any element a of G,

gyr [a ·m,a] = gyr [m ·a,a] = gyr [a,m ·a] = gyr [a,a ·m] = idG

for all m ∈ Z.



43

Proof. By induction, gyr [a,a ·m] = idG and gyr [a ·m,a] = idG for all a∈G and allm> 0. By the

right gyroassociative law, a ·m = m ·a for all m ∈ Z. If m < 0, the left and right loop properties

and the left cancellation law together imply gyr [a,a ·m] = idG. �

By induction,

(m ·a)⊕ (k ·a) = (m+ k) ·a (4.5)

for all m,k > 0. In fact, we have the following proposition.

Proposition 4.3.7. Let a be an element of a gyrogroup. For all m,k ∈ Z,

(m ·a)⊕ (k ·a) = (m+ k) ·a.

Proof. The proof is routine, using (4.5) and induction. �

Theorem 4.3.8. Let G be a gyrogroup and let a ∈ G. Then ⟨a⟩= {m ·a : m ∈ Z}. In particular,

⟨a⟩ forms a subgroup of G.

Proof. Set H = {m ·a : m ∈ Z}. For all m,n ∈ Z, Proposition 4.3.7 implies that

⊖(m ·a) = (−m) ·a ∈ H and (m ·a)⊕ (k ·a) = (m+k) ·a ∈ H. This proves H 6 G. Since a ∈ H,

we have ⟨a⟩ ⊆ H by the minimality of ⟨a⟩. By the closure property of subgyrogroups, H ⊆ ⟨a⟩

and so equality holds.

Note that (m · a)⊕ [(n · a)⊕ (k · a)] = (m + n + k) · a = [(m · a)⊕ (n · a)]⊕ (k · a) for all

m,n,k ∈ Z. Thus, gyr [m ·a,n ·a]
∣∣
⟨a⟩ = id⟨a⟩ for all m,n ∈ Z and hence ⟨a⟩ forms a subgroup of

G by Proposition 4.3.3. �

Theorem 4.3.8 suggests us to define the order of an element in a gyrogroup as follows.

Definition 4.3.9. Let G be a gyrogroup and let a ∈ G. The order of a, denoted by |a|, is defined

to be the cardinality of ⟨a⟩ if ⟨a⟩ is finite. In this case, we will write |a| < ∞. If ⟨a⟩ is infinite,

the order of a is defined to be infinity, and we will write |a|= ∞.

Proposition 4.3.10. Let G be a gyrogroup and let a ∈ G. For all m,n ∈ Z,

gyr [m ·a,n ·a] = idG.

Proof. By induction, Lm·a = Lm
a for all a ∈ G and all m ∈ Z. Since L−1

a = L⊖a, we have from

(4.2) that

gyr [m ·a,n ·a] = L−(m+n)·a ◦Lm·a ◦Ln·a = L−(m+n)
a ◦Lm

a ◦Ln
a = idG

for all m,n ∈ Z. �
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In light of the proof of Proposition 4.3.10, gyrogroups are left power alternative. Further,

the following proposition implies that gyrogroups are power associative.

Proposition 4.3.11. If a is an element of a gyrogroup, then ⟨a⟩ forms a cyclic group with

generator a under gyrogroup operation.

Proof. By Theorem 4.3.8, ⟨a⟩ is a group under gyrogroup operation. By induction, m · a = am

for all m > 0, where the notation am is used as in group theory. If m < 0, one obtains similarly

that m ·a = am. Hence, ⟨a⟩ forms a cyclic group with generator a. �

Corollary 4.3.12. Any gyrogroup generated by one element is a cyclic group.

Because the group order of a and the gyrogroup order of a are the same, we obtain the

following results.

Proposition 4.3.13. Let G be a gyrogroup and let a ∈ G.

(1) If |a|< ∞, then |a| is the smallest positive integer such that |a| ·a = 0.

(2) If |a|= ∞, then m ·a ̸= 0 for all m ̸= 0 and m ·a ̸= k ·a for all m ̸= k in Z.

Corollary 4.3.14. Let a be an element of a gyrogroup. If |a|= n < ∞, then

⟨a⟩= {0 ·a,1 ·a, . . . ,(n−1) ·a}.

Corollary 4.3.15. Let a be an element of a gyrogroup and let m ∈ Z\{0}.

(1) If |a|= ∞, then |m ·a|= ∞.

(2) If |a|< ∞, then |m ·a|= |a|
gcd(|a|,m)

.

4.4 Gyrogroup homomorphisms

A gyrogroup homomorphism is a map between gyrogroups that preserves the gyrogroup

operations. A bijective gyrogroup homomorphism is called a gyrogroup isomorphism. We say

that gyrogroupsG andH are isomorphic, writtenG∼=H, if there exists a gyrogroup isomorphism

from G to H.

Suppose that φ : G → H is a gyrogroup homomorphism. The kernel of φ is defined to be

the inverse image of the trivial subgyrogroup {0} under φ . Since kerφ is invariant under all the

gyroautomorphisms of G, the operation

(a⊕kerφ)⊕ (b⊕kerφ) := (a⊕b)⊕kerφ , a,b ∈ G, (4.6)
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is independent of the choice of representatives for the left cosets. The system G/kerφ forms

a gyrogroup, called a quotient gyrogroup. This results in the first isomorphism theorem for

gyrogroups.

Theorem 4.4.1 (The first isomorphism theorem, [18]). If φ is a gyrogroup homomorphism of

G, then G/kerφ ∼= φ(G) as gyrogroups.

A subgyrogroup N of a gyrogroup G is normal in G, denoted by N �G, if it is the kernel of

a gyrogroup homomorphism of G. By Theorem 4.4.1, every normal subgyrogroup N gives rise

to the quotient gyrogroup G/N, along with the canonical projection Π : a 7→ a⊕N.

We state the second isomorphism theorem for gyrogroups for easy reference; its proof can

be found in [18].

Theorem 4.4.2 (The second isomorphism theorem). Let G be a gyrogroup and let A,B 6 G.

If B�G, then A⊕B 6 G, A∩B�A, and (A⊕B)/B ∼= A/(A∩B) as gyrogroups.

4.5 The Lagrange property

Throughout this section, all gyrogroups are finite. A version of the Lagrange property for

loops can be found in [5]. In terms of gyrogroups, the Lagrange property can be restated as

follows.

Definition 4.5.1. A gyrogroup G is said to have the Lagrange property if for each subgyrogroup

H of G, the order of H divides the order of G.

A version of the following proposition for loops was proved by Bruck in [2]. As the first

isomorphism theorem and the second isomorphism theorem hold for gyrogroups, we also have

the following proposition:

Proposition 4.5.2. Let H be a subgyrogroup of a gyrogroup G and let B be a normal sub-

gyrogroup of H. If B and H/B have the Lagrange property, then so has H.

Corollary 4.5.3. Let N be a normal subgyrogroup of a gyrogroup G. If N and G/N have the

Lagrange property, then so has G.

Proof. Taking H = G in the proposition, the corollary follows. �

Proposition 4.5.4. Let X be a subgroup of a gyrogroup G. If H 6 X , then |H| divides |X |. In

other words, every subgroup of G has the Lagrange property.
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Proof. Suppose that H 6 X . Since gyr [a,b]
∣∣
H = idH for all a,b ∈ H, H forms a subgroup of

G. By definition, X forms a group and H becomes a subgroup of X . By Lagrange’s theorem for

groups, |H| divides |X |. �

Lagrange’s theorem holds for all gyrocommutative gyrogroups, as shown by Baumeister and

Stein in [1, Theorem 3] in the language of Bruck loops.

Theorem 4.5.5. In a gyrocommutative gyrogroup G, if H 6 G, then |H| divides |G|. In other

words, every gyrocommutative gyrogroup has the Lagrange property.

Proof. Let G be a gyrocommutative gyrogroup and let H 6 G. Then G is a Bruck loop and H

becomes a subloop of G. By Theorem 3 of [1], |H| divides |G|, which completes the proof. �

The next theorem, due to Foguel and Ungar, enables us to extend Lagrange’s theorem to all

finite gyrogroups.

Theorem 4.5.6 (Theorem 4.11, [8]). If G is a gyrogroup, then G has a normal subgroup N such

that G/N is a gyrocommutative gyrogroup.

Theorem 4.5.7 (Lagrange’s theorem). If H is a subgyrogroup of a gyrogroup G, then |H|

divides |G|. That is, every gyrogroup has the Lagrange property.

Proof. Let G be a gyrogroup. By Theorem 4.5.6, G has a normal subgroup N such that G/N

is gyrocommutative. Because N = kerΠ, where Π : G → G/N is the canonical projection, N

is a normal subgyrogroup of G. By Proposition 4.5.4 and Theorem 4.5.5, N and G/N have the

Lagrange property. By Corollary 4.5.3, G has the Lagrange property. �

4.6 Applications

In this section, we provide some applications of Lagrange’s theorem. Throughout this section,

all gyrogroups are finite.

Proposition 4.6.1. Let G be a gyrogroup and let a ∈ G. Then |a| divides |G|. In particular,

|G| ·a = 0.

Proof. By definition, |a|= |⟨a⟩|. By Lagrange’s theorem, |a| divides |G|. Write |G|= |a|k with

k ∈ N, so |G| ·a = (|a|k) ·a = |a| ·a⊕·· ·⊕ |a| ·a︸ ︷︷ ︸
k copies

= 0. �

Although we know that a left Bol loop of prime order is a cyclic group by a result of Burn

[3, Corollary 2], we present the following theorem as an application of Lagrange’s theorem.
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Theorem 4.6.2. If G is a gyrogroup of prime order p, then G is a cyclic group of order p under

gyrogroup operation.

Proof. Let a be a nonidentity element of G. Then |a| ̸= 1 and |a| divides p. It follows that

|a|= p, which implies G = ⟨a⟩ since G is finite. By Proposition 4.3.11, ⟨a⟩ is a cyclic group of

order p, which completes the proof. �

The Cauchy property

In the loop literature, it is known that left Bol loops of odd order satisfy the Cauchy property

[7, Theorem 6.2]. However, Bol loops fail to satisfy the Cauchy property as Nagy proves the

existence of a simple right Bol loop of exponent 2 and of order 96 [13, Corollary 3.7]. This also

implies that gyrogroups fail to satisfy the Cauchy property since any Bol loop of exponent 2 is

necessarily a Bruck loop, hence is a gyrocommutative gyrogroup.

In this subsection, we apply Lagrange’s theorem and results from loop theory to establish

that some finite gyrogroups satisfy the Cauchy property.

Definition 4.6.3 (The weak Cauchy property, WCP). A finite gyrogroup G is said to have the

weak Cauchy property if for every prime p dividing |G|, G has an element of order p.

Definition 4.6.4 (The strong Cauchy property, SCP). A finite gyrogroup G is said to have the

strong Cauchy property if every subgyrogroup of G has the weak Cauchy property.

The Cauchy property is an invariant property of gyrogroups, as shown in the following

proposition.

Proposition 4.6.5. Let G and H be gyrogroups and let ϕ : G → H be a gyrogroup isomorphism.

(1) If G has the weak Cauchy property, then so has H.

(2) If G has the strong Cauchy property, then so has H.

Proof. (1) It suffices to prove that |ϕ(a)|= |a| for all a ∈ G. By induction, ϕ(n ·a) = n ·ϕ(a) for

all a ∈ G and all n ∈ N. Let a ∈ G. Since |a| ·a = 0, we have |a| ·ϕ(a) = ϕ(|a| ·a) = ϕ(0) = 0.

If there were a positive integer m < |a| for which m ·ϕ(a) = 0, then we would have ϕ(m ·a) = 0

and would have m ·a = 0, contradicting the minimality of |a|. Hence, |a| is the smallest positive

integer such that |a| ·ϕ(a) = 0, which implies |ϕ(a)|= |a| by Proposition 4.3.13 (1).

(2) Let B 6 H. Set A = ϕ−1(B). Then A 6 G and A has the WCP. Since ϕ
∣∣
A is a gyrogroup

isomorphism from A onto B, B has the WCP by Item 1. �
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Corollary 4.6.6. Let G and H be gyrogroups. If G ∼= H, then G has the weak (resp. strong)

Cauchy property if and only if H has the weak (resp. strong) Cauchy property.

Theorem 4.6.7. Let H be a subgyrogroup of a gyrogroup G and let B be a normal subgyrogroup

of H.

(1) If B and H/B have the weak Cauchy property, then so has H.

(2) If B and H/B have the strong Cauchy property, then so has H.

Proof. (1) Suppose that p is a prime dividing |H|. Since |H| = [H : B]|B|, p divides |H/B|

or |B|. If p divides |B|, then B has an element of order p and we are done. We may therefore

assume that p - |B|. Hence, p divides |H/B|. By assumption, H/B has an element of order p, say

a⊕B. By induction, n · (a⊕B) = (n ·a)⊕B for all n > 0. Hence, by Proposition 4.3.13 (1), p

is the smallest positive integer such that p ·a ∈ B. In particular, a ̸∈ B. Note that gcd(|a|, p) = 1

or p. If gcd(|a|, p) = 1 were true, we would have |p · a| = |a|
gcd(|a|, p)

= |a|, and would have

a ∈ ⟨a⟩= ⟨p ·a⟩6 B, a contradiction. Hence, gcd(|a|, p) = p, which implies p divides |a|. Write

|a|= mp. Then |m ·a|= |a|
gcd(|a|,m)

= p, which finishes the proof of (1).

(2) Suppose that B and H/B have the SCP. Let A 6 H. By assumption, A∩B has the WCP.

Since A⊕B/B 6 H/B, A⊕B/B has the WCP. Since A/A∩B ∼= A⊕B/B, A/A∩B has the WCP.

By Item 1, A has the WCP. �

Corollary 4.6.8. Let N be a normal subgyrogroup of a gyrogroup G. If N and G/N have the

weak (strong) Cauchy property, then so has G.

Consider a gyrogroup G of order pq, where p and q are primes. If pq is odd, by a result

of Foguel, Kinyon, and Phillips [7, Theorem 6.2], G has the weak Cauchy property. Since any

subgyrogroup of G is of order 1, p,q or pq, every subgyrogroup of G has the weak Cauchy

property as well. This implies that G has the strong Cauchy property. If pq is even, at least one

of p or q must be 2. Hence, G is of order 2p̃, where p̃ is a prime. By a result of Burn [3, Theorem

4], G is a group, hence has the strong Cauchy property. This proves the following theorem.

Theorem 4.6.9 (Cauchy’s theorem). Let p and q be primes. Every gyrogroup of order pq has

the strong Cauchy property.

Theorem 4.6.10. Let p and q be primes and let G be a gyrogroup of order pq. If p = q, then

G is a group. If p ̸= q, then G is generated by two elements; one has order p and the other has

order q.
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Proof. In the case p = q, G is a left Bol loop of order p2, hence must be a group by Burn’s result

[3, Theorem 5].

Suppose that p ̸= q. Let a and b be elements of order p and q, respectively. By Lagrange’s

theorem, ⟨a⟩∩ ⟨b⟩= {0}. For all m,n,s, t ∈ Z, if

(m ·a)⊕ (n ·b) = (s ·a)⊕ (t ·b),

then ⊖(s ⊕ a)⊕ (m · a) = (t · b)� (⊖(n · b)) = (t · b)⊖ (n · b) belongs to ⟨a⟩ ∩ ⟨b⟩. Hence,

⊖(s⊕ a)⊕ (m · a) = 0 and (t · b)⊖ (n · b) = 0 and so m · a = s · a and n · b = t · b. This proves

{(m ·a)⊕ (n ·b) : 0 ≤ m < p,0 ≤ n < q} contains pq distinct elements of G. Since G is finite, it

follows that G = {(m ·a)⊕ (n ·b) : 0 ≤ m < p,0 ≤ n < q}= ⟨a,b⟩. �

In general, gyrogroups of order pq, where p and q are distinct primes not equal to 2, need not

be groups. This is a situation where gyrogroups are different from Moufang loops. As Moufang

loops are diassociative, every Moufang loop generated by two elements must be a group. This

implies that Moufang loops of order pq are groups [4, Proposition 3].

Let G be a finite nongyrocommutative gyrogroup. By Theorem 4.5.6, G has a normal sub-

group N such that G/N is gyrocommutative. Because G is nongyrocommutative, we have N is

nontrivial, since otherwise Π : G → G/N would be a gyrogroup isomorphism and G and G/N

would be isomorphic gyrogroups. From this we can deduce the following results.

Theorem 4.6.11. Let p be a prime. Every nongyrocommutative gyrogroup of order p3 has the

strong Cauchy property.

Proof. Let G be a nongyrocommutative gyrogroup of order p3. As noted above, G has a non-

trivial normal subgroup N. By Lagrange’s theorem, |N|= p, p2 or p3. If |N|= p3, then G = N is

a group, hence has the SCP. If |N| ∈ {p, p2}, then |N| ∈ {p, p2}. In any case, N and G/N form

groups. Hence, N and G/N have the SCP and by Corollary 4.6.8, G has the SCP. �

Theorem 4.6.12. Let p,q and r be primes. Every nongyrocommutative gyrogroup of order pqr

has the strong Cauchy property.

Proof. The proof follows the same steps as in the proof of Theorem 4.6.11. �
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CHAPTER V

THESIS CONCLUSION

5.1 Conclusion

The Möbius and Einstein gyrogroups, which are prime examples of an abstract gyrogroup,

have a strong connection by means of Clifford algebra operations via Equation (2.8) given in

Chapter II. Using this connection, the algebraic proof that the open unit ball ofRn, together with

Einstein addition, forms a gyrocommutative gyrogroup with the uniquely 2-divisible property

is provided. Further, some algebraic properties of the Einstein gyrogroup such as criteria for

associativity and commutativity are obtained from that of the Möbius gyrogroup.

In the second part of the dissertation, algebraic properties of an arbitrary gyrogroup are

investigated. Some of group-theoretic theorems in abstract algebra are extended to the case

of gyrogroups in a natural way, including

• Cayley’s theorem. Every gyrogroup can be embedded into its symmetric group as a

subgyrogroup.

• The first isomorphism theorem. If φ : G → H is a gyrogroup homomorphism, then the

quoteint of G by kerφ and the image of φ are isomorphic as gyrogroups:

G/kerφ ∼= φ(G).

• Lagrange’s theorem. If H is a subgyrogroup of a finite gyrogroup G, then the order of G

is divisible by the order of H.

• Cauchy’s theorem. Every gyrogroup of order pq, where p and q are primes, contains an

element of order p and an element of order q.

5.2 Delimitation and limitation

None.
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5.3 Suggestion for future work

The results in the dissertation indicate that gyrogroups are a natural generalization of groups.

From this point of view, one direction of research in gyrogroup theory is to extend group-

theoretic theorems to the case of gyrogroups. In addition, as noted in Chapter IV, not every

finite gyrogroup satisfies the Cauchy property. Therefore, it is worth studying which class of

finite gyrogroups satisfies the Cauchy property.
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