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CHAPTER I
INTRODUCTION

In this chapter, we will state some background in functional equations, Cauchy and Jensen Func-
tional equation, alternative functional equations, our proposed problem and the notations used through-
out this thesis.

1.1 Functional Equations
A functional equation is simply an equation of unknown functions. In order to solve the functional

equation, we seek all possible functions satisfying the given functional equation.

Example 1.1.1. Find all functions f : Z → Z satisfying the functional equation

f(x+ y) = x+ f(y), for all x, y ∈ Z. (1.1)

Solution. For each x ∈ Z, by (1.1), we observe that

f(x+ 0) = x+ f(0).

Hence there exists c ∈ Z namely c = f(0) such that

f(x) = x+ c for all x ∈ Z. (1.2)

On the contrary, if f is given by (1.2), then f actually satisfies (1.1). Therefore, the general solution
of (1.1) is given by (1.2).

However, some functional equations have no solution as the following example.
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Example 1.1.2. Given a functional equation

f(x+ y) + xf(x) = 1 for all x, y ∈ Z. (1.3)

Solution. For each y ∈ Z, we substitute x = 0 in (1.3) to obtain f(y) = 1, i.e., we have

f(1) = f(2) = 1. (1.4)

By (1.4), setting x = y = 1 in (1.3), we get 2 = 1, a contradiction. Therefore, there is no a function
f : Z → Z satisfying (1.3).

1.2 Cauchy and Jensen Functional Equation
The additive functional equation,

f(x+ y) = f(x) + f(y), (1.5)

is one of the most well-known functional equations. In 1821, Cauchy [3] proved that all continuous
solutions of (1.5) on R are given by f(x) = cx for all x ∈ R, where c is a constant in R. Later
on, the additive functional equation (1.5) was known as the Cauchy functional equation. In 1905,
Hamel [7] constructed the general solution of (1.5) using a Hamel basis over Q. Afterwards, Hewitt
and Zukerman [8] gave a remarkable result of the nonlinear additive functions. In fact, the graph
G(f) = {(x, f(x)) : x ∈ R} is a dense subset of R2, that is, given ε > 0 and (x, y) ∈ R2,
there exists (a, f(a)) ∈ G(f) such that (x− a)2 + (y − f(a))2 < ε2, which indicates that the
graphG(f) of a nonlinear additive functions consists of points that disperse all over R2.

The Jensen functional equation is the equation of the form,

f
(x+ y

2

)
=

f(x) + f(y)

2
, (1.6)

which is closely related to the Cauchy functional equation (1.5). In [4], it is shown that the general
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solution of (1.6) is of the form f(x) = A(x) + c, whereA is an additive function, a solution of the
Cauchy functional equation (1.5).

If the domain of the Jensen functional equation (1.6) is a group (G, ·), then (1.6) can be written in
the form

f(xy−1)− 2f(x) + f(xy) = 0. (J)

Many extensive works on Jensen functional equation on different kinds of groups have been widely
studied (e.g., Le and Thai [12], Ng [14], [15], Parnami and Vasudeva [16], and Stetkær [19]).

1.3 Alternative Functional Equations
An alternative functional equation is a challenging problem in functional equations. Normally, a

functional equation is a single equation with a function as a variable such as the Cauchy functional
equation (1.5). However, in an alternative functional equation, there are more than one equation that
the function has to satisfy. For instance, Kannappan and Kuczma [10] solved the alternative Cauchy
functional equation

(f(x+ y)− af(x)− bf(y)) (f(x+ y)− f(x)− f(y)) = 0 (1.7)

on an abelian group. This implies that the solution f has to satisfy

(f(x+ y)− af(x)− bf(y)) = 0 or (f(x+ y)− f(x)− f(y)) = 0.

Afterwards, Forti [5] has successfully found the general solution of (1.7) in a more general setting of
the form

(cf(x+ y)− af(x)− bf(y)− d) (f(x+ y)− f(x)− f(y)) = 0.

Inspired by the work on the alternative Cauchy functional equation, Nakmahachalasint [13] first
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investigated the alternative Jensen functional equation of the form

f(x)± 2f(xy) + f(xy2) = 0

on a semigroup.
Next, we will give an example of the general solution of the alternative Cauchy functional equation

on Z as follows:

Example 1.3.1. Find the general solution f : Z → Z of the alternative Cauchy functional equation

f(x+ y) = ±(f(x) + f(y)) for all x, y ∈ Z. (1.8)

Solution. In this example, we will prove that the general solution of (1.8) is exactly the solution of the
Cauchy functional equation

f(x+ y) = f(x) + f(y) for all x, y ∈ Z. (1.9)

First, substituting x = y = 0 in (1.8), we have f(0) = ±2f(0) and so

f(0) = 0. (1.10)

For each x ∈ Z, replacing y by−x in (1.8), we get

f(0) = ±(f(x) + f(−x)).

By (1.10), we conclude that

f(−x) = −f(x) for all x ∈ Z. (1.11)
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Suppose in a contrary that there existm,n ∈ Z such that

f(m+ n) ̸= f(m) + f(n). (1.12)

By (1.8), we obtain that
f(m+ n) = −f(m)− f(n). (1.13)

By (1.8), (1.11) and (1.13), we get

f(m) = f(m+ n− n)

= ±(f(m+ n) + f(−n))

= ±(−f(m)− f(n)− f(n))

= ±(−f(m)− 2f(n)),

which implies that
f(m) + f(n) = 0 or f(n) = 0. (1.14)

On the other hand, by (1.8), (1.11) and (1.13), we have

f(n) = f(m+ n−m)

= ±(f(m+ n) + f(−m))

= ±(−f(m)− f(n)− f(m))

= ±(−2f(m)− f(n)),

which gives
f(m) + f(n) = 0 or f(m) = 0. (1.15)

Combining (1.14) and (1.15), we get

f(m) + f(n) = 0 or f(m) = f(n) = 0. (1.16)
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By (1.13) and (1.16), we have
f(m+ n) = 0. (1.17)

From (1.16) and (1.17), we obtain that f(m + n) = f(m) + f(n), a contradiction to (1.12).
Therefore, we conclude that (1.9) must hold.

Conversely, if f is given by (1.9), then f also satisfies (1.8).

1.4 Proposed Problem
Motivated by the work of Nakmahachalasint [13] and Forti [5], we studied the alternative Jensen

functional equation in a more general setting. In other words, given integers α, β, γ with

(α, β, γ) ̸= k(1,−2, 1) for all k ∈ Z, (1.18)

we will find a criterion of the existence of the general solution of the alternative Jensen functional
equation of the form

f(xy−1)− 2f(x) + f(xy) = 0 or αf(xy−1) + βf(x) + γf(xy) = 0, (SA)

where f is a mapping from a group (G, ·) to a uniquely divisible abelian group (H,+). Then we show
that, if β = α + γ or (β, γ) ∈ {(0, α), (α, α)}, then the above alternative functional equation
is equivalent to the Jensen functional equation (J), in the sense that their sets of solution are the same.
Furthermore, we also find the general solution in the case when the domainG is a cyclic group.

1.5 Notations
Throughout the dissertation, we will use the following notations. Let (G, ·) be a group and (H,+)

be a uniquely divisible abelian group. Next, we will introduce the notations for sequences (ak)k∈Z in
H as follows.

Notation 1. We denote (ak)k∈Z = (α, β) when there exists k0 ∈ Z with ai = α for all i < k0
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and ai = β for all i ≥ k0, i.e.,

(. . . , α, α, β, β, . . .) = (α, β).

Notation 2. We denote (ak)k∈Z = (α, β, γ) when there exists k0 ∈ Z with ai = α for all i < k0,
ak0 = β, and ai = γ for all i > k0, i.e.,

(. . . , α, α, β, γ, γ, . . .) = (α, β, γ).

Notation 3. Let p be a positive integer. We denote (ak)k∈Z = (α0, . . . , αp−1) when there exists
k0 ∈ Z such that ai = αk0+i (mod p) for all i ∈ Z. In other words, (α0, . . . , αp−1) is a periodic
sequence of a period p, i.e.,

(. . . , α0, . . . , αp−1, α0, . . . , αp−1, . . .) = (α0, . . . , αp−1).



CHAPTER II
THE n-DIMENSIONAL FUNCTIONAL EQUATION OF JENSEN TYPE

First, we will mention the question about the stability of functional equations. This problem was
first introduced by Ulam [21] during his talk in the Mathematics Club of the University of Wisconsin.
He proposed the question as follows:

“Let G1 be a group and let G2 be a metric group with the metric d. Given ε > 0, does there
exist a δ > 0 such that if f : G1 → G2 satisfies the inequality d(f(xy), f(x)f(y)) < δ for all
x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(f(x), H(x)) < ε for all
x ∈ G1?”

In the following year, Hyers [9] was the first to answer this stability problem. He found that for
Banach spacesE1 andE2, if a mapping f : E1 → E2 satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ε,

for all x, y ∈ E1 and for some ε > 0, then there exists a unique additive mapping A : E1 → E2

satisfying the inequality
∥f(x)− A(x)∥ ≤ ε

andA takes the from ofA(x) = lim
n→∞

2−nf(2nx). Afterwards, this notion was called as the Hyers-
Ulam stability and leaded to one of fundamental concepts of the stability theory on functional equations.
Aoki [1] and Bourgin [2] generalizedHyers’ theorem for additivemappings by considering the bounded
Cauchy differences. In 1978, Rassias [17] showed that if a mapping f : E1 → E2 satisfies

∥f(x+ y)−f(x)−f(y)∥ ≤ θ(∥x∥p + ∥y∥p),

for all x, y ∈ E1 and for some θ ≥ 0 and 0 ≤ p < 1, then there exists a unique additive mapping
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A : E1 → E2 such that

∥f(x)− A(x)∥ ≤ 2θ

2− 2p
∥x∥p.

Later on, this type of stability is called the Hyers-Ulam-Rassias stability.
In this chapter, we will study the general solution and the generalized stability of the Jensen func-

tional equation in more general setting of the form

n∑
i=1

pif(xi) = f

(
n∑

i=1

pixi

)
, (pJ)

where n > 1 is an integer, and p1, . . . , pn are positive rational numbers with
n∑

i=1

pi = 1. (2.1)

Note that our work in this chapter appears in [20].

2.1 General Solution on ann-Dimensional Functional Equation of JensenType
In this section, we will give the general solution of (pJ) as the following theorem.

Theorem 2.1.1. LetX and Y be real vector spaces. A mapping f : X → Y satisfies the functional
equation (pJ) where n > 1 is an integer, and p1, . . . pn are positive rational numbers with (2.1) for
all x1, . . . xn ∈ X , if and only if f(x) = A(x) + f(0) for all x ∈ X , where A : X → Y is
additive function and f(0) is a constant.

Proof. (Neccessity) Suppose f : X → Y satisfies the functional equation (pJ). Define a function
g : X → Y by

g(x) = f(x)− f(0),

for all x ∈ X . Note that g(0) = 0.
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Consider

g

(
n∑

i=1

pixi

)
= f

(
n∑

i=1

pixi

)
− f(0) =

n∑
i=1

pif(xi)− f(0)

=
n∑

i=1

pig(xi). (2.2)

Note that g satisfies (pJ). Let s ∈ {1, . . . n}. By setting xs = x and x1 = . . . = xs−1 = xs+1 =

. . . = xn = 0, (2.2) becomes

g(psx) = psg(x), (2.3)

for all s ∈ {1, . . . n} and for all x ∈ X . Next, we put xs = x, xs+1 = y and x1 = . . . =

xs−1 = xs+2 = . . . = xn = 0 in (2.2) and using (2.3), we will have

g(psx+ ps+1y) = g(psx) + g(ps+1y),

for all x, y ∈ X . Therefore g is additive function. By definition of g, we get f(x) = g(x) + f(0)

for all x ∈ X .
(Sufficiency) Suppose that f(x) = A(x) + f(0) for all x ∈ X , whereA : X → Y is an additive
function and f(0) is a constant. Therefore,

f

(
n∑

i=1

pixi

)
= A

(
n∑

i=1

pixi

)
+ f(0) = A

(
n∑

i=1

pixi

)
+

n∑
i=1

pif(0)

=
n∑

i=1

pi(A(xi) + f(0)) =
n∑

i=1

pif(xi).

Hence, this completes the proof.
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2.2 Generalized Stability on an n-Dimensional Functional Equation of Jensen
Type

In this section, we will study the generalized stability of (pJ) as the following theorem.

Theorem 2.2.1. Let ϕ : Xn → [0,∞) be a function. For each integer s = 1, . . . , n, let ϕs :

X → [0,∞) be a function such that

ϕs(x) = ϕ(0, . . . , 0︸ ︷︷ ︸
s−1

, x, 0, . . . , 0︸ ︷︷ ︸
n−s

). (2.4)

Suppose that
∞∑
i=0

p−i
s ϕ(pisx) converges and lim

m→∞
p−m
s ϕ(pms x1, . . . , p

m
s xn) = 0

for all x1, . . . , xn ∈ X . If a function f : X → Y satisfies the inequality∥∥∥∥∥
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xn), (2.5)

for all x1, . . . , xn ∈ X , then there exists a unique function L : X → Y that satisfies functional
equation (pJ) and the inequality

∥∥f(x)− L(x)
∥∥ ≤

∞∑
i=0

p−i−1
s ϕs(p

i
sx), (2.6)

for all x ∈ X . The function L is given by

L(x) = f(0) + lim
m→∞

p−m
s

(
f(pms x)− f(0)

)
, (2.7)

for all x ∈ X .

Proof. Suppose f : X → Y satisfies the inequality (2.5). Define a function g : X → Y by

g(x) = f(x)− f(0), (2.8)
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for all x1, . . . , xn ∈ X . It should be noted that g(0) = 0. By (2.1) and (2.5), we get∥∥∥∥∥
n∑

i=1

pig(xi)− g

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xn), (2.9)

for all x1, . . . , xn ∈ X . Let s ∈ {1, . . . , n} . By setting xs = x and x1 = · · · = xs−1 =

xs+1 = · · · = xn = 0, (2.9) becomes

∥∥psg(x)− g(psx)
∥∥ ≤ ϕs(x), (2.10)

for all x ∈ X . We can rewrite the above equation in the form of

∥∥g(x)− p−1
s g(psx)

∥∥ ≤ p−1
s ϕs(x), (2.11)

for all x ∈ X . For each positive integerm and each x ∈ X , we have

∥∥g(x)− p−m
s g(pms x)

∥∥ =

∥∥∥∥∥
m−1∑
i=0

(
p−i
s g(pisx)− p−(i+1)

s g(pi+1
s x)

)∥∥∥∥∥
≤

m−1∑
i=0

∥∥p−i
s g(pisx)− p−(i+1)

s g(pi+1
s x)

∥∥
=

m−1∑
i=0

p−i
s

∥∥g(pisx)− p−1
s g(psp

i
sx)
∥∥

≤
m−1∑
i=0

p−i−1
s ϕs(p

i
sx). (2.12)

Next, consider the sequence {p−m
s g(pms x)}. For each positive integers k < l and each x ∈ X ,

∥∥p−k
s g(pksx)− p−l

s g(plsx)
∥∥ = p−k

s

∥∥g(pksx)− p−(l−k)
s g(pl−k

s pksx)
∥∥

≤ p−k
s

l−k−1∑
i=0

p−i−1
s ϕs(p

i+k
s x)

≤ p−k−1
s

∞∑
i=0

p−i
s ϕs(p

i+k
s x).
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Since
∞∑
i=0

p−i
s ϕ(pisx) converges, lim

k→∞
p−k−1
s

∞∑
i=0

p−i
s ϕs(p

i+k
s x) = 0. Therefore,

L(x) = f(0) + lim
m→∞

p−m
s g(pms x) (2.13)

is well-defined in the Banach space Y . Moreover, asm → ∞, (2.12) becomes

∥∥g(x) + f(0)− L(x)
∥∥ ≤

∞∑
i=0

p−i−1
s ϕs(p

i
sx).

By the definition of g(x), we see that inequality (2.6) is valid.
To show that L indeed satisfies (pJ), we replace each xi in (2.9) with pms xi and get∥∥∥∥∥

n∑
i=1

pig(p
m
s xi)− g

(
pms

n∑
i=1

pixi

)∥∥∥∥∥ ≤ ϕ(pms x1, . . . , p
m
s xn). (2.14)

If we multiply the above inequality by p−m
s and take the limit asm → ∞, then by the definition of

L in (2.14) and (2.1), we obtain∥∥∥∥∥
n∑

i=1

piL(xi)− L

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ lim
m→∞

p−m
s ϕ(pms x1, . . . , p

m
s xn) = 0, (2.15)

which implies that
n∑

i=1

piL(xi) = L

(
n∑

i=1

pixi

)
, (2.16)

for all x1, . . . , xn ∈ X .
To prove the uniqueness, suppose there is another functionL′

: X → Y satisfying (pJ) and (2.6).
Observe that if we replace xs by x and put x1 = · · · = xs−1 = xs+1 = · · · = xn = 0 in (2.16),
we get

psL(x) + (1− ps)L(0) = L(psx), (2.17)

for all x ∈ X , and
L(0) = f(0) + lim

m→∞
p−m
s g(0) = f(0).
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The function L′ obviously possesses the same properties. Therefore,

ps
(
L(x)− L

′
(x)
)
= L(psx)− L

′
(psx) (2.18)

for all x ∈ X . We can prove by the mathematical induction that for each positive integerm,

pms
(
L(x)− L

′
(x)
)
= L(pms x)− L

′
(pms x),

for all x ∈ X . Therefore, for each positive integerm,

∥∥L(x)− L
′
(x)
∥∥ = p−m

s

∥∥L(pmx)− L
′
(pms x)

∥∥
≤ p−m

s

(∥∥L(pmx)− f(pms x)
∥∥+ ∥∥L′

(pms x)− f(pms x)
∥∥)

≤ 2p−m
s

∞∑
i=0

p−i−1
s ϕs(p

i+m
s x),

for allx ∈ X . Since
∞∑
i=0

p−i
s ϕ(pisx) converges, lim

m→∞
p−m
s

∞∑
i=0

p−i−1
s ϕ(pi+m

s x) = 0. We conclude
that L(x) = L

′
(x) for all x ∈ X .

Theorem 2.2.2. Let ϕ : Xn → [0,∞) be a function. For each integer s = 1, . . . , n, let ϕs :

X → [0,∞) be a function such that (2.4) and
∞∑
i=0

pisϕ(p
−i
s x) converges and

lim
m→∞

pms ϕ(p
−m
s x1, . . . , p

−m
s xn) = 0 for all x1, . . . , xn ∈ X .

If a function f : X → Y satisfies the inequality (2.5), then there exists a unique function L : X →

Y that satisfies functional equation (pJ) and the inequality

∥∥f(x)− L(x)
∥∥ ≤

∞∑
i=1

pi−1
s ϕs(p

−i
s x) (2.19)

for all x ∈ X . The function L is given by

L(x) = f(0) + lim
m→∞

pms f(p
−m
s x) (2.20)

for all x ∈ X .
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Proof. Let f : X → Y satisfy the inequality (2.5). Similar to the derivation of (2.8)-(2.11), we can
replace inequality (2.11) with

∥∥g(x)− psg(p
−1
s x)

∥∥ ≤ ϕs(p
−1
s x),

for all x ∈ X . For each positive integerm and each x ∈ X , we get

∥∥g(x)− pms g(p
−m
s x)

∥∥ =

∥∥∥∥∥(
m∑
i=1

pi−1
s g(p−(i−1)

s x)− pisg(p
−i
s x)

)∥∥∥∥∥
≤

m∑
i=1

∥∥pi−1
s g(p−(i−1)

s x)− pisg(p
−i
s x)

∥∥
=

m∑
i=1

pi−1
s

∥∥g(p−(i−1)
s x)− psg(p

−1
s p−(i−1)

s x)
∥∥

≤
m∑
i=1

pi−1
s ϕs(p

−i
s x). (2.21)

We now investigate the sequence {pms g(p−m
s x)}. For each positive integer k < l and each x ∈ X ,

∥∥pksg(p−k
s x)− plsg(p

−l
s x)

∥∥ = pks
∥∥g(p−k

s x)− pl−k
s g(p−(l−k)

s p−k
s x)

∥∥
≤ pks

l−k∑
i=1

pi−1
s ϕs(p

−i−k
s x)

≤ pk−1
s

∞∑
i=1

pisϕs(p
−i−k
s x).

Since
∞∑
i=0

pisϕ(p
−i
s x) converges, lim

k→∞
pk−1
s

∞∑
i=0

pisϕs(p
−i−k
s x) = 0. Thus,

L(x) = f(0) + lim
m→∞

pms g(p
−m
s x) (2.22)

is well-defined in the Banach space Y . Furthermore, (2.21) becomes asm → ∞,

∥∥g(x) + f(0)− L(x)
∥∥ ≤

∞∑
i=1

pi−1
s ϕs(p

−i
s x).
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By the definition of g(x), inequality (2.19) is valid.
In order to show that L satisfies (pJ), we replace each xi by p−m

s xi in (2.9) and multiply pms . By
taking the limit asm → ∞, we have∥∥∥∥∥

n∑
i=1

piL(xi)− L

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ lim
m→∞

pms ϕ(p
−m
s x1, . . . , p

−m
s xn) = 0,

which implies (2.16).
To prove the uniqueness, suppose there is another function L′

: X −→ Y

satisfying (pJ) and (2.6). Replacing xs by p−1
s x and put x1 = · · · = xs−1 = xs+1 = · · · = xn =

0 in (2.16), (2.18) becomes

ps
(
L(p−1

s x)− L
′
(p−1

s x)
)
= L(x)− L

′
(x).

For each positivem, we can show by mathematical induction that

pms
(
L(p−m

s x)− L
′
(p−m

s x)
)
= L(x)− L

′
(x),

for all x ∈ X . Hence, for each positive integerm,

∥∥L(x)− L
′
(x)
∥∥ = pms

∥∥L(p−mx)− L
′
(p−m

s x)
∥∥

≤ pms
(∥∥L(p−mx)− f(p−m

s x)
∥∥+ ∥∥L′

(p−m
s x)− f(p−m

s x)
∥∥)

≤ 2pms

∞∑
i=1

pi−1
s ϕs(p

−i−m
s x),

for all x ∈ X . Since
∞∑
i=1

pisϕ(p
−i
s x) converges, lim

m→∞
pms

∞∑
i=0

pi−1
s ϕ(p−i−m

s x) = 0. We therefore
obtain that L(x) = L

′
(x) for all x ∈ X .

2.3 Stability on an n-Dimensional Functional Equation of Jensen Type
In this section, we will give the stability of (pJ) in various case as in the following theorem.



17

Theorem 2.3.1. Let ε > 0 be a real number. If a function f : X → Y satisfies the inequality∥∥∥∥∥
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ ε, (2.23)

for all x1, . . . , xn ∈ X , then there exists a unique function L : X → Y that satisfies (pJ) and

∥∥f(x)− L(x)
∥∥ ≤ ε

1− pmin
,

for all x ∈ X , where pmin = min{p1, . . . , pn}.

Proof. Let
ϕ(x1, . . . , xn) = ε

for allx1, . . . , xn ∈ X in Theorem 2.2.2. We note that Theorem 2.2.2 holds for every s = 1, . . . , n.
We then choose s such that ps = pmin = min{p1, . . . , pn}. Therefore, (2.19) becomes

∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=1

pi−1
s =

ε

1− ps
=

ε

1− pmin
,

for all x ∈ X as desired.

The following theorem proves the stability of (pJ).

Theorem 2.3.2. Let ε > 0 and r > 0 be real numbers with r ̸= 1. If a function f : X → Y

satisfies the inequality ∥∥∥∥∥
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)∥∥∥∥∥ ≤ ε
n∑

i=1

∥xi∥r, (2.24)

for all x1, . . . , xn ∈ X , then there exists a unique function L : X → Y that satisfies (pJ) and

∥∥f(x)− L(x)
∥∥ ≤ ε

M
∥x∥r,

for all x ∈ X , whereM = max
i=1,...,n

| pi − pri |.
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Proof. For the case 0 < r < 1, we let

ϕ(x1, . . . , xn) = ε
n∑

i=1

∥xi∥r,

for allx1, . . . , xn ∈ X in Theorem 2.2.2. We note that Theorem 2.2.2 holds for every s = 1, . . . , n.
We then choose s such that

| ps − prs |= M = max
i=1,...,n

| pi − pri | .

Thus, (2.6) becomes

∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=1

pi−1
s ∥p−i

s x∥r = ε∥x∥rp−1
s

∞∑
i=1

pi(1−r)
s

= εp−1
s ∥x∥r

( p1−r
s

1− p1−r
s

)
=

ε

prs − ps
∥x∥r = ε

M
∥x∥r,

for all x ∈ X . For the case r > 1, we let

ϕ(x1, . . . , xn) = ε

n∑
i=1

∥xi∥r,

for all x1, . . . , xn ∈ X in Theorem 2.1.1. Since Theorem 2.1.1 holds for every s = 1, . . . , n, (2.6)
becomes

∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=0

p−i−1
s ∥pisx∥r = ε∥x∥rp−1

s

∞∑
i=0

pi(r−1)
s

= ε∥x∥rp−1
s

( 1

1− pr−1
s

)
=

ε

ps − prs
∥x∥r = ε

M
∥x∥r,

for all x ∈ X . This completes the proof.



CHAPTER III
THE WEAK FORM OF ALTERNATIVE JENSEN FUNCTIONAL

EQUATIONS

In this chapter, we will give a criterion for the existence of the general solution for the functional
equation

f(xy−1)− 2f(x) + f(xy) = 0 or f(xy−1) + βf(x) + f(xy) = 0. (WA)

For the case β is an integer and β ̸= −2, our work appears in [18]. Let (G, ·) be a group, (H,+)

be a uniquely divisible abelian group. Given a rational number β ̸= −2 and a function f : G → H .
For every pair of x, y ∈ G, we define

F (β)
y (x) := f(xy−1) + βf(x) + f(xy),

and
Jy(x) := f(xy−1)− 2f(x) + f(xy).

In addition, we denote the statement

Pf (β)
y (x) :=

(
Jy(x) = 0 or F (β)

y (x) = 0
)
.

The set of solution to the statement Pf
(β)
y (x) will be denoted byA(β)

(G,H), i.e.,

A(β)
(G,H) := {f : G → H | Pf (β)

y (x) for all x, y ∈ G},
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while the set of solution of Jy(x) = 0 is denoted by

J(G,H) := {f : G → H | Jy(x) = 0 for all x, y ∈ G}.

3.1 Auxiliary Lemmas
Lemma 3.1.1. Let f ∈ A(β)

(G,H) and x, y ∈ G .
Jy(x) = 0 and F (β)

y (x) = 0 if and only if f(x) = 0.

Proof. Assume that Jy(x) = 0 and F (β)
y (x) = 0. Therefore, F (β)

y (x)− Jy(x) = 0, i.e.,

(β + 2)f(x) = 0.

Since β ̸= −2, we must have f(x) = 0. Conversely, we assume that f(x) = 0. Since
f ∈ A(β)

(G,H), we have Jy(x) = 0 or F (β)
y (x) = 0. As f(x) = 0, therefore Jy(x) = 0

and F (β)
y (x) = 0.

Lemma 3.1.2. Let f ∈ A(β)
(G,H) and let x, y ∈ G.

(1) If Jy(xy−1) = 0 and Jy(xy) = 0, then Jy(x) = 0.

(2) If F (β)
y (xy−1) = 0 and F (β)

y (xy) = 0, then F (β)
y (x) = 0.

Proof. Suppose that all the assumptions in the lemma hold.

(1) If Jy(x) ̸= 0, then F (β)
y (x) = 0. Therefore, Jy(xy−1) + 2F

(β)
y (x) + Jy(xy) = 0, i.e,

f(xy−2) + 2(1 + β)f(x) + f(xy2) = 0. (3.1)

Consider Pf
(β)

y2 (x). The alternative f(xy−2) − 2f(x) + f(xy2) = 0 and (3.1) gives
(2 + β)f(x) = 0, while the alternative f(xy−2) + βf(x) + f(xy2) = 0 and (3.1) also
gives (2 + β)f(x) = 0. Since β ̸= −2, we get f(x) = 0. Therefore, Jy(x) = 0 by
Lemma 3.1.1.
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(2) If F (β)
y (x) ̸= 0, then Jy(x) = 0. Therefore, F (β)

y (xy−1) − βJy(x) + F
(β)
y (xy) = 0,

i.e.,
f(xy−2) + 2(1 + β)f(x) + f(xy2) = 0.

By a similar argument as above, we will have f(x) = 0. Therefore, F (β)
y (x) = 0 by Lemma

3.1.1.

Lemma 3.1.3. Let f ∈ A(β)
(G,H) and let x, y ∈ G.

If Jy(xy−1) = 0, Jy(x) ̸= 0 and F (β)
y (xy2) ̸= 0, then β = 0 and

f(xyn) =

−f(x) if n ∈ Z+,

f(x) if n ∈ Z−.

Proof. Suppose that all the assumptions in the lemma hold. By Lemma 3.1.1, Jy(x) ̸= 0 implies that
f(x) ̸= 0. From Jy(x) ̸= 0 and Pf

(β)
y (x), we obtain that F (β)

y (x) = 0. From F
(β)
y (xy2) ̸= 0

and Pf
(β)
y (xy2), we get Jy(xy2) = 0. From Jy(xy

−1) = 0 and Jy(x) ̸= 0, Lemma 3.1.2 gives
Jy(xy) ̸= 0. By the alternatives inPf

(β)
y (xy), we obtain that F (β)

y (xy) = 0. If F (β)
y (xy3) = 0,

then by Lemma 3.1.2, we must have F (β)
y (xy2) = 0, a contradiction. Therefore, F (β)

y (xy3) ̸= 0

and the alternatives in Pf
(β)
y (xy3) give Jy(xy3) = 0.

Eliminating f(xy−1) from Jy(xy
−1) = 0 and F (β)

y (x) = 0, we get

f(xy−2) + (1 + 2β)f(x) + 2f(xy) = 0. (3.2)

We will consider each alternative in Pf
(β)

y2 (x) as follows:

(1) Assume that Jy2(x) = 0. Solving F (β)
y (xy) = 0, Jy2(x) = 0 and (3.2), we have

f(xy) + 2f(x) = 0 and f(xy2) + (1− 2β)f(x) = 0. (3.3)
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By (3.3) and F (β)
y (x) = 0, we get

f(xy−1) + (β − 2)f(x) = 0. (3.4)

From Jy(xy
2) = 0 and (3.3), we obtain that f(xy3) − 4βf(x) = 0. Considering the

alternatives in Pf
(β)

y2 (xy), we conclude that (β + 2)f(x) = 0. Since β ̸= −2, we must
have f(x) = 0, a contradiction. Thus this case does not exist.

(2) Assume that F (β)

y2 (x) = 0. Solving F (β)
y (xy) = 0, F (β)

y2 (x) = 0, and (3.2), we have

f(x) + f(xy) = 0 and f(xy2) + (1− β)f(x) = 0. (3.5)

Eliminating f(xy2) and f(xy3) from Jy(xy
2) = 0, Jy(xy3) = 0 and (3.5), we get

f(xy4) + (1− 3β)f(x) = 0. (3.6)

We will consider the alternative inPf
(β)

y2 (xy2) as follows: If Jy2(xy2) = 0, then from (3.5),
(3.6) and Jy2(xy2) = 0, we conclude that (β + 2)f(x) = 0. Since β ̸= −2, we have
f(x) = 0, a contradiction. Thus we must get F (β)

y2 (xy2) = 0. Solving (3.5), (3.6) and
F

(β)

y2 (xy2) = 0, we conclude that (β + 2)βf(x) = 0. Since β ̸= −2 and f(x) ̸= 0, we
must have β = 0 and so F (0)

y2 (x) = 0.

We already have β = 0. From (3.5), (3.6) and Jy(xy2) = 0, we obtain that

f(xyn) = −f(x) for all n = 1, . . . , 4. (3.7)

We will prove that (3.7) also holds for all n ∈ Z+. It is only left to prove that Jy(xyn) = 0 for all
n ≥ 4. Wewill show this by contradiction. Suppose thatJy(xym) ̸= 0 for somem ≥ 4. We further
assume thatm is the least number. Thus the alternatives inPf

(0)
y (xyi) for each n = 3, . . . ,m− 1
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give Jy(xyi) = 0, i.e.,

f(xyi−1)− 2f(xyi) + f(xyi+1) = 0 for all n = 3, . . . ,m− 1. (3.8)

From (3.8) and f(xy3) = f(xy4) = −f(x) in (3.7), we have

f(xyn) = −f(x) for all n = 1, . . . ,m. (3.9)

The alternatives in Pf
(0)
y (xym) and Jy(xym) ̸= 0 give F (0)

y (xym) = 0. By F (0)
y (xym) = 0

and f(xym−1) = −f(x) in (3.9), we get f(xym+1) = f(x).

(a) Ifm = 2k for some k ≥ 2, then f(xy2k+1) = f(xym+1) = f(x). From F
(0)
y (x) = 0

and f(xy) = −f(x) in (3.9), we obtain that f(xy−1) = f(x). Since 2 ≤ k < m,
f(xyk) = −f(x) by (3.9). The alternatives in Pf

(0)

yk+1(xy
k) give f(x) = 0, a contradic-

tion.

(b) Ifm = 2k + 1 for some k ≥ 2, then f(xy2k+2) = f(xym+1) = f(x). Since 2 ≤ k <

m, f(xyk+1) = −f(x) by (3.9). The alternatives in Pf
(0)

yk+1(xy
k+1) give f(x) = 0, a

contradiction.

Thus f(xyn) = −f(x) for all n ∈ Z+ as desired.
Since F (0)

y (x) = 0, F
(0)

y2 (x) = 0 and f(xy) = f(xy2) = −f(x) in (3.7), we have
f(xy−2) = f(xy−1) = f(x). We can repeat the above process to show that f(xyn) = f(x) for
all n ∈ Z− by substituting x by xy−2 and y by y−1 in the previous arguments.

Lemma 3.1.4. Let f ∈ A(β)
(G,H) and let x, y ∈ G.

(1) If F (β)
y (xy−1) = 0, Jy(x) ̸= 0 and F (β)

y (xy) = 0, then β ∈ {1, 2}.

(2) If F (β)
y (xy−1) ̸= 0 and Jy(x) ̸= 0, then β ̸= 2.

Proof. Suppose that all the assumptions in the lemma hold.
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(1) From Jy(x) ̸= 0 and Pf
(β)
y (x), we have F (β)

y (x) = 0. Therefore, f(x) ̸= 0 by Lemma
3.1.1. Observing that F (β)

y (xy−1)− βF
(β)
y (x) + F

(β)
y (xy) = 0, which reduces to

f(xy−2) + (2− β2)f(x) + f(xy2) = 0. (3.10)

We will now consider each alternative in Pf
(β)

y2 (x). The alternative f(xy−2) − 2f(x) +

f(xy2) = 0 and (3.10) gives (4−β2)f(x) = 0, while the alternative f(xy−2)+βf(x)+

f(xy2) = 0 and (3.10) gives (2− β − β2)f(x) = 0. Since f(x) ̸= 0 and β ̸= −2, we
must have β = 1 or β = 2.

(2) We will prove β ̸= 2 by contradiction. Suppose that β = 2. From F
(2)
y (xy−1) ̸= 0

and Pf
(2)
y (xy−1), we obtain Jy(xy−1) = 0. From Jy(x) ̸= 0 and Pf

(2)
y (x), we get

Jy(x) = 0 and thus f(x) ̸= 0 by Lemma 3.1.1. Since F (2)
y (xy−1) ̸= 0 and F (2)

y (x) = 0,
Lemma 3.1.2 gives Jy(xy−2) ̸= 0. Thus by the alternatives in Pf

(2)
y (xy−2), we have

Jy(xy
−2) = 0. From Jy(xy

−1) = 0 and Jy(x) ̸= 0, Lemma 3.1.2 gives Jy(xy) ̸=

0. By the alternatives in Pf
(2)
y (xy), we obtain Jy(xy) = 0. Eliminating f(xy−1) from

Jy(xy
−1) = 0 and F (2)

y (x) = 0, we get

f(xy−2) + 5f(x) + 2f(xy) = 0. (3.11)

Eliminating f(xy−2) andf(xy2) fromF
(2)
y (xy) = 0 , (3.11) and each alternative inPf

(2)

y2 (x),
we obtain that

2f(x) + f(xy) = 0 or f(x) + f(xy) = 0. (3.12)

FromJy(xy
−2) = 0,Jy(xy−1) = 0 andF (2)

y (x) = 0, we haveJy(xy−2)+2Jy(xy
−1)+

3Jy(x) = 0, i.e.,
f(xy−3) + 8f(x) + 3f(xy) = 0. (3.13)

Eliminating f(xy−3) from (3.13) and each alternatives in Pf
(2)

y2 (xy
−1), we get

4f(x) + f(xy) + f(xy−1) = 0 or 4f(x) + f(xy)− f(xy−1) = 0. (3.14)
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Solving F (2)
y (x) = 0 and (3.14), we conclude that

f(x) = 0 or 3f(x) + f(xy) = 0. (3.15)

Combining (3.12) and (3.15), we have f(x) = 0, a contradiction. Therefore, we must get
β = 2 as desired.

Hence we have the desired result.

Lemma 3.1.5. Let f ∈ A(β)
(G,H) and let x, y ∈ G.

If F (β)
y (xy−1) ̸= 0, Jy(x) ̸= 0 and F (β)

y (xy2) = 0, then β = 1 and

(1) (f(xyn))
n∈Z = (a,−2a, a) for some a ∈ H , or

(2) (f(xyn))
n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for some

a ∈ H .

Proof. Suppose that all the assumptions in the lemma hold. Thus β ̸= 2 by Lemma 3.1.4. From
F

(β)
y (xy−1) ̸= 0 andPf

(β)
y (xy−1), we get Jy(xy−1) = 0. From Jy(x) ̸= 0 andPf

(β)
y (x), we

have F (β)
y (x) = 0. Therefore, f(xy−1) ̸= 0 and f(x) ̸= 0 by Lemma 3.1.1. Since Jy(x) ̸= 0

and Jy(xy−1) = 0, Lemma 3.1.2 gives Jy(xy) ̸= 0. By the alternatives in Pf
(β)
y (xy), we get

F
(β)
y (xy) = 0. From F

(β)
y (x) = 0, Jy(xy) ̸= 0, F

(β)
y (xy2) = 0 and β ̸= 2, Lemma 3.1.4

gives β = 1. Eliminating f(xy−1) from Jy(xy
−1) = 0 and F (1)

y (x) = 0, we obtain

f(xy−2) + 3f(x) + 2f(xy) = 0. (3.16)

Consider the alternatives in Pf
(1)

y2 (x) as follows: Solving Jy2(x) = 0, F
(1)
y (xy) = 0 and (3.16)

gives 2f(x) + f(xy) = 0, while solving F (1)

y2 (x) = 0, F
(1)
y (xy) = 0 and (3.16) gives f(x) +

f(xy) = 0. If f(x)+f(xy) = 0, thenF (1)
y (x) = 0 simplifies to f(xy−1) = 0, a contradiction.

Thus we must have 2f(x) + f(xy) = 0. Let f(x) = a. From Jy(xy
−1) = 0, F

(1)
y (x) =

0, F
(1)
y (xy) = 0, F

(1)
y (xy2) = 0 and 2f(x) + f(xy) = 0, we conclude that

(f(xy−2), f(xy−1), f(x), f(xy), f(xy2), f(xy3)) = (a, a, a,−2a, a, a). (3.17)
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If F (1)
y (xy3) = 0, then by f(xy2) = f(xy3) = a in (3.17), we get f(xy4) = −2a. From

f(xy−2) = a and f(xy) = −2a in (3.17), the alternatives inPf
(1)

y3 (xy) give a = 0, a contradic-
tion. Therefore, F (1)

y (xy3) ̸= 0. By the alternatives in Pf
(1)
y (xy3), we have Jy(xy3) = 0, i.e.,

f(xy4) = a. From the alternatives in Pf
(1)
y (xyn) for each n ≥ 4, we will consider two possible

cases as follows:

(1) Assume that Jy(xyn) = 0 for all n ≥ 4, i.e.,

f(xyn−1)− 2f(xyn) + f(xyn+1) = 0 for all n ≥ 4. (3.18)

From (3.18), f(xy4) = a and f(xy2) = f(xy3) = a in (3.17), we conclude that

f(xyn) = a for all n ≥ 2. (3.19)

Next, we will show that (3.19) also holds for alln ≤ 0. It is only left to prove that f(xyn) = a

for alln ≤ −3. Letm ≤ −3 be an integer. Wewill consider the alternatives inPf
(1)

ym−1(xy)

as follows: From f(xy) = −2a in (3.17) and f(xy−m+2) = a in (3.19), the alternative
F

(1)

ym−1(xy) = 0 and (3.19) gives f(xym) = −5a, while the alternative F (1)

ym−1(xy) = 0

and (3.19) gives f(xym) = a. First, assume that f(xym) = −5a. From f(x) = a in
(3.17) and f(xy−m) = a in (3.19), the alternatives inPf

(1)
ym (x) give a = 0, a contradiction.

Thus we must have f(xym) = a. Therefore, we get that (3.19) holds for all n ≤ 0 and so(
f(xyn)

)
n∈Z = (a,−2a, a).

(2) Assume that there existsm ≥ 4 such that Jy(xym) ̸= 0. Thus we can further assume thatm
is the least number. From the alternatives inPf

(1)
y (xyn) for each 3 ≤ n ≤ m− 1, we have

Jy(xy
n) = 0, i.e.,

f(xyn−1)− 2f(xyn) + f(xyn+1) = 0 for all 3 ≤ n ≤ m− 1. (3.20)
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Since (3.20) and f(xy2) = f(xy3) = a in (3.17), we obtain that

f(xyn) = a for all 2 ≤ n ≤ m. (3.21)

From Jy(xy
m) ̸= 0 and Pf

(1)
y (xym), we get F (1)

y (xym) = 0. Since f(xym−1) =

f(xym) = a in (3.21), F (1)
y (xym) = 0 reduces to f(xym+1) = −2a. Next, we will

show thatm must be odd by contradiction. Suppose thatm = 2k for some k ∈ Z. We have
f(xy2k+1) = f(xym+1) = −2a. From f(xy) = −2a in (3.17) and f(xyk+1) = a in
(3.21), the alternatives in Pf

(1)

yk
(xyk+1) give a = 0, a contradiction. Thus m must be odd.

Next, we will show that

(f(xym+2), f(xym+3), . . . , f(xy2m), f(xy2m+1)) = (a, a, . . . , a,−2a). (3.22)

Let p be an integer with 1 ≤ p ≤ m − 1. From f(xym−p+1) = a in (3.21) and
f(xym+1) = −2a, the alternatives in Pf

(1)
yp (xy

m+1) give f(xym+p+1) = −5a or
f(xym+p+1) = a. First, assume that f(xym+p+1) = −5a. Since 0 ≤ m − p − 1 ≤

m − 2, by (3.17) and (3.21), we have f(xym−p−1) = −2a or f(xym−p−1) = a. From
f(xym) = a in (3.21), the alternatives in Pf

(1)

yp+1(xy
m) give a = 0, a contradiction. Thus

we must have f(xym+p+1) = a. Therefore, f(xyn) = a for allm+ 2 ≤ n ≤ 2m. Con-
sidering the alternatives in Pf

(1)
y (xy2m), we get f(xy2m+1) = a or f(xy2m+1) = −2a.

First, assume that f(xy2m+1) = a. From f(xy) = f(xym+1) = −2a, the alter-
natives in Pf

(1)
ym (xy

m+1) give a = 0 and therefore a contradiction. Thus we must have
f(xy2m+1) = −2a.

Similarly, by repeating the process of (3.22), we obtain that

(f(xy2m+2), f(xy2m+3), . . . , f(xy3m), f(xy3m+1)) = (a, a, . . . , a,−2a)
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and so on. Eventually, we arrive that

(f(xyim+2), f(xyim+3), . . . , f(xy(i+1)m), f(xy(i+1)m+1)) = (a, a, . . . , a,−2a)

for all i ≥ 0. Moreover, we can similarly repeat the process of (3.22) for each f(xyk) with
k ≤ −3 to get (f(xyn))

n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period
p ≥ 5 as desired.

The proof is now complete.

3.2 Main Results and Some Examples
In this section, all lemmas in the previous section will be consolidated to provide three more lemmas,
which will eventually comprise our main theorem.

First, wewill make the following crucial observations. Let f ∈ A(β)
(G,H)\J(G,H) and letx, y ∈ G.

By the definition ofA(β)
(G,H) and J(G,H), one of the following properties holds:

(1) Jy(xy
n) ̸= 0 for all n ∈ Z.

(2) There existsm ∈ Z such that

(2.1) Jy(xy
m) ̸= 0 and Jy(xym−1) = 0, or

(2.2) Jy(xy
m) ̸= 0 and Jy(xym+1) = 0.

The above observation will be used in the proof of the lemmas and theorem as follows.

Lemma 3.2.1. Let f ∈ A(0)
(G,H)\J(G,H) and let x, y ∈ G.

Then (f(xyn))
n∈Z = (−a, a) for some a ∈ H .

Proof. Suppose that all the assumptions in the lemma hold. By the above observation, we have the
following cases:

(1) Assume that Jy(xyn) ̸= 0 for all n ∈ Z. The alternatives in Pf
(0)
y (xy−1) and Pf

(0)
y (xy)

giveF (0)
y (xy−1) = 0 andF (0)

y (xy) = 0, respectively. FromF
(0)
y (xy−1) = 0, Jy(x) ̸= 0
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andF (0)
y (xy) = 0, Lemma 3.1.4 gives a contradiction. Thus the solution does not exist in this

case.

(2) Assume that there exists m ∈ Z such that Jy(xym) ̸= 0 and Jy(xy
m−1) = 0, or

Jy(xy
m) ̸= 0 and Jy(xym+1) = 0. Therefore, each case implies that:

(2.1) If Jy(xym) ̸= 0 and Jy(xym−1) = 0, then the alternatives in Pf
(0)
y (xym) give

F
(0)
y (xym) = 0. From Jy(xy

m−1) = 0 and Jy(xym) ̸= 0, Lemma 3.1.2 gives
Jy(xy

m+1) ̸= 0. We will consider the alternatives in Pf
(0)
y (xym+2) as follows: If

F
(0)
y (xym+2) = 0, then from Jy(xy

m+1) ̸= 0 andF (0)
y (xym) = 0, we get a contra-

diction by Lemma 3.1.4. Thuswemust haveF (0)
y (xym+2) ̸= 0. FromJy(xy

m−1) = 0,
Jy(xy

m) ̸= 0 and F (0)
y (xym+2) ̸= 0, we get

f(xym+n) =

−f(xym) if n ∈ Z+,

f(xym) if n ∈ Z−

by substituting x by xym in Lemma 3.1.3. Therefore,

(
f(xyn)

)
n∈Z = (f(xym),−f(xym)).

(2.2) If Jy(xym) ̸= 0 and Jy(xy
m+1) = 0, then we conclude that (f(xyn))

n∈Z =

(−f(xym), f(xym)) by substituting x by xy2m and y by y−1 in the arguments in the
case 2.1.

All the above consideration completes the proof.
Lemma 3.2.2. Let f ∈ A(1)

(G,H)\J(G,H) and let x, y ∈ G. Then
(1) (f(xyn))

n∈Z = (a, b,−a− b) for some a, b ∈ H , or

(2) (f(xyn))
n∈Z = (a,−2a, a) for some a ∈ H , or

(3) (f(xyn))
n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for some

a ∈ H .
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Proof. Suppose that all the assumptions in the lemma hold. By the above observation, we have the
following cases:

(1) Assume that Jy(xyn) ̸= 0 for all n ∈ Z. Thus the alternatives in Pf
(1)
y (xyn) give

F
(1)
y (xyn) = 0, i.e.,

f(xyn−1) + f(xyn) + f(xyn+1) = 0

for all n ∈ Z. This implies the property (1).

(2) Assume that there exists m ∈ Z such that Jy(xym) ̸= 0 and Jy(xy
m−1) = 0, or

Jy(xy
m) ̸= 0 and Jy(xym+1) = 0. Therefore, each case implies that:

(2.1) Suppose Jy(xym) ̸= 0 and Jy(xym−1) = 0. In the case when F (1)
y (xym−1) ̸= 0,

we will consider the alternatives in Pf
(1)
y (xym+2) as follows: If F (1)

y (xym+2) ̸= 0,
then Lemma 3.1.3 gives a contradiction. Therefore, F (1)

y (xym+2) = 0. From
F

(1)
y (xym−1) ̸= 0, Jy(xym) ̸= 0 andF (1)

y (xym+2) = 0, by substituting x by xym
in Lemma 3.1.5, we get the property (2) and (3). Thus wewill only consider the case when
the alternatives in Pf

(1)
y (xy−1) are equivalent, i.e., we also get F (1)

y (xym−1) = 0.
Thus f(xym−1) = 0 by Lemma 3.1.1. From Jy(xy

m−1) = 0 and Jy(xym) ̸= 0,
we get Jy(xym+1) ̸= 0 by Lemma 3.1.2. Thus the alternatives inPf

(1)
y (xym+1) give

F
(1)
y (xym+1) = 0. From Jy(xy

m) ̸= 0 and Pf
(1)
y (xym), we have F (1)

y (xym) =

0. Therefore, f(xym) ̸= 0 by Lemma 3.1.1. Let f(xym) = a. From f(xy−1) = 0,
F

(1)
y (xym) = 0 and F (1)

y (xym+1) = 0, we conclude that

(f(xym−1), f(xym), f(xym+1), f(xym+2)) = (0, a,−a, 0). (3.23)

By (3.23), the alternatives in Pf
(1)
y (xym+2), Pf

(1)

y2 (xy
m+2) and Pf

(1)

y3 (xy
m+2)

give
(f(xym+3), f(xym+4), f(xym+5)) = (a,−a, 0).

Similarly, the alternatives inPf
(1)
y (xym+5),Pf

(1)

y2 (xy
m+5) andPf

(1)

y3 (xy
m+5) give
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(f(xym+6), f(xym+7), f(xym+8)) = (a,−a, 0) and so on. Finally, we get

(f(xym+3k), f(xym+3k+1), f(xym+3k+2)) = (a,−a, 0). (3.24)

for all k ≥ 0. On the other hand, the alternatives in Pf
(1)
y (xym−1), Pf

(1)

y2 (xy
m−1)

and Pf
(1)

y3 (xy
m−1) give (f(xym−2), f(xym−3), f(xym−4)) = (−a, a, 0). Re-

peating the process similar to (3.24), we have

(f(xym−3k), f(xym−3k−1), f(xym−3k−2)) = (a, 0,−a)

for all k ≥ 0. Therefore, we get the property (1) when b = −a.

(2.2) If Jy(xym) ̸= 0 and Jy(xym+1) = 0, then we have the similar results as the case 2.1
by substituting x by xy2m and y by y−1.

Hence we have the desired result.

Lemma 3.2.3. Let f ∈ A(2)
(G,H)\J(G,H) and let x, y ∈ G.

Then f(xyn) = (−1)n
(
f(x)− n(f(x) + f(xy))

) for all n ∈ Z.

Proof. Suppose that all the assumptions in the lemma hold. Therefore, Jy(xym) ̸= 0 for some
m ∈ Z. By the alternatives in Pf

(2)
y (xym), we get F (2)

y (xym) = 0. Consider the alternatives in
Pf

(2)
y (xym−1) as follows: If F (2)

y (xym−1) ̸= 0, then Lemma 3.1.4 gives a contradiction. Thus
we must have F (2)

y (xym−1) = 0. Similarly, by Lemma 3.1.4, the alternatives in Pf
(2)
y (xym+1)

gives F (2)
y (xym+1) = 0. First, we will show that F (2)

y (xym+2) = 0 by contradiction. Sup-
pose F (2)

y (xym+2) ̸= 0. The alternatives in Pf
(2)
y (xym+2) gives Jy(xym+2) = 0. Therefore,

f(xym+2) ̸= 0 by Lemma 3.1.1. From F
(2)
y (xym+1) = 0 and F (2)

y (xym+2) ̸= 0, we get
F

(2)
y (xym+3) ̸= 0 by Lemma 3.1.2. Hence the alternatives inPf

(2)
y (xym+3) giveJy(xym+3) = 0.

Eliminating f(xym) from F
(2)
y (xym) = 0 and F (2)

y (xym+1) = 0, we get

f(xym−1)− 3f(xym+1)− 2f(xym+2) = 0. (3.25)
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Eliminating f(xym−1) and f(xym+3) from Jy(xy
m+2) = 0, (3.25) and each alternative in

Pf
(2)

y2 (xy
m+1), we have

f(xym+2) = 0 or f(xym+1) + f(xym+2) = 0. (3.26)

On the other hand, by Jy(xym+2) = 0 and Jy(xym+3) = 0, we obtain that

2f(xym+1)− 3f(xym+2) + f(xym+4) = 0. (3.27)

Eliminating f(xym) and f(xym+4) from F
(2)
y (xym+1) = 0, (3.27) and each alternative in

Pf
(2)

y2 (xy
m+2), we get

f(xym+1) = 0 or f(xym+1)− f(xym+2) = 0. (3.28)

Combining (3.26) and (3.28), we conclude that f(xym+2) = 0, a contradiction. Therefore, we get
F

(2)
y (xym+2) = 0. We can repeat the above process to show F

(2)
y (xym+3) = 0 by substituting x

by xy and so on. Thus we obtain that

F (2)
y (xyn) = 0 for all n ≥ m+ 2. (3.29)

Similarly, we can repeat the process of (3.29) for each n ≤ m − 2 to get F (2)
y (xyn) = 0 for all

n ∈ Z, i.e.,
f(xyn+1) + f(xyn) = (−1)(f(xyn) + f(xyn−1)).

Therefore, f(xyn) = (−1)n
(
f(x)− n(f(x) + f(xy))

) for all n ∈ Z.

Now we will prove the main theorem.

Theorem 3.2.4. If there exists a function f ∈ A(β)
(G,H)\J(G,H), then β ∈ {0, 1, 2}.

Moreover, if x, y ∈ G, then one of the following properties must hold:

(1) β = 0 and (f(xyn))
n∈Z = (−a, a) for some a ∈ H\{0}.
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(2) β = 1 and

(2.1) (f(xyn))
n∈Z = (a, b,−a− b) for some a, b ∈ H with (a, b) ̸= (0, 0), or

(2.2) (f(xyn))
n∈Z = (a,−2a, a) for some a ∈ H\{0}, or

(2.3) (f(xyn))
n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for

some a ∈ H\{0}.

(3) β = 2 and f(xyn) = (−1)n
(
f(x)− n(f(x) + f(xy))

) for all n ∈ Z.

Proof. Let f ∈ A(β)
(G,H)\J(G,H) and let x, y ∈ G. By the above observation, we have the following

cases:

(1) Assume that Jy(xyn) ̸= 0 for all n ∈ Z. The alternatives inPf
(β)
y (xy−1) andPf

(β)
y (xy)

giveF (β)
y (xy−1) = 0 andF (β)

y (xy) = 0, respectively. FromF
(β)
y (xy−1) = 0, Jy(x) ̸= 0

and F (β)
y (xy) = 0, Lemma 3.1.4 gives β = 1 or β = 2.

(2) Assume that there exists m ∈ Z such that Jy(xym) ̸= 0 and Jy(xy
m−1) = 0, or

Jy(xy
m) ̸= 0 and Jy(xym+1) = 0. Therefore, each case implies that:

(2.1) If Jy(xym) ̸= 0 and Jy(xym−1) = 0, then Lemma 3.1.2 gives Jy(xym+1) ̸= 0.
From Jy(xy

m) ̸= 0 and Pf
(β)
y (xym), we get F (β)

y (xym) = 0. Consider the alter-
natives in Pf

(β)
y (xym+2) as follows: If F (β)

y (xym+2) ̸= 0, then Lemma 3.1.3 gives
β = 0. If F (β)

y (xym+2) = 0, then Lemma 3.1.4 gives β = 1 or β = 2.

(2.2) If Jy(xym) ̸= 0 and Jy(xym+1) = 0, then we get similar results in the case 2.1 by
substituting x by xy2m and y by y−1 in the previous arguments.

Thus we must have β ∈ {0, 1, 2}. According to Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.3, we
have our results corresponding to the values of β′s.

Corollary 3.2.5. Let f ∈ A(β)
(G,H). If β /∈ {0, 1, 2}, then f ∈ J(G,H).

Proof. If β /∈ {0, 1, 2}, then, from Theorem 3.2.4, A(β)
(G,H)\J(G,H) is empty. Hence we have the

desired result.
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In other words, Corollary 3.2.5 states that when β /∈ {0, 1, 2}, the alternative Jensen’s functional
equation (WA) is equivalent to the Jensen’s functional equation (1.6) for the class of functions from
(G, ·) to (H,+). On the other hand, when β ∈ {0, 1, 2}, (WA) is not necessarily equivalent to
(1.6) as the following three examples.

Example 3.2.6. Given a ∈ H\{0}. Let f : R → H be a function such that

f(x) =

−a if x < 0,

a if x ≥ 0.

By choosing x = 0 and y = 1, we have

f(x− y)− 2f(x) + f(x+ y) = f(−1)− 2f(0) + f(1) = −2a.

From a ̸= 0 andH is uniquely divisible, we get−2a ̸= 0. Thus f /∈ J(R,H). Given x, y ∈ R, if
x−y ≥ 0 and x+y ≥ 0, or x−y < 0 and x+y < 0, then f(x−y)−2f(x)+f(x+y) = 0;
otherwise, f(x− y) + f(x+ y) = 0. Therefore, f ∈ A(β)

(R,H)\J(R,H).

Example 3.2.7. Given a ∈ H\{0}. Let f : R → H be a function such that

f(x) =

−2a if x = 0,

a otherwise.

By choosing x = 0 and y = 1, we obtain that

f(x− y)− 2f(x) + f(x+ y) = f(−1)− 2f(0) + f(1) = 6a.

Since a ̸= 0 andH is uniquely divisible, we have 6a ̸= 0. Thus f /∈ J(R,H). Given x, y ∈ R, if(
y ̸= 0 and x − y = 0

) or (y ̸= 0 and x = 0
) or (y ̸= 0 and x + y = 0

), then f will satisfy
f(x− y) + f(x) + f(x+ y) = 0; otherwise, we have f(x− y)− 2f(x) + f(x+ y) = 0.

Thus f ∈ A(β)
(R,H)\J(R,H).
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Example 3.2.8. Given a, b ∈ H with a ̸= −b. Let f : Z → H be a function such that

f(n) = (−1)n(a+ nb) for all n ∈ Z.

Note that f(0) − 2f(1) + f(2) = 4a + 4b. Since a ̸= −b and H is uniquely divisible, we
have 4a + 4b ̸= 0. Thus f /∈ J(Z,H). Given n,m ∈ Z. If m is odd, then we observe that
n − m and n + m have the same parity whereas n and n + m have the opposite. Therefore,
f(n−m) + 2f(n) + f(n+m) = 0. Otherwise, ifm is even, then n−m,n, n+m all have
the same parity. Hence f(n−m)− 2f(n) + f(n+m) = 0. Thus f ∈ A(β)

(Z,H)\J(Z,H).



CHAPTER IV
THE STRONG FORM OF ALTERNATIVE JENSEN FUNCTIONAL

EQUATIONS

In this chapter, we will give a criterion for the existence of the general solution for the functional
equation (SA) in chapter I. Let (G, ·) be a group, (H,+) be a uniquely divisible abelian group. Given
integers α, β, γ as in (1.18) and a function f : G → H . For every pair of x, y ∈ G, we will define

F (α,β,γ)
y (x) := αf(xy−1) + βf(x) + γf(xy),

and
Jy(x) := f(xy−1)− 2f(x) + f(xy).

In addition, we denote the statement

Pf (α,β,γ)
y (x) :=

(
Jy(x) = 0 or F (α,β,γ)

y (x) = 0
)
.

The set of solution to the statement Pf
(α,β,γ)
y (x) will be denoted byA(α,β,γ)

(G,H) , i.e.,

A(α,β,γ)
(G,H) := {f : G → H | Pf (α,β,γ)

y (x) for all x, y ∈ G},

while the set of solution of Jy(x) = 0 is denoted by

J(G,H) := {f : G → H | Jy(x) = 0 for all x, y ∈ G}.
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For the sake of convenience, we will refer the conditions of integers α, β and γ as in the following
equation,

β = α + γ

or β = 0 and γ = α

or (β, γ) = (α, α).

 (4.1)

4.1 Auxiliary Lemmas
Lemma 4.1.1. Let f ∈ A(α,β,γ)

(G,H) and x, y ∈ G.
If Jy(x) ̸= 0, then α = γ or f(xy−1) = f(xy).

Proof. Assume that Jy(x) ̸= 0. By the alternative in Pf
(α,β,γ)
y (x) and Pf

(α,β,γ)

y−1 (x), we get
F

(α,β,γ)
y (x) and F (α,β,γ)

y−1 (x), respectively. Therefore, F (α,β,γ)
y (x)− F

(α,β,γ)

y−1 (x) = 0, i.e.,

(α− γ)(f(xy−1)− f(xy)) = 0.

Hence α = γ or f(xy−1) = f(xy) as desired.

In the following lemma, we will give a necessary condition for a function f ∈ A(0,β,0)
(G,H) .

Lemma 4.1.2. If f ∈ A(0,β,0)
(G,H) and x, y ∈ G, then Jy(x) = 0.

Proof. Assume that f ∈ A(0,β,0)
(G,H) and Jy(x) ̸= 0. If β = 0, then it is a contradiction to (1.18).

Hence we must have β ̸= 0. From F
(0,β,0)
y (x) = 0, we get f(x) = 0. Next, we will consider the

alternative in F (0,β,0)
y (xy−1) = 0 as follows.

(1) Assume thatF (0,β,0)
y (xy−1) = 0. We havef(xy−1) = 0. By the alternative inPf

(0,β,0)
y (xy),

we obtain that
f(xy2)− 2f(xy) = 0 or f(xy) = 0. (4.2)

By the alternative in Pf
(0,β,0)
y (xy2), we get

f(xy)− 2f(xy2) + f(xy3) = 0 or f(xy2) = 0. (4.3)
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Combining (4.2) and (4.3), we obtain that

f(xy3)− 3f(xy) = 0 or f(xy) = 0. (4.4)

By f(xy−1) = 0 and (4.4), the alternative in Pf
(0,β,0)

y2 (xy) gives f(xy) = 0. By calcula-
tion, we get Jy(x) = 0, a contradiction to the fact that Jy(x) ̸= 0.

(2) Assume that Jy(xy−1) = 0, i.e.,

f(xy−2)− 2f(xy−1) = 0. (4.5)

By (4.5), the alternative in Pf
(0,β,0)
y (xy−2) gives

f(xy−3)− 3f(xy−1) = 0 or f(xy−1) = 0. (4.6)

By (4.6), the alternative in Pf
(0,β,0)

y2 (xy−1) gives

f(xy−1) + f(xy) = 0 or f(xy−1) = 0.

If f(xy−1) + f(xy) = 0, then we have Jy(x) = 0, a contradiction. Hence we have
f(xy−1) = 0. By a similar argument in case (1), we get a contradiction.

Therefore, we must have Jy(x) = 0 as desired.

Corollary 4.1.3. Let f ∈ A(α,β,α)
(G,H) and x, y ∈ G. If Jy(x) ̸= 0, then α ̸= 0.

Proof. The proof is complete by Lemma 4.1.2.

Lemma 4.1.4. Let f ∈ A(α,β,γ)
(G,H) with α ̸= γ and x, y ∈ G.

(1) If Jy(xy−1) ̸= 0 and Jy(x) ̸= 0, then Jy(xy) ̸= 0.

(2) If Jy(xy−1) = 0 and Jy(x) = 0, then Jy(xy) = 0.

Proof. We will prove each property as follows.
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(1) Assume that Jy(xy−1) ̸= 0, Jy(x) ̸= 0 but Jy(xy) = 0. From Jy(xy
−1) ̸= 0 and

Jy(x) ̸= 0, Lemma 4.1.1 gives

f(xy−2) = f(x) or f(xy−1) = f(xy). (4.7)

Eliminating f(xy) from Jy(xy) = 0 and (4.7), we get

2f(xy−1)− f(x)− f(xy2) = 0. (4.8)

We will consider the alternative in Pf
(α,β,γ)

y2 (x).

(a) Suppose Jy2(x) ̸= 0. Then Lemma 4.1.1 gives

f(x) = f(xy2). (4.9)

From (4.7) and (4.9), we get Jy2(x) = 0, a contradiction.

(b) SupposeJy2(x) = 0. Eliminating f(xy−2) andf(xy2) from (4.7), (4.8) andJy2(x) = 0,
yields

f(xy−1) = f(x). (4.10)

From (4.7) and (4.10), we obtain Jy(x) = 0, a contradiction.

Thus we must have Jy(xy) ̸= 0.

(2) Assume that Jy(xy−1) = 0, Jy(x) = 0 but Jy(xy) ̸= 0. Eliminating f(xy−1) from
Jy(xy

−1) = 0 and Jy(x) = 0, we get

f(xy−2)− 3f(x) + 2f(xy) = 0. (4.11)

From Jy(xy) ̸= 0, Lemma 4.1.1 gives

f(x) = f(xy2). (4.12)
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Next, we will consider the alternative in Pf
(α,β,γ)

y2 (x).

(a) Suppose Jy2(x) ̸= 0. By Lemma 4.1.1, we have

f(xy−2) = f(xy2). (4.13)

By (4.12) and (4.13), we obtain that Jy2(x) = 0, a contradiction.

(b) Suppose Jy2(x) = 0. Eliminating f(xy−2) and f(xy2) from (4.11), (4.12) and
Jy2(x) = 0, we have

f(x) = f(xy). (4.14)

By (4.12) and (4.14), we get Jy(xy) = 0, a contradiction.

Therefore, we must have Jy(xy) = 0.

Lemma 4.1.5. Let f ∈ A(α,β,γ)
(G,H) with α ̸= γ and x, y ∈ G.

(1) If Jy(xy−1) ̸= 0 and Jy(x) = 0, then Jy(xy) ̸= 0.

(2) If Jy(xy−1) = 0 and Jy(x) ̸= 0, then Jy(xy) = 0.

Proof. We will apply Lemma 4.1.4 to prove this lemma as follows.

(1) Assume thatJy(xy−1) ̸= 0, Jy(x) = 0 andJy(xy) = 0. ByJy(x) = 0 andJy(xy) = 0,
Lemma 4.1.4 gives Jy(xy−1) = 0, a contradiction. Thus we must have Jy(xy) ̸= 0.

(2) Assume that Jy(xy−1) = 0, Jy(x) ̸= 0 and Jy(xy) ̸= 0. From Jy(x) ̸= 0 and
Jy(xy) ̸= 0, we get Jy(xy−1) ̸= 0, a contradiction. Therefore, we must have Jy(xy) = 0.

Lemma 4.1.6. Let f ∈ A(α,β,γ)
(G,H) with α ̸= γ and x, y ∈ G.

(1) If Jy(xy−1) ̸= 0 and Jy(x) ̸= 0, then β = α + γ.
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(2) If Jy(xy−1) = 0 and Jy(x) ̸= 0, then (β, γ) = (0,−α).

Proof. We will prove each property as follows.

(1) Assume that Jy(xy−1) ̸= 0, Jy(x) ̸= 0 and β ̸= α + γ. By Lemma 4.1.1, we obtain that

f(xy−2) = f(x) and f(xy−1) = f(xy). (4.15)

From Jy(xy
−1) ̸= 0 and Jy(x) ̸= 0, the alternative inPf

(α,β,γ)
y (xy−1) andPf

(α,β,γ)
y (x)

gives
F (α,β,γ)
y (xy−1) = 0 and F (α,β,γ)

y (x) = 0, (4.16)

respectively. By (4.15) and (4.16), we get

(α + γ)f(x) + βf(xy) = 0 and βf(x) + (α + γ)f(xy) = 0. (4.17)

Eliminating f(xy) from (4.9), we have

(β − α− γ)(β + α + γ)f(x) = 0.

From β ̸= α + γ, we can conclude that f(x) = 0 or β = −α− γ.

(a) Suppose f(x) = 0. By (4.17), we have

βf(xy) = 0 and (α + γ)f(xy) = 0.

If f(xy) = 0, then f(xy−1) = 0 by (4.15) and we can calculate Jy(x) = 0, a
contradiction to the fact that Jy(x) ̸= 0. Thus we get (α + γ) = 0 and β = 0, a
contradiction to the fact that β ̸= α + γ.

(b) Suppose β = −α− γ. Substituting β = −α− γ in (4.17), we obtain that

(α + γ)(f(x)− f(xy)) = 0.
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If α + γ = 0, then β = 0 which contradicts β ̸= α + γ. Thus we must have
f(x) = f(xy). Since f(xy−1) = f(xy) in (4.15), we get Jy(x) = 0, a contradic-
tion to the fact that Jy(x) ̸= 0.

Hence β = α + γ.

(2) Assume that Jy(xy−1) = 0 and Jy(x) ̸= 0. From Jy(x) ̸= 0, by Lemma 4.1.1, we have

f(xy−1) = f(xy). (4.18)

By Jy(x) ̸= 0 again, the alternative in Pf
(α,β,γ)
y (x) gives F (α,β,γ)

y (x) = 0. Substituting
f(xy−1) from (4.18) in F (α,β,γ)

y (x) = 0, we obtain that

βf(x) + (α + γ)f(xy) = 0. (4.19)

On the other hand, we substituting f(xy−1) from (4.18) in Jy(xy−1) = 0 to get

f(xy−2)− 2f(xy) + f(x) = 0. (4.20)

Since Jy(xy−1) = 0 and Jy(x) ̸= 0, Lemma 4.1.5 give Jy(xy−2) ̸= 0. By Lemma 4.1.1
and (4.18), we have

f(xy−3) = f(xy). (4.21)

From Jy(xy
−2) ̸= 0, the alternative in Pf

(α,β,γ)
y (xy−2) gives F (α,β,γ)

y (xy−2) = 0. By
(4.18), (4.21) and F (α,β,γ)

y (xy−2) = 0, we get

(α + 2β + γ)f(xy)− βf(x) = 0. (4.22)

By (4.19), (4.22) and simplifying, we obtain that

β(f(x)− f(xy)) = 0.
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If f(x) − f(xy) = 0, then by (4.18), we have Jy(x) = 0, a contradiction to the fact that
Jy(x) ̸= 0. Hence we must get β = 0. Thus (4.22) gives

(α + γ)f(xy) = 0. (4.23)

Suppose in a contrary that α + γ ̸= 0. Thus f(xy) = 0 and so is f(xy−1) by (4.18). By
(4.20), we obtain that

f(xy−2) + f(x) = 0. (4.24)

From Jy(xy
−1) = 0 and Jy(x) ̸= 0, Lemma 4.1.5 give Jy(xy) = 0, i.e.,

f(x) + f(xy2) = 0. (4.25)

Thus by (4.24), (4.25) and α + γ ̸= 0, the alternative in Pf
(α,0,γ)

y2 (x) give f(x) = 0.
Then Jy(x) = 0, a contradiction. Therefore, we must get α + γ = 0 and so (α, β, γ) =
(α, 0,−α).

4.2 Main Results and Some Examples
Before proving the theorem, we will provide the following two lemmas which will eventually be

used in our main theorem.

Lemma 4.2.1. If f ∈ A(α,β,α)
(G,H) \J(G,H) and x, y ∈ G, then one of the following properties holds:

(1) β = 0 and (f(xyn))n∈Z = (−a, a) for some a ∈ H .

(2) β = α and

(2.1) (f(xyn))n∈Z = (a, b,−a− b) for some a, b ∈ H , or

(2.2) (f(xyn))n∈Z = (a,−2a, a) for some a ∈ H , or
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(2.3) (f(xyn))n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for
some a ∈ H .

(3) β = 2α and f(xyn) = (−1)n
(
f(x)− n(f(x) + f(xy))

) for all n ∈ Z.

Proof. Assume that the assumption in the lemma holds. From Corollary 4.1.3, we must have α ̸= 0.
By direct substitution, we get A(α,β,α)

(G,H) \J(G,H) = A(1, β
α
,1)

(G,H) \J(G,H). Thus Theorem 3.2.4 gives
β ∈ {0, α, 2α}, and f satisfies one of the properties in the lemma.

Lemma 4.2.2. If f ∈ A(α,β,γ)
(G,H) \J(G,H) with α ̸= γ and x, y ∈ G, then β = α + γ and one of

the following properties holds:

(1) f(xyn) = (−1)na for all n ∈ Z and for some a ∈ H , or

(2) β = 0 and

(2.1) (f(xyn))n∈Z = (a, b) for some a, b ∈ H , or
(2.2) (f(xyn))n∈Z = (2a− b, a, b, a) for some a, b ∈ H .

Proof. Assume that the assumption in the lemma holds. By the definition of A(α,β,γ)
(G,H) and J(G,H),

one of the following properties holds:

(1) Jy(xy
n) ̸= 0 for all n ∈ Z.

(2) There existsm ∈ Z such that

(2.1) Jy(xy
m) ̸= 0 and Jy(xym−1) = 0, or

(2.2) Jy(xy
m) ̸= 0 and Jy(xym+1) = 0.

(1) Assume that Jy(xyn) ̸= 0 for all n ∈ Z. Lemma 4.1.6 gives β = α+γ. By Lemma 4.1.1,
we get

f(xyn−1) = f(xyn+1) for all n ∈ Z. (4.26)

From Jy(x) ̸= 0, the alternative in Pf
(α,α+γ,γ)
y (x) gives F (α,α+γ,γ)

y (x) = 0; that is,

αf(xy−1) + (α + γ)f(x) + γf(xy) = 0. (4.27)
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By (4.26) with n = 0 and (4.27), we get

(α + γ)(f(x) + f(xy)) = 0. (4.28)

(1.1) Suppose f(x) + f(xy) = 0. Let f(x) = a. We have f(xy) = −a. By (4.26), we
conclude that

f(xyn) =

a if n is even,
−a if n is odd.

Hence we get f(xyn) = (−1)na for all n ∈ Z.

(1.2) Suppose α + γ = 0. That is β = 0. Let f(x) = a and f(xy) = b. Therefore, by
(4.26), we obtain that

f(xyn) =

a if n is even,
b if n is odd.

Thus we have (f(xyn))n∈Z = (a, b).

(2) Assume that there existsm ∈ Z such thatJy(xym) ̸= 0 andJy(xym−1) = 0 orJy(xym) ̸= 0

and Jy(xym+1) = 0. Thus Lemma 4.1.6 gives (β, γ) = (0,−α)

(2.1) Suppose Jy(xym) ̸= 0 and Jy(xym−1) = 0. Let f(xym−1) = a and f(xym) = b.
FromJy(xy

m) ̸= 0, Lemma 4.1.1 gives f(xym−1) = f(xym+1), i.e., f(xym+1) = a.
From Jy(xy

m−1) = 0, we get f(xym−2) = 2a− b. Now we have

(f(xym−2), f(xym−1), f(xym), f(xym+1)) = (2a− b, a, b, a). (4.29)

From Jy(xy
m−1) = 0 and Jy(xym) ̸= 0, Lemma 4.1.5 gives Jy(xym+1) = 0; that

is,
f(xym)− 2f(xym+1) + f(xym+2) = 0. (4.30)
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By (4.29) and (4.30), we obtain that f(xym+2) = 2a − b. Since Jy(xym) ̸= 0

and Jy(xym+1) = 0, Lemma 4.1.5 gives Jy(xy
m+2) ̸= 0. By Lemma 4.1.1, we get

f(xym+3) = a. From Jy(xy
m+1) = 0 and Jy(xym+2) ̸= 0, Lemma 4.1.5 gives

Jy(xy
m+3) = 0 and so f(xym+4) = b. As Jy(xym+2) ̸= 0 and Jy(xym+3) = 0,

we have Jy(xym+4) ̸= 0 by Lemma 4.1.5. Lemma 4.1.1 gives f(xym+5) = a. Thus
we obtain that

(f(xym+2), f(xym+3), f(xym+4), f(xym+5)) = (2a− b, a, b, a). (4.31)

Similarly, by repeating the process of (4.31), we get

(f(xym+6), f(xym+7), f(xym+8), f(xym+9)) = (2a− b, a, b, a)

and so on. Eventually, we arrive that

(f(xym−2+4i), f(xym−1+4i), f(xym+4i),f(xym+1+4i))

= (2a− b, a, b, a) (4.32)

for all i ≥ 0. Moreover, we can similarly repeat the process of (4.32) for each f(xyk)
with k ≤ m− 3 to get (f(xyn))n∈Z = (2a− b, a, b, a).

(2.2) Suppose Jy(xym) ̸= 0 and Jy(xym+1) = 0. By substituting x by xy2m and y by
y−1 in the arguments in the case (2.1), we have similar results.

Now we are ready to prove the main theorem.

Theorem 4.2.3. If f ∈ A(α,β,γ)
(G,H) \J(G,H), then (4.1) holds. Moreover, if x, y ∈ G, then one of the

following properties holds:

(1) β = α + γ and
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(1.1) f(xyn) = (−1)na for all n ∈ Z and for some a ∈ H , or

(1.2) β = 0 and

(1.2.1) (f(xyn))n∈Z = (a, b) for some a, b ∈ H , or
(1.2.2) (f(xyn))n∈Z = (2a− b, a, b, a) for some a, b ∈ H , or

(1.3) β = 2α and f(xyn) = (−1)n
(
f(x)− n(f(x) + f(xy))

) for all n ∈ Z.

(2) (β, γ) = (0, α) and (f(xyn))n∈Z = (−a, a) for some a ∈ H .

(3) (β, γ) = (α, α) and

(3.1) (f(xyn))n∈Z = (a, b,−a− b) for some a, b ∈ H , or

(3.2) (f(xyn))n∈Z = (a,−2a, a) for some a ∈ H , or

(3.3) (f(xyn))n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for
some a ∈ H .

Proof. Assume that all assumptions in the theorem hold. We will consider the case of an integer α as
follows:

(1) If α = γ, then Lemma 4.2.1 gives β ∈ {0, α, 2α} and the properties (1.3), (2) and (3).

(2) If α ̸= γ, then Lemma 4.2.2 gives β = α+ γ and the properties (1.1) and (1.2).

Corollary 4.2.4. Let f ∈ A(α,β,γ)
(G,H) . If (4.1) does not hold, then f ∈ J(G,H).

Proof. If (4.1) does not hold, then, from Theorem 4.2.3,A(α,β,γ)
(G,H) \J(G,H) is empty. Hence we have

the desired result.

In other words, Corollary 4.2.4 states that when (4.1) does not hold, the alternative Jensen’s func-
tional equation (SA) is equivalent to the Jensen’s functional equation (1.6) for the class of functions
from (G, ·) to (H,+). On the other hand, when (4.1) actually holds, (SA) in chapter I is not neces-
sarily equivalent to (1.6). As in Example 3.2.7, we also get f ∈ A(α,α,α)

(Z,H) \J(Z,H).We will give the
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following two more examples when (SA) is not necessarily equivalent to (1.6) with β = α + γ or
(β, γ) = (0, α).

Example 4.2.5. Given a ∈ H\{0}. Let f : Z → H be a function such that

f(n) = (−1)na for all n ∈ Z.

Note that
f(0)− 2f(1) + f(2) = 4a.

From a ̸= 0 andH is uniquely divisible, we get 4a ̸= 0. Thus f /∈ J(Z,H). Given n,m ∈ Z. If
m is odd, then we observe that n−m and n+m have the same parity whereas n and n+m have
the opposite. Therefore,

αf(n−m) + (α + γ)f(n) + γf(n+m) = 0.

Otherwise, ifm is even, then n−m,n, n+m all have the same parity. Hence

f(n−m)− 2f(n) + f(n+m) = 0.

Therefore, f ∈ A(α,α+γ,γ)
(Z,H) \J(Z,H).

Example 4.2.6. Given a, b ∈ H with a ̸= b. Let f : Z → H be a function such that

f(n) =

a if n is even,
b if n is odd.

Note that
f(0)− 2f(1) + f(2) = 2a− 2b.

Since a ̸= b and H is uniquely divisible, we have 2a − 2b ̸= 0. Thus f /∈ J(Z,H). If m is odd,
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then we observe that n−m and n+m have the same parity. Therefore,

αf(n−m)− αf(n+m) = 0.

Otherwise, ifm is even, then n−m,n, n+m all have the same parity. Hence

f(n−m)− 2f(n) + f(n+m) = 0.

Thus f ∈ A(α,0,−α)
(Z,H) \J(Z,H).

4.3 General Solution on cyclic groups
In this section, we will give the general solution of the alternative Jensen functional equation (SA)

in chapter I on an infinite cyclic group and a finite cyclic group. There are mainly the applications of
Theorem 4.2.3.

First, we will find all solutions of an infinite cyclic group as in the following theorem.

Theorem 4.3.1. Let (G, ·) be an infinite cyclic group withG = ⟨g⟩.
f ∈ A(α,β,γ)

(G,H) if and only if f ∈ J(G,H) or one of the following properties must hold:

(1) β = α + γ and

(1.1) f(gn) = (−1)na for all n ∈ Z and for some a ∈ H , or

(1.2) β = 0 and

(1.2.1) (f(gn))n∈Z = (a, b) for some a, b ∈ H , or
(1.2.2) (f(gn))n∈Z = (2a− b, a, b, a) for some a, b ∈ H , or

(1.3) β = 2α and f(gn) = (−1)n
(
a+ nb

) for all n ∈ Z and for some a, b ∈ H .

(2) (β, γ) = (0, α) and (f(gn))n∈Z = (−a, a) for some a ∈ H .

(3) (β, γ) = (α, α) and
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(3.1) (f(gn))n∈Z = (a, b,−a− b) for some a, b ∈ H , or

(3.2) (f(gn))n∈Z = (a,−2a, a) for some a ∈ H , or

(3.3) (f(gn))n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5, for
some a ∈ H .

Proof. Assume that f ∈ A(α,β,γ)
(G,H) . If f /∈ J(G,H), then setting x = e and y = g in Theorem 4.2.3,

we get that one of the properties (1), (2), and (3) must hold. The converse can be directly verified.

Next, we will give the general solution of a finite cyclic group as in the following theorem.

Theorem 4.3.2. Let (G, ·) be a finite cyclic group of orderm ≥ 2 withG = ⟨g⟩.
f ∈ A(α,β,γ)

(G,H) if and only if f ∈ J(G,H) or one of the following properties must hold:

(1) β = α + γ,

(1.1) 2 | m and f(gn) = (−1)na for all n ∈ Z and for some a ∈ H , or

(1.2) β = 0,

(1.2.1) 2 | m and (f(gn))n∈Z = (a, b) for some a, b ∈ H , or
(1.2.2) 4 | m and (f(gn))n∈Z = (2a− b, a, b, a) for some a, b ∈ H , or

(2) (β, γ) = (α, α) ,

(3.1) 3 | m and (f(gn))n∈Z = (a, b,−a− b) for some a, b ∈ H , or

(3.2) (f(gn))n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period p ≥ 5 with
p | m, for some a ∈ H .

Proof. Given one of the above properties, we can directly verify that f ∈ A(α,β,γ)
(G,H) . Conversely,

assume that f ∈ A(α,β,γ)
(G,H) \J(G,H). By setting x = e and y = g in Theorem 4.2.3, we have the

possibilities in Theorem 4.3.1.
However, all the above possibilities are not admissible. Some cases are redundant and some cases

are admissible with some additional conditions.
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(1) Assume that β = α + γ.

(1.1) Suppose that f(gn) = (−1)na for all n ∈ Z, for some a ∈ H andm is odd. We get

a = f(e) and f(gm) = −a.

Since gm = e, therefore a = 0 and so f ∈ J(G,H), a contradiction. Thusm must be
even.

(1.2) Suppose that (f(gn))n∈Z = (a, b) for some a, b ∈ H and m is odd. Without loss
of generality, we let f(e) = a. Then f(gm) = b. Since gm = e, a = b and thus
f ∈ J(G,H), a contradiction. Hencem must be even.

(1.3) Suppose that (f(gn))n∈Z = (2a− b, a, b, a) for some a, b ∈ H and 4 - m. Then
there exists k ∈ Z such that f(gk) = 2a − b. Since 4 - m, f(gk+m) ∈ {a, b}.
Fromm is the order of the groupG, we have gk = gk+m. Hence

2a− b = a or 2a− b = b,

which gives a = b. Thus f ∈ J(G,H), a contradiction. Therefore, we must get 4 | m.
(1.4) Suppose that f(gn) = (−1)n

(
a+nb

) for all n ∈ Z and for some a, b ∈ H . Since
e = gm = g2m,

a = (−1)m(a+mb) = (−1)2m(a+ 2mb)

which implies that b = 0 andm is even.

(2) Assume that (β, γ) = (0, α) and (f(gn))n∈Z = (−a, a) for some a ∈ H . Thus there
exists k ∈ Z such that

f(gn) =

−a if n < k,

a if n ≥ k.

Hence f(gk−1) = −a and f(gk+m−1) = a. Sincem is the order of the groupG, we have
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gk−1 = gk+m−1. Thus we must get a = 0 and so f ∈ J(G,H), a contradiction. Therefore,
this case will not occur.

(3) Assume that (β, γ) = (α, α).

(3.1) Suppose that (f(gn))n∈Z = (a, b,−a− b) for some a, b ∈ H and 3 - m. Then
{0,m, 2m} is a complete residue modulo 3. Therefore

{f(e), f(gm), f(g2m)} = {a, b,−a− b}.

Sincem is the order ofG, thus g2m = gm = e. Therefore, a = b = −a− b, which
gives a = b = 0 and, in turn, f ∈ J(G,H), a contradiction. Hence 3 | m.

(3.2) (f(gn))n∈Z = (a,−2a, a) for some a ∈ H . Then there exists k ∈ Z such that

f(gn) =

−2a if n = k,

a otherwise.

Hence f(gk) = −2a and f(gk+m) = a. Since m is the order of the group G, we
have gk = gk+m. Thus we must have a = 0 and so f ∈ J(G,H), a contradiction.
Therefore, this case does not occur.

(3.3) Suppose that (f(gn))n∈Z = (−2a, a, . . . , a), a periodic sequence of an odd period
p ≥ 5, for some a ∈ H and p - m. Thus there is k ∈ Z such that

f(gk) = −2a.

Since (f(gn))
n∈Z is periodic sequence of a period p with p - m, we must have

f(gk+m) = a. But m is the order of G, thus gk+m = gk. Therefore, −2a = a,
which gives a = 0, and, in turn, f ∈ J(G,H), a contradiction. Hence p | m.

By all of the above considerations, we are done.
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