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CHAPTER I

INTRODUCTION

Research on semirings has been studied in many ways such as prime and

semiprime ideals, quotient semirings, additive-regular semirings, etc. One of those

that we are interested in is prime ideals. It is natural that almost research of prime

ideals of semirings are extended from results of prime ideals of rings.

One knows that prime ideals play an important role in rings. Recall that a

proper ideal I of a commutative ring R with nonzero identity is said to be a

prime ideal if whenever a, b ∈ R with ab ∈ I, either a ∈ I or b ∈ I. In 2003, D.

D. Anderson and E. Smith [4] generalized the concept of prime ideals to weakly

prime ideals of a ring. They defined a weakly prime ideal I of a commutative

ring R with nonzero identity to be a proper ideal and if whenever a, b ∈ R with

ab ∈ I − {0}, either a ∈ I or b ∈ I. After that, in 2005, S. M. Bhatwadekar

and P. K. Sharma [11] generalized the concept of weakly prime ideals to almost

prime ideals of a ring. They defined an almost prime ideal I of a commutative

ring R with nonzero identity to be a proper ideal and if whenever a, b ∈ R with

ab ∈ I − I2, either a ∈ I or b ∈ I.

In 2008, D. D. Anderson and M. Batanieh [3] generalized the concept of prime

ideals, weakly prime ideals and almost prime ideals to ϕ-prime ideals of a commu-

tative ring R with nonzero identity where ϕ : I (R) → I (R)∪{∅} is a function in

which I (R) is the set of ideals in such ring. They defined a ϕ-prime ideal I of

a commutative ring R with nonzero identity to be a proper ideal and if whenever

a, b ∈ R with ab ∈ I − ϕ(I), either a ∈ I or b ∈ I.

We can see that the direction of this extension of prime ideals of commuta-

tive rings with nonzero identity starting with changing the condition that ab ∈ I

to ab ∈ I − {0} which is called weakly prime ideals. Later, the condition that
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ab ∈ I − {0} of weakly prime ideals was changed to ab ∈ I − I2 which is called

almost prime ideals. This is one of natural ways to generalize prime ideals by

subtracting some ideals from the ideal I. This led to the extension of prime ideals

by changing the condition that ab ∈ I to ab ∈ I − ϕ(I) where ϕ is a function from

I (R) into I (R) ∪ {∅} which can be defined in several ways, e.g., ϕ(J) = ∅ for

all ideals J , ϕ(J) = {0} for all ideals J , ϕ(J) = J2 for all ideals J , ϕ(J) = Jn

where n ∈ N for all ideals J , etc. This makes the definition of ϕ-prime ideals both

support old definitions and extend them. This is very interesting and becomes an

inspiration of doing this research.

Many concepts of rings are extended to those of semirings so are the concepts

of prime ideals and weakly prime ideals. J. S. Golan [17] introduced the concept of

prime ideals of a semiring in 1999. He defined a prime ideal I of a commutative

semiring R with nonzero identity to be a proper ideal and if whenever a, b ∈ R

with ab ∈ I, then a ∈ I or b ∈ I. After that, V. Gupta and J. N. Chaudhari [20]

introduced the notion of weakly prime ideals of a semiring in 2008. They defined

a weakly prime ideal I of a commutative semiring R with nonzero identity to be

a proper ideal and if whenever a, b ∈ R with ab ∈ I−{0}, then a ∈ I or b ∈ I. This

brought us to extend the concepts of prime ideals, weakly prime ideals of semirings

and ϕ-prime ideals of rings to ϕ-prime ideals of semirings. In the same fashion as

the idea of ϕ-prime ideals of rings, for a semiring R, we define ϕ to be a function

from I (R) into I (R) ∪ {∅} where I (R) is the set of ideals of the semiring R

and define a ϕ-prime ideal I of a commutative semiring R with nonzero identity

to be a proper ideal and if whenever a, b ∈ R with ab ∈ I − ϕ(I), either a ∈ I or

b ∈ I.

The inspiration of the next target of this research arose from the following. In

2007, A. Badawi [10] introduced the notion of 2-absorbing ideals of a ring. He

defined a 2-absorbing ideal I of a commutative ring R with nonzero identity

to be a proper ideal and if whenever a, b, c ∈ R with abc ∈ I, either ab ∈ I

or ac ∈ I or bc ∈ I. After that, in 2011, D. F. Anderson and A. Badawi [2]

generalized this to n-absorbing ideals (with integer n ≥ 2) of a ring. They defined
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an n-absorbing ideal I of a commutative ring R with nonzero identity to be

a proper ideal and if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I, then

x1x2 · · · xi−1xi+1 · · · xn+1 ∈ I for some i ∈ {1, 2, . . . , n + 1}. Next, in 2012, M.

Ebrahimpour and R. Nekooei [16] gave the definition of (n − 1, n)-ϕ-prime ideals

(with integer n ≥ 2) of a ring. They defined an (n − 1, n)-ϕ-prime ideal I of

a commutative ring R with nonzero identity to be a proper ideal and if whenever

x1, x2, . . . , xn ∈ R with x1x2 · · · xn ∈ I − ϕ(I), then x1x2 · · · xi−1xi+1 · · · xn ∈ I

for some i ∈ {1, 2, . . . , n}. Obviously, (n − 1, n)-ϕ-prime ideal is just a ϕ-(n − 1)-

absorbing ideal.

In our work, we also extend n-absorbing ideals and (n− 1, n)-ϕ-prime ideals of

a ring to n-absorbing ideals and ϕ-n-absorbing ideals of a semiring. We define an

n-absorbing ideal I of a commutative semiring R with nonzero identity to be

a proper ideal and if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I, then

x1x2 · · · xi−1xi+1 · · · xn+1 ∈ I for some i ∈ {1, 2, . . . , n + 1}. Besides, we define a

ϕ-n-absorbing ideal I of a commutative semiring R with nonzero identity to be

a proper ideal and if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I − ϕ(I),

then x1x2 · · · xi−1xi+1 · · · xn+1 ∈ I for some i ∈ {1, 2, . . . , n + 1}. Moreover, we

obtain that our first results of ϕ-prime ideals of semirings are the specific case of

the results of ϕ-n-absorbing ideals of semirings.

Afterwards, we would like to generalize the concept of ϕ-prime ideals in other

ways. We found that, in 2012, A. Y. Darani [15] generalized the idea of ϕ-prime

ideals to ϕ-primary ideals of a ring. He defined a ϕ-primary ideal I of a commu-

tative ring R with nonzero identity to be a propper ideal and if whenever a, b ∈ R

with ab ∈ I − ϕ(I), either a ∈ I or bn ∈ I for some positive integer n.

By the same idea as our first results, our interest is also to extend the concept

of ϕ-primary ideals of rings to ϕ-primary ideals of semirings. Primary ideals of a

semiring have been introduced and studied by S. E. Atani and M. S. Kohan in 2010

[9]. They defined a primary ideal I of a commutative semiring R with nonzero

identity to be a proper ideal and if whenever a, b ∈ R with ab ∈ I, then a ∈ I

or bn ∈ I for some positive integer n. Subsequently, in 2011, J. N. Chaudhari
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and B. R. Bonde [12] generalized the notion of primary ideals of semirings to

weakly primary ideals of semirings. They defined a weakly primary ideal I of a

commutative semiring R with nonzero identity to be a proper ideal and if whenever

a, b ∈ R with 0 ̸= ab ∈ I, then a ∈ I or bn ∈ I for some positive integer n.

In this dissertation, we also aim to extend the concepts of primary ideals, weakly

primary ideals of semirings and ϕ-primary ideals of rings to ϕ-primary ideals of

semirings. We define a ϕ-primary ideal I of a commutative semiring R with

nonzero identity to be a proper ideal and if whenever a, b ∈ R with ab ∈ I − ϕ(I),

either a ∈ I or bn ∈ I for some positive integer n. In addition, we obtain that the

concepts of ϕ-primary ideals and ϕ-n-absorbing ideals do not imply each other.

Finally, our last target is set according to the following idea. In 2015, S.

Chinwarakorn and S. Pianskool [14] defined a new type of ideals which is still

a generalization of primary ideals and n-absorbing ideals of a ring. They de-

fined a generalized n-absorbing ideal (simply Gn-absorbing ideal) I of a

commutative ring R with nonzero identity to be a proper ideal and if whenever

x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I, then (x1x2 · · · xi−1xi+1 · · · xn+1)
α ∈ I

for some positive integer α and for some i ∈ {1, 2, . . . , n+ 1}.

For the final part of this dissertation, we extend the idea of generalized n-

absorbing ideals of a ring to ϕ-generalized-n-absorbing ideals of a semiring. We

define a ϕ-generalized-n-absorbing ideal (simply ϕ-Gn-absorbing ideal) I

of a commutative semiring R with nonzero identity to be a proper ideal and if when-

ever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I − ϕ(I), then (x1x2 · · · xi−1xi+1 · · ·

xn+1)
α ∈ I for some positive integer α and for some i ∈ {1, 2, . . . , n+ 1}.

In this dissertation, we organize our work as follows. Next chapter contains

three sections. The first section introduces basic definitions, notation, examples,

elementary properties and some of our results in semirings. The second section

contains definitions of Q-ideals (partitioning ideals), quotient semirings, homo-

morphisms and isomorphisms; in addition, some of our results are given. The last

section discusses about semirings of fractions and we obtain some results which

are used in other chapters.
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In Chapter III, we define almost primary ideals, n-almost primary ideals, ω-

primary ideals and ϕ-primary ideals of semirings. Some results in this chapter are

analogous to the results given in [15].

In Chapter IV, we give the notion of n-absorbing ideals, weakly n-absorbing

ideals, almost n-absorbing ideals, m-almost n-absorbing ideals and ω-n-absorbing

ideals of semirings; in addition, we extend these to ϕ-n-absorbing ideals of semirings

and investigate them in the same fashion as the results in Chapter III. Moreover,

we obtain other results which are not analogous to the results in Chapter III. Be-

sides, we provide some forms of n-absorbing ideals which are not (n−1)-absorbing

ideals of the semiring Z+
0 .

In Chapter V, we introduce the concepts of generalized n-absorbing ideals,

weakly generalized n-absorbing ideals, almost generalized n-absorbing ideals, m-

almost generalized n-absorbing ideals and ω-generalized n-absorbing ideals of semir-

ings and extend these to ϕ-generalized-n-absorbing ideals of semirings. Almost

results of this chapter are investigated in the same manner as the results of Chap-

ter IV. Moreover, some forms of generalized n-absorbing ideals which are not n-

absorbing ideals of the semiring Z+
0 are obtained.

The contents of Chapter III, Chapter IV and Chapter V are divided into three

sections. The first sections are ϕ-primary ideals of semirings, ϕ-n-absorbing ideals

of semirings and ϕ-generalized-n-absorbing ideals of semirings, respectively. The

second sections of those three chapters concern with decomposable semirings. In

the last section, we focus our work on quotient semirings and semirings of fractions.

In the final chapter, Chapter VI, we summarize the main concept of our research

and give relationships among each chapter.



CHAPTER II

PRELIMINARIES

In this chapter, we provide some definitions, notations and results which will be

used for this dissertation. All contents of this dissertation are investigated in

three main types of semiring structures; namely, semirings, quotient semirings and

semirings of fractions, so we divide this chapter into three sections. The first

section is definitions and fundamental results in semirings. The second section

is fundamental results in quotient semirings and the last section is fundamental

results in semirings of fractions.

Throughout this work, let Z denote the set of integers, N the set of natural

numbers (positive integers), Z+
0 the set of nonnegative integers, Q+

0 the set of

nonnegative rational numbers, R+
0 the set of nonnegative real numbers and Zn =

{0̄, 1̄, 2̄, . . . , n− 1} where n ∈ N.

2.1 Definitions and Fundamental Results in Semirings

First of all, the definition of semirings along with some results based on [17] by J.

S. Golan are presented.

Definition 2.1.1. [17] A semiring R is defined as an algebraic system (R,+, ·)

on which the operations of addition + and multiplication · have been defined such

that the following conditions are satisfied:

(1) (R,+) is a commutative monoid with identity element 0, called the zero;

(2) (R, ·) is a semigroup (we write ab instead of a · b for all a, b ∈ R);

(3) the multiplication distributes over the addition; and

(4) r0 = 0 = 0r for all r ∈ R.
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Let R be a semiring. Then R is said to be commutative if ab = ba for all

a, b ∈ R. If 1 ∈ R and a1 = a = 1a for all a ∈ R, then 1 is called the identity of

the semiring R. If R contains an identity 1 ̸= 0, then R is called a semiring with

nonzero identity . Moreover, 1 ∈ R stands for the identity of the semiring R.

By the definition of semirings, it is easy to see that semirings are generaliza-

tions of rings. Therefore, every ring is a semiring. However, the converse of this

statement is not true. For example, Z+
0 under usual addition and usual multiplica-

tion is a semiring but is not a ring. Moreover, from now on, if we give examples of

semirings by omitting their binary operations, it means that their operations are

usual addition and usual multiplication.

Example 2.1.2. [17] (1) Z+
0 ,Q+

0 and R+
0 are commutative semirings with nonzero

identity which is the number 1.

(2) Z+
0 [t], the set of polynomials in t over the semiring Z+

0 , is a commutative

semiring with nonzero identity which is the constant polynomial 1 under usual

addition and usual multiplication of polynomials.

(3) Let B = {0, 1}. Then B forms a semiring under operations + and · given

as follows:

+ 0 1

0 0 1

1 1 1

and

· 0 1

0 0 0

1 0 1

Then B is a commutative semiring with nonzero identity which is the element 1.

In fact, this semiring B is called the Boolean semiring . Moreover, B[t], the set

of polynomials in t over the semiring B, is a commutative semiring with nonzero

identity which is the constant polynomial 1.

(4) Let R = {0, 1, u}. Then R forms a semiring under operations + and · given

as follows:



8

+ 0 1 u

0 0 1 u

1 1 1 u

u u u u

and

· 0 1 u

0 0 0 0

1 0 1 u

u 0 u u

Then R is a commutative semiring with nonzero identity which is the element 1.

(5) Let R =


a b

c d

∣∣∣∣∣ a, b, c, d ∈ Z+
0

. Then R is a noncommutative semir-

ing with nonzero identity

1 0

0 1

 under usual addition and usual multiplication

of matrices.

In this research, all considered semirings are assumed to be commutative semir-

ings with nonzero identity. Moreover, all referred rings in this dissertation are com-

mutative rings with nonzero identity. Thus we simply write “semiring”or “ring” in

stead of “commutative semiring with nonzero identity”or “commutative ring with

nonzero identity”, respectively.

Definition 2.1.3. [17] A nonempty subset I of a semiring R is called an ideal

of R if it satisfies the following conditions:

(1) if a, b ∈ I, then a+ b ∈ I; and

(2) if a ∈ I and r ∈ R, then ar ∈ I.

If a is an element in a semiring R, then aR = {ar | r ∈ R} is an ideal of R,

called a principal ideal. From the definition of ideals of semirings, if we consider

the semiring Z+
0 , then ideals of Z+

0 may not be in the form mZ+
0 where m ∈ Z+

0 .

Examples of ideals of Z+
0 aremZ+

0 for allm ∈ Z+
0 , Z+

0 −{1} and {0, 3}∪{5, 6, 7, . . .}.

Notation 2.1.4. [17] Let I and J be ideals of a semiring R and m a positive

integer. Let

I + J =
{
a+ b

∣∣ a ∈ I and b ∈ J
}
,

IJ =

{
n∑

i=1

aibi

∣∣∣ ai ∈ I and bi ∈ J for all i ∈ {1, 2, . . . , n}

}
and
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Im =

{
n∑

i=1

ai1ai2 · · · aim
∣∣∣n ∈ N and ai1, ai2, . . . , aim ∈ I for all i ∈ {1, 2, . . . , n}

}
.

Proposition 2.1.5. [17] Let I and J be ideals of a semiring R and m a positive

integer. Then the following statements hold.

(1) I + J is an ideal of R containing both I and J .

(2) IJ is an ideal of R contained in I and J .

(3) Im is an ideal of R contained in I; in addition, if n1, n2 ∈ N are such that

n1 ≥ n2, then In1 ⊆ In2.

Notation 2.1.6. [17] Let A be a nonempty subset of a semiring R. Let

⟨A⟩ =

{
n∑

i=1

airi

∣∣∣n ∈ N, ai ∈ A and ri ∈ R for all i ∈ {1, 2, . . . , n}

}
.

Proposition 2.1.7. [17] Let A be a nonempty subset of a semiring R. Then ⟨A⟩

is the smallest ideal of R containing A.

For a nonempty subset A of a semiring R, the ideal ⟨A⟩ is said to be the ideal

generated by A. If A = {a}, then ⟨A⟩ = ⟨a⟩ = aR, see [17].

Proposition 2.1.8. [17] If I and J are ideals of a semiring R, then I + J is the

unique minimal member of the family of all ideals of R containing both I and J

and I ∩ J is the unique maximal member of the family of all ideals of R contained

in I and J .

Definition 2.1.9. [17] An ideal I of a semiring R is called a k-ideal (subtractive

ideal) of R if whenever x, y ∈ R and x, x+ y ∈ I, then y ∈ I.

Certainly, k -ideals are ideals but the converse is not true. For example, the

ideal Z+
0 −{1} of the semiring Z+

0 is not a k -ideal because 2, 2+ 1 ∈ Z+
0 −{1} but

1 /∈ Z+
0 − {1}. Moreover, k-ideals play a very important role in this dissertation

because several of our main results need the property of k-ideals. In the following,

we provide examples of k-ideals as well as examples of ideals which are not k-ideals.
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Example 2.1.10. [17] (1) Consider the semiring Z+
0 and the ideal I = 2Z+

0 of Z+
0 .

To show that I is a k-ideal, let a, b ∈ Z+
0 be such that a, a + b ∈ I. Then a = 2n

and a + b = 2m for some n,m ∈ Z+
0 . Thus 2n + b = 2m. Next, we see 2n, b, 2m

as elements of Z, and hence we obtain that b = 2(m− n). Since b ∈ Z+
0 , we have

m− n ∈ Z+
0 . Then b ∈ 2Z+

0 = I. Therefore, I is a k-ideal of Z+
0 .

(2) mZ+
0 is a k-ideal of the semiring Z+

0 for any m ∈ Z+
0 .

(3) Consider the semiring R = {0, 1, u} given in Example 2.1.2 (4). Let I =

{0, u}. Then I is an ideal of R which is not a k-ideal because u, u+1 = u ∈ I but

1 /∈ I.

(4) Consider the semiring Z+
0 [t]. Let I be the ideal of Z+

0 [t] generated by t+1,

that is I = {(t+1)f(t) | f(t) ∈ Z+
0 [t]}. Then (t+1)3 ∈ I. Since (t+1)3t+(t3+1) =

(t+ 1)3 ∈ I and (t+ 1)3t ∈ I but t3 + 1 /∈ I, the ideal I is not a k-ideal.

By Proposition 2.1.8, we know that any sum of ideals is an ideal but this

statement is not true for k-ideals. For example, 2Z+
0 and 3Z+

0 are k-ideals of the

semiring Z+
0 but 2Z+

0 +3Z+
0 = Z+

0 −{1} is not a k-ideal. Moreover, Proposition 2.1.8

also shows that the intersection of ideals is an ideal and this statement holds for

k-ideals as we shown in the next result.

Proposition 2.1.11. Let R be a semiring. If I and J are k-ideals of R, then I∩J

is a k-ideal of R.

Proof. Assume that I and J are k-ideals of R. Then I ∩ J is an ideal of R. Let

a, b ∈ R be such that a, a + b ∈ I ∩ J . Since I is a k-ideal and a, a + b ∈ I, we

obtain b ∈ I. Similarly, b ∈ J . Hence b ∈ I ∩ J . Therefore, I ∩ J is a k-ideal

of R.

An element a of a semiring R is said to be multiplicatively regular if there

exists an element b of R satisfying aba = a. A semiring R is called a multiplica-

tively regular semiring if each element of R is multiplicatively regular, see [17].

From Proposition 2.1.11, it is suspected that if I and J are k-ideals of a semir-

ing R, then IJ is a k-ideal of R or not. In 1999, J. S. Golan shown that if R is

a multiplicatively regular semiring, then IJ = J ∩ J for all ideals I and J of R.
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Hence, we can conclude that if I and J are k-ideals of a multiplicatively regular

semiring R, then IJ is a k-ideal of R by Proposition 2.1.11.

In rings, we know that any union of ideals of rings need not be an ideal but if

a union of ideals is an ideal, then it must be equal to one of them. However, this

statement is not true in general if we consider in semirings.

Example 2.1.12. Consider the semiring Z+
0 . Let A = Z+

0 −{1, 2, 5} and B = 5Z+
0 .

Then A and B are ideals of Z+
0 such that A is not a k-ideal because 3, 3 + 1 ∈ A

but 1 /∈ A. Let I = A∪B = Z+
0 −{1, 2}. Hence I is an ideal of Z+

0 but I ̸= A and

I ̸= B.

In the next proposition, we show that, for semirings, if the union of k-ideals is

an ideal, then it is equal to one of them.

Proposition 2.1.13. Let R be a semiring and A,B k-ideals of R. If I = A ∪ B

is an ideal of R, then I = A or I = B (certainly, I must be a k-ideal of R).

Proof. Let I = A ∪ B be an ideal of R. Suppose that I ̸= A and I ̸= B. Then

B ̸⊆ A and A ̸⊆ B. Thus there exist a ∈ A−B and b ∈ B−A. Since I is an ideal,

a + b ∈ I = A ∪ B. Hence a + b ∈ A or a + b ∈ B. Without loss of generality,

suppose that a+b ∈ A. Then b ∈ A because A is a k-ideal. This is a contradiction.

Therefore, I = A or I = B and then I is a k-ideal of R.

Notation 2.1.14. [17] Let R be a semiring, I an ideal of R and a ∈ R. Let

(I : a) = {x ∈ R |xa ∈ I}.

Example 2.1.15. Consider the ideal 6Z+
0 of the semiring Z+

0 . Then (6Z+
0 : 2) =

{x ∈ Z+
0 | 2x ∈ 6Z+

0 } = 3Z+
0 .

Proposition 2.1.16. Let R be a semiring and a ∈ R. Then the following state-

ments hold.

(1) If I is an ideal of R, then (I : a) is an ideal of R and I ⊆ (I : a).

(2) If I is a k-ideal of R, then (I : a) is a k-ideal of R.
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(3) If I and J are ideals of R such that I ⊆ J , then (I : a) ⊆ (J : a).

(4) ⟨a⟩ ⊆ (⟨a⟩2 : a).

Proof. (1) Let I be an ideal of R. Then I is a nonempty subset of R. Let b ∈ I.

Then ba ∈ I because I is an ideal. Thus b ∈ (I : a), i.e., (I : a) is a nonempty subset

of R. In addition, it is obvious that I ⊆ (I : a). Next, let x, y ∈ (I : a) and r ∈ R.

Then xa ∈ I and ya ∈ I. Since I is an ideal, we obtain (x + y)a = xa + ya ∈ I

and rxa ∈ I. Then x + y ∈ (I : a) and rx ∈ (I : a). Therefore, (I : a) is an ideal

of R.

(2) Let I be a k-ideal of R. Then (I : a) is an ideal of R by (1). Next, let

x, y ∈ R be such that x, x+ y ∈ (I : a). Thus xa ∈ I and xa+ ya = (x+ y)a ∈ I.

Since I is a k-ideal and xa, xa+ ya ∈ I, it follows that ya ∈ I. Hence y ∈ (I : a).

Therefore, I is a k-ideal of R.

(3) Assume that I and J are ideals of R such that I ⊆ J . Let x ∈ (I : a).

Then xa ∈ I so that xa ∈ J . Hence x ∈ (J : a). Therefore, (I : a) ⊆ (J : a).

(4) Let x ∈ ⟨a⟩. Then x = ra for some r ∈ R. Hence xa = ra2, that is

xa ∈ ⟨a⟩2. Thus x ∈ (⟨a⟩2 : a). Therefore, ⟨a⟩ ⊆ (⟨a⟩2 : a).

The reverse inclusion in the statement (4) of Proposition 2.1.16 is not true as

shown in the following example.

Example 2.1.17. Consider the semiring R = {0, 1, u} given in Example 2.1.2 (4).

Since 1 ∈ R, we obtain ⟨u⟩2 = Ru2. Then ⟨u⟩2 = Ru2 = Ru = ⟨u⟩ = {0, u}. Since

1u = u ∈ {0, u} = ⟨u⟩2, we gain 1 ∈ (⟨u⟩2 : u). Hence (⟨u⟩2 : u) * ⟨u⟩ because

1 /∈ ⟨u⟩.

Definition 2.1.18. [17] Let R be a semiring. A proper ideal I of R is said to be

a prime ideal if whenever a, b ∈ R and ab ∈ I, then a ∈ I or b ∈ I.

There are many researchers interested in prime ideals of both rings and semir-

ings. Moreover, it is well-known that all ideals of the ring Z are in form mZ where

m ∈ Z and its prime ideals are {0} and ⟨p⟩ where p is a prime number. Since nZ+
0

where n ∈ Z+
0 are one type of ideals of the semiring Z+

0 , it is interesting to know
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all prime ideals of Z+
0 . This is done by V. Gupta and J. N. Chaudhari given in the

following example.

Example 2.1.19. [21] In the semiring Z+
0 , all the prime ideals of Z+

0 are {0},

⟨p⟩ = pZ+
0 for some prime number p and ⟨2, 3⟩ = Z+

0 − {1}.

As above example, of course, it is easy to find ideals of the semiring Z+
0 which

are not prime ideals. In the following, we provide an example of an ideal of other

semiring which is not a prime ideal.

Example 2.1.20. We know that the ideal I = Z+
0 − {1} of the semiring Z+

0 is a

prime ideal. However, if t is an indeterminate, then I[t] is an ideal of the semiring

Z+
0 [t] which is not a prime ideal because (1+2t+3t2)(3+t) = 3+7t+11t2+3t3 ∈ I[t]

but 1 + 2t+ 3t2, 3 + t /∈ I[t].

We know what prime ideals of the semiring Z+
0 are and Example 2.1.20 shows

that there is a prime ideal I of the semiring Z+
0 such that I[t] is not a prime ideal

of the semiring Z+
0 [t] where t is an indeterminate. This makes us wonder what

prime ideals of the semiring Z+
0 [t] are and the answer is provided as follows.

Proposition 2.1.21. [17] Let R be a semiring, I an ideal of R and t an inde-

terminate over R. Then I[t] is a prime ideal of R[t] if and only if I is a prime

k-ideal.

Example 2.1.22. Consider the semiring Z+
0 . Then 11Z+

0 is a prime k-ideal of Z+
0

from Example 2.1.10 (2) and Example 2.1.19. Hence 11Z+
0 [t] is a prime ideal of

the semiring Z+
0 [t] where t is an indeterminate.

Definition 2.1.23. [17] Let R be a semiring. The radical of an ideal I of R,

denoted by
√
I, is defined to be the set of all a ∈ R for which an ∈ I for some

positive integer n.

For an ideal I of a semiring R, one can show that
√
I is an ideal of R con-

taining I, see [17]. Moreover, if we consider the semiring Z+
0 , then, for examples,
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√
2Z+

0 = {r ∈ Z+
0 | rn ∈ 2Z+

0 for some n ∈ N} = 2Z+
0 ,√

Z+
0 − {1} = {r ∈ Z+

0 | rn ∈ Z+
0 − {1} for some n ∈ N} = Z+

0 − {1},√
9Z+

0 = {r ∈ Z+
0 | rn ∈ 9Z+

0 for some n ∈ N} = 3Z+
0 .

Proposition 2.1.24. Let R be a semiring and I an ideal of R. Then the following

statements hold.

(1)
√
I =

√√
I.

(2) For all n ∈ N,
√
I =

√
In.

Proof. (1) Since
√
I is an ideal of R, we obtain

√
I ⊆

√√
I. Thus it remains to

show that
√√

I ⊆
√
I. Let a ∈

√√
I. Thus am ∈

√
I for some m ∈ N. Then

(am)l ∈ I for some l ∈ N, i.e., aml ∈ I. Hence a ∈
√
I. Therefore,

√
I =

√√
I.

(2) Let n ∈ N. Since In ⊆ I, we have
√
In ⊆

√
I. To show that

√
I ⊆

√
In,

let x ∈
√
I. Then there exists m ∈ N such that xm ∈ I. Thus xmxm · · · xm︸ ︷︷ ︸

n copies

∈ In.

Hence xmn ∈ In, and so x ∈
√
In. Then

√
I ⊆

√
In. Therefore,

√
I =

√
In for all

n ∈ N.

The following proposition is a tool that helps us to find the radicals of the

principal ideals of the semiring Z+
0 more easily.

Proposition 2.1.25. Let m be a positive integer. The radical of the ideal mZ+
0 of

the semiring Z+
0 is rZ+

0 where r is the product of all distinct prime factors of m.

Proof. Letm = pα1
1 pα2

2 · · · pαn
n for some distinct prime numbers p1, p2, . . . , pn and for

some α1, α2, . . . , αn ∈ N. We would like to show that
√

mZ+
0 = p1p2 · · · pnZ+

0 . Let

a ∈
√
mZ+

0 . Then aα ∈ pα1
1 pα2

2 · · · pαn
n Z+

0 for some α ∈ N. Since pα1
1 pα2

2 · · · pαn
n Z+

0 ⊆

piZ+
0 for all i ∈ {1, 2, . . . , n}, we obtain aα ∈ piZ+

0 for all i ∈ {1, 2, . . . , n}. Thus a ∈

piZ+
0 for all i ∈ {1, 2, . . . , n} because piZ+

0 are prime ideals for all i ∈ {1, 2, . . . , n}.

Hence a ∈ p1Z+
0 ∩ p2Z+

0 ∩ · · · ∩ pnZ+
0 ⊆ p1Z+

0 p2Z+
0 · · · pnZ+

0 = p1p2 · · · pnZ+
0 . There-

fore,
√
mZ+

0 ⊆ p1p2 · · · pnZ+
0 .

Conversely, we show that p1p2 · · · pnZ+
0 ⊆

√
mZ+

0 . Let x ∈ p1p2 · · · pnZ+
0 . Thus
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x = p1p2 · · · pnl for some l ∈ Z+
0 . Let β = α1 + α2 + · · ·+ αn. Then β ∈ N and

xβ = (p1p2 · · · pnl)β

= (p1p2 · · · pnl)α1+α2+···+αn

= pα1
1 pα2

2 · · · pαn
n (pα2+α3+···+αn

1 pα1+α3+···+αn
2 · · · pα1+α2+···+αn−1

n lα1+α2+···+αn)

∈ pα1
1 pα2

2 · · · pαn
n Z+

0 .

Hence x ∈
√

pα1
1 pα2

2 · · · pαn
n Z+

0 =
√
mZ+

0 . Thus p1p2 · · · pnZ+
0 ⊆

√
mZ+

0 .

Therefore, we can conclude that
√
mZ+

0 = p1p2 · · · pnZ+
0 .

Example 2.1.26. Consider the semiring Z+
0 .

(1) The radical of the ideal 85Z+
0 = (5 · 17)Z+

0 is (5 · 17)Z+
0 = 85Z+

0 .

(2) The radical of the ideal 120Z+
0 = (23 · 3 · 5)Z+

0 is (2 · 3 · 5)Z+
0 = 30Z+

0 .

(3) The radical of the ideal 900Z+
0 = (22 · 32 · 52)Z+

0 is (2 · 3 · 5)Z+
0 = 30Z+

0 .

A semiring R is said to be decomposable if it can be written as a product

of semirings, i.e., R = R1 × R2 × · · · × Rm for some semirings R1, R2, . . . , Rm

where m ∈ N with m ≥ 2. Moreover, the ideals of a decomposable semiring

R1 ×R2 × · · · ×Rm are of the form I1 × I2 × · · · × Im where Ii is an ideal of Ri for

all i ∈ {1, 2, . . . ,m}.

The following proposition shows that the radical of an ideal I = I1×I2×· · ·×Im

of a decomposable semiring R = R1 × R2 × · · · × Rm is equal to a product of the

radicals of each component of I.

Proposition 2.1.27. Let R = R1×R2×· · ·×Rm be a decomposable semiring and

I1×I2×· · ·×Im an ideal of R. Then
√
I1 × I2 × · · · × Im =

√
I1×

√
I2×· · ·×

√
Im.

Proof. First, let (a1, a2, . . . , am) ∈
√
I1 × I2 × · · · × Im. Then there is n ∈ N such

that (a1, a2, . . . , am)
n ∈ I1×I2×· · ·×Im. That is (a

n
1 , a

n
2 , . . . , a

n
m) ∈ I1×I2×· · ·×Im.

Thus (a1, a2, . . . , am) ∈
√
I1 ×

√
I2 × · · · ×

√
Im. Hence

√
I1 × I2 × · · · × Im ⊆

√
I1 ×

√
I2 × · · · ×

√
Im.

Next, let (x1, x2, . . . , xm) ∈
√
I1×

√
I2×· · ·×

√
Im. There are n1, n2, . . . , nm ∈ N

such that (xn1
1 , xn2

2 , . . . , xnm
m ) ∈ I1 × I2 × · · · × Im. Thus (x1, x2, . . . , xm)

n1n2···nm =

(xn1n2···nm
1 , xn1n2···nm

2 , . . . , xn1n2···nm
m ) ∈ I1 × I2 × · · · × Im. Then (x1, x2, . . . , xm) ∈
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√
I1 × I2 × · · · × Im. Hence

√
I1 ×

√
I2 × · · · ×

√
Im ⊆

√
I1 × I2 × · · · × Im.

Therefore,
√
I1 × I2 × · · · × Im =

√
I1 ×

√
I2 × · · · ×

√
Im.

Next, we show a relationship between being k-ideals of ideals of decomposable

semirings and being k-ideals of each components of those ideals.

Proposition 2.1.28. Let R = R1 × R2 × · · · × Rm be a decomposable semiring

and I = I1 × I2 × · · · × Im an ideal of R. Then I is a k-ideal of R if and only if Ii

is a k-ideal of Ri for all i ∈ {1, 2, . . . ,m}.

Proof. Assume that I is a k-ideal of R. We prove that Ii is a k-ideal of Ri for all

i ∈ {1, 2, . . . ,m}. Without loss of generality, we show that I1 is a k-ideal of R1.

Let x, y ∈ R1 be such that x, x + y ∈ I1. Then (x, 0, . . . , 0), (x + y, 0, . . . , 0) ∈ I.

Hence (x, 0, . . . , 0), (x, 0, . . . , 0) + (y, 0, . . . , 0) ∈ I. Since I is a k-ideal, we obtain

(y, 0, . . . , 0) ∈ I. Thus y ∈ I1 and so I1 is a k-ideal of R1.

Conversely, assume that Ii is a k-ideal of Ri for all i ∈ {1, 2, . . . ,m}. We

show that I is a k-ideal of R. Let (x1, x2, . . . , xm), (y1, y2, . . . , ym) ∈ R be such

that (x1, x2, . . . , xm), (x1, x2, . . . , xm) + (y1, y2, . . . , ym) ∈ I. Then (x1 + y1, x2 +

y2, . . . , xm+ym) ∈ I. Since Ii is a k-ideal and xi, xi+yi ∈ Ii for all i ∈ {1, 2, . . . ,m},

we gain yi ∈ Ii for all i ∈ {1, 2, . . . ,m}. Hence (y1, y2, . . . , ym) ∈ I. Therefore, I is

a k-ideal of R.

2.2 Fundamental Results in Quotient Semirings

In this section, we provide some idea, elementary properties and some of our fun-

damental results which relate to partitioning ideals and quotient semirings.

There are some results concerning relationships between ϕ-prime ideals (ϕ-

primary ideals) of rings in general and ϕ-prime ideals (ϕ-primary ideals) of quo-

tient rings in [3] (in [15]) and then we extend those results to semirings. This made

us interested in quotient semirings. First of all, we would like to recall notion of

quotient rings.

Let R be a ring and I an ideal of R. Recall that R/I = {a + I | a ∈ R} and

⊕, ⊙ are defined on R/I as follows:
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(a+ I)⊕ (b+ I) = (a+ b) + I and (a+ I)⊙ (b+ I) = ab+ I

for all a, b ∈ R. Then (R/I,⊕,⊙) is a ring and is called the quotient ring .

Nevertheless, for an ideal I of a semiring R, the set {a + I | a ∈ R} need not

be a partition of R (unlike the set {a+ I | a ∈ R} where R is a ring) as shown in

the following example.

Example 2.2.1. Consider the semiring Z+
0 . Let I = {0, 3} ∪ {5, 6, 7, . . .}. Then I

is an ideal of Z+
0 . Thus

1 + I = {1, 4} ∪ {6, 7, 8, 9, . . .}

2 + I = {2, 5} ∪ {7, 8, 9, 10, . . .}.

Hence 1 + I ̸= 2+ I and (1 + I) ∩ (2 + I) ̸= ∅. Therefore, {a+ I | a ∈ Z+
0 } is not

a partition of Z+
0 .

We would like to search for some sets which are partitions of semirings playing

the same role as the set {a+I | a ∈ R} where I is an ideal of a ring R. Nevertheless,

there are some types of ideals that lead to some partitions of semirings.

Definition 2.2.2. [1] An ideal I of a semiring R is called a partitioning ideal

if there exists a subset Q of R such that:

(1) R = ∪{q + I | q ∈ Q},

(2) if q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) ̸= ∅ if and only if q1 = q2.

Therefore, if I is a partitioning ideal of a semiring R, then there exists a sub-

set, say Q, of R such that {q + I | q ∈ Q} is a partition of R. We also call I a

partitioning ideal via the set Q or simply call a Q-ideal.

Let Z+
n be the nonnegative integers modulo n ∈ N, that is, Z+

n = {0̄, 1̄, . . . , n− 1}

where ā = {a + kn | k ∈ Z+
0 } for any a ∈ Z+

0 . Then P. J. Allen showed in [1] that

Z+
n forms a semiring under addition and multiplication modulo n; in addition, Z+

n

is also a ring.
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Example 2.2.3. (1) Consider the semiring Z+
0 and its ideal I = 4Z+

0 . Let Q =

{0, 1, 2, 3}. Since

0 + I = {0, 4, 8, 12, . . .}, 1 + I = {1, 5, 9, 13, . . .},

2 + I = {2, 6, 10, 14, . . .}, 3 + I = {3, 7, 11, 15, . . .},

we obtain ∪{q+ I | q ∈ Q} = Z+
0 . Next, let q1, q2 ∈ Q be such that (q1+ I)∩ (q2+

I) ̸= ∅. From writing explicit elements of the sets 0 + I, 1 + I, 2 + I and 3 + I,

we can conclude that q1 = q2. Therefore, I is a Q-ideal of Z+
0 .

(2) Consider the semiring Z+
6 and its ideal I = {0̄, 2̄, 4̄}. Let Q1 = {0̄, 1̄}, Q2 =

{0̄, 3̄} and Q3 = {0̄, 5̄}. Since 0̄+I = {0̄, 2̄, 4̄} and 1̄+I = {1̄, 3̄, 5̄} = 3̄+I = 5̄+I,

we obtain ∪{q + I | q ∈ Q1} = ∪{q + I | q ∈ Q2} = ∪{q + I | q ∈ Q3} = Z+
6 . If

q1, q2 ∈ Q1 are distinct, then (q1 + I) ∩ (q2 + I) = ∅. Then I is a Q1-ideal of Z+
6 .

Similarly, I is also a Q2-ideal and a Q3-ideal of Z+
6 .

Example 2.2.3 (2) shows that it is possible to have several subsets Q of a

semiring R which make an ideal I of R be a partitioning ideal via those sets.

Example 2.2.4. [1] (1) Consider the semiring Z+
0 . Let n ∈ Z+

0 . If n ∈ Z+
0 − {0},

then nZ+
0 is a Q-ideal where Q = {0, 1, 2, . . . , n − 1}. If n = 0, then nZ+

0 is a

Q-ideal where Q = Z+
0 . Moreover, the ideal Z+

0 − {1} is not a partitioning ideal.

(2) Let R be a nonempty well-ordered set and define a + b = max{a, b} and

ab = min{a, b} for each a, b ∈ R. Then R together with the two defined operations

forms a semiring. If r ∈ R, then the set Ir = {x ∈ R | x ≤ r} is an ideal of R. It

is clear from the definition of addition on R that 0 + Ir = Ir and x+ Ir = {x} for

each x > r. Thus Ir is a Q-ideal where Q = {0} ∪ {x ∈ R |x > r}.

Proposition 2.2.5. [7] If I is a partitioning ideal of a semiring, then I is a k-ideal.

However, the converse of Proposition 2.2.5 is not true. For example, in the

semiring R = (Z+
0 , gcd, lcm), where gcd is the greatest common divisor and lcm

is the least common multiple, the ideal 2Z+
0 is a k-ideal but is not a partitioning

ideal, see [7].
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Let I be a Q-ideal of a semiring R and q1, q2 ∈ Q. By the statement (1) in

Definition 2.2.2, there are q3, q4 ∈ Q such that q1 + q2 + I ⊆ q3 + I and q1q2 +

I ⊆ q4 + I. The uniqueness of q3 and q4 is guaranteed by the statement (2)

of Definition 2.2.2. To see this, suppose that there exist q′3, q
′
4 ∈ Q such that

q1 + q2 + I ⊆ q′3 + I and q1q2 + I ⊆ q′4 + I. Thus (q3 + I) ∩ (q′3 + I) ̸= ∅ and

(q4 + I) ∩ (q′4 + I) ̸= ∅. Hence q3 = q′3 and q4 = q′4. The notion of the uniqueness

of q3 and q4 leads us to define binary operations on the set {q+ I | q ∈ Q} in order

to form a new semiring.

Let I be a partitioning ideal via the set Q of a semiring R and R/I = {q + I |

q ∈ Q}. Then R/I forms a semiring under the binary operations ⊕ and ⊙ defined

as follows:

(q1 + I)⊕ (q2 + I) = q3 + I and (q1 + I)⊙ (q2 + I) = q4 + I

where q3, q4 ∈ Q are the unique elements such that q1 + q2 + I ⊆ q3 + I and

q1q2+I ⊆ q4+I. This semiring R/I is called the quotient semiring of R by I,

see [6].

In addition, for a semiring R and a Q-ideal I of R, since R is a commutative

semiring with nonzero identity 1, then R/I is a commutative semiring with nonzero

identity q1 + I where q1 ∈ Q such that 1 + I ⊆ q1 + I; moreover, its zero element

is q0 + I where q0 ∈ Q such that 0 + I ⊆ q0 + I.

Example 2.2.6. Let R = Z+
0 and I = 6Z+

0 . Then I is a Q-ideal where Q =

{0, 1, 2, 3, 4, 5}. Hence R/I = {q + 6Z+
0 | q ∈ Q} = {6Z+

0 , 1 + 6Z+
0 , 2 + 6Z+

0 , 3 +

6Z+
0 , 4 + 6Z+

0 , 5 + 6Z+
0 } is a quotient semiring of R by I which is a commutative

semiring with nonzero identity 1 + 6Z+
0 . Next, we provide examples of addition ⊕

and multiplication ⊙ of some elements of R/I. We obtain (1+6Z+
0 )⊕ (2+6Z+

0 ) =

3 + 6Z+
0 and (1 + 6Z+

0 )⊙ (2 + 6Z+
0 ) = 2 + 6Z+

0 .

If R is a semiring and I is a partitioning ideal of R via the set Q, then we use

the notation R/IQ instead of the quotient semiring of R by I when we would like

to specific that I is a partitioning ideal of R via the set Q.

From Example 2.2.3 (2), there are three quotient semirings of R by I that are
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R/IQ1 = {q+ I | q ∈ Q1}, R/IQ2 = {q+ I | q ∈ Q2} and R/IQ3 = {q+ I | q ∈ Q3}.

It is suspected that they are different or not.

Definition 2.2.7. [1] A mapping φ from a semiring R into a semiring R′ is called

a homomorphism if φ(a+b) = φ(a)+φ(b) and φ(ab) = φ(a)φ(b) for all a, b ∈ R.

An isomorphism is a one-to-one and onto homomorphism. Semirings R and R′

is said to be isomorphic (denoted by R ∼= R′) if there exists an isomorphism

from R onto R′.

The following theorem shows that the quotient semirings of R by a partitioning

ideal of R via the set Q1 and via the set Q2 are isomorphic.

Theorem 2.2.8. [1] Let I be an ideal of a semiring R. If Q1 and Q2 are subsets

of R such that I is both a Q1-ideal and a Q2-ideal, then

({q + I}q∈Q1 ,⊕Q1 ,⊙Q1)
∼= ({q + I}q∈Q2 ,⊕Q2 ,⊙Q2).

One knows that if R is a ring and I is an ideal of R, then ideals of the quotient

ring R/I are in the form J/I where J is an ideal of R and J contains I; however, not

all ideals of a semiring R containing a partitioning ideal I can be formed ideals of

its quotient semiring R/I. J. N. Chuadhari and D. R. Bonde introduced, in 2014,

another kind of ideals of semirings that lead to ideals of its quotient semirings.

Moreover, these ideals are a generalization of k-ideals.

Definition 2.2.9. [13] Let I be an ideal of a semiring R. An ideal P of R con-

taining I is said to be a subtractive extension of I if whenever x, y ∈ R and

x ∈ I, x+ y ∈ P , then y ∈ P .

Note that, every k-ideal of a semiring R containing an ideal I of R is a sub-

tractive extension of I; nevertheless, the converse of this statement is not true as

shown in the following.

Example 2.2.10. Let I = 4Z+
0 ×{0} and P = 2Z+

0 ×(Z+
0 −{1}). Then I and P are

ideals of the semiring R = Z+
0 × Z+

0 such that I ⊆ P . Since (4, 2), (4, 2) + (2, 1) =

(6, 3) ∈ P but (2, 1) /∈ P , it follows that P is not a k-ideal of R. Let x ∈ I and
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x + y ∈ P . Thus x = (4n, 0) for some n ∈ Z+
0 and x + y = (2m, l) for some

m ∈ Z+
0 and for some l ∈ Z+

0 − {1}. Let y = (a, b) for some a, b ∈ Z+
0 . Then

(2m, l) = x+ y = (4n, 0) + (a, b) = (4n+ a, b). Hence 4n+ a = 2m and b = l, and

so we obtain a ∈ 2Z+
0 and b ∈ Z+

0 − {1}. That is y = (a, b) ∈ P . Therefore, P is a

subtractive extension of I.

Next, we provide a result showing that the radicals of k-ideals are subtractive

extension of those k-ideals.

Proposition 2.2.11. Let R be a semiring and I a k-ideal of R. Then
√
I is a

subtractive extension of I.

Proof. Let a, b ∈ R be such that a ∈ I and a + b ∈
√
I. Then there exists n ∈ N

such that (a+ b)n ∈ I. Since

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + · · ·+

(
n

n− 1

)
abn−1 + bn

and I is a k-ideal containing a, we obtain bn ∈ I. Hence b ∈
√
I. Therefore,

√
I is

a subtractive extension of I.

Theorem 2.2.12. [13] Let R be a semiring, I a Q-ideal of R and P an ideal of R

containing I. Then following statements are equivalent.

(1) P is a subtractive extension of I.

(2) I is a Q′-ideal of P where Q′ = Q ∩ P .

(3) P/I = {q + I : q ∈ Q ∩ P} is an ideal of a semiring R/I.

(4) P/I ⊆ R/I.

Theorem 2.2.13. [13] Let I be a Q-ideal of a semiring R. Then L is an ideal

of R/I if and only if there exists an ideal P of R such that P is a subtractive

extension of I and P/I = L.
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Theorem 2.2.14. [13] Let I be a Q-ideal of a semiring R. Then a subset L of

R/I is a k-ideal of R/I if and only if there exists a k-ideal P of R with I ⊆ P and

P/I = L.

Therefore, we can conclude that ideals (k-ideals) of a quotient semiring R/I

where I is a Q-ideal of a semiring R must be in the form P/I = {q+I : q ∈ Q∩P}

where P is a subtractive extension of I (a k-ideal containing I). Hence, from now

on, when we mention about any ideal P/I of a quotient semiring R/I where I is a

Q-ideal of a semiring R, we usually assume that P is a subtractive extension of I.

The rest of results in this section are needed in other chapters.

Lemma 2.2.15. Let R be a semiring, I a Q-ideal of R, P a subtractive extension

of I and a ∈ R. If a+ I ∈ P/I, then a ∈ P .

Proof. Let a+ I ∈ P/I = {q+ I : q ∈ Q∩P}. Then there exists a q ∈ Q∩P such

that a + I = q + I. Thus there is an x ∈ I such that a = q + x. Since I ⊆ P , we

obtain x ∈ P . Therefore, a = q + x ∈ P .

Proposition 2.2.16. Let R be a semiring, I a Q-ideal of R and P a subtractive

extension of I. Then (q1+I)(q2+I) · · · (qn+I) ∈ P/I if and only if q1q2 · · · qn ∈ P

for all q1, q2, . . . , qn ∈ Q.

Proof. Let q1, q2, . . . , qn ∈ Q. First, assume that (q1+ I)(q2+ I) · · · (qn+ I) ∈ P/I.

Then (q1 + I)(q2 + I) · · · (qn + I) = q + I for some unique element q ∈ Q ∩ P such

that q1q2 · · · qn + I ⊆ q + I. Since q ∈ P and I ⊆ P , we obtain q + I ⊆ P . Then

q1q2 · · · qn ∈ q + I ⊆ P . Therefore, q1q2 · · · qn + I ∈ P .

Conversely, assume that q1q2 · · · qn ∈ P . Suppose that (q1+I)(q2+I) · · · (qn+I)

= q + I for some unique element q ∈ Q such that q1q2 · · · qn + I ⊆ q + I. Hence

q1q2 · · · qn ∈ q + I and so there exists y ∈ I such that q1q2 · · · qn = q + y. Since

q1q2 · · · qn ∈ P , we must have q + y ∈ P . Thus we get q ∈ P because P is a

subtractive extension of I and y ∈ I, q + y ∈ P . Thus q ∈ Q ∩ P . Therefore,

(q1 + I)(q2 + I) · · · (qn + I) = q + I ∈ P/I.
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For an ideal I of a semiring R, the radicals of ideals which are subtractive

extensions of I are also subtractive extension of I.

Lemma 2.2.17. Let R be a semiring and I an ideal of R. If P is a subtractive

extension of I, then
√
P is also a subtractive extension of I

Proof. Assume that P is a subtractive extension of I. Then
√
P is an ideal and

I ⊆ P ⊆
√
P . Let x, y ∈ R be such that x ∈ I and x+y ∈

√
P . Then (x+y)n ∈ P

for some n ∈ N. That is

xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 + yn ∈ P.

We obtain xn+

(
n

1

)
xn−1y+

(
n

2

)
xn−2y2+ · · ·+

(
n

n− 1

)
xyn−1 ∈ I because x ∈ I.

Since P is a subtractive extension of I, it follows that yn ∈ P . Hence y ∈
√
P .

Therefore,
√
P is a subtractive extension of I.

Consequently, we can conclude that if I is an ideal of a semiring R and P is a

subtractive extension of I, then
√
P is also a subtractive extension of I. Hence,

if we assume further that I is a Q-ideal of a semiring R, then not only P/I is an

ideal of R/I but also
√
P/I. This raises to a question whether

√
P/I and

√
P/I

are identical.

Proposition 2.2.18. Let R be a semiring, I a Q-ideal of R and P a subtractive

extension of I. Then
√
P/I =

√
P/I.

Proof. First, let q + I ∈
√
P/I where q ∈ Q ∩

√
P . Then there is n ∈ N such that

qn ∈ P . By Proposition 2.2.16, we have (q + I)(q + I) · · · (q + I)︸ ︷︷ ︸
n copies

∈ P/I. That is

(q + I)n ∈ P/I and hence q + I ∈
√

P/I. Thus
√
P/I ⊆

√
P/I.

Next, let q + I ∈
√
P/I. Then there is an n ∈ N such that (q + I)n ∈ P/I.

That is (q + I)(q + I) · · · (q + I)︸ ︷︷ ︸
n copies

∈ P/I. By Proposition 2.2.16, we get qn ∈ P .

Hence q ∈
√
P ∩Q and so q + I ∈

√
P/I. Then

√
P/I ⊆

√
P/I.

Therefore,
√
P/I =

√
P/I.
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Throughout this dissertation, the symbol ϕ is assumed to be a function from

I (R) into I (R)∪{∅} where I (R) is the set of ideals of a semiring R. Moreover,

if R is a semiring and there is a function ϕ : I (R) → I (R) ∪ {∅}, then R is

called a semiring with ϕ.

For a semiring R and any two functions φ1, φ2 : I (R) → I (R) ∪ {∅}, we

define φ1 ≤ φ2 if φ1(I) ⊆ φ2(I) for each I ∈ I (R) in the same manner as given

in [3].

Let R be a semiring and I a Q-ideal of R. Moreover, let ϕ be a function

from I (R) into I (R)∪ {∅} such that ϕ(L) is a subtractive extension of I for all

ideal L of R where L is a subtractive extension of I. We define ϕI : I (R/I) →

I (R/I)∪{∅} by ϕI(J/I) = (ϕ(J))/I for each ideal J of R where J is a subtractive

extension of I.

We call R a semiring with ϕ satisfying the property (∗) if R is a semiring

with ϕ, I is a Q-ideal of R and ϕI is a function from I (R/I) into I (R/I) ∪ {∅}

where ϕ and ϕI are defined in the previous paragraph.

The following theorem is very important that we use it in proving the main

theorems of the last section in every chapter later.

Theorem 2.2.19. Let R be a semiring with ϕ satisfying the property (∗), I a Q-

ideal of R and P a subtractive extension of I. Then (q1 + I)(q2 + I) · · · (qn + I) ∈

P/I − ϕI(P/I) if and only if q1q2 · · · qn ∈ P − ϕ(P ) for all q1, q2, . . . , qn ∈ Q.

Proof. The proof is completed by Proposition 2.2.16.

From the Proposition 2.2.5 and the ideal 2Z+
0 of the semiring (Z+

0 , gcd, lcm),

we know that every Q-ideal is a k-ideal but not vice versa. Nevertheless, Q-ideals

and k-ideals are coincide in some semirings such as strongly Euclidean semirings

which were introduced by J. S. Golan in 1999 [17]. In strongly Euclidean semiring,

not only Q-ideals and k-ideals are coincide but also principal ideals. Moreover, in

every chapter after this, there are results relate to strongly Euclidean semirings.

Definition 2.2.20. [17] A semiring R is called a Euclidean semiring if there
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exists a function d : R−{0} → Z+
0 such that if a, b ∈ R with b ̸= 0 then there exist

unique elements q, r ∈ R such that a = bq + r where either r = 0 or d(r) < d(b).

Definition 2.2.21. [17] A semiring R is called a strongly Euclidean semiring

if there exists a function d : R− {0} → Z+
0 such that

(1) d(ab) ≥ d(a) for all a, b ∈ R− {0} and

(2) if a, b ∈ R with b ̸= 0 then there exist unique elements q, r ∈ R such that

a = bq + r where either r = 0 or d(r) < d(b).

By the definition of strongly Euclidean semirings, every strongly Euclidean

semiring is a Euclidean semiring.

Theorem 2.2.22. [18] Let R be a strongly Euclidean semiring. Then the following

statements are equivalent.

(1) I is a Q-ideal of R.

(2) I is a k-ideal of R.

(3) I is a principal ideal of R.

Example 2.2.23. [18] The semiring Z+
0 is a strongly Euclidean semiring. Hence

the ideals aZ+
0 where a ∈ Z+

0 are Q-ideals and k-ideals. Moreover, we can conclude

that the ideal Z+
0 −{1} = ⟨2, 3⟩ is not a Q-ideal and not a k-ideal because it is not

a principal ideal of Z+
0 . All prime k-ideals of the semiring Z+

0 are {0} or pZ+
0 for

some prime number p (see Example 2.1.19 and Example 2.2.4 (1)).

2.3 Fundamental Results in Semirings of Fractions

In 1999, J. S. Golan extended the concept of rings of fractions to the notion of

semirings of fractions by using a straightforward adaptation of the method used

for rings. In this section, we introduce the idea of semirings of fractions. Besides,

our fundamental results of semirings of fractions are given.
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Definition 2.3.1. [17] An element a of a semiring R is said to bemultiplicatively

cancellable if ba = ca only when b = c for all b, c ∈ R.

Let R be a semiring and S a set of all multiplicatively cancellable elements

of R. We would like to show that S is closed under multiplication. Let a, b ∈ S

and x, y ∈ R be such that xab = yab, then xa = ya because b ∈ S, and so x = y

since a ∈ S. Hence ab ∈ S. Therefore, we can conclude that S is closed under

multiplication. Moreover, it is easy to see that 1 ∈ S and 0 /∈ S.

Example 2.3.2. Consider the semiring Z+
0 . Then Z+

0 − {0} is the set of all

multiplicatively cancellable elements of Z+
0 .

Note that the set of all multiplicatively cancellable elements of semirings must

not be empty because all considered semirings containing the identity element and

it certainly contained in this set.

In 1999, J. S. Golan [17] gave the construction of semirings of fractions as

follows. Let R be a semiring and S the set of all multiplicatively cancellable

elements of R. Define a relation ∼ on R× S as follows:

(a, s) ∼ (b, t) if and only if at = bs

for all (a, s), (b, t) ∈ R× S. Then ∼ is an equivalence relation on R× S.

For (a, s) ∈ R × S, denote the equivalence class of ∼ containing (a, s) by
a

s
,

and denote the set of all equivalence classes of ∼ by RS. Then RS forms a semiring

under operations

a

s
+

b

t
=

at+ bs

st
and

(a
s

)(
b

t

)
=

ab

st

for all a, b ∈ R and s, t ∈ S. This new semiring RS is called the semiring of

fractions of R with respect to S.

Since R is a commutative semiring with nonzero identity 1, it follows that RS

is a commutative semiring with nonzero identity
1

1
; in addition, its zero element

is
0

1
, see [5].
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In 2008, R. E. Atani and S. E. Atani [5] investigated the ideal theory in semir-

ings. We are interested in many of their results and apply them in this dissertation.

Moreover, R. E. Atani and S. E. Atani [5] also examine ideals of quotient semir-

ings. Let I be an ideal of R. If a ∈ I and t ∈ RS, then t =
b

c
for some b ∈ R

and c ∈ S; in addition, at = a

(
b

c

)
=

ab

c
. The ideal of RS generated by I,

is defined to be the set

{
n∑

i=1

aiti

∣∣∣ ai ∈ I, ti ∈ RS and n ∈ N

}
, and is called the

extension of I to RS, denoted by IRS.

Definition 2.3.3. [5] Let R be a semiring, S the set of all multiplicatively can-

cellable elements of R and J an ideal of RS. Then the contraction of J in R,

denoted by J ∩R, is defined as

J ∩R =
{
r ∈ R

∣∣∣ r
1
∈ J

}
.

Proposition 2.3.4. [5] Let R be a semiring and S the set of all multiplicatively

cancellable elements of R. If J is an ideal of RS, then J ∩R is an ideal of R.

Proposition 2.3.5. [5] Let R be a semiring and S the set of all multiplicatively

cancellable elements of R. Assume that I, J and K are ideals of R and let L be an

ideal of the semiring RS. Then the following statements hold.

(1) x ∈ IRS if and only if it can be written in the form x =
a

c
for some a ∈ I

and c ∈ S.

(2) (L ∩R)RS = L.

(3) (I ∩ J)RS = IRS ∩ JRS.

Proposition 2.3.6. [5] Let R be a semiring, S the set of all multiplicatively can-

cellable elements of R and I a k-ideal of R. Then IRS is a k-ideal of the semir-

ing RS.

Finally, we provide some results regarding semirings of fractions which are

applied to the proof of some results in the last section of Chapter III, Chapter V

and Chapter VI.
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Proposition 2.3.7. Let R be a semiring, S the set of all multiplicatively can-

cellable elements of R and I an ideal of R. Then
√
IRS =

√
IRS.

Proof. First, let
x

t
∈
√
IRS. By Proposition 2.3.5, there exist a ∈

√
I and u ∈ S

such that
x

t
=

a

u
. Thus xu = at. Since a ∈

√
I, there is n ∈ N such that an ∈ I.

Hence xnun = (xu)n = (at)n = antn ∈ I. So we get
(x
t

)n

=
xnun

tnun
∈ IRS.

Therefore,
x

t
∈
√
IRS, and then

√
IRS ⊆

√
IRS.

Next, let
y

s
∈

√
IRS. Then there is an m ∈ N such that

(y
s

)m

∈ IRS. Thus

there exist b ∈ I and v ∈ S such that
ym

sm
=

b

v
. Hence ymv = bsm ∈ I, and

so (yv)m = ymvm ∈ I. Thus yv ∈
√
I, and then

y

s
=

yv

sv
∈

√
IRS. Therefore,

√
IRS ⊆

√
IRS.

Let R be a semiring with ϕ and S the set of all multiplicatively cancellable

elements of R. We define ϕS : I (RS) → I (RS)∪{∅} in the same manner as seen

in [3] by ϕS(J) = ϕ(J ∩R)RS if ϕ(J ∩R) ∈ I (R) and ϕS(J) = ∅ if ϕ(J ∩R) = ∅

for all J ∈ I (RS).

The following theorem as well as Theorem 2.2.19 are important results because

they are main tools for providing one of main results in other chapters.

Theorem 2.3.8. Let R be a semiring with ϕ, S the set of all multiplicatively

cancellable elements of R and I an ideal of R with ϕ(I)RS ⊆ ϕS(IRS). For
x1

s1
,
x2

s2
, . . . ,

xn

sn
∈ RS, if (

x1

s1
)(
x2

s2
) · · · (xn

sn
) ∈ IRS − ϕS(IRS), then x1x2 · · · xnv ∈

I − ϕ(I) for some v ∈ S.

Proof. Let
x1

s1
,
x2

s2
, . . . ,

xn

sn
∈ RS be such that (

x1

s1
)(
x2

s2
) · · · (xn

sn
) ∈ IRS − ϕS(IRS).

Since ϕ(I)RS ⊆ ϕS(IRS), we obtain
x1x2 · · · xn

s1s2 · · · sn
∈ IRS−ϕ(I)RS. Then there exist

a ∈ I and v ∈ S such that
x1x2 · · · xn

s1s2 · · · sn
=

a

v
. Thus x1x2 · · · xnv = as1s2 · · · sn ∈ I.

If x1x2 · · · xnv ∈ ϕ(I), then
x1x2 · · · xn

s1s2 · · · sn
=

x1x2 · · · xnv

s1s2 · · · snv
∈ ϕ(I)RS which is a contra-

diction. Therefore, x1x2 · · · xnv ∈ I − ϕ(I).



CHAPTER III

GENERALIZATIONS OF PRIMARY IDEALS OF

SEMIRINGS

In ring theory, there are many generalizations of prime ideals and one of those is

known as primary ideals. A proper ideal I of a ring R is said to be a primary ideal

if whenever a, b ∈ R with ab ∈ I, either a ∈ I or bn ∈ I for some positive integer n.

Hence prime ideals are primary ideals but not vice versa. For example, 9Z is a

primary ideal of the ring Z but it is not a prime ideal of Z because 3 · 3 = 9 ∈ 9Z

but 3 /∈ 9Z. In 2005, S. E. Atani and F. Farzalipour [8] generalized the concept of

primary ideals to weakly primary ideals of rings. They defined a weakly primary

ideal I of a ring R to be a proper ideal and if whenever a, b ∈ R with 0 ̸= ab ∈ I,

then a ∈ I or bn ∈ I for some positive integer n. Thus every primary ideal is a

weakly primary ideal. Nevertheless, weakly primary ideals need not be primary

ideals. For example, {0̄} is a weakly primary ideal of the ring Z10 and 2̄ · 5̄ ∈ {0̄}

but 2̄ /∈ {0̄} and 5̄n /∈ {0̄} for all n ∈ N. Hence {0̄} is not a primary ideal of the

ring Z10. Therefore, weakly primary ideals are generalizations of primary ideals.

Many types of ideals of rings are generalized to the similar types of ideals of

semirings. Primary ideals also play such that role. The notion of primary ideals of

a semiring have been introduced and studied by S. E. Atani and M. S. Kohan in

2010 [9]. They defined a primary ideal I of a semiring R to be a proper ideal and

if whenever a, b ∈ R with ab ∈ I, then a ∈ I or bn ∈ I for some positive integer n.

After that, in 2011, J. N. Chaudhari and B. R. Bonde [12] generalized the notion

of primary ideals of semirings to weakly primary ideals of semirings. They defined

a weakly primary ideal I of a semiring R to be a proper ideal and if whenever

a, b ∈ R with 0 ̸= ab ∈ I, then a ∈ I or bn ∈ I for some positive integer n.

A. Y. Darani [15] generalized the notion of primary ideals and weakly primary
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ideals to ϕ-primary ideals of rings in 2012. He defined a ϕ-primary ideal I of

a ring R to be a proper ideal and if whenever a, b ∈ R with ab ∈ I − ϕ(I), either

a ∈ I or bn ∈ I for some positive integer n.

At this point of view, we extend the concepts of primary ideals, weakly primary

ideals and ϕ-prime ideals of semirings and ϕ-primary ideals of rings to ϕ-primary

ideals of semirings. We divide this chapter into three sections that are ϕ-primary

ideals of semirings, ϕ-primary ideals in decomposable semirings and the last one

is ϕ-primary ideals in quotient semirings and semirings of fractions.

3.1 ϕ-Primary Ideals of Semirings

For the sake of completeness, we begin with a definition that is used throughout

this chapter. We would like to restate the definitions of primary ideals and weakly

primary ideals of semirings; in addition, we define almost primary ideals, n-almost

primary ideals and ω-primary ideals of semirings in the same manner as almost

primary ideals, n-almost primary ideals and ω-primary ideals of rings given in [15].

A tool that we use most frequently in this chapter is the radicals of ideals. So,

first of all, we would like to recall them. The radical of an ideal I of a semiring R

is denoted by
√
I and

√
I = {a ∈ R | an ∈ I for some n ∈ N} is an ideal of R.

Hence, for an ideal I of a semiring R containing a, we can write a ∈
√
I in stead

of the statement that an ∈ I for some positive integer n; moreover, we use a ∈
√
I

from now on.

Definition 3.1.1. Let R be a semiring.

A proper ideal I of R is said to be primary if whenever a, b ∈ R and ab ∈ I,

then a ∈ I or b ∈
√
I.

A proper ideal I of R is said to be weakly primary if whenever a, b ∈ R and

0 ̸= ab ∈ I, then a ∈ I or b ∈
√
I.

A proper ideal I of R is said to be almost primary if whenever a, b ∈ R and

ab ∈ I − I2, then a ∈ I or b ∈
√
I.

A proper ideal I of R is said to be n-almost primary (n ∈ N with n ≥ 2) if
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whenever a, b ∈ R and ab ∈ I − In, then a ∈ I or b ∈
√
I.

A proper ideal I of R is said to be ω-primary if whenever a, b ∈ R and

ab ∈ I − ∩∞
n=1I

n, then a ∈ I or b ∈
√
I.

Proposition 3.1.2. Let p be a prime and n a positive integer. Then pnZ+
0 is a

primary ideal of the semiring Z+
0 .

Proof. Let a, b ∈ Z+
0 be such that ab ∈ pnZ+

0 . Then ab = pnl for some l ∈ Z+
0 .

Case 1: Assume that pn is a factor of a. Thus a = pnh for some h ∈ Z+
0 . Hence

a ∈ pnZ+
0 .

Case 2: Assume that pn is not a factor of a. Then p is a factor of b. Thus b = pm

for some m ∈ Z+
0 . Hence bn = (pm)n = pnmn ∈ pnZ+

0 . Therefore, b ∈
√
pnZ+

0 .

From any cases, we can conclude that pnZ+
0 is a primary ideal of Z+

0 .

As above definitions, it is easy to see that the zero ideal is a weakly primary

ideal, an almost primary ideal, an n-almost primary ideal and an ω-primary ideal

because I−{0}, I−I2, I−In and I−∩∞
m=1I

m must be the empty set. Nevertheless,

the zero ideal may be a primary ideal of some semirings and probably not be a

primary ideal of other semirings as shown in the following example.

Example 3.1.3. (1) Consider the semiring R+
0 and its ideal {0}. Let a, b ∈ R+

0

such that ab ∈ {0}. Thus a = 0 or b = 0, and so a ∈ {0} or b ∈
√

{0}. Hence the

ideal {0} is a primary ideal of the semiring R+
0 .

(2) Consider the ideal {(0, 0)} of the semiring Q+
0 ×Q+

0 . Let a, b ∈ Q+
0 − {0}.

Since (a, 0) · (0, b) = (0, 0) ∈ {(0, 0)} but (a, 0) /∈ {(0, 0)} and (0, b)n = (0, bn) /∈

{(0, 0)} for all n ∈ N. That is (a, 0) /∈ {(0, 0)} and (0, b) /∈
√

{(0, 0)}. Therefore,

the ideal {(0, 0)} is not a primary ideal of the semiring Q+
0 ×Q+

0 .

From the definition of almost primary ideals and n-almost primary ideals, one

can see that 2-almost primary ideals are just almost primary ideals.

In the following, we would like to define the main character of this chapter that

is ϕ-primary ideals of semirings which is defined in the same fashion as ϕ-primary

ideals of rings given by A. Y. Darani in 2012.
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Definition 3.1.4. A proper ideal I of a semiring R with ϕ is said to be ϕ-primary

if whenever a, b ∈ R and ab ∈ I − ϕ(I), then a ∈ I or b ∈
√
I.

Next, we provide relationships between ϕ-primary ideals and primary ideals

(weakly primary ideals, ω-primary ideals, almost primary ideals, n-almost primary

ideals) in the same manner as found in [15].

Example 3.1.5. Let R be a semiring.

(1) Define ϕ∅ : I (R) → I (R) ∪ {∅} by ϕ∅(I) = ∅ for all I ∈ I (R). Then I

is a ϕ∅-primary ideal if and only if I is a primary ideal.

(2) Define ϕ0 : I (R) → I (R) ∪ {∅} by ϕ0(I) = {0} for all I ∈ I (R). Then I

is a ϕ0-primary ideal if and only if I is a weakly primary ideal.

(3) Define ϕ1 : I (R) → I (R) ∪ {∅} by ϕ1(I) = I for all I ∈ I (R), (i.e., ϕ1

is the identity function). Then I is a ϕ1-primary ideal if and only if I is a

proper ideal.

(4) Define ϕ2 : I (R) → I (R)∪ {∅} by ϕ2(I) = I2 for all I ∈ I (R). Then I is

a ϕ2-primary ideal if and only if I is an almost primary ideal.

(5) Define ϕn : I (R) → I (R) ∪ {∅} by ϕn(I) = In for all I ∈ I (R) (n ∈

N with n ≥ 2). Then I is a ϕn-primary ideal if and only if I is an n-almost

primary ideal.

(6) Define ϕω : I (R) → I (R) ∪ {∅} by ϕω(I) = ∩∞
n=1I

n for all I ∈ I (R).

Then I is a ϕω-primary ideal if and only if I is an ω-primary ideal.

From the definition of ϕ-primary ideals and Example 3.1.5, we can conclude

that ϕ-primary ideals of semirings are a generalization of primary ideals, weakly

primary ideals, almost primary ideals, n-almost primary ideals and ω-primary

ideals of semirings depending on the defined function ϕ. Moreover, from now on,

we use the notation ϕ∅, ϕ0, ϕ1, ϕ2, ϕn and ϕω instead of functions from I (R) into

I (R) ∪ {∅} which are defined as above.
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Recall that the notation φ1 ≤ φ2 means φ1(I) ⊆ φ2(I) for all I ∈ I (R)

where R is a semiring and φ1, φ2 : I (R) → I (R)∪{∅} are functions. In the next

proposition, we show that if φ1 ≤ φ2, then φ1-primary ideals imply φ2-primary

ideals.

Proposition 3.1.6. Let R be a semiring, I a proper ideal of R and φ1 ≤ φ2 where

φ1 and φ2 are functions from I (R) into I (R)∪ {∅}. If I is a φ1-primary ideal,

then I is a φ2-primary ideal.

Proof. Assume that I is a φ1-primary ideal. Let a, b ∈ R be such that ab ∈

I − φ2(I). Since φ1(I) ⊆ φ2(I), we obtain ab ∈ I − φ1(I). Then a ∈ I or b ∈
√
I

because I is a φ1-primary ideal. Therefore, I is a φ2-primary ideal.

Relationships between ϕ-primary ideals and primary ideals (weakly primary

ideals, almost primary ideals, n-almost primary ideals, ω-primary ideals) are al-

ready shown in Example 3.1.5. Furthermore, from Proposition 3.1.6, we obtain

relationships among primary ideals, weakly primary ideals, almost primary ideals,

n-almost primary ideals and ω-primary ideals.

Corollary 3.1.7. Let I be a proper ideal of a semiring and n ∈ N with n ≥ 2.

Consider the following statements:

(1) I is a primary ideal.

(2) I is a weakly primary ideal.

(3) I is an ω-primary ideal.

(4) I is an (n+ 1)-almost primary ideal.

(5) I is an n-almost primary ideal.

(6) I is an almost primary.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).
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Proof. The result follows from the fact that ∅ ⊆ {0} ⊆ ∩∞
n=1I

n ⊆ In+1 ⊆ In ⊆ I2

(ϕ∅ ≤ ϕ0 ≤ ϕω ≤ ϕn+1 ≤ ϕn ≤ ϕ2) where n ∈ N such that n ≥ 2.

As a result of Corollary 3.1.7, we obtain that ω-primary ideals imply n-almost

primary ideals for all positive integer n ≥ 2. Nevertheless, the converse might not

be true, although we still cannot find a counter-example. For a positive integer

n ≥ 2, we remark that if an ideal I of a semiring R is a counter-example of

this statement, if exists, it, at least, must not be an idempotent ideal and must

satisfy the condition that In ̸= ∩∞
m=1I

m because if I is an idempotent ideal or

In = ∩∞
m=1I

m, then I − In = I −∩∞
m=1I

m so that I is an n-almost primary ideal if

and only if I is an ω-primary ideal.

However, if a proper ideal I is assumed to be an n-almost primary ideal for all

n ∈ N with n ≥ 2, then I is an ω-primary ideal.

Proposition 3.1.8. Let R be a semiring and I a proper ideal of R. Then I is an

ω-primary ideal if and only if I is an n-almost primary ideal for all n ≥ 2.

Proof. Assume that I is an ω-primary ideal. The proof is clear by Corollary 3.1.7.

Conversely, assume that I is an n-almost primary for all n ≥ 2. Let a, b ∈ R

be such that ab ∈ I − ϕω(I) = I − ∩∞
n=1I

n. Then ab ∈ I − I l where l ∈ N − {1}.

Since I is an l-almost primary ideal, we obtain a ∈ I or b ∈
√
I. Therefore, I is

an ω-primary ideal.

We would like to point out here that many results in this chapter are concerned

with k-ideal I of a semiring R with ϕ such that ϕ(I) is also a k-ideal and some-

times including ϕ(I) ⊆ I. Thus, it is natural to verify whether this situation is

reasonable. Note that, for any k-ideal I of a semiring R with ϕ, if the function ϕ

is the identity map, then it is clear that ϕ(I) is a k-ideal. Moreover, there are

many functions ϕ which make ϕ(I) k-ideals. In the next example, we provide some

functions ϕ that not only make ϕ(I) a k-ideal but also make ϕ(I) a subset of I.

Example 3.1.9. Consider the semiring Z+
0 with ϕ2. Then 8Z+

0 is a k-ideal of Z+
0 .

Recall that ϕ2 is a function defined by ϕ2(I) = I2 for all I ∈ I (Z+
0 ). Thus
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ϕ2(8Z+
0 ) = (8Z+

0 )
2 = (8Z+

0 )(8Z+
0 ) = 64Z+

0 and hence ϕ2(8Z+
0 ) is a k-ideal. In

addition, ϕ2(8Z+
0 ) = 64Z+

0 ⊆ 8Z+
0 .

However, there is a semiring R with ϕ in which ϕ is a function such that ϕ(I)

is not a k-ideal of R and ϕ(I) ̸⊆ I while I is a k-ideal of R.

Example 3.1.10. Consider the semiring Z+
0 . Then 3Z+

0 is a k-ideal of Z+
0 . Let

J = 2Z+
0 . Define ϕ : I (Z+

0 ) → I (Z+
0 ) ∪ {∅} by ϕ(I) = I + J for all I ∈ I (Z+

0 ).

Then ϕ(3Z+
0 ) = 3Z+

0 +2Z+
0 = Z+

0 −{1}, and so ϕ(3Z+
0 ) is not a k-ideal of Z+

0 because

2, 2 + 1 ∈ Z+
0 − {1} but 1 /∈ Z+

0 − {1}. Furthermore, ϕ(3Z+
0 ) = Z+

0 − {1} ̸⊆ 3Z+
0 .

Since the empty set is a subset of any sets and primary ideals are just ϕ∅-

primary ideals, primary ideals imply ϕ-primary ideals for any ϕ but not vice versa

as shown in the following example.

Example 3.1.11. Consider the semiring Z+
0 and its ideal 30Z+

0 . Since 5 ·6 = 30 ∈

30Z+
0 but 5 /∈ 30Z+

0 and 6n /∈ 30Z+
0 for all n ∈ N, i.e., 5 /∈ 30Z+

0 and 6 /∈
√

30Z+
0 .

Thus 30Z+
0 is not a primary ideal of the semiring Z+

0 . Define ϕ : I (Z+
0 ) →

I (Z+
0 ) ∪ {∅} by ϕ(I) = I + 3Z+

0 for all I ∈ I (Z+
0 ). Hence 30Z+

0 − ϕ(30Z+
0 ) =

30Z+
0 −(30Z+

0 +3Z+
0 ) = ∅ because 30Z+

0 ⊆ 30Z+
0 +3Z+

0 . Thus 30Z+
0 is a ϕ-primary

ideal of the semiring Z+
0 . Therefore, 30Z+

0 is a ϕ-primary ideal but not a primary

ideal of the semiring Z+
0 .

In the next theorem, we provide conditions showing that k-ideals and I2 ̸⊆ ϕ(I)

are sufficient for a ϕ-primary ideal I to be a primary ideal.

Theorem 3.1.12. Let R be a semiring with ϕ and I a proper k-ideal of R such

that ϕ(I) is a k-ideal. If I is a ϕ-primary ideal with I2 ̸⊆ ϕ(I), then I is a primary

ideal.

Proof. Assume that I is a ϕ-primary ideal with I2 ̸⊆ ϕ(I). Let a, b ∈ R be such

that ab ∈ I. If ab ∈ I − ϕ(I), then a ∈ I or b ∈
√
I because I is ϕ-primary. So we

suppose that ab ∈ ϕ(I).

Case 1: Assume that aI ̸⊆ ϕ(I) or bI ̸⊆ ϕ(I). Without loss of generality, suppose
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that aI ̸⊆ ϕ(I). Then there exists x0 ∈ I such that ax0 /∈ ϕ(I). Since ab, x0 ∈ I, we

obtain ab+ax0 ∈ I. If ab+ax0 ∈ ϕ(I), then ax0 ∈ ϕ(I) because ϕ(I) is a k-ideal and

ab, ab+ ax0 ∈ ϕ(I) which is a contradiction. Thus a(b+x0) = ab+ ax0 ∈ I −ϕ(I).

Since I is ϕ-primary, a ∈ I or b + x0 ∈
√
I. Since

√
I is a subtractive extension

of I by Proposition 2.2.11, we obtain a ∈ I or b ∈
√
I.

Case 2: Assume that aI ⊆ ϕ(I) and bI ⊆ ϕ(I). Since I2 ̸⊆ ϕ(I), there exist

x1, x2 ∈ I such that x1x2 /∈ ϕ(I). Then (a + x2)(b + x2) = ab + ax2 + bx1 +

x1x2 ∈ I − ϕ(I) because ϕ(I) is a k-ideal. Since I is ϕ-primary, a + x1 ∈ I or

b+ x2 ∈
√
I. Since x1, x2 ∈ I, I is a k-ideal and

√
I is a subtractive extension of I

by Proposition 2.2.11, we obtain a ∈ I or b ∈
√
I.

Therefore, I is a primary ideal.

In the next example, we show that there is a proper k-ideal I of a semiring R

with ϕ such that ϕ(I) is a k-ideal and I is a ϕ-primary ideal with I2 ̸⊆ ϕ(I).

Example 3.1.13. Consider the semiring R = Z+
0 and the ideal I = pnZ+

0 where

p is a prime number and n ∈ N. Then I is a proper k-ideal of R. Define ϕ :

I (R) → I (R) ∪ {∅} by ϕ(J) = qZ+
0 for all J ∈ I (R) where q is a prime

number such that q ̸= p. Thus ϕ(I) = qZ+
0 is a k-ideal. By Proposition 3.1.2,

I is a primary ideal of R so is a ϕ-primary ideal of R. Moreover, we obtain

I2 = pnZ+
0 · pnZ+

0 = p2nZ+
0 ̸⊆ qZ+

0 = ϕ(I).

The converse of Theorem 3.1.12 is not true in general and we provide an ex-

ample to confirm this.

Example 3.1.14. Consider the semiring R = Z+
0 and the ideal I = 25Z+

0 . Then I

is a primary k-ideal of R and I2 = (25Z+
0 )

2 = 625Z+
0 . Next, we define ϕ : I (R) →

I (R) ∪ {∅} by ϕ(nZ+
0 ) = 5nZ+

0 for all n ∈ Z+
0 and ϕ(J) = J otherwise. Thus

ϕ(I) = ϕ(25Z+
0 ) = 125Z+

0 , and so ϕ(I) is a k-ideal of R. Hence I is a primary ideal

of R while I2 = 625Z+
0 ⊆ 125Z+

0 = ϕ(I). Therefore, the converse of Theorem 3.1.12

is not true as desired.

Next, the consequences of Theorem 3.1.12 are provided.
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Corollary 3.1.15. Let R be a semiring with ϕ and I a proper k-ideal of R such

that ϕ(I) is a k-ideal and ϕ(I) ⊆ I. If I is a ϕ-primary ideal but not a primary

ideal, then
√
I =

√
ϕ(I).

Proof. Assume that I is a ϕ-primary ideal but not a primary ideal. By Theorem

3.1.12, we obtain I2 ⊆ ϕ(I). Since
√
I =

√
I2 by Proposition 2.1.24 (2), we

have
√
I =

√
I2 ⊆

√
ϕ(I). Since ϕ(I) ⊆ I, we obtain

√
ϕ(I) ⊆

√
I. Therefore,

√
I =

√
ϕ(I).

The next example shows that the converse of Corollary 3.1.15 is not true.

Example 3.1.16. Consider the semring Z+
0 and its ideal I = p2Z+

0 where p is

a prime number. Then I is a primary k-ideal of Z+
0 . We define ϕ : I (R) →

I (R)∪ {∅} by ϕ(J) = pJ if J is a principal ideal of Z+
0 and ϕ(J) = J2 otherwise

for all J ∈ I (R). Thus ϕ(I) = ϕ(p2Z+
0 ) = p(p2Z+

0 ) = p3Z+
0 is a k-ideal of Z+

0 ; in

addition, ϕ(I) = p3Z+
0 ⊆ p2Z+

0 = I. Moreover,
√

ϕ(I) =
√

ϕ(p2Z+
0 ) =

√
p3Z+

0 =

pZ+
0 =

√
p2Z+

0 =
√
I by Proposition 2.1.25. Hence I is a primary ideal of Z+

0 and
√
I =

√
ϕ(I). Therefore, the converse of Corollary 3.1.15 is not true.

Corollary 3.1.17. Let R be a semiring with ϕ ≤ ϕ3 and I a proper k-ideal of R.

If I is a ϕ-primary ideal such that ϕ(I) is a k-ideal, then I is an ω-primary ideal.

Proof. Assume that I is a ϕ-primary ideal. If I is a primary ideal, then I is an

ω-primary by Corollary 3.1.7. So assume that I is not a primary ideal. Then

I2 ⊆ ϕ(I) by Theorem 3.1.12. Thus I2 ⊆ ϕ(I) ⊆ ϕ3(I) = I3 ⊆ I2, and hence

I2 = ϕ(I) = I3. Thus ϕ(I) = In for each n ≥ 2. Therefore, I is an n-almost

primary ideal for all n ≥ 2. By Proposition 3.1.8, we can conclude that I is an

ω-primary ideal.

The next example shows that the converse of Corollary 3.1.17 is not true.

Example 3.1.18. Consider the semiring R = Z+
0 × Z+

0 and its ideal I = {(0, 0)}.

Then I is a k-ideal. Since In = {(0, 0)}n = {(0, 0)} for all n ∈ N, it follows

that ∩∞
n=1I

n = {(0, 0)}. Then I − ∩∞
n=1I

n = {(0, 0)} − {(0, 0)} = ∅, so that
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I is an ω-primary ideal. We define ϕ∅ : I (R) → I (R) ∪ {∅} by ϕ∅(J) = ∅

for all J ∈ I (R). Then ϕ∅ ≤ ϕ3. Since (2, 0) · (0, 3) = (0, 0) ∈ I − ϕ∅(I)

but (2, 0) /∈ {(0, 0)} and (0, 3)n = (0, 3n) /∈ {(0, 0)} for all n ∈ N. That is

(2, 0) /∈ {(0, 0)} and (0, 3) /∈
√

{(0, 0)}. Therefore, the ideal {(0, 0)} is not a

ϕ∅-primary ideal of the semiring R.

Corollary 3.1.19. Let R be a semiring. If I is a weakly primary k-ideal but not

a primary ideal, then I2 = {0}.

Proof. Assume that I is a weakly primary k-ideal but not a primary ideal. Since

I is a weakly primary ideal, I is a ϕ0-primary ideal. Then I2 ⊆ ϕ0(I) = {0} by

Theorem 3.1.12. Hence I2 = {0}.

From Corollary 3.1.19, we realize that the square of a weakly primary k-ideal

which is not a primary ideal must be the zero ideal. However, since {0} is a primary

ideal of the semiring R+
0 by Example 3.1.3 (1) and {0}2 = {0}, it follows that the

converse of Corollary 3.1.19 is not true.

Before moving to the next theorem, we would like to recall some notation that

are used in the following theorem. For given ideals I of a semiring R containing a,

(I : a) = {x ∈ R |xa ∈ I} is an ideal of R containing I; moreover, if I is a k-

ideal, then (I : a) is a k-ideal. Furthermore, if I and J are ideals of a semiring R

containing a such that I ⊆ J , then (I : a) ⊆ (J : a).

Theorem 3.1.20. Let R be a semiring with ϕ and I a proper ideal of R and

ϕ(I) ⊆ I. The following statements are equivalent.

(1) I is a ϕ-primary ideal.

(2) For any x ∈ R−
√
I, (I : x) = I ∪ (ϕ(I) : x).

Proof. To show (1) ⇒ (2), suppose that I is a ϕ-primary ideal. Let x ∈ R −
√
I.

Since I ⊆ (I : x) and (ϕ(I) : x) ⊆ (I : x), we obtain I ∪ (ϕ(I) : x) ⊆ (I : x). Next,

let a ∈ (I : x). Then ax ∈ I. If ax /∈ ϕ(I), then a ∈ I because I is a ϕ-primary

ideal and x /∈
√
I. If ax ∈ ϕ(I), then a ∈ (ϕ(I) : x). Hence (I : x) ⊆ I ∪ (ϕ(I) : x).
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Therefore, (I : x) = I ∪ (ϕ(I) : x).

To show (2) ⇒ (1), assume that the statement (2) holds. Let a, b ∈ R be such

that ab ∈ I − ϕ(I). If b ∈
√
I, then we are done. Suppose that b /∈

√
I. Thus

(I : b) = I ∪ (ϕ(I) : b). Since ab ∈ I − ϕ(I), we acquire a ∈ (I : b) − (ϕ(I) : b).

Hence a ∈ I. Therefore, I is a ϕ-primary ideal.

Recall that a ϕ-primary ideal I of a semiring R is a proper ideal of R in which

ab ∈ I − ϕ(I) implies a ∈ I or b ∈
√
I for a, b ∈ R. We notice that this definition

is given via using the elements of those semirings. In the following result, the

definition via elements can be replaced by the definition via ideals.

Theorem 3.1.21. Let R be a semiring with ϕ and I a proper k-ideal of R such that

ϕ(I) and
√
I are k-ideals and ϕ(I) ⊆ I. The following statements are equivalent.

(1) I is a ϕ-primary ideal.

(2) For any x ∈ R−
√
I, (I : x) = I ∪ (ϕ(I) : x).

(3) For any x ∈ R−
√
I, (I : x) = I or (I : x) = (ϕ(I) : x).

(4) For ideals A and B of R, AB ⊆ I and AB ̸⊆ ϕ(I) imply A ⊆ I or B ⊆
√
I.

Proof. We obtain (1) ⇔ (2) by Theorem 3.1.20.

To show (2) ⇒ (3), suppose that the statement (2) holds. Let x ∈ R −
√
I.

Since I and ϕ(I) are k-ideals, (I : x) and (ϕ(I) : x) are k-ideals. Therefore,

(I : x) = I or (I : x) = (ϕ(I) : x) by Proposition 2.1.13.

To show (3) ⇒ (4), assume that the statement (3) holds. Let A and B be

ideals of R such that AB ⊆ I. Suppose that A ̸⊆ I and B ̸⊆
√
I. We would like

to show that AB ⊆ ϕ(I). Let b ∈ B.

Case 1: Assume that b /∈
√
I. Then (I : b) = I or (I : b) = (ϕ(I) : b) by

the statement (3). Since Ab ⊆ AB ⊆ I, we obtain A ⊆ (I : b). Since A ̸⊆ I

and A ⊆ (I : b), we obtain (I : b) ̸= I. Thus (I : b) = (ϕ(I) : b). Therefore,

A ⊆ (ϕ(I) : b), and hence Ab ⊆ ϕ(I).

Case 2: Assume that b ∈
√
I. Since B ̸⊆

√
I, there is b′ ∈ B −

√
I. Similarly
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to Case 1, we obtain Ab′ ⊆ ϕ(I). It is clear that b + b′ ∈ B. If b + b′ ∈
√
I,

then b′ ∈
√
I because b, b + b′ ∈

√
I and

√
I is a k-ideal. Thus b + b′ ∈ B −

√
I,

and hence A(b + b′) ⊆ ϕ(I) is obtained similarly to Case 1. Let a ∈ A. Then

ab′, ab+ ab′ ∈ ϕ(I). Since ϕ(I) is a k-ideal, ab ∈ ϕ(I). Hence Ab ⊆ ϕ(I).

Any cases show that Ab ⊆ ϕ(I). Therefore, AB ⊆ ϕ(I) because b is an arbitrary

element of B.

To show (4) ⇒ (1), assume that the statement (4) holds. Let x, y ∈ R be such

that xy ∈ I − ϕ(I). Then ⟨x⟩ ⟨y⟩ ⊆ I. If ⟨x⟩ ⟨y⟩ ⊆ ϕ(I), then xy ∈ ϕ(I) which

is a contradiction. Then ⟨x⟩ ⟨y⟩ ̸⊆ ϕ(I). By statement (4), we obtain ⟨x⟩ ⊆ I or

⟨y⟩ ⊆
√
I. Hence x ∈ I or y ∈

√
I. Therefore, I is ϕ-primary.

Next, we would like to recall from Chapter II that a strongly Euclidean semir-

ing R is a semiring which is consistent with conditions that for a function d :

R − {0} → Z+
0 such that d(ab) ≥ d(a) for all a, b ∈ R − {0} and if a, b ∈ R with

b ̸= 0 then there exist unique elements q, r ∈ R such that a = bq + r where either

r = 0 or d(r) < d(b).

The advantage of strongly Euclidean semirings that we use in this research is

that k- ideal and principal ideal are coincide which was studied by V. Gupta in

2006 [18].

Let R be a semiring. Then I is a ϕ2-primary ideal if and only if I is an almost

primary ideal where ϕ2 is given in Example 3.1.5 (4). In the next theorem, we

show that if ⟨a⟩ is a ϕ2-primary ideal, then ⟨a⟩ is a primary ideal for any element

a in a strongly Euclidean semiring under some conditions.

As a consequence of Proposition 2.1.16 and Example 2.1.17, we gain that

⟨a⟩ ⊆ (⟨a⟩2 : a) for any element a of a semiring but not vice versa. Thus a semiring

in Example 2.1.17 is an example of a semiring such that (⟨a⟩2 : a) ̸= ⟨a⟩; never-

theless, in the following theorem, we suppose the condition that (⟨a⟩2 : a) = ⟨a⟩

holds.

Theorem 3.1.22. Let R be a strongly Euclidean semiring and a ∈ R such that

(⟨a⟩2 : a) = ⟨a⟩ . Then ⟨a⟩ is a ϕ-primary ideal for some ϕ with ϕ ≤ ϕ2 if and only
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if ⟨a⟩ is a primary ideal.

Proof. If ⟨a⟩ is a primary ideal, then ⟨a⟩ is ϕ-primary for any ϕ. Next, we assume

that ⟨a⟩ is a ϕ-primary ideal for some ϕ with ϕ ≤ ϕ2. Then ⟨a⟩ is a ϕ2-primary

ideal by Proposition 3.1.6. We would like to show that ⟨a⟩ is a primary ideal. Let

x, y ∈ R be such that xy ∈ ⟨a⟩. If xy ∈ ⟨a⟩ − ⟨a⟩2, then x ∈ ⟨a⟩ or y ∈
√

⟨a⟩

because ⟨a⟩ is ϕ2-primary. So we assume that xy ∈ ⟨a⟩2. Since R is a strongly

Euclidean semiring, ⟨a⟩ and ⟨a2⟩ are k-ideals. Note that (x+a)y = xy+ay ∈ ⟨a⟩ .

Case 1: Assume that (x + a)y ∈ ⟨a⟩ − ⟨a⟩2. Since ⟨a⟩ is ϕ2-primary, x + a ∈ ⟨a⟩

or y ∈
√
⟨a⟩. Hence x ∈ ⟨a⟩ or y ∈

√
⟨a⟩ because ⟨a⟩ is a k-ideal and a ∈ ⟨a⟩.

Case 2: Assume that (x+ a)y ∈ ⟨a⟩2 = ⟨a2⟩. Since ⟨a2⟩ is a k-ideal and xy, xy +

ay ∈ ⟨a2⟩, we obtain ay ∈ ⟨a2⟩. Thus y ∈ (⟨a⟩2 : a) = ⟨a⟩.

Therefore, ⟨a⟩ is a primary k-ideal.

Next, we provide an example to confirm that there exists a strongly Euclidean

semiring R such that (⟨a⟩2 : a) = ⟨a⟩ for some a ∈ R.

Example 3.1.23. Let R = Z+
0 and a ∈ Z+

0 −{0}. Then R is a strongly Euclidean

semiring by Example 2.2.23. Since ⟨a⟩ ⊆ (⟨a⟩2 : a) by Proposition 2.1.16 (4), it

remains to show that (⟨a⟩2 : a) ⊆ ⟨a⟩. Let x ∈ (⟨a⟩2 : a). Then xa ∈ ⟨a⟩2 = a2Z+
0 .

Thus xa = a2r for some r ∈ Z+
0 . Because a ̸= 0, we obtain x = ar ∈ ⟨a⟩. Hence

(⟨a⟩2 : a) ⊆ ⟨a⟩. Therefore (⟨a⟩2 : a) = ⟨a⟩.

3.2 ϕ-Primary Ideals in Decomposable Semirings

In this section, we concern with relationships among primary ideals, weakly pri-

mary ideals and ϕ-primary ideals of decomposable semirings.

For a decomposable semiring R = R1×R2×· · ·×Rm (m ∈ N with m ≥ 2) such

that Ri is a semiring with φi for all i ∈ {1, 2, . . . ,m} and an ideal I1× I2×· · ·× Im

of R, it follows that φ1(I1)×φ2(I2)×· · ·×φm(Im) is an ideal of R or the empty set.

Hence there is a function ϕ : I (R) → I (R)∪{∅} such that ϕ(I1×I2×· · ·×Im) =

φ1(I1)× φ2(I2)× · · · × φm(Im) for all I1 × I2 × · · · × Im ∈ I (R); in addition, we

denote the function ϕ which is defined as the previous by ϕ = φ1 × φ2 × · · · × φm.
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The property of decomposable semirings frequently used in this section is

Proposition 2.1.27:
√
I1 × I2 × · · · × Im =

√
I1 ×

√
I2 × · · · ×

√
Im for any ideal

I1 × I2 × · · · × Im of a decomposable semiring.

Next, we would like to show that a nonzero weakly primary ideal I1×I2×· · ·×Im

of a decomposable semiring R1 ×R2 × · · · ×Rm which has at least one of Ii must

not be proper.

Proposition 3.2.1. Let R = R1 ×R2 × · · · ×Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im a nonzero proper ideal of R. If I is a weakly primary ideal,

then Ii = Ri for some i ∈ {1, 2, . . . ,m}.

Proof. Suppose that I is a weakly primary ideal of R. Since I is a nonzero ideal,

there is (a1, a2, . . . , am) ∈ I such that (a1, a2, . . . , am) ̸= (0, 0, . . . , 0). Thus

(0, 0, . . . , 0) ̸= (a1, a2, . . . , am) = (a1, a2, . . . , am−1, 1)(1, 1, . . . , 1, am) ∈ I.

Since I is a weakly primary ideal, (a1, a2, . . . , am−1, 1) ∈ I or (1, 1, . . . , 1, am) ∈
√
I.

Since
√
I =

√
I1 × I2 × · · · × Im =

√
I1 ×

√
I2 × · · · ×

√
Im, we obtain 1 ∈ Im or

1 ∈
√
Ii for some i ∈ {1, 2, . . . ,m − 1}, i.e., 1 ∈ Ij for some j ∈ {1, 2, . . . ,m}.

Therefore, Ij = Rj.

As a consequence of Corollary 3.1.7 and since {0̄} is a weakly primary ideal but

not a primary ideal of the semiring Z+
12, primary ideals imply weakly primary ideals

but not vice versa. Nevertheless, in a decomposable semiring, weakly primary

ideals and primary ideals are coincide provided they are nonzero proper k-ideals.

Proposition 3.2.2. Let R = R1 ×R2 × · · · ×Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im a nonzero proper k-ideal of R. Then I is a weakly primary

ideal if and only if I is a primary ideal.

Proof. Suppose that I is a weakly primary ideal of R. We obtain from Proposi-

tion 3.2.1 that Ii = Ri for some i ∈ {1, 2, . . . ,m}. Then I2 ̸= {0}. Thus I is a pri-

mary ideal by Corollary 3.1.19. The converse holds because of Corollary 3.1.7.
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From Proposition 3.2.2, nonzero weakly primary ideals and nonzero primary

ideals are coincide because I is a k-ideal and there is at least one of Ii which is

equal to Ri. In the following theorem, we assume these conditions hold while the

condition that “I is a nonzero ideal”can be omitted. We still obtain the same

result; in addition, we also show that any proper components of I are primary

ideals.

Theorem 3.2.3. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im a proper k-ideal of R which at least one Ii = Ri where

i ∈ {1, 2, . . . ,m}. Consider the following statements:

(1) I is a weakly primary ideal of R.

(2) I is a primary ideal of R.

(3) If Ij ̸= Rj where j ∈ {1, 2, . . . ,m}, then Ij is a primary ideal of Rj.

Then (1) and (2) are equivalent and (2) implies (3).

Proof. Obviously, (2) ⇒ (1).

To show (1) ⇒ (2), assume that I is a weakly primary ideal of R. Then

I2 ̸= {0} because Ii = Ri. Thus I is a primary ideal of R by Corollary 3.1.19.

To show (2) ⇒ (3), assume that I is a primary ideal of R. Furthermore, suppose

that Ij ̸= Rj for some j ∈ {1, 2, . . . ,m}. To show that Ij is a primary ideal of Rj,

let a, b ∈ Rj be such that ab ∈ Ij. Then

(0, . . . , 0, a, 0, . . . , 0)(0, . . . , 0, b, 0, . . . , 0) = (0, . . . , 0, ab, 0, . . . , 0) ∈ I.

Since I is a primary ideal, (0, . . . , 0, a, 0, . . . , 0) ∈ I or (0, . . . , 0, b, 0, . . . , 0) ∈
√
I =

√
I1 × · · · ×

√
Im. Hence a ∈ Ij or b ∈

√
Ij. Therefore, Ij is a primary ideal

of Rj.

From the previous theorem, one should suspect whether the statement (3)

implies the statement (1) and the statement (2) or not. The next example clarifies

this.
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Example 3.2.4. Let p, q be prime numbers (not necessary distinct) and n a posi-

tive integer. Consider the semiring R = Z+
0 ×Z+

0 ×Z+
0 and I = pnZ+

0 ×qmZ+
0 ×Z+

0 .

We know that pnZ+
0 and qmZ+

0 are primary ideals of the semiring Z+
0 . Since

(0, 0, 0) ̸= (pn, 1, 2)(1, qm, 3) = (pn, qm, 6) ∈ I but (pn, 1, 2) /∈ I and (1, qm, 3) /∈
√
I

because 1 /∈ qmZ+
0 and 1 /∈

√
pnZ+

0 . Therefore, I is not a weakly primary ideal

of R, and so I is not a primary ideal of R.

Example 3.2.4 confirms that the conditions in Theorem 3.2.3 are not enough to

make (3) imply (1) and (2). In the next result, we assume that there is exactly one

Ii such that Ii ̸= Ri where i ∈ {1, 2, . . . ,m} instead of the condition that Ii ̸= Ri

for some i ∈ {1, 2, . . . ,m} in Theorem 3.2.3 for making (3) imply (1) and (2).

Theorem 3.2.5. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one Ii ̸= Ri where

i ∈ {1, 2, . . . ,m}. The following statements are equivalent.

(1) I is a weakly primary ideal of R

(2) I is a primary ideal of R.

(3) Ii is a primary ideal of Ri.

Proof. We obtain (1) ⇔ (2) and (2) ⇒ (3) by Theorem 3.2.3.

To show (3) ⇒ (2), assume that Ii is a primary ideal of Ri. Let (a1, a2, . . . , am),

(b1, b2, . . . , bm) ∈ R be such that (a1b1, . . . , ai−1bi−1, aibi, ai+1bi+1, . . . , ambm) ∈ I.

Note that I = R1×· · ·×Ri−1×Ii×Ri+1×· · ·×Rm. Since aibi ∈ Ii and Ii is a primary

ideal of Ri, we have ai ∈ Ii or bi ∈
√
Ii. Hence (a1, . . . , ai−1, ai, ai+1, . . . , am) ∈

R1 × · · · × Ri−1 × Ii × Ri+1 × · · · × Rm = I or (b1 . . . , bi−1, bi, bi+1, . . . , bm) ∈

R1 × · · · × Ri−1 ×
√
Ii × Ri+1 × · · · × Rm =

√
I. Therefore, I is a primary ideal

of R.

Corollary 3.2.6. Let R = R1 ×R2 × · · · ×Rm be a decomposable semiring with ϕ

and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one Ii ̸= Ri where

i ∈ {1, 2, . . . ,m}. If Ii is a primary ideal of Ri, then I is a ϕ-primary ideal of R.
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Proof. The proof is completed by the fact that every primary ideal is a ϕ-primary

ideal.

The converse of Corollary 3.2.6 is not true and we provide an example to

support this.

Example 3.2.7. Consider the semiring R = Z+
0 × Z+

0 × · · · × Z+
0 and its ideal

I = 20Z+
0 ×Z+

0 ×· · ·×Z+
0 . Then I is a k-ideal of R. Define ϕ : I (R) → I (R)∪{∅}

by ϕ(J) =
√
J for all J ∈ I (R). Thus ϕ(I) =

√
I =

√
20Z+

0 × Z+
0 × · · · × Z+

0 =√
20Z+

0 ×
√

Z+
0 × · · · ×

√
Z+

0 = 10Z+
0 ×Z+

0 × · · · ×Z+
0 . Hence I − ϕ(I) = (20Z+

0 ×

Z+
0 × · · · × Z+

0 )− (10Z+
0 × Z+

0 × · · · × Z+
0 ) = ∅ because 20Z+

0 ⊆ 10Z+
0 . Therefore,

the ideal I is a ϕ-primary ideal of R. However, 20Z+
0 is not a primary ideal of Z+

0

because 4 · 5 = 20 ∈ 20Z+
0 but 4 /∈ 20Z+

0 and 5n /∈ 20Z+
0 for all n ∈ N.

Corollary 3.2.6 shows that if Ii is a primary k-ideal of a semiring Ri, then

the ideal I = R1 × · · · × Ri−1 × Ii × Ri+1 × · · · × Rm is a ϕ-primary ideal of

the decomposable semiring R1 × R2 × · · · × Rm with ϕ. Next, we take care of

the case that Ii is a weakly primary ideal of Ri under the same conditions as in

Corollary 3.2.6.

Theorem 3.2.8. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one Ii ̸= Ri where

i ∈ {1, 2, . . . ,m}. If Ii is a weakly primary ideal of Ri, then I is a ϕ-primary ideal

of R for all ϕω ≤ ϕ.

Proof. Without loss of generality, we assume that i = 1. Then I = I1×R2× · · ·×

Rm. Since I is a k-ideal, I1 is a k-ideal by Proposition 2.1.28. Assume further that

I1 is a weakly primary ideal of R1. We show that I = I1 × R2 × · · · × Rm is a

ϕ-primary ideal of all ϕω ≤ ϕ. If I1 is a primary ideal of R1, then I is a ϕω-primary

ideal of R by Corollary 3.2.6. So assume that I1 is not a primary ideal. Thus

I21 = {0} by Corollary 3.1.19. Consider the element (x1, x2, . . . , xm) ∈ ϕω(I) =

∩∞
n=1I

n ⊆ I2 = (I1×R2×· · ·×Rm)
2 ⊆ I21×R2×· · ·×Rm = {0}×R2×· · ·×Rm. Let

(a1, a2, . . . , am), (b1, b2, . . . , bm) ∈ R be such that (a1, a2, . . . , am)(b1, b2, . . . , bm) =
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(a1b1, a2b2, . . . , ambm) ∈ I−ϕω(I). Then a1b1 ∈ I1−{0}. Thus a1 ∈ I1 or b1 ∈
√
I1

because I1 is a weakly primary ideal of R1. Hence (a1, a2, . . . , am) ∈ I1×R2×· · ·×

Rm or (b1, b2, . . . , bm) ∈
√
I1 ×R2 × · · · ×Rm =

√
I1 ×R2 × · · · ×Rm =

√
I. Thus

I is a ϕω-primary ideal of R. Therefore, in any cases, I is a ϕω-primary ideal, and

hence I is a ϕ-primary ideal for all ϕω ≤ ϕ.

Finally, we obtain a generalization of ϕ-primary ideals of decomposable semir-

ings with two components.

Theorem 3.2.9. Let R = R1 × R2 be a decomposable semiring and ϕ = φ1 × φ2

where each φi : I (Ri) → I (Ri) ∪ {∅} is a function. Then the ϕ-primary ideals

of R have exactly one of the following three types:

(1) I1 × I2 where Ij ⊆ φj(Ij) for all j ∈ {1, 2} and at least one Ii is a proper

ideal of Ri for some i ∈ {1, 2}.

(2) I1 × R2 where I1 is a φ1-primary ideal of R1 which must be primary if

φ2(R2) ̸= R2.

(3) R1 × I2 where I2 is a φ2-primary ideal of R2 which must be primary if

φ1(R1) ̸= R1.

Proof. First, we would like to show that an ideal of R having one of these three

types is a ϕ-primary ideal.

(1) Assume that (1) holds. Then I1 × I2 − ϕ(I1 × I2) = ∅, and so I1 × I2 is a

ϕ-primary ideal.

(2) Assume that (2) holds. If I1 is primary, then I1 ×R2 is primary and hence

is ϕ-primary. So suppose that I1 is a φ1-primary ideal of R1 and φ2(R2) = R2.

Let (a, b), (c, d) ∈ R1 × R2 be such that (ac, bd) ∈ I1 × R2 − ϕ(I1 × R2) = (I1 −

φ1(I1))× R2. Since I1 is φ1-primary, a ∈ I1 or c ∈
√
I1. Hence (a, b) ∈ I1 × R2 or

(c, d) ∈
√
I1 ×R2 =

√
I1 ×R2. Therefore, I1 ×R2 is a ϕ-primary ideal of R.

The other case is similar to the previous one.

Next, we suppose that I1×I2 is a ϕ-primary ideal of R. Thus I1 or I2 is a proper

ideal of R. Without loss of generality, assume that I1 is a proper ideal. We would
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like to show that I1× I2 is exactly one of these three types. Assume a, b ∈ R1 with

ab ∈ I1−φ1(I1). Then (a, 0)(b, 0) = (ab, 0) ∈ I1× I2−ϕ(I1× I2). Since I1× I2 is a

ϕ-primary ideal of R, we obtain (a, 0) ∈ I1 × I2 or (b, 0) ∈
√
I1 × I2 =

√
I1 ×

√
I2.

Hence a ∈ I1 or b ∈
√
I1. Therefore, I1 is a φ1-primary ideal of R1. If Ij ⊆ φj(Ij)

for all j ∈ {1, 2}, then (1) is obtained. Suppose that I1 * φ1(I1) or I2 * φ2(I2).

Without loss of generality, assume that I1 * φ1(I1). Then there is x ∈ I1−φ1(I1).

Let y ∈ I2. Then (x, 1)(1, y) = (x, y) ∈ I1 × I2 − ϕ(I1 × I2). Since I1 × I2 is a

ϕ-primary ideal of R, we gain (x, 1) ∈ I1 × I2 or (1, y) ∈
√
I1 × I2 =

√
I1 ×

√
I2.

Hence I2 = R2 or I1 = R1. Since I1 is a proper ideal, I2 = R2. Now, we can

conclude that I1 × R2 is a ϕ-primary ideal of R where I1 is a φ1-primary ideal

of R1. It remains to show that I1 is actually primary if φ2(R2) ̸= R2. Assume

that φ2(R2) ̸= R2. Then 1 /∈ φ2(R2). Let a, b ∈ R1 be such that ab ∈ I1. Thus

(a, 1)(b, 1) = (ab, 1) ∈ I1 × R2 − ϕ(I1 × R2). Since I1 × R2 is a ϕ-primary ideal

of R, we have (a, 1) ∈ I1 ×R2 or (b, 1) ∈
√
I1 ×R2 =

√
I1 ×

√
I2. Hence a ∈ I1 or

b ∈
√
I1. Therefore, I1 is a primary ideal of R1.

3.3 ϕ-Primary Ideals in Quotient Semirings and in Semir-

ings of Fractions

In this final section, we are interested in ϕ-primary ideals of quotient semirings

and ϕ-primary ideals of semirings of fractions.

Recall that if R is a semiring, I is a Q-ideal of R and ϕ is a function from

I (R) into I (R) ∪ {∅} such that ϕ(L) is a subtractive extension of I for all

ideal L of R where L is a subtractive extension of I, then we define ϕI : I (R/I) →

I (R/I)∪{∅} by ϕI(J/I) = (ϕ(J))/I for each ideal J of R where J is a subtractive

extension of I.

Recall further that R is a semiring with ϕ satisfying the property (∗) if R is

a semiring with ϕ, I is a Q-ideal of R and ϕI is a function from I (R/I) into

I (R/I) ∪ {∅} where ϕ and ϕI are defined as in the above paragraph.

First of all, we would like to present relationships between ϕ-primary ideals of
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semirings and ϕ-primary ideals of quotient semirings.

Theorem 3.3.1. Let R be a semiring with ϕ satisfying the property (∗), I a Q-

ideal of R and P a subtractive extension of I. Then P is a ϕ-primary ideal of R

if and only if P/I is a ϕI-primary ideal of R/I.

Proof. Suppose that P is a ϕ-primary ideal of R. Then P/I is an ideal of R/I

because P is a subtractive extension of I. Next, we would like to show that P/I is

a ϕI-primary ideal of R/I. Let q1 + I, q2 + I ∈ R/I be such that (q1 + I)(q2 + I) ∈

P/I − ϕI(P/I). By Theorem 2.2.19, we have q1q2 ∈ P − ϕ(P ). Since P is ϕ-

primary, q1 ∈ P or q2 ∈
√
P . Hence q1 + I ∈ P/I or q2 + I ∈

√
P/I =

√
P/I by

Proposition 2.2.18. Therefore, P/I is a ϕI-primary k-ideal of R/I.

Conversely, assume that P/I is a ϕI-primary ideal of R/I. We show that P is

a ϕ-primary ideal of R. Let a, b ∈ R be such that ab ∈ P −ϕ(P ). Then there exist

q1, q2 ∈ Q such that a ∈ q1 + I and b ∈ q2 + I. Thus there are x, y ∈ I such that

a = q1+x and b = q2+y. Since q1q2+q1y+q2x+xy = (q1+x)(q2+y) = ab ∈ P−ϕ(P )

and P and ϕ(P ) are subtractive extensions of I, we acquire q1q2 ∈ P − ϕ(P ). By

Theorem 2.2.19, we obtain (q1 + I)(q2 + I) ∈ P/I − ϕI(P/I). Since P/I is ϕI-

primary, (q1 + I) ∈ P/I or (q2 + I) ∈
√

P/I =
√
P/I by Proposition 2.2.18. Thus

q1 ∈ P or q2 ∈
√
P by Lemma 2.2.15. Hence a = q1 + x ∈ P or b = q2 + y ∈

√
P .

Therefore, P is a ϕ-primary ideal of R.

Example 3.3.2. Consider the semiring Z+
0 . Let P = 4Z+

0 and I = 12Z+
0 .

Then P is a k-ideal of Z+
0 containing I and I is a Q-ideal of Z+

0 where Q =

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Thus P is a subtractive extension of I. Define

ϕ : I (Z+
0 ) → I (Z+

0 ) ∪ {∅} by ϕ(J) = 3Z+
0 if J is a subtractive extension of I

and ϕ(J) = J otherwise for all J ∈ I (Z+
0 ). Moreover, we define ϕI : I (R/I) →

I (R/I)∪{∅} by ϕI(J/I) = (3Z+
0 )/I for each ideal J of R where J is a subtractive

extension of I. Hence Z+
0 is a semiring with ϕ satisfying the property (∗). Since

P is a primary ideal by Proposition 3.1.2, P is a ϕ-primary ideal of R. Therefore,

P/I = 4Z+
0 /12Z+

0 is a ϕI-primary ideal of the quotient semiring Z+
0 /12Z+

0 .
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Corollary 3.3.3. Let R be a semiring with ϕ satisfying the property (∗), I a Q-

ideal of R. Then I is a ϕ-primary ideal of R if and only if the zero ideal of R/I is

a ϕI-primary ideal.

Proof. The result follows from the fact that I is a Q-ideal, then I is a k-ideal by

Proposition 2.2.5 and so I is a subtractive extension of itself.

Toward the end of this section, we deal with semirings of fractions. First, we

would like to recall that for an ideal I of a semiring R, the ideal generated by I

of RS where S is the set of all multiplicatively cancellable elements of R is the set

of all finite sums a1s1 + a2s2 + · · ·+ ansn where ai ∈ I and si ∈ RS and is denoted

by IRS; in addition, we know that x ∈ IRS if and only if it can be written in the

form x =
a

c
for some a ∈ I and c ∈ S. Recall further that for an ideal J of RS,

the contraction of J in R is J ∩R =
{
r ∈ R

∣∣∣ r
1
∈ J

}
which is an ideal of R.

Let R be a semiring with ϕ and I an ideal of R. Then either ϕ(I) is an ideal

of R or ϕ(I) = ∅. If ϕ(I) is an ideal, then ϕ(I)RS is the set of finite sums given

as above. Otherwise, ϕ(I)RS = ∅.

Proposition 3.3.4. Let R be a semiring with ϕ, S the set of all multiplica-

tively cancellable elements of R and I a ϕ-primary ideal of R with ϕ(I) ⊆ I and
√
I ∩ S = ∅. If IRS ̸= ϕ(I)RS, then IRS ∩R = I.

Proof. Assume that IRS ̸= ϕ(I)RS. Since I ⊆ IRS ∩ R, it remains to show that

IRS ∩ R ⊆ I. Let x ∈ IRS ∩ R. Then
x

1
∈ IRS. Thus there exist a ∈ I and

s ∈ S such that
x

1
=

a

s
. Hence xs = a ∈ I. If xs /∈ ϕ(I), then x ∈ I because I is

ϕ-primary and
√
I ∩ S = ∅. So assume that xs ∈ ϕ(I). Then

x

1
=

xs

1s
∈ ϕ(I)RS,

and hence x ∈ ϕ(I)RS ∩ R. Then IRS ∩ R ⊆ I or IRS ∩ R ⊆ ϕ(I)RS ∩ R.

Since I ⊆ IRS ∩ R and ϕ(I)RS ∩ R ⊆ IRS ∩ R, we obtain I = IRS ∩ R or

ϕ(I)RS ∩R = IRS ∩R. If ϕ(I)RS ∩R = IRS ∩R, then ϕ(I)RS = IRS and leads

to a contradiction. Therefore, IRS ∩R = I.

We end this chapter with relationships between ϕ-primary ideals of semirings

and ϕ-primary ideals of semirings of fractions. Recall that for a semiring R with ϕ,
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we define ϕS : I (RS) → I (RS)∪{∅} by ϕS(J) = ϕ(J∩R)RS if ϕ(J∩R) ∈ I (R)

and ϕS(J) = ∅ if ϕ(J ∩R) = ∅ for all J ∈ I (RS).

Theorem 3.3.5. Let R be a semiring with ϕ, S the set of all multiplicatively

cancellable elements of R and I an ideal of R with I ∩ S = ∅ and ϕ(I)RS ⊆

ϕS(IRS). If I is a ϕ-primary ideal of R, then IRS is a ϕS-primary ideal of RS.

Proof. Assume that I is a ϕ-primary ideal of R. Then IRS is a proper ideal

of RS since I ∩ S = ∅. Let
x

s
,
y

t
∈ RS be such that

xy

st
∈ IRS − ϕS(IRS). By

Theorem 2.3.8, there is v ∈ S such that xyv ∈ I − ϕ(I). Since I is ϕ-primary, it

follows that x ∈ I or yv ∈
√
I and so

x

s
∈ IRS or

y

t
=

yv

tv
∈

√
IRS =

√
IRS by

Proposition 2.3.7. Therefore, IRS is a ϕS-primary ideal of RS.



CHAPTER IV

GENERALIZATIONS OF n-ABSORBING IDEALS OF

SEMIRINGS

In rings, there are other ways to generalize prime ideals besides primary ideals,

for instance, 2-absorbing ideals. In 2007, A. Badawi [10] introduced the concept

of 2-absorbing ideals of a ring. He defined a 2-absorbing ideal I of a ring R

to be a proper ideal and if whenever a, b, c ∈ R with abc ∈ I, either ab ∈ I or

ac ∈ I or bc ∈ I. Thus every prime ideal is a 2-absorbing ideal. Nevertheless,

2-absorbing ideals need not be prime ideals. For example, 21Z is a 2-absorbing

ideal of the ring Z and 3 · 7 = 21 ∈ 21Z but 3 /∈ 21Z and 7 /∈ 21Z. Then 21Z

is not a prime ideal of the ring Z. Hence 2-absorbing ideals are generalizations of

prime ideals. In 2011, D. F. Anderson and A. Badawi [2] generalized the concept

of 2-absorbing ideals to n-absorbing ideals (with integer n ≥ 2) of a ring. They

defined an n-absorbing ideal I of a ring R to be a proper ideal and if whenever

x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I, then x1x2 · · · xi−1xi+1 · · · xn+1 ∈ I for

some i ∈ {1, 2, . . . , n + 1}. From the definition of n-absorbing ideals, it is easy to

see that if n, n′ are positive integers such that n ≤ n′ and I is an n-absorbing ideal,

then I is an n′-absorbing ideal. Moreover, if n = 1, then a 1-absorbing ideal is

just a prime ideal. However, n′-absorbing ideals need not be n-absorbing ideals for

any n, n′ ∈ N with n ≤ n′. For example, 42Z is a 3-absorbing ideal but is not a 2-

absorbing ideal because 2 ·3 ·7 = 42 ∈ 42Z but 2 ·3 = 6 /∈ 42Z, 2 ·7 = 14 /∈ 42Z and

3 · 7 = 21 /∈ 42Z. Therefore, n′-absorbing ideals are generalizations of n-absorbing

ideals for any n, n′ ∈ N with n ≤ n′.

After that, in 2012, M. Ebrahimpour and R. Nekooei [16] introduced the con-

cept of (n − 1, n)-ϕ-prime ideals (with integer n ≥ 2) of a ring. They defined an

(n − 1, n)-ϕ-prime ideal I of a ring R to be a proper ideal and if whenever
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x1, x2, . . . , xn ∈ R with x1x2 · · · xn ∈ I − ϕ(I), then x1x2 · · · xi−1xi+1 · · · xn ∈ I for

some i ∈ {1, 2, . . . , n}. Then an (n−1, n)-ϕ-prime ideal is just an (n−1)-absorbing

ideal if ϕ : I (R) → I (R) ∪ {∅} is a function with ϕ[I (R)] = {∅}.

In this chapter, we also extend n-absorbing ideals and (n−1, n)-ϕ-prime ideals

of a ring to n-absorbing ideals and ϕ-n-absorbing ideals of a semiring. Like Chap-

ter III, we divide this chapter into three sections. They are ϕ-n-absorbing ideals of

semirings, ϕ-n-absorbing ideals in decomposable semirings and the last section is

ϕ-n-absorbing ideals in quotient semirings and semirings of fractions. Some results

of this chapter are parallel to the results of Chapter III. Besides, we obtain rela-

tionships between ϕ-n-absorbing ideals and ϕ-n′-absorbing ideals for any n, n′ ∈ N

with n′ ̸= n.

4.1 ϕ-n-Absorbing Ideals of Semirings

We start this chapter with definitions that we use throughout this chapter like

Chapter III. In this chapter, we define n-absorbing ideals of semirings in the same

fashion as n-absorbing ideals of rings given in [2]; moreover, we define weakly

n-absorbing ideals, almost n-absorbing ideals, m-almost n-absorbing ideals and

ω-n-absorbing ideals of semirings in the same manner as weakly primary ideals,

almost primary ideals, m-almost primary ideals and ω-primary ideals of semirings

given in Chapter III.

Let n andm be positive integers. We denote x̂i,n+1 the element of R obtained by

eliminating xi from the product x1x2 · · · xn+1 where x1, x2, . . . , xn+1 ∈ R; in addi-

tion, we denote x̂{i1,...,im},n+1 the element of R obtained by eliminating xi1 , . . . , xim

from the product x1x2 · · · xn+1 where x1, x2, . . . , xn+1 ∈ R and {i1, . . . , im} ⊆

{1, 2, . . . , n + 1}. For an ideal I of a semiring R containing x1, x2, . . . , xn+1, from

now on we use the statement x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n + 1} in stead of

the statement that x1x2 · · · xi−1xi+1 · · · xn+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}.

Definition 4.1.1. Let R be a semiring and n a positive integer.

A proper ideal I ofR is said to be n-absorbing if whenever x1, x2, . . . , xn+1 ∈ R
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and x1x2 · · · xn+1 ∈ I, then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+ 1}. Moreover, we

denote 0-absorbing ideal the ideal R.

A proper ideal I of R is said to be weakly n-absorbing if whenever x1, x2, . . . ,

xn+1 ∈ R and x1x2 · · · xn+1 ∈ I−{0}, then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+1}.

A proper ideal I of R is said to be almost n-absorbing if whenever x1, x2, . . . ,

xn+1 ∈ R and x1x2 · · · xn+1 ∈ I − I2, then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+1}.

A proper ideal I of R is said to be m-almost n-absorbing (m ∈ N with m ≥

2) if whenever x1, x2, . . . , xn+1 ∈ R and x1x2 · · · xn+1 ∈ I − Im, then x̂i,n+1 ∈ I for

some i ∈ {1, 2, . . . , n+ 1}.

A proper ideal I of R is said to be ω-n-absorbing if whenever x1, x2, . . . , xn+1

∈ R and x1x2 · · · xn+1 ∈ I−∩∞
m=1I

m, then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+1}.

Because I − {0}, I − I2, I − In and I − ∩∞
i=1I

i are equal to the empty set if

I is the zero ideal, it follows that the zero ideal is a weakly n-absorbing ideal,

an almost n-absorbing ideal, an m-almost n-absorbing ideal and an ω-n-absorbing

ideal in the same manner as given in Chapter III. Moreover, in Chapter III, we

show that the zero ideal is not a primary ideal of some semirings while it may be

a primary ideal of other some semirings, so is an n-absorbing ideal.

Example 4.1.2. (1) Let n be a positive integer. Consider the semiring Q+
0 and

its ideal {0}. Let x1, x2, . . . , xn+1 ∈ Q+
0 be such that x1x2 · · · xn+1 ∈ {0}. Then

there exists xi = 0 for some i ∈ {1, 2, . . . , n + 1}. Hence x̂j,n+1 = 0 where j ∈

{1, 2, . . . , n+ 1} − {i}. Therefore, x̂j,n+1 ∈ {0} and so {0} is an n-absorbing ideal

of the semiring Q+
0 .

(2) Consider the semiring R+
0 × R+

0 × R+
0 and its ideal {(0, 0, 0)}. Let a, b, c ∈

R+
0 −{0}. Since (a, b, 0)(a, 0, c)(0, b, c) = (0, 0, 0) ∈ {(0, 0, 0)} but (a, b, 0)(a, 0, c) =

(a2, 0, 0) /∈ {(0, 0, 0)}, (a, b, 0)(0, b, c) = (0, b2, 0) /∈ {(0, 0, 0)} and (a, 0, c)(0, b, c) =

(0, 0, c2) /∈ {(0, 0, 0)}, it follows that {(0, 0, 0)} is not a 2-absorbing ideal of the

semiring R+
0 × R+

0 × R+
0 .

From the definition of n-absorbing ideals, one can see that 1-absorbing ideals

are just prime ideals; moreover, we call prime ideals instead of 1-absorbing ideals
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from now on.

From Definition 4.1.1, it is easy to see that if n and n′ are positive integers such

that n ≤ n′ and I is an n-absorbing ideal (a weakly n-absorbing ideal, an almost n-

absorbing ideal, an m-almost n-absorbing ideal and an ω-n-absorbing ideal), then

I is an n′-absorbing ideal (a weakly n′-absorbing ideal, an almost n′-absorbing

ideal, an m-almost n′-absorbing ideal and an ω-n′-absorbin g ideal). However, the

converse of this statement is not true in general and we provide an example to

confirm.

Example 4.1.3. Consider the semiring Z+
0 . The ideal 36Z+

0 is a 4-absorbing ideal

of the semiring Z+
0 but is not a 3-absorbing ideal of the semiring Z+

0 because

22 · 32 ∈ 36Z+
0 but 22 · 3 /∈ 36Z+

0 and 2 · 32 /∈ 36Z+
0 .

In the following proposition, we provide a result that helps us find an example

of n-absorbing ideals but not (n − 1)-absorbing ideals of the semiring Z+
0 more

easily.

Proposition 4.1.4. Let n be a positive integer with n ≥ 2 and p1, p2, . . . , pn prime

numbers (not necessary distinct). Then p1p2 · · · pnZ+
0 is an n-absorbing ideal but

not an (n− 1)-absorbing ideal of the semiring Z+
0 .

Proof. First, we would like to show that the ideal p1p2 · · · pnZ+
0 is an n-absorbing

ideal of the semiring Z+
0 . Let x1, x2, . . . , xn+1 ∈ Z+

0 be such that x1x2 · · · xn+1 ∈

p1p2 · · · pnZ+
0 . Then x1x2 · · · xn+1 = p1p2 · · · pna for some a ∈ Z+

0 . Since pi is

a prime number for all i ∈ {1, 2, . . . , n}, it follows that pi is a factor of xj for

some j ∈ {1, 2, . . . , n+1}. Hence there is {xi1 , xi2 , . . . , xin−m} ⊆ {x1, x2, . . . , xn+1}

for some m ∈ Z+
0 and for some distinct i1, i2, . . . , in−m ∈ {1, 2, . . . , n + 1} such

that xi1xi2 · · · xin−m = p1p2 · · · pnh for some h ∈ Z+
0 . By choosing all distinct

xin−m+1 , xin−m+2 , . . . , xin ∈ {x1, x2, . . . , xn+1} − {xi1 , xi2 , . . . , xin−m} and by multi-

plying, xi1xi2 · · · xin = (xi1xi2 · · · xin−m)(xin−m+1xin−m+2 · · · xin) = p1p2 · · · pnhl for

some l ∈ Z+
0 . Hence xi1xi2 · · · xin ∈ p1p2 · · · pnZ+

0 . Therefore, p1p2 · · · pnZ+
0 is an

n-absorbing ideal of the semiring Z+
0 .

Next, it remains to show that p1p2 · · · pnZ+
0 is not an (n − 1)-absorbing ideal
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of the semiring Z+
0 . Since p1, p2, . . . , pn ∈ Z+

0 but p̂i,n /∈ p1p2 · · · pnZ+
0 for all

i ∈ {1, 2, . . . , n}, the ideal p1p2 · · · pnZ+
0 is not an (n − 1)-absorbing ideal of the

semiring Z+
0 .

Example 4.1.5. Consider the semiring Z+
0 .

(1) Since 32 = 25, 48 = 24 · 31 and 72 = 23 · 32, it follows that 32Z+
0 , 48Z+

0 and

72Z+
0 are 5-absorbing ideals but are not 4-absorbing ideals of Z+

0 .

(2) Since 128 = 27, 288 = 25 · 32 and 1080 = 23 · 33 · 51, it follows that

128Z+
0 , 288Z+

0 and 1080Z+
0 are 7-absorbing ideals but are not 6-absorbing ideals

of Z+
0 .

In Chapter III, ϕ-primary ideal is the main character. Similarly, in this chapter

we have a main character as well, it is a ϕ-n-absorbing ideal.

Definition 4.1.6. Let R be a semiring with ϕ and n a positive integer. A proper

ideal I of R is said to be ϕ-n-absorbing if whenever x1, . . . , xn+1 ∈ R and

x1 · · · xn+1 ∈ I − ϕ(I), then x̂i,n+1 ∈ I for some i ∈ {1, . . . , n+ 1}.

From the definition of ϕ-n-absorbing ideals, we can define a function ϕ in several

ways and we also can substitute n by any positive integers. This is the difference

from the main characters of Chapter III which has exactly one thing that can

be changed that is function ϕ. So we are interested in relationships between ϕ-

n-absorbing ideals and ϕ-n′-absorbing ideals where n, n′ ∈ N with n ̸= n′. In

addition, we call ϕ-prime ideals in stead of ϕ-1-absorbing ideals in the same fashion

as we call prime ideals in stead of 1-absorbing ideals.

In the following result, we give the equivalent definition of ϕ-n-absorbing ideals.

Theorem 4.1.7. Let R be a semiring with ϕ, I a proper ideal of R and n, n′

positive integers with n′ > n. Then I is a ϕ-n-absorbing ideal if and only if

whenever x1x2 · · · xn′ ∈ I−ϕ(I) for any x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · · xin ∈ I

for some distinct i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Proof. First, let I be a ϕ-n-absorbing ideal ofR and x1, x2, . . . , xn′ ∈ R be such that

x1x2 · · · xn′ = x1x2 · · · xn(xn+1xn+2 · · · xn′) ∈ I − ϕ(I). Since I is a ϕ-n-absorbing
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ideal, x1x2 · · · xn ∈ I or x̂i,n(xn+1xn+2 · · · xn′) ∈ I for some i ∈ {1, 2, . . . , n}. If

x1x2 · · · xn ∈ I, then we are done. So we suppose that x̂i,nxn+1xn+2 · · · xn′ ∈ I.

Since x1x2 · · · xn′ /∈ ϕ(I), we obtain x̂i,nxn+1xn+2 · · · xn′ = x̂i,nxn+1(xn+2 · · · xn′) ∈

I−ϕ(I). Thus x̂i,nxn+1 ∈ I or x̂{i,j},n+1(xn+2 · · · xn′) ∈ I for some j ∈ {1, 2, . . . , n+

1} − {i} because I is a ϕ-n-absorbing ideal. If x̂i,nxn+1 ∈ I, then we are done.

If not, we continue this process, and hence we obtain xi1xi2 · · · xin ∈ I for some

distinct i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Conversely, the proof is clear by choosing n′ = n+ 1.

Corollary 4.1.8. Let R be a semiring, I a proper ideal of R and n, n′ positive

integers with n′ > n. Then I is an n-absorbing ideal if and only if whenever

x1x2 · · · xn′ ∈ I for x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · · xin ∈ I for some distinct

i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Proof. The proof is completed by the fact that an n-absorbing ideal is just a ϕ∅-

n-absorbing ideal.

We know that n-absorbing ideals imply n′-absorbing ideals for any n, n′ ∈ N

with n ≤ n′; moreover, this statement is also true for ϕ-n-absorbing ideals as shown

in the next result.

Proposition 4.1.9. Let R be a semiring with ϕ, I a proper ideal of R and n

a positive integer. If I is a ϕ-n-absorbing ideal, then I is a ϕ-n′-absorbing ideal

for all n′ ∈ N with n′ ≥ n.

Proof. Assume that I is a ϕ-n-absorbing ideal of R. Let n′ ∈ N be such that

n′ ≥ n. Note that, if n′ = n, then there is nothing to do. So we assume that

n′ > n. Let x1, x2, . . . , xn′+1 ∈ R be such that x1x2 · · · xn′+1 ∈ I − ϕ(I). We

obtain from Theorem 4.1.7 that xi1xi2 · · · xin ∈ I for some distinct i1, i2, . . . , in ∈

{1, 2, . . . , n′ + 1}. By choosing all distinct

in+1, in+2, . . . , in′ ∈ {1, 2, . . . , n′ + 1} − {i1, i2, . . . , in}



57

and by multiplying, xi1xi2 · · ·xin′ = (xi1xi2 · · · xin)
(
xin+1xin+2 · · · xn′

)
∈ I. Hence

I is a ϕ-n′-absorbing ideal of R. Therefore, I is a ϕ-n′-absorbing ideal for all

n′ ≥ n.

The converse of Proposition 4.1.9 is not true in the same fashion as n′-absorbing

ideals do not imply n-absorbing ideals where n′, n ∈ N with n′ ≥ n.

Example 4.1.10. Consider the semiring Z+
0 with ϕ2 and its ideal 24Z+

0 . Recall

that ϕ2 is the function defined by ϕ2(I) = I2 for all I ∈ I (Z+
0 ). Since 24 = 23 · 31,

it follows that 24Z+
0 is a 4-absorbing ideal of Z+

0 by Proposition 4.1.4. Hence

24Z+
0 is a ϕ2-4-absorbing ideal of Z+

0 . Since 2 · 3 · 4 = 24 ∈ 24Z+
0 − ϕ(24Z+

0 ) =

24Z+
0 − (24Z+

0 )
2 = 24Z+

0 − 576Z+
0 but 2 · 3 = 6 /∈ 24Z+

0 , 2 · 4 = 8 /∈ 24Z+
0 and

3 · 4 = 12 /∈ 24Z+
0 . Therefore, 24Z+

0 is not a ϕ2-2-absorbing ideal of Z+
0 .

Corollary 4.1.11. Let R be a semiring with ϕ. Then every ϕ-prime ideal of R is

a ϕ-n-absorbing ideal of R for all n ∈ N.

Recall that the radical of an ideal I of a semiring R is denoted by
√
I and

√
I = {a ∈ R | an ∈ I for some n ∈ N} is an ideal of R.

Lemma 4.1.12. Let R be a semiring with ϕ, n a positive integer and I a proper

ideal of R with ϕ(
√
I) =

√
(ϕ(I)). If I is a ϕ-n-absorbing ideal, then xn ∈ I−ϕ(I)

for all x ∈
√
I − ϕ(

√
I).

Proof. Assume that I is a ϕ-n-absorbing ideal of R. Let x ∈
√
I − ϕ(

√
I). Then

x ∈
√
I−

√
ϕ(I) because ϕ(

√
I) =

√
(ϕ(I)). Since x /∈

√
ϕ(I), we obtain xm /∈ ϕ(I)

for all positive integer m. Since x ∈
√
I, we acquire xl ∈ I for some l ∈ N. Then

xl ∈ I − ϕ(I). If l ≤ n, then xn ∈ I − ϕ(I). Suppose that l > n. Thus xn ∈ I by

Theorem 4.1.7. Therefore, xn ∈ I − ϕ(I).

In the following example, we show that there is a ϕ-n-absorbing ideal I of a

semiring with ϕ such that ϕ(
√
I) =

√
ϕ(I); in addition, we also provide an example

of ϕ-n-absorbing ideal of R such that
√
ϕ(I) ̸= ϕ(

√
I).
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Example 4.1.13. Consider the semiring Z+
0 and its ideals 125Z+

0 and 45Z+
0 . Define

ϕ : I (Z+
0 ) → I (Z+

0 ) ∪ {∅} by ϕ(I) = 3I for all I ∈ I (Z+
0 ). Note that 125Z+

0

and 45Z+
0 are ϕ-3-absorbing ideals of the semiring Z+

0 because 125 = 53 and 45 =

32 · 5. Since
√

ϕ(125Z+
0 ) =

√
3(125Z+

0 ) =
√
375Z+

0 =
√

3 · 53Z+
0 = 15Z+

0 and

ϕ(
√

125Z+
0 ) = ϕ(5Z+

0 ) = 3(5Z+
0 ) = 15Z+

0 , we obtain
√
ϕ(125Z+

0 ) = ϕ(
√
125Z+

0 ).

Next, we consider the ideal 45Z+
0 . Because

√
ϕ(45Z+

0 ) =
√
3(45Z+

0 ) =
√
135Z+

0 =√
33 · 5Z+

0 = 15Z+
0 but ϕ(

√
45Z+

0 ) = ϕ(
√
32 · 5Z+

0 ) = ϕ(15Z+
0 ) = 3(15Z+

0 ) =

45Z+
0 , it follows that

√
ϕ(45Z+

0 ) ̸= ϕ(
√

45Z+
0 ).

Proposition 4.1.14. Let R be a semiring with ϕ, n a positive integer and I a

proper ideal of R such that ϕ(
√
I) =

√
(ϕ(I)). If I is a ϕ-n-absorbing ideal, then

√
I is a ϕ-n-absorbing ideal.

Proof. Assume that I is a ϕ-n-absorbing ideal. Let x1, x2, . . . , xn+1 ∈ R be

such that x1x2 · · · xn+1 ∈
√
I − ϕ(

√
I). Then (x1x2 · · ·xn+1)

n ∈ I − ϕ(I) by

Lemma 4.1.12. That is xn
1x

n
2 · · · xn

n+1 ∈ I−ϕ(I). Since I is ϕ-n-absorbing, x̂n
i,n+1 ∈ I

for some i ∈ {1, 2, . . . , n+1}. Hence x̂i,n+1 ∈
√
I. Therefore,

√
I is a ϕ-n absorbing

ideal of R.

Next, we would like to show that ϕ-primary ideals and ϕ-n-absorbing ideals do

not imply each other as shown in the next example.

Example 4.1.15. Consider the semiring Z+
0 with ϕ0. Recall that ϕ0 is the function

defined by ϕ0(I) = {0} for all I ∈ I (Z+
0 ).

(1) Consider the ideal 64Z+
0 of Z+

0 . We know that 64Z+
0 is a primary ideal

of Z+
0 because 64 = 26, so it is a ϕ0-primary ideal of Z+

0 . Since 2
6 ∈ 64Z+

0 −{0} =

64Z+
0 −ϕ0(64Z+

0 ) but 2
5 /∈ 64Z+

0 , it follows that 64Z+
0 is not a ϕ0-5-absorbing ideal

of Z+
0 .

(2) Consider the ideal 70Z+
0 of Z+

0 . We know that 70Z+
0 is a 3-absorbing ideal

because 70 = 2·5·7, so it is a ϕ0-3-absorbing ideal. Since 14·5 = 70 ∈ 70Z+
0 −{0} =

70Z+
0 − ϕ0(70Z+

0 ) but 14 /∈ 70Z+
0 and 5m /∈ 70Z+

0 for all m ∈ N, i.e., 14 /∈ 70Z+
0

and 5 /∈
√
70Z+

0 , it follows that 70Z+
0 is not a ϕ0-primary ideal of Z+

0 .
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Nevertheless, in case of n = 1, every ϕ-prime ideal (ϕ-1-absorbing ideal) is, in

fact, a ϕ-primary ideal.

Proposition 4.1.16. Let R be a semiring with ϕ. Then every ϕ-prime ideal of R

is a ϕ-primary ideal of R.

Proof. Assume that I is a ϕ-prime ideal of R. Let a, b ∈ R be such that ab ∈

I − ϕ(I). Then a ∈ I or b ∈ I ⊆
√
I. Therefore, I is a ϕ-primary ideal.

Now, we know that every ϕ-prime ideal (prime ideal) is a ϕ-primary ideal

(primary ideal). However, the converse of this statement is not true as shown in

the next example.

Example 4.1.17. Consider the semiring Z+
0 .

(1) From Proposition 3.1.2, the ideal 9Z+
0 is a primary ideal of the semiring Z+

0 .

Since 3 · 3 = 9 ∈ 9Z+
0 but 3 /∈ 9Z+

0 , it follows that 9Z+
0 is not a prime ideal of the

semiring Z+
0 .

(2) The ideal 49Z+
0 is a primary ideal of the semiring Z+

0 by Proposition 3.1.2.

Define ϕ : I (Z+
0 ) → I (Z+

0 ) ∪ {∅} by ϕ(I) = I ∩ 5Z+
0 for all I ∈ I (Z+

0 ). Since

49Z+
0 is a primary ideal, it is a ϕ-primary ideal. We would like to show that 49Z+

0

is not a ϕ-prime ideal of the semiring Z+
0 . Since 7 · 7 = 49 ∈ 49Z+

0 − ϕ(49Z+
0 ) =

49Z+
0 − (49Z+

0 ∩ 5Z+
0 ) = 49Z+

0 − 245Z+
0 but 7 /∈ 49Z+

0 , it follows that 49Z+
0 is not

a ϕ-prime ideal of the semiring Z+
0 as desired.

In rings and semirings, one can show that if I is a primary ideal, then
√
I is

a prime ideal. This leads us to consider in sense of ϕ-primary ideals and ϕ-prime

ideals of semirings. In the next proposition, we show that if I is a ϕ-primary ideal

of a semiring R with ϕ under some conditions, then
√
I is a ϕ-prime ideal of R.

Proposition 4.1.18. Let R be a semiring with ϕ. If I is a ϕ-primary ideal of R

with
√

ϕ(I) = ϕ(
√
I), then

√
I is a ϕ-prime ideal of R, so that

√
I is a ϕ-primary

ideal of R.

Proof. Suppose that I is a ϕ-primary ideal of R with
√
ϕ(I) = ϕ(

√
I). Let a, b ∈ R

be such that ab ∈
√
I − ϕ(

√
I). Then there is n ∈ N such that (ab)n ∈ I. If
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(ab)n ∈ ϕ(I), then ab ∈
√

ϕ(I) = ϕ(
√
I) which is a contradiction. Thus anbn =

(ab)n ∈ I − ϕ(I). Since I is ϕ-primary, an ∈ I or bn ∈
√
I. Hence a ∈

√
I or

b ∈
√
I. Therefore,

√
I is ϕ-prime so is a ϕ-primary ideal of R.

We provide an example to confirm that there is a ϕ-primary ideal of a semir-

ing R with ϕ such that
√

ϕ(I) = ϕ(
√
I); moreover, in this example we also provide

an example of ϕ-primary ideal of R such that
√
ϕ(I) ̸= ϕ(

√
I).

Example 4.1.19. Consider the semiring Z+
0 and its ideals 7Z+

0 and 8Z+
0 . Define

ϕ : I (Z+
0 ) → I (Z+

0 ) ∪ {∅} by ϕ(nZ+
0 ) = 2nZ+

0 for all n ∈ Z+
0 and ϕ(J) =

{0} otherwise. Since 7Z+
0 and 8Z+

0 are primary ideals of the semirimg Z+
0 , the

ideals 7Z+
0 and 8Z+

0 are ϕ-primary ideals of the semirimg Z+
0 . Since

√
ϕ(7Z+

0 ) =√
14Z+

0 = 14Z+
0 = ϕ(7Z+

0 ) = ϕ(
√

7Z+
0 ), it follows that

√
ϕ(7Z+

0 ) = ϕ(
√

7Z+
0 ).

Because
√
ϕ(8Z+

0 ) =
√
16Z+

0 = 2Z+
0 and ϕ(

√
8Z+

0 ) = ϕ(2Z+
0 ) = 4Z+

0 , we obtain

that
√

ϕ(8Z+
0 ) ̸= ϕ(

√
8Z+

0 ).

In the same fashion as in Chapter III, we give relationships between ϕ-n-

absorbing ideals and n-absorbing ideals (weakly n-absorbing ideals, almost n-

absorbing ideals, m-almost n-absorbing ideals, ω-n-absorbing ideals) by using the

notation ϕ0, ϕ1, ϕ2, ϕn and ϕω given in Example 3.1.5.

Example 4.1.20. Let R be a semiring and n a positive integer. Then

(1) I is a ϕ∅-n-absorbing ideal if and only if I is a n-absorbing ideal,

(2) I is a ϕ0-n-absorbing ideal if and only if I is a weakly n-absorbing ideal,

(3) I is a ϕ1-n-absorbing ideal if and only if I is a proper ideal,

(4) I is a ϕ2-n-absorbing ideal if and only if I is an almost n-absorbing ideal,

(5) I is a ϕm-n-absorbing ideal if and only if I is an m-almost n-absorbing ideal,

and

(6) I is a ϕω-n-absorbing ideal if and only if I is an ω-n-absorbing ideal.
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Almost all of the results that we show from now on are parallel to the results

of Chapter III.

Proposition 4.1.21. Let R be a semiring, n a positive integer, I a proper ideal

of R and φ1 ≤ φ2 where φ1 and φ2 are functions from I (R) into I (R)∪ {∅}. If

I is a φ1-n-absorbing ideal, then I is a φ2-n-absorbing ideal.

Proof. The proof is similar to that of Proposition 3.1.6.

Corollary 4.1.22. Let I be a proper ideal of a semiring and n,m ∈ N with m ≥ 2.

Consider the following statements:

(1) I is an n-absorbing ideal.

(2) I is a weakly n-absorbing ideal.

(3) I is an ω-n-absorbing ideal.

(4) I is an (m+ 1)-almost n-absorbing ideal.

(5) I is an m-almost n-absorbing ideal.

(6) I is an almost n-absorbing ideal.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

From the above corollary, we know that ω-n-absorbing ideals imply m-almost

n-absorbing ideals. In the next proposition, we would like to show that if I is an

m-almost n-absorbing ideal for all m ≥ 2, then I is an ω-n-absorbing ideal.

Proposition 4.1.23. Let R be a semiring, n a positive integer and I a proper ideal

of R. Then I is an ω-n-absorbing ideal if and only if I is an m-almost n-absorbing

ideal for all m ≥ 2.

Proof. The proof for the first direction is clear by Corollary 4.1.22.

Conversely, the proof is similar to one of Proposition 3.1.8.
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From Chapter III, we show that being the k-ideals of I and ϕ(I) and I2 ̸⊆ ϕ(I)

are necessary conditions for making ϕ-primary ideals imply primary ideals. In the

following theorem, we only change the condition I2 ̸⊆ ϕ(I) to In+1 ̸⊆ ϕ(I) in order

to get the similar result.

Theorem 4.1.24. Let R be a semiring with ϕ, n a positive integer and I a

proper k-ideal of R such that ϕ(I) is a k-ideal. If I is a ϕ-n-absorbing ideal with

In+1 ̸⊆ ϕ(I), then I is an n-absorbing ideal.

Proof. Assume that I is a ϕ-n-absorbing ideal with In+1 ̸⊆ ϕ(I). We show that I is

an n-absorbing ideal of R. Let x1, x2, . . . , xn+1 ∈ R be such that x1x2 · · · xn+1 ∈ I.

If x1x2 · · · xn+1 ∈ I−ϕ(I), then x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n+1} because I is

a ϕ-n-absorbing ideal, and hence we are done. Suppose that x1x2 · · · xn+1 ∈ ϕ(I).

Case 1: Assume that x̂i,n+1I ̸⊆ ϕ(I) for some i ∈ {1, 2, . . . , n + 1}. Then there

exists p1 ∈ I such that x̂i,n+1p1 ∈ I − ϕ(I). Since ϕ(I) is a k-ideal, we ob-

tain x̂i,n+1(xi + p1) ∈ I − ϕ(I). Since I is a ϕ-n-absorbing ideal, x̂i,n+1 ∈ I or

x̂{i,j},n+1(xi + p1) ∈ I for some j ∈ {1, 2, . . . , n + 1} − {i}. Thus x̂i,n+1 ∈ I or

x̂j,n+1 ∈ I because I is a k-ideal. Hence x̂l,n+1 ∈ I for some l ∈ {1, 2, . . . , n+ 1}.

Case 2: Assume that x̂i,n+1I ⊆ ϕ(I) for all i ∈ {1, 2, . . . , n+ 1}.

Subcase 2.1: Suppose that x̂{i,j},n+1I
2 ̸⊆ ϕ(I) for some j ∈ {1, 2, . . . , n+1}−

{i}. Then there are p1, p2 ∈ I such that x̂{i,j},n+1p1p2 /∈ ϕ(I). Since ϕ(I) is a k-ideal,

we gain x̂{i,j},n+1(xi + p1)(xj + p2) ∈ I − ϕ(I). Because I is a ϕ-n-absorbing ideal,

x̂{i,j},n+1(xi + p1) ∈ I or x̂{i,j},n+1(xj + p2) ∈ I or x̂{i,j,l},n+1(xi + p1)(xj + p2) ∈ I

for some l ∈ {1, 2, . . . , n+ 1} − {i, j}. Hence x̂i,n+1 ∈ I or x̂j,n+1 ∈ I or x̂l,n+1 ∈ I

because I is a k-ideal. Therefore, x̂h,n+1 ∈ I for some h ∈ {1, 2, . . . , n+ 1}.

Subcase 2.2: Suppose that x̂{i,j},n+1I
2 ⊆ ϕ(I) for all j ∈ {1, 2, . . . , n+1}−{i}.

Subcase 2.2.1: Assume that x̂{i,j,l},n+1I
3 ̸⊆ ϕ(I) for some l ∈ {1, 2, . . . ,

n+1}−{i, j}. Then x̂{i,j,l},n+1p1p2p3 /∈ ϕ(I) for some p1, p2, p3 ∈ I. Since ϕ(I) is a

k-ideal, we obtain x̂{i,j,l},n+1(xi+p1)(xj+p2)(xl+p3) ∈ I−ϕ(I). Then x̂i,n+1 ∈ I or

x̂j,n+1 ∈ I or x̂l,n+1 ∈ I because I is a ϕ-n-absorbing k-ideal. Therefore, x̂h,n+1 ∈ I

for some h ∈ {1, 2, . . . , n+ 1}.
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Subcase 2.2.2: Assume that x̂{i,j,l},n+1I
3 ⊆ ϕ(I) for all l ∈ {1, 2, . . . ,

n+ 1} − {i, j}.

Continue this process, it remains to show the following case.

Assume that xi1xi2 · · · xin+1−mI
m ⊆ ϕ(I) for all {i1, i2, . . . , in+1−m} ∈ {1, 2, . . . ,

n+1} for 1 ≤ m ≤ n. Since In+1 ̸⊆ ϕ(I), there exist p1, p2, . . . , pn+1 ∈ I such that

p1p2 · · · pn+1 /∈ ϕ(I). Then (x1 + p1)(x2 + p2) · · · (xn+1 + pn+1) ∈ I − ϕ(I). Since I

is ϕ-n-absorbing, (x1 + p1)(x2 + p2) · · · (xi−1 + pi−1)(xi+1 + pi+1) · · · (xn+1 + pn+1)

for some i ∈ {1, 2, . . . , n+ 1}. Hence x̂i,n+1 ∈ I.

Therefore, from any cases, we can conclude that I is n-absorbing.

In fact, the proof of Theorem 4.1.24 use the same idea as the proof of Theo-

rem 3.1.12 but it is more complicated because n can be arbitrary positive integer.

Corollary 4.1.25. Let R be a semiring, n a positive integer and I a proper k-ideal

of R. If I is a ϕ-n-absorbing ideal for some ϕ with ϕ ≤ ϕn+2 such that ϕ(I) is a

k-ideal, then I is an m-almost n-absorbing ideal for all m ≥ n+ 1.

Proof. Assume that I is a ϕ-n-absorbing ideal for some ϕ with ϕ ≤ ϕn+2 such that

ϕ(I) is a k-ideal. If I is an n-absorbing ideal, then I is an m-almost n-absorbing

ideal for all m ≥ n + 1. So suppose that I is not an n-absorbing ideal. Then

In+1 ⊆ ϕ(I) by Theorem 4.1.24. Thus In+1 ⊆ ϕ(I) ⊆ ϕn+2(I) = In+2 ⊆ In+1,

and so In+1 = ϕ(I) = In+2. Hence ϕ(I) = Im for all m ≥ n + 1. Therefore, I is

m-almost n-absorbing for all m ≥ n+ 1.

From Corollary 4.1.25, if we consider in case of n = 1, then we obtain the same

result as in Corollary 3.1.17.

Corollary 4.1.26. Let R be a semiring and n a positive integer. If I is a weakly

n-absorbing k-ideal but is not an n-absorbing ideal, then In+1 = {0}.

Proof. Assume that I is a weakly n-absorbing k-ideal but is not an n-absorbing

ideal. Since I is a weakly n-absorbing ideal, I is ϕ0-n-absorbing. Then we obtain

In+1 ⊆ ϕ0(I) = {0} by Theorem 4.1.24. Therefore, In+1 = {0}.
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The converse of Corollary 4.1.26 is not true because {0} is an n-absorbing ideal

of the semiring Q+
0 by Example 4.1.2 (1) and {0}n+1 = {0} for all n ∈ N.

The following result is parallel to Theorem 3.1.20.

Theorem 4.1.27. Let R be a semiring with ϕ, n a positive integer and I a proper

ideal such that ϕ(I) ⊆ I. Then the following statements are equivalent.

(1) I is a ϕ-n-absorbing ideal.

(2) (I : x1x2 · · · xn) = ∪n
i=1 (I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn) for any x1x2 · · · xn ∈

R− I.

Proof. To show (1) ⇒ (2), assume that the ideal I is a ϕ-n-absorbing ideal. Let

x1, x2, . . . , xn ∈ R be such that x1x2 · · · xn ∈ R − I. Let y ∈ (I : x1x2 · · · xn).

Then x1x2 · · · xny ∈ I. If x1x2 · · · xny ∈ I − ϕ(I), then x̂i,ny ∈ I for some i ∈

{1, 2, . . . , n} because x1x2 · · · xn ̸∈ I. Hence y ∈ (I : x̂i,n). Otherwise, we assume

that x1x2 · · · xny ∈ ϕ(I). Thus y ∈ (ϕ(I) : x1x2 · · · xn). This shows that

(I : x1x2 · · · xn) ⊆ ∪n
i=1(I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn).

On the other hand, we gain (ϕ(I) : x1x2 · · · xn) ⊆ (I : x1x2 · · · xn) because

ϕ(I) ⊆ I. Let y ∈ (I : x̂i,n) for some i ∈ {1, 2, . . . , n}. Thus x̂i,ny ∈ I, and so

x1x2 · · · xny ∈ I. Hence y ∈ (I : x1x2 · · · xn). Therefore,

∪n
i=1(I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn) ⊆ (I : x1x2 · · · xn).

So, we can conclude that (I : x1x2 · · · xn) = ∪n
i=1(I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn).

To show (2) ⇒ (1), suppose that (2) holds. Let x1, x2, . . . , xn+1 ∈ R be such

that x1x2 · · · xn+1 ∈ I − ϕ(I). If x1x2 · · · xn ∈ I, then we are done. Suppose that

x1x2 · · · xn /∈ I. By (2), it follows that

(I : x1x2 · · · xn) = ∪n
i=1(I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn).

Then xn+1 ∈ (I : x1x2 · · · xn) − (ϕ(I) : x1x2 · · · xn) since x1x2 · · · xn+1 ∈ I − ϕ(I).

Hence xn+1 ∈ (I : x̂i,n) for some i ∈ {1, 2, . . . , n}, and so x̂i,nxn+1 ∈ I. Therefore,

I is a ϕ-n-absorbing ideal.
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Next, we are interested in the case n = 1. We obtain the result which is

parallel to Theorem 3.1.21 because ϕ-prime ideals and ϕ-primary ideals have a

similar structure.

Proposition 4.1.28. Let R be a semiring with ϕ and I a proper k-ideal of R such

that ϕ(I) is a k-ideal and ϕ(I) ⊆ I. The following statements are equivalent.

(1) I is a ϕ-prime ideal.

(2) For any x ∈ R− I, (I : x) = I ∪ (ϕ(I) : x).

(3) For any x ∈ R− I, (I : x) = I or (I : x) = (ϕ(I) : x).

(4) For ideals A and B of R, AB ⊆ I and AB ̸⊆ ϕ(I) imply A ⊆ I or B ⊆ I.

Proof. To show (1) ⇒ (2), suppose that I is a ϕ-prime ideal. Let x ∈ R − I.

Since I ⊆ (I : x) and (ϕ(I) : x) ⊆ (I : x), we obtain I ∪ (ϕ(I) : x) ⊆ (I : x).

Let a ∈ (I : x). Then ax ∈ I. If ax /∈ ϕ(I), then a ∈ I because I is a ϕ-prime

and x ∈ R − I. So, we assume that ax ∈ ϕ(I), then a ∈ (ϕ(I) : x). Hence

(I : x) ⊆ I ∪ (ϕ(I) : x). Therefore, (I : x) = I ∪ (ϕ(I) : x).

To show (2) ⇒ (3), assume that the statement (2) holds. Let x ∈ R−I. Since I

and ϕ(I) are k-ideals, (I : x) and (ϕ(I) : x) are k-ideals. It follows that (I : x) = I

or (I : x) = (ϕ(I) : x) by Proposition 2.1.13.

To show (3) ⇒ (4), suppose that the statement (3) holds. Assume that A and

B are ideals of R such that AB ⊆ I. Assume further that A ̸⊆ I and B ̸⊆ I. We

would like to show that AB ⊆ ϕ(I). Let a ∈ A.

Case 1: Assume that a /∈ I. Then (I : a) = I or (I : a) = (ϕ(I) : a) by (3). Since

AB ⊆ I, we obtain aB ⊆ I. Thus B ⊆ (I : a). Since B ̸⊆ I but B ⊆ (I : a), we

have that (I : a) ̸= I. Hence (I : a) = (ϕ(I) : a). Then B ⊆ (I : a) = (ϕ(I) : a),

and so aB ⊆ ϕ(I).

Case 2: Assume that a ∈ I. Since A ̸⊆ I, there is a′ ∈ A − I. Then a′B ⊆ ϕ(I)

is obtained similarly to the previous case. Note that a+ a′ ∈ A because a, a′ ∈ A.

If a+ a′ ∈ I, then a′ ∈ I because a ∈ I and I is a k-ideal which is a contradiction.

Hence a + a′ ∈ A − I, and so (a + a′)B ⊆ ϕ(I) is obtained. Let b ∈ B. Then
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a′b, ab+a′b ∈ ϕ(I) because a′B, (a+a′)B ⊆ ϕ(I). Since ϕ(I) is a k-ideal, ab ∈ ϕ(I).

Hence aB ⊆ ϕ(I).

All cases show that aB ⊆ ϕ(I). Therefore, AB ⊆ ϕ(I) because a is an arbitrary

element of A.

To show (4) ⇒ (1), assume that the statement (4) holds. Let x, y ∈ R be such

that xy ∈ I − ϕ(I). Then ⟨x⟩ ⟨y⟩ ⊆ I. If ⟨x⟩ ⟨y⟩ ⊆ ϕ(I), then xy ∈ ⟨x⟩ ⟨y⟩ ⊆ ϕ(I)

which is a contradiction. Thus ⟨x⟩ ⟨y⟩ ̸⊆ ϕ(I). Hence x ∈ ⟨x⟩ ⊆ I or y ∈ ⟨y⟩ ⊆ I

by (4). Therefore, I is a ϕ-prime ideal.

From the assumption of Proposition 4.1.28 that I is a proper k-ideal of a

semiring R with ϕ such that ϕ(I) is a k-ideal with ϕ(I) ⊆ I and by the fact that

ϕ(I) ⊆
√
ϕ(I); however, in case that I is a ϕ-prime ideal but is not a prime ideal,

we obtain I
√
ϕ(I) ⊆ ϕ(I).

Corollary 4.1.29. Let R be a semiring with ϕ and I a proper k-ideal of R such

that ϕ(I) is a k-ideal and ϕ(I) ⊆ I. If I is a ϕ-prime ideal but is not a prime ideal,

then I
√
ϕ(I) ⊆ ϕ(I).

Proof. Assume that I is a ϕ-prime ideal but is not a prime ideal. Let x ∈
√
ϕ(I).

We would like to show that Ix ⊆ ϕ(I). If x ∈ I, then Ix ⊆ I2 ⊆ ϕ(I) by

Theorem 4.1.24. So suppose that x /∈ I. By Proposition 4.1.28, we have (I : x) = I

or (I : x) = (ϕ(I) : x). We claim that (I : x) ̸= I. Suppose that (I : x) = I. Since

x ∈
√
ϕ(I), there exists m ∈ N such that xm ∈ ϕ(I). By well-ordering principle,

there is the smallest integer n such that xn ∈ ϕ(I) ⊆ I. Since x /∈ I, we obtain

n > 1. Then xn−1 ∈ (I : x) = I. Hence xn−1 ∈ I − ϕ(I). Since I is a ϕ-prime

ideal, x ∈ I which is a contradiction. Thus (I : x) ̸= I as desired. Then we obtain

(I : x) = (ϕ(I) : x). Hence I ⊆ (I : x) = (ϕ(I) : x), and so Ix ⊆ ϕ(I). Since x

is an arbitrary element in
√

ϕ(I), we obtain {ab | a ∈ I and b ∈
√
ϕ(I)} ⊆ ϕ(I).

Therefore, I
√
ϕ(I) = {

∑n
i=1 aibi | ai ∈ I and bi ∈

√
ϕ(I)} ⊆ ϕ(I) because ϕ(I) is

an ideal.

The converse of Corollary 4.1.29 is not true in general and we provide an

example to confirm this statement as follows.



67

Example 4.1.30. Consider the semiring R = Z+
0 and the ideal I = 5Z+

0 of R.

Then I is a k-ideal of R; in addition,
√
I =

√
5Z+

0 = 5Z+
0 by Proposition 2.1.25.

Define ϕ : I (Z+
0 ) → I (Z+

0 ) ∪ {∅} by ϕ(J) = J ∩ 2Z+
0 for all J ∈ I (Z+

0 ).

Then ϕ(I) = 5Z+
0 ∩ 2Z+

0 = 10Z+
0 ⊆ 5Z+

0 = I. By Proposition 2.1.25, we obtain√
10Z+

0 = 10Z+
0 . Hence I

√
ϕ(I) = 5Z+

0

√
10Z+

0 = (5Z+
0 )(10Z+

0 ) = 50Z+
0 ⊆ 10Z+

0 =

ϕ(5Z+
0 ) = ϕ(I). Since I

√
ϕ(I) ⊆ ϕ(I) and I = 5Z+

0 is a prime ideal of R and then

I is a ϕ-prime ideal of R, the converse of Corollary 4.1.29 is not true.

We end this section with the result that is parallel to the Theorem 3.1.22.

Theorem 4.1.31. Let R be a strongly Euclidean semiring, n a positive integer

and a ∈ R such that (⟨a⟩2 : a) = ⟨a⟩. Then ⟨a⟩ is a ϕ-n-absorbing ideal for some

ϕ with ϕ ≤ ϕ2 if and only if ⟨a⟩ is an n-absorbing ideal.

Proof. If ⟨a⟩ is an n-absorbing ideal, then ⟨a⟩ is a ϕ-n-absorbing ideal for any ϕ.

So we assume that ⟨a⟩ is a ϕ-n-absorbing ideal for some ϕ with ϕ ≤ ϕ2. Then

⟨a⟩ is a ϕ2-n-absorbing ideal. We would like to show that ⟨a⟩ is an n-absorbing

ideal. Let x1, x2, . . . , xn+1 ∈ R be such that x1x2 · · · xn+1 ∈ ⟨a⟩. If x1x2 · · · xn+1 ∈

⟨a⟩ − ⟨a⟩2, then x̂i,n+1 ∈ ⟨a⟩ for some i ∈ {1, 2, . . . , n + 1} because ⟨a⟩ is a ϕ2-n-

absorbing ideal. So we can assume that x1x2 · · · xn+1 ∈ ⟨a⟩2. Since R is a strongly

Euclidean semiring, ⟨a⟩ and ⟨a⟩2 are k-ideals. Now we have (x1 + a)x2 · · · xn+1 =

x1x2 · · · xn+1 + ax2x3 · · · xn+1 ∈ ⟨a⟩.

Case 1: Assume that (x1+a)x2 · · · xn+1 ∈ ⟨a⟩− ⟨a⟩2. Since ⟨a⟩ is ϕ2-n-absorbing,

x2x3 · · · xn+1 ∈ ⟨a⟩ or (x1 + a)x̂i,n+1 ∈ ⟨a⟩ for some i ∈ {2, 3, . . . n + 1}. Hence

x2x3 · · · xn+1 ∈ ⟨a⟩ or x1x̂i,n+1 ∈ ⟨a⟩ because ⟨a⟩ is a k-ideal.

Case 2: Assume that (x1+ a)x2 · · · xn+1 ∈ ⟨a⟩2 = ⟨a2⟩. Since ⟨a2⟩ is a k-ideal and

x1x2 · · · xn+1, x1x2 · · · xn+1+ax2x3 · · · xn+1 ∈ ⟨a2⟩, we obtain ax2x3 · · · xn+1 ∈ ⟨a2⟩.

Thus x2x3 · · · xn+1 ∈ (⟨a⟩2 : a) = ⟨a⟩.

Therefore, ⟨a⟩ is an n-absorbing k-ideal.



68

4.2 φ-n-Absorbing Ideals in Decomposable Semirings

In this section, we not only investigate n-absorbing ideals, weakly n-absorbing

ideals and φ-n-absorbing ideals of decomposable semirings in the same sense as

Section 3.2 but also obtain the different results from Chapter III such as Theo-

rem 4.2.9 and Theorem 4.2.10.

We begin with some results which are parallel to the results in Section 3.2. The

following proposition is parallel to Proposition 3.2.1.

Proposition 4.2.1. Let R = R1×R2× · · · ×Rm where m,n ∈ N with m ≥ n+ 1

be a decomposable semiring and I = I1× I2×· · ·× Im a nonzero proper ideal of R.

If I is a weakly n-absorbing ideal, then Ii = Ri for some i ∈ {1, 2, . . . ,m}.

Proof. Assume that I is a weakly n-absorbing ideal. Since I is a nonzero ideal,

there is (x1, x2, . . . , xm) ∈ I such that (x1, x2, . . . , xm) 6= (0, 0, . . . , 0). Then

(0, 0, . . . , 0) 6= (x1, x2, . . . , xm)

= (x1, 1, . . . , 1)(1, x2, 1, . . . , 1) · · · (1, . . . , 1, xn+1, . . . , xm) ∈ I.

Thus (x1, x2, . . . , xn, 1, 1, . . . , 1) ∈ I or (x1, . . . , xi−1, 1, xi+1, . . . , xn+1, . . . , xm) ∈ I

for some i ∈ {1, 2, . . . , n} because I is a weakly n-absorbing ideal. Hence 1 ∈ Ii
for some i ∈ {1, 2, . . . ,m}. Therefore, Ii = Ri.

We know that n-absorbing ideals imply weakly n-absorbing ideals but not vice

versa in general. However, the converse of this statement is true if we assume those

ideals are nonzero proper k-ideals.

Proposition 4.2.2. Let R = R1×R2× · · · ×Rm where m,n ∈ N with m ≥ n+ 1

be a decomposable semiring and I = I1 × I2 × · · · × Im a nonzero proper k-ideal

of R. Then I is a weakly n-absorbing ideal if and only if I is an n-absorbing ideal.

Proof. Assume that I is a weakly n-absorbing ideal of R. Then Ii = Ri for some

i ∈ {1, 2, . . . ,m} by Proposition 4.2.1. Thus In+1 6= {0}. Therefore, I is an n-

absorbing ideal by Corollary 4.1.26. The converse is clear by Corollary 4.1.22.
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From Proposition 4.2.2, we can conclude that weakly n-absorbing ideals and

n-absorbing ideals are coincide if we provided they are nonzero proper k-ideals of

decomposable semirings with m components where m ≥ n + 1. In the following

theorem, we omit those conditions and add the condition that at least one Ii = Ri.

These lead us to get that not only weakly n-absorbing ideals and n-absorbing ideals

are coincide but also get that if I = I1 × I2 × · · · × Im is an n-absorbing ideal of

R = R1 × R2 × · · · × Rm and each Ii is a proper ideal, then Ii is an n-absorbing

ideal of Ri.

Theorem 4.2.3. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with at least one

Ii = Ri where i ∈ {1, 2, . . . ,m}. Consider the following statements:

(1) I is a weakly n-absorbing ideal of R.

(2) I is an n-absorbing ideal of R.

(3) If Ij ̸= Rj where j ∈ {1, 2, . . . ,m}, then Ij is an n-absorbing ideal of Rj.

Then (1) and (2) are equivalent and (2) implies (3).

Proof. To show (1) ⇔ (2), if I is an n-absorbing ideal, then I is a weakly n-

absorbing ideal. Conversely, assume that I is a weakly n-absorbing ideal of R.

Since Ii = Ri, we obtain In+1 ̸= {0}. Then I is an n-absorbing ideal of R by

Corollary 4.1.26.

To show (2) ⇒ (3), assume that I is an n-absorbing ideal of R and Ij ̸= Rj for

some j ∈ {1, 2, . . . ,m}. Let x1, x2, . . . , xn+1 ∈ Rj be such that x1x2 · · · xn+1 ∈ Ij.

Then

(0, . . . , 0, x1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0) · · · (0, . . . , 0, xn+1, 0, . . . , 0)

= (0, . . . , 0, x1x2 · · · xn+1, 0, . . . , 0) ∈ I.

Since I is an n-absorbing ideal, (0, . . . , 0, x1, 0, . . . , 0) · · · (0, . . . , 0, xl−1, 0, . . . , 0)

(0, . . . , 0, xl+1, 0, . . . , 0) · · · (0, . . . , 0, xn+1, 0, . . . , 0) ∈ I for some l ∈ {1, 2, . . . ,m}.

Thus (0, . . . , 0, x̂l,n+1, 0, . . . , 0) ∈ I. Hence x̂l,n+1 ∈ Ij. Therefore, Ij is an n-

absorbing ideal of Rj.
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From Theorem 4.2.3, we can conclude that if I1×I2×· · ·×Im is an n-absorbing

ideal (weakly n-absorbing ideal) of R1 ×R2 × · · · ×Rm, then Ij with Ij ̸= Rj is an

n-absorbing ideal of Rj where j ∈ {1, 2, . . . ,m}. Nevertheless, the converse of this

statement is not true in general as we show in the next example.

Example 4.2.4. Let R = R1 ×R2 × · · · ×Rm = Z+
0 ×Z+

0 × · · · ×Z+
0 and n a pos-

itive integer. Let I1 = p1p2 · · · pnZ+
0 and I2 = q1q2 · · · qnZ+

0 where p1, p2, . . . , pn, q1,

q2, . . . , qn are positive primes. Thus I1 and I2 are n-absorbing ideals of Z+
0 . Con-

sider

(p1, 1, 1, . . . , 1)(p2, q1, 1, . . . , 1) · · · (pn, qn−1, 1, . . . , 1)(1, qn, 1, . . . , 1)

= (p1p2 · · · pn, q1q2 · · · qn, 1, 1, . . . , 1) ∈ I1× I2×R3×· · ·×Rm.

Since p̂i,n /∈ I1 and q̂j,n /∈ I2 for all i, j ∈ {1, 2, . . . , n}, the ideal I1×I2×R3×· · ·×Rm

is not an n-absorbing ideal.

In the following result, we assume a stronger condition than conditions given

in Theorem 4.2.3 in order to make (1), (2) and (3) be equivalent.

Theorem 4.2.5. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one

Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. The following statements are equivalent.

(1) I is a weakly n-absorbing ideal of R.

(2) I is an n-absorbing ideal of R.

(3) Ii is an n-absorbing ideal of Ri.

Proof. We obtain (1) ⇔ (2) and (2) ⇒ (3) by Theorem 4.2.3. Thus it remains to

show (3) ⇒ (2).

Assume Ii is an n-absorbing ideal of Ri. Let (x11, . . . , x1m), (x21, . . . , x2m), . . . ,

(x(n+1)1, . . . , x(n+1)m) ∈ R be such that

(x11, . . . , x1m)(x21, . . . , x2m) · · · (x(n+1)1, . . . , x(n+1)m) ∈ I.

Note that I = R1 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rm. Thus
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(x11x21 · · · x(n+1)1, . . . , x1ix2i · · · x(n+1)i, . . . , x1mx2m · · · x(n+1)m) ∈ I.

Since Ii is an n-absorbing ideal of Ri, we obtain x̂ji,(n+1)i ∈ Ii for some j ∈

{1, 2, . . . , n+1}. Hence (x11, . . . , x1m) · · · (x(j−1)1, . . . , x(j−1)m)(x(j+1)1, . . . , x(j+1)m)

· · · (x(n+1)1, . . . , x(n+1)m) ∈ I. Therefore, I is an n-absorbing ideal of R.

Corollary 4.2.6. Let R = R1×R2×· · ·×Rm be a decomposable semiring with ϕ,

n a positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly

one Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. If Ii is an n-absorbing ideal of Ri, then I is

a ϕ-n-absorbing ideal of R.

The next example shows that the converse of Corollary 4.2.6 is not true.

Example 4.2.7. Consider the semiring R = Z+
0 × Z+

0 × Z+
0 and its ideal I =

729Z+
0 × Z+

0 × Z+
0 . Since 36 = 729 ∈ 729Z+

0 but 35 = 243 /∈ 729Z+
0 , it follows

that 729Z+
0 is not a 5-absorbing ideal of the semiring Z+

0 . Define ϕ : I (R) →

I (R) ∪ {∅} by ϕ(J) = J + (2Z+
0 × 3Z+

0 × 5Z+
0 ) for all J ∈ I (R). Then ϕ(I) =

(729Z+
0 × Z+

0 × Z+
0 ) + (2Z+

0 × 3Z+
0 × 5Z+

0 ). Thus I ⊆ ϕ(I). Hence I − ϕ(I) = ∅.

Therefore, I is a ϕ-5-absorbing ideal of R.

From Corollary 4.2.6, we can conclude that if Ii is an n-absorbing ideal of a

semiring Ri, then the ideal I = R1 ×R2 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rm of the

decomposable semiring R = R1 × R2 × · · · × Rm with ϕ is a ϕ-n-absorbing ideal

when we provide that I is a proper k-ideal of R. In the next result, we also assume

I = R1 ×R2 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rm is a proper k-ideal but we change

to study in case of Ii is a weakly n-absorbing ideal of Ri.

Theorem 4.2.8. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one

Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. If Ii is a weakly n-absorbing ideal of Ri, then I is

a ϕ-n-absorbing ideal of R for all ϕω ≤ ϕ.

Proof. In fact, I = R1×· · ·×Ri−1×Ii×Ri+1×· · ·×Rm for some i ∈ {1, 2, . . . ,m}.

Without loss of generality, we assume that i = 1. We would like to show that I =
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I1×R2×· · ·×Rm is a φ-n-absorbing ideal of R for all φω ≤ φ. By Proposition 2.1.28,

we can conclude that I1 is a k-ideal because I is a k-ideal. If I1 is an n-absorbing

ideal of R1, then I is an n-absorbing ideal of R by Theorem 4.2.5, and so I is a

φω-n-absorbing ideal of R. Assume that I1 is not an n-absorbing ideal of R1. Thus

In+1
1 = {0} from Corollary 4.1.26. Consider the element (x1, . . . , xm) ∈ φω(I) =

∩∞l=1I
l ⊆ In+1 = (I1 × R2 × · · · × Rm)n+1 ⊆ In+1

1 × R2 × · · · × Rm = {0} × R2 ×

· · ·× Rm. Let (x11, . . . , x1m), (x21, . . . , x2m), . . . , (x(n+1)1, . . . , x(n+1)m) ∈ R be such

that (x11x21 · · · x(n+1)1, . . . , x1mx2m · · · x(n+1)m) ∈ I−φω(I). Then x11x21 · · · x(n+1)1

∈ I1 − {0}. Since I1 is a weakly n-absorbing ideal, we obtain x̂j1,(n+1)1 ∈ I1 for

some j ∈ {1, 2, . . . , n + 1}. Hence (x̂j1,(n+1)1, x̂j2,(n+1)2, . . . , x̂jm,(n+1)m) ∈ I. Thus

I is a φω-n-absorbing ideal. Therefore, in any cases, I is a φω-n-absorbing ideal,

and so I is a φ-n-absorbing ideal for all φω ≤ φ.

The rest of all results in this section except Theorem 4.2.14 is not analogous

to the results in Section 3.2.

Theorem 4.2.9. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer with n ≥ 2 and I = I1 × I2 × · · · × Im where Ii 6= {0} for all

i ∈ {1, 2, . . . ,m} is a weakly n-absorbing k-ideal. Then I is an n-absorbing ideal

of R or Ii is an (n− 1)-absorbing ideal of Ri for all i ∈ {1, 2, . . . ,m}.

Proof. If I is an n-absorbing ideal of R, then we are done. Suppose that I is not

an n-absorbing ideal of R. Then In+1 = {0} by Corollary 4.1.26. Hence Ij 6= Rj

for all j ∈ {1, 2, . . . ,m}. Let i, j ∈ {1, 2, . . . ,m}. Without loss of generality, we

assume that j < i. We show that Ij is an (n − 1)-absorbing ideal of Rj. Let

x1, x2, . . . , xn ∈ Rj be such that x1x2 · · · xn ∈ Ij. Since Ii 6= {0}, there exists

0 6= yi ∈ Ii. So (0, 0, . . . , 0) 6= (0, . . . , 0, x1x2 · · · xn, 0, . . . , 0, yi, 0, . . . , 0) ∈ I. Thus

(0, 0, . . . , 0) 6= (0, . . . , 0, x1, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0, 1, 0, . . . , 0) · · ·

(0, . . . , 0, xn, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, 1, 0, . . . , 0, yi, 0, . . . , 0) ∈ I.

Since I is weakly n-absorbing, 1 ∈ Ii or x̂l,n ∈ Ij for some l ∈ {1, 2, . . . , n}. Since

Ii 6= Ri, we obtain x̂l,n ∈ Ij. Therefore, Ij is an (n− 1)-absorbing ideal of Rj.



73

From Theorem 4.2.9, if we consider in case of n = 2, then we can conclude

that if I = I1 × I2 × · · · × Im where Ii ̸= {0} for all i ∈ {1, 2, . . . ,m} is a weakly

2-absorbing k-ideal of a decomposable semiring R = R1 × R2 × · · · × Rm, then I

is a 2-absorbing ideal of R or Ii is a prime ideal of Ri for all i ∈ {1, 2, . . . ,m}.

Let R = R1×R2×· · ·×Rm be a decomposable semiring and I = I1×I2×· · ·×Im

a proper ideal of R with exactly one Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. We obtain

from Theorem 4.2.5 that if Ii is an n-absorbing ideal of Ri, then I is an n-absorbing

ideal of R. In the next result, we consider in case of every component Ii of I is

an ni-absorbing ideal of Ri, then we obtain an interesting result which is I is an

n-absorbing ideal where n = n1 + n2 + · · · + nm; in addition, in this theorem ni

can be zero. Recall that a 0-absorbing ideal of a semiring R is R.

Theorem 4.2.10. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im an ideal of R. If Ii is an ni-absorbing ideal of Ri where

ni ∈ Z+
0 for all i ∈ {1, 2, . . . ,m}, then I is an n-absorbing ideal of R where

n = n1 + n2 + · · ·+ nm, so that I is a ϕ-n-absorbing ideal of R.

Proof. Assume that Ii is an ni-absorbing ideal of Ri where ni ∈ Z+
0 for all i ∈

{1, 2, . . . ,m}. Let n = n1+n2+· · ·+nm.We show that I is an n-absorbing ideal ofR.

Let (x11, x12, . . . , x1m), (x21, x22, . . . , x2m), . . . , (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ R be

such that

(x11, x12, . . . , x1m)(x21, x22, . . . , x2m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ I.

Then (x11x21 · · · x(n+1)1 , x12x22 · · · x(n+1)2 , . . . , x1mx2m · · · x(n+1)m) ∈ I. Since Ii is

an ni-absorbing ideal, x1ix2i · · · x(n+1)i ∈ Ii and ni < n+1, we obtain xj1ixj2i · · · xjni i

∈ Ii for some distinct j1, j2, . . . , jni
∈ {1, 2, . . . , n+1} by Corollary 4.1.8. Suppose

that ∪m
i=1{j1, j2, . . . , jni

} = {j′1, j′2, . . . , j′h}. Thus {j′1, j′2, . . . , j′h} ⊆ {1, 2, . . . , n+1}

and h ≤ n since n1 + n2 + · · · + nm = n. Since {j1, j2, . . . , jni
} ⊆ {j′1, j′2, . . . , j′h}

and xj1ixj2i · · · xjni i
∈ Ii for all i ∈ {1, 2, . . . ,m}, we obtain

xj′1i
xj′2i

· · · xj′hi
∈ Ii.

By choosing all distinct j′h+1, j
′
h+2, . . . , j

′
n ∈ {1, 2, . . . , n+1}−{j′1, j′2, . . . , j′h}, hence
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xj′1i
xj′2i

· · · xj′ni = (xj′1i
xj′2i

· · ·xj′hi
)(xj′h+1i

xj′h+2i
· · · xj′ni) ∈ Ii.

Then we obtain

(xj′11
, xj′12

, . . . , xj′1m
)(xj′21

, xj′22
, . . . , xj′2m

) · · · (xj′n1, xj′n2, . . . , xj′nm)

= (xj′11
xj′21

· · · xj′n1 , xj′12
xj′22

· · · xj′n2 , . . . , xj′1m
xj′2m

· · · xj′nm) ∈ I.

Therefore, I is an n-absorbing ideal of R, and hence I is a ϕ-n-absorbing ideal

of R.

Example 4.2.11. Consider the semiring R = Z+
0 × Z+

0 × Z+
0 × Z+

0 .

(1) Then 2Z+
0 × 6Z+

0 × 30Z+
0 ×Z+

0 is a 6-absorbing ideal of R because 2Z+
0 is a

1-absorbing ideal, 6Z+
0 is a 2-absorbing ideal, 30Z+

0 is a 3-absorbing ideal and Z+
0

is a 0-absorbing ideal of the semiring Z+
0 .

(2) Then 22Z+
0 ×23Z+

0 ×24Z+
0 ×25Z+

0 is a 14-absorbing ideal of R because 2lZ+
0

is an l-absorbing ideal of the semiring Z+
0 for all l ∈ N.

From the above theorem, we can conclude that, for an ideal I = I1×I2×· · ·×Im

of a decomposable semiring R = R1 ×R2 × · · · ×Rm, if every component of I is a

prime ideal of its semiring, then I is an m-absorbing ideal of R.

Next, we provide the last theorems concerning ϕ-n-absorbing ideals of decom-

posable semirings.

Theorem 4.2.12. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and ϕ = φ1×φ2×· · ·×φm where each φi : I (Ri) → I (Ri)∪{∅}

is a function. Then the following statements hold.

(1) I1 × I2 × · · · × Im is a ϕ-n-absorbing ideal of R where Ij ⊆ φj(Ij) for all

j ∈ {1, 2, . . . ,m} and at least one Ii is a proper ideal of Ri for some i ∈

{1, 2, . . . ,m}.

(2) R1 × R2 × · · · × Ri−1 × Ii × Ri+1 × · · · × Rm is a ϕ-n-absorbing ideal of R

where Ii is a φi-n-absorbing ideal of Ri which must be an n-absorbing ideal

if φj(Rj) ̸= Rj for some j ∈ {1, 2, . . . ,m} − {i}.
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Proof. (1) The result follows from the fact that I1 × I2 × · · · × Im − ϕ(I1 × I2 ×

· · · × Im) = ∅.

(2) Without loss of generality, we assume that I1 is a proper ideal of R1. If

I1 is an n-absorbing ideal of R1, then I1 × R2 × · · · × Rm is an n-absorbing ideal

of R by Theorem 4.2.5. Thus I1 × R2 × · · · × Rm is a ϕ-n-absorbing ideal of R.

Moreover, assume that I1 is a φ1-n-absorbing ideal of R1 and φj(Rj) = Rj for all

j ∈ {1, 2, . . . ,m}. We show that I1 ×R2 × · · · ×Rm is a ϕ-n-absorbing ideal of R.

Let (x11, x12, . . . , x1m), (x21, x22, . . . , x2m), . . . , (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ R

be such that (x11, x12, . . . , x1m)(x21, x22, . . . , x2m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m)

∈ I1 ×R2 × · · · ×Rm − ϕ(I1 ×R2 × · · · ×Rm). Then

(x11x21 · · · x(n+1)1 , x21x22 · · · x(n+1)2 , . . . , x1mx2m · · · x(n+1)m)

∈ I1 ×R2 × · · · ×Rm − ϕ(I1 ×R2 × · · · ×Rm)

= I1 ×R2 × · · · ×Rm − (φ1(I1)× φ2(R2)× · · · × φm(Rm))

= I1 ×R2 × · · · ×Rm − (φ1(I1)×R2 × · · · ×Rm)

= (I1 − φ1(I1))×R2 × · · · ×Rm.

Thus x11x21 · · · x(n+1)1 ∈ I1 − φ1(I1). Since I1 is a φ1-n-absorbing ideal of R1, we

gain x̂i1,(n+1)1 ∈ I1 for some i ∈ {1, 2, . . . , n+ 1}. It follows that

(x11, x12, . . . , x1m) · · · (x(i−1)1, x(i−1)2, . . . , x(i−1)m)(x(i+1)1, x(i+1)2, . . . , x(i+1)m) · · ·

(x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ I1 ×R2 × · · · ×Rm.

Therefore, I1 ×R2 × · · · ×Rm is a ϕ-n-absorbing ideal of R.

If Ii is a φi-n-absorbing ideal but is not n-absorbing and φj(Rj) ̸= Rj for some

j ∈ {1, 2, . . . ,m}, then R1 × R2 × · · ·Ri−1 × Ii × Ri+1 × · · · × Rm does not have

to be a ϕ-n-absorbing ideal of R1 × R2 × · · · × Rm as we show in the following

example.

Example 4.2.13. Consider the semiring Z+
0 × Z+

0 × · · · × Z+
0︸ ︷︷ ︸

m copies

. Let p1, p2, . . . , pn+1

are positive primes and I1 = p1p2 · · · pn+1Z+
0 . Let φ1 : I (Z+

0 ) → I (Z+
0 ) ∪ {∅} be
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a function such that I1 is a φ1-n-absorbing ideal. Since I1 = p1p2 · · · pn+1Z+
0 , it is

easy to see that I1 is not an n-absorbing ideal. Define φj : I (Z+
0 ) → I (Z+

0 )∪{∅}

by φj(I) = {0} for all I ∈ I (Z+
0 ) and for all j ∈ {2, 3, . . . ,m}. Then φj(Z+

0 ) =

{0} ̸= Z+
0 for all j ∈ {2, 3, . . . ,m}. Let ϕ = φ1 × φ2 × · · · × φm. Consider

(p1, 1, . . . , 1)(p2, 1, . . . , 1) · · ·(pn+1, 1, . . . , 1)

= (p1p2 · · · pn+1, 1, . . . , 1)

∈ (I1 × Z+
0 × · · · × Z+

0 )− (φ1(I1)× {0} × · · · × {0})

= (I1 × Z+
0 × · · · × Z+

0 )− ϕ(I1 × Z+
0 × · · · × Z+

0 )

but

(p1, 1, . . . , 1) · · · (pi−1, 1, . . . , 1)(pi+1, 1, . . . , 1) · · · (pn+1, 1, . . . , 1)

= (p̂i,n+1, 1, . . . , 1) /∈ I1 × Z+
0 × · · · × Z+

0

for all i ∈ {1, 2, . . . ,m} because p̂i,n+1 /∈ I1 for all i ∈ {1, 2, . . . ,m}. Therefore,

I1 × Z+
0 × · · · × Z+

0 is not a ϕ-n-absorbing ideal of Z+
0 × Z+

0 × · · · × Z+
0 .

We obtain from Theorem 4.2.12 that the ideals in (1) and (2) are ϕ-n-absorbing

ideals of a decomposable semiring R = R1 × R2 × · · · × Rm but we cannot guar-

antee that there are two categories of ϕ-n-absorbing ideals of R. However, in case

n = 1, we can conclude that ϕ-prime ideals of decomposable semirings with two

components need to be in three formats only as shown in the following theorem.

Theorem 4.2.14. Let R = R1 ×R2 be a decomposable semiring and ϕ = φ1 × φ2

where each φi : I (Ri) → I (Ri)∪{∅} is a function. Then the ϕ-prime ideals of R

have exactly one of the following three types:

(1) I1 × I2 where Ij ⊆ φj(Ij) for all j ∈ {1, 2} and at least one Ii is a proper

ideal of Ri for some i ∈ {1, 2}.

(2) I1×R2 where I1 is a φ1-prime ideal of R1 which must be prime if φ2(R2) ̸= R2.

(3) R1×I2 where I2 is a φ2-prime ideal of R2 which must be prime if φ1(R1) ̸= R1.
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Proof. By Theorem 4.2.12, we can conclude that the ideals in the statements (1),

(2) and (3) are ϕ-prime ideals.

For the other direction, assume that I1 × I2 is a ϕ-prime ideal of R. Thus I1

or I2 is a proper ideal of R. Without loss of generality, assume that I1 is a proper

ideal. Let a, b ∈ R1 be such that ab ∈ I1 − φ1(I1). Then (a, 0)(b, 0) = (ab, 0) ∈

I1× I2−ϕ(I1× I2). Since I1× I2 is a ϕ-prime ideal of R, we obtain (a, 0) ∈ I1× I2

or (b, 0) ∈ I1 × I2. Hence a ∈ I1 or b ∈ I1. Therefore, I1 is a φ1-prime ideal of R1.

If Ij ⊆ φj(Ij) for all j ∈ {1, 2}, then (1) is obtained. Suppose that I1 * φ1(I1) or

I2 * φ2(I2). Without loss of generality, assume that I1 * φ1(I1). Then there is

x ∈ I1 − φ1(I1). Let y ∈ I2. Thus (x, 1)(1, y) = (x, y) ∈ I1 × I2 − ϕ(I1 × I2). Since

I1 × I2 is a ϕ-prime ideal of R, we have (x, 1) ∈ I1 × I2 or (1, y) ∈ I1 × I2. Hence

I2 = R2 or I1 = R1. Since I1 is a proper ideal, I2 = R2. Then I1 ×R2 is a ϕ-prime

ideal of R where I1 is a φ1-prime ideal of R1. It remains to show that I1 is actually

prime if φ2(R2) ̸= R2. Assume further that φ2(R2) ̸= R2. Then 1 /∈ φ2(R2). Let

a, b ∈ R1 be such that ab ∈ I1. Thus (a, 1)(b, 1) = (ab, 1) ∈ I1 × R2 − ϕ(I1 × R2).

Since I1 ×R2 is a ϕ-prime ideal of R, we have (a, 1) ∈ I1 ×R2 or (b, 1) ∈ I1 ×R2.

Hence a ∈ I1 or b ∈ I1. Therefore, I1 is a prime ideal of R1. So, the statement (2) is

obtained. In the same way, if we assume I2 is a proper ideal, then the statement (3)

holds.

4.3 ϕ-n-Absorbing Ideals in Quotient Semirings and in

Semirings of Fractions

In this last section, ϕ-n-absorbing ideals of quotient semirings and ϕ-n-absorbing

ideals of semirings of fractions are discussed. All results of this section are parallel

to the results in Section 3.3.

Recall that if R is a semiring, I is a Q-ideal of R and ϕ is a function from

I (R) into I (R) ∪ {∅} such that ϕ(L) is a subtractive extension of I for all

ideal L of R where L is a subtractive extension of I, then we define ϕI : I (R/I) →

I (R/I)∪{∅} by ϕI(J/I) = (ϕ(J))/I for each ideal J of R where J is a subtractive
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extension of I.

Recall further that R is a semiring with ϕ satisfying the property (∗) if R is

a semiring with ϕ, I is a Q-ideal of R and ϕI is a function from I (R/I) into

I (R/I) ∪ {∅} where ϕ and ϕI are defined as above paragraph.

Theorem 4.3.1. Let R be a semiring with ϕ satisfying the property (∗), n a

positive integer, I a Q-ideal of R and P a subtractive extension of I. Then P is a

ϕ-n-absorbing ideal of R if and only if P/I is a ϕI-n-absorbing ideal of R/I.

Proof. First, assume that P is a ϕ-n-absorbing ideal of R. Then P/I is an ideal of

R/I because P is a subtractive extension of I. Let q1+I, q2+I, . . . , qn+1+I ∈ R/I

be such that (q1 + I)(q2 + I) · · · (qn+1 + I) ∈ P/I − ϕI(P/I). By Theorem 2.2.19,

we obtain q1q2 · · · qn+1 ∈ P −ϕ(P ). Since P is a ϕ-n-absorbing ideal, q̂i,n+1 ∈ P for

some i ∈ {1, 2, . . . , n+1}. Hence (q1+I) · · · (qi−1+I)(qi+1+I) · · · (qn+1+I) ∈ P/I.

Therefore, P/I is a ϕI-n-absorbing k-ideal of R/I.

Conversely, assume that P/I is a ϕI-n-absorbing ideal of R/I. We show that P

is a ϕ-n-absorbing ideal of R. Let x1, x2, . . . , xn+1 ∈ R be such that x1x2 · · · xn+1 ∈

P − ϕ(P ). Then there exist q1, q2 . . . , qn+1 ∈ Q such that xi ∈ qi + I for all i ∈

{1, 2, . . . , n+1}. So there is yi ∈ I such that xi = qi+yi for all i ∈ {1, 2, . . . , n+1}.

Hence we obtain (q1+y1)(q2+y2) · · · (qn+1+yn+1) ∈ P−ϕ(P ). Then q1q2 · · · qn+1 ∈

P − ϕ(P ) because P and ϕ(P ) are subtractive extensions of I. Thus (q1 + I)(q2 +

I) · · · (qn+1 + I) ∈ P/I − ϕI(P/I) by Theorem 2.2.19. Hence (q1 + I) · · · (qi−1 +

I)(qi+1 + I) · · · (qn+1 + I) ∈ P/I for some i ∈ {1, 2, . . . , n+ 1} since P/I is a ϕI-n-

absorbing ideal. Then q̂i,n+1 ∈ P . Thus x̂i,n+1 = (q1 + y1) · · · (qi−1 + yi−1)(qi+1 +

yi+1) · · · (qn+1 + yn+1) ∈ P . Therefore, P is a ϕ-n-absorbing ideal of R.

Example 4.3.2. Consider the semiring Z+
0 . Let P = 28Z+

0 and I = 56Z+
0 . Then

P is a 3-absorbing k-ideal of Z+
0 containing I and I is a Q-ideal of Z+

0 where Q =

{0, 1, 2, 3, . . . , 55}. Thus P is a subtractive extension of I. Define ϕ : I (Z+
0 ) →

I (Z+
0 ) ∪ {∅} by ϕ(J) = 7Z+

0 for all J ∈ I (Z+
0 ). Certainly, ϕ(L) = 7Z+

0 is a

subtractive extension of I = 56Z+
0 for all L ∈ I (R) where L is a subtractive

extension of I. Define ϕI : I (R/I) → I (R/I) ∪ {∅} by ϕI(J/I) = (7Z+
0 )/I
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for each ideal J of R where J is a subtractive extension of I. Thus Z+
0 is the

semiring with ϕ satisfying the property (∗). Since P is a 3-absorbing ideal, P is a

ϕ-3-absorbing ideal. Therefore, P/I = 28Z+
0 /56Z+

0 is a ϕI-3-absorbing ideal of the

quotient semiring Z+
0 /56Z+

0 .

Corollary 4.3.3. Let R be a semiring with ϕ satisfying the property (∗), n a

positive integer and I a Q-ideal of R. Then I is a ϕ-n-absorbing ideal of R if and

only if the zero ideal of R/I is a ϕI-n-absorbing ideal.

Like Chapter III, this chapter is ended with results regarding ϕ-n-absorbing

ideals of semirings of fractions.

Recall that for a semiring R with ϕ, we define ϕS : I (RS) → I (RS)∪{∅} by

ϕS(J) = ϕ(J ∩ R)RS if ϕ(J ∩ R) ∈ I (R) and ϕS(J) = ∅ if ϕ(J ∩ R) = ∅ for all

J ∈ I (RS).

Proposition 4.3.4. Let R be a semiring with ϕ, S the set of all multiplicatively

cancellable elements of R and I a ϕ-prime ideal of R with ϕ(I) ⊆ I and I∩S = ∅.

If IRS ̸= ϕ(I)RS, then IRS ∩R = I.

Proof. Assume that IRS ̸= ϕ(I)RS. Since I ⊆ IRS ∩ R, it remains to show that

IRS ∩ R ⊆ I. Let x ∈ IRS ∩ R. Then
x

1
∈ IRS. Thus there exist a ∈ I and

s ∈ S such that
x

1
=

a

s
. Hence xs = a ∈ I. If xs ∈ I − ϕ(I), then x ∈ I because

I is ϕ-prime and I ∩ S = ∅. So assume that xs ∈ ϕ(I). Then
x

1
=

xs

1s
∈ ϕ(I)RS,

and hence x ∈ ϕ(I)RS ∩ R. Then IRS ∩ R ⊆ I or IRS ∩ R ⊆ ϕ(I)RS ∩ R.

Since I ⊆ IRS ∩ R and ϕ(I)RS ∩ R ⊆ IRS ∩ R, we obtain I = IRS ∩ R or

ϕ(I)RS ∩R = IRS ∩R. If ϕ(I)RS ∩R = IRS ∩R, then ϕ(I)RS = IRS which is a

contradiction. Therefore, IRS ∩R = I.

In the last theorem, we would like to show that if I is a ϕ-n-absorbing ideal

of R under some conditions, then IRS is a ϕS-n-absorbing ideal of RS.

Theorem 4.3.5. Let R be a semiring with ϕ, S the set of all multiplicatively

cancellable elements of R and I an ideal of R with I ∩ S = ∅ and ϕ(I)RS ⊆
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ϕS(IRS). If I is a ϕ-n-absorbing ideal of R, then IRS is a ϕS-n-absorbing ideal

of RS.

Proof. Assume that I is a ϕ-n-absorbing ideal of R. Since I ∩ S = ∅, it fol-

lows that IRS is a proper ideal of RS. Let
x1

s1
,
x2

s2
, . . . ,

xn+1

sn+1

∈ RS be such that

x1x2 · · ·xn+1

s1s2 · · · sn+1

∈ IRS−ϕS(IRS). Theorem 2.3.8 yields that there is v ∈ S such that

x1x2 · · · xn+1v ∈ I−ϕ(I). Since I is ϕ-n-absorbing, x1x2 · · · xn ∈ I or x̂i,nxn+1v ∈ I

for some i ∈ {1, 2, . . . , n}. Thus
x1x2 · · · xn

s1s2 · · · sn
∈ IRS or

x̂i,nxn+1v

ŝi,nsn+1v
∈ IRS. Hence

x̂j,n+1

ŝj,n+1

∈ IRS for some j ∈ {1, 2, . . . , n + 1}. Therefore, IRS is a ϕS-n-absorbing

ideal of RS.



CHAPTER V

GENERALIZATIONS OF Gn-ABSORBING IDEALS OF

SEMIRINGS

This chapter devotes to the last main results of our research. In 2015 [14], S.

Chinwarakorn and S. Pianskool defined a new type of ideals which is still a gen-

eralization of primary ideals and n-absorbing ideals of a ring. They defined a

generalized n-absorbing ideal (simply Gn-absorbing ideal) I of a ring R

to be a proper ideal and if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I,

then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n + 1}. Thus every primary ideal is

a Gn-absorbing ideal but not vice versa. For example, 30Z is a G3-absorbing

ideal of the ring Z and 6 · 5 ∈ 30Z but 6 /∈ 30Z and 5 /∈
√
30Z so that 30Z is

not a primary ideal of the semiring Z. Hence Gn-absorbing ideals are a gener-

alization of primary ideals. Moreover, every n-absorbing ideal is a Gn-absorbing

ideal. However, Gn-absorbing ideals need not be n-absorbing ideals. For exam-

ple, the ideal {(0̄, 0̄)} is a G2-absorbing ideal but is not a 2-absorbing ideal of the

ring Z6 × Z9 since (2̄, 1̄)(1̄, 3̄)(3̄, 3̄) ∈ {(0̄, 0̄)} but (2̄, 1̄)(1̄, 3̄) = (2̄, 3̄) /∈ {(0̄, 0̄)},

(2̄, 1̄)(3̄, 3̄) = (0̄, 3̄) /∈ {(0̄, 0̄)} and (1̄, 3̄)(3̄, 3̄) = (3̄, 0̄) /∈ {(0̄, 0̄)}. Therefore, Gn-

absorbing ideals are a generalization of n-absorbing ideals.

In this chapter, we extend the notion of generalized n-absorbing ideals of a ring

to ϕ-generalized-n-absorbing ideals of a semiring . We define a ϕ-generalized n-

absorbing ideal (simply ϕ-Gn-absorbing) I of a semiring R with ϕ to be a

proper ideal and if whenever x1, x2, . . . , xn+1 ∈ R with x1x2 · · · xn+1 ∈ I − ϕ(I),

then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

Like Chapter III and Chapter IV, we divide this chapter into three sections.

They are ϕ-Gn-absorbing ideals of semirings, ϕ-Gn-absorbing ideals in decompos-

able semirings and ϕ-Gn-absorbing ideals in quotient semirings and semirings of
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fractions. Note further that almost all of the results of this chapter are parallel to

the results of Chapter IV.

5.1 ϕ-Gn-Absorbing Ideals of Semirings

In the same fashion as in the previous chapters, we begin this chapter with the def-

initions that we use throughout this chapter. First, we define Gn-absorbing ideals

of semirings similarly to Gn-absorbing ideals of rings given by S. Chinwarakorn

and S. Pianskool in [14]. Moreover, we define weakly Gn-absorbing ideals, almost

Gn-absorbing ideals, m-almost Gn-absorbing ideals and ω-Gn-absorbing ideals of

semirings in the same way as weakly n-absorbing ideals, almost n-absorbing ideals,

m-almost n-absorbing ideals and ω-n-absorbings given in Chapter IV.

Definition 5.1.1. Let R be a semiring and n a positive integer.

A proper ideal I of R is said to be generalized n-absorbing , or simply

Gn-absorbing, if whenever x1, x2, . . . , xn+1 ∈ R and x1x2 · · · xn+1 ∈ I, then

x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n + 1}. Moreover, we denote 0-Gn-absorbing

the ideal R.

A proper ideal I of R is said to be weakly generalized n-absorbing, or sim-

plyweakly Gn-absorbing, if whenever x1, x2, . . . , xn+1 ∈ R and 0 ̸= x1x2 · · · xn+1

∈ I, then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

A proper ideal I of R is said to be almost generalized n-absorbing, or sim-

ply almost Gn-absorbing, if whenever x1, x2, . . . , xn+1 ∈ R and x1x2 · · · xn+1 ∈

I − I2, then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

A proper ideal I of R is said to be m-almost generalized n-absorbing

(m ∈ N with m ≥ 2), or simplym-almost Gn-absorbing, if whenever x1, x2, . . . ,

xn+1 ∈ R and x1x2 · · · xn+1 ∈ I−Im, then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

A proper ideal I of R is said to be ω-generalized n-absorbing, or simply ω-

Gn-absorbing, if whenever x1, x2, . . . , xn+1 ∈ R and x1x2 · · · xn+1 ∈ I − ∩∞
n=1I

n,

then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

Hence, the zero ideal is a weakly Gn-absorbing ideal, an almost Gn-absorbing
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ideal, an m-almost Gn absorbing ideal and an ω-Gn-absorbing ideal like the pre-

vious chapters.

In the following result, we provide a characterization of being Gn-absorbing

ideals of semirings.

Theorem 5.1.2. Let R be a semiring, I a proper ideal of R and n, n′ positive

integers with n′ > n. Then I is a Gn-absorbing ideal if and only if whenever

x1x2 · · · xn′ ∈ I for x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · · xin ∈
√
I for some distinct

i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Proof. First, assume that I is a Gn-absorbing ideal of R and x1, x2, . . . , xn′ ∈ R

with n′ > n be such that x1x2 · · · xn′ ∈ I. Then x1x2 · · · xn(xn+1xn+2 · · · xn′) ∈ I.

Since I is a Gn-absorbing ideal, x1x2 · · · xn ∈
√
I or x̂i,n(xn+1xn+2 · · ·xn′) ∈

√
I

for some i ∈ {1, 2, . . . , n}. If x1x2 · · · xn ∈
√
I, then we are done. Assume that the

other case is yielded. Without loss of generality, we suppose that x2x3 · · · xn′ ∈
√
I,

i.e., (x2x3 · · · xn′)α ∈ I for some α ∈ N. Thus we write

xα
2x

α
3 · · · xα

n+1(x
α
n+2x

α
n+3 · · · xα

n′) = (x2x3 · · · xn′)α ∈ I.

Then xα
2x

α
3 · · · xα

n+1 ∈
√
I or xα

2 · · · xα
i−1x

α
i+1 · · ·xα

n+1(x
α
n+2x

α
n+3 · · · xα

n′) ∈
√
I for

some i ∈ {2, . . . , n + 1} because I is a Gn-absorbing ideal. Then we obtain

x2x3 · · · xn+1 ∈
√√

I =
√
I or x2 · · · xi−1xi+1 · · ·xn+1(xn+2xn+3 · · · xn′) ∈

√√
I =

√
I. If x2x3 · · · xn+1 ∈

√
I, then we are done. If not, by repeating the same

process as above, we obtain xi1xi2 · · · xin ∈
√
I for some distinct i1, i2, . . . , in ∈

{1, 2, . . . , n′}.

Conversely, the proof is clear by choosing n′ = n+ 1.

Next, we show that if I is a Gn-absorbing ideal, then I is a Gn′-absorbing ideal

for all integer n′ ≥ n.

Proposition 5.1.3. Let R be a semiring, I a proper ideal of R and n a positive

integer. If I is a Gn-absorbing ideal, then I is a Gn′-absorbing ideal for all n′ ∈ N

with n′ ≥ n.
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Proof. Assume that I is a Gn-absorbing ideal of R. Let n′ ∈ N be such that n′ ≥ n.

Note that, if n′ = n, then there is nothing to do. So we assume that n′ > n. Let

x1, x2, . . . , xn′+1 ∈ R be such that x1x2 · · · xn′+1 ∈ I. Applying Theorem 5.1.2

yields xi1xi2 · · · xin ∈
√
I for some distinct i1, i2, . . . , in ∈ {1, 2, . . . , n′ + 1}. By

choosing all distinct

in+1, in+2, . . . , in′ ∈ {1, 2, . . . , n′ + 1} − {i1, i2, . . . , in}

and by multiplying, we get xi1xi2 · · · xin′ = (xi1xi2 · · · xin)
(
xin+1xin+2 · · · xn′

)
∈
√
I.

Hence, I is a Gn′-absorbing ideal of R. Therefore, I is a Gn′-absorbing ideal for

all n′ ≥ n as desired.

Nevertheless, the converse of the Proposition 5.1.3 is not true as we shown in

the following example.

Example 5.1.4. Consider the semiring Z+
0 . Then 20Z+

0 is a G2-absorbing ideal

of the semiring Z+
0 but is not a G1-absorbing ideal of the semiring Z+

0 because

4 · 5 = 20 ∈ 20Z+
0 but 4α /∈ 20Z+

0 for all α ∈ N and 5β /∈ 20Z+
0 for all β ∈ N, i.e.,

4 /∈
√

20Z+
0 and 5 /∈

√
20Z+

0 .

From the Definition 5.1.1, we can conclude that every primary ideal (weakly

primary ideal, almost primary ideal, m-almost primary ideal and ω primary ideal)

is a Gn-absorbing ideal (weakly Gn-absorbing ideal, almost Gn-absorbing ideal,

m-almost Gn-absorbing ideal and ω-Gn-absorbing ideal). Moreover, every n-

absorbing ideal (weakly n-absorbing ideal, almost n-absorbing ideal, m-almost

n-absorbing ideal and ω-n-absorbing ideal) is a Gn-absorbing ideal (weakly Gn-

absorbing ideal, almost Gn-absorbing ideal, m-almost Gn-absorbing ideal and ω-

Gn-absorbing ideal). Certainly, the converse of both statements are not true in

general and we provide an example to confirm.

Example 5.1.5. Consider the semiring Z+
0 .

(1) Consider the ideal 100Z+
0 . Form Chapter IV, we know that 100Z+

0 is a

4-absorbing ideal of the semiring Z+
0 . Then 100Z+

0 is a G4-absorbing ideal of the

semring Z+
0 . Since 4 · 25 = 100 ∈ 100Z+

0 but 4 /∈ 100Z+
0 and 25 /∈

√
100Z+

0 , the
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ideal 100Z+
0 is not a primary ideal of the semiring Z+

0 .

(2) Consider the ideal 900Z+
0 . The ideal 900Z+

0 is a G3-absorbing ideal of

the semiring Z+
0 but is not a 3-absorbing ideal of the semiring Z+

0 because 2 · 5 ·

9 · 10 = 900 ∈ 900Z+
0 but 2 · 5 · 9 = 90 /∈ 900Z+

0 , 2 · 5 · 10 = 100 /∈ 900Z+
0 ,

2 · 9 · 10 = 180 /∈ 900Z+
0 and 5 · 9 · 10 = 450 /∈ 900Z+

0 .

Consequently, Gn-absorbing ideals are a generalization of primary ideals and

of n-absorbing ideals.

From the fact that Gn-absorbing ideals are a generalization of n-absorbing

ideals, in the following proposition, we provide a result that helps us find examples

of Gn-absorbing ideals which are not n-absorbing ideals.

Proposition 5.1.6. Let n, α1, α2, . . . , αn be positive integers and p1, p2, . . . , pn

prime numbers (not necessary distinct). Then pα1
1 pα2

2 · · · pαn
n Z+

0 is a Gn-absorbing

ideal but not an n-absorbing ideal of the semiring Z+
0 if there is αi > 1 for some

i ∈ {1, 2, . . . , n}.

Proof. First, we show that the ideal pα1
1 pα2

2 · · · pαn
n Z+

0 is a Gn-absorbing ideal

of the semiring Z+
0 . Let x1, x2, . . . , xn+1 ∈ Z+

0 be such that x1x2 · · · xn+1 ∈

pα1
1 pα2

2 · · · pαn
n Z+

0 . Then x1x2 · · · xn+1 = pα1
1 pα2

2 · · · pαn
n a for some a ∈ Z+

0 . Thus pi

is a factor of xj for some j ∈ {1, 2, . . . , n+1}. Hence there is {xi1 , xi2 , . . . , xin−m} ⊆

{x1, x2, . . . , xn+1} for somem ∈ Z+
0 and for some distinct i1, i2, . . . , in−m ∈ {1, 2, . . . ,

n + 1} such that xi1xi2 · · · xin−m = p1p2 · · · pnh for some h ∈ Z+
0 . By choosing all

distinct

in−m+1, in−m+2, . . . , in ∈ {1, 2, . . . , n+ 1} − {i1, i2, . . . , in−m}

and by multiplying,

xi1xi2 · · · xin = (xi1xi2 · · · xin−m)(xin−m+1xin−m+2 · · · xin) = p1p2 · · · pnhl

for some l ∈ Z+
0 . Let α = α1 + α2 + · · ·+ αn. Then α ∈ N. Hence

(xi1xi2 · · · xin)
α = (p1p2 · · · pnhl)α

= (p1p2 · · · pnhl)α1+α2+···+αn
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= pα1+α2+···+αn
1 pα1+α2+···+αn

2 · · · pα1+α2+···+αn
n (hl)α1+α2+···+αn

= pα1
1 pα2

2 · · · pαn
n (pα2+α3+···+αn

1 pα1+α3+···+αn
2 · · · pα1+α2+···+αn−1

n (hl)α1+α2+···+αn)

∈ pα1
1 pα2

2 · · · pαn
n Z+

0 .

Thus xi1xi2 · · · xin ∈
√
pα1
1 pα2

2 · · · pαn
n Z+

0 . Therefore, pα1
1 pα2

2 · · · pαn
n Z+

0 is a Gn-

absorbing ideal of the semiring Z+
0 .

Next, it remains to show that pα1
1 pα2

2 · · · pαn
n Z+

0 is not an n-absorbing ideal of

the semiring Z+
0 if there is αi > 1 for some i ∈ {1, 2, . . . , n}. Without loss of

generality, we suppose that αn > 1. Since

pα1
1 pα2

2 · · · pαn−1
n pn = pα1

1 pα2
2 · · · pαn

n ∈ pα1
1 pα2

2 · · · pαn
n Z+

0

but pα1
1 pα2

2 · · · pαn−1
n /∈ pα1

1 pα2
2 · · · pαn

n Z+
0 , p

α1
1 pα2

2 · · · pαn−1

n−1 pn /∈ pα1
1 pα2

2 · · · pαn
n Z+

0 and

pα1
1 pα2

2 · · · pαi−1

i−1 p
αi+1

i+1 · · · pαn−1
n pn /∈ pα1

1 pα2
2 · · · pαn

n Z+
0 for all i ∈ {1, 2, . . . , n − 1}, we

can conclude that pα1
1 pα2

2 · · · pαn
n Z+

0 is not an n-absorbing ideal of the semiring Z+
0 .

Example 5.1.7. Consider the semiring Z+
0 .

(1) 1296Z+
0 = 24 · 34Z+

0 is a G2-absorbing ideal but is not a 2-absorbing ideal

of the semiring Z+
0 .

(2) 490Z+
0 = 2 · 5 · 72Z+

0 is a G3-absorbing ideal but is not a 3-absorbing ideal

of the semiring Z+
0 .

(3) 3500Z+
0 = 2 · 2 · 53 · 7Z+

0 is a G4-absorbing ideal but is not a 4-absorbing

ideal of the semiring Z+
0 .

From Proposition 5.1.6, it is clear that if p1 = p2 = · · · = pn, then we obtain

that pα1
1 pα2

2 · · · pαn
n Z+

0 = pα1+α2+···+αn
1 Z+

0 is a primary ideal of the semiring Z+
0 .

It makes us wonder that if there are pi, pj ∈ {p1, p2, . . . , pn} such that pi ̸= pj,

then pα1
1 pα2

2 · · · pαn
n Z+

0 is still a primary ideal of the semiring Z+
0 or not. The next

proposition is an answer to this. For the convenience, we write pα1
1 pα2

2 · · · pαn
n

in the form qβ1

1 qβ2

2 · · · qβl

l where q1, q2, . . . , ql are all distinct prime numbers and

β1, β2, . . . , βl ∈ N; in addition, it is clear that l ≤ n. Then pα1
1 pα2

2 · · · pαn
n Z+

0 =
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qβ1

1 qβ2

2 · · · qβl

l Z+
0 is a Gl-absorbing ideal of the semiring Z+

0 ; nonetheless, by the fact

that l ≤ n, so it is a Gn-absorbing ideal.

Proposition 5.1.8. Let n, α1, α2, . . . , αn be positive integers and p1, p2, . . . , pn all

distinct prime numbers . Then pα1
1 pα2

2 · · · pαn
n Z+

0 is a Gn-absorbing ideal but not a

primary ideal of the semiring Z+
0 if n ≥ 2.

Proof. By Proposition 5.1.6, pα1
1 pα2

2 · · · pαn
n Z+

0 is a Gn-absorbing ideal of the semir-

ing Z+
0 . Thus it remains to show that pα1

1 pα2
2 · · · pαn

n Z+
0 is not a primary ideal of

the semiring Z+
0 if n ≥ 2. Assume that n ≥ 2. Since

(pα1
1 pα2

2 · · · pαn−1

n−1 )(pαn
n ) = pα1

1 pα2
2 · · · pαn

n ∈ pα1
1 pα2

2 · · · pαn
n Z+

0

but pα1
1 pα2

2 · · · pαn−1

n−1 /∈ pα1
1 pα2

2 · · · pαn
n Z+

0 and (pαn
n )α /∈ pα1

1 pα2
2 · · · pαn

n Z+
0 for all α ∈ N

because n ≥ 2 and p1, p2, . . . , pn are all distinct prime numbers. Then we obtain

pα1
1 pα2

2 · · · pαn−1

n−1 /∈ pα1
1 pα2

2 · · · pαn
n Z+

0 and pαn
n /∈

√
pα1
1 pα2

2 · · · pαn
n Z+

0 . Therefore, we

can conclude that pα1
1 pα2

2 · · · pαn
n Z+

0 is not a primary ideal of the semiring Z+
0 where

n ≥ 2.

Example 5.1.9. Consider the semiring Z+
0 .

(1) 484Z+
0 = 22 · 112Z+

0 is a G2-absorbing ideal but is not a primary ideal of

the semiring Z+
0 .

(2) 150Z+
0 = 2 · 3 · 52 is a G3-absorbing ideal but is not a primary ideal of the

semiring Z+
0 .

Next, we define ϕ-generalized-n-absorbing ideals of semirings which is a main

character of this chapter.

Definition 5.1.10. A proper ideal I of a semiring R is said to be ϕ-generalized-

n-absorbing, or simply ϕ-Gn-absorbing, if whenever x1, x2, . . . , xn+1 ∈ R and

x1x2 · · · xn+1 ∈ I − ϕ(I), then x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}.

Let R be a semiring with ϕ. From Chapter IV, we obtain that ϕ-primary ideals

and ϕ-n-absorbing ideals do not imply each other. In the following result, we would
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like to show that every ϕ-primary ideal and ϕ-n-absorbing ideal are ϕ-Gn-absorbing

ideals for all n ∈ N.

Proposition 5.1.11. Let R be a semiring with ϕ and n a positive integer. Then

(1) every ϕ-primary ideal of R is a ϕ-Gn-absorbing ideal of R, and

(2) every ϕ-n-absorbing ideal of R is a ϕ-Gn-absorbing ideal of R.

Proof. (1) Assume that I is a ϕ-primary ideal of R. Let x1, x2, . . . , xn+1 ∈ R

be such that x1x2 · · · xn+1 ∈ I − ϕ(I). Since I is a ϕ-primary ideal of R and

x1(x2x3 · · · xn+1) ∈ I − ϕ(I), we obtain x1 ∈ I or x2x3 · · · xn+1 ∈
√
I. If x1 ∈ I,

then x1x̂i,n+1 ∈ I ⊆
√
I for all i ∈ {2, 3, . . . , n+1}. If x2x3 · · · xn+1 ∈

√
I, then we

are done. Hence we can conclude that x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n + 1}.

Therefore, I is a ϕ-Gn-absorbing ideal of R.

(2) Assume that I is a ϕ-n-absorbing ideal of R. Let x1, x2, . . . , xn+1 ∈ R

be such that x1x2 · · · xn+1 ∈ I − ϕ(I). Since I is a ϕ-n-absorbing ideal of R, we

obtain x̂i,n+1 ∈ I for some i ∈ {1, 2, . . . , n + 1}. Then x̂i,n+1 ∈
√
I for some

i ∈ {1, 2, . . . , n + 1} because I ⊆
√
I. Therefore, I is a ϕ-Gn-absorbing ideal

of R.

However, the converse of each statement of the above proposition is not true

in general as shown in the next example.

Example 5.1.12. Consider the semiring Z+
0 with ϕ2. Recall that ϕ2 is the function

defined by ϕ2(I) = I2 for all I ∈ I (Z+
0 ). Consider the ideal 363Z+

0 of Z+
0 . Since

363 = 3 · 112, it follows that 363Z+
0 is a G2-absorbing ideal of Z+

0 , so it is a ϕ2-G2-

absorbing ideal of Z+
0 .

Since 33 · 11 = 363 ∈ 363Z+
0 − (363Z+

0 )
2 = 363Z+

0 − 131769Z+
0 but 33 /∈ 363Z+

0

and 11α /∈ 363Z+
0 for all α ∈ N, i.e., 33 /∈ 363Z+

0 and 11 /∈
√
363Z+

0 , it follows that

363Z+
0 is not a ϕ2-primary ideal of Z+

0 .

Because 3 · 11 · 11 = 363 ∈ 363Z+
0 − (363Z+

0 )
2 = 363Z+

0 − 131769Z+
0 but

3 · 11 = 33 /∈ 363Z+
0 , 11 · 11 = 121 /∈ 363Z+

0 , it follows that 363Z+
0 is not a ϕ2-2-

absorbing ideal of Z+
0 .
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Therefore, we can conclude that 363Z+
0 is a ϕ2-G2-absorbing ideal but is not a

ϕ2-primary ideal and is not a ϕ2-2-absorbing ideal of Z+
0 .

From Proposition 5.1.11 and Example 5.1.12, we acquire that ϕ-Gn-absorbing

ideals are a generalization of both ϕ-primary ideals and ϕ-n-absorbing ideals.

Theorem 5.1.13. Let R be a semiring with ϕ, I a proper ideal of R such that

ϕ(
√
I) =

√
ϕ(I) and n, n′ positive integers with n′ > n. Then

√
I is a ϕ-

Gn-absorbing ideal if and only if whenever x1x2 · · · xn′ ∈
√
I − ϕ(

√
I) for any

x1, x2, . . . , xn′ ∈ R, then xi1xi2 · · · xin ∈
√
I for some distinct i1, i2, . . . , in ∈

{1, 2, . . . , n′}.

Proof. First, let
√
I be a ϕ-Gn-absorbing ideal of R and x1, x2, . . . , xn′ ∈ R with

n′ > n be such that x1x2 · · · xn′ ∈
√
I − ϕ(

√
I). Since ϕ(

√
I) =

√
ϕ(I), we

gain x1x2 · · · xn′ ∈
√
I −

√
ϕ(I) . Because

√
I is a ϕ-Gn-absorbing ideal and

x1x2 · · ·xn(xn+1xn+2 · · · xn′) ∈
√
I − ϕ(

√
I), we obtain x1x2 · · ·xn ∈

√√
I or

x̂i,n(xn+1xn+2 · · · xn′) ∈
√√

I for some i ∈ {1, 2, . . . , n}. Thus we divide this

proof into two cases.

Case 1: If x1x2 · · · xn ∈
√√

I =
√
I, then we are done.

Case 2: Assume that x̂i,nxn+1xn+2 · · · xn′ ∈
√√

I =
√
I. Because x1x2 · · · xn′ /∈√

ϕ(I), we obtain x̂i,nxn+1(xn+2 · · · xn′) ∈
√
I −

√
ϕ(I) =

√
I − ϕ(

√
I). Since

√
I

is a ϕ-Gn-absorbing ideal, x̂i,nxn+1 ∈
√√

I or x̂{i,j},n+1(xn+2 · · · xn′) ∈
√√

I for

some j ∈ {1, 2, . . . , n+ 1} − {i}. We divide this case into two subcases.

Subcase 2.1: If x̂i,nxn+1 ∈
√√

I =
√
I, then we are done.

Subcase 2.2: Assume that x̂{i,j},n+1(xn+2 · · · xn′) ∈
√√

I. By repeating the

same process as above, we must have xi1xi2 · · · xin ∈
√√

I =
√
I for some distinct

i1, i2, . . . , in ∈ {1, 2, . . . , n′}.

Conversely, the proof is clear by choosing n′ = n+ 1.

Proposition 5.1.14. Let R be a semiring with ϕ, I a proper ideal of R such that

ϕ(
√
I) =

√
ϕ(I) and n a positive integer. If

√
I is a ϕ-Gn-absorbing ideal, then

√
I is a ϕ-Gn′-absorbing ideal for all n′ ≥ n.
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Proof. Assume that
√
I is a ϕ-Gn-absorbing ideal. Let n′ ∈ N be such that n′ ≥ n.

Let x1, x2, . . . , xn′+1 ∈ R be such that x1x2 · · · xn′+1 ∈
√
I − ϕ(

√
I). By Theo-

rem 5.1.13, we obtain that xi1xi2 · · · xin ∈
√√

I for some distinct i1, i2, . . . , in ∈

{1, 2, . . . , n′}. By choosing all distinct

in+1, in+2, . . . , in′ ∈ {1, 2, . . . , n′} − {i1, i2, . . . , in}

and by multiplying, we have

xi1xi2 · · · xin′ = (xi1xi2
· · · xin)(xin+1xin+2 · · · xin′ ) ∈

√√
I.

Therefore,
√
I is a ϕ-Gn′-absorbing ideal for all n′ ≥ n.

Proposition 5.1.15. Let R be a semiring with ϕ and I a proper ideal of R such

that ϕ(
√
I) =

√
ϕ(I). If I is a ϕ-Gn-absorbing ideal, then

√
I is a ϕ-Gn-absorbing

ideal.

Proof. Assume that I is a ϕ-Gn-absorbing ideal of R such that ϕ(
√
I) =

√
ϕ(I).

If 1 ∈
√
I, then 1 ∈ I, which is a contradiction. Thus 1 /∈

√
I, and hence

√
I is a

proper ideal. Let x1, x2, . . . , xn+1 ∈ R be such that x1x2 · · · xn+1 ∈
√
I − ϕ(

√
I).

Since ϕ(
√
I) =

√
ϕ(I), we have x1x2 · · · xn+1 ∈

√
I−

√
ϕ(I). Then xα

1x
α
2 · · · xα

n+1 =

(x1x2 · · · xn+1)
α ∈ I − ϕ(I) for some α ∈ N. Since I is a ϕ-Gn-absorbing ideal,

(x̂i,n+1)
α ∈ I for some i ∈ {1, 2, . . . , n + 1}, i.e., x̂i,n+1 ∈

√
I =

√√
I for some

i ∈ {1, 2, . . . , n+ 1}. Therefore,
√
I is a ϕ-Gn-absorbing ideal.

In the following example, we provide relationships between ϕ-Gn-absorbing

ideals and Gn-absorbing ideals (weakly Gn-absorbing ideals, almost Gn-absorbing

ideals, m-almost Gn-absorbing ideals, ω-Gn-absorbing ideals) in the same manner

as Chapter III and Chapter IV.

Example 5.1.16. Let R be a semiring. Then

(1) I is a ϕ∅-Gn-absorbing ideal if and only if I is a Gn-absorbing ideal,

(2) I is a ϕ0-Gn-absorbing ideal if and only if I is a weakly Gn-absorbing ideal,

(3) I is a ϕ1-Gn-absorbing ideal if and only if I is a proper ideal,
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(4) I is a ϕ2-Gn-absorbing ideal if and only if I is an almost Gn-absorbing ideal,

(5) I is a ϕm-Gn-absorbing ideal if and only if I is an m-almost Gn-absorbing

ideal, and

(6) I is a ϕω-Gn-absorbing ideal if and only if I is an ω-Gn-absorbing ideal.

Proposition 5.1.17. Let R be a semiring, n a positive integer, I a proper ideal

of R and φ1 ≤ φ2 where φ1 and φ2 are functions from I (R) into I (R)∪ {∅}. If

I is a φ1-Gn-absorbing ideal, then I is a φ2-Gn-absorbing ideal.

Proof. The proof is similar to one of Proposition 3.1.6.

Corollary 5.1.18. Let I be a proper ideal of a semiring and n,m ∈ N with m ≥ 2.

Consider the following statements:

(1) I is a Gn-absorbing ideal.

(2) I is a weakly Gn-absorbing ideal.

(3) I is an ω-Gn-absorbing ideal.

(4) I is an (m+ 1)-almost Gn-absorbing ideal.

(5) I is an m-almost Gn-absorbing ideal.

(6) I is an almost Gn-absorbing ideal.

Then (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (6).

The next result is parallel to the result derived from Proposition 3.1.8.

Proposition 5.1.19. Let R be a semiring, n a positive integer and I a proper

ideal of R. Then I is an ω-Gn-absorbing ideal if and only if I is an m-almost

Gn-absorbing ideal for all m ≥ 2.

Proof. The proof for the first direction is clear by Corollary 5.1.18.

Conversely, the proof is similar to the proof of Proposition 3.1.8.
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The following theorem is analogous to the Theorem 4.1.24.

Theorem 5.1.20. Let R be a semiring with ϕ, n a positive integer and I a proper

k-ideal of R such that ϕ(I) is a k-ideal. If I is a ϕ-Gn-absorbing ideal with In+1 ̸⊆

ϕ(I), then I is a Gn-absorbing ideal.

Proof. Suppose that I is a ϕ-Gn-absorbing ideal with In+1 ̸⊆ ϕ(I). Let x1, x2, . . . ,

xn+1 ∈ R be such that x1x2 · · · xn+1 ∈ I. If x1x2 · · · xn+1 ∈ I − ϕ(I), then

x̂i,n+1 ∈
√
I for some i ∈ {1, 2, . . . , n+ 1}. Assume that x1x2 · · · xn+1 ∈ ϕ(I).

Case 1: Assume that x̂i,n+1I ̸⊆ ϕ(I) for some i ∈ {1, 2, . . . , n + 1}. Then there

exists p1 ∈ I such that x̂i,n+1p1 ∈ I−ϕ(I). Thus x̂i,n+1(xi+p1) ∈ I−ϕ(I) because

ϕ(I) is a k-ideal. Since I is ϕ-Gn-absorbing, x̂i,n+1 ∈
√
I or x̂{i,j},n+1(xi+p1) ∈

√
I

for some j ∈ {1, 2, . . . , n + 1} − {i}. If x̂i,n+1 ∈
√
I, then we are done. Sup-

pose that x̂{i,j},n+1(xi + p1) ∈
√
I for some j ∈ {1, 2, . . . , n + 1} − {i}. That is

(x̂{i,j},n+1(xi+p1))
α ∈ I for some α ∈ N. Since I is a k-ideal and p1 ∈ I, we obtain

(x̂j,n+1)
α ∈ I, i.e., x̂j,n+1 ∈

√
I.

Case 2: Assume that x̂i,n+1I ⊆ ϕ(I) for all i ∈ {1, 2, . . . , n+ 1}.

Subcase 2.1: Suppose that x̂{i,j},n+1I
2 * ϕ(I) for some j ∈ {1, 2, . . . , n+1}−

{i}. Then there are p1, p2 ∈ I such that x̂{i,j},n+1p1p2 /∈ ϕ(I). Because ϕ(I) is a

k-ideal, we gain x̂{i,j},n+1(xi+ p1)(xj + p2) ∈ I −ϕ(I). Since I is a ϕ-Gn-absorbing

ideal, x̂{i,j},n+1(xi+ p1) ∈
√
I or x̂{i,j},n+1(xj + p2) ∈

√
I or x̂{i,j,l},n+1(xi+ p1)(x2 +

p2) ∈
√
I for some l ∈ {1, 2, . . . , n + 1} − {i, j}, i.e., (x̂{i,j},n+1(xi + p1))

α ∈ I or

(x̂{i,j},n+1(xj + p2))
β ∈ I or (x̂{i,j,l},n+1(xi+ p1)(x2+ p2))

γ ∈ I for some α, β, γ ∈ N.

Hence (x̂i,n+1)
α ∈ I or (x̂j,n+1)

β ∈ I or (x̂l,n+1)
γ ∈ I because I is a k-ideal. Thus

we obtain x̂i,n+1 ∈
√
I or x̂j,n+1 ∈

√
I or x̂l,n+1 ∈

√
I.

Subcase 2.2: Suppose that x̂{i,j},n+1I
2 ⊆ ϕ(I) for all j ∈ {1, 2, . . . , n+1}−{i}.

Subcase 2.2.1: Assume x̂{i,j,l},n+1I
3 * ϕ(I) for some l ∈ {1, 2, . . . , n+ 1}

− {i, j}. Then there exist p1, p2, p3 ∈ I such that x̂{i,j,l},n+1p1p2p3 /∈ ϕ(I). Thus

x̂{i,j,l},n+1(xi + p1)(xj + p2)(xl + p3) ∈ I −ϕ(I) because ϕ(I) is a k-ideal. Since I is

a ϕ-Gn-absorbing ideal, we obtain x̂{i,j,l},n+1(xi+p1)(xj+p2) ∈
√
I or x̂{i,j,l},n+1(xi+

p1)(xl + p3) ∈
√
I or x̂{i,j,l},n+1(xj + p2)(xl + p3) ∈

√
I or x̂{i,j,l,h},n+1(xi + p1)(xj +
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p2)(xl + p3) ∈
√
I for some h ∈ {1, 2, . . . , n + 1} − {i, j, l}. Then (x̂{i,j,l},n+1(xi +

p1)(xj + p2))
α ∈ I or (x̂{i,j,l},n+1(xi + p1)(xl + p3))

β ∈ I or (x̂{i,j,l},n+1(xj + p2)(xl +

p3))
γ ∈ I or (x̂{i,j,l,h},n+1(xi + p1)(xj + p2)(xl + p3))

δ ∈ I for some α, β, γ, δ ∈ N.

Since I is a k-ideal, we obtain (x̂i,n+1)
α ∈ I or (x̂j,n+1)

β ∈ I or (x̂l,n+1)
γ ∈ I or

(x̂h,n+1)
δ ∈ I. That is x̂i,n+1 ∈

√
I or x̂j,n+1 ∈

√
I or x̂l,n+1 ∈

√
I or x̂h,n+1 ∈

√
I.

Subcase 2.2.2: Assume x̂{i,j,l},n+1I
3 ⊆ ϕ(I) for all l ∈ {1, 2, . . . , n + 1} −

{i, j}.

Continue this process, it remains to show the following case.

Assume xi1xi2 · · · xin+1−mI
m ⊆ ϕ(I) for all {i1, i2, . . . , in+1−m} ⊆ {1, 2, . . . , n+ 1}

where 1 ≤ m ≤ n. Since In+1 * ϕ(I), there exist p1, p2, . . . , pn+1 ∈ I such that

p1p2 · · · pn+1 /∈ ϕ(I). Then (x1+p1)(x2+p2) · · · (xn+1+pn+1) ∈ I−ϕ(I). Since I is

ϕ-Gn-absorbing, (x1+p1)(x2+p2) · · · (xi−1+pi−1)(xi+1+pi+1) · · · (xn+1+pn+1) ∈
√
I

for some i ∈ {1, 2, . . . , n + 1}. Then ((x1 + p1)(x2 + p2) · · · (xi−1 + pi−1)(xi+1 +

pi+1) · · · (xn+1 + pn+1))
α ∈ I. Hence (x̂i,n+1)

α ∈ I because I is a k-ideal. Thus

x̂i,n+1 ∈
√
I.

Therefore, from any cases, we can conclude that I is a Gn-absorbing ideal.

Corollary 5.1.21. Let R be a semiring, n a positive integer and I a proper k-ideal

of R. If I is a ϕ-Gn-absorbing ideal for some ϕ with ϕ ≤ ϕn+2 such that ϕ(I) is a

k-ideal, then I is an m-almost Gn-absorbing ideal for all m ≥ n+ 1.

Proof. The proof is similar to the proof of Corollary 4.1.25.

Corollary 5.1.22. Let R be a semiring. If I is a weakly Gn-absorbing k-ideal but

is not Gn-absorbing, then In+1 = {0}.

Proof. Assume that I is a weakly Gn-absorbing k-ideal but is not a Gn-absorbing

ideal. Since I is a weakly Gn-absorbing ideal, I is ϕ0-Gn-absorbing. By Theo-

rem 5.1.20, we have In+1 ⊆ ϕ0(I) = {0}. Hence In+1 = {0}.

For the ideal {0} of the semiring Q+
0 and a positive integer n, we know that

{0}n+1 = {0} and {0} is an n-absorbing ideal of Q+
0 by Example 4.1.2 (1). Since

every n-absorbing ideal is a Gn-absorbing ideal, it follows that the converse of
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Corollary 5.1.22 is not true.

The next result is similar to the result derived from Theorem 4.1.27.

Theorem 5.1.23. Let R be a semiring with ϕ, n a positive integer and I a proper

ideal such that ϕ(I) ⊆ I. Then the following statements are equivalent.

(1) I is a ϕ-Gn-absorbing ideal.

(2) (I : x1x2 · · · xn) ⊆ ∪n
i=1(

√
I : x̂i,n) ∪ (ϕ(I) : x1x2 · · ·xn) for any x1x2 · · · xn ∈

R−
√
I.

Proof. To show (1) ⇒ (2), assume I is ϕ-Gn-absorbing. Let x1, x2, . . . , xn ∈ R be

such that x1x2 · · · xn ∈ R −
√
I. Let y ∈ (I : x1x2 · · · xn). Then x1x2 · · · xny ∈ I.

If x1x2 · · · xny ∈ I − ϕ(I), then x̂i,ny ∈
√
I for some {1, 2, . . . , n} because I is a

ϕ-Gn-absorbing ideal and x1x2 · · · xn ̸∈
√
I. Hence y ∈ (

√
I : x̂i,n). Otherwise, we

assume that x1x2 · · · xny ∈ ϕ(I). Thus y ∈ (ϕ(I) : x1x2 · · · xn). Therefore,

(I : x1x2 · · · xn) ⊆ ∪n
i=1(

√
I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn).

To show (2) ⇒ (1), suppose that (2) holds. Let x1, x2, . . . , xn+1 ∈ R be such

that x1x2 · · · xn+1 ∈ I − ϕ(I). If x1x2 · · · xn ∈
√
I, then we are done. Suppose that

x1x2 · · · xn /∈
√
I. By (2),

(I : x1x2 · · · xn) ⊆ ∪n
i=1(

√
I : x̂i,n) ∪ (ϕ(I) : x1x2 · · · xn).

Then xn+1 ∈ (I : x1x2 · · · xn)−(ϕ(I) : x1x2 · · · xn) because x1x2 · · · xn+1 ∈ I−ϕ(I).

Hence xn+1 ∈ (
√
I : x̂i,n) for some i ∈ {1, 2, . . . , n}. Then we acquire x̂i,nxn+1 ∈

√
I. Therefore, I is a ϕ-Gn-absorbing ideal.

This section is completed by providing the result of ϕ-Gn-absorbing ideals of

strongly Euclidean semirings.

Theorem 5.1.24. Let R be a strongly Euclidean semiring, n a positive integer and

a ∈ R such that (⟨a⟩2 : a) = ⟨a⟩ . Then ⟨a⟩ is a ϕ-Gn-absorbing ideal for some ϕ

with ϕ ≤ ϕ2 if and only if ⟨a⟩ is a Gn-absorbing ideal.
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Proof. If ⟨a⟩ is a Gn-absorbing ideal, then ⟨a⟩ is ϕ-Gn-absorbing for any ϕ. So we

assume that ⟨a⟩ is a ϕ-Gn-absorbing ideal for some ϕ with ϕ ≤ ϕ2. Then ⟨a⟩ is ϕ2-

Gn-absorbing. We show that ⟨a⟩ is a Gn-absorbing ideal. Let x1, x2, . . . , xn+1 ∈ R

be such that x1x2 · · · xn+1 ∈ ⟨a⟩. If x1x2 · · · xn+1 ∈ ⟨a⟩ − ⟨a⟩2, then x̂i,n+1 ∈
√

⟨a⟩

for some i ∈ {1, 2, . . . , n + 1} because ⟨a⟩ is ϕ2-Gn-absorbing. So we can assume

that x1x2 · · · xn+1 ∈ ⟨a⟩2. Since R is strongly Euclidean, ⟨a⟩ and ⟨a2⟩ are k-ideals.

Now, (x1 + a)x2 · · · xn+1 = x1x2 · · · xn+1 + ax2x3 · · · xn+1 ∈ ⟨a⟩.

Case 1: Assume that (x1+a)x2 · · · xn+1 ∈ ⟨a⟩−⟨a⟩2. Since ⟨a⟩ is ϕ2-Gn-absorbing,

x2x3 · · · xn+1 ∈
√
⟨a⟩ or (x1 + a)x̂i,n+1 ∈

√
⟨a⟩ for some i ∈ {2, 3, . . . n + 1}. If

x2x3 · · · xn+1 ∈
√
⟨a⟩, then we are done. Assume that (x1 + a)x̂i,n+1 = x1x̂i,n+1 +

ax̂i,n+1 ∈
√

⟨a⟩. Since
√
⟨a⟩ is a subtractive extension of ⟨a⟩, we obtain x1x̂i,n+1 ∈√

⟨a⟩.

Case 2: Assume that (x1+ a)x2 · · · xn+1 ∈ ⟨a⟩2 = ⟨a2⟩. Since ⟨a2⟩ is a k-ideal and

x1x2 · · · xn+1, x1x2 · · · xn+1+ax2x3 · · · xn+1 ∈ ⟨a2⟩, we obtain ax2x3 · · · xn+1 ∈ ⟨a2⟩.

Thus x2x3 · · · xn+1 ∈ (⟨a⟩2 : a) = ⟨a⟩.

Therefore ⟨a⟩ is a Gn-absorbing k-ideal.

5.2 ϕ-Gn-Absorbing Ideals in Decomposable Semirings

In this section, Gn-absorbing ideals, weakly Gn-absorbing ideals and ϕ-Gn-

absorbing ideals of decomposable semirings are taken care of. Almost all of the

results in this section are parallel to the results in Section 4.2.

The following proposition is parallel to Proposition 3.2.1 and Proposition 4.2.1.

Proposition 5.2.1. Let R = R1 ×R2 × · · · ×Rm where m,n ∈ N with m ≥ n+1

be a decomposable semiring and I = I1× I2×· · ·× Im a nonzero proper ideal of R.

If I is a weakly Gn-absorbing ideal, then Ii = Ri for some i ∈ {1, 2, . . . ,m}.

Proof. The proof is similar to Proposition 3.2.1 and Proposition 4.2.1.

In general, Gn-absorbing ideals implies weakly Gn-absorbing ideals but not

vice versa. Nevertheless, in a decomposable semiring with at least n + 1 compo-
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nents, weakly Gn-absorbing ideals and Gn-absorbing ideals are coincide if they are

nonzero proper k-ideals.

Proposition 5.2.2. Let R = R1 ×R2 × · · · ×Rm where m,n ∈ N with m ≥ n+1

be a decomposable semiring and I = I1 × I2 × · · · × Im a nonzero proper k-ideal

of R. Then I is a weakly Gn-absorbing ideal if and only if I is a Gn-absorbing

ideal of R.

Proof. Assume that I is a weakly Gn-absorbing ideal of R. By Proposition 5.2.1,

we obtain Ii = Ri for some i ∈ {1, 2, . . . ,m}. Thus In+1 ̸= {0}. Therefore, I is a

Gn-absorbing ideal by Corollary 5.1.22. The converse follows from Corollary 5.1.18.

We obtain from Proposition 5.2.1 that being a nonzero ideal of I and the

condition that m ≥ n + 1 give that there is at least one of Ii must not be proper

and it leads us to conclude that weakly Gn-absorbing ideals and Gn-absorbing

ideals are coincide in Proposition 5.2.2. In the next theorem, we assume that

Ii = Ri for some i ∈ {1, 2, . . . ,m}. Hence the condition that I is a nonzero ideal

and m ≥ n+ 1 need not be assumed.

Theorem 5.2.3. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R which at least one

Ii = Ri where i ∈ {1, 2, . . . ,m}. Consider the following statements:

(1) I is a weakly Gn-absorbing ideal of R.

(2) I is a Gn-absorbing ideal of R.

(3) If Ij ̸= Rj where j ∈ {1, 2, . . . ,m}, then Ij is a Gn-absorbing ideal of Rj.

Then (1) and (2) are equivalent and (2) implies (3).

Proof. Obviously, (2) ⇒ (1).

To show (1) ⇒ (2), assume that I is a weakly Gn-absorbing ideal of R. Note

that In+1 ̸= {0} since Ii = Ri for some i ∈ {1, 2, . . . ,m}. Thus I is a Gn-absorbing
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ideal of R by Corollary 5.1.22.

To show (2) ⇒ (3), assume that I is a Gn-absorbing ideal of R and Ij ̸= Rj for

some j ∈ {1, 2, . . . ,m}. Let x1, x2, . . . , xn+1 ∈ Rj be such that x1x2 · · · xn+1 ∈ Ij.

Then

(0, . . . , 0, x1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0) · · · (0, . . . , 0, xn+1, 0, . . . , 0)

= (0, . . . , 0, x1x2 · · · xn+1, 0, . . . , 0) ∈ I.

Thus (0, . . . , 0, x̂i,n+1, 0, . . . , 0) ∈
√
I =

√
I1 × I2 × · · · × Im =

√
I1×

√
I2×· · ·×

√
Im

for some i ∈ {1, 2, . . . n+1} because I is a Gn-absorbing ideal. Hence x̂i,n+1 ∈
√
Ij.

Therefore, Ij is a Gn-absorbing ideal of Rj.

In Theorem 5.2.3, we show that if I is a Gn-absorbing ideal (weakly Gn-

absorbing ideal) of R, then any proper ideal Ij of Rj is a Gn-absorbing ideal

of Rj where j ∈ {1, 2, . . . ,m}. Next example confirms that the converse is not

true.

Example 5.2.4. Consider the semiring R = Z+
0 × Z+

0 × Z+
0 and its ideal I =

30Z+
0 × 70Z+

0 × Z+
0 . We know that 30Z+

0 and 70Z+
0 are G3-absorbing ideal of the

semiring Z+
0 . We would like to show that I is not a weakly G3-absorbing ideal of

the semiring Z+
0 . Since

0 ̸= (2, 1, 1)(3, 2, 1)(5, 5, 1)(1, 7, 1) = (30, 70, 1) ∈ I

but

((2, 1, 1)(3, 2, 1)(5, 5, 1))α = (30, 10, 1)α /∈ I because 10α /∈ 70Z+
0 ,

((2, 1, 1)(3, 2, 1)(1, 7, 1))β = (6, 14, 1)β /∈ I because 6β /∈ 30Z+
0 ,

((2, 1, 1)(5, 5, 1)(1, 7, 1))γ = (10, 35, 1)γ /∈ I because 10γ /∈ 30Z+
0 and

((3, 2, 1)(5, 5, 1)(1, 7, , 1))δ = (6, 70, 1)δ /∈ I because 6δ /∈ 30Z+
0

for all α, β, γ ∈ N. Then (2, 1, 1)(3, 2, 1)(5, 5, 1) /∈
√
I, (2, 1, 1)(3, 2, 1)(1, 7, 1) /∈

√
I,

(2, 1, 1)(5, 5, 1)(1, 7, 1) /∈
√
I and (3, 2, 1)(5, 5, 1)(1, 7, , 1) /∈

√
I. Therefore, we can
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conclude that I is not a weakly G3-absorbing ideal of R, and so I is not a G3-

absorbing ideal of R.

In Theorem 5.2.3, at least one Ii = Ri for i ∈ {1, 2, . . . ,m} is assumed which

is not the sufficient condition to make (3) imply (1) or (2). In the next theorem,

we assume a stronger condition in order to make (1), (2) and (3) be equivalent.

Theorem 5.2.5. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one

Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. Then the following statements are equivalent.

(1) I is a weakly Gn-absorbing ideal of R.

(2) I is a Gn-absorbing ideal of R.

(3) Ii is a Gn-absorbing ideal of Ri.

Proof. Theorem 5.2.3 yields (1) ⇔ (2) and (2) ⇒ (3).

To show (3) ⇒ (2), assume Ii is a Gn-absorbing ideal of Ri. Let (x11, . . . , x1m),

(x21, . . . , x2m), . . . , (x(n+1)1, . . . , x(n+1)m) ∈ R be such that

(x11x21 · · · x(n+1)1, . . . , x1ix2i · · · x(n+1)i, . . . , x1mx2m · · · x(n+1)m) ∈ I.

In fact, I = R1 × · · · × Ri−1 × Ii × Ri+1 × · · · × Rm. Since Ii is a Gn-absorbing

ideal of Ri, we obtain x̂ji,(n+1)i ∈
√
Ii for some j ∈ {1, 2, . . . , n + 1}. Hence

(x11, . . . , x1m) · · · (x(j−1)1, . . . , x(j−1)m)(x(j+1)1, . . . , x(j+1)m) · · · (x(n+1)1, . . . , x(n+1)m)

∈ R1 × · · · ×Ri−1 ×
√
Ii ×Ri+1 × · · · ×Rm =

√
I. Therefore, I is a Gn-absorbing

ideal of R.

Corollary 5.2.6. Let R = R1×R2×· · ·×Rm be a decomposable semiring with ϕ,

n a positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R which exactly

one Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. If Ii is a Gn-absorbing ideal of Ri, then I is

a ϕ-Gn-absorbing ideal of R.

Corollary 5.2.6 shows that if Ii is a Gn-absorbing ideal of Ri, then I1 × I2 ×

· · · × Im is a ϕ-Gn-absorbing ideal of R1 × · · · ×Rm but not vice versa.
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Example 5.2.7. Consider the semiring R = Z+
0 ×Z+

0 and the ideal I = 30Z+
0 ×Z+

0 .

Since 2 · 3 · 5 = 30 ∈ 30Z+
0 but (2 · 3)α = 6α /∈ 30Z+

0 and (2 · 5)β = 10β /∈ 30Z+
0 and

(3 · 5)γ = 15γ /∈ 30Z+
0 for all α, β, γ ∈ N, i.e., 2 · 3 /∈

√
30Z+

0 , 2 · 5 /∈
√
30Z+

0 and

3 · 5 /∈
√

30Z+
0 , it follows that the ideal 30Z+

0 is not a G2-absorbing ideal of the

semiring Z+
0 . We define ϕ : I (R) → I (R) ∪ {∅} by ϕ(30Z+

0 × Z+
0 ) = 15Z+

0 × Z+
0

and ϕ(J) = J otherwise. Then I − ϕ(I) = (30Z+
0 × Z+

0 ) − ϕ(30Z+
0 × Z+

0 ) =

(30Z+
0 ×Z+

0 )− (15Z+
0 ×Z+

0 ) = ∅. Thus the ideal I is a ϕ-G2-absorbing ideal of R.

Let R = R1×· · ·×Rm be a decomposable semiring with ϕ and I = I1×· · ·×Im

a proper ideal of R with exactly one Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. We know

that, if Ii is a Gn-absorbing ideal of Ri, then I is a ϕ-Gn-absorbing ideal of R.

However, if Ii is a weakly Gn-absorbing ideal of Ri, then I need not be a weakly

Gn-absorbing ideal of R but it must be a ϕ-Gn-absorbing ideal of R of for all

ϕω ≤ ϕ if Ii is a k-ideal.

Theorem 5.2.8. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and I = I1 × I2 × · · · × Im a proper k-ideal of R with exactly one

Ii ̸= Ri where i ∈ {1, 2, . . . ,m}. If Ii is a weakly Gn-absorbing ideal of Ri, then I

is a ϕ-Gn-absorbing ideal of R for all ϕω ≤ ϕ.

Proof. Without loss of generality, we assume that i = 1. We would like to show

that I = I1 × R2 × · · · × Rm is a ϕ-Gn-absorbing ideal of R for all ϕω ≤ ϕ. Since

I is a k-ideal, it follows that I1 is a k-ideal by Proposition 2.1.28. First, sup-

pose that I1 is a Gn-absorbing ideal. By Theorem 5.2.5, I is a Gn-absorbing

ideal. Hence I is a ϕω-Gn-absorbing ideal. So assume that I1 is not a Gn-

absorbing ideal. Then In+1
1 = {0} from Corollary 5.1.22. Consider the ele-

ment (x1, . . . , xm) ∈ ϕω(I) = ∩∞
n=1I

n ⊆ In+1 = (I1 × R2 × · · · × Rm)
n+1 ⊆

In+1
1 ×R2×· · ·×Rm = {0}×R2×· · ·×Rm. We show that I is a ϕω-Gn-absorbing

ideal. Let (x11, . . . , x1m), (x21, . . . , x2m), . . . , (x(n+1)1, . . . , x(n+1)m) ∈ R be such that

(x11x21 · · · x(n+1)1, . . . , x1mx2m · · · x(n+1)m) ∈ I − ϕω(I). Then x11x21 · · · x(n+1)1 ∈

I1 − {0}. Since I1 is a weakly Gn-absorbing ideal, we obtain x̂j1,(n+1)1 ∈
√
I1 for

some j ∈ {1, 2, . . . , n + 1}. Hence (x̂j1,(n+1)1, x̂j2,(n+1)2, . . . , x̂jm,(n+1)m) ∈
√
I1 ×



100

R2×· · ·×Rm =
√
I. Thus I is a ϕω-Gn-absorbing ideal. Therefore, in any cases, I

is a ϕω-Gn-absorbing ideal, and so I is a ϕ-Gn-absorbing ideal for all ϕω ≤ ϕ.

The following result is parallel to Theorem 4.2.9.

Theorem 5.2.9. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer with n ≥ 2 and I = I1 × I2 × · · · × Im where Ii ̸= {0} for all

i ∈ {1, 2, . . . ,m} is a weakly Gn-absorbing k-ideal. Then I is a Gn-absorbing ideal

of R or Ii is a G(n− 1)-absorbing ideal of Ri for all i ∈ {1, 2, . . . ,m}.

Proof. If I is an Gn-absorbing ideal of R, then we are done. Suppose that I is not

a Gn-absorbing ideal of R. Then In+1 = {0} by Corollary 5.1.22. Hence Ij ̸= Rj

for all j ∈ {1, 2, . . . ,m}. Let j ∈ {1, 2, . . . ,m}. We would like to show that Ij is an

(n−1)-absorbing ideal of Rj. Let x1, x2, . . . , xn ∈ Rj be such that x1x2 · · · xn ∈ Ij.

Let i ∈ {1, 2, . . . ,m} be such that i ̸= j, without lost of generality, we assume that

j < i. Since Ii ̸= {0}, there exists 0 ̸= yi ∈ Ii. Then

(0, . . . , 0) ̸= (0, . . . , 0, x1x2 · · · xn, 0, . . . , 0, yi, 0, . . . , 0) ∈ I.

Thus

(0, . . . , 0) ̸= (0, . . . , 0, x1, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, x2, 0, . . . , 0, 1, 0, . . . , 0) · · ·

(0, . . . , 0, xn, 0, . . . , 0, 1, 0, . . . , 0)(0, . . . , 0, 1, 0, . . . , 0, yi, 0, . . . , 0) ∈ I.

Since I is a weakly Gn-absorbing ideal, 1 ∈
√
Ii or x̂l,n ∈

√
Ij for some l ∈

{1, 2, . . . , n}. Since Ii ̸= Ri, we obtain 1 /∈
√
Ii, and hence x̂l,n ∈

√
Ij. Therefore,

Ij is a G(n− 1)-absorbing ideal of Rj.

In Chapter IV, we obtain that if I = I1 × I2 × · · · × Im is a proper ideal of a

decomposable semiring R = R1 × R2 × · · · × Rm with exactly two prime proper

ideals Ii and Ij of Ri and Rj, respectively, then I is a 2-absorbing ideal of R. In

the following result, we change the condition that Ii and Ij are prime ideals to Ii

and Ij are primary ideals of Ri and Rj, respectively, then we obtain the similar

result.

Proposition 5.2.10. Let R = R1 × R2 × · · · × Rm be a decomposable semiring

and I = I1 × I2 × · · · × Im a proper ideal of R which exactly two Ii ̸= Ri and
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Ij ̸= Rj where i, j ∈ {1, 2, . . . ,m}. If Ii and Ij are primary ideals of Ri and Rj,

respectively, then I is a G2-absorbing ideal of R so that I is a ϕ-G2-absorbing ideal.

As a result, this I is a Gn-absorbing ideal of R so that I is a ϕ-Gn-absorbing ideal

where n ∈ N with n ≥ 2.

Proof. Assume that Ii and Ij are primary ideals of Ri and Rj, respectively. To show

that I is a G2-absorbing ideal of R, let (x11, . . . , x1m), (x21, . . . , x2m), (x31, . . . , x3m)

∈ R be such that (x11x21x31, . . . , x1mx2mx3m) ∈ I. Then at least one of xα
ni belongs

to Ii for some n ∈ {1, 2, 3} and for some α ∈ N and at least one of xβ
lj belongs to Ij

for some l ∈ {1, 2, 3} and for some β ∈ N. Thus (xnixli)
αβ ∈ Ii and (xnjxlj)

αβ ∈ Ij.

Hence ((xn1, . . . , xnm)(xl1, . . . , xlm))
αβ ∈ I, i.e, (xn1, . . . , xnm)(xl1, . . . , xlm) ∈

√
I.

Therefore, I is a G2-absorbing ideal of R so that I is a ϕ-G2-absorbing ideal of R.

Moreover, we can conclude that I is a Gn-absorbing ideal of R for n ≥ 2 and then

I is a ϕ-Gn-absorbing ideal of R for all n ≥ 2.

The next theorem is parallel to Theorem 4.2.10.

Theorem 5.2.11. Let R = R1 × R2 × · · · × Rm be a decomposable semiring and

I = I1 × I2 × · · · × Im an ideal of R. If Ii is a Gni-absorbing ideal of Ri where

ni ∈ Z+
0 for all i ∈ {1, 2, . . . ,m}, then I is a Gn-absorbing ideal of R where

n = n1 + n2 + · · ·+ nm, so that I is a ϕ-Gn-absorbing ideal of R.

Proof. Assume that Ii is a Gni-absorbing ideal of Ri where ni ∈ Z+
0 for all i ∈

{1, 2, . . . ,m}. Let n = n1 +n2 + · · ·+nm.We show that I is a Gn-absorbing ideal.

Let (x11, x12, . . . , x1m), (x21, x22, . . . , x2m), . . . , (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ R be

such that

(x11, x12, . . . , x1m)(x21, x22, . . . , x2m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m)

= (x11x21 · · · x(n+1)1, x12x22 · · · x(n+1)2, . . . , x1mx2m · · · x(n+1)m) ∈ I.

For each i, since Ii is a Gni-absorbing ideal, x1ix2i · · · x(n+1)i ∈ Ii and ni < n + 1,

we obtain xj1ixj2i · · · xjni i
∈
√
Ii for some distinct j1, j2, . . . , jni

∈ {1, 2, . . . , n+ 1}

by Theorem 5.1.2. Suppose that ∪m
i=1{j1, j2, . . . , jni

} = {j′1, j′2, . . . , j′h}. Thus
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{j′1, j′2, . . . , j′h} ⊆ {1, 2, . . . , n + 1} and h ≤ n since n1 + n2 + · · · + nm = n.

Since {j1, j2, . . . , jni
} ⊆ {j′1, j′2, . . . , j′h} and xj1ixj2i · · · xjni i

∈
√
Ii for all i ∈

{1, 2, . . . ,m}, we obtain

xj′1i
xj′2i

· · · xj′hi
∈
√
Ii.

By choosing all distinct j′h+1, j
′
h+2, . . . , j

′
n ∈ {1, 2, . . . , n+ 1} − {j′1, j′2, . . . , j′h},

xj′1i
xj′2i

· · · xj′ni = (xj′1i
xj′2i

· · · xj′hi
)(xj′h+1i

xj′h+2i
· · · xj′ni) ∈

√
Ii.

Then we obtain

(xj′11
, xj′12

, . . . , xj′1m
)(xj′21

, xj′22
, . . . , xj′2m

) · · · (xj′n1, xj′n2, . . . , xj′nm)

= (xj′11
xj′21

, · · · xj′n1, xj′12
xj′22

· · · xj′n2, . . . , xj′1m
xj′2m

· · · xj′nm)

∈
√

I1 × · · · ×
√

Im =
√
I.

Therefore, I is a Gn-absorbing ideal of R, and hence I is a ϕ-Gn-absorbing ideal

of R.

Example 5.2.12. Consider the semiring R = Z+
0 × Z+

0 × Z+
0 × Z+

0 .

(1) Then 23Z+
0 × 2234Z+

0 × 223453Z+
0 ×Z+

0 is a G6-absorbing ideal of R because

22Z+
0 is a G1-absorbing ideal, 2234Z+

0 is a G2-absorbing ideal, 223453Z+
0 is a G3-

absorbing ideal and Z+
0 is a G0-absorbing ideal of the semiring Z+

0 .

(2) Then 22Z+
0 × 23Z+

0 × 24Z+
0 × 25Z+

0 is a G4-absorbing ideal of R because

22Z+
0 , 2

3Z+
0 , 2

4Z+
0 and 25Z+

0 are G1-absorbing ideal of the semiring Z+
0 .

In the last result of this section, we consider ϕ-Gn-absorbing ideals of decom-

posable semirings.

Theorem 5.2.13. Let R = R1 × R2 × · · · × Rm be a decomposable semiring, n a

positive integer and ϕ = φ1×φ2×· · ·×φm where each φi : I (Ri) → I (Ri)∪{∅}

is a function. Then the following statements hold.

(1) I1 × I2 × · · · × Im is a ϕ-Gn-absorbing ideal of R where Ij ⊆ φj(Ij) for

all j ∈ {1, 2, . . . ,m} and at least one Ii is a proper ideal of Ri for some

i ∈ {1, 2, . . . ,m}.
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(2) R1 ×R2 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rm is a ϕ-Gn-absorbing ideal of R

where Ii is a φi-Gn-absorbing ideal of Ri which must be a Gn-absorbing ideal

if φj(Rj) ̸= Rj for some j ∈ {1, 2, . . . ,m} − {i}.

Proof. (1) The result follows from the fact that I1 × I2 × · · · × Im − ϕ(I1 × I2 ×

· · · × Im) = ∅.

(2) Without loss of generality, we assume that I1 is a proper ideal of R1. If I1 is

a Gn-absorbing ideal of R1, then I1×R2×· · ·×Rm is a Gn-absorbing ideal of R by

Theorem 5.2.5. Hence I1×R2×· · ·×Rm is a ϕ-Gn-absorbing ideal of R. Suppose

that I1 is a φ1-Gn-absorbing ideal of R1 and φj(Rj) = Rj for all j ∈ {1, 2, . . . ,m}.

Let (x11, x12, . . . , x1m), (x21, x22, . . . , x2m), . . . , (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈ R1×

R2 × · · · ×Rm be such that

(x11,x12, . . . , x1m)(x21, x22, . . . , x2m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m)

= (x11x21 · · · x(n+1)1, x21x22 · · · x(n+1)2, . . . , x1mx2m · · · x(n+1)m)

∈ I1 ×R2 × · · · ×Rm − ϕ(I1 ×R2 × · · · ×Rm)

= I1 ×R2 × · · · ×Rm − (φ1(I1)× φ2(R2)× · · · × φm(Rm))

= I1 ×R2 × · · · ×Rm − (φ1(I1)×R2 × · · · ×Rm)

= (I1 − φ1(I1))×R2 × · · · ×Rm.

Since I1 is a φ1-Gn-absorbing ideal of R1, we obtain x̂i1,(n+1)1 ∈
√
I1 for some i ∈

{1, 2, . . . , n + 1}. Thus (x11, x12, . . . , x1m) · · · (x(i−1)1, x(i−1)2, . . . , x(i−1)m)(x(i+1)1,

x(i+1)2, . . . , x(i+1)m) · · · (x(n+1)1, x(n+1)2, . . . , x(n+1)m) ∈
√
I1 × R2 × · · · × Rm =

√
I1 ×R2 × · · · ×Rm. Therefore, I1 × R2 × · · · × Rm is a ϕ-Gn-absorbing ideal

of R.

5.3 ϕ-Gn-Absorbing Ideals in Quotient Semirings and in

Semirings of Fractions

In this final section, we investigate ϕ-Gn-absorbing ideals of quotient semirings

and ϕ-Gn-absorbing ideals of semirings of fractions.
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Theorem 5.3.1. Let R be a semiring with ϕ satisfying the property (∗), n a

positive integer, I a Q-ideal of R and P a subtractive extension of I. Then P is a

ϕ-Gn-absorbing ideal of R if and only if P/I is a ϕI-Gn-absorbing ideal of R/I.

Proof. First, assume that P is a ϕ-Gn-absorbing ideal ofR. Since P is a subtractive

extension of I, we obtain P/I is a k-ideal. Let q1 + I, q2 + I, . . . , qn+1 + I ∈ R/I

be such that (q1 + I)(q2 + I) · · · (qn+1 + I) ∈ P/I − ϕI(P/I). Then q1q2 · · · qn+1 ∈

P − ϕ(P ) by Theorem 2.2.19. Since P is a ϕ-Gn-absorbing ideal, q̂i,n+1 ∈
√
P for

some i ∈ {1, 2, . . . , n+1}. Then (q1+I) · · · (qi−1,n+1+I)(qi+1,n+1+I) · · · (qn+1+I) ∈
√
P/I =

√
P/I by Proposition 2.2.18. Therefore, P/I is a ϕI-Gn-absorbing k-ideal

of R/I.

Conversely, suppose that P/I is a ϕI-Gn-absorbing ideal of R/I. We show

that P is a ϕ-Gn-absorbing ideal of R. Let x1, x2, . . . , xn+1 ∈ R be such that

x1x2 · · · xn+1 ∈ P−ϕ(P ). Then there exist q1, q2, . . . , qn+1 ∈ Q such that xi ∈ qi+I

for all i ∈ {1, 2, . . . , n+ 1}. Thus there are yi ∈ I such that xi = qi + yi for all i ∈

{1, 2, . . . , n+1}. Then we obtain (q1+y1)(q2+y2) · · · (qn+1+yn+1) ∈ P−ϕ(P ). Since

P and ϕ(P ) are subtractive extensions of I, we acquire q1q2 · · · qn+1 ∈ P−ϕ(P ). By

Theorem 2.2.19, we obtain (q1 + I)(q2 + I) · · · (qn+1 + I) ∈ P/I − ϕI(P/I). Since

P/I is a ϕI-Gn-absorbing ideal, (q1 + I) · · · (qi−1 + I)(qi+1 + I) · · · (qn+1 + I) ∈√
P/I =

√
P/I for some i ∈ {1, 2, . . . , n+1} by Proposition 2.2.18. Then q̂i,n+1 ∈

√
P . Hence x̂i,n+1 = (q1 + y1) · · · (qi−1 + yi−1)(qi+1 + yi+1) · · · (qn+1 + yn+1) ∈

√
P .

Therefore, P is a ϕ-Gn-absorbing ideal of R.

Example 5.3.2. Consider the semiring Z+
0 . Let P = 20Z+

0 and I = 60Z+
0 . Then

P is a G2-absorbing k-ideal of Z+
0 containing I and I is a Q-ideal of Z+

0 where Q =

{0, 1, 2, 3, . . . , 59}. Then P is a subtractive extension of I. Define ϕ : I (Z+
0 ) →

I (Z+
0 )∪{∅} by ϕ(J) = 5Z+

0 for all J ∈ I (Z+
0 ) where J is a subtractive extension

of I and ϕ(J) = {0} otherwise. Since 5Z+
0 is a subtractive extension of I = 60Z+

0 ,

ϕ(L) is a subtractive extension of I for al L ∈ I (R) where L is a subtractive

extension of I. Moreover, we define ϕI : I (R/I) → I (R/I) ∪ {∅} by ϕI(J/I) =

(5Z+
0 )/I for each ideal J of R where J is a subtractive extension of I. Hence Z+

0
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is the semiring with ϕ satisfying the property (∗). Since P s a G2-absorbing ideal,

P is a ϕ-G2-absorbing ideal. Therefore, P/I = 20Z+
0 /60Z+

0 is a ϕI-G2-absorbing

ideal of the quotient semiring Z+
0 /60Z+

0 .

Corollary 5.3.3. Let R be a semiring with ϕ satisfying the property (∗), n a

positive integer and I a Q-ideal of R. Then I is a ϕ-Gn-absorbing ideal of R if

and only if the zero ideal of R/I is a ϕI-Gn-absorbing ideal.

Finally, we show that if I is a ϕ-Gn-absorbing ideal of R under some conditions,

then IRS is a ϕS-Gn-absorbing ideal of RS.

Theorem 5.3.4. Let R be a semiring with ϕ, S the set of all multiplicatively

cancellable elements of R and I an ideal of R with I ∩ S = ∅ and ϕ(I)RS ⊆

ϕS(IRS). If I is a ϕ-Gn-absorbing ideal of R, then IRS is a ϕS-Gn-absorbing

ideal of RS.

Proof. Assume that I is a ϕ-Gn-absorbing ideal of R. Then IRS is a proper ideal

of RS because I ∩ S = ∅. Let
x1

s1
,
x2

s2
. . . ,

xn+1

sn+1

∈ RS be such that
x1x2 · · ·xn+1

s1s2 · · · sn+1

∈

IRS − ϕS(IRS). By Theorem 2.3.8, we have x1x2 · · · xn+1v = x1x2 · · · xn(xn+1v) ∈

I − ϕ(I) for some v ∈ S. Since I is ϕ-Gn-absorbing, x1 · · · xn ∈
√
I or x̂i,nxn+1v ∈

√
I for some i ∈ {1, 2, . . . , n}. Thus

x1 · · · xn

s1 · · · sn
∈

√
IRS =

√
IRS or

x̂i,nxn+1v

ŝi,nsn+1v
∈

√
IRS =

√
IRS. Hence

x̂j,n+1

ŝj,n+1

∈
√
IRS for some j ∈ {1, 2, . . . , n + 1}. Therefore,

IRS is a ϕS-Gn-absorbing ideal of RS.



CHAPTER VI

CONCLUSIONS

In this dissertation, we introduce many new algebraic objects in semirings and ones

of those important are ϕ-primary ideals, ϕ-n-absorbing ideals and ϕ-generalized-n-

absorbing ideals of semirings. The given concept of ϕ-primary ideals of semirings

that sustains the concepts of primary ideals and weakly primary ideals of semirings

that are defined by others. Moreover, the notion of ϕ-n-absorbing ideals sustains

the notion of prime ideals, weakly prime ideals, almost prime ideals, 2-absorbing

ideals and n-absorbing ideals of rings which are defined before. In this research,

we find that ϕ-primary ideals and ϕ-n-absorbing ideals do not imply each other;

nevertheless, all of them imply ϕ-generalized-n-absorbing ideals. In our work,

ϕ-primary ideals, ϕ-n-absorbing ideals and ϕ-generalized-n-absorbing ideals are

investigated in four categories that are semirings, decomposable semirings, quotient

semirings and semirings of fractions.

In semirings, we can conclude that being k-ideals of I and ϕ(I) and the con-

dition that I2 ⊆ ϕ(I) (In+1 ⊆ ϕ(I)) are sufficient conditions for ϕ-primary ide-

als (ϕ-n-absorbing ideals, ϕ-generalized-n-absorbing ideals) to be primary ideals

(n-absorbing ideals, generalized n-absorbing ideals). Moreover, we observe that n-

absorbing ideals are n′-absorbing ideals for all positive integers n′ ≥ n. This leads

us to consider in the case of ϕ-n-absorbing ideals and it follows that ϕ-n-absorbing

ideals are ϕ-n′-absorbing ideals for all positive integer n′ ≥ n. In addition, we

provide some forms of n-absorbing ideals and generalized n-absorbing ideals of the

particular semiring Z+
0 . The attractiveness is that if whatever principal ideal I of

the semiring Z+
0 is considered, then we can find n,m ∈ N such that the ideal I is

both an n-absorbing ideal and a generalized m-absorbing ideal of Z+
0 .

In decomposable semirings, relationships between ϕ-primary ideals (ϕ-n-absorbing
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ideals, ϕ-generalized-n-absorbing ideals) of a direct product of semirings and weakly

primary ideals (weakly n-absorbing ideals, weakly generalized n-absorbing ideals)

of some components of such direct product are inspected. In addition, we obtain

more beautiful results when we find that if Ii is an ni-absorbing ideal (a generalized

ni-absorbing ideal) of a semiring Ri where ni ∈ Z+
0 for all i ∈ {1, 2, . . . ,m}, then

I = I1 × I2 × · · · × Im is an n-absorbing ideal (a generalized n-absorbing ideal) of

a decomposable semiring R = R1 × R2 × · · · × Rm where n = n1 + n2 + · · · + nm

so that I is a ϕ-n-absorbing ideal (ϕ-generalized n-absorbing ideal).

In quotient semirings and semirings of fractions, we associate relations between

ϕ-primary ideals (ϕ-n-absorbing ideals, ϕ-generalized-n-absorbing ideals) of semir-

ings and ϕ-primary ideals (ϕ-n-absorbing ideals, ϕ-generalized-n-absorbing ideals)

of quotient semirings and semirings of fractions.

Finally, we present some ideas for extending our results. Since modules are a

generalization of rings, many concepts of rings are naturally extended to modules,

e.g., prime ideals (weakly prime ideals) and 2-absorbing ideals (weakly 2-absorbing

ideals) of rings are extended to prime submodules (weakly prime submodules) and

2-absorbing submodules (weakly 2-absorbing submodules). In addition, now, ϕ-

prime ideals of rings are also extended to the ϕ-prime submodules. Similarly, a

semiring R is also an R-semimodule. Moreover, semimodules are another gener-

alization of modules and several concepts of semimodules are extended from the

concepts of modules. Therefore, we expect that all concepts in this dissertation

can be extended to semimodules.

Open Problems

As a consequence of Theorem 3.2.9 and Theorem 4.2.14, we gain a characteriza-

tion of ϕ-primary ideals and ϕ-prime ideals of decomposable semirings with two

components. However, we do not have a characterization of them in decompos-

able semirings with more than two conponents. In addition, from Theorem 4.2.12

and Theorem 5.2.13, we do not obtain a characterization of ϕ-n-absorbing ideals

and ϕ-generalized-n-absorbing ideals of decomposable semirings. Hence there are
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4 open problems for this research.

(1) What is a characterization of ϕ-primary ideals of decomposable semirings

with more than two components ?.

(2) What is a characterization of ϕ-prime ideals of decomposable semirings with

more than two components ?.

(3) What is a characterization of ϕ-n-absorbing ideals of decomposable semi-

rings ?.

(4) What is a characterization of ϕ-generalized-n-absorbing ideals of decompos-

able semirings ?.
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